Costs of Maintaining Stormwater Control Measures

Presented by: Amber Ellis, E.I.

Developed by: Sarah Waickowski, PE; Dr. William Hunt, PE; William Lord

NC State University

Department of Biological and Agricultural Engineering

SCM Maintenance

- North Carolina Department of Environmental Quality (NC DEQ) requires signed and notarized maintenance plan for all stormwater control measures (SCMs)
- SCMs also required to be inspected on annual basis by a Professional Engineer or Registered Landscape Architect
- For more information contact regional NC DEQ office (https://deq.nc.gov/contact/regional-offices)
 - Visit https://deq.nc.gov/sw-bmp-manual
 - Operation and Maintenance chapter
 - Stormwater Rules and Regulations

Impacts of Maintenance on SCMs

- Maintenance affects SCM performance
 - Johnson and Hunt (2019) discovered bioretention cell performance in NC improved 17 years later
 - Willard et al. (2017) found bioretention cell performance in VA improved 7 years later
 - Bean et al. (2007) determined permeable pavement infiltration improved from 2 in/hr to 3.5 in/hr after maintenance

The 'Mow, Blow, and Go' Method will NOT Work for SCMs

Nor Will the 'Spray and Pray Method'

SCM Maintenance vs. Landscaping

- Landscapers observe plant material and use soil and tissue analyses to fertilize for good plant nutrition
- SCMs built to remove nutrients (TN and TP); plant growth is secondary concern
- Adding fertilizer to SCMs causes nutrient export

SCM Maintenance vs. Landscaping

- Using SCM maintenance companies ensures:
 - Issues are identified and corrected before annual inspection
 - SCMs meet permit requirements while aesthetically pleasing
 - More cost effective to routinely maintain SCMs

Bioretention Cell/Rain Garden Maintenance

- Typical maintenance includes:
 - Trash removal
 - Inspecting components (inlet(s), outlet, cleanouts)
 - Pruning and replacing woody vegetation
 - Mowing
 - Removing sediment from surface

Sources of Sediment

Sources include traffic and outparcels

Cistern/Rain Barrel Maintenance

- Typical maintenance includes:
 - Inspecting and repairing all leaks
 - Cleaning gutters
 - Unclogging screens and filters
 - Inspecting distribution system (e.g. pump)
 - Flushing out tank

Permeable Pavement Maintenance

- Typical maintenance includes:
 - Stabilizing surrounding area
 - Vacuuming or sweeping surface
 - Inspecting observation well(s)
 - Annual infiltration testing

Downspout Disconnection/Swales

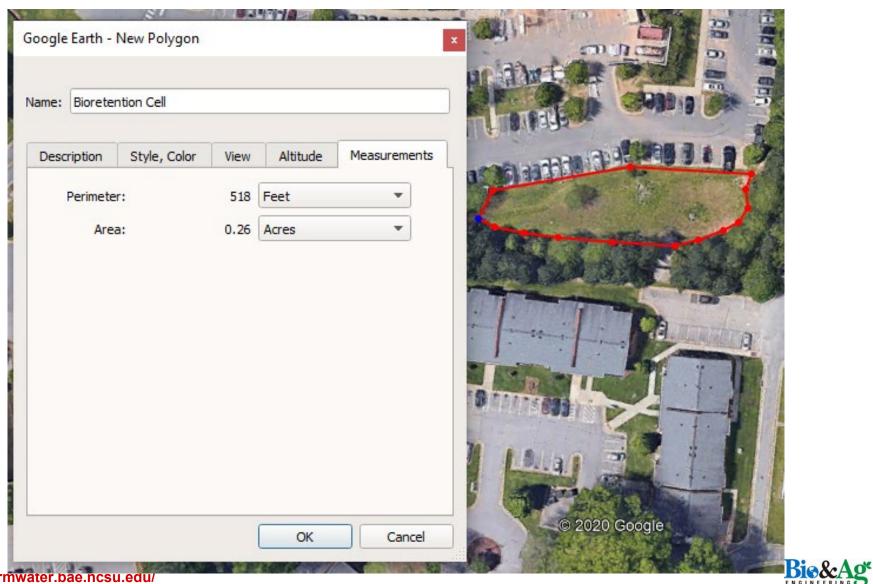
- Typical maintenance includes:
 - Unclogging gutters
 - Remove any trees or shrubs in designated vegetated area
 - Removing excess sediment or debris from drainage area
 - Maintaining non-clumping vegetation at height of 3 to 4 inches
 - Swale vegetation should be between 4 to 6 inches

A Little More About Mowing

- Don't mow after rain/ soggy conditions
 - More water than nature intended
- Be careful with lowering mower – scarring

Wet Pond/Wetland Maintenance

- Typical maintenance includes:
 - Trash and invasive vegetation removal
 - Mowing adjacent landscape and banks
 - Revegetation as needed
 - Inspecting components (inlets, outlet, forebay)
 - Removing vermin (beavers, muskrats) as needed


Maintenance Costs

- NCSU received grant from UNC WRRI to quantify maintenance costs for NC DEQ approved SCMs
- Identified costs for routine/proactive and restorative maintenance
- Compiling information into Excel based tool
 - Estimating lifespan of SCMs
 - Providing contingency factors
 - Accounting for inflation

Permeable Pavement		Туре	PICP	Surface Area	1 Acre			
Category	Task	l Hesource	Frequency Per Year	Duration Hours per Visit	Cost \$ Per Hour	Total Cost		Annual Cost
-	l '	Manpower Equipment / Material/ Transportation	4	 0.5	20	 40 0	\exists	
Routine Maintenance		Manpower Equipment / Material / Transportation	2	 4	20	 160 0		305
	_	Manpower Equipment / Material / Transportation	2 2	 0.5 0.5	20 85	 20 85		
Non-Routine Maintanance	Bestore Permeability	Manpower Equipment / Material / Transportation	0.2 0.2	 1	700	 0 140		140

How to Use the Tool

https://stormwater.bae.ncsu.edu/

Routine Bioretention Cell Costs

Parameter	Average	Median	Range		
Age (yr)	14	15	10 to 15		
Typical footprint (ac1)	0.17	0.13	0.05 to 0.25		
Maintenance frequency	Monthly	-	8 to 21 times per yr		
Time spent on tasks- mulched (hr)	1	1	0.25 to 3		
Number of employees maintaining SCM- mulched	3	2	1 to 9		
Routine costs without mowing- mulched (\$/ac1)	11,867	12,000	9,200 to 14,400		
Routine costs with mowing- mulched (\$/ac1)	12,400	12,000	12,000 to 14,400		
¹ ac refers to bioretention cell surface area					

Routine Bioretention Cell Costs

Parameter	Average	Median	Range		
Time spent on tasks-	1	1	1 to 1.5		
grassed (hr)	·	·			
Number of employees					
maintaining SCM-	3	2	1 to 9		
grassed					
Routine costs without	13,467	12,000	9,200 to		
mowing- grassed (\$/ac1)	13,407	12,000	19,200		
Routine costs with	15 600	12,000	10,800 to		
mowing- grassed (\$/ac1)	15,600	12,000	24,000		
¹ ac refers to bioretention cell surface area					

NC STATE UNIVERSITY

Task	Average	Median	Range			
< 1 gal plant replacement (\$/plant)	3	4	2.75 to 4			
1 gal plant replacement (\$/plant)	17	15	12 to 25			
3 gal to 5 gal plant replacement (\$/plant)	43	35	30 to 70			
Tree replacement (\$/tree)	325	300	100 to 600			
Mulch replacement (\$/cy1)	80	75	40 to 150			
Media testing (\$/test)	183	200	150 to 200			
¹ cy refers to mulch replaced						

Restorative Bioretention Cell Costs

Task	Average	Median	Range		
Replace media (\$/ton1)	77	80	25 to 125		
Replace media (\$/hr²)	300	-	-		
Complete restoration (\$/ac3)	455,213	480,000	300,000 to 585,640		
Camera underdrains (\$/hr2)	250	-	-		
Flush out underdrains (\$/lf4)	20	-	-		
Replace underdrains (\$/lf4)	7,000	-	-		
¹ton refers to media replaced					
² hr refers to work completed					
³ ac refers to bioretention cell surface area					
⁴ If refers to underdrain length					

Calculating Maintenance Costs

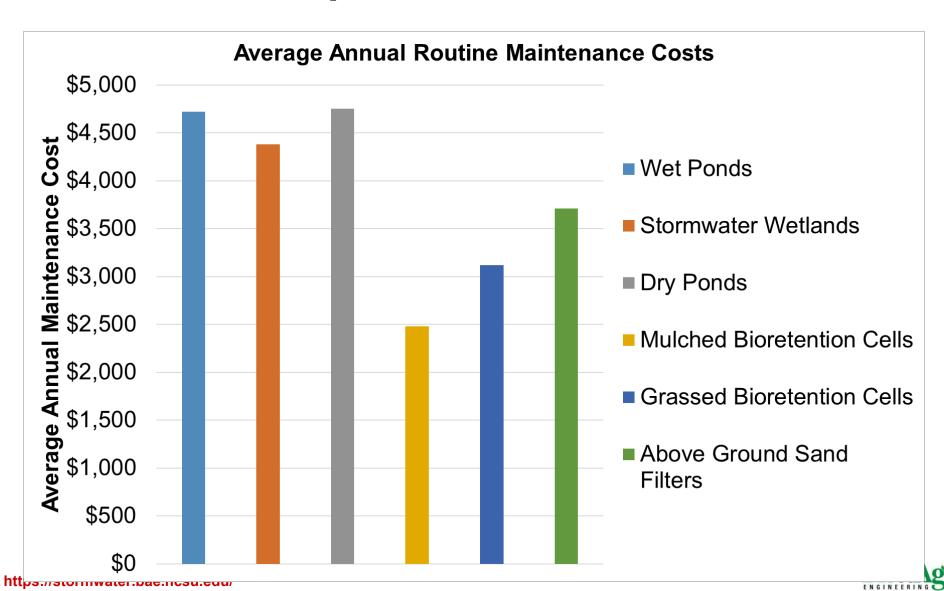
Calculating Maintenance Costs

- Annual routine costs for mulched bioretention cell with mowing: \$12,400 per ac
- Restorative costs for mulched bioretention cell: \$455,213 per ac
- Estimated costs:
 - Typical bioretention cell surface area = 0.20 ac
 - Routine:

Annual Cost =
$$\frac{\$12,400}{ac} * 0.20 \ ac = \$2,480$$

– Restorative:

$$Cost = \frac{\$455,213}{ac} * 0.20 \ ac = \$91,043$$


Routine Wet Pond Costs

Parameter	Average	Median	Range		
Age (yr)	16	16	10 to 28		
Typical footprint (ac)	0.50	0.50	0.25 to 0.75		
Maintenance frequency	Monthly	-	8 to 21 times per yr		
Time spent on tasks (hr)	2	1	0.25 to 6		
Number of employees maintaining SCM	3	2	1 to 9		
Routine costs w/o mowing (\$/ac)	6,360	4,600	4,000 to 9,600		
Routine costs with mowing (\$/ac)	9,440	8,800	5,400 to 15,200		
¹ ac refers to wet pond surface area					

Routine Dry Pond Costs

Parameter	Average	Median	Range		
Age (yr)	14	15	10 to 18		
Typical footprint (ac1)	0.42	0.50	0.25 to 0.50		
Maintenance frequency	Monthly	-	4 to 21 times per yr		
Time spent on tasks (hr)	1	1	0.17 to 2		
Number of employees maintaining SCM	3	4	1 to 9		
Routine costs without mowing (\$/ac1)	6,920	6,000	5,400 to 9,600		
Routine costs with mowing (\$/ac1)	11,320	10,400	6,600 to 18,000		
¹ ac refers to dry pond surface area					

Cost Comparisons Between SCMs

Questions?

sewaicko@ncsu.edu https://www.bae.ncsu.edu/workshopsconferences/

