

MONITORING YEAR 2
ANNUAL REPORT
FINAL

CATFISH POND MITIGATION SITE

Durham County, NC NCDEQ Contract No. 007424 DMS Project No. 100039 USACE Action ID No. 2018-00424 NCDWR Project No. 2018-0196

Data Collection Period: January-November 2021 Draft Submission Date: November 8, 2021 Final Submission Date: December 1, 2021

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: 919.851.9986

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Catfish Pond Mitigation Site (Site) for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS). A total of 7,140 linear feet of perennial and intermittent streams were restored and enhanced in Durham County, NC. The Site is expected to generate 3,748.800 stream mitigation units when calculated along stream centerlines. The Site is located approximately 12 miles north of the City of Durham and approximately 3 miles east of the Orange/Durham County border (Figure 1). The Site is in the Neuse River Basin 8-Digit Hydrologic Unit Code 03020201 and NC Division of Water Resources (NCDWR) Subbasin 03-04-01. The Site contains Catfish Creek and 3 unnamed tributaries. The streams drain to Mountain Creek, which flows into Little River, the Eno River, and then Falls Lake. Falls Lake is classified as Water Supply Waters (WS-IV) and Nutrient Sensitive Waters (NSW). The 20.73-acre Site is protected with a permanent conservation easement.

The Site is located within a DMS Targeted Local Watershed as discussed in the 2010 Neuse River Basin Restoration Priorities (RBRP), which highlights the importance of riparian buffers for stream restoration projects (Breeding, 2010). Past degradation at the Site included an in-line pond, extensive logging, stream channelization, and livestock access to streams and buffers.

The project goals established in the Catfish Pond Site Mitigation Plan (Mitigation Plan) (Wildlands, 2019) were completed with consideration of goals and objectives described in the Neuse River RBRP. The project goals established include:

- Exclude cattle from project streams;
- Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime;
- Improve the stability of stream channels;
- Improve instream habitat;
- Restore and enhance native floodplain and streambank vegetation; and
- Permanently protect the Site from harmful uses.

The project will contribute to achieving goals for the watershed discussed in the Neuse River RBRP and provide ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the Site, others, such as reduced pollutant and sediment loading, have farther reaching effects.

Site construction, seeding, and tree planting were completed in March and April 2020. As-built surveys were conducted in March and April 2020. Monitoring Year 2 (MY2) assessments and site visits were completed in April, September, October, and November 2021 to evaluate the condition of the project.

Overall, the Site has met the required vegetation and stream success criteria for MY2. The average vegetation plot stem density for the Site is 540 planted stems per acre and is therefore on track to meet the MY3 interim requirement of 320 planted stems per acre. Sporadic populations of invasive vegetation were treated with various herbicide application approaches in September 2021. Follow up treatments are scheduled for winter 2020/2021. Project streams are stable and functioning. Cross-sections 1, 2, 3, 5, and 6 show limited deviations from as-built due to sediment deposition and vegetation establishment. An area of erosion around cross-section 7 was identified and repaired in MY2. The riffle material around cross-section 4 was washed away leaving bedrock. Both cross-sections are stable, but Wildlands will continue to monitor their condition in MY3. A bankfull event was documented on UT1 Reach 2 during MY2.

i

CATFISH POND MITIGATION SITE

Monitoring Year 2 Annual Report

TABLE OF C	CONTENTS
-------------------	----------

Section 1: PROJECT O	VERVIEW	1-1
1.1 Project Goals	s and Objectives	1-1
1.2 Monitoring	Year 2 Data Assessment	1-2
1.2.1 Vegetat	tive Assessment	1-2
1.2.2 Vegetat	tion Areas of Concern	1-3
1.2.3 Stream	Assessment	1-3
1.2.4 Stream	Areas of Concern	1-3
1.2.5 Hydrolo	pgy Assessment	1-4
1.2.6 Wetland	d Assessment	1-4
1.2.7 Adaptiv	e Management Plan	1-4
_	/ear 2 Summary	
	LOGY	
Section 3: REFERENCE	ES	3-1
APPENDICES		
Appendix 1	General Figures and Tables	
Figure 1	Project Vicinity Map	
Figure 2	Project Component/Asset Map	
Table 1	Mitigation Assets and Components	
Table 2	Project Activity and Reporting History	
Table 3	Project Contact Table	
Table 4	Project Information and Attributes	
Appendix 2	Visual Assessment Data	
Figure 3-3b	Integrated Current Condition Plan View Map	
Table 5a-d	Visual Stream Morphology Stability Assessment Table	
Table 6	Vegetation Condition Assessment Table	
	Stream Photographs	
	Stream Areas of Concern Photographs	
	Vegetation Plot Photographs	
Appendix 3	Vegetation Plot Data	
Table 7	Vegetation Plot Criteria Attainment Table	
Table 8	CVS Vegetation Tables – Metadata	
Table 9a	Fixed Plots: Planted and Total Stem Counts	
Table 9b	Random Plots: Planted and Total Stem Counts	
Appendix 4	Morphological Summary Data and Plots	
Table 10a-b	Baseline Stream Data Summary	
Table 11	Cross-Section Morphology Monitoring Summary	
Table 12a-d	Monitoring Data – Stream Reach Data Summary	
	Cross-Section Plots	
	Reachwide Pebble Count Plots	

Appendix 5 Hydrology Summary Data

Table 13 Verification of Bankfull Events
Monthly Rainfall Data

Table 14 Wetland Gauge Summary
Groundwater Gauge Plots

Section 1: PROJECT OVERVIEW

The Catfish Pond Mitigation Site (Site) is located in Durham County approximately 12 miles north of the City of Durham and approximately 3 miles east of the Orange/Durham County border (Figure 1). The Site is located within the Falls Lake Water Supply Watershed, which is within the Neuse River Basin. Both the Neuse River and Falls Lake have been designated as Nutrient Sensitive Water. The Site is within Hydrologic Unit Code 03020201020040 and is located within the Neuse River Targeted Local Watershed (Figure 1) as identified in the 2010 Neuse River Basin Priorities (RBRP) (Breeding, 2010). The Site is in the Carolina Slate Belt of the Piedmont Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural and forested land. Approximately 197 acres drain to the downstream end of Catfish Creek and 30 acres drain to Mountain Tributary for a total Site drainage area of 227 acres.

The project streams consist of Catfish Creek and three unnamed tributaries (UT1, UT2, and Mountain Tributary). Mitigation work within the Site included restoration and enhancement II of 7,140 linear feet of intermittent and perennial stream channels (Figure 2 and Table 1). The riparian areas were planted with native vegetation to improve habitat and protect water quality. The final Mitigation Plan (Wildlands, 2019) was submitted to and accepted by the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) in July 2019. Construction activities were completed by Main Stream Earthwork, Inc. in March 2020. Planting and seeding activities were completed by Bruton Natural Systems, Inc. and Canady's Landscaping and Erosion in March and April 2020. Baseline monitoring (MY0) was conducted in March and April 2020. Annual monitoring will occur for seven years with the closeout anticipated to commence in 2027 provided the success criteria are met. Appendix 1 provides additional details on project activity, history, contact information, and background information for the Site.

The Site is located on 2 parcels under single ownership. A conservation easement was recorded on 20.73 acres. The project is expected to provide 3,748.800 stream mitigation units (SMU) at closeout. A Project Vicinity Map and directions are provided in Figure 1 and a Project Component/Asset Map is illustrated in Figure 2.

1.1 Project Goals and Objectives

Prior to construction activities, one of the primary causes of degradation on the Site was the creation of an in-line pond on Catfish Creek Reach 6 sometime between 1940 and 1955. During that same time extensive logging and farm road construction took place at the Site. In 1972, aerial photographs suggest that portions of UT1 had been straightened for agricultural purposes. Catfish Creek above and below the pond, UT2, and Mountain Tributary showed few signs of channel manipulation, but were impaired due to historical livestock access. Table 4 in Appendix 1 and Tables 10a-b in Appendix 4 present additional information on pre-restoration conditions.

The project is intended to provide numerous ecological benefits helping achieve goals for the watershed discussed in the Neuse River RBRP. While benefits such as habitat improvement and geomorphic stability are limited to the Site, reduced nutrient and sediment loading have farther reaching effects. The table below describes expected outcomes to water quality and ecological processes and provides project goals and objectives. The project goals and objectives were developed as part of the Mitigation Plan (Wildlands, 2019) considering the goals and objectives listed in the Neuse River RBRP and strive to maximize ecological and water quality uplift within the watershed.

Goals	Objectives	Expected Outcomes
Exclude cattle from project streams.	Install fencing around conservation easements adjacent to cattle pastures to remove livestock.	Reduce and control sediment inputs; reduce and manage nutrient inputs; reduce and manage fecal coliform inputs. Contribute to protection of or improvement to a Water Supply Waterbody.
Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime.	Reconstruct stream channels for bankfull dimensions and depth relative to the existing floodplain. Remove existing berms to reconnect channel with adjacent wetlands.	Raise water table and hydrate riparian wetlands. Allow more frequent flood flows to disperse on the floodplain. Support geomorphology and higher-level functions.
Improve the stability of stream channels.	Construct stream channels that will maintain stable cross-sections, patterns, and profiles over time.	Significantly reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Support all stream functions above hydrology.
Improve instream habitat.	Install habitat features such as constructed riffles, cover/lunker logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.	Increase and diversify available habitats for macroinvertebrates, fish, and amphibians leading to colonization and increase in biodiversity over time. Add complexity including LWD to streams.
Restore and enhance native floodplain and streambank vegetation.	Plant native tree and understory species in riparian zone and plant appropriate species on streambank.	Reduce sediment inputs from bank erosion and runoff. Increase nutrient cycling and storage in floodplain. Provide riparian habitat. Add a source of LWD and organic material to stream. Support all stream functions.
Permanently protect the project Site from harmful uses.	Establish conservation easements on the Site.	Protect Site from encroachment on the riparian corridor and direct impact to streams and wetlands. Support all stream functions.

1.2 Monitoring Year 2 Data Assessment

Annual monitoring and site visits were conducted during Monitoring Year 2 (MY2) to assess the condition of the project. The vegetation, stream, and hydrology success criteria for the Site follow the approved success criteria presented in the Mitigation Plan (Wildlands, 2019).

1.2.1 Vegetative Assessment

Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). During baseline monitoring (MYO) a total of six standard 10-meter by 10-meter vegetation plots and one 5-meter by 20-meter vegetation plot were established within the project easement area. An additional two random vegetation plots are monitored annually, in which a new center point is arbitrarily chosen each year within the conservation easement.

The final vegetation success criteria at the end of MY7 are the survival of 210 planted stems per acre averaging 10 feet in height. Interim success criteria are the survival of 320 planted stems per acre at the

end of MY3 and 260 planted stems per acre with an average stem height of 7 feet at the end of MY5. No one species shall account for more than 50% of the required number of stems within any vegetation plot at the end of MY7.

The MY2 vegetative survey was completed in September 2021. Vegetation monitoring resulted in an average stem density of 540 planted stems per acre, which is well above the interim success criteria of 320 stems per acre required at MY3. All nine vegetation plots individually met the interim success criteria and stem densities for each plot range from 405 to 769 stems per acre. Volunteer stems have begun to establish themselves and include desirable species such as American persimmon (*Diospyros virginiana*), tulip poplar (*Liriodendron tulipifera*), sycamore (*Platanus occidentalis*), and green ash (*Fraxinus pennsylvanica*). Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

Invasive species at Catfish Pond have been greatly reduced by past treatments throughout the site. However, Wildlands recognizes that multiple treatments are typically needed for effective invasive plant control. Scattered stems of Chinese Privet (*Ligustrum sinensis*), Princess tree (*Paulownia tomentosa*) and Tree of Heaven (*Ailanthus altissima*) were treated in September 2021. These areas will be monitored and retreated as necessary. Additionally, sporadic areas of re-sprouting multiflora rose (*Rosa multiflora*), Chinese privet (*Ligustrum sinense*), and Japanese honeysuckle (*Lonicera japonica*) will be addressed in MY3 using a combination of methods including mechanical removal as well as foliar and cut stump applications.

1.2.3 Stream Assessment

Morphological surveys for MY2 were conducted in April and October 2021. Streams within the Site are stable and functioning. Most cross-sections at the Site show minimal change in the bankfull cross-sectional area and width-to-depth ratio. Bank height ratios are 1.2 or less. Entrenchment ratios are over 1.4 for B channels and at least 2.2 for C channels. Cross-section 1, 2, 3, 5, and 6 graphs show slight deviations from as-built due to sediment deposition and establishment of vegetation. Some sediment deposition in pools is natural and expected. Cross-sections 4 and 7 are discussed below in Section 1.2.4. Reachwide substrate measurements indicate the maintenance of coarser materials in the riffle reaches and finer particles in the pools. Visual inspection does not indicate reachwide vertical instability so longitudinal profile surveys are not required. Refer to Appendix 2 for the Visual Stability Assessment Table, Integrated Current Condition Plan View map, and Stream Photographs. Refer to Appendix 4 for the morphological data and plots.

1.2.4 Stream Areas of Concern

Riffle material along the stream bed in portions of the Catfish Creek Reach 6 was washed downstream during the winter of 2020/2021. During construction, bedrock was discovered beneath the old pond bed and adjustments to design were made. The riffle material that was placed on the bedrock did not hold. However, the bedrock streambed is stable and Wildlands proposes to leave the reach as it is now. The location is shown in Figure 3a, the length of stream channel affected is shown in Table 5b, and bedrock photographs are included in Stream Areas of Concern Photographs in Appendix 2.

Additionally, erosion and degradation was noticed in the stream channel around cross-section 7 on UT1 Reach 3 after the 2020/2021 winter rains. A small section of the stream was stabilized and repaired in July. The cross-section was re-surveyed in October 2021. Cross-section 7 dimensions on the Cross-Section Plots and in Table 12d in Appendix 4 differ slightly from As-Built and MY0 dimensions but this is to be expected after repairs were made. The stream channel is now stable and functioning, but

Wildlands will continue to observe the area to confirm stability. The location is shown in Figure 3b, the length of stream repaired is shown in Table 5d, and stream channel photographs from pre and post repair are included in Stream Areas of Concern Photographs in Appendix 2.

1.2.5 Hydrology Assessment

By the end of MY7, four or more bankfull events must have occurred in separate years within the restoration reaches. Three bankfull events were recorded on UT1 Reach 2 and no bankfull events were recorded on Catfish Creek Reach 6 in MY2. The lack of bankfull readings on Catfish Creek Reach 6 may be due to a combination of factors including fewer large rainfall events in 2021, timing of transducer readings, and the shape of the channel at the location of the crest gauge. Wildlands intends to install another crest gauge along Catfish Creek to investigate. Refer to Appendix 5 for hydrologic data.

1.2.6 Wetland Assessment

As requested by NCDWR, four groundwater wells with pressure transducers were installed and monitored within the existing wetlands zones (one along Catfish Creek Reach 4 and three along UT1 Reach 2). The purpose of these gauges is to assess potential effects to wetland hydrology from the construction of the restored stream channels. The monitoring results are not tied to performance standards. All gauges are downloaded and maintained quarterly.

The measured hydroperiod ranged from 19.1% (49 days) to 34.0% (87 days) of the growing season. Refer to Appendix 5 for wetland hydrology data.

1.2.7 Adaptive Management Plan

Follow up treatments for the scattered Chinese privet, multiflora rose, and Japanese honeysuckle are scheduled for MY3. Wildlands will continue to monitor and control invasive species at the Site during subsequent monitoring years.

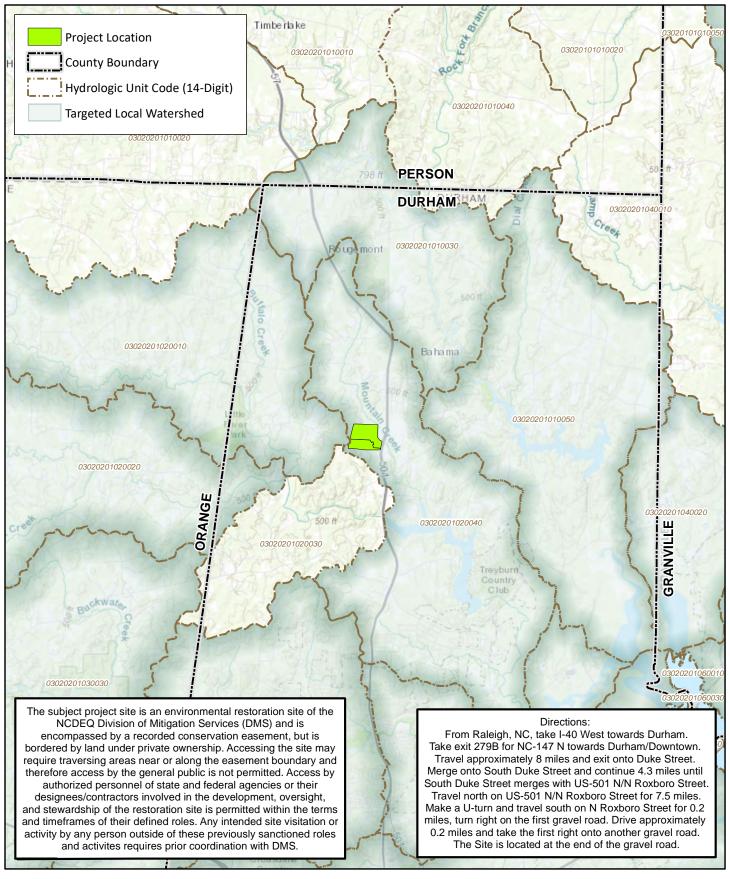
Trees planted in areas of competition with pasture grasses including tall fescue and Johnston grass are being observed closely. Trees planted in these areas received herbicide ring sprays around the base of their stems after planting and appear to be thriving and competing well with the pasture grasses. For the trees to continue to outcompete the remaining pasture grasses, additional 18"-30" herbicide ring sprays will be applied around the base of planted stems at the beginning of the MY3 growing season.

Wildlands will continue to monitor sections of Catfish Creek Reach 6 and UT1 Reach 3 for signs of instability, but no further action is necessary at this time since the areas appear stable.

1.3 Monitoring Year 2 Summary

Vegetation across the Site is exceeding performance standards and is on track to achieve the MY3 interim requirement of 320 planted stems per acre. Monitoring Year 2 data shows an average density of 540 planted stems per acre across vegetation plots. In addition, desirable volunteer species such as American persimmon (*Diospyros virginiana*) and tulip poplar (*Liriodendron tulipifera*) are establishing themselves. Sporadic invasive vegetation was treated in September 2021 and follow up treatments are scheduled for Monitoring Year 3. To build on the success of previous herbicide ring sprays, additional ring sprays will be applied around the base of trees in areas of high competition with herbaceous vegetation in spring 2022. Project streams are stable and functioning. Cross-sections 1, 2, 3, 5, and 6 show limited deviations from as-built due to sediment deposition and vegetation establishment. An area of erosion around cross-section 7 was identified and repaired in MY2. The riffle material around cross-section 4 was washed away leaving bedrock. Both cross-sections are stable but Wildlands will continue to monitor their condition in MY3. A bankfull event was documented on UT1 Reach 2 during MY2.

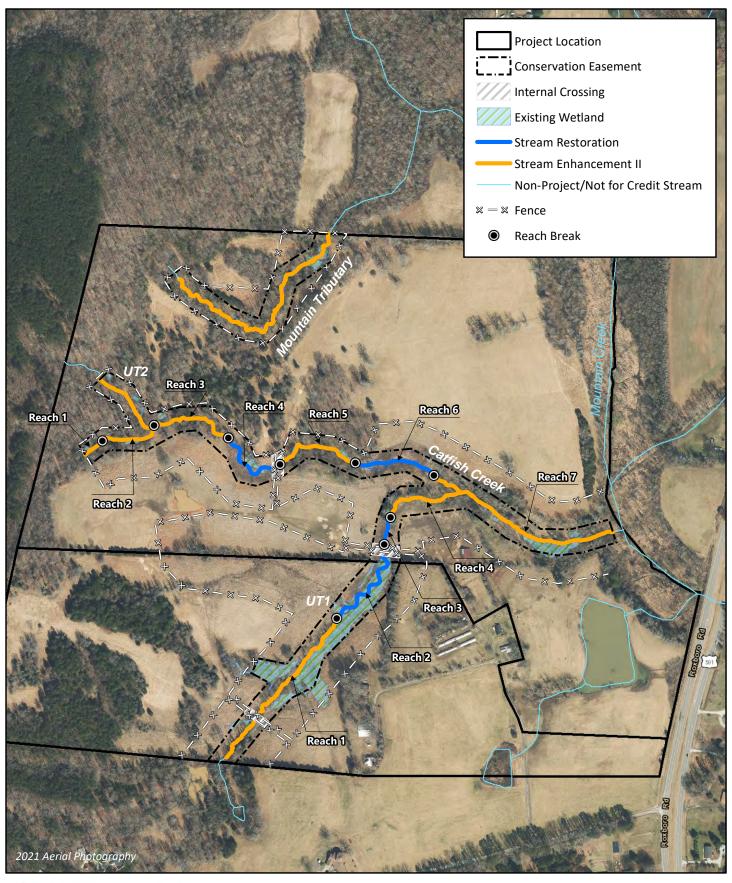
Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan (Wildlands, 2019) available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.


Section 2: METHODOLOGY

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). Integrated Current Condition View mapping for MY2 was recorded using a Garmin GLO receiver with 3-meter accuracy and processed using ArcGIS. Pressure transducers were installed in riffle cross-sections to measure bankfull events and were monitored throughout the year. Hydraulic monitoring instrument installation and monitoring methods are in accordance with the Wilmington District Stream and Wetland Compensatory Mitigation Update, released by the North Carolina Interagency Review Team (NCIRT, 2016). Vegetation monitoring protocols followed the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008).

Section 3: REFERENCES

- Breeding, R. 2010. Neuse River Basin Restoration Priorities. North Carolina Ecosystem Enhancement Program. Accessed at:
 - https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed_Planning/Neuse_River_Basin/FINAL% 20RBRP%20Neuse%202010 %2020111207%20CORRECTED.pdf
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C; Rawlins, C.L.; Potyondy, John P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. Accessed at: https://www.fs.fed.us/biology/nsaec/fishxing/fplibrary/Harrelson_1994_Stream_Channel_Reference_Sites_An_Illustrated.pdf
- Lee, M.T., Peet, R.K., Roberts, S.D., & Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Accessed at: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- North Carolina Interagency Review Team (NCIRT). 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. Accessed at: https://saw-reg.usace.army.mil/PN/2016/Wilmington-District-Mitigation-Update.pdf
- Rosgen, D.L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Geological Survey. 1998. North Carolina Geology. Accessed at: http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2019. Catfish Pond Mitigation Site Mitigation Plan. DMS, Raleigh, NC.



0 1 2 Miles

h h Figure 1. Project Vicinity Map Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 – 2021

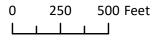


Figure 2. Project Component/Asset Map Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 – 2021

Table 1. Mitigation Assets and Components

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

				PR	OJECT COMP	ONENTS			
Reach ID	Existing Footage	Mitigation Plan Footage	Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	As-Built Footage	Credits (SMU)	Comments
					STREAMS				
Catfish Creek Reach 1	115	115	Warm	EII	N/A	2.5	115	46.000	Invasive Control, Conservation Easement
Catfish Creek Reach 2	323	323	Warm	EII	N/A	2.5	323	129.200	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion
Catfish Creek Reach 3	474	473	Warm	EII	N/A	2.5	474	189.200	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion
Catfish Creek Reach 4	369	374	Warm	R	P1	1.0	373	374.000	Full Channel Restoration, Planted Buffer, Livestock Exclusion
	65	72	N/A	N/A	N/A	0.0	72	0.000	Culvert Crossing
Catfish Creek Reach 5	459	460	Warm	EII	N/A	2.5	460	184.000	Grade Control Structures, Planted Buffer, Livestock Exclusion, Conservation Easement
Catfish Creek Reach 6	466	454*	Warm	R	P1	1.0	444	454.000	Full Channel Restoration, Planted Buffer, Livestock Exclusion, Farm Pond Drained
Catfish Creek Reach 7	1,087	1,071*	Warm	EII	N/A	2.5	1,087	428.400	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion
	307	263	Warm	EII	N/A	2.5	263	105.200	Invasive Control, Planted Buffer, Livestock Exclusion
UT1 Reach 1	42	42	N/A	N/A	N/A	0.0	42	0.000	Culvert Crossing
	717	717	Warm	EII	N/A	2.5	711	286.800	Invasive Control, Planted Buffer, Livestock Exclusion
UT1 Reach 2	430	515	Warm	R	P1	1.0	520	515.000	Full Channel Restoration, Planted Buffer, Livestock Exclusion
	60	60	N/A	N/A	N/A	0.0	61	0.000	Culvert Crossing
UT1 Reach 3	154	149	Warm	R	P2	1.0	149	149.000	Full Channel Restoration, Planted Buffer, Livestock Exclusion
UT1 Reach 4	447	446	Warm	EII	N/A	2.5	446	178.400	Invasive Control, Planted Buffer, Livestock Exclusion
UT2	412	412	Warm	EII	N/A	2.5	412	164.800	Invasive Control, Grade Control Structures, Livestock Exclusion
Mountain Tributary	1,362	1,362	Warm	EII	N/A	2.5	1,362	544.800	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion

^{*}Due to a stationing error in the Mitigation Plan, linear feet and associated credits were overestimated on Catfish Creek Reach 6 and underestimated on Reach 7 for a net overage of 10.6 SMUs. Stream credits were calculated using Mitigation Plan footage because the 10.6 SMUs represent only 0.28% of the total stream credits.

	PROJECT CREDITS										
Restoration Level		Stream		Riparia	n Wetland	Non-Riparian	Coastal				
Restoration Level	Warm	Cool	Cold Riverine Non-Riverine		Wetland	Marsh					
Restoration	1,492.000										
Enhancement I											
Enhancement II	2,256.800										
Preservation											
Re-Establishment											
Rehabilitation											
Enhancement											
Creation											
Total^	3,748.800										

[^]Credits have been adjusted to include changes in stream alignment on Catfish Creek Reach 6 due to bedrock in the floodplain.

Table 2. Project Activity and Reporting History Catfish Pond Mitigation Site

Catfish Pond Mitigation Site
DMS Project No. 100039
Monitoring Year 2 - 2021

Activity or Report		Data Collection Complete	Completion or Scheduled Delivery	
Mitigation Plan		July 2019	July 2019	
Final Design - Construction Plans		August 2019	August 2019	
Construction		February-March 2020	March 2020	
Temporary S&E mix applied to entire project area ¹		March 2020	March 2020	
Permanent seed mix applied to reach/segments ¹		April 2020	April 2020	
Bare root and live stake plantings for reach/segments		March 2020	March 2020	
Desilies Admitted to the Desire of Marcol	Stream Survey	March-April 2020		
Baseline Monitoring Document (Year 0)	Vegetation Survey	March 2020	June 2020	
Competitive Vegetation Treatment ²	<u>'</u>		April-May 2020	
Invasive Vegetation Treatment			May & September 2020	
Vacual Manifestina	Stream Survey	October 2020	D	
Year 1 Monitoring	Vegetation Survey	October 2020	December 2020	
Stream channel repairs on UT1 Reach 3			July 2021	
Invasive Vegetation Treatment			September 2021	
Veen 2 Manifestine	Stream Survey	April & October 2021	D	
Year 2 Monitoring	Vegetation Survey	September 2021	December 2021	
Year 3 Monitoring	Stream Survey	2022	December 2022	
Teal 5 Monitoring	Vegetation Survey	2022	December 2022	
Year 4 Monitoring			December 2023	
Vacu E Manifestina	Stream Survey	2024	D	
Year 5 Monitoring	Vegetation Survey	2024	December 2024	
Year 6 Monitoring			December 2025	
Year 7 Monitoring	Stream Survey	2026	December 2026	
Teal / Wichitchillig	Vegetation Survey	2026	December 2026	

¹Seed and mulch is added as each section of construction is completed.

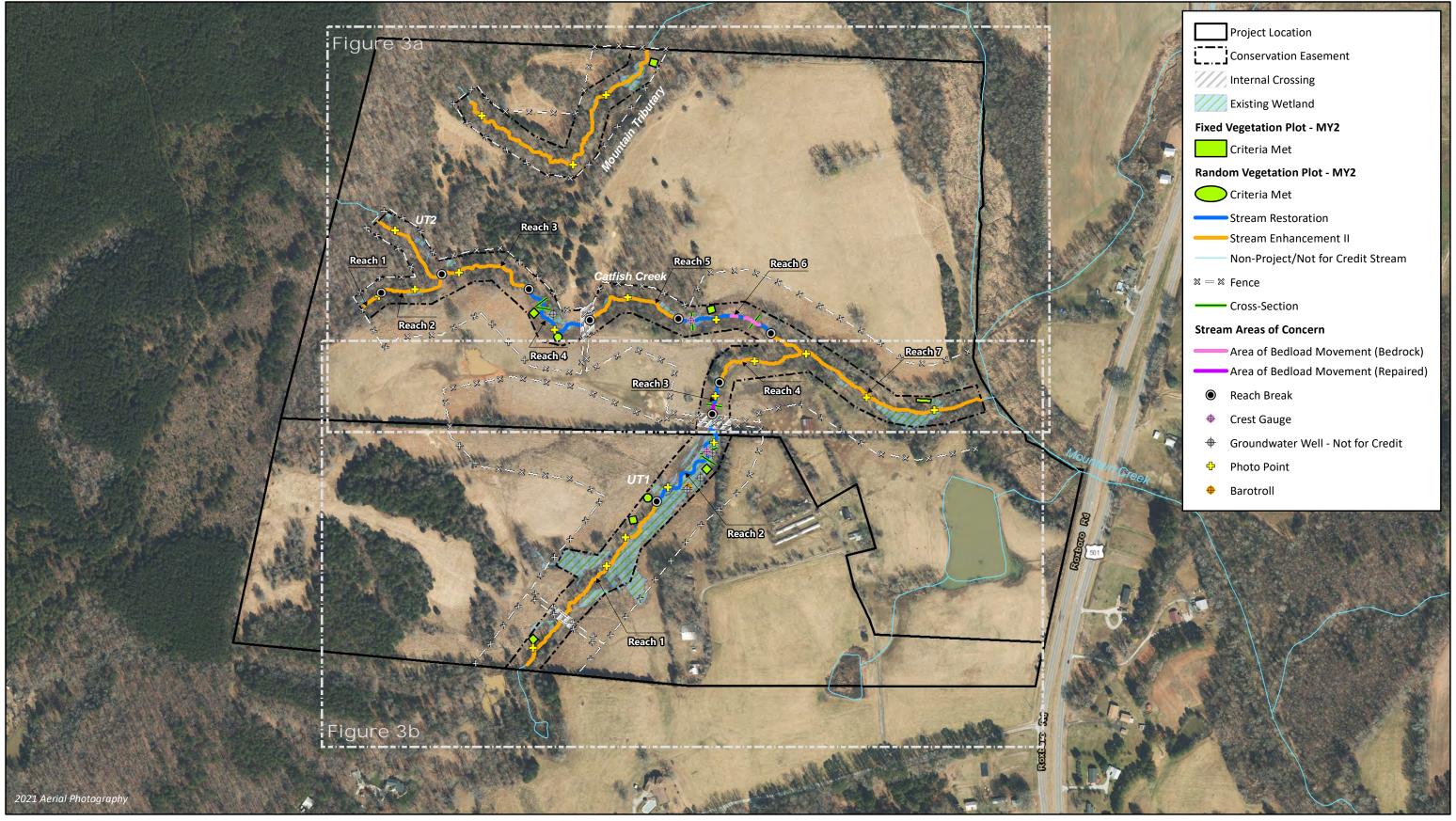
Table 3. Project Contact Table

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

	Wildlands Engineering, Inc.
Designer	497 Bramson Ct, Suite 104
Daniel Johnson, PE	Mt. Pleasant, SC 29464
James som son, 12	843.277.6221
	Main Stream Earthwork, Inc.
Construction Crew	631 Camp Dan Valley Rd
	Reidsville, NC 27320
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Canady's Landscaping & Erosion
Seeding Contractor	256 Fairview Acres Rd
	Lexington, NC 27295
Seed Mix Sources	Garrett Wildflower Seed Farm
	1591 Cleveland Rd
	Smithfield, NC 27577
	Ernst Conservation Seeds, Inc.
	8884 Mercer Pike
	Meadville, PA 16335
Nursery Stock Suppliers	Dykes and Sons Nursery and Greenhouse
Bare Roots	825 Maude Etter Rd
	McMinnville, TN 37110
Live Stakes	Bruton Natural Systems, Inc
	Foggy Mountain Nursery
	797 Helton Creek Rd
	Lansing, NC 28643
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Jason Lorch
Information mg, 1 OC	919.851.9986

 $^{^2\}mbox{Herbicide}$ ring sprays around the base of planted stems.

Table 4. Project Information and Attributes


Catfish Pond Mitigation Site DMS Project No. 100039

Monitoring Year 2 - 2021

PROJECT INFORMATION										
Project Name										
Project Name	Catfish Pond N									
County	Durham Count	,	<i></i>							
Project Coordinates (latitude and longitude)	36° 9′ 48.03″ 1	N, 78° 54′ 37.6	6" W							
Project Area (acres)	20.73									
Planted Acreage (acres of woody stems planted)	8.00									
PROJECT W	ATERSHED SI	JMMARY IN	IFORMATIO	N						
Physiographic Province	Carolina Slate	Belt of the Pie	dmont Physio	graphic Provin	ce					
River Basin	Neuse River									
USGS Hydrologic Unit 8-digit	03020201									
USGS Hydrologic Unit 14-digit	030202010200	040								
DWR Sub-basin	03-04-01	0.0								
Project Drainiage Area (acres)	227 (Catfish Creek - 197, Mountain Tributary - 30)									
		reek - 197, IVIC	untain mbuta	ry - 30)						
Project Drainage Area Percentage of Impervious Area	0.0%									
CGIA Land Use Classification	45.6% forester	d, 54.2% cultiv	ated, 0.2% we	tland						
REA	CH SUMMAR	RY INFORM <i>A</i>	ATION							
Parameters				Catfish Creek						
raiailleteis	R1	R2	R3	R4	R5	R6	R7			
Length of Reach (linear feet) - Post-Restoration	115	323	474	373	460	444	1,087			
					Moderately	Moderately	Moderately			
Valley Confinement (confined, moderately confined, unconfined)	Confined	Confined	Confined	Unconfined	Confined	Confined	Confined			
Drainage Area (acres)	17	17	53	56	61	70	197			
Perennial, Intermittent, Ephemeral	i	P	P	P	P	P	P			
NCDWR Stream Identification Score	35.00		30.00	45.25						
NCDWR Water Quality Classification	33.00	l		S-II/HQW/NS\		l	l			
Morphological Description (stream type) - Pre-Restoration	EEb/E4b	EEP/E4P	E4		C4b	NI/A	C4b			
Morphological Description (stream type) - Pre-Restoration Morphological Description (stream type) - Post-Restoration	E5b/E4b	E5b/E4b		Incised E6		N/A				
	E5b/E4b	E5b/E4b	E4	C4	C4b	B4a	C4b			
Evolutionary Trend (Simon's Model) - Pre-Restoration	IV	IV	IV	IV	IV	N/A	V			
FEMA Classification			No	ne			Zone AE			
Parameters		U			UT2	Mountair	Tributary			
1 41411101010	R1	R2	R3	R4						
Length of Reach (linear feet) - Post-Restoration	974	520	149	446	412	1,3	362			
Valley Confinement (confined, moderately confined, unconfined)	Unconfined	Moderately Confined	Moderately Confined	Confined	Confined	Moderate	ly Confined			
Drainage Area (acres)	75	105	107	108	32	3	30			
Perennial, Intermittent, Ephemeral	P P	P	P P	P P	1	`	1			
NCDWR Stream Identification Score	r	31.	i i	г	26.00	26	5.00			
		31.		C II/HOW/NC		20	0.00			
NCDWR Water Quality Classification				S-II/HQW/NS\			al-			
Morphological Description (stream type) - Pre-Restoration	E4	C6	E4b E4b C3b/C4b E4		_	E.				
Morphological Description (stream type) - Post-Restoration	E4									
Evolutionary Trend (Simon's Model) - Pre-Restoration		C4	B4a	E4b	C3b/C4b		4b			
	IV	C4 V		E4b IV	C3b/C4b IV		4b V			
FEMA Classification	IV		B4a							
FEMA Classification		V	B4a IV	IV						
FEMA Classification REC	GULATORY CO	V ONSIDERAT	B4a IV	IV None	IV					
FEMA Classification REC Regulation	GULATORY CO	V ONSIDERAT Resolved	B4a IV	IV None Suppor	IV	ntation	V			
FEMA Classification REC Regulation Waters of the United States - Section 404	Applicable Yes	V ONSIDERAT Resolved Yes	B4a IV	IV None Supportionwide Perm	IV rting Documer it No. 27 and I	ntation DWQ 401 Wa	V			
RECO Regulation Waters of the United States - Section 404 Waters of the United States - Section 401	Applicable Yes Yes	V ONSIDERAT Resolved Yes Yes	B4a IV	IV None Supportionwide Perm	IV rting Documer it No. 27 and I	ntation DWQ 401 Wa	V			
FEMA Classification REC Regulation Waters of the United States - Section 404	Applicable Yes	V ONSIDERAT Resolved Yes	B4a IV	IV None Supportionwide Perm	IV rting Documer it No. 27 and I	ntation DWQ 401 Wa	V			
RECO Regulation Waters of the United States - Section 404 Waters of the United States - Section 401	Applicable Yes Yes	V ONSIDERAT Resolved Yes Yes	B4a IV IONS USACE Nation Catfish Pond and respons [in this project and angered ange	IV None Suppoitionwide Perm Cert Mitigation Plae by US Fish a ect] is not likelor threatened	IV rting Documer it No. 27 and I	ntation DWQ 401 Wa 134. egorical Exclu- vice the "proj affect any fec- formally design	ter Quality sion research cosed action derally listed nated critical			
RECO Regulation Waters of the United States - Section 404 Waters of the United States - Section 401 Division of Land Quality (Dam Safety)	Applicable Yes Yes N/A	V ONSIDERAT Resolved Yes Yes N/A	DATE NOT CARRESPOND LANGE NOT	Suppoi Suppoi tionwide Perm Cert Mitigation Pla e by US Fish a ect] is not likel or threatened species currer	rting Documer it No. 27 and lification No. 4: N/A n; per the Cat nd Wildlife Ser y to adversely species, their f	ntation DWQ 401 War 134. egorical Exclu vice the "proj affect any fec formally desig for listing und	ter Quality sion research cosed action derally listed nated critical er the Act."			
Regulation Regulation Waters of the United States - Section 404 Waters of the United States - Section 401 Division of Land Quality (Dam Safety) Endangered Species Act	Applicable Yes Yes N/A Yes	V ONSIDERAT Resolved Yes Yes N/A Yes	DATE NOT CARRESPOND LANGE NOT	Suppoi Suppoi tionwide Perm Cert Mitigation Pla e by US Fish a ect] is not likel or threatened species currer	ting Documer it No. 27 and I ification No. 4 N/A nr; per the Cate and Wildlife Ser y to adversely species, their I itly proposed f	ntation DWQ 401 War 134. egorical Exclu vice the "proj affect any fec formally desig for listing und	ter Quality sion research cosed action derally listed nated critical er the Act."			
Regulation Waters of the United States - Section 404 Waters of the United States - Section 401 Division of Land Quality (Dam Safety) Endangered Species Act Historic Preservation Act Coastal Zone Management Act (CZMA)/Coastal Area Management	Applicable Yes Yes N/A Yes	V ONSIDERAT Resolved Yes Yes N/A Yes	DATE OF THE PROPERTY OF THE PR	Supportionwide Perm Cert Mitigation Plate by US Fish a ect] is not likelor threatened species currer dence from SH no historic res	rting Documer it No. 27 and I ification No. 4 N/A nr; per the Cate and Wildlife Ser y to adversely species, their I itly proposed f PO on March I ources which w project."	ntation DWQ 401 War 134. egorical Exclu- vice the "propaffect any fectormally design or listing under 5, 2018 stated would be affectored.	ter Quality sion research cosed action derally listed nated critical er the Act." I they were cted by the			
Regulation Waters of the United States - Section 404 Waters of the United States - Section 401 Division of Land Quality (Dam Safety) Endangered Species Act Historic Preservation Act Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	Yes Yes Yes Yes	V ONSIDERAT Resolved Yes Yes N/A Yes N/A	DATE OF THE PROPERTY OF THE PR	Supportionwide Perm Cert Mitigation Plate by US Fish a ect] is not likelor threatened species currer dence from SH no historic res	rting Documer it No. 27 and lification No. 4:	ntation DWQ 401 War 134. egorical Exclu- vice the "propaffect any fectormally design or listing under 5, 2018 stated would be affectored.	ter Quality sion research cosed action derally listed nated critical er the Act." I they were cted by the			

^{(---):} Data was not provided.

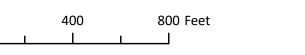
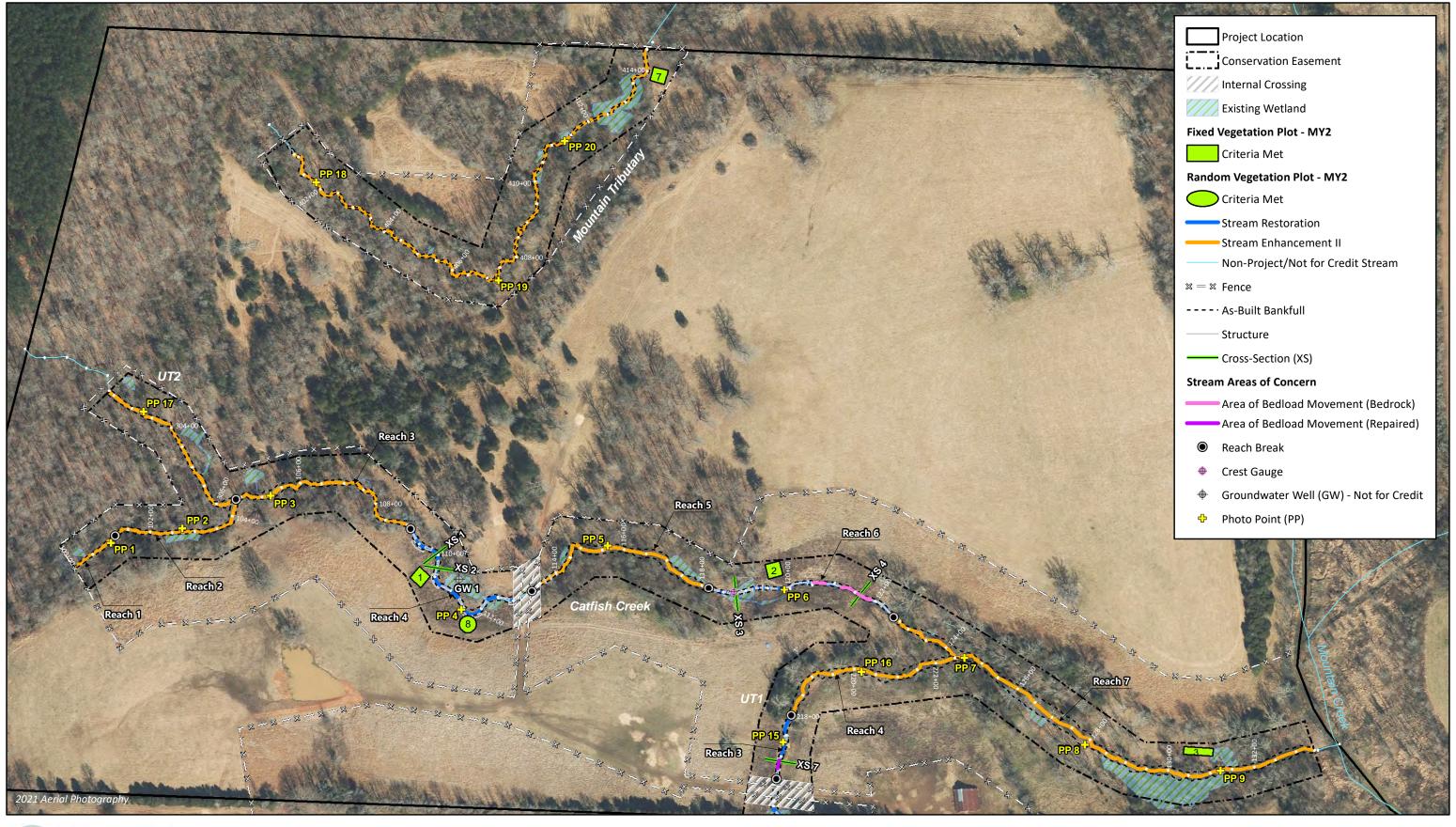



Figure 3. Integrated Current Condition Plan View Map Key Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2-2021

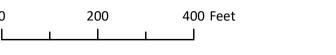
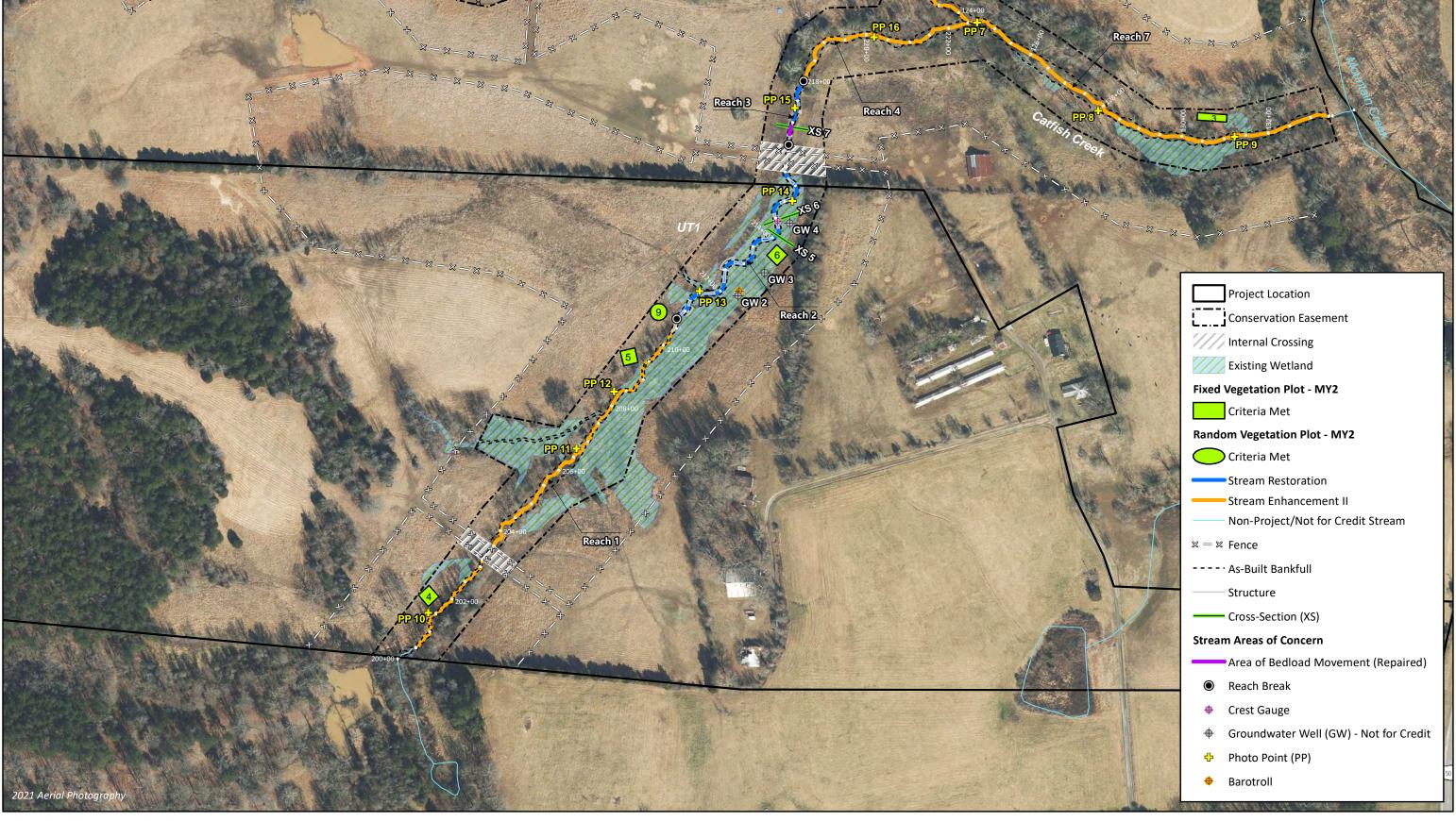



Figure 3a. Integrated Current Condition Plan View Map
Catfish Pond Mitigation Site
DMS Project No. 100039
Monitoring Year 2 – 2021

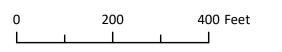


Table Sa. Visual Stream Morphology Stability Assessment Table Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish Creek Reach 4 (373 LF)

Gathish Greek Re	ach 4 (373 LF)									
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	7	7			100%			
	3. Meander Pool	Depth Sufficient	7	7			100%			
	Condition	Length Appropriate	7	7			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	7	7			100%			
		Thalweg centering at downstream of meander bend (Glide)	7	7			100%			
2. Bank						1				
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, caving, or collapse.			0	0	100%	n/a	n/a	n/a
2 Fasinsand				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	4	4			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5b. Visual Stream Morphology Stability Assessment Table Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish Creek Reach 6 (444 LF)

Channel Sub-Category	Metric	Number Stable,		Number of			Number with	Footage with	Adjust % for
		Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation
1 Vertical Stability	Aggradation			0	0	100%		·	
(Riffle and Run Units)	Degradation			2	100.64	77%			
2. Riffle Condition	Texture/Substrate	12	14			86%			
3. Meander Pool	Depth Sufficient	15	15			100%			
Condition	Length Appropriate	15	15			100%			
4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	14	14			100%			
	Thalweg centering at downstream of meander bend (Glide)	15	15			100%			
1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
	T		Totals	0	0	100%	n/a	n/a	n/a
1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	0	0			N/A			
4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	0	0			N/A			
	2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroded 2. Undercut 3. Mass Wasting 1. Overall Integrity 2. Grade Control 2a. Piping 3. Bank Protection 4. Habitat	Riffle and Run Units) Degradation 2. Riffle Condition Texture/Substrate Depth Sufficient Length Appropriate Thalwag centering at upstream of meander bend (Run) Thalwag centering at downstream of meander bend (Glide) 1. Scoured/Eroded Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion. Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 3. Bank Protection Bank erosion within the structures extent of influence does not exceed 15%. Pool forming structures maintaining "Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	Riffle and Run Units Degradation	Degradation 2. Riffle Condition Texture/Substrate 12 14 3. Meander Pool Condition Length Appropriate 15 15 Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of meander bend (Run) Thalweg centering at downstream of meander bend (Glide) 1. Scoured/Eroded Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion. Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse Totals 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 2. Grade Control Bank erosion within the structures extent of influence does not exceed 15%. Pool forming structures maintaining "Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at Name Pool Depth : Bankfull Depth ≥ 1.6 R	2. Riffle Condition Texture/Substrate 12	Reffle and Run Units Degradation Degr	1. Secured/Ended and fun Units) Degradation 2. Riffle Condition Texture/Substrate 12 14 2 16 3. Meander Pool Condition Length Appropriate 15 15 15 15 100% Thalwag Centering at upstream of the length Appropriate and Condition 1. Thalwag Position Thalwag centering at upstream of the length Appropriate and Condition 1. Scoured/Ended Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion. 2. Undercut Des NOT include undercuts that are modest, appear sustainable and are providing habitat. 3. Mass Wasting Bank slumping, calving, or collapse 1. Overall Integrity Structures physically intact with no dislodged boulders or logs. 2. Grade Control Grade control structures exhibiting maintenance of grade across the sill. 2. Apping Structures lacking any substantial flow underneath sills or arms. Pool forming structures exhibiting maintenance of grade across the sill. Pool forming structures exhibiting maintenance of grade control structures exhibiting maintenance of grade across the sill. Pool forming structures exhibiting maintenance of grade across the sill. Pool forming structures maintaining "Max Pool Depth: Bankfull Depth 2.1.6 Rootwads/logs providing some cover at baseflow. 1. Abaltat Pool forming structures maintaining "Max Pool Depth: Bankfull Depth 2.1.6 Rootwads/logs providing some cover at baseflow.	1. Secured Food 2 100.64 77%	1. Secured Frode 2 100.64 77%

¹Excludes constructed riffles since they are evaluated in section 1.

Table Sc. Visual Stream Morphology Stability Assessment Table Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

UT1 Reach 2 (520 LF)

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as	Total Number in As-Built	Number of Unstable	Amount of Unstable	% Stable, Performing as	Number with Stabilizing Woody	Footage with Stabilizing Woody	Adjust % for Stabilizing Woody
Category			Intended	III As-built	Segments	Footage	Intended	Vegetation	Vegetation	Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	10	10			100%			
	3. Meander Pool	Depth Sufficient	10	10			100%			
	Condition	Length Appropriate	10	10			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	10	10			100%			
	a.reg . estaen	Thalweg centering at downstream of meander bend (Glide)	10	10			100%			
2. Bank							1			
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ∼Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

Excludes constructed riffles since they are evaluated in section 1.

Table 5d. Visual Stream Morphology Stability Assessment Table Catfish Pond Mitigation Site

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

UT1 Reach 3 (149 LF)

UT1 Reach 3 (149	LF)									
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			1	18.16	88%			
	2. Riffle Condition	Texture/Substrate	2	3			67%			
	3. Meander Pool	Depth Sufficient	4	4			100%			
	Condition	Length Appropriate	4	4			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	The state of the s	Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
2. Bank		T				1		1		
Z. Dalik	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
2. (2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
				Totals	0	0	100%	n/a	n/a	n/a
3. Engineered Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	0	0			N/A			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	0	0			N/A			
Evaluates constructed	riffles since they are evaluated	in section 1								

 $^{^{1}}$ Excludes constructed riffles since they are evaluated in section 1.

Table 6. Vegetation Condition Assessment Table

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Planted Acreage

8.00

Vegetation Category	Definitions	Mapping Threshold (Ac)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1	0	0	0%
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1	0	0	0%
Total			0	0	0%
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 Ac	0	0	0%
Cumulative Tota			0	0.0	0%

Easement Acreage 20.73

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Easement Acreage			
Unvasive Areas of Concern	Areas of points (if too small to render as polygons at map scale).	1,000	0	0	0%			
Easement Encroachment Areas	Areas of points (if too small to render as polygons at map scale).	none	0	0	0%			

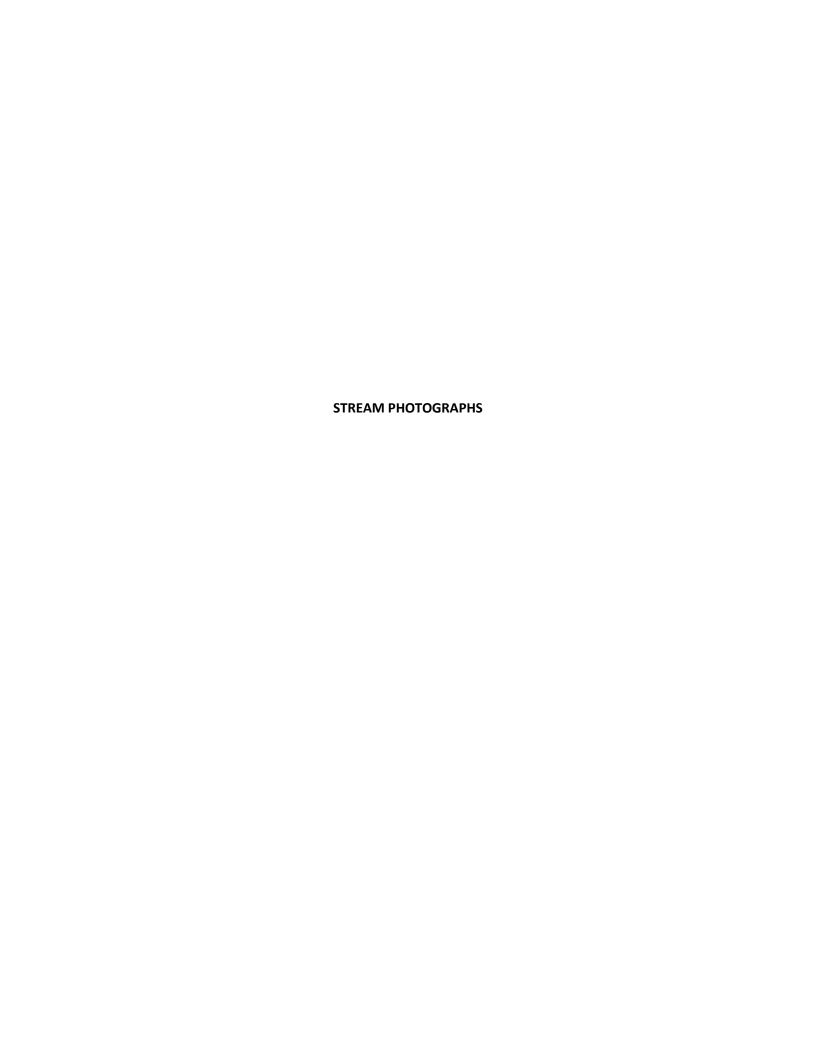


PHOTO POINT 1 Catfish Creek R1 – upstream (04/02/2021)

PHOTO POINT 1 Catfish Creek R1 - downstream (04/02/2021)

PHOTO POINT 2 Catfish Creek R2 – upstream (04/02/2021)

PHOTO POINT 2 Catfish Creek R2 – downstream (04/02/2021)

PHOTO POINT 3 Catfish Creek R3 – upstream (04/02/2021)

PHOTO POINT 3 Catfish Creek R3 – downstream (04/02/2021)

PHOTO POINT 4 Catfish Creek R4 – upstream (04/02/2021)

PHOTO POINT 4 Catfish Creek R4 – downstream (04/02/2021)

PHOTO POINT 5 Catfish Creek R5 – upstream (04/02/2021)

PHOTO POINT 5 Catfish Creek R5 – downstream (04/02/2021)

PHOTO POINT 6 Catfish Creek R6 – upstream (04/02/2021)

PHOTO POINT 6 Catfish Creek R6 – downstream (04/02/2021)

PHOTO POINT 7 Catfish Creek R7 – upstream (04/02/2021)

PHOTO POINT 7 Catfish Creek R7 - downstream (04/02/2021)

PHOTO POINT 8 Catfish Creek R7 – upstream (04/02/2021)

PHOTO POINT 8 Catfish Creek R7 – downstream (04/02/2021)

PHOTO POINT 9 Catfish Creek R7 – upstream (04/02/2021)

PHOTO POINT 9 Catfish Creek R7 – downstream (04/02/2021)

PHOTO POINT 16 UT1 R4 – upstream (04/02/2021)

PHOTO POINT 16 UT1 R4 – downstream (04/02/2021)

PHOTO POINT 17 UT2 – upstream (04/02/2021)

PHOTO POINT 17 UT2 – downstream (04/02/2021)

PHOTO POINT 18 Mountain Trib – upstream (04/02/2021)

PHOTO POINT 18 Mountain Trib – downstream (04/02/2021)

PHOTO POINT 19 Mountain Trib – upstream (04/02/2021)

PHOTO POINT 19 Mountain Trib - downstream (04/02/2021)

PHOTO POINT 20 Mountain Trib – upstream (04/02/2021)

PHOTO POINT 20 Mountain Trib – downstream (04/02/2021)

Catfish Creek R6 XS4 downstream – Area of Bedload Movement (Bedrock) (04/15/2021)

Catfish Creek R6 XS4 downstream –
Area of Bedload Movement (Bedrock) (11/18/2021)

Catfish Creek R6 XS4 facing right bank – Area of Bedload Movement (Bedrock) (11/18/2021)

UT1 R3 upstream –
Area of Bedload Movement (Pre-Repair) (10/22/2020)

UT1 R3 upstream –
Area of Bedload Movement (Post-Repair) (11/18/2021)

UT1 R3 XS7 downstream – Area of Bedload Movement (Pre-Repair) (04/15/2021)

UT1 R3 XS7 downstream – Area of Bedload Movement (Post-Repair) (10/18/2021)

FIXED VEG PLOT 7 (09/23/2021)

RANDOM VEG PLOT 9 (09/23/2021)

Table 7. Vegetation Plot Criteria Attainment Table

Catfish Pond Mitigation Site DMS Project No. 100039

Plot	Success Criteria Met*	Tract Mean
Fixed Veg Plot 1	Yes	
Fixed Veg Plot 2	Yes	
Fixed Veg Plot 3	Yes	
Fixed Veg Plot 4	Yes	
Fixed Veg Plot 5	Yes	100%
Fixed Veg Plot 6	Yes	
Fixed Veg Plot 7	Yes	
Random Veg Plot 8	Yes	
Random Veg Plot 9	Yes	

^{*}Based on the interim target stem density for MY3 of 320 planted stems per acre.

Table 8. CVS Vegetation Tables - Metadata Catfish Pond Mitigation Site

D d D d D	Trade W.
Report Prepared By	Tasha King
Date Prepared	10/26/2021 10:23
Database Name	CatfishPond_MY2_cvs-v2.5.0.mdb
Database Location	F:\Monitoring\Catfish Pond\MY2 - 2021
Computer Name	CHARLOTTEINTERN
File Size	84144128
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Project Planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Project Total Stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and Spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	100039
Project Name	Catfish Pond Mitigation Site
Description	Stream and Buffer Restoration Project
Sampled Plots	7

Table 9a. Fixed Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 **Monitoring Year 2 - 2021**

								Cur	rent Plo	t Data	(MY2 2	021)					
				VP 1			VP 2			VP 3			VP 4			VP 5	
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer rubrum	Red Maple	Tree															
Aesculus flava	Yellow Buckeye	Shrub Tree	1	1	1												
Alnus serrulata	Tag Alder	Shrub Tree															
Betula nigra	River Birch	Tree							1	1	1						
Diospyros virginiana	American Persimmon	Tree									25			2			
Fraxinus pennsylvanica	Green Ash	Tree				2	2	2						2	3	3	3
Ligustrum sinense	Chinese Privet	Exotic			1												
Liquidambar styraciflua	Sweet Gum	Tree												3			2
Liriodendron tulipifera	Tulip Poplar	Tree			1												
Platanus occidentalis	Sycamore	Tree	4	4	7	6	6	6	3	3	3	8	8	8	2	2	2
Quercus alba	White Oak	Tree				2	2	2									
Quercus lyrata	Overcup Oak	Tree							1	1	1	1	1	1			
Quercus michauxii	Swamp Chestnut Oak	Tree				1	1	1	2	2	2	1	1	1	3	3	3
Quercus phellos	Willow Oak	Tree	4	4	4				3	3	3	1	1	1	3	3	3
Quercus shumardii	Shumard Oak	Shrub Tree	1	1	1	2	2	2				1	1	1	2	2	2
Salix nigra	Black Willow	Tree															1
	Unknown Species	Tree															
		Stem count	10	10	14	13	13	13	10	10	35	12	12	19	13	13	16
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	4	4	6	5	5	5	5	5	6	5	5	8	5	5	7
		Stems per ACRE	405	405	567	526	526	526	405	405	1416	486	486	769	526	526	647

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

Table 9a. Fixed Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 **Monitoring Year 2 - 2021**

				Current	Plot D	ata (MY	2 2021)				Anı	nual Me	eans			
				VP 6			VP 7		M	Y2 (202	:1)	M	IY1 (202	20)	M	Y0 (202	20)
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum	Red Maple	Tree			1						1						
Aesculus flava	Yellow Buckeye	Shrub Tree							1	1	1	1	1	1	1	1	1
Alnus serrulata	Tag Alder	Shrub Tree			1						1						
Betula nigra	River Birch	Tree				4	4	4	5	5	5	9	9	9	9	9	9
Diospyros virginiana	American Persimmon	Tree						2			29			13			
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1	1	1	1	7	7	9	7	7	8	7	7	7
Ligustrum sinense	Chinese Privet	Exotic									1						
Liquidambar styraciflua	Sweet Gum	Tree						21			26			2			
Liriodendron tulipifera	Tulip Poplar	Tree						1			2						
Platanus occidentalis	Sycamore	Tree	6	6	6	6	6	6	35	35	38	36	36	36	36	36	36
Quercus alba	White Oak	Tree				1	1	1	3	3	3	3	3	3	3	3	3
Quercus lyrata	Overcup Oak	Tree							2	2	2	3	3	3	3	3	3
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	2				9	9	9	11	11	11	11	11	11
Quercus phellos	Willow Oak	Tree	3	3	3				14	14	14	15	15	15	15	15	15
Quercus shumardii	Shumard Oak	Shrub Tree	2	2	2	1	1	1	9	9	9	11	11	11	11	11	11
Salix nigra	Black Willow	Tree			3						4						
	Unknown Species	Tree													1	1	1
		Stem count	14	14	19	13	13	37	85	85	153	96	96	112	97	97	97
		size (ares)		1			1			7			7			7	
		size (ACRES)		0.02			0.02			0.17			0.17			0.17	
		Species count	5	5	8	5	5	8	9	9	16	9	9	11	10	10	10
		Stems per ACRE	567	567	769	526	526	1497	491	491	885	555	555	647	561	561	561

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

Table 9b. Random Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 **Monitoring Year 2 - 2021**

			Curr	ent Plot D	ata (MY2 2	2021)			Annua	l Means		
			VP	8	VI	P 9	MY2	(2021)	MY1	(2020)	MY0	(2020)
Scientific Name	Common Name	Species Type	Te	Total	Te	Total	Te	Total	Te	Total	Te	Total
Aesculus flava	Yellow Buckeye	Shrub Tree									3	3
Betula nigra	River Birch	Tree	2	2	1	1	3	3	2	2	4	4
Fraxinus pennsylvanica	Green Ash	Tree	5	5	3	3	8	8	6	6	1	1
Liquidambar styraciflua	Sweetgum	Tree	2	2	3	3	5	5	3	3		
Platanus occidentalis	Sycamore	Tree	8	8	4	4	12	12	7	7	7	7
Quercus alba	White Oak	Tree							1	1	1	1
Quercus lyrata	Overcup Oak	Tree									1	1
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	1	1	3	3	6	6	2	2
Quercus phellos	Willow Oak	Tree			4	4	4	4	1	1	4	4
Quescus shumardii	Shumard Oak	Tree							2	2	2	2
Salix nigra	Black Willow	Tree							3	3		
Ulmus	Elm	Tree							1	1		
Viburnum dentatum	Arrowwood Viburnum	Shrub Tree									1	1
		Stem count	19	19	16	16	35	30	32	25	26	26
		size (ares)	1	1		1	2	2		2		2
		size (ACRES)	0.0	02	0.	02	0.	05	0.	.05	0.	.05
		Species count	5	5	6	6	6	6	10	10	10	10
		Stems per ACRE	769	769	647	647	708	607	647	506	526	526

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

Te - Number of stems including exotic species

Total - Number of stems excluding exotic species

Table 10a. Baseline Stream Data Summary

Catfish Creek Reach 4 & UT1 Reach 2																	
		PRE-RESTORATI	ON CONDITION		REF	ERENCE R	REACH DA	TA			DES	SIGN			AS-BUILT/	BASELINE	
Parameter	Gage	Catfish Creek Reach 4	UT1 Reach 2		UT4 edar Creek)	UT to W	ells Creek		Varnals eek		n Creek ich 4		T1 ach 2		h Creek ach 4		T1 ich 2
		Min Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																	
Bankfull Width (ft)		7.0	16.7		7.3	6.2	8.6	9.3	10.5		3.5	1	1.5		3.1		0.0
Floodprone Width (ft) ¹		12.0	22.0	:	20.1	16.0	22.0	60.0	100.0	1	9.0	25.0	58.0	20	0.00		0.00
Bankfull Mean Depth		0.9	0.4		0.6	0.6	1.0	1.5	1.7).7).9		0.8).8
Bankfull Max Depth		1.3	0.9		1.1	0.9	1.4	1.5	1.7	0.9	1.2	1.0	1.3		1.2		5
Bankfull Cross Sectional Area (ft²)	N/A	6.4	7.1		4.2	3.9	6.3	10.3	12.3		5.8		9.9		5.4		3.0
Width/Depth Ratio		7.7	39.5		12.6	6.1	12.6	8.1	9.3		2.6	1	3.4		0.2		2.4
Entrenchment Ratio ¹		1.7	1.3		2.7	1.9	4.1	5.7	10.0		2.2	2.2	5.0		4.6		0.1
Bank Height Ratio		2.2	2.4		1.0	1.0	1.8		L.0		0		1.0		1.0		0
D50 (mm)						-						-		2	8.5	3	7.5
Profile																	
Riffle Length (ft)																	
Riffle Slope (ft/ft)				0.006	0.049	0.017	0.078	0.024	0.057	0.016	0.026	0.007	0.012	0.011	0.042	0.004	0.027
Pool Length (ft)	N/A																
Pool Max Depth (ft)	1	1.4		1.4	1.5	1.6	1.9	2.5	2.6		1.3		2.6	1.9	2.2	2.1	2.8
Pool Spacing (ft)	4			17.6	24.1	17.0	63.0	7.8	82.0	48.0	61.0	36.0	64.0	35.0	78.0	30.0	71.0
Pool Volume (ft ³)																	
Pattern																	
Channel Beltwidth (ft)				3.2	5.7	10.0	35.0	15.0	45.0	21.0	38.0	33.0	48.0	21.0	38.0	33.0	48.0
Radius of Curvature (ft)				5.3	12.6	2.3	32.0	8.3	47.3	21.0	35.0	18.0	26.0	21.0	35.0	18.0	26.0
Rc:Bankfull Width (ft/ft)	N/A			0.7	1.7	0.3	4.0	0.6	3.2	2.5	4.1	1.6	2.3	2.5	4.1	1.6	2.3
Meander Length (ft)				10.2	17.0					109.0	120.0	93.0	125.0	109.0	120.0	93.0	125.0
Meander Width Ratio				0.4	0.8	1.3	4.4	1.0	3.0	2.5	4.5	2.9	4.2	2.5	4.5	2.9	4.2
Substrate, Bed and Transport Parameters																	
Ri%/Ru%/P%/G%/S%																	
SC%/Sa%/G%/C%/B%/Be%																	
d16/d35/d50/d84/d95/d100						0.1/0.6	/4.5/53/	2.9/9.2/1	15.0/56.0/					SC/6.6	9/16.0/	SC/S0	C/0.5/
016/035/050/084/095/0100	N/A					96	5/x	88	8.0					60.9/10	7.3/>2048	56.9/10	7.3/256
Reach Shear Stress (Competency) lb/ft ²		0.56	0.26			-								0	.65	0.	.13
Max part size (mm) mobilized at bankfull	1																
Stream Power (Capacity) W/m ²																	
Additional Reach Parameters																	
Drainage Area (SM)		0.09	0.16	1 (0.11	0.	.13	0	.41	0	.09	0.	.16	0	.09	0	.16
Watershed Impervious Cover Estimate (%)	1		0%									0%			0.0		
Rosgen Classification	1	E6	C6		C4	(C4	C4	I/E4	(24		C4	- 1	C4		24
Bankfull Velocity (fps)		2.8	3.0	5.2	6.1	3	3.8	4.4	5.2	3	3.0	2	2.1		3.2	1	.1
Bankfull Discharge (cfs)		18.0	21.0	21.7	25.8		5.0		4.0	1	7.0	2	0.6	2	0.6	9	9.6
Q-NFF regression	1																
Q-USGS extrapolation	N/A																
Q-Mannings																	
Valley Length (ft)																-	
Channel Thalweg Length (ft)		369 (65 crossing)	430 (60 crossing)								crossing)		crossing)		crossing)		crossing)
Sinuosity		1.07	1.06		1.05		.41		.20		.18		.23		.18		.23
Bankfull Slope (ft/ft)		0.016	0.020	0	0.016	0.0	020	0.	020	0.	014	0.0	005	0.	014	0.0	005

Banktrull Slope (tr/tt) 0.016 0.020 0.016

1 Differences between Design and As-Built/Baseline calculations are due to the ranges used in Design and field surveyed measurements used in As-Built/Baseline. (--): Data was not provided.

Table 10b. Baseline Stream Data Summary

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish Reach 6 & UT1 Reach 3

		PRE-RESTORA	TION CON	DITION	REF	ERENCE	REACH DATA		DES	IGN			AS-BUILT/B	ASELINE	
Parameter	Gage	Catfish Creek Reach 6	Rea	T1 ich 3 h 4 XS)	UT to He	enry Fork	Agony Acres		h Creek ach 6	UT Read			sh Creek ach 6		JT1 ach 3
		Min Max	Min	Max	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle															
Bankfull Width (ft)		N/A ¹	6.2	8.1	3.2	7.7	11.1		3.5	8.		7.7	9.0		6.5
Floodprone Width (ft) ²		N/A ¹		2.0	6.3	13.3	25.2	12.0	21.0	11.0	20.0	30.0	100.0		50.0
Bankfull Mean Depth		N/A ¹	0.7	0.8	0.5	0.6	0.7	(0.6	0.	6	0.7	0.8		0.8
Bankfull Max Depth		N/A ¹	0.9	1.1	8.0	0.7	1.0	0.9	1.1	0.9	1.1	1.2	1.3		1.5
Bankfull Cross Sectional Area (ft ²)	N/A	N/A ¹	4.2	6.2	1.3	3.6	7.4		5.3	4.		5.7	7.0		5.4
Width/Depth Ratio		N/A ¹	9.2	10.5	5.2	16.4	16.6	1	3.8	13	.0	10.2	11.6		7.8
Entrenchment Ratio ²		N/A ¹	2.8	3.6	1.7	2.0	2.3	1.4	2.5	1.4	2.5	3.3	13.1		9.3
Bank Height Ratio		N/A ¹	1.2	1.5	1.0	1.3	1.0	1	1.0	1.	0		1.0		1.0
D50 (mm)		N/A ¹			34	1.0	50.6				-	34.4	40.6		34.1
Profile															
Riffle Length (ft)															
Riffle Slope (ft/ft)		N/A ¹	-		0.050	0.070		0.031	0.045	0.049	0.055	0.005	0.059	0.040	0.093
Pool Length (ft)	NI/A														
Pool Max Depth (ft)	N/A	N/A ¹	-		-	-	1.6	2	2.3	3.	0	1.5	2.4	1.8	2.6
Pool Spacing (ft)		N/A ¹	-		14.1	24.9		13.0	51.0	11.0	28.0	7.9	142.1	19.0	32.0
Pool Volume (ft ³)															
Pattern															
Channel Beltwidth (ft)		N/A ³			N/	/A ³	N/A ³	N	/A ³	N/A	A ³	N	N/A ³	1	N/A ³
Radius of Curvature (ft)		N/A ³			N/		N/A ³		/A ³	N/A			N/A ³		N/A ³
Rc:Bankfull Width (ft/ft)	N/A	N/A ³			N/		N/A ³	N	/A ³	N/	A ³		N/A ³	_	N/A ³
Meander Length (ft)		N/A ³			N/		N/A ³		/A ³	N/A			N/A ³		N/A ³
Meander Width Ratio		N/A ³			N/		N/A ³		/A ³	N/A			N/A ³	_	N/A ³
Substrate, Bed and Transport Parameters		1,77	1		1,				,,,	,.			•,,,,		•,,,,
Ri%/Ru%/P%/G%/S%															
SC%/Sa%/G%/C%/B%/Be%															
							2.0/12.9/50.6/					16.56/3	2.92/50.6/	SC/7.	10/23.2/
d16/d35/d50/d84/d95/d100	N/A		-		-		168.1/>2048.1				-		545.2/>2048		0.7/>2048
Reach Shear Stress (Competency) lb/ft ²		1.52	1.	.89	-						-	1	1.86	:	1.89
Max part size (mm) mobilized at bankfull															
Stream Power (Capacity) W/m ²															
Additional Reach Parameters															
Drainage Area (SM)		0.11	0.	.16	0.	05	0.15	0	.11	0.1	.6	(0.11	(0.16
Watershed Impervious Cover Estimate (%)		C	0.0%			-			0.0				0.09		
Rosgen Classification				4b		4a	B3		4a	B4			B4a		B4a
Bankfull Velocity (fps)				5.1	3.8	5.4	4.9		1.0	4.			4.9		3.5
Bankfull Discharge (cfs)			2	1.0	12	2.0	37.0	2	0.9	21	.8	2	28.4	2	20.1
Q-NFF regression Q-USGS extrapolation	N/A									ļ					
Q-USGS extrapolation Q-Mannings										1					
Valley Length (ft)					-						-				
Channel Thalweg Length (ft)		466		54	-				54	14			444		149
Sinuosity			1.	.10	1.	10	1.04		.04	1.0			1.05		1.02
Bankfull Slope (ft/ft)				038)42	0.050	0	043	0.0	- A	_	.043	_	.061

¹ Catfish Creek Reach 6 was an embankment pond and thus had no existing channel characteristics.

² Differences between Design and As-Built/Baseline calculations are due to the ranges used in Design and field surveyed measurements used in As-Built/Baseline.

³ Pattern data is not applicable for B-type channels.

^{(---):} Data was not provided.

N/A: Not Applicable

Table 11. Cross-Section Morphology Monitoring Summary

					Cat	fish Cre	ek Reac	ch 4									Cat	fish Cre	eek Rea	ch 6				
		Cro	ss-Sectio	on 1 (Po	ool)			Cros	s-Sectio	n 2 (Rif	fle)			Cros	s-Sectio	on 3 (Ri	ffle)			Cro	ss-Sectio	on 4 (Rif	fle)	
	MY0	MY1	MY2	MY3	MY5	MY7	MY0	MY1	MY2	MY3	MY5	MY7	MY0	MY1	MY2	MY3	MY5	MY7	MY0	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft) - Based on AB-Bankfull Area	467.55	N/A	N/A				466.93	467.08	467.05				444.72	444.80	444.71				432.39	432.41	432.00			
Bank Height Ratio - Based on AB Bankfull ¹ Area	N/A	A N/A N/A						<1.0	<1.0				1.0	<1.0	1.0				1.0	1.0	1.2			
Thalweg Elevation	465.36	465.65	465.61				465.71	465.90	465.83				443.45	443.53	443.26				431.20	431.24	430.10			
LTOB ² Elevation	467.55	467.56	467.61				466.93	466.95	466.96				444.72	444.70	444.69				432.39	432.40	432.38			
LTOB ² Max Depth (ft)	2.2	1.9	2.0				1.2	1.0	1.1				1.0	1.2	1.4				1.2	1.2	2.3			
LTOB ² Cross-Sectional Area (ft ²)	14.4	12.3	12.3				6.4	5.3	5.7				5.7	4.9	5.6				7.0	6.9	10.6			
						UT1 R	each 2								UT1 Re	each 3								

						UT1 R	each 2								UT1 Re	ach 3		
		Cro	ss-Sectio	n 5 (Pc	ool)			Cros	s-Sectio	n 6 (Rif	fle)			Cros	s-Sectio	n 7 (Rif	fle)	
	MY0	MY1	MY2	MY3	MY5	MY7	MY0	MY1	MY2	MY3	MY5	MY7	MY0	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft) - Based on AB-Bankfull Area	446.13	N/A	N/A				445.98	446.05	446.04				442.36	442.40	441.99			
Bank Height Ratio - Based on AB Bankfull ¹ Area	N/A	N/A	N/A				1.0	1.0	1.0				1.0	1.0	1.2			
Thalweg Elevation	443.44	443.52	443.52				444.52	444.73	444.65				440.83	440.87	440.64			
LTOB ² Elevation	446.13	446.19	446.24				445.98	446.01	446.07				442.36	442.34	442.20			
LTOB ² Max Depth (ft)	2.7	2.7	2.3				1.5	1.3	1.4				1.5	1.5	1.6			
LTOB ² Cross-Sectional Area (ft ²)	20.1	19.5	20.3	•			8.0	7.5	8.4				5.4	5.0	7.0			

¹Bank Height Ratio (BHR) takes the As-built bankful area as the basis for adjusting each subsequent years bankfull elevation.

²LTOB Cross-Sectional Area and Max depth are based on the LTOB elevation for each years survey (The same elevation used for the LTOB in the BHR calculation). Area below the LTOB elevation will be used and tracked for each year as above. The difference between the LTOB elevation and the thalweg elevation (same as in the BHR calculation) will be recorded and tracked above as LTOB max depth.

Table 12a. Monitoring Data - Stream Reach Data Summary

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish Creek Reach 4

Parameter	As-Built/	/Baseline	M	Y1	M	Y2	IV	1Y3		MY5	M	IY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle											•	
Bankfull Width (ft)	8	.1	7	.9	7	.9						
Floodprone Width (ft)	20	00		00	20	00						
Bankfull Mean Depth	0	.8	0	.7	0	.7						
Bankfull Max Depth	1	.2	1	.0	1	.1						
Bankfull Cross-Sectional Area (ft²)		.4		.3	5	.7						
Width/Depth Ratio	10	0.2	11	1.7	13	L.0						
Entrenchment Ratio	24	1.6	25	5.4	25	5.2						
Bank Height Ratio	1	.0	<1	1.0	<:	L.O						
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0110	0.0420										
Pool Length (ft)												
Pool Max Depth (ft)	1.9	2.2										
Pool Spacing (ft)	35.0	78.0										
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)	21	38										
Radius of Curvature (ft)	21	35										
Rc:Bankfull Width (ft/ft)	2.5	4.1										
Meander Wave Length (ft)	109.0	120.0										
Meander Width Ratio	2.5	4.5										
Additional Reach Parameters												
Rosgen Classification	C	24										
Channel Thalweg Length (ft)	373 (72	crossing)										
Sinuosity (ft)	1.	18										
Water Surface Slope (ft/ft)												
Bankfull Slope (ft/ft)	0.0	014										
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
416/436/460/494/405/4100	SC/6.69	9/16.0/	0.08/1.4	11/11.4/	SC/5.6	5/16.0/						
d16/d35/d50/d84/d95/d100	60.9/107	'.3/>2048	54.7/10	7.3/256	74.7/115	5.7/256.0						
% of Reach with Eroding Banks	0	%	0	%	0	%						

^{*}Morphological survey and analysis not required for MY4 and MY6.

Table 12b. Monitoring Data - Stream Reach Data Summary

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish Creek Reach 6

Cathon Creek Reach 6												
Parameter	As-Built/	/Baseline	IV	IY1	M	Y2	I.	/IY3	M	Y5	N	/IY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	7.7	9.0	7.2	9.4	7.3	9.6						
Floodprone Width (ft)	30	100	30	100	30	100						
Bankfull Mean Depth	0.7	0.8	C).7	0.8	1.1						
Bankfull Max Depth	1.2	1.3	1	2	1.4	2.3						
Bankfull Cross-Sectional Area (ft ²)	5.7	7.0	4.9	6.9	5.6	10.6						
Width/Depth Ratio	10.2	11.6	10.7	12.8	8.7	9.5						
Entrenchment Ratio	3.3	13.1	3.2	13.8	3.1	13.8						
Bank Height Ratio	1	.0	<1.0	1.0	1.0	1.2						
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.005	0.059										
Pool Length (ft)												
Pool Max Depth (ft)	1.5	2.4										
Pool Spacing (ft)	8	142										
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)	N/	'A ¹										
Radius of Curvature (ft)	N/	'A ¹										
Rc:Bankfull Width (ft/ft)	N/											
Meander Wave Length (ft)	N/	'A ¹										
Meander Width Ratio	N/	'A ¹										
Additional Reach Parameters												
Rosgen Classification	B	4a										
Channel Thalweg Length (ft)	44	44										
Sinuosity (ft)	1.	05										
Water Surface Slope (ft/ft)												
Bankfull Slope (ft/ft)	0.0	043										
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
416/425/450/494/405/4100	16.56/32		9.38/27	.57/51.2/	19.68/45	5.0/65.2/						
d16/d35/d50/d84/d95/d100	2580.3/354	45.2/>204 <u></u> 8	113.8/2	07.2/362	180.0/313	7.5/>2048						
% of Reach with Eroding Banks	0	%	C)%	09	%						
1												

¹ Pattern data is not applicable for B-type channels.

N/A: Not Applicable

^{*}Morphological survey and analysis not required for MY4 and MY6.

Table 12c. Monitoring Data - Stream Reach Data Summary

Catfish Pond Mitigation Site DMS Project No. 100039 **Monitoring Year 2 - 2021**

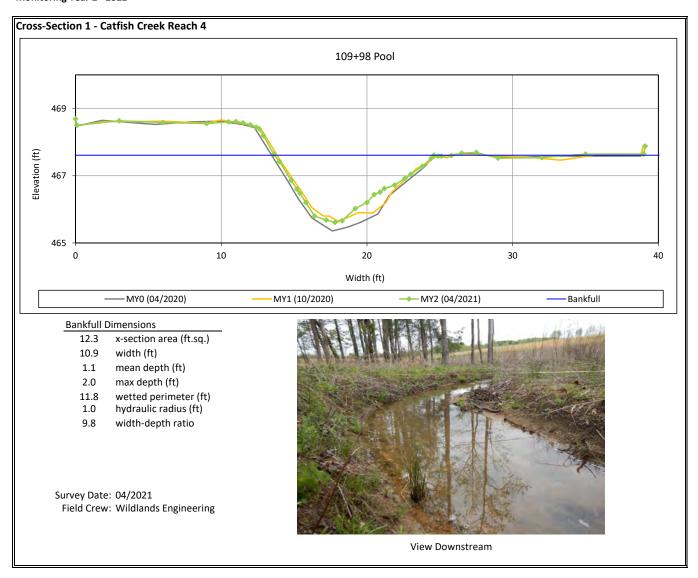
UT1 Reach 2

Parameter	As-Built,	/Baseline	M	IY1	M'	Y2	IV	1Y3	IV	1Y5	M	IY7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle		•					•	•	•		•	•
Bankfull Width (ft)	10	0.0	10	0.1	11	0						
Floodprone Width (ft)	2	00	2	00	20	00						
Bankfull Mean Depth	0	.8	C).7	0.	.8						
Bankfull Max Depth	1	5	1	3	1.	.4						
Bankfull Cross-Sectional Area (ft ²)	8	3.0		'.5	8.	.4						
Width/Depth Ratio	12	2.4	13	3.5	14	.5						
Entrenchment Ratio	20	0.1	19	9.8	18	3.1						
Bank Height Ratio	1	0	1	0	1.	.0						
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.004	0.027										
Pool Length (ft)												
Pool Max Depth (ft)	2.1	2.8										
Pool Spacing (ft)	30.0	71.0										
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)	33.0	48.0										
Radius of Curvature (ft)	18.0	26.0										
Rc:Bankfull Width (ft/ft)	1.6	2.3										
Meander Wave Length (ft)	93.0	125.0										
Meander Width Ratio	2.9	4.2										
Additional Reach Parameters												
Rosgen Classification		C4										
Channel Thalweg Length (ft)		crossing)										
Sinuosity (ft)	1.	23										
Water Surface Slope (ft/ft)			1									
Bankfull Slope (ft/ft)	0.0	005										
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100).5/56.9/ 3/256		/16/95.4/ 9/256	SC/1.52/1 107.3/							
% of Reach with Eroding Banks	0	1%	C)%	09	%						

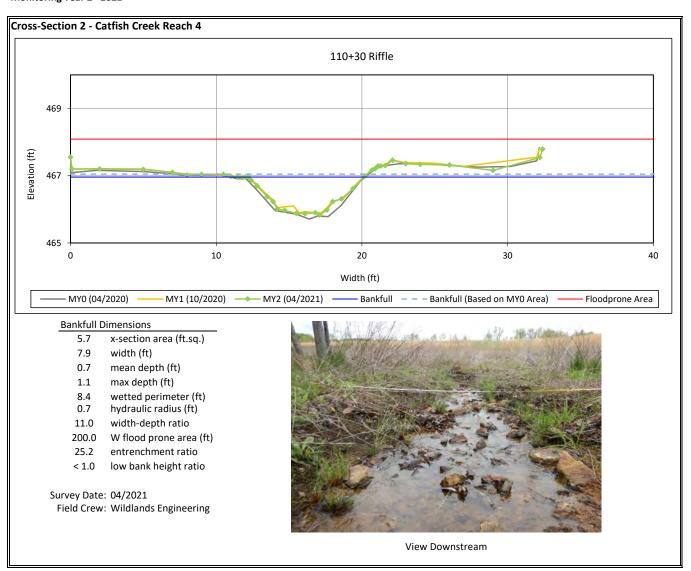
^{*}Morphological survey and analysis not required for MY4 and MY6.

Table 12d. Monitoring Data - Stream Reach Data Summary

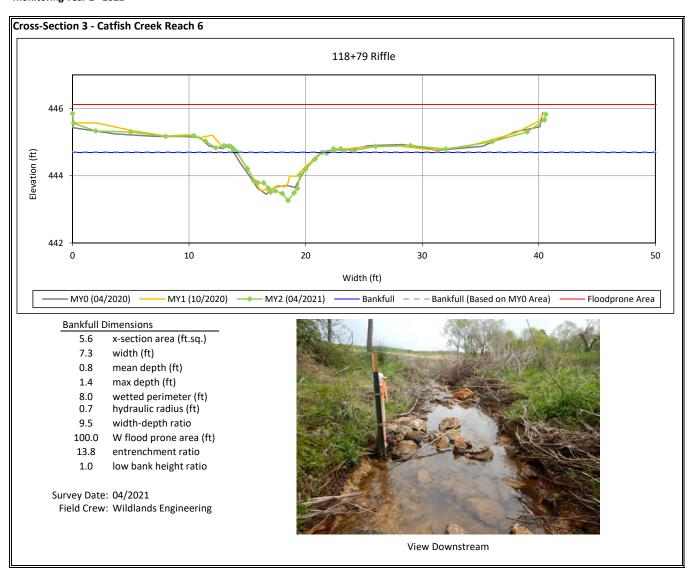
Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

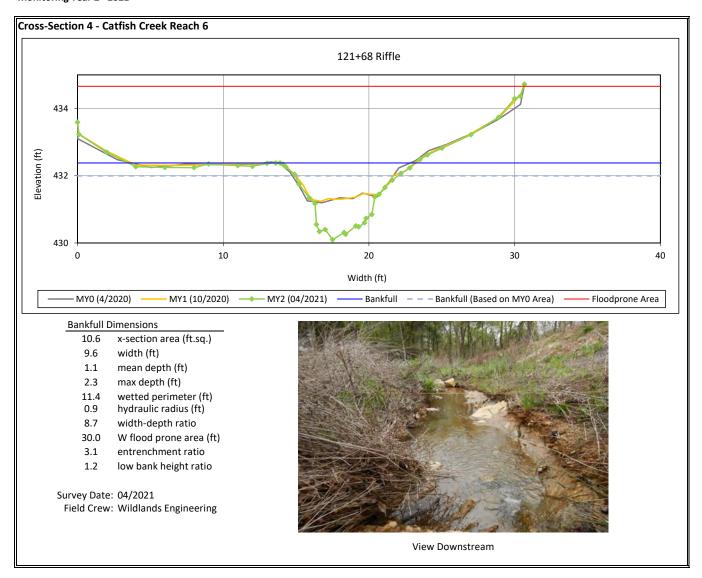

UT1 Reach 3

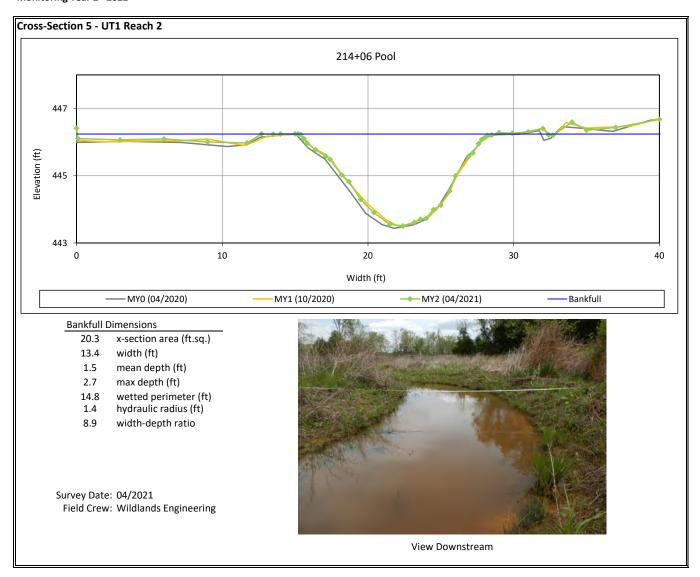
Parameter	As-Built/Baseline		N	IY1	N	1Y2	MY3		MY5		M	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle												
Bankfull Width (ft)	6	5.5	6.0		8.0							
Floodprone Width (ft)	6	50	6	50	(50						
Bankfull Mean Depth).8	C).8	C).9						
Bankfull Max Depth	1	5	1	5	1	L.6						
Bankfull Cross-Sectional Area (ft ²)		5.4		5.0	7	7.0						
Width/Depth Ratio	7	7.8	7	'.1	g	9.1						
Entrenchment Ratio	9	9.3	10	0.0	7	7.5						
Bank Height Ratio	1	0	1	0	1	L.2						
Profile												
Riffle Length (ft)			_									
Riffle Slope (ft/ft)	0.040	0.093										
Pool Length (ft)												
Pool Max Depth (ft)	1.8	2.6										
Pool Spacing (ft)		32.0										
Pool Volume (ft ³)												
Pattern												
Channel Beltwidth (ft)		/A ¹										
Radius of Curvature (ft)		/A ¹										
Rc:Bankfull Width (ft/ft)		/A ¹										
Meander Wave Length (ft)		/A ¹										
Meander Width Ratio	N,	/A ¹										
Additional Reach Parameters												
Rosgen Classification		4a										
Channel Thalweg Length (ft)		49										
Sinuosity (ft)		.02										
Water Surface Slope (ft/ft)			_									
Bankfull Slope (ft/ft)		061										
Ri%/Ru%/P%/G%/S%												
SC%/Sa%/G%/C%/B%/Be%												
d16/d35/d50/d84/d95/d100		23.2/71.7/		7.7/227.6/		33/25.5/						
u10/u35/u30/u64/u55/u100	120.7	/>2048		3/>2048	105.7/22	4.3/>2048						
% of Reach with Eroding Banks	C)%	C)%	()%						

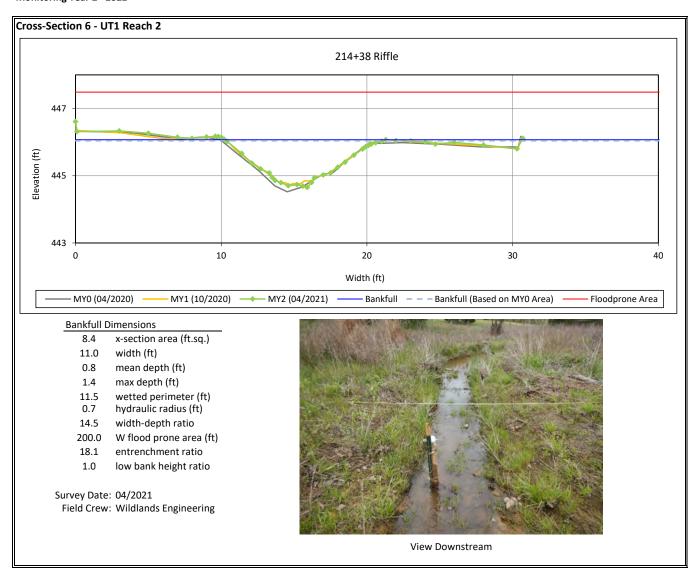

¹ Pattern data is not applicable for B-type channels.

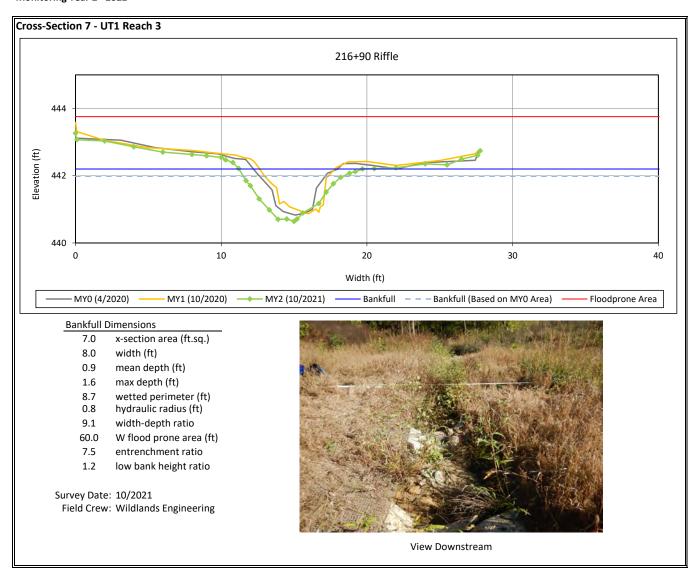
^{*}Morphological survey and analysis not required for MY4 and MY6. N/A: Not Applicable


Catfish Pond Mitigation Site DMS Project No. 100039


Catfish Pond Mitigation Site DMS Project No. 100039

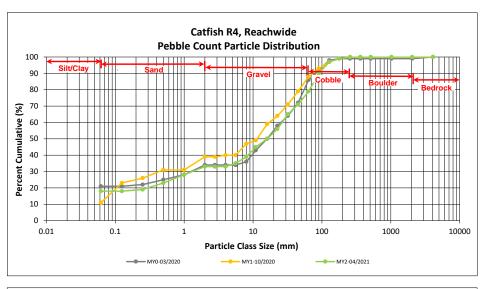

Catfish Pond Mitigation Site DMS Project No. 100039

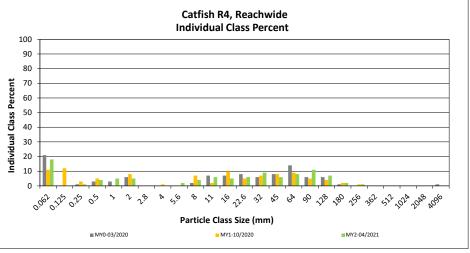

Catfish Pond Mitigation Site DMS Project No. 100039


Catfish Pond Mitigation Site DMS Project No. 100039

Catfish Pond Mitigation Site DMS Project No. 100039

Catfish Pond Mitigation Site DMS Project No. 100039

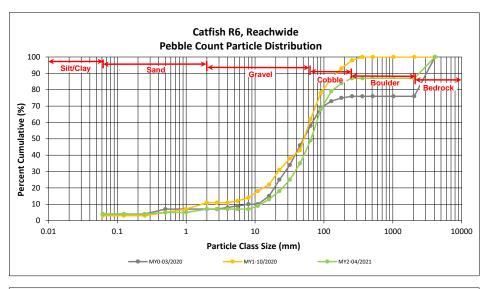


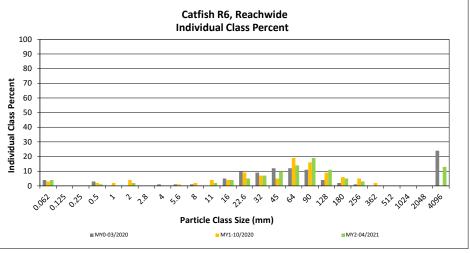

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish R4, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Particle Class							Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	15	18	18	18
	Very fine	0.062	0.125					18
_	Fine	0.125	0.250		1	1	1	19
SAND	Medium	0.25	0.50		4	4	4	23
יכ	Coarse	0.5	1.0	2	3	5	5	28
	Very Coarse	1.0	2.0	2	3	5	5	33
	Very Fine	2.0	2.8					33
	Very Fine	2.8	4.0					33
	Fine	4.0	5.6		2	2	2	35
	Fine	5.6	8.0	1	3	4	4	39
JEL	Medium	8.0	11.0	1	5	6	6	45
GRAVEL	Medium	11.0	16.0	2	3	5	5	50
	Coarse	16.0	22.6	3	3	6	6	56
	Coarse	22.6	32	4	5	9	9	65
	Very Coarse	32	45	5	1	6	6	71
	Very Coarse	45	64	6	2	8	8	79
	Small	64	90	11		11	11	90
CORRIE	Small	90	128	7		7	7	97
COBL	Large	128	180	2		2	2	99
-	Large	180	256	1		1	1	100
	Small	256	362					100
BOULDER	Small	362	512					100
	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

	Reachwide								
Channel materials (mm)									
D ₁₆ =	Silt/Clay								
D ₃₅ =	5.60								
D ₅₀ =	16.0								
D ₈₄ =	74.7								
D ₉₅ =	115.7								
D ₁₀₀ =	256.0								

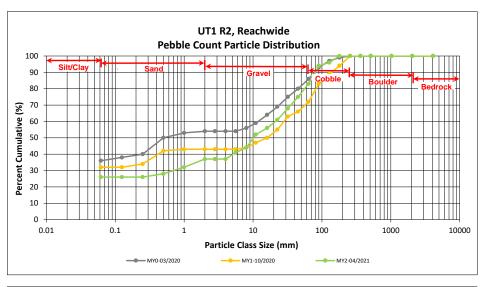


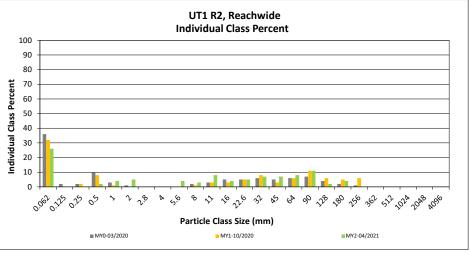

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

Catfish R6, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	1	4	4	4
	Very fine	0.062	0.125					4
_	Fine	0.125	0.250					4
SAND	Medium	0.25	0.50	1		1	1	5
יל	Coarse	0.5	1.0					5
	Very Coarse	1.0	2.0	1	1	2	2	7
	Very Fine	2.0	2.8					7
	Very Fine	2.8	4.0					7
	Fine	4.0	5.6					7
	Fine	5.6	8.0					7
JEL	Medium	8.0	11.0	1	1	2	2	9
GRAVEL	Medium	11.0	16.0	3	1	4	4	13
•	Coarse	16.0	22.6	3	2	5	5	18
	Coarse	22.6	32	2	5	7	7	25
	Very Coarse	32	45	6	4	10	10	35
	Very Coarse	45	64	8	6	14	14	49
	Small	64	90	17	2	19	19	68
COBBLE	Small	90	128	8	3	11	11	79
Ogv	Large	128	180	5		5	5	84
	Large	180	256	3		3	3	87
	Small	256	362					87
BOULDER	Small	362	512					87
	Medium	512	1024					87
	Large/Very Large	1024	2048					87
BEDROCK	Bedrock	2048	>2048	9	4	13	13	100
			Total	70	30	100	100	100

	Reachwide									
Channel materials (mm)										
D ₁₆ =	19.68									
D ₃₅ =	45.00									
D ₅₀ =	65.2									
D ₈₄ =	180.0									
D ₉₅ =	3137.5									
D ₁₀₀ =	>2048									

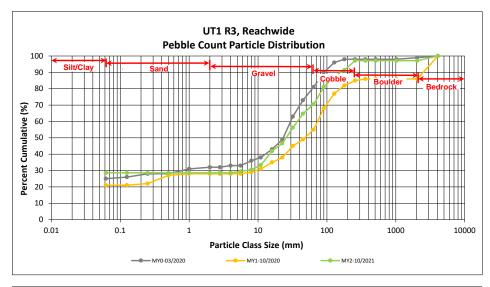



Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

UT1 R2, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	24	26	26	26
	Very fine	0.062	0.125					26
_	Fine	0.125	0.250					26
SAND	Medium	0.25	0.50		2	2	2	28
יכ	Coarse	0.5	1.0	1	3	4	4	32
	Very Coarse	1.0	2.0	2	3	5	5	37
	Very Fine	2.0	2.8					37
	Very Fine	2.8	4.0					37
	Fine	4.0	5.6		4	4	4	41
	Fine	5.6	8.0		3	3	3	44
JEL	Medium	8.0	11.0	2	6	8	8	52
GRAVEL	Medium	11.0	16.0	2	2	4	4	56
ŭ	Coarse	16.0	22.6	5		5	5	61
	Coarse	22.6	32	5	2	7	7	68
	Very Coarse	32	45	6	1	7	7	75
	Very Coarse	45	64	8		8	8	83
	Small	64	90	11		11	11	94
COBBLE	Small	90	128	2		2	2	96
COSO.	Large	128	180	4		4	4	100
-	Large	180	256					100
	Small	256	362					100
OER.	Small	362	512					100
BOULDER	Medium	512	1024					100
	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

	Reachwide								
Channel materials (mm)									
D ₁₆ =	Silt/Clay								
D ₃₅ =	1.52								
D ₅₀ =	10.2								
D ₈₄ =	66.0								
D ₉₅ =	107.3								
D ₁₀₀ =	180.0								

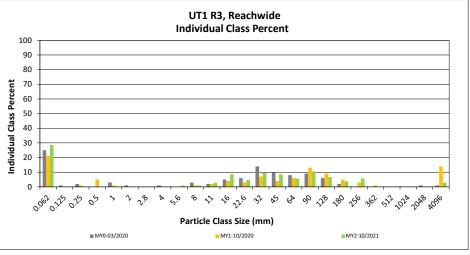


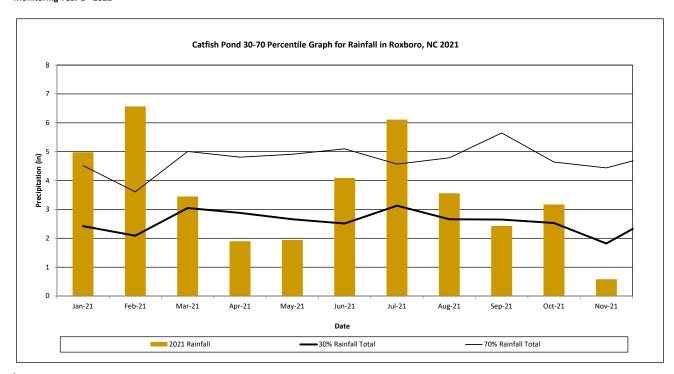
Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 2 - 2021

UT1 R3, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary		
Par	ticle Class						Class	Percent	
		min	max	Riffle	Pool	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	2	28	30	29	29	
	Very fine	0.062	0.125					29	
	Fine	0.125	0.250					29	
SAND	Medium	0.25	0.50					29	
אל	Coarse	0.5	1.0					29	
	Very Coarse	1.0	2.0					29	
	Very Fine	2.0	2.8					29	
	Very Fine	2.8	4.0					29	
	Fine	4.0	5.6		1	1	1	30	
	Fine	5.6	8.0	1		1	1	30	
JEL	Medium	8.0	11.0	2	1	3	3	33	
GRAVEL	Medium	11.0	16.0	4	5	9	9	42	
	Coarse	16.0	22.6	5		5	5	47	
	Coarse	22.6	32	6	4	10	10	56	
	Very Coarse	32	45	7	2	9	9	65	
	Very Coarse	45	64	5	1	6	6	70	
	Small	64	90	8	3	11	10	81	
COBBLE	Small	90	128	6	1	7	7	88	
OBL	Large	128	180	2	2	4	4	91	
	Large	180	256	4	2	6	6	97	
	Small	256	362					97	
BOULDER	Small	362	512					97	
	Medium	512	1024					97	
	Large/Very Large	1024	2048					97	
BEDROCK	Bedrock	2048	>2048	2	1	3	3	100	
<u> </u>			Total	54	51	105	100	100	

	Reachwide								
Channel materials (mm)									
D ₁₆ =	Silt/Clay								
D ₃₅ =	11.83								
D ₅₀ =	25.5								
D ₈₄ =	105.7								
D ₉₅ =	224.3								
D ₁₀₀ =	>2048								



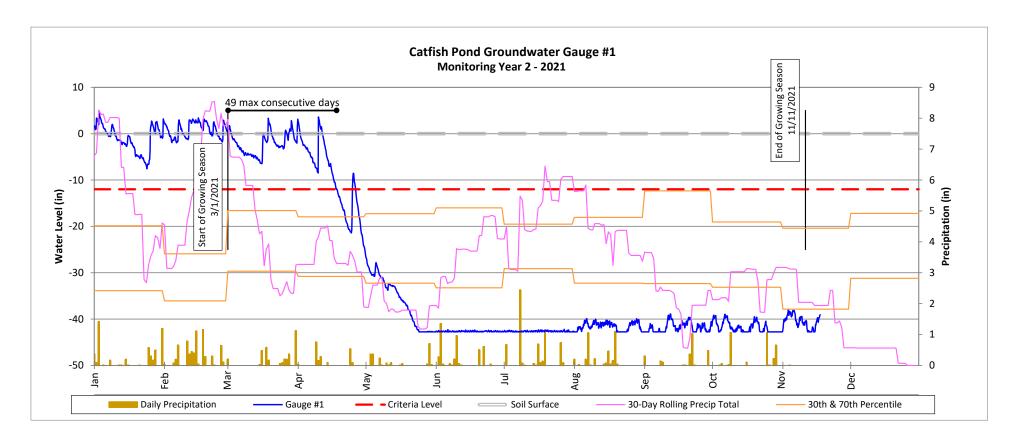

Table 13. Verification of Bankfull Events

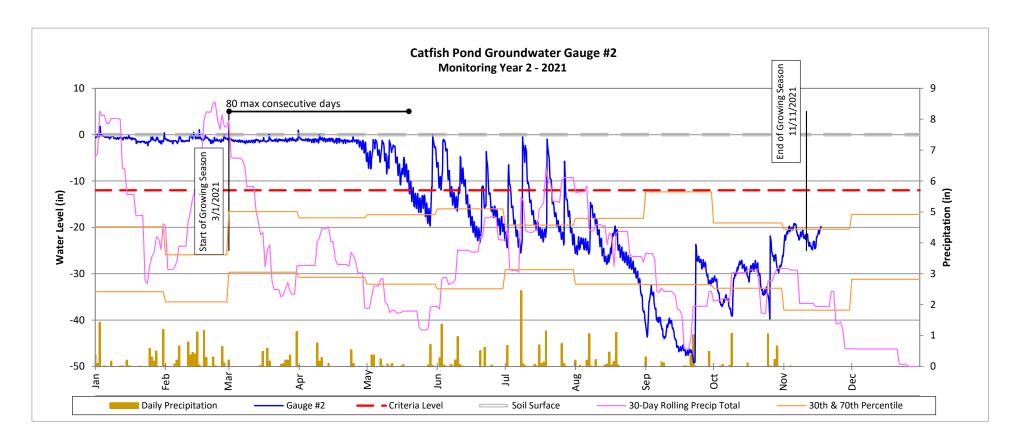
Catfish Pond Mitigation Site DMS Project No. 100039 **Monitoring Year 2 - 2021**

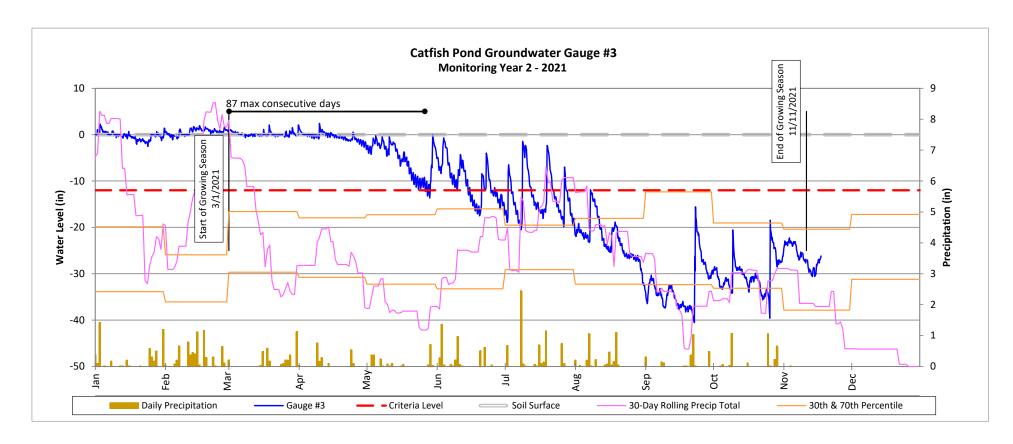
Summary of Recorded Bankfull Events for Monitoring Years 1 through 7												
Bb		Date of Occurrence										
Reach	MY1 (2020)	MY2 (2021)*	MY3 (2022)	MY4 (2023)	MY5 (2024)	MY6 (2025)	MY7 (2026)	Method				
Catfish Creek Reach 6	10/11/2020	N/A						Pressure				
UT1		1/3/2021						Transducer				
Reach 2	12/14/2020	2/15/2021										
nedCII Z		4/9/2021										

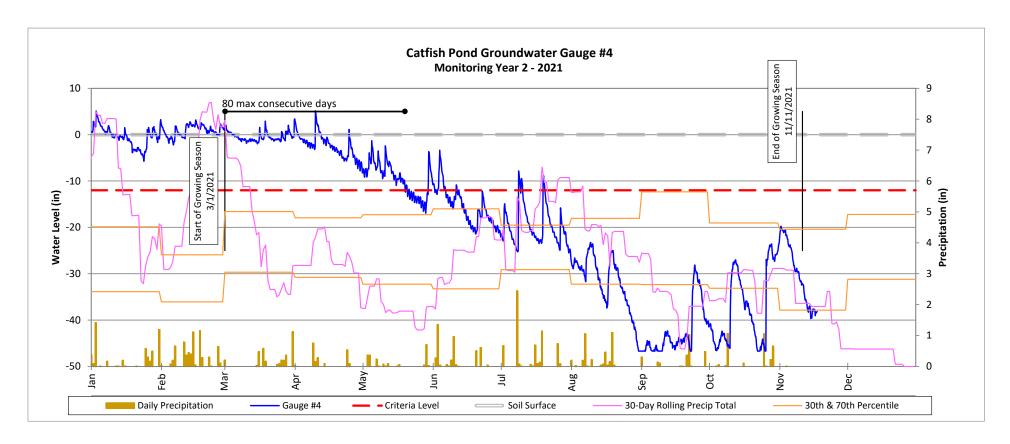
^{*}Data was collected through November 17, 2021. The remainder of MY2 data will be updated in MY3.

Monthly Rainfall Data


¹ 2021 monthly rainfall data collected from BAHA weather station in Bahama, NC (NC State Climate Office, 2021).


 $^{^{2}}$ 30th and 70th percentile rainfall data collected from Roxboro 7 ESE weather station in Roxboro, NC (USDA, 2021).


Table 14. Wetland Gauge Summary


	Summary of Groundwater Gauge Results for Monitoring Years 1 through 7*													
Gauge	Max Consecutive Days During Growing Season (Percentage)													
Gauge	MY1 (2020)	MY2 (2021)	MY3 (2022)	MY4 (2023)	MY5 (2024)	MY6 (2025)	MY7 (2026)							
1	14 Days (5.3%)	49 Days (19.1%)												
2	100 Days (37.6%)	80 Days (31.3%)												
3	109 Days (41.0%)	87 Days (34.0%)												
4	59 Days (22.2%)	80 Days (31.3%)												

^{*}Data collected for informational purposes only, no success criteria is associated with the wetland areas.

