

April 9, 2019

Ms. Sue Murphy State of North Carolina Department of Environmental Quality Division of Waste Management, Superfund Section 1646 Mail Service Center Raleigh, NC 27699-1646

RE: Risk Management Plan Winter Park Cleaners 1437 South College Road Wilmington, New Hanover County, NC DSCA Site ID: DC650013

Dear Ms. Murphey:

ATC Associates of North Carolina, P.C. (ATC) is pleased to submit the enclosed Risk Management Plan (RMP) for the above referenced site. The results of the risk assessment indicated that there are risks that exceed applicable target levels on the source property. These risks will be managed using site-specific land-use conditions that have been selected as part of the risk assessment evaluation and which require a RMP. The primary purpose of this RMP is to ensure that the assumptions made during the risk assessment remain valid in the future. Based on the documentation outlined in this report, ATC recommends issuance of a No Further Action letter for the site with the implementation of Land Use Controls.

If you have questions or require additional information, please do not hesitate to contact Meghan Greiner at (919) 871-0999.

Sincerely, **ATC Associates of North Carolina, P.C.**

Meghan E. Greiner, P.E. Program Manager RISK MANAGEMENT PLAN WINTER PARK CLEANERS 1437 SOUTH COLLEGE ROAD WILMINGTON, NEW HANOVER COUNTY, NORTH CAROLINA DSCA SITE IDENTIFICATION NO. DC650013 APRIL 9, 2019 **Risk Management Plan Winter Park Cleaners** 1437 South College Road Wilmington, New Hanover County, NC DSCA Site Identification No. DC650013

Prepared By:

Submitted To:

North Carolina Department of Environmental Quality Division of Waste Management Superfund Section – DSCA Program 1646 Mail Service Center Raleigh, NC 27699-1646

Ashley M. Winkelman, P.G. Senior Project Manager

Prepared By:

Meghan E. Greiner, P.E. Program Manager N.C. Professional Engineer #34806 ATC Associates of North Carolina, P.C.

2725 East Millbrook Road, Suite 121 Raleigh, North Carolina 27604 Phone: (919) 871-0999 Fax: (919) 871-0335

April 9, 2019

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 OBJECTIVES OF RISK MANAGEMENT PLAN (RMP) 1
3.0 SUMMARY OF APPROVED RISK ASSESSMENT REPORT
3.1 Exposure Unit #1
3.2 Protection of Groundwater Use Pathway
3.3 Protection of Surface Water Pathway
3.5 Risk Assessment Conclusions
4.0 RAP COMPONENTS
4.1 Summary of Prior Assessment and Interim Actions
4.2 Remedial Action
5.0 DATA COLLECTED DURING RMP IMPLEMENTATION
6.0 LAND-USE CONTROLS
7.0 LONG-TERM STEWARDSHIP PLAN
8.0 RMP IMPLEMENTATION SCHEDULE
9.0 CRITERIA FOR DEMONSTRATING RMP SUCCESS 11
10.0 CONTINGENCY PLAN IF RMP FAILS
11.0 CONCLUSIONS AND RECOMMENDATIONS 12

FIGURES

Figure 1	Exposure Unit Map
Figure 2	Exposure Unit Map and Surface Water Point-of-Exposure
Figure 3	Soil Quality Map
Figure 4	Groundwater Quality Map
Figure 5	Soil Gas Quality Map
Figure 6	Land-Use Control Areas

APPENDICES

Appendix ADSCA Program's Analytical Data TablesAppendix BGSI Mann-Kendall Toolkit DocumentationAppendix CLevel 1 Ecological Risk Assessment ChecklistsAppendix DNotice of Dry-Cleaning Solvent Remediation for Source PropertyAppendix EExample Annual Certification of Land-Use RestrictionsAppendix FExample Documents Announcing the Public Comment Period

1.0 INTRODUCTION

ATC Associates of North Carolina, P.C. (ATC) has prepared this Risk Management Plan (RMP) for the former Winter Park Cleaners site (DSCA Site #DC650013) in Wilmington, New Hanover County, North Carolina, under contract to the North Carolina Dry-Cleaning Solvent Cleanup Act (DSCA) Program. This RMP is intended to comply with the requirements of the DSCA Program (N.C.G.S. 143-215.104A *et seqs*) and promulgated rules, as well as the DSCA Program's May 2015 Risk Assessment Guidance (RAG). The former Winter Park Cleaners site (herein referred to as the "site") references only the source property.

The site is currently developed with a Trader Joe's grocery store and parking lot with a primary address of 1437 South College Road (PIN R06107-002-006-000), owned by Cole TR Wilmington NC, LLC. Maps showing the site location and the site in relation to the nearest downgradient surface water body are included as *Figures 1* and *2*, respectively.

2.0 OBJECTIVES OF RISK MANAGEMENT PLAN (RMP)

ATC completed assessment activities at the site which indicated the following areas of impact attributed to releases at the former Winter Park Cleaners site:

- Concentrations of petroleum compounds above unrestricted use levels in soil at the site.
- Concentrations of petroleum compounds above Title 15A NCAC 2L .0202 Groundwater Standards (2L Standards) in groundwater at the site.

ATC completed a risk assessment for the site on November 13, 2018. The results of the risk assessment indicated that target risk levels were exceeded. However, the risks will be managed based on site-specific land-use conditions that have been selected as part of the evaluation and which require a RMP. Thus, the objective of the RMP is to ensure that those site-specific land-use conditions remain valid in the future.

3.0 SUMMARY OF APPROVED RISK ASSESSMENT REPORT

Based on soil and groundwater impacts above unrestricted use levels, ATC completed a risk assessment for the site in November 2018. This section summarizes the final risk assessment findings, which resulted in the recommendation for no further action status with land-use controls placed on the property.

The first step in the risk assessment process consisted of development of an exposure model. One exposure unit, Exposure Unit #1, was assigned and encompasses the entire source property. The boundary of the exposure unit is depicted on *Figure 1*. The protection of groundwater use and protection of surface water pathways were also evaluated, as further discussed in the following sections.

To provide site background regarding the data used for the risk assessment, analytical data for soil, groundwater, and soil gas are depicted on *Figures 3* through *5*, respectively. The DSCA Program's Analytical Data Tables that summarize the site chronology and analytical data are included in *Appendix A*.

3.1 Exposure Unit #1

Exposure Unit #1 contains the source property where the former Winter Park Cleaners was located. This parcel is developed with a Trader Joe's grocery store and parking lot owned by Cole TR Wilmington NC, LLC. Complete pathways identified for this exposure unit include the indoor inhalation pathway for a current or future resident or non-residential worker and the surficial soil combined pathways for a current or future resident, non-residential worker, or construction worker.

Indoor Inhalation Pathway

• The current indoor inhalation pathway was evaluated for using near slab soil gas samples collected by the current building. Numerous compounds were detected in the near slab samples; however, only compounds which were previously detected in soil and/or

groundwater (petroleum compounds), tetrachloroethylene (PCE), and PCE daughterproducts were assessed for in this risk assessment. Based on the Interstate Technology Regulatory Council (ITRC) Petroleum Vapor Intrusion (PVI) Guidance, petroleum compounds detected in soil or groundwater greater than a separation distance of 30 feet laterally and 5 feet vertically from a structure are negligible due to petroleum's ability to readily degrade in aerobic environments. The minimum depth to groundwater at the site was measured at 5.25 feet below ground surface and impacted soil is located greater than 30 feet from the onsite building. Therefore, the current vapor intrusion risk from petroleum compounds are considered negligible and were not used for current risk evaluations. Only two chlorinated solvent compounds were detected in the soil gas, PCE and vinyl chloride, both of which did not exceed risk levels. The results of the risk assessment using these data indicated no exceedances of acceptable risk levels for a resident or a non-residential worker for current risks.

• For evaluation of future risks, ATC reviewed soil gas data collected in two separate areas of the site: near slab data collected by the current building and sub-pavement data collected by the former dry-cleaner (which is currently a parking lot). The majority of compounds detected in soil gas are related to a petroleum release. The two separate areas of the vapor intrusion assessment exceed the separation distances outlined in the ITRC PVI Guidance. As a result, the two areas were assessed separately. The data indicates there are greater risks associated with the sub-pavement samples near the former dry-cleaner. Therefore, the indoor air pathway for future risk was evaluated using sub-pavement soil gas data. The results of the risk assessment using these data indicated no exceedances of acceptable risk levels for a resident or a non-residential worker for future risks.

Surficial Soil Combined Pathway

• For the current surficial soil combined pathway for a resident or non-residential worker and construction worker, the samples with the highest concentrations that were collected above the historical high water table was used to evaluate risk. The results of the risk assessment indicated no exceedances of acceptable risk levels for a resident, nonresidential worker, or construction worker. • For the future surficial soil combined pathway for a resident or non-residential worker and construction worker, the samples with the highest concentrations that were collected above the historical high water table was used to evaluate risk. The results of the risk assessment indicated no exceedances of acceptable risk levels for a resident, non-residential worker, or construction worker.

3.2 Protection of Groundwater Use Pathway

The protection of groundwater use pathway was modeled assuming a point of exposure (POE) at the nearest property boundary downgradient of the plume on which impacts have not been observed, located approximately 310 feet southeast of the source area and shown on *Figure 1*. Modeling under this scenario assumes that a groundwater use controls will be implemented for the site property.

Modeling results for evaluating the protection of groundwater use at the POE indicated exceedances of Site Specific Target Levels (SSTLs) for source soil and groundwater. Groundwater monitoring data indicate that the plume is stable and has not migrated as far as the modeling projects. Plume stability documentation is included in *Appendix B*. The groundwater monitoring data collected at the site are considered more relevant and applicable for making risk management decisions. Regarding exceedances for source soil, if site conditions do not change the current plume stability is not expected to change and therefore the groundwater monitoring data is considered more relevant than the modeling results. However, some of the modeling inputs are conservative parameters, specifically rate of infiltration, that may not be representative of the current land cover (i.e., asphalt, concrete). Such land cover would reasonably minimize infiltration in the source area and likely affect the documented plume migration at the site. However, because rate of infiltration is a significant variable in the leaching of contamination from soil and subsequent migration in groundwater, it is reasonable that plume expansion could occur as indicated by the model in the event that site conditions were altered such that infiltration rates increased in area of source contamination. Therefore, it is recommended that land-use controls be utilized to maintain current infiltration conditions in the areas of impacted soils exceeding the SSTL. This area is depicted on *Figure 6*. Note that some areas exceeding the SSTL currently have

no land cover. The surface cover restriction area only applies to areas that are currently covered by pavement or buildings since the unpaved areas where contamination is observed are assumed to be at equilibrium with the subsurface such that chemical migration to the POE will not occur in the future.

3.3 Protection of Surface Water Pathway

The protection of surface water pathway was modeled assuming a POE at downgradient retention pond located approximately 3,230 feet southeast of the source area and shown on *Figure 2*. Modeling results for the protection of surface water evaluation indicated no exceedances of SSTLs for source groundwater or source soil. The modeling results are corroborated by the plume stability determination and indicate the plume is unlikely to impact the POE. Based on these data, the protection of surface water pathway is not considered a significant concern.

3.5 Risk Assessment Conclusions

The risk assessment concluded that the risks associated with the contamination could be managed through implementation of land-use controls for the site, as detailed in this RMP. Land-use controls for the site are discussed in Section 6.0.

4.0 RAP COMPONENTS

4.1 Summary of Prior Assessment and Interim Actions

The site is located at 1437 South College Road in Wilmington, North Carolina in an area that is primarily characterized as regional business and office & institutional. The property is accessed from the east by South 47th Street, from the south by Oleander Drive, and from the west by South College Road. The area topography slopes downward towards the southeast. A used auto sales retail facility also operated at the source property for the same time period. A former filling station (name unknown) was located west of the source property across South College Road, a former

brake shop (NCDEQ UST Incident #20909) is located south across Oleander Drive, and former Coastal Dry Cleaners (DC650003) is located east across South 47th Street.

The site is an approximate 1.49-acre parcel developed with a Trader Joe's grocery store and associated parking lot. The primary address is 1437 South College Road and is owned by Cole TR Wilmington NC, LLC. Available historical information indicated that dry-cleaning operations were conducted on the source property from at least 1951 until at least 1964. Detailed information is not available regarding the facility and associated dry-cleaning operations. Evidence of subsurface contamination was first identified during a limited site investigation. According to the Limited Site Investigation Report submitted on February 15, 2012, petroleum impacted soil and groundwater was identified in the vicinity of the former dry-cleaner.

Terracon completed a Phase I Environmental Assessment (ESA) for the site on December 30, 2011. The ESA identified a former dry-cleaning facility on the western portion of the property and a used auto sales facility on the southwestern portion of the property. Information regarding drycleaning practices were not available. Based on the results of the ESA, Terracon completed a Limited Site Investigation on February 15, 2012. During the investigation, nine soil samples and four groundwater grab samples were collected. Petroleum compounds were detected in one soil sample above the Protection of Groundwater Inactive Hazardous Sites Branch (IHSB) Preliminary Soil Remediation Goals (PSRGs); however, the sample was collected below the water table and is not indicative of soil impacts at the site. Petroleum compounds were also detected in three groundwater samples above the 2L Standard.

AMEC Environment & Infrastructure, Inc. conducted a Prioritization Assessment documenting the advancement and sampling of sixteen soil borings and the collection of eleven groundwater grab samples. Additionally, two near-slab soil gas samples were collected along the eastern edge and western edge of the Trader Joe's building. The soil results detected naphthalene and 2methylnaphthalene above the Protection of Groundwater IHSB PRSGs in one soil sample. The concentration of naphthalene in the soil sample also exceeded the Residential Health Based PSRG. Naphthalene was detected above 2L Standard in one groundwater sample. Thirty-five compounds were detected in the soil gas samples; however, none of the concentrations exceeded the Division of Waste Management (DWM) Non-Residential Soil Gas Screening Levels (SGSLs). The results were submitted to the DSCA Program on June 17, 2013.

Permanent monitoring wells MW-1 through MW-5 were installed and sampled in October 2013. Laboratory results indicated petroleum compounds above 2L Standards in MW-3. Geotechnical samples were also collected to determine soil characteristics and slug testing was performed to determine hydrology.

Plume stability monitoring was performed in September 2014, December 2014, and March 2015. Laboratory results indicated petroleum compounds above 2L Standards in MW-1 and MW-3. Report forms documenting plume stability were submitted to the DSCA Program on April 6, 2015. Laboratory results indicated groundwater impacts were confined to the site property, delineated, stable and decreasing.

Three sub-pavement soil gas samples were collected in the area of the former dry-cleaner in July 2018. The samples did not indicate any compounds above Non-Residential SGSLs. A Vapor intrusion Letter Report was submitted to the DSCA Program on October 10, 2018.

ATC compiled the recent and historical data for the site and prepared a risk assessment in November 2018. As discussed in detail in Section 3.0, the risk assessment concluded that risks associated with the contamination could be managed through implementation of land-use controls for the site, as detailed in this RMP. Therefore, the risk assessment recommended risk-based closure for the site.

4.2 Remedial Action

According to the DSCA Program's RAG, no remedial action is necessary if four site conditions are met. Each of these conditions and their applicability to the subject site are addressed below.

Condition 1: The dissolved plume is stable or decreasing.

Periodic groundwater monitoring has been conducted at the site since from 2012 to 2015. Constituents of concern (COCs) detected at concentrations above 2L Standards include benzene, ethylbenzene, naphthalene, total xylenes, isopropylbenzene (cumene), n-propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, C_5-C_8 aliphatics, C_9-C_{12} aliphatics, C_9-C_{10} aromatics, C_9-C_{18} aliphatics, and C_9-C_{11} aromatics. The DWM evaluates sites using specific COCs rather than carbon fractions due to the potential to double count risk. Therefore, C_5-C_8 aliphatics, C_9-C_{12} aliphatics, C_9-C_{10} aromatics, C_9-C_{13} aliphatics, C_9-C_{10} aromatics, C_9-C_{14} aliphatics, C_9-C_{10} aromatics, C_9-C_{14} aliphatics, and C_9-C_{11} aromatics were not included in plume stability monitoring.

ATC prepared concentration versus time graphs for each monitoring well showing significant detections of the aforementioned compounds using the GSI Mann-Kendall Toolkit for Constituent Trend Analysis (Mann-Kendall). The concentration versus time graphs show that COCs detected at the site above 2L Standards are stable or show "no trend" for the monitoring wells evaluated. Where "no trend" was indicated, ATC reviewed the graphs manually and concluded that trends appeared stable or decreasing. Furthermore, COCs which indicated "no trend" have not been identified in the most downgradient well, MW-5. Based on these data, ATC concludes that the dissolved plume associated with the site is stable or decreasing. Documentation of the plume stability evaluation, including a table showing historical groundwater analytical data and the Mann-Kendall Analyses, are included in *Appendices A* and *B*, respectively. Monitoring well locations and the extent of the groundwater plume are shown on *Figure 4*.

Condition 2: The maximum concentration within the exposure domain for every complete exposure pathway of any COC is less than ten times the representative concentration of that COC.

ATC evaluated the representative concentrations calculated during the risk assessment and found that this condition has been met for all COCs and exposure pathways.

Condition 3: Adequate assurance is provided that the land-use assumptions used in the DSCA Program's Risk-Based Corrective Action (RBCA) process are not violated for current or future conditions.

Land-use controls will be implemented for the site to ensure the assumptions made in the risk assessment remain valid in the future. Refer to Section 6.0 for additional details regarding the proposed land-use controls for the site.

Condition 4: There are no ecological concerns at the site.

ATC completed a Level 1 Ecological Risk Assessment for the site in accordance with the DSCA Program's RBCA guidance. The results of the evaluation indicate that the release does not pose an unacceptable ecological risk. The completed Level 1 Ecological Risk Assessment Checklists A and B and associated attachments are included in *Appendix C*.

The site's compliance with the four above referenced conditions confirms that the contaminant concentrations are not likely to pose an unacceptable risk either at present or in the future. The plume is expected to naturally attenuate over time and the appropriate remedial action is to implement appropriate land-use controls on the properties where soil and/or groundwater contamination associated with the site is present.

5.0 DATA COLLECTED DURING RMP IMPLEMENTATION

No further sampling or other data collection activities are proposed for the site, as long as the assumptions detailed in each Notice of Dry-Cleaning Solvent Remediation (NDCSR) remain valid. As such, this section is not applicable.

6.0 LAND-USE CONTROLS

As discussed in detail in Section 3.0, the recommendation for closure in the risk assessment for the site was based on the following land-use conditions:

- No activities may occur that remove or disturb soil within the area of impacted soil designated on *Figure 6* on the source property unless approved in writing in advance by NCDEQ.
- No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in the area designated on *Figure 6*.
- Groundwater will not be utilized on the source property.

Institutional controls will be implemented to ensure that land-use conditions are maintained and monitored until the land-use controls are no longer required for the site. A NDCSR was prepared for the source property to comply with the land-use control requirement. The NDCSR for the source property is included in *Appendix D*. Refer to the NDCSR for the specific language to be incorporated to address each of the risk assessment assumptions detailed above. A plat showing the locations and types of dry-cleaning solvent contamination is included as an exhibit to the NDCSR. The locations of dry-cleaning solvent contamination are where contaminants have been detected above unrestricted use standards.

7.0 LONG-TERM STEWARDSHIP PLAN

The NDCSR for the source property contains a clause which requires that the owner of the property submit notarized "Annual Certification of Land-Use Restrictions" to NCDEQ on an annual basis certifying that the NDCSR remains recorded with the Register of Deeds and that the land-use restrictions (LURs) are being complied with. An example of such a certification is included in *Appendix E*.

8.0 RMP IMPLEMENTATION SCHEDULE

Since the contamination is stable and confined to the source, no additional site remediation activities are required to implement the RMP. A 30-day public comment period will be held to allow the community an opportunity to comment on the proposed strategy. *Appendix F* includes example documents used to announce the public comment period in the local newspaper and to inform local officials, nearby property owners, and interested parties. As such, upon completion of the public comment period and final approval of the RMP, the NDCSR will be filed with the New Hanover County Register of Deeds and will complete the RMP schedule.

9.0 CRITERIA FOR DEMONSTRATING RMP SUCCESS

The RMP will be successfully implemented once the NDCSR has been executed and recorded with the New Hanover County Register of Deeds. The NDCSR may, at the request of the owner of the property, be canceled by NCDEQ after the risk to public health and the environment associated with the dry-cleaning solvent contamination and any other contaminants included in the dry-cleaning solvent assessment and remediation agreement has been eliminated as a result of remediation of the property. If NCDEQ is notified of a change in site conditions, per the notification requirements detailed in the NDCSR, the RMP will be reviewed to determine if the site conditions have impacted the requirements set forth in each NDCSR and if changes are required. Enforcement of the RMP will be maintained through receipt of the "Annual Land-Use Restrictions Certification" from the source property owner as part of the NDCSR requirements.

10.0 CONTINGENCY PLAN IF RMP FAILS

As discussed above, unless the DSCA Program is notified of a change in land-use conditions at the site, per the notification requirements detailed in this plan, the RMP will remain in effect until the RMP has met its objectives and is considered a success. Pursuant to N.C.G.S. 143-215.104K, if any of the LURs set out in the NDCSR are violated, the owner of the property at the time the LURs are violated, the owner's successors and assigns, and the owner's agents who direct or

contract for alteration of the site in violation of the LURs, shall be held liable for the remediation of all contaminants to unrestricted use standards.

11.0 CONCLUSIONS AND RECOMMENDATIONS

ATC has prepared this RMP for the former Winter Park Cleaners site on behalf of the DSCA Program. The results of a risk assessment indicated that contaminant concentrations at the site do not pose an unacceptable risk with appropriate land-use controls applied to the source property. The contaminant plume associated with the site appears stable or decreasing. This RMP specifies that the NDCSR requirements provide notification that land-use conditions observed during the risk assessment evaluation remain valid in the future. Based on the documentation contained in this report, ATC recommends issuance of a "No Further Action" letter.

FIGURES

018/0THER OFFICES/NORTH CAROLINA/NCDEQ-DWM-DSCA PROGRAM/WINTER PARK CLEANERS WILMINGTON/DC650013-GW.DN

N A	FORMER COASTAL DRY CLEANERS (DC650003)	-			
 NOTES: 1. Features shown are not an authoritative location, nor are they presented to a stated accuracy. 2. GW POE = Groundwater Point-of-Exposure. 3. Only compounds exceeding NC 2L Standards are shown on this figure. 4. All concentrations presented in milligrams per Liter (mg/L). 	TITLE FIGURE 4 GROUNDWATER QUALITY MAP WINTER PARK CLEANERS 1437 SOUTH COLLEGE ROAD WILMINGTON, NORTH CAROLINA	Ϋ́Ϋ́	IC Associates of North aleigh, North Carolina, 2	Carolina, P.C.	(919) 871-0999
COORDINATE SYSTEM: NAD 1983 NORTH CAROLINA STATE PLANE FIPS 3200, US SURVEY FEET	CAD FILE DSCAID PREP BY F SEE LOWER LEFT DC650013 PH	rev. by AW	SCALE AS SHOWN	_{рате} 2/18	PROJECT NO. DC650013

LEGEND: NS-1 NEAR-SLAB SOIL-GAS WELL Well identification SPMP-1 SUB-PAVEMENT MONITORING POINT Well identification SOURCE PROPERTY BOUNDARY NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP- Sample Depth (feet bgs) Sample ID SPMP- Sample Depth (feet bgs) Benzene 36 Ethylbenzene 58 Naphthalene <5.0 1,3,5-Trimethylbenzene <5.0 1,2,4-Trimethylbenzene <2.500			2
NS-1 NEAR-SLAB SOIL-GAS WELL Well Identification SPMP-1 SUB-PAVEMENT MONITORING POINT Well Identification SOURCE PROPERRY BOUNDARY NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP- Sample Depth (feet bgs) Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/11 Benzene 36 Ethylbenzene 5.0 Tetrachloroethylene 9.9 Toluene NA Nij1chloride -2.6 Xylenes (total) 170 1,3,5-Trimethylbenzene -5.0 1,2,4-Trimethylbenzene 5.0 1,2,4-Trimethylbenzene 5.0 1,2,4-Trimethylbenzene -2,500 Toluene NA Naphthalene -2,500 Totuene NA	L	EGEND:	
SPMP-1 SUB – PAVEMENT MONITORING POINT Well identification SOURCE PROPERTY BOUNDARY NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP- Sample Depth (feet bgs) Sample ID SPMP- Sample Depth (feet bgs) Sample ID SPMP- Sample Depth (feet bgs) Stample ID SPMP- Sample Depth (feet bgs) Notice Sample Depth (feet bgs) Sample ID SPMP- Sample Depth (feet bgs) Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 530 Ethylbenzene 2,500 Naphthalene <500	NS-1 NEAR-	SLAB SOUL-CAS WELL	
SPMP-1 SUB-PAVEMENT MONITORING POINT Well Identification SOURCE PROPERTY BOUNDARY NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample DD SPMP- Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/11 Benzene 36 Ethylbenzene 38 Naphthalene 5.3 Tetrachloroethylene 9.9 Toluene NA Vinyl chloride 2.26 Xylenes (total) 170 1,3.5-Trimethylbenzene 30 1,2.4-Trimethylbenzene 30 Ethylbenzene 30 Ethylbenzene 30 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 30 Ethylbenzene 30 Ethylbenzene 30 1,2.4-Trimethylbenzene 2,500 Toluene NA Vinyl chloride 225 Sampling Date (mm/dd/yy) 07/26/18 Benzene 30 Ethylbenzene 2,500 Toluene NA Vinyl chloride 225 Sampling Date (mm/dd/yy) 07/26/18 Benzene 30 Ethylbenzene 2,500 Toluene NA		lentification	
Image: Source property boundary New Hanover county parcel Approximate former Dry CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP-3 Sample Depth (feet bgs) 0.25 Sample Depth (feet bgs) 0.726/18 Benzene 56 Toluene NA Vinyl chloride <2.6	SPMP-1 SUR-D	AVENENT MONITORING DO	
SourCE PROPERTY BOUNDARY NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP-3 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/11 Benzene 58 Naphthalene <5.3 Tetrachforoethylene 9.9 Toluene NA Vinyl chloride <2.6 Xylenes (total) 170 1,2,5 Trimethylbenzene 12 Sample ID SPMP-3 Sample Db SPMP-3 Sample Dopth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 53.0 1,2,4 Trimethylbenzene 12 Sample Dc (mm/dd/yy) 07/26/18 Benzene 53.0 1,2,4 Trimethylbenzene <2,500 Naphthalene <500 Toluene NA Vinyl chloride <250 Xylenes (total) <2,500 1,2,4 Trimethylbenzene <2,500 1,2,4 Trimethylbenzene <2,500		AVEMENT MONITORING FO	'IN I
NEW HANOVER COUNTY PARCEL APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP- Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/13 Benzene 56 Ethylbenzene 56 Ethylbenzene 53 Tetrachloroethylene 99 Toluene NA Viny1 chloride <2.6 Xylenes (total) 170 1,3.5-Trimethylbenzene <3.0 1,2.4-Trimethylbenzene <300 Toluene NA Viny1 chloride <2.500 Naphthalene <300 Toluene S30 Ethylbenzene <300 Toluene S30 Ethylbenzene <300 Toluene S30 Ethylbenzene <300 Toluene S30 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene S30 Ethylbenzene <2.500 Naphthalene <300 Toluene NA Viny1 chloride <250 Xylenes (total) <2,500 Xylenes (total) <2,500 Xyle		E PROPERTY BOUNDARY	
APPROXIMATE FORMER DRY CLEANERS BUILDING LOCATION EXPOSURE UNIT #1 Sample ID SPMP- Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 36 Ethylbenzene 36 Ethylbenzene 38 Naphthalene <5.3 Tetrachloroethylene 99 Toluene NA Vinyl chloride <2.6 Xylenes (total) 170 1,3,5-Trimethylbenzene <2.500 1,2,4-Trimethylbenzene 330 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 530 Ethylbenzene 500 Toluene NA Vinyl chloride 255 Sampling Date (mm/dd/yy) 07/26/18 Benzene 530 Ethylbenzene 42,500 Naphthalene 500 Toluene NA	NFW H	ANOVER COUNTY PARCEL	
Arterioxania Formation for the product of the prod		VIMATE FORMER DRY	
Sample ID SPMP- Sample Depth (feet bgs) 0.25 Sampling Date (nm/dd/yy) 07/26/13 Benzene 36 Ethylbenzene 36 Ethylbenzene 36 Naphthalene 5.3 Toluene NA Vinyl chloride <2.6	AFFINO	RS BUILDING LOCATION	
Sample ID SPMP-3 Sample Depth (feet bgs) 0.25 Sample ID Spminalaee Solo Spminalaee	FXPOSI	IRE LINIT #1	11 Y 84
Sample ID SPMP-3 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/13 Benzene 36 Ethylbenzene 58 Naphthalene <5.3 Tetrachloroothylene 9.9 Toluene NA Vinyl chloride <2.6 Xylenes (total) 170 1,3,5-Trimethylbenzene <5.0 1,2,4-Trimethylbenzene 12 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 530 Ethylbenzene <2,500 Naphthalene <500 Tetrachloroothylene <300 Tetrachloroothylene <300 Toluene NA Vinyl chloride <250 Xylenes (total) <2,500 1,3,5-Trimethylbenzene <2,500 1,3,5-Trimethylbenzene <2,500	EXT 000		
Sample IDSPMPSample Depth (feet bgs)0.25Sampling Date (mm/dd/yy)07/26/18Benzene36Ethylbenzene58Naphthalene<5.3Tetrachloroethylene9.9TolueneNAVinyl chloride<2.6Xylenes (total)1701,3,5-Trimethylbenzene<5.01,2,4-Trimethylbenzene12Sample IDSPMP-3Sample Depth (feet bgs)0.25Sampling Date (mm/dd/yy)07/26/18Benzene530Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30Ethylbenzene<30TolueneNAVinyl chloride<250Xylenes (total)<2,5001,3,5-Trimethylbenzene<2,5001,2,4-Trimethylbenzene<2,500			
Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/13 Benzene 36 Ethylbenzene 58 Naphthalene <5.3 Tetrachloroethylene 9.9 Toluene NA Vinyl chloride <2.6 Xylenes (total) 170 1,3,5-Trimethylbenzene <5.0 1,2,4-Trimethylbenzene 12 Value Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 530 Ethylbenzene <30 Ethylbenzene <30 Ethylbenzene <30 Naphthalene <500 Tetrachloroethylene <500 Tetrachloroethylene <500 Tetrachloroethylene <500 Tetrachloroethylene <500 Tetrachloroethylene <500 Tetrachloroethylene <500 Tetrachloroethylene<		Sample ID	SPMP-2
Sampling Date (nm/dd/yy) 07/26/13 Benzene 36 Ethylbenzene 58 Naphthalene <5.3	6 E	Sample Depth (feet bgs)	0.25
Sampling Date (unridd/yy) 07/2011 Benzene 36 Ethylbenzene 58 Naphthalene <5.3		Sampling Date (mm/dd/ya)	07/26/19
Benzene 58 Ethylbenzene 58 Naphthalene <5.3		Bangana	26
Ethylbenzene 58 Naphthalene <5.3		Benzene	30
Naphthalene <5.3		Ethylbenzene	58
Tetrachloroethylene 9.9 Toluene NA Vinyl chloride <2.6		Naphthalene	<5.3
Toluene NA Viny1 chloride <2.6		Tetrachloroethylene	9.9
Vinyl chloride<2.6Xylenes (total)1701,3,5-Trimethylbenzene<5.0		Toluene	NA
Xylenes (total)1701,3,5-Trimethylbenzene<5.0		Vinyl chloride	<2.6
1,3,5-Trimethylbenzene <5.0		Xylenes (total)	170
1,2,4-Trimethylbenzene121,2,4-Trimethylbenzene121,2,4-Trimethylbenzene12Sample IDSPMP-3Sample Depth (feet bgs)0.25Sampling Date (mm/dd/yy)07/26/18Benzene530Ethylbenzene<30Ethylbenzene<30TolueneNAVinyl chloride<250Xylenes (total)<2,5001,3,5-Trimethylbenzene<2,5001,2,4-Trimethylbenzene<2,500		1,3,5-Trimethylbenzene	<5.0
Sample ID SPMP-3 Sample Depth (feet bgs) 0.25 Sampling Date (mm/dd/yy) 07/26/18 Benzene 530 Ethylbenzene <2,500		1,2,4-Trimethylbenzene	12
Sample IDSPMP-3Sample Depth (feet bgs)0.25Sampling Date (mm/dd/yy)07/26/18Benzene530Ethylbenzene<2,500Naphthalene<500Tetrachloroethylene<500TolueneNAVinyl chloride<250Xylenes (total)<2,5001,3,5-Trimethylbenzene<2,5001,2,4-Trimethylbenzene<2,500			1
Sample Depth (feet bgs)0.25Sampling Date (mm/dd/yy)07/26/18Benzene530Ethylbenzene<2,500Naphthalene<500Tetrachloroethylene<500TolueneNAVinyl chloride<250Xylenes (total)<2,5001,3,5-Trimethylbenzene<2,5001,2,4-Trimethylbenzene<2,500	THE .	Sample ID	SPMP-3
Sampling Date (mm/dd/yy)07/26/18Benzene530Ethylbenzene<2,500	ALL ALL A	Sample Depth (feet bgs)	0.25
Benzene530Ethylbenzene<2,500	7	Sampling Date (mm/dd/yy)	07/26/18
Ethylbenzene<2,500Naphthalene<500		Benzene	530
Naphthalene<500Tetrachloroethylene<500		Ethylbenzene	<2,500
Tetrachloroethylene<500TolueneNAVinyl chloride<250		Naphthalene	<500
TolueneNAVinyl chloride<250		Tetrachloroethylene	<500
Vinyl chloride<250Xylenes (total)<2,500		Toluene	NA
Xylenes (total) <2,500 1,3,5-Trimethylbenzene <2,500		Vinyl chloride	<250
1,3,5-Trimethylbenzene<2,5001,2,4-Trimethylbenzene<2,500		Xylenes (total)	<2,500
1,2,4-Trimethylbenzene <2,500		1,3,5-Trimethylbenzene	<2,500
		1,2,4-Trimethylbenzene	<2,500
	1		

		Sample ID Sample Depth (feet bgs Sampling Date (mm/dd/ Benzene Ethylbenzene Ethylbenzene Naphthalene Tetrachloroethylene Toluene Vinyl chloride Xylenes (total) 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene				ATC Associates of North Carolina, P.C. (919) 871-0999 ATC Associates of North Carolina, 27604 Raleigh, North Carolina, 27604 AS SHOWN 9/18 DC6513SL05
SPMP-2 \$SPMP-3	PMP-1 PMP-1 Sample ID Sample Depth (feet bgs) Sampling Date (mm/dd/yy)	SPMP-1 0.25 07/26/18	Sample ID Sample Depth (feet bgs) Sampling Date (mm/dd/yy) Benzene	NS-1 7 04/03/13 40		TITLE FIGURE 5 SOIL GAS QUALITY MAP WINTER PARK CLEANERS MINTER PARK CLEANERS 1437 SOUTH COLLEGE ROAD MILMINGTON, NORTH CAROLINA CADFILE DC650013 BH LG
	Benzene Ethylbenzene Naphthalene Tetrachloroethylene Toluene Vinyl chloride Xylenes (total) 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	100 29 227 34 NA <13 62 25 25 25	Ethylbenzene Naphthalene Tetrachloroethylene Toluene Vinyl chloride Xylenes (total) 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	130 2.1 1.4 560 1.6 580 46 150	N $0 10 20 30 40$ $SCALE: 1" = 40'$	 NOTES: 1. Features shown are not an authoritative location, nor are they presented to a stated accuracy. 2. Concentrations presented in micrograms per cubic meter (ug/m³). 3. (Ug/m³). 3. BOLD values exceed acceptable risk levels. 4. NA = Notales exceed acceptable risk levels. 5. <x =="" below="" laboratory="" li="" limit="" of="" reporting="" x.<=""> COORDINATE SYSTEM: NAD 1983 NORTH CAROLINA STATE PLANE FIPS 3200, US SURVEY FEET </x>

		9		9	the statute	
N A		COASTAL DRY CLEANERS (DC650003)	FORMER			
NOTES: 1. Features shown are not an authoritative location, nor are they presented to a stated accuracy. 2. GW POE = Groundwater Point-of-Exposure.	TITLE FIGURE 6 LAND-USE CONTROL ARE. WINTER PARK CLEANERS 1437 SOUTH COLLEGE RO WILMINGTON, NORTH CARC	AS AD DLINA		ATC Associates of North Raleigh, North Carolina,	Carolina, P.C.	(919) 871-0999
COORDINATE SYSTEM: NAD 1983 NORTH CAROLINA STATE PLANE FIPS 3200, US SURVEY FEET	CAD FILE DC650013	prep. by DH	rev. ^{by} AW	SCALE AS SHOWN	_{рате} 2/18	PROJECT NO. DC650013

APPENDIX A

DSCA PROGRAM'S ANALYTICAL DATA TABLES

ble of Cont	tents	ADT T
SCA ID No.	: DC650013	
Table/ Att. No.	Description	Check box if included
	Tables	
Table 1	Site Chronology	1
Table 2	Analytical Data for Soil	~
Table 3	Analytical Data for Sub-slab Gas	~
Table 4	Analytical Data for Soil Gas	1
Table 5	Analytical Data for Indoor and Outdoor Air	25
Table 6	Monitoring Well Construction Data	1
Table 7	Groundwater Elevation Data	~
Table 8	Analytical Data for Groundwater	1
Table 9	Analytical Data for Surface Water	
Table 10	Water Well(s) Survey Data	
Table 11	Analytical Data for Water Supply Well(s)	
Table 12	Analytical Data for Natural Attenuation Parameters	
	Attachments	
Att. 1	Site map showing location(s) of soil boring(s).	
Att. 2	Soil contaminant concentration maps showing the concentration at each sampling point.	
Att. 3	Soil isoconcentration maps.	
Att. 4	Site map showing location(s) of monitoring well(s).	
Att. 5	Well completion diagrams and records of construction submitted to state.	
Att. 6	Groundwater gradient map for each sampling event.	
	PCE concentration map showing the concentration at each sampling point and	
Att. 7	isoconcentration map. However, if there are significant plumes for other dry- cleaning contaminants, contaminant concentration maps for each chemical of	
	concern should be included.	
Att. 8	Groundwater concentration trend plots.	
Att. 9	Map showing location(s) of surface water sample(s) (if applicable).	
Att. 10	Surface water concentration map showing the concentration at each sampling point (if applicable).	
Att. 11	USGS Quad map with plotted water well location(s) within the 1,500 foot and 0.5 mile radii of the site (if applicable)	
Att 12	Site man showing location(s) of monitoring well(s) for natural attenuation parameter	8
Att. 12	Site map showing location(s) of indoor air outdoor air or soil gas samples	
Att 14	Air and soil gas concentration map showing the concentration at each sampling noi	nt 🗌
1111.14	Signed laboratory analytical reports including chain-of custody and quality	11.
Att. 15	assurance/quality control (QA/QC) documentation (only if not previously submitted)	
Att 16	sublitted).	6
Att 17		
Att 18		
Att 19		
Att 20		
Att. 21		
Note:		

Table 1: Site Chronology

	N	7	1
/ā (

DSCA ID No.:	DC650013
Chronology of Ev	rents
Date	Instructions: Brief description of all significant events that have occurred since a problem was suspected at the facility. Commence with the first date a problem was suspected and continue through the most recent activity described in the current report.
12/30/2011	Terracon conducted a Phase I Environmental Assessment (ESA).
1/3/2012	Terracon conducted a Limited Site Investigation. Field work consisted of the collection of nine soil samples: (T) SB-1 through (T) SB-4, (T) North, (T) South, (T) West, (T) East, and (T) B-1. (T) SB-1 through (T) SB-4 boring locations were then converted into four temporary monitoring wells for the collection of four groundwater grab samples: (T) GW-1 through (T) GW-4.
4/01/13 - 4/03/13	AMEC Environment & Infrastructure, Inc. (AMEC) conducted a Prioritization Assessment (PA) consisting of the advancement and sampling of 16 soil borings (SB-1 through SB-7, SB-9, SB-10B, SB-11B, SB-13, and SB-15 through SB-19), along with the collection of six groundwater grab samples (GW-1 through GW-6). Five temporary groundwater monitoring wells (TMW-1 through TMW-5) were installed for the collection of groundwater and to determine the direction of groundwater flow. Each were gauged, surveyed, and sampled prior to their abandonment. Additionally, two near-slab samples (NS-1 and NS-2) were collected at the front (east) and back (west) sides of the Trader Joes building.
6/17/2013	AMEC submitted Report Forms documenting April 2013 assessment activities.
10/14/13 - 10/16/13	AMEC installed, gauged and sampled five Type II permanent monitoring wells (MW-1 though MW-5), collected two geotechnical samples from borings MW-5 (2'-4') and MW-5 (8'-10'), and collected slug test data from MW-5.
9/17/2014	AMEC sampled wells MW-1 through MW-5.
12/9/2014	AMEC sampled wells MW-1 through MW-5.
3/10/2015	Amec Foster Wheeler sampled wells MW-1 through MW-5.
4/6/2015	Amec Foster Wheeler submitted Report Forms documenting plume stability monitoring performed between September 2014 and March 2015.
7/26/2018	ATC Associates of North Carolina, P.C. (ATC) collected sub-pavement soil gas samples SPMP-1, SPMP-2, and SPMP-3.
10/10/2018	ATC submitted a Vapor Intrusion Letter Report documenting the July 2018 vapor intrusion assessment.
11/13/2018	ATC submitted a Risk Assessment recommending site closure given certain land-use controls are implemented for the source property. The DSCA Program issued a Risk Assessment Concurrence.

Table 2: Analytical Data for Soil

	N	1	
Α.	U.	2	

DSCA ID N	lo.: DC65	0013											
mple ID	pth eet bgs]	mpling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)
Sa	De [fe	Sa		[[mg/kg]					
(T) SB-1*	12.5 - 14	01/03/12	< 0.0046	< 0.0046	0.0515	< 0.0046	0.0118	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0093	0.128
(T) SB-2*	10 - 12.5	01/03/12	<1.06	<1.06	34.7	<1.06	15.4	<1.06	<1.06	<1.06	<1.06	<2.12	82.8
(T) SB-3*	5 - 7.5	01/03/12	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	<0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0106	< 0.0106
(T) SB-4*	12.5 - 14	01/03/12	< 0.0048	< 0.0048	< 0.0048	< 0.0048	<0.0048	< 0.0048	<0.0048	< 0.0048	< 0.0048	< 0.0097	< 0.0097
(T) North*	7.5 - 9	02/02/12	0.0057	< 0.0012	< 0.0012	< 0.0012	< 0.0059	< 0.0012	<0.0059	< 0.0012	< 0.0012	< 0.0012	< 0.0035
(T) South	0 - 2.5	02/02/12	< 0.0012	< 0.0012	0.0030	< 0.0012	<0.0058	< 0.0012	< 0.0058	< 0.0012	< 0.0012	< 0.0012	< 0.0034
(T) East	0 - 2.5	02/02/12	0.0027	< 0.0011	0.036	< 0.0011	0.0059	<0.0011	< 0.0057	< 0.0011	< 0.0011	< 0.0011	< 0.0034
(T) West*	5 - 7.5	02/02/12	< 0.0012	< 0.0012	< 0.0012	< 0.0012	<0.0058	< 0.0012	< 0.0058	< 0.0012	< 0.0012	< 0.0012	< 0.0035
(T) B-1	2.5 - 5	02/02/12	< 0.054	< 0.054	0.98	<0.054	1.4	<0.054	<0.27	< 0.054	< 0.054	< 0.054	< 0.16
SB-1	3	04/02/13	< 0.0042	< 0.0069	< 0.0069	<0.0069	<0.0069	<0.014	< 0.0069	< 0.0069	< 0.0069	< 0.014	< 0.0209
SB-2	4	04/02/13	< 0.30	< 0.30	5.0	<0.30	10	<0.30	< 0.30	< 0.30	< 0.30	< 0.61	<0.91
SB-3	5	04/02/13	< 0.0026	< 0.0043	< 0.0043	<0.0043	<0.0043	< 0.0086	< 0.0043	< 0.0043	< 0.0043	< 0.0086	< 0.0129
SB-4	4	04/02/13	< 0.0054	< 0.0091	0.0039 J	<0.0091	<0.0091	< 0.018	< 0.0091	< 0.0091	< 0.0091	< 0.018	< 0.0271
SB-5	5	04/02/13	< 0.0046	< 0.0076	< 0.0076	<0.0076	<0.0076	< 0.015	< 0.0076	< 0.0076	< 0.0076	< 0.015	< 0.0226
SB-6*	7	04/02/13	< 0.0035	< 0.0059	<0.0059	<0.0059	<0.0059	< 0.012	< 0.0059	< 0.0059	< 0.0059	< 0.012	< 0.0179
SB-7*	8	04/02/13	< 0.0035	< 0.0059	<0.0059	<0.0059	< 0.0059	< 0.012	< 0.0059	< 0.0059	< 0.0059	< 0.012	< 0.0179
SB-9	5	04/02/13	< 0.0026	< 0.0044	<0.0044	<0.0044	< 0.0044	< 0.0088	< 0.0044	< 0.0044	< 0.0044	< 0.0088	< 0.0132
SB-10B	5	04/03/13	< 0.0024	< 0.0040	<0.0040	<0.0040	< 0.0040	< 0.0079	< 0.0040	< 0.0040	< 0.0040	< 0.0079	< 0.0119
SB-11B	3	04/02/13	< 0.0025	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0085	< 0.0042	< 0.0042	< 0.0042	< 0.0085	< 0.0127
SB-13	4	04/02/13	< 0.0028	<0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0094	< 0.0047	< 0.0047	< 0.0047	< 0.0094	< 0.0141
SB-15	4	04/02/13	< 0.0026	< 0.0043	<0.0043	< 0.0043	< 0.0043	< 0.0087	< 0.0043	< 0.0043	< 0.0043	< 0.0087	< 0.013
SB-16	5	04/02/13	< 0.0024	< 0.0040	<0.0040	< 0.0040	< 0.0040	< 0.0080	< 0.0040	< 0.0040	< 0.0040	< 0.0080	< 0.012
SB-17	4	04/03/13	< 0.0024	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0080	< 0.0040	< 0.0040	< 0.0040	< 0.0080	< 0.012
SB-18	5	04/03/13	< 0.0024	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0082	< 0.0041	< 0.0041	< 0.0041	< 0.0082	< 0.0123
SB-19	5	04/03/13	< 0.0029	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0098	< 0.0049	< 0.0049	< 0.0049	< 0.0098	< 0.0147
	IHSB PSRG		0.01	0.41	6.1	0.09	0.39	0.0063	8.3	0.62	0.021	0.00021	9.9

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.

Table 2(1): Analytical Data for Soil (User Specified Chemicals)

ADT 2(1)

DSCA ID No.: DC650013

DOCITID	10.1 DC03	0010											
mple ID	pth et bgs]	mpling Date (mm/dd/yy)	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m,p-Xylenes	o-Xylene	lsopropylbenzene (Cumene)	p-I sopropyltoluene	n-Propylbenzene	sec-Butylbenzene	n-Butylbenzene	tert-Butylbenzene
Sai	De [fe	Sai			-	-		[mg/kg]					
(T) SB-1*	12.5 - 14	01/03/12	< 0.0046	0.0394	0.0089	0.109	0.0195	< 0.0046	< 0.0046	0.0054	< 0.0046	< 0.0046	< 0.0046
(T) SB-2*	10 - 12.5	01/03/12	<1.060	86.6	25.1	73.0	9.77	4.82	3.47	15.1	1.78	5.65	<1.060
(T) SB-3*	5 - 7.5	01/03/12	< 0.0053	< 0.0053	< 0.0053	0.0106	< 0.0053	<0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053
(T) SB-4*	12.5 - 14	01/03/12	< 0.0048	< 0.0048	< 0.0048	< 0.0097	<0.0048	<0.0048	<0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
(T) North*	7.5 - 9	02/02/12	< 0.0012	< 0.0012	< 0.0012	< 0.0035	< 0.0035	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
(T) South	0 - 2.5	02/02/12	< 0.0012	0.0042	< 0.0012	< 0.0034	<0.0034	< 0.0012	< 0.0012	0.0013	< 0.0012	< 0.0012	< 0.0012
(T) East	0 - 2.5	02/02/12	< 0.0011	0.0024	< 0.0011	< 0.0034	< 0.0034	0.0035	< 0.0011	0.0095	< 0.0011	0.0013	< 0.0011
(T) West*	5 - 7.5	02/02/12	< 0.0012	< 0.0012	< 0.0012	< 0.0035	< 0.0035	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
(T) B-1	2.5 - 5	02/02/12	0.25	0.43	0.16	<0.16	<0.16	0.24	< 0.054	0.71	0.11	0.26	< 0.054
SB-1	3	04/02/13	< 0.0069	0.057	0.0077 J	<0.014	<0.0069	0.0045 J	0.0072 J	0.0082 J	0.023	0.0045 J	0.033
SB-2	4	04/02/13	< 0.30	< 0.30	< 0.30	<0.61	< 0.30	0.77	< 0.30	1.7	1.4	1.9	0.42
SB-3	5	04/02/13	< 0.0043	< 0.0086	< 0.0086	< 0.0086	< 0.0043	< 0.0086	< 0.013	< 0.0086	< 0.013	< 0.013	< 0.017
SB-4	4	04/02/13	< 0.0091	< 0.018	< 0.018	<0.018	< 0.0091	< 0.018	< 0.027	< 0.018	< 0.027	< 0.027	< 0.036
SB-5	5	04/02/13	< 0.0076	< 0.015	<0.015	<0.015	< 0.0076	< 0.015	< 0.023	< 0.015	< 0.023	< 0.023	< 0.030
SB-6*	7	04/02/13	< 0.0059	< 0.012	<0.012	< 0.012	< 0.0059	< 0.012	< 0.018	< 0.012	< 0.018	< 0.018	< 0.023
SB-7*	8	04/02/13	< 0.0059	< 0.012	<0.012	< 0.012	< 0.0059	< 0.012	< 0.018	< 0.012	< 0.018	< 0.018	< 0.024
SB-9	5	04/02/13	< 0.0044	< 0.0088	<0.0088	< 0.0088	< 0.0044	< 0.0088	< 0.013	< 0.0088	< 0.013	< 0.013	< 0.018
SB-10B	5	04/03/13	< 0.0040	<0.0079	<0.0079	<0.0079	< 0.0040	< 0.0079	< 0.012	< 0.0079	< 0.012	< 0.012	< 0.016
SB-11B	3	04/02/13	< 0.0042	< 0.0085	<0.0085	< 0.0085	< 0.0042	< 0.0085	< 0.013	< 0.0085	< 0.013	< 0.013	< 0.017
SB-13	4	04/02/13	< 0.0047	<0.0094	< 0.0094	< 0.0094	< 0.0047	< 0.0094	< 0.014	< 0.0094	< 0.014	< 0.014	< 0.019
SB-15	4	04/02/13	< 0.0043	< 0.0087	<0.0087	< 0.0087	< 0.0043	< 0.0087	< 0.013	< 0.0087	< 0.013	< 0.013	< 0.017
SB-16	5	04/02/13	< 0.0040	< 0.0080	<0.0080	< 0.0080	< 0.0040	< 0.0080	< 0.012	< 0.0080	< 0.012	< 0.012	< 0.016
SB-17	4	04/03/13	< 0.0040	< 0.0080	< 0.0080	< 0.0080	< 0.0040	< 0.0080	< 0.012	< 0.0080	< 0.012	< 0.012	< 0.016
SB-18	5	04/03/13	< 0.0041	< 0.0082	< 0.0082	< 0.0082	< 0.0041	< 0.0082	< 0.012	< 0.0082	< 0.012	< 0.012	< 0.016
SB-19	5	04/03/13	< 0.0049	< 0.0098	< 0.0098	< 0.0098	< 0.0049	< 0.0098	< 0.015	< 0.0098	< 0.015	< 0.015	< 0.020
	IHSB PSRG		70	12	11	9.8	9.8	2.3	1.24	2.6	4.1	4.5	3.1

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.

Table 2(1): Analytical Data for Soil (User Specified Chemicals)

ADT 2(2)

DSCA ID No.: DC650013

DSCAID	10 DC03	0015										
mple ID	pth et bgs]	mpling Date (mm/dd/yy)	Acetone	Methyl Ethyl Ketone (2- Butanone)	Acenaphthene (SVOC)	Dibenzofuran (SVOC)	Fluorene (SVOC)	Phenanthrene (SVOC)	1-Methylnaphthalene (SVOC)	2-Methylnaphthalene (SVOC)	Naphthalene (SVOC)	Bis(2-Ethylhexyl)phthalate (SVOC)
Sa	De	Sa					[mg	/kg]	•			
(T) SB-1*	12.5 - 14	01/03/12	< 0.0926	< 0.0926	< 0.383	< 0.383	< 0.383	<0.383	< 0.383	< 0.383	< 0.383	< 0.383
(T) SB-2*	10 - 12.5	01/03/12	<21.20	<21.20	<1.850	<1.850	<1.850	<1.850	2.85	6.39	6.67	<1.850
(T) SB-3*	5 - 7.5	01/03/12	< 0.106	< 0.106	< 0.356	< 0.356	< 0.356	<0.356	< 0.356	< 0.356	< 0.356	< 0.356
(T) SB-4*	12.5 - 14	01/03/12	< 0.0967	< 0.0967	< 0.385	< 0.385	<0.385	<0.385	< 0.385	< 0.385	< 0.385	< 0.385
(T) North*	7.5 - 9	02/02/12	< 0.059	< 0.012	NA	NA	NA	NA	NA	NA	NA	NA
(T) South	0 - 2.5	02/02/12	< 0.058	< 0.012	NA	NA	NA	NA	NA	NA	NA	NA
(T) East	0 - 2.5	02/02/12	< 0.057	< 0.011	NA	NA	NA	NA	NA	NA	NA	NA
(T) West*	5 - 7.5	02/02/12	<0.58	< 0.012	NA	NA	NA	NA	NA	NA	NA	NA
(T) B-1	2.5 - 5	02/02/12	<2.7	<0.54	NA	NA	NA	NA	NA	NA	NA	NA
SB-1	3	04/02/13	0.20	0.016 J	< 0.37	< <u>0.37</u>	<0.37	< 0.37	NA	< 0.37	< 0.37	< 0.37
SB-2	4	04/02/13	<1.2	<1.2	1.8 J	1.1 J	3.7 J	7.2	NA	21	2.4 J	2.3 J
SB-3	5	04/02/13	< 0.017	< 0.017	< 0.37	< 0.37	< 0.37	< 0.37	NA	< 0.37	< 0.37	< 0.37
SB-4	4	04/02/13	< 0.036	< 0.036	<3.8	<3.8	<3.8	<3.8	NA	<3.8	<3.8	<3.8
SB-5	5	04/02/13	< 0.030	< 0.030	<0.44	<0.44	< 0.44	< 0.44	NA	< 0.44	< 0.44	< 0.44
SB-6*	7	04/02/13	< 0.023	< 0.023	<0.42	<0.42	<0.42	<0.42	NA	< 0.42	<0.42	< 0.42
SB-7*	8	04/02/13	< 0.024	< 0.024	< 0.39	< 0.39	< 0.39	< 0.39	NA	< 0.39	< 0.39	< 0.39
SB-9	5	04/02/13	<0.018	<0.018	<0.36	< 0.36	< 0.36	< 0.36	NA	< 0.36	< 0.36	< 0.36
SB-10B	5	04/03/13	< 0.016	< 0.016	<2.0	<2.0	<2.0	<2.0	NA	<2.0	<2.0	<2.0
SB-11B	3	04/02/13	0.018	< 0.017	<2.0	<2.0	<2.0	<2.0	NA	<2.0	<2.0	<2.0
SB-13	4	04/02/13	0.020	<0.019	<1.7	<1.7	<1.7	<1.7	NA	<1.7	<1.7	<1.7
SB-15	4	04/02/13	< 0.017	<0.017	<4.2	<4.2	<4.2	<4.2	NA	<4.2	<4.2	<4.2
SB-16	5	04/02/13	< 0.016	<0.016	< 0.38	< 0.38	< 0.38	< 0.38	NA	< 0.38	< 0.38	< 0.38
SB-17	4	04/03/13	< 0.016	< 0.016	< 0.35	< 0.35	< 0.35	< 0.35	NA	< 0.35	< 0.35	< 0.35
SB-18	5	04/03/13	0.051	< 0.016	<4.1	<4.1	<4.1	<4.1	NA	<4.1	<4.1	<4.1
SB-19	5	04/03/13	< 0.020	< 0.020	<3.6	<3.6	<3.6	<3.6	NA	<3.6	<3.6	<3.6
	IHSB PSRG		2.5	1.7	16	10	110	134	0.11	3.1	0.39	14

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.

Table 3: Analytical Data for Sub-slab Gas

DSCA ID	DSCA ID No.: DC650013																		
ple ID	th [inches bgs]	b Thickness [inches]	npling Duration ¹	npling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Isopropylbenzene (cumene)	n-Propylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene
San	Dep	Slal	San	San							[µg/	/m ³]							
SPMP-1	3	4	G	7/26/18	100	<20	29	NA	<27	<34	NA	<40	<27	<13	62	<25	<25	<25	<25
SPMP-2	3	4	G	7/26/18	36	<4.0	58	NA	<5.3	9.9	NA	<8.0	<5.5	<2.6	170	<5.0	<5.0	12	<5.0
SPMP-3	3	4	G	7/26/18	530	<2,500	<2,500	NA	<500	<500	NA	<2,500	<500	<250	<2,500	<2,500	<2,500	<2,500	<2,500
Non-Residential Vapor Intrusion Screening Levels ²			1,600	NE	4,900	47,000	260	3,500	440,000	NE	180	2,800	8,800	35,000	88,000	5,300	5,300		

¹ Indicate "G" for grab sample or for longer samples indicate the number of hours followed by "h".

 $\mu g/m^3 =$ Micrograms per cubic meter

NA = Not analyzed

<X = Below laboratory reporting limit of X

NE = Not established

² North Carolina Department of Environmental Quality (February 2018)

ADT 3

Table 4: /	Fable 4: Analytical Data for Soil Gas ADT 4													
DSCA ID	DSCA ID No.: DC650013													
nple ID	pth ct bgs]	nple Duration ¹	npling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)
San	De _l	San	San						$[\mu g/m^3]$					
NS-1	7	0.33h	04/03/13	40	< 0.40	130	< 0.36	2.1	1.4	560	< 0.40	< 0.54	1.6	580
NS-2	7	0.55h	04/03/13	14	< 0.40	6.8	< 0.36	2.2	1.0	33	< 0.40	< 0.54	0.31	25.2
	DWM Non- Soil Gas Scr	-Residential eening Leve	1	1,600	NE	4,910	47,000	260	3,500	440,000	NE	180	2,800	8,800
¹ Indicate "C	3" for grab sa	mple or for l	onger sample	es indicate th	e number of	hours follow	ed by "h".							

Table 4(1): Analytical Data for Soil Gas														ADT 4(1)			
DSCA ID	SCA ID No.: DC650013																
aple ID	oth :t bgs]	nple Duration ¹	npling Date (mm/dd/yy)	1,1,2-Trichloro-1,2,2- trifluoroethane (Freon 113)	1,4-Dichlorobenzene	1,3-Butadiene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	2-Butanone (MEK)	2-Hexanone (MBK)	Trichlorofluoromethane (Freon 11)	Tetrahydrofuran	Styrene	Propene	Methylene Chloride	Isopropanol	Hexane
San	Def [fee	San	San							[µg	/m ³]						
NS-1	7	0.33h	04/03/13	0.81	< 0.60	1.8	46	150	9.7	<0.41	13	2.3	2.4	56	3.3	190	69
NS-2	7	0.55h	04/03/13	0.51	0.24	45	6.7	25	27	8.7	43	< 0.29	2.3	540	2.8	220	34
	DWM Non- Soil Gas Scr	Residential eening Leve	1	440,000	1,100	180	5,300	5,300	440,000	2,600	NE	180,000	88,000	260,000	53,000	18,000	61,000
¹ Indicate "C	3" for grab sa	mple or for l	onger sample	es indicate th	e number of	hours follow	ed by "h".										

Table 4(2	2): Analytic	cal Data fo	or Soil Gas	6													ADT 4(2)
DSCA ID	No.: DO	C650013															
aple ID	oth :t bgs]	aple Duration ¹	npling Date (mm/dd/yy)	Heptane	Ethyl Acetate	Ethanol	Dichlorodifluoromethane (Freon 12)	Carbon Disulfide	4-Ethyltoluene	4-Methyl-2-pentanone (MIBK)	Acetone	Cyclohexane	Carbon Tetrachloride	Chlorobenzene	Chloroform	Chloromethane	Helium
San	Dep [fee	San	San							$[\mu g/m^3]$							[µg/L]
NS-1	7	0.33h	04/03/13	91	40	160	2.3	1.1	54	<0.41	140	4.5	0.54	< 0.46	8.1	2.2	1,308.79
NS-2	7	0.55h	04/03/13	19	31	82	1.6	11	5.4	17	210	1.4	< 0.63	0.37	0.66	1.2	1,308.79
	DWM Non- Soil Gas Scr	-Residential eening Leve	1	35,000	NES	NE	8,800	61,000	NE	260,000	2,700,000	530,000	2,000	4,400	530	7,900	NE
¹ Indicate "O	3" for grab sa	mple or for l	onger sample	es indicate th	e number of	hours follow	ed by "h".										

Table 6: Monitorin	Fable 6: Monitoring Well Construction Data													
DSCA ID No.: D	C650013													
Well ID	Date Installed (mm/dd/yy)	Number of Samples	Well Depth [feet]	Well Diameter [inch]	Screen Interval [feet]	Status (Active/Inactive)								
MW-1	10/15/13	4	18	1	8-18	Active								
MW-2	10/15/13	4	18	1	8-18	Active								
MW-3	10/15/13	4	17	1	7-17	Active								
MW-4	10/15/13	4	17	1	7-17	Active								
MW-5	10/15/13	4	14	2	4-14	Active								
Table 7: Groundwater Elevation Data ADT 7														
---	-----------------------------	-------------------------	------------------------------	------------------------------------	-----------------------------	--------------------------	---	--	--					
DSCA ID No.: DC650013														
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	TOC Elevation [feet]	Depth to Water [feet bgs]	Groundwater Elevation [feet]	Depth to NAPL [feet bgs]	NAPL Thickness [feet]	Corrected* Groundwater Elevation [feet]							
	10/16/13		9.55	85.49	NA	NA	NA							
MW-1	09/17/14	95.04	7.21	87.83	NA	NA	NA							
	12/09/14	,	9.38	85.66	NA	NA	NA							
	03/10/15		7.95	87.09	NA	NA	NA							
	10/16/13		8.91	85.65	NA	NA	NA							
MW-2	09/17/14	94 56	6.53	88.03	NA	NA	NA							
101 00 -22	12/09/14	94.50	8.67	85.89	NA	NA	NA							
	03/10/15		7.25	87.31	NA	NA	NA							
	10/16/13		8.90	85.54	NA	NA	NA							
MW-3	09/17/14	94.44	6.55	87.89	NA	NA	NA							
101 00 -5	12/09/14	77.77	8.69	85.75	NA	NA	NA							
	03/10/15		7.26	87.18	NA	NA	NA							
	10/16/13		9.32	85.37	NA	NA	NA							
MW 4	09/17/14	94.69	6.90	87.79	NA	NA	NA							
101 00 -4	12/09/14	94.09	9.11	85.58	NA	NA	NA							
	03/10/15		7.67	87.02	NA	NA	NA							
	10/16/13		7.79	84.81	NA	NA	NA							
MW 5	09/17/14	02.60	5.28	87.32	NA	NA	NA							
IVI VV - 3	12/09/14	92.00	7.42	85.18	NA	NA	NA							
	03/10/15		5.97	86.63	NA	NA	NA							

DSCA ID No.:	DC6500)13										
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)
NC 2L Stan	dard	0.001	0.07	0.6	0.02	0.006	0.001	0.6	0.1	0.003	0.00003	0.5
(T) GW-1	1/3/12	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003
(T) GW-2	1/3/12	0.0021	< 0.001	0.285	< 0.001	0.0734	< 0.001	0.0039	< 0.001	< 0.001	< 0.001	0.729
(T) GW-3	1/3/12	0.0057	< 0.001	0.0702	< 0.001	0.0151	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003
(T) GW-4	1/3/12	0.0874	< 0.001	0.657	< 0.001	0.0841	< 0.001	0.0012	< 0.001	< 0.001	< 0.001	0.2545
GW-1	4/3/13	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
GW-2	4/3/13	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
GW-3	4/3/13	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
GW-4	4/3/13	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
GW-5	4/3/13	< 0.00050	< 0.00050	0.0024	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
GW-6	4/3/13	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
TMW-5/GW-7	4/3/13	< 0.00050	< 0.00050	<0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
TMW-3/GW-8	4/3/13	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
TMW-2/GW-9	4/3/13	0.00056	< 0.00050	0.036	< 0.00050	0.0089	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
TMW-1/GW-10	4/3/13	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
TMW-4/GW-11	4/3/13	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015

ADT 8

ADT 8

DSCA ID No.:	DC6500	13										
oundwater Sampling Point	npling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)
Gre	Saı						[mg/L]					
NC 2L Stan	dard	0.001	0.07	0.6	0.02	0.006	0.001	0.6	0.1	0.003	0.00003	0.5
	10/15/13	0.00053	< 0.00050	0.0063	< 0.00050	0.0021	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.0063
MW-1	9/17/14	0.0014	< 0.00050	0.038	< 0.00050	0.0019	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
101 00 1	12/9/14	0.0011	< 0.00050	0.0062	< 0.00050	0.00099 J	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	3/10/15	0.0039	< 0.00050	0.076	< 0.00050	0.0015	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.003
	10/15/13	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.001	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.003
MW-2	9/17/14	0.00063	< 0.00050	< 0.00050	< 0.00050	0.00078 J	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
141 14 - 2	12/9/14	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	3/10/15	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	10/15/13	0.18	< 0.0025	2.6	< 0.0025	0.56	< 0.0025	0.0058	< 0.0025	< 0.0025	< 0.0025	2.3
MW-3	9/17/14	0.13	< 0.0025	2.7	<0.0025	0.74	< 0.0025	0.0054	< 0.0025	< 0.0025	< 0.0025	1.82
141 44 - 5	12/9/14	0.24	< 0.0025	3.8	< 0.0025	0.8	< 0.0025	0.008	< 0.0025	< 0.0025	< 0.0025	2.4
	3/10/15	0.18	< 0.0025	2.7	< 0.0025	0.43	< 0.0025	0.005	< 0.0025	< 0.0025	< 0.0025	1.712
	10/15/13	< 0.00050	< 0.00050	0.018	<0.00050	0.0054	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.016
MW-4	9/17/14	< 0.00050	< 0.00050	<0.00050	< 0.00050	0.00072 J	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
11110	12/9/14	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	3/10/15	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	10/15/13	< 0.00050	< 0.00050	0.0021	< 0.00050	0.00088 J	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.002 J
MW-5	9/17/14	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.00055 J	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
MW-5	12/9/14	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015
	3/10/15	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0015

DSCA ID No.:	DC6500)13										
oundwater Sampling Point	mpling Date (mm/dd/yy)	Acetone	Chloroform	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	sec-Butylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m,p-Xylenes	4-Isopropyltoluene	o-Xylene
G NC 21 Stan	Nord	6	0.07	0.07	0.07	0.07	[mg/L]	0.4	0.4	0.5	0.025	0.5
(T) GW-1	1/2/12	0 <0.025	<0.001	0.07	0.07	0.07	0.07	0.4	0.4	0.002	0.025	U.5
(T) CW 2	1/3/12	<0.025	< 0.001	NA	NA	NA	NA	NA	NA	<0.002	NA	< 0.001
(I) Gw-2	1/3/12	< 0.025	< 0.001	NA	NA	NA	NA	NA	NA	0.583	NA	0.146
(T) GW-3	1/3/12	< 0.025	< 0.001	NA	NA	NA	NA	NA	NA	< 0.002	NA	< 0.001
(T) GW-4	1/3/12	< 0.025	< 0.001	NA	NA	NA	NA	NA	NA	0.235	NA	0.0195
GW-1	4/3/13	< 0.0050	< 0.00050	< 0.00050	< 0.0010	<0.00050	<0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
GW-2	4/3/13	< 0.0050	0.0007	< 0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
GW-3	4/3/13	< 0.0050	< 0.00050	< 0.00050	<0.0010	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
GW-4	4/3/13	0.0082	< 0.00050	<0.00050	<0.0010	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
GW-5	4/3/13	< 0.0050	< 0.00050	0.0031	0.0033	0.0056	0.0026	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
GW-6	4/3/13	< 0.0050	< 0.00050	<0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
TMW-5/GW-7	4/3/13	< 0.0050	<0.00050	<0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
TMW-3/GW-8	4/3/13	0.0031 J	< 0.00050	<0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
TMW-2/GW-9	4/3/13	0.0043 J	< 0.00050	0.0099	0.0016	0.014	0.002	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
TMW-1/GW-10	4/3/13	0.0040 J	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050
TMW-4/GW-11	4/3/13	< 0.0050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.001	< 0.00050	< 0.00050

ADT 8 (1)

DSCA ID No.:	DC6500	13										
oundwater Sampling Point	npling Date (mm/dd/yy)	Acetone	Chloroform	Isopropylbenzene (Cumene)	n-Butylbenzene	n-Propylbenzene	sec-Butylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m,p-Xylenes	4-Isopropyltoluene	o-Xylene
Gr	Sa						[mg/L]					
NC 2L Stan	dard	6	0.07	0.07	0.07	0.07	0.07	0.4	0.4	0.5	0.025	0.5
	10/15/13	< 0.0050	< 0.00050	< 0.00050	< 0.0010	0.0012	<0.00050	0.005	0.0012	0.0063	< 0.00050	< 0.00050
MW-1	9/17/14	< 0.0050	< 0.0050	0.0056	0.0017	0.01	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	12/9/14	< 0.0050	< 0.00050	0.0036	< 0.0010	0.001	0.0018	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	3/10/15	< 0.0050	< 0.00050	0.018	0.0037	0.017	< 0.00050	< 0.00050	< 0.00050	0.003	< 0.00050	< 0.00050
	10/15/13	< 0.0050	< 0.00050	< 0.00050	< 0.0010	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
MW-2	9/17/14	< 0.0050	< 0.0050	0.0011	< 0.0010	0.0019	0.00052	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
101 00 2	12/9/14	< 0.0050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	3/10/15	< 0.0050	< 0.00050	< 0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	10/15/13	< 0.025	< 0.0025	0.13	0.017	0.27	0.011	1.2	0.26	2.3	0.004	0.02
MW-3	9/17/14	< 0.025	< 0.025	0.17	0.027	0.36	0.019	2.1	0.46	1.8	0.0095	0.02
11111-5	12/9/14	< 0.025	< 0.0025	0.17	0.017	0.24	0.018	2.4	0.54	2.4	0.01	0.017
	3/10/15	< 0.025	< 0.0025	0.14	0.017	0.28	0.013	1.7	0.29	1.7	0.0065	0.012
	10/15/13	< 0.0050	< 0.00050	0.0013	<0.0010	0.0034	< 0.00050	0.011	0.0024	0.016	< 0.00050	< 0.00050
MW-4	9/17/14	< 0.0050	< 0.0050	<0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
101 00 -4	12/9/14	< 0.0050	< 0.00050	<0.00050	<0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	3/10/15	< 0.0050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	10/15/13	< 0.0050	< 0.00050	< 0.00050	< 0.0010	0.00052	< 0.00050	0.002	0.00055	0.002	< 0.00050	< 0.00050
MW-5	9/17/14	< 0.0050	< 0.0050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
101 00 -5	12/9/14	< 0.0050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050
	3/10/15	< 0.0050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0010	< 0.00050	< 0.00050

DSCA ID No.: DC650013

DSCA ID NO.:	DC0500)15								
oundwater Sampling Point	umpling Date (mm/dd/yy)	1-Methylnaphthalene (SVOC)	2-Methylnaphthalene (SVOC)	Naphthalene (SVOC)	Acenaphthylene (SVOC)	C5-C8 Aliphatics (VPH)	C9-C12 Aliphatics (VPH)	C9-C10 Aromatics (VPH)	C9-C18 Aliphatics (EPH)	C11-C22 Aromatics (EPH)
UC 21 Stor	Š.	0.001	0.02	0.000	0.2	[mg/L]	0.7	0.2	0.7	0.2
(T) GW-1	1/2/12	0.001	0.03	0.006	0.2	0.4	0./	0.2	0.7	0.2
	1/3/12	<0.0111	<0.0111	<0.0111	<0.0111	NA	NA	NA	NA	NA
(1) GW-2	1/3/12	< 0.0111	0.0146	0.0218	< 0.0111	NA	NA	NA	NA	NA
(T) GW-3	1/3/12	< 0.0111	< 0.0111	< 0.0111	<0.0111	NA	NA	NA	NA	NA
(T) GW-4	1/3/12	<0.0111	<0.0111	0.0301	<0.0111	NA	NA	NA	NA	NA
GW-1	4/3/13	NA	< 0.010	< 0.010	<0.010	NA	NA	NA	NA	NA
GW-2	4/3/13	NA	< 0.010	<0.010	<0.010	NA	NA	NA	NA	NA
GW-3	4/3/13	NA	< 0.010	<0.010	<0.010	NA	NA	NA	NA	NA
GW-4	4/3/13	NA	<0.010	<0.010	<0.010	NA	NA	NA	NA	NA
GW-5	4/3/13	NA	<0.010	<0.010	< 0.010	NA	NA	NA	NA	NA
GW-6	4/3/13	NA	<0.010	<0.010	< 0.010	NA	NA	NA	NA	NA
TMW-5/GW-7	4/3/13	NA	<0.010	<0.010	< 0.010	NA	NA	NA	NA	NA
TMW-3/GW-8	4/3/13	NA	<0.010	<0.010	< 0.010	NA	NA	NA	NA	NA
TMW-2/GW-9	4/3/13	NA	< 0.010	< 0.010	< 0.010	NA	NA	NA	NA	NA
TMW-1/GW-10	4/3/13	NA	< 0.010	< 0.010	< 0.010	NA	NA	NA	NA	NA
TMW-4/GW-11	4/3/13	NA	< 0.010	< 0.010	< 0.010	NA	NA	NA	NA	NA

DSCA ID No.: DC650013

DSCA ID NO.:	DC6500	113								
broundwater Sampling Point	ampling Date (mm/dd/yy)	1-Methylnaphthalene (SVOC)	2-Methylnaphthalene (SVOC)	Naphthalene (SVOC)	Acenaphthylene (SVOC)	C5-C8 Aliphatics (VPH)	C9-C12 Aliphatics (VPH)	C9-C10 Aromatics (VPH)	C9-C18 Aliphatics (EPH)	C11-C22 Aromatics (EPH)
NC 2L Star	idard	0.001	0.03	0.006	0.2	0.4	0.7	0.2	0.7	0.2
	10/15/13	< 0.01	< 0.01	< 0.01	< 0.01	0.0016 J	0.053	0.015 J	< 0.100	< 0.100
N 6337-1	9/17/14	0.0044 J	< 0.01	< 0.011	< 0.011	0.03 J	0.22	0.21	< 0.100	< 0.100
IVI W - 1	12/9/14	< 0.010	< 0.01	< 0.01	< 0.01	0.05	0.16	0.21	< 0.10	0.11
	3/10/15	0.0075 J	< 0.01	< 0.01	< 0.01	0.12	0.38	0.42	< 0.100	0.19
	10/15/13	< 0.01	< 0.01	< 0.01	<0.01	< 0.050	0.0095 J	< 0.050	< 0.100	< 0.100
MW 2	9/17/14	< 0.01	< 0.01	< 0.01	<0.01	0.018 J	0.051	0.012 J	< 0.100	< 0.100
1 v1 vv - 2	12/9/14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10
	3/10/15	< 0.01	< 0.01	<0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.100	< 0.100
	10/15/13	0.063	0.11	0.44	0.0031 J	1.8	0.51	4	0.14	0.5
MW-3	9/17/14	0.06	0.1	0.41	< 0.01	1.6	1.9	6.1	< 0.100	< 0.100
1111 5	12/9/14	0.062	0.12	0.46	< 0.010	2.2	2.1	6.2	0.053 J	0.83
	3/10/15	0.039	0.071	0.2	< 0.010	1.2	5.4	2.9	0.028 J	0.52
	10/15/13	< 0.01	< 0.01	0.0031	< 0.01	< 0.050	0.13	0.062	< 0.100	< 0.100
MW-4	9/17/14	< 0.01	< 0.01	< 0.011	< 0.011	< 0.050	< 0.050	< 0.050	< 0.100	< 0.100
141 44 -4	12/9/14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10
	3/10/15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.100	< 0.100
	10/15/13	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	0.030 J	0.0078 J	< 0.100	< 0.100
MW-5	9/17/14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.100	< 0.100
11111-5	12/9/14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.10	< 0.10
	3/10/15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.050	< 0.050	< 0.050	< 0.100	< 0.100

APPENDIX B

GSI MANN-KENDALL TOOLKIT DOCUMENTATION

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Creared Methodology 2007, 2007

Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., GSI Environmental Inc., www.gsi-net.com

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

APPENDIX C

LEVEL 1 ECOLOGICAL RISK ASSESSMENT CHECKLISTS

Appendix C Ecological Risk Assessment – Level 1 Winter Park Cleaners 1437 South College Road Wilmington, New Hanover County, NC DSCA Site ID: DC650013

Checklist A

1. Are there navigable water bodies or tributaries to a navigable water body on or within the one-half mile of the site?

Based upon the United State Geological Survey (USGS), Wilmington Quadrangle Topographic Map and the United States Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI), two tributaries to Hewletts Creek are within a half mile radius of the site. A riverine intermittent streambed with seasonal flooding is located approximately 1,584 feet southwest of the site, and a semi-permanently flooded riverine system is located approximately 1,056 feet northeast of the site. The section of Hewletts Creek downgradient from the site is an estuarine and marine deepwater habitat and flows into the Atlantic Ocean. See the topographic map in **Figure 1** and the USFWS NWI map in **Figure 2**.

2. Are there any water bodies anywhere on or within the one-half mile of the site?

Based on the USGS map (Figure 1) and the USFWS NWI map (Figure 2), two tributaries that drain in to Hewletts Creek, which drains to the Atlantic Ocean are located within one-half mile of the site. In addition, three fresh water ponds are located northwest, southwest, and east of the site.

3. Are there any wetland areas such as marshes or swamps on or within one-half mile of the site?

Based on the USFWS Wetland map (Figure 2), within one-half mile of the site there is a riverine intermittent streambed with seasonal flooding located southwest of the site, a semipermanently flooded riverine located northeast of the site, and three fresh water ponds located northwest, southwest, and east of the site.

4. Are there any sensitive environmental areas on or within one-half mile of the site?

According to the North Carolina Natural Heritage Database, there are no significant natural heritage areas within one-half mile of the site. ATC also reviewed the USFWS online database, and no critical habitats or significant natural areas were found within one-half mile of the site. However, two tributaries to Hewletts Creek, which ultimately drains in to the Atlantic Ocean are located approximately 1,584 feet southwest and 1,056 feet northeast of the site. These could be considered sensitive environments. Additionally, ATC consulted with the North Carolina State Historic Preservation Office to determine if any archaeological sites or historical sites were located within one-half mile of the site. No archaeological sites were found within one-half mile. No historic places were listed in the National Register of Historic Places within one-half mile of the site, but according to Natural Heritage Program

website the nearby Winter Park School (NH0619), located 1,000 feet east, is eligible for listing.

5. Are there any areas on or within one-half mile of the site owned or used by local tribes?

Based on site observations and the North Carolina Department of Cultural Resources (NCDCR), no tribal artifacts or lands have been identified on or within one-half mile of the site. The Native American Consultation Database maintained by the National Park Service did not indicate any tribal areas are located within a one-half mile radius of the site.

A response from the NCDCR is included in Attachment 4.

6. Are there any habitat, foraging area or refuge by rare, threatened, endangered, candidate and/or proposed species (plants or animals), or any otherwise protected species on or within one-half mile of the site?

According to the North Carolina Natural Heritage Database, there is no habitat, foraging area, or refuge utilized by rare, threatened, endangered, candidate and/or proposed species (plants and animals), or any otherwise protected species on or within one-half mile of the site. This area is heavily developed with commercial properties.

Based on the USFWS online databases, there are no wilderness areas or wildlife refuges within one-half mile of the site.

7. Are there any breeding, roosting or feeding areas by migratory bird species on or within onehalf mile of the site?

ATC obtained a list of birds that have been identified in New Hanover County from www.carolinabirdclub.org (see Attachment 1). The list includes several migratory bird species. The National Audubon Society has identified 96 Important Bird Areas (IBAs) in North Carolina, comprising 4.9 million acres (http://nc.audubon.org/conservation/important-bird-areas). IBAs are defined as "places that provide essential habitat for one or more species of birds at some time during their annual cycle of breeding, migrating or wintering". Four IBAs are located in New Hanover County: Ferry Slip Island, Masonboro Island, North Pelican Island, and Onslow Bay. The presence of migratory bird habitat has been identified at all four IBAs. However, the IBAs are beyond 0.5 miles from the site. The Atlantic Flyway is one of four principal bird migration pathways in the United States, encompassing all of the states on the eastern coast, including North Carolina. Accordingly, it is possible that migratory birds pass over the site and the area within 0.5 miles of the site during their migration, and may roost/feed during their migration.

8. Are there any ecologically, recreationally, or commercially important species on or within one-half mile of the site?

The site is located in an urban environment with mostly commercial, retail and residential properties surrounding the property. It is unlikely that recreational or commercially important species are within the developed areas within one-half mile of the site. However, two tributaries to Hewletts Creek, which ultimately drains in to the Atlantic Ocean, are located

within one-half mile of the site, and it is possible that ecologically important species may exist within these sensitive environments.

9. Are there any threatened and/or endangered species (plant or animal) on or within one-half mile of the site?

ATC reviewed the USFWS online species list. Several endangered and threatened species were identified within New Hanover County. Examples of endangered and threatened species identified within New Hanover County include the Red-Cockaded Woodpecker, Rough-leaved loosestrife, Golden Sedge, Northern Long-Eared Bat, Loggerhead Sea Turtle, and Magnificent Ramshorn. The USFWS list of endangered species, threatened species, federal species of concern and candidate species in New Hanover County is included in **Attachment 2**.

ATC also reviewed the North Carolina Heritage Program Wilmington USGS Topographic Quadrangle species list. Species identified include the Mabee's Salamander, American Alligator, Eastern Diamondback Rattlesnake, and West Indian Manatee. Refer to Attachment 3 for the complete list of species.

The majority of the area within one-half mile of the site consists of developed commercial properties. It is unlikely that the above-referenced species are located on these properties.

Checklist B

1A. Can chemicals associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes. The primary constituents of concern at the site, benzene, ethylbenzene, naphthalene, xylenes, and additional total petroleum hydrocarbons, are leachable to groundwater ranging from low to high rates depending upon the constituent according to the Agency for Toxic Substances and Disease Registry (ATSDR). These constituents were also confirmed to be present in the groundwater at the site.

1B. Are chemicals associated with the site mobile in groundwater?

Yes. The primary constituents of concern at the site, benzene, ethylbenzene, naphthalene, xylenes, and additional total petroleum hydrocarbons, are considered to be mobile in groundwater ranging from low to high rates depending upon the constituent according to the ATSDR. These constituents were also confirmed to be present in the groundwater at the site.

1C. Does groundwater from the site discharge to ecological receptor habitat?

The primary ecological receptor habitats identified in the site vicinity are the two tributaries flowing towards Hewletts Creek within one-half mile of the site. Groundwater does not flow towards these surface water bodies. Also, sampling of the groundwater monitoring well located furthest downgradient, MW-5, showed low concentrations of contaminants below respective Title 15A NCAC 02L .0202 Groundwater Quality Standards (2L Standards). These ecological receptor habitats are not a significant concern as the impacted groundwater does not appear likely to discharge to these ecological receptor habitat.

1. Could chemicals associated with the site reach ecological receptors through groundwater?

The primary ecological receptor habitats identified in the site vicinity are the two tributaries flowing towards Hewletts Creek within one-half mile of the site. Groundwater flows away from these surface water bodies. Also, sampling of the groundwater monitoring well located furthest downgradient, MW-5, showed low concentrations of contaminants below respective 2L standards. Based on these data, there is no potential impact to these areas.

2A. Are chemicals present in surface soils on the site?

No. Chemicals are not present in surface soils on the site. The shallowest soil impacts are identified at 2.5 feet below ground surface.

2B. Can chemicals be leached from or be transported by erosion of surface soils on the site?

Yes. Hydrocarbon constituents can be leached from the soil. However, the area of impacted soil is mostly covered with asphalt and concrete and erosion is unlikely.

2. Could chemicals associated with the site reach ecological receptors through runoff or erosion?

As discussed above, ATC considers the potential for erosion to be low. In addition, since the subject property is covered by commercial development, the potential for ecological receptors to be present is low.

3A. Are chemicals present in surface soil or on the surface of the ground?

No. Chemicals are not present in surface soils on the site. The shallowest soil impacts are identified at 2.5 feet below ground surface.

3B. Are potential ecological receptors on the site?

No. There is no evidence of ecological receptors at the site. Also, the site is mostly covered with asphalt and concrete, so ecological receptors appear unlikely to be present in the area.

3. Could chemicals associated with the site reach ecological receptors through direct contact?

As discussed above, ecological receptors are unlikely to be present at the site. Furthermore, chemicals are not present in surface soils as the shallowest soil impacts are identified at 2.5 feet below ground surface.

4A. Are chemicals on the site volatile?

Yes. Hydrocarbon constituents are considered volatile organic compounds.

4B. Could chemicals on the site be transported in air as dust or particulate matter?

No. The soil impact is located under an area paved with asphalt and concrete. It is unlikely that chemicals on the site can be transported in air or as particulate matter.

4. Could chemicals associated with the site reach ecological receptors through inhalation of volatilized chemicals or adhered chemicals to dust in ambient air or in subsurface burrows?

As discussed above, significant erosion of impacted soils or significant volatilization from impacted soil appears unlikely.

5A. Is Non-Aqueous Phase Liquid (NAPL) present at the site?

No. NAPL has not been encountered at the site.

5B. Is NAPL migrating?

No. NAPL has not been encountered at the site.

5C. Could NAPL discharge occur where ecological receptors are found?

No. NAPL has not been encountered at the site.

5. Could chemicals associated with the site reach ecological receptors through migration of NAPL?

Not applicable as NAPL was not identified at the site.

6A. Are chemicals present in surface and shallow subsurface soils or on the surface of the ground?

Yes. Impacted shallow subsurface soils are present at the site at 2.5 feet below ground surface.

6B. Are chemicals found in soil on the site taken up by plants growing on the site?

Since shallow subsurface soils have been impacted at the site, chemicals could potentially be taken up by the plant root system. However, the property is mostly covered with asphalt, and is currently used as a parking lot. It is unlikely that chemicals will be taken up by the plant root system.

6C. Do potential ecological receptors on or near the site feed on plants (e.g., grasses, shrubs, forbs, trees, etc.) found on the site?

It is possible that migratory birds could be present in the site area. However, migratory birds are considered unlikely to be in the area on a regular basis since the site is located in an active commercial area and near busy roadways.

6D. Do chemicals found on the site bioaccumulate?

Based on published references (ATSDR), xylenes can bioaccumulate to modest levels while benzene, ethylbenzene, and naphthalene do not readily bioaccumulate.

6. Could chemicals associated with the site reach ecological receptors through direct ingestion of soil, plants, animals, or contaminants?

Based on the commercial site environment and the minimal impact or absence of bioaccumulation for the chemicals of concern, it is not anticipated that chemicals associated with the site would reach ecological receptors through direct ingestion of soil, plants, animals, or contaminants. In the case of xylenes, the ATSDR notes that bioaccumulation up the food chain is unlikely.

FIGURES

Source: My Free Topo Map

ENVIRONMENTAL · GEOTECHN BUILDING SCIENCES · MATERIALS	2725 E. Mi Raleigh, No IICAL (919) 871-0 TESTING	illbrook Road, Suite 121 C 27604)999				
PROJECT NO: DC650013						
REVIEWED BY: AW	SCALE: 1" = 1,625'	DATE: 2/12/2019				

USGS TOPOGRAPHIC MAP

WINTER PARK CLEANERS DSCA # DC650013 1437 S. COLLEGE ROAD WILMINGTON, NORTH CAROLINA

U.S. Fish and Wildlife Service National Wetlands Inventory

Wetlands

January 21, 2019

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

- rine Wetland
- Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

ATTACHMENT 1

MIGRATORY BIRD SPECIES LIST

Birds of North Carolina: their Distribution and Abundance

Birds of NC Home	Birds of North Carolina - County Listing						
Recent Records	No distinction is made between tran	nsient and resident records for a county. Th	ne majority of the records are from eBird and the Chat .				
Recent Accounts	Email Harry LeGrand with any If	you would like to submit a record for a spe	ecies that you have personally sighted in a county not listed				
County Listing	questions. for	r that species, click this <u>link</u> .					
Query Database	Search by: County List Cou	nty Map					
CBC Home	Search by: Species Spec	cies per County					
Definitive / Provisional List							
Not Established List	New Hanover - 361 species	1					
Not established list							
Formerly Accepted Species	Ducks, Geese, & Swans - 39 species	1 Black-bellied Whistling-Duck	Dendrocygna autumnalis				
NC Checklist		2 <u>Fulvous Whistling-Duck</u>	Dendrocygna bicolor				
NC Biodiversity Project		3 <u>Snow Goose</u>	Anser caerulescens				
		4 <u>Ross's Goose</u>	Anser rossii				
		5 Greater White-fronted Goose	Anser albifrons				
		6 <u>Brant</u>	Branta bernicla				
		7 <u>Canada Goose</u>	Branta canadensis				
		8 <u>Mute Swan</u>	Cygnus olor				
		9 <u>Tundra Swan</u>	Cygnus columbianus				
		10 <u>Wood Duck</u>	Aix sponsa				
		11 <u>Blue-winged Teal</u>	Spatula discors				
		12 <u>Cinnamon Teal</u>	Spatula cyanoptera				
		13 Northern Shoveler	Spatula clypeata				
		14 <u>Gadwall</u>	Mareca strepera				
		15 <u>Eurasian Wigeon</u>	Mareca penelope				
		16 American Wigeon	Mareca americana				
		17 Mallard	Anas platyrhynchos				
		18 American Black Duck	Anas rubripes				
		19 Mottled Duck	Anas fulviaula				
		20 Northern Pintail	Anas acuta				
		21 Green-winged Teal	Anas crecca				
		22 Canvasback	Avthya valisineria				
		23 Redbead	Avthya americana				
		24 Ping-pecked Duck					
		25 Greater Scaup	Authua marila				
	▼	26 Losson Scoup	Authua offinic				
		20 <u>Lesser Scaup</u>	Ayuiyd dillillis Comatoria caostabilis				
		27 <u>Nilly Elder</u>	Sullatella Speciaullis				
		28 <u>Common Elder</u>	Sumateria monissima				
		30 <u>Surr Scoter</u>	melanitta perspiciliàta				
		31 White-winged Scoter	iyielanitta tusca				
		32 <u>Black Scoter</u>	melanitta americana				
		33 Long-tailed Duck	Clangula hyemalis				
		34 Bufflehead	Bucephala albeola				
		35 <u>Common Goldeneye</u>	Bucephala clangula				
		36 Hooded Merganser	Lophodytes cucullatus				
		37 <u>Common Merganser</u>	Mergus merganser				
		38 <u>Red-breasted Merganser</u>	Mergus serrator				
		39 <u>Ruddy Duck</u>	Oxyura jamaicensis				
	New World Quails - 1 species	40 Northern Bobwhite	Colinus virginianus				
	Grouse and Allies - 1 species	41 <u>Wild Turkey</u>	Meleagris gallopavo				
	Grebes - 5 species	42 Pied-billed Grebe	Podilymbus podiceps				
		43 Horned Grebe	Podiceps auritus				

Birds of North Carolina

	Birde of Horar Garolina	
	44 Red-necked Grebe	Podiceps grisegena
	45 Eared Grebe	Podiceps nigricollis
	46 Western Grebe	Aechmophorus occidentali
Doves - 5 species	47 <u>Rock Pigeon</u>	Columba livia
	48 Eurasian Collared-Dove	Streptopelia decaocto
	49 <u>Common Ground-Dove</u>	Columbina passerina
	50 White-winged Dove	Zenaida asiatica
	51 Mourning Dove	Zenaida macroura
Cuckoos & Anis - 1 species	52 Yellow-billed Cuckoo	Coccyzus americanus
Goatsuckers - 3 species	53 <u>Common Nighthawk</u>	Chordeiles minor
	54 <u>Chuck-will's-widow</u>	Antrostomus carolinensis
	55 Eastern Whip-poor-will	Antrostomus vociferus
Swifts - 1 species	56 <u>Chimney Swift</u>	Chaetura pelagica
Hummingbirds - 3 species	57 Ruby-throated Hummingbird	Archilochus colubris
	58 Black-chinned Hummingbird	Archilochus alexandri
	59 <u>Rufous Hummingbird</u>	Selasphorus rufus
Rails, Gallinules, & Coots - 8 species	60 <u>Black Rail</u>	Laterallus jamaicensis
	61 <u>Clapper Rail</u>	Rallus crepitans
	62 <u>King Rail</u>	Rallus elegans
	63 <u>Virginia Rail</u>	Rallus limicola
	64 <u>Sora</u>	Porzana carolina
	65 <u>Purple Gallinule</u>	Porphyrio martinicus
	66 Common Gallinule	Gallinula galeata
	67 American Coot	Fulica americana
Cranes - 1 species	68 Sandhill Crane	Antigone canadensis
Stilts & Avocets - 2 species	69 <u>Black-necked Stilt</u>	Himantopus mexicanus
·	70 American Avocet	Recurvirostra americana
Oystercatchers - 1 species	71 American Oystercatcher	Haematopus palliatus
Plovers - 7 species	72 Black-bellied Plover	Pluvialis squatarola
	73 American Golden-Plover	Pluvialis dominica
	74 Snowy Plover	Charadrius nivosus
	75 Wilson's Plover	Charadrius wilsonia
	76 Semipalmated Plover	Charadrius semipalmatus
	77 Piping Plover	Charadrius melodus
	78 Killdeer	Charadrius vociferus
Sandpipers - 33 species	79 Upland Sandpiper	Bartramia longicauda
	80 Whimbrel	Numenius phaeopus
	81 Long-billed Curlew	Numenius americanus
	82 Hudsonian Godwit	Limosa haemastica
	83 Marbled Godwit	Limosa fedoa
*	84 Ruddy Turnstone	Arenaria interpres
	85 Red Knot	' Calidris canutus
	86 Ruff	Calidris pugnax
	87 Sharp-tailed Sandpiper	Calidris acuminata
	88 Stilt Sandpiper	Calidris himantopus
	89 Curlew Sandpiper	Calidris ferruginea
	90 Sanderling	Calidris alba
	91 Dunlin	Calidris alpina
	92 Purple Sandpiper	Calidris maritima
	93 Baird's Sandpiper	Calidris bairdii
	94 Least Sandpiper	Calidris minutilla
	95 White-rumped Sandpiper	Calidris fuscicollis
	96 Buff-breasted Sandniner	Calidris subruficollis
	97 Pectoral Sandniner	Calidris melanotos
	98 Seminalmated Sandniner	Calidris nusilla
	99 Western Sandniner	Calidris mauri
	100 Short-hilled Dowitcher	Limnodromus arisque
	101 Long-billed Dowitcher	Limpodromus scolopacous
	TOT LONG-DINED DOWILCHEL	Linnouronus scolopaceus

102 American Woodcock

103 Wilson's Snipe

	104 Spotted Sandpiper
	105 Solitary Sandpiper
	106 Lesser Yellowlegs
	107 Willet
	108 Greater Yellowlegs
	109 Wilson's Phalarope
	110 Pod-pockod Phalaropo
	111 Red Phalarope
	112 Courth Dalar Clura
Skuas & Jaegers - 3 species	
	113 <u>Pomarine Jaeger</u>
	114 <u>Parasitic Jaeger</u>
Auks - 4 species	115 Dovekie
	116 Thick-billed Murre
	117 <u>Razorbill</u>
	118 <u>Black Guillemot</u>
Gulls & Terns - 26 species	119 <u>Black-legged Kittiwake</u>
	120 <u>Sabine's Gull</u>
	121 Bonaparte's Gull
	122 Black-headed Gull
	123 Little Gull
	124 Laughing Gull
	125 <u>Franklin's Gull</u>
	126 Ring-billed Gull
	127 Herring Gull
	128 Iceland Gull
	129 Lesser Black-backed Gull
	130 Glaucous Gull
	131 Great Black-backed Gull
	132 Sooty Tern
	133 Bridled Tern
	134 Least Tern
	135 Gull-billed Tern
	136 Caspian Tern
	137 Black Tern
	129 Passata Tarp
	130 Common Torn
	141 Forsterle Torre
	141 Forster's Term
	142 <u>Royal Tern</u>
	143 Sandwich Tern
	144 <u>Black Skimmer</u>
I ropicbirds - 1 species	145 <u>Red-billed Tropicbird</u>
Loons - 3 species	146 <u>Red-throated Loon</u>
	147 Pacific Loon
	148 <u>Common Loon</u>
Storm-Petrels - 3 species	149 <u>Wilson's Storm-Petrel</u>
	150 White-faced Storm-Petrel
	151 Leach's Storm-Petrel
Petrels & Shearwaters - 6 species	152 <u>Northern Fulmar</u>
	153 Trindade Petrel
	154 <u>Cory's Shearwater</u>
	155 <u>Sooty Shearwater</u>
	156 Great Shearwater
	157 Audubon's Shearwater
Storks - 1 species	158 <u>Wood Stork</u>
Frigatebirds - 1 species	159 Magnificent Frigatebird

Scolopax minor Gallinago delicata Actitis macularius Tringa solitaria Tringa flavipes Tringa semipalmata Tringa melanoleuca Phalaropus tricolor Phalaropus lobatus Phalaropus fulicarius Stercorarius maccormicki Stercorarius pomarinus Stercorarius parasiticus Alle alle Uria lomvia Alca torda Cepphus grylle Rissa tridactyla Xema sabini Chroicocephalus philadelphia Chroicocephalus ridibundus Hydrocoloeus minutus Leucophaeus atricilla Leucophaeus pipixcan Larus delawarensis Larus argentatus Larus glaucoides Larus fuscus Larus hyperboreus Larus marinus Onychoprion fuscatus Onychoprion anaethetus Sternula antillarum Gelochelidon nilotica Hydroprogne caspia Chlidonias niger Sterna dougallii Sterna hirundo Sterna paradisaea Sterna forsteri Thalasseus maximus Thalasseus sandvicensis Rynchops niger Phaethon aethereus Gavia stellata Gavia pacifica Gavia immer Oceanites oceanicus Pelagodroma marina Oceanodroma leucorhoa Fulmarus glacialis Pterodroma arminjoniana Calonectris diomedea Ardenna grisea Ardenna gravis Puffinus Iherminieri Mycteria americana Fregata magnificens

Boobies & Gannets - 3 species	160 Masked Booby	Sula dactylatra
	161 <u>Brown Booby</u>	Sula leucogaster
	162 <u>Northern Gannet</u>	Morus bassanus
Cormorants - 2 species	163 Double-crested Cormorant	Phalacrocorax auritus
	164 Great Cormorant	Phalacrocorax carbo
Darters - 1 species	165 <u>Anhinga</u>	Anhinga anhinga
Pelicans - 2 species	166 American White Pelican	Pelecanus erythrorhynchos
·	167 Brown Pelican	Pelecanus occidentalis
Bitterns, Herons, & Allies - 12 species	168 American Bittern	Botaurus lentiginosus
	169 Least Bittern	Ixobrvchus exilis
	170 Great Blue Heron	Ardea herodias
	171 Great Egret	Ardea alba
	172 Snowy Egret	Egretta thula
	173 Little Blue Heron	Egretta caerulea
	174 Tricolored Heron	Egretta tricolor
	175 Reddish Faret	Egretta rufescens
	176 Cattle Egret	Bubulcus ibis
	177 Green Heron	Butorides virescens
	178 Black-crowned Night-Heron	Nycticoray pycticoray
	179 Yellow-crowned Night-Heron	Nycticolax Nycticolax
Thises & Spoonhills - 3 species	180 White This	Fudocimus albus
Thises & Shoolinille - 2 sheries	181 Closey Ibis	Plogadis falsipollus
	192 Passata Speanhill	Plegauis Taicineilus
Now World Vultures 2 species	182 Plack Vulture	Fialaica ajaja
New World Vultures - 2 species	184 Turkov Vulture	Coragyps atracus
Opprov. 1 species	184 <u>Turkey Vulture</u>	Califarites dura
Vites Engles & Hawks 11 species	105 <u>Osprey</u>	Fanulon nalidetus
Kites, Eagles, & Hawks - 11 species	180 White-tailed Kite	Elanus leucurus
	187 <u>Swallow-tailed Kite</u>	Circus hudeenius
	188 Northern Harrier	Circus nuasonius
	189 Sharp-shinned Hawk	Accipiter striatus
	190 <u>Cooper's Hawk</u>	Accipiter cooperii
	191 <u>Bald Eagle</u>	Haliaeetus leucocephalus
	192 <u>Mississippi Kite</u>	Ictinia mississippiensis
	193 <u>Red-shouldered Hawk</u>	Buteo lineatus
	194 Broad-winged Hawk	Buteo platypterus
	195 <u>Swainson's Hawk</u>	Buteo swainsoni
	196 <u>Red-tailed Hawk</u>	Buteo jamaicensis
Barn-Owls - 1 species	197 <u>Barn Owl</u>	Tyto alba
Owls - 8 species	198 Eastern Screech-Owl	Megascops asio
	199 Great Horned Owl	Bubo virginianus
	200 <u>Snowy Owl</u>	Bubo scandiacus
	201 Burrowing Owl	Athene cunicularia
	202 Barred Owl	Strix varia
	203 Long-eared Owl	Asio otus
	204 Short-eared Owl	Asio flammeus
	205 Northern Saw-whet Owl	Aegolius acadicus
Kingfishers - 1 species	206 <u>Belted Kingfisher</u>	Megaceryle alcyon
Woodpeckers - 9 species	207 Red-headed Woodpecker	Melanerpes erythrocephalus
	208 Red-bellied Woodpecker	Melanerpes carolinus
	209 <u>Yellow-bellied Sapsucker</u>	Sphyrapicus varius
	210 Downy Woodpecker	Dryobates pubescens
	211 Red-cockaded Woodpecker	Dryobates borealis
	212 Hairy Woodpecker	Dryobates villosus
	213 <u>Northern Flicker</u>	Colaptes auratus
	214 Pileated Woodpecker	Dryocopus pileatus
	215 Ivory-billed Woodpecker	Campephilus principalis
Falcons - 3 species	216 American Kestrel	Falco sparverius
	217 Merlin	Falco columbarius

http://ncbirds.carolinabirdclub.org/county_list.php?search_type=County+List

	218	Peregrine Falcon	Falco peregrinus
Tyrant Flycatchers - 12 species	219	Ash-throated Flycatcher	Myiarchus cinerascens
	220	Great Crested Flycatcher	Myiarchus crinitus
	221	Western Kingbird	Tyrannus verticalis
	222	Eastern Kingbird	Tyrannus tyrannus
	223	<u>Gray Kingbird</u>	Tyrannus dominicensis
	224	Scissor-tailed Flycatcher	Tyrannus forficatus
	225	Olive-sided Flycatcher	Contopus cooperi
	226	Eastern Wood-Pewee	Contopus virens
	227	Yellow-bellied Flycatcher	Empidonax flaviventris
	228	Acadian Elycatcher	Empidonax virescens
	229	Least Elycatcher	Empidonax minimus
	230	Eastern Phoebe	Savornis nhoehe
Shrikes - 1 species	230	Loggerhead Shrike	Lanius Iudovicianus
Viroos 7 species	221	White eved Viree	Viroo gricous
Vireos - 7 species	232	Rella Viree	Vireo ballii
	200	<u>Dell's Vileo</u> Vellow threated Virea	Vireo Delli
	234	<u>renow-throated vireo</u>	
	235	Blue-headed Vireo	Vireo solitarius
	236	Philadelphia Vireo	Vireo philadelphicus
	237	<u>Red-eyed Vireo</u>	Vireo olivaceus
	238	Black-whiskered Vireo	Vireo altiloquus
Jays, Crows, & Ravens - 3 species	239	<u>Blue Jay</u>	Cyanocitta cristata
	240	American Crow	Corvus brachyrhynchos
	241	Fish Crow	Corvus ossifragus
Swallows - 7 species	242	Purple Martin	Progne subis
	243	Tree Swallow	Tachycineta bicolor
	244	Northern Rough-winged Swallow	Stelgidopteryx serripennis
	245	Bank Swallow	Riparia riparia
	246	Cliff Swallow	Petrochelidon pyrrhonota
	247	Cave Swallow	Petrochelidon fulva
	248	Barn Swallow	Hirundo rustica
Chickadees & Titmice - 2 species	249	Carolina Chickadee	Poecile carolinensis
	250	Tufted Titmouse	Baeolophus bicolor
Nuthatches - 3 species	251	Red-breasted Nuthatch	Sitta canadensis
	252	White-breasted Nuthatch	Sitta carolinensis
	253	Brown-headed Nuthatch	Sitta pusilla
Treecreepers - 1 species	254	Brown Creeper	Certhia americana
Wrens - 5 species	255	House Wren	Troalodytes aedon
	256	Winter Wren	Troglodytes hiemalis
	257	Sedge Wren	Cistothorus platensis
•	258	Marsh Wren	Cistothorus palustris
	259	Carolina Wren	Thrvothorus Iudovicianus
Gnatcatchers - 1 species	260	Blue-gray Gnatcatcher	Poliontila caerulea
Kinglets - 2 species	260	Colden-crowned Kinglet	
Kinglets - 2 species	201	Buby crowned Kinglet	Regulus satiapa
Thrushes 7 energies	202	<u>Ruby-crowneu Kinglet</u>	Cialia cialia
Thrushes - 7 species	203		Sidild Sidils
	264	veery	Catharus fuscescens
	265	Gray-cheeked Thrush	Catharus minimus
	266	Swainson's Thrush	Catharus ustulatus
	267	Hermit Thrush	Catharus guttatus
	268	Wood Thrush	Hylocichla mustelina
	269	American Robin	Turdus migratorius
Mockingbirds & Thrashers - 3 species	270	Gray Catbird	Dumetella carolinensis
	271	Brown Thrasher	Toxostoma rufum
	272	Northern Mockingbird	Mimus polyglottos
Starlings - 1 species	273	European Starling	Sturnus vulgaris
Waxwings - 1 species	274	Cedar Waxwing	Bombycilla cedrorum
Old World Sparrows - 1 species	275	House Sparrow	Passer domesticus

Wagtails & Pipits - 1 species	276 <u>American Pipit</u>	Anthus rubescens
Cardueline Finches & Allies - 6 species	277 <u>Evening Grosbeak</u>	Coccothraustes ve
	278 House Finch	Haemorhous mexi
	279 <u>Purple Finch</u>	Haemorhous purp
	280 Red Crossbill	Loxia curvirostra
	281 <u>Pine Siskin</u>	Spinus pinus
	282 <u>American Goldfinch</u>	Spinus tristis
Longspurs & Allies - 3 species	283 <u>Lapland Longspur</u>	Calcarius lapponico
	284 Chestnut-collared Longspur	Calcarius ornatus
	285 <u>Snow Bunting</u>	Plectrophenax niva
New World Sparrows & Allies - 20 species	286 Eastern Towhee	Pipilo erythrophtha
	287 Bachman's Sparrow	Peucaea aestivalis
	288 Chipping Sparrow	Spizella passerina
	289 Clay-colored Sparrow	Spizella pallida
	290 Field Sparrow	Spizella pusilla
	291 Vesper Sparrow	Pooecetes gramine
	292 Lark Sparrow	Chondestes gramm
	293 Savannah Sparrow	Passerculus sandw
	294 Grasshopper Sparrow	Ammodramus sav
	295 Henslow's Sparrow	Centronvx henslov
	296 Seaside Sparrow	Ammosniza maritii
	297 Nelson's Sparrow	Ammosniza nelsor
	298 Saltmarsh Sparrow	Ammospiza cauda
	299 Fox Sparrow	Passerella iliaca
	300 Song Sparrow	Malosniza malodia
	301 Lincoln's Sparrow	Molospiza lincolnii
		Melospiza micomi Melospiza georgia
	202 White threated Charrow	Zapatrichia albical
	303 White crowned Sparrow	Zonotrichia laucan
	205 Dark aved Juneo	Zonounchia leucop
Valley, bysected Chet, 1 species	305 <u>Dark-eyed Junco</u>	Junco nyemans
Yellow-breasted Chat - 1 species	306 <u>Yellow-Dreasted Chat</u>	Icteria virens
Blackbirds & Orioles - 12 species	307 <u>Yellow-headed Blackbird</u>	Xantnocepnalus Xa
	308 BODOIINK	Dolichonyx oryziva
	309 Eastern Meadowlark	Sturnella magna
	310 Orchard Oriole	Icterus spurius
	311 Bullock's Oriole	Icterus bullockii
	312 Baltimore Oriole	Icterus galbula
	313 <u>Red-winged Blackbird</u>	Agelaius phoenice
	314 Shiny Cowbird	Molothrus bonarie
	315 Brown-headed Cowbird	Molothrus ater
	316 <u>Rusty Blackbird</u>	Euphagus carolinu
	317 <u>Common Grackle</u>	Quiscalus quiscula
	318 Boat-tailed Grackle	Quiscalus major
Wood-Warblers - 34 species	319 <u>Ovenbird</u>	Seiurus aurocapilla
	320 Worm-eating Warbler	Helmitheros vermi
	321 Louisiana Waterthrush	Parkesia motacilla
	322 <u>Northern Waterthrush</u>	Parkesia novebora
	323 Golden-winged Warbler	Vermivora chrysop
	324 <u>Blue-winged Warbler</u>	Vermivora cyanop
	325 Black-and-white Warbler	Mniotilta varia
	326 Prothonotary Warbler	Protonotaria citrea
	327 Swainson's Warbler	Limnothlypis swaii
	328 <u>Tennessee Warbler</u>	Oreothlypis peregi
	329 Orange-crowned Warbler	Oreothlypis celata
	330 Nashville Warbler	Oreothlypis ruficap
	331 Connecticut Warbler	Oporornis agilis
	332 <u>Mourning Warbler</u>	Geothlypis philade
	333 Common Yellowthroat	Geothlypis trichas

tes vespertinus mexicanus s purpureus ostra ponicus natus ax nivalis ophthalmus tivalis serina da lla ramineus grammacus sandwichensis ıs savannarum enslowii maritima nelsoni caudacuta аса elodia ncolnii eorgiana albicollis leucophrys alis alus xanthocephalus oryzivorus igna ius ckii ula peniceus onariensis er arolinus iiscula ajor ocapilla vermivorum tacilla veboracensis hrysoptera vanoptera ia citrea swainsonii peregrina celata ruficapilla , ilis hiladelphia

334 Hooded Warbler	
335 American Redstart	
336 <u>Cape May Warbler</u>	
337 <u>Northern Parula</u>	
338 <u>Magnolia Warbler</u>	
339 Bay-breasted Warbler	
340 <u>Blackburnian Warbler</u>	
341 <u>Yellow Warbler</u>	
342 Chestnut-sided Warbler	
343 <u>Black-throated Blue Warbler</u>	
344 <u>Palm Warbler</u>	
345 <u>Pine Warbler</u>	
346 Yellow-rumped Warbler	
347 Yellow-throated Warbler	
348 <u>Prairie Warbler</u>	
349 Black-throated Gray Warbler	
350 Black-throated Green Warbler	
351 <u>Canada Warbler</u>	,
352 <u>Wilson's Warbler</u>	
353 <u>Summer Tanager</u>	
354 <u>Scarlet Tanager</u>	
355 Western Tanager	
356 Northern Cardinal	
357 Rose-breasted Grosbeak	,
358 <u>Blue Grosbeak</u>	,
359 <u>Indigo Bunting</u>	,
360 Painted Bunting	,
361 Dickcissel	

Setophaga citrina Setophaga ruticilla Setophaga tigrina Setophaga americana Setophaga magnolia Setophaga castanea Setophaga fusca Setophaga petechia Setophaga pensylvanica Setophaga caerulescens Setophaga palmarum Setophaga pinus Setophaga coronata Setophaga dominica Setophaga discolor Setophaga nigrescens Setophaga virens Cardellina canadensis Cardellina pusilla Piranga rubra Piranga olivacea Piranga ludoviciana Cardinalis cardinalis Pheucticus ludovicianus Passerina caerulea Passerina cyanea Passerina ciris Spiza americana

Cardinals, Grosbeaks, & Allies - 9 species

ATTACHMENT 2

USFWS ENDANGERED SPECIES, THREATENED SPECIES, FEDERAL SPECIES OF CONCERN AND CANDIDATE SPECIES LIST

ECOS / Species Reports / Species By County Report

Species By County Report

The following report contains Species that are known to or are believed to occur in this county. Species with range unrefined past the state level are now excluded from this report. If you are looking for the Section 7 range (for Section 7 Consultations), please visit the <u>IPaC</u> application.

County: New Hanover, North Carolina

🕹 CSV

Need to contact a FWS field office about a species? Follow this link to find your local FWS Office.

Group	Name	Population	Status	Lead Office	Recovery Plan	Recovery Plan Action Status	Recovery Plan Stage
Birds	Red-cockaded woodpecker (<u>Picoides</u> <u>borealis</u>)	Wherever found	Endangered	Mississippi Ecological Services Field Office	Red- cockaded Woodpecker Recovery Plan, Second Revision	Implementation Progress	Final Revision 2
Birds	Piping Plover (<u>Charadrius</u> <u>melodus</u>)	[Atlantic Coast and Northern Great Plains populations] - Wherever found, except those areas where listed as endangered.	Threatened	Office of the Regional Director	Piping Plover Atlantic Coast Population Revised Recovery Plan	Implementation Progress	Final Revision 1
Birds	Piping Plover (<u>Charadrius</u> <u>melodus</u>)	[Atlantic Coast and Northern Great Plains populations] - Wherever found, except those areas where listed as endangered.	Threatened	Office of the Regional Director	Volume I: Draft Revised Recovery Plan for the Northern Great Plains Piping Plover (Charadrius melodus)	Recovery efforts in progress, but no implementation information yet to display.	Draft Revision 1

Group	Name	Population	Status	Lead Office	Recovery Plan	Recovery Plan Action Status	Recovery Plan Stage
Birds	Red knot (<u>Calidris canutus</u> <u>rufa</u>)	Wherever found	Threatened	New Jersey Ecological Services Field Office			
Flowering Plants	Cooley's meadowrue (<u>Thalictrum</u> <u>cooleyi</u>)	Wherever found	Endangered	Raleigh Ecological Services Field Office	<u>Cooley's</u> <u>Meadowrue</u>	Implementation Progress	Final
Flowering Plants	Rough-leaved loosestrife (<u>Lysimachia</u> <u>asperulaefolia</u>)	Wherever found	Endangered	Raleigh Ecological Services Field Office	<u>Rough-</u> l <u>eaved</u> Loosestrife	Implementation Progress	Final
Flowering Plants	Seabeach amaranth (<u>Amaranthus</u> <u>pumilus</u>)	Wherever found	Threatened	Raleigh Ecological Services Field Office	<u>Seabeach</u> <u>Amaranth</u>	Implementation Progress	Final
Flowering Plants	Golden sedge (<u>Carex lutea</u>)	Wherever found	Endangered	Raleigh Ecological Services Field Office	<u>Final</u> <u>Recovery</u> <u>Plan for the</u> <u>Golden</u> <u>Sedge</u> (<u>Carex</u> <u>Lutea)</u>	Implementation Progress	Final
Mammals	West Indian Manatee (<u>Trichechus</u> <u>manatus</u>)	Wherever found	Threatened	North Florida Ecological Services Field Office	Recovery Plan Puerto Rican Population of the West Indian (Antillean) Manatee	Implementation Progress	Final
Mammals	West Indian Manatee (<u>Trichechus</u> <u>manatus</u>)	Wherever found	Threatened	North Florida Ecological Services Field Office	<u>Florida</u> <u>Manatee</u> <u>Recovery</u> <u>Plan, Third</u> <u>Revision</u>	Implementation Progress	Final Revision 3

Group	Name	Population	Status	Lead Office	Recovery Plan	Recovery Plan Action Status	Recovery Plan Stage
Mammals	Northern Long- Eared Bat (<u>Myotis</u> <u>septentrionalis</u>)	Wherever found	Threatened	Minnesota- Wisconsin Ecological Services Field Office			
Reptiles	American alligator (<u>Alligator</u> <u>mississippiensis</u>)	Wherever found	Similarity of Appearance (Threatened)	Office of the Regional Director			
Reptiles	Hawksbill sea turtle (<u>Eretmochelys</u> <u>imbricata</u>)	Wherever found	Endangered	North Florida Ecological Services Field Office	Recovery Plan for U.S. Pacific Populations of the Hawksbill Turtle	Implementation Progress	Final Revision 1
Reptiles	Hawksbill sea turtle (<u>Eretmochelys</u> <u>imbricata</u>)	Wherever found	Endangered	North Florida Ecological Services Field Office	Recovery. Plan for the Hawksbill Turtle in the U.S. Caribbean, Atlantic and Gulf of Mexico	Implementation Progress	Final Revision 1
Reptiles	Leatherback sea turtle (<u>Dermochelys</u> <u>coriacea</u>)	Wherever found	Endangered	North Florida Ecological Services Field Office	Recovery Plan for U.S. Pacific Populations of the Leatherback Turtle	Implementation Progress	Final Revision 1
Reptiles	Leatherback sea turtle (<u>Dermochelys</u> <u>coriacea</u>)	Wherever found	Endangered	North Florida Ecological Services Field Office	Recovery Plan for Leatherback Turtles in the U.S. Caribbean, Atlantic, and Gulf of Mexico	Implementation Progress	Final Revision 1

Group	Name	Population	Status	Lead Office	Recovery Plan	Recovery Plan Action Status	Recovery Plan Stage
Reptiles	Green sea turtle (<u>Chelonia</u> <u>mydas</u>)	North Atlantic DPS	Threatened	North Florida Ecological Services Field Office	Recovery Plan for U.S. Population of Atlantic Green Turtle	Implementation Progress	Final Revision 1
Reptiles	Loggerhead sea turtle (<u>Caretta</u> <u>caretta</u>)	Northwest Atlantic Ocean DPS	Threatened	North Florida Ecological Services Field Office	Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta); Second Revision	Implementation Progress	Final Revision 2
Snails	Magnificent ramshorn (<u>Planorbella</u> <u>magnifica</u>)	Wherever found	Candidate	Raleigh Ecological Services Field Office			

ATTACHMENT 3

NORTH CAROLINA NATURAL HERITAGE PROGRAM SPECIES LIST

Natural Heritage Program NATURAL AND CULTURAL RESOURCE

HOME

Species/Community Search

Updated on October 8, 2018 with 2018-10 data set.

Search Parameters: Topo Map like 'Wilmington'

(Searched on Mon Jan 21 2019)

Do another search

Download Results (https://www.google.com/fusiontables/exporttable?query=SELECT TAXONOMIC_GROUP, SCIENTIFIC_NAME, COMMON_NAME, STATE_STATUS, FEDERAL_STATUS, STATE_RANK, GLOBAL_RANK, HABITAT_COMMENT, TOPO_MAP, TOPO_MAP_STATUS FROM 1wtZV_ycWxreFFO6i2qUq7llfcPG6x0MI4XQaNB8 WHERE TOPO_MAP CONTAINS IGNORING CASE 'Wilmington' ORDER BY SCIENTIFIC_NAME&o=csv)

Show 100 🔻 entries per page

Filter search results:

 \rightarrow

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Freshwater Fish	Acipenser brevirostrum	Shortnose Sturgeon	E	E	S1	G3	Wilmington	Current
Freshwater Fish	Acipenser oxyrinchus oxyrinchus	Atlantic Sturgeon	E	E	S2	G3T3	Wilmington	Current
Reptile	Alligator mississippiensis	American Alligator	т	T(S/A)	S3	G5	Wilmington	Current
Amphibian	Ambystoma mabeei	Mabee's Salamander	Т		S2?	G4	Wilmington	Historical
Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
-----------------------	--	---------------------------------------	--------------	--------------------	---------------	----------------	-------------	-----------------------
Amphibian	Anaxyrus quercicus	Oak Toad	SR		S2	G5	Wilmington	Historical
Freshwater Bivalve	Anodonta couperiana	Barrel Floater	E		S1	G4	Wilmington	Historical
Vascular Plant	Aristida condensata	Big Three- awn Grass	Т		S2	G4?	Wilmington	Historical
Vascular Plant	Arnoglossum ovatum var. lanceolatum	Savanna Indian- plantain	E		S2	G4G5TNR	Wilmington	Historical
Vascular Plant	Asclepias pedicellata	Savanna Milkweed	SC-V		S3	G4	Wilmington	Historical
Vascular Plant	Baccharis glomeruliflora	Silverling	SC-H		S1	G4	Wilmington	Historical
Vascular Plant	Boltonia asteroides var. glastifolia	White Doll's- daisy	SR-O	$\mathbf{\langle}$	S2	G5TNR	Wilmington	Current
Natural Community	Brackish Marsh (Smooth Cordgrass Subtype)				S1	G3G4	Wilmington	Current
Vascular Plant	Carex decomposita	Cypress Knee Sedge	SC-V		S2	G3G4	Wilmington	Historical
Mammal	Corynorhinus rafinesquii macrotis	Eastern Big- eared Bat	SC		S3	G3G4T3	Wilmington	Current
Vascular Plant	Crocanthemum carolinianum	Carolina Sunrose	E		S1	G4	Wilmington	Historical
Reptile	Crotalus adamanteus	Eastern Diamondback Rattlesnake	E		S1	G4	Wilmington	Historical
Vascular Plant	Cyperus lecontei	Leconte's Flatsedge	т		S2	G4?	Wilmington	Historical
Reptile	Deirochelys reticularia reticularia (syn. Deirochelys reticularia)	Eastern Chicken Turtle	SC		S3	G5T5	Wilmington	Historical

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Vascular Plant	Dichanthelium cryptanthum (syn. Dichanthelium sp. 9)	Hidden- flowered Witchgrass	SR-T		S2	G3G4Q	Wilmington	Historical
Vascular Plant	Dionaea muscipula	Venus Flytrap	SC-V		S2	G2	Wilmington	Current
Vascular Plant	Eleocharis vivipara	Viviparous Spikerush	E		S1	G5	Wilmington	Current
Freshwater Fish	Enneacanthus chaetodon	Blackbanded Sunfish	SR		S3	G3G4	Wilmington	Historical
Freshwater Fish	Enneacanthus obesus	Banded Sunfish	SR		S 3	G5	Wilmington	Historical
Butterfly	Erynnis martialis	Mottled Duskywing	SR		S2	G3	Wilmington	Historical
Butterfly	Euphyes dukesi	Dukes' Skipper	SR	X	S1S2	G3	Wilmington	Current
Reptile	Farancia erytrogramma	Rainbow Snake	SR		S3	G4	Wilmington	Current
Freshwater or Terrestrial Gastropod	Helisoma eucosmium	Greenfield Rams-horn	E		S1	G1Q	Wilmington	Historical
Freshwater Fish	Heterandria formosa	Least Killifish	SC		S2	G5	Wilmington	Current
Reptile	Heterodon simus	Southern Hognose Snake	т		S2	G2	Wilmington	Current
Bird	Himantopus mexicanus	Black-necked Stilt	SR		S1B	G5	Wilmington	Current
Vascular Plant	Iris prismatica	Slender Blue Iris	SR-T		S1S2	G4G5	Wilmington	Current
Vascular Plant	Lachnocaulon minus	Brown Bogbutton	т		S2	G3G4	Wilmington	Current
Mammal	Lasiurus intermedius floridanus	Florida Yellow Bat	SC		S1	G5T4	Wilmington	Current

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Vascular Plant	Lilaeopsis carolinensis	Carolina Grasswort	SR-O		S2	G3G5	Wilmington	Current
Reptile	Liodytes rigida	Glossy Crayfish Snake	SR		S2S3	G5	Wilmington	Historical
Vascular Plant	Litsea aestivalis	Pondspice	SC-V		S2S3	G3?	Wilmington	Current
Vascular Plant	Ludwigia lanceolata	Lanceleaf Seedbox	E		S1	G3	Wilmington	Current
Vascular Plant	Ludwigia suffruticosa	Shrubby Seedbox	Т		S2	G5	Wilmington	Current
Crustacean	Lynceus gracilicornis	Graceful Clam Shrimp	SC		S2	G5	Wilmington	Historical
Reptile	Malaclemys terrapin	Diamondback Terrapin	SC		S3	G4	Wilmington	Current
Reptile	Masticophis flagellum	Coachwhip	SR		S3	G5	Wilmington	Historical
Reptile	Micrurus fulvius fulvius	Eastern Coralsnake	E		S1	G5	Wilmington	Historical
Mammal	Myotis septentrionalis	Northern Long-eared Bat	Ţ	T-4(d)	S2	G1G2	Wilmington	Current
Vascular Plant	Oenothera riparia	Riverbank Evening- primrose	SR-L		S2S3	G2G3	Wilmington	Current
Reptile	Ophisaurus mimicus	Mimic Glass Lizard	SC		S1	G3	Wilmington	Historical
Bird	Passerina ciris	Painted Bunting	SC		S2B	G5	Wilmington	Current
Dragonfly or Damselfly	Phanogomphus australis (syn. Gomphus australis)	Clearlake Clubtail	SR		S2	G4	Wilmington	Historical
Bird	Picoides borealis	Red- cockaded Woodpecker	E	E	S2	G3	Wilmington	Current

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Vascular Plant	Pinguicula lutea	Yellow Butterwort	SR-P		S1	G4G5	Wilmington	Historical
Reptile	Pituophis melanoleucus melanoleucus	Northern Pinesnake	т		S2	G4T4	Wilmington	Historical
Freshwater or Terrestrial Gastropod	Planorbella magnifica	Magnificent Rams-horn	E	С	S1	G1	Wilmington	Historical
Vascular Plant	Platanthera nivea	Snowy Orchid	т		SH	G5	Wilmington	Historical
Butterfly	Problema bulenta	Rare Skipper	SR		S 1	G2G3	Wilmington	Current
Amphibian	Pseudacris ornata	Ornate Chorus Frog	E		S2	G4	Wilmington	Historical
Vascular Plant	Ptilimnium ahlesii	Carolina Bishopweed	SR-T	\mathbf{N}	S1	G1	Wilmington	Current
Vascular Plant	Ptilimnium costatum	Ribbed Bishop-weed	т		S1	GNR	Wilmington	Historical
Vascular Plant	Quercus elliottii	Running Oak	SR-P		S2	G3G5	Wilmington	Historical
Amphibian	Rana capito (syn. Rana capito capito)	Carolina Gopher Frog	E		S2	G3	Wilmington	Historical
Vascular Plant	Rhynchospora harperi	Harper's Beaksedge	SC-V		S2	G4?	Wilmington	Current
Vascular Plant	Rhynchospora pleiantha	Coastal Beaksedge	т		S2	G2G3	Wilmington	Historical
Vascular Plant	Rhynchospora tracyi	Tracy's Beaksedge	т		S2	G4	Wilmington	Current
Vascular Plant	Sagittaria isoetiformis	Quillwort Arrowhead	Т		S2	G4?	Wilmington	Historical
Vascular Plant	Sagittaria weatherbiana	Grassleaf Arrowhead	E		S2	G5T3T4	Wilmington	Current
Vascular Plant	Sarracenia minor var. minor	Hooded Pitcherplant	E		S2	G4T4	Wilmington	Current

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Moth	Schinia septentrionalis	Northern Flower Moth	SR		SH	G3G4	Wilmington	Historical
Vascular Plant	Scleria reticularis	Netted Nutrush	т		S2	G4	Wilmington	Current
Reptile	Seminatrix pygaea paludis	Carolina Swamp Snake	SC		S2	G5T4	Wilmington	Historical
Reptile	Sistrurus miliarius miliarius	Carolina Pigmy Rattlesnake	SC		S3	G5T4T5	Wilmington	Historical
Natural Community	Small Depression Drawdown Meadow (Typic Subtype)				S2S3	G2?	Wilmington	Current
Natural Community	Small Depression Pond (Open Lily Pond Subtype)		7	\mathbf{X}	S3	G3?	Wilmington	Current
Natural Community	Small Depression Pond (Typic Marsh Subtype)				S3	G3?	Wilmington	Current
Natural Community	Small Depression Shrub Border				S3	G3?	Wilmington	Current
Dragonfly or Damselfly	Somatochlora georgiana	Coppery Emerald	SR		S2?	G3G4	Wilmington	Historical
Vascular Plant	Spiranthes laciniata	Lace-lip Ladies'- tresses	SC-V		S2	G4G5	Wilmington	Current
Bird	Sternula antillarum	Least Tern	SC		S3B	G4	Wilmington	Current
Natural Community	Tidal Freshwater Marsh (Cattail Subtype)				S3	G4G5	Wilmington	Current

Taxonomic Group	Scientific Name	Common Name	NC Status	Federal Status	State Rank	Global Rank	Торо Мар	Topo Map Status
Natural Community	Tidal Freshwater Marsh (Giant Cordgrass Subtype)				S4	G4	Wilmington	Current
Natural Community	Tidal Freshwater Marsh (Mixed Freshwater Subtype)				S1	G2?	Wilmington	Current
Natural Community	Tidal Freshwater Marsh (Sawgrass Subtype)				S4	G4?	Wilmington	Current
Natural Community	Tidal Freshwater Marsh (Threesquare Subtype)		5		S2S3	G2G3	Wilmington	Current
Natural Community	Tidal Swamp (CypressGum Subtype)				S4	G3G4	Wilmington	Current
Mammal	Trichechus manatus	West Indian Manatee	Т	т	S1N	G2	Wilmington	Current
Vascular Plant	Utricularia cornuta	Horned Bladderwort	т		S1S2	G5	Wilmington	Historical
Vascular Plant	Utricularia olivacea	Dwarf Bladderwort	Т		S2	G4	Wilmington	Historical
Natural Community	Vernal Pool (Typic Subtype)				S2S3	G2?	Wilmington	Current
Animal Assemblage	Waterbird Colony				S3	GNR	Wilmington	Current
Natural Community	Xeric Sandhill Scrub (Typic Subtype)				S3S4	G3?	Wilmington	Current

?			
<u>Help</u>	Definitions	<u>County</u> <u>Reference</u>	<u>Topo</u> <u>Reference</u>
		<u>Map</u>	<u>Map</u>

A species/community search provides lists of rare plants and animals, natural communities, and important animal assemblages (e.g., heronries and colonial waterbird nesting sites) known to the North Carolina Natural Heritage Program. By default, records are summarized by county, but you also have the option to summarize the records by USGS topographic maps or simple statewide summaries. For more information or for an explanation of the results of the search, see the "Help" and "Definitions" links above.

- Partial search terms are acceptable. If you are unsure of the correct spelling, you could enter the beginning letters of either the genus or species in the Scientific Name field.
- To see distribution maps, click on the scientific or common name of an element in the table of results from a county or topo database search. Note that there are no maps for the statewide summary.
- The results can be further refined by entering a text string in the "Filter search results" field.
- Clicking the "Download Results' button will give you the option of saving the results table to a comma-separated-values file. This type of file can be opened with most spreadsheet programs, including Microsoft Excel.
- If you have any questions or technical issues, contact a Conservation Information Manager.

Use of North Carolina Natural Heritage Program data should not be substituted for actual field surveys, particularly if the project area contains suitable habitat for rare species. If a database search lists no records for a project area, it does not necessarily mean that they are not present. The area may not have been surveyed by biologists, or the data may not have been reported to the Natural Heritage Program.

Information obtained from the heritage data search should be cited as follows: North Carolina Natural Heritage Program Online Data Search. [search date]. Department of Natural and Cultural Resources, Division of Land and Water Stewardship, Raleigh, NC. Available at: <u>www.ncnhp.org</u> (<u>http://www.ncnhp.org</u>).

Share this page:

f

Facebook (https://www.facebook.com/sharer/sharer.php?

u=https%3A%2F%2Fwww.ncnhp.org%2Fdata%2Fspecies-community-search)

<u>Twitter</u> (http://twitter.com/intent/tweet?url=https%3A%2F%2Fwww.ncnhp.org%2Fdata%2Fspecies-

community-search)

ATTACHMENT 4

CORRESPONDENCE

North Carolina Department of Natural and Cultural Resources

State Historic Preservation Office

Ramona M. Bartos, Administrator

Governor Roy Cooper Secretary Susi H. Hamilton

March 11, 2019

Brian Buchanan ATC Group Services, LLC 2725 East Millbrook Road, Suite 121 Raleigh, NC 27604 Office of Archives and History Deputy Secretary Kevin Cherry

Re: Risk Assessment, Winter Park Cleaners, 1437 South College Road, Wilmington, New Hanover County, ER 19-0798

Dear Mr. Buchanan:

Thank you for your email of February 11, 2019, concerning the above project.

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or <u>environmental.review@ncdcr.gov</u>. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Rence Gledhill-Earley

✓ Ramona M. Bartos

APPENDIX D

NOTICE OF DRY-CLEANING SOLVENT REMEDIATION FOR SOURCE PROPERTY

NOTICE OF DRY-CLEANING SOLVENT REMEDIATION

Property Owner: Cole TR Wilmington NC, LLC Recorded in Book _____, Page _____ Associated plat recorded in Plat Book _____, Page _____

This documentary component of a Notice of Dry-Cleaning Solvent Remediation (hereinafter "Notice") is hereby recorded on this ______ day of ______, 20____ by Cole TR Wilmington NC, LLC (hereinafter "Property Owner"). The survey plat component of the Notice is being recorded concurrently with this documentary component. The real property (hereinafter "Property") which is the subject of this Notice is located at 1437 South College Road, Wilmington, New Hanover County, North Carolina, Parcel Identification Number (PIN) R06107-002-006-000.

The Property is contaminated with dry-cleaning solvent, as defined at North Carolina General Statutes (hereinafter "N.C.G.S."), Section (hereinafter "§") 143-215.104B(b)(9) and other contaminants. This Notice has been approved by the North Carolina Department of Environmental Quality, or its successor in function (hereinafter "DEQ") under the authority of the Dry-Cleaning Solvent Cleanup Act of 1997, as amended, N.C.G.S. § 143-215.104A *et seq.* (hereinafter "DSCA"), and is required to be filed in the Register of Deeds' Office in the county or counties in which the land is located, pursuant to NCGS § 143-215.104M.

Soil and groundwater at the Property are contaminated with dry-cleaning solvents associated with dry-cleaning operations at the former Winter Park Cleaners (DSCA Site DC650013) located at 1437 South College Road, Wilmington, New Hanover County, North Carolina. Dry-cleaning operations were conducted on the Property from approximately 1951 to at least 1964.

Pursuant to N.C.G.S. § 143-215.104M, this Notice is being filed in order to reduce or eliminate the danger to public health or the environment posed by the Property. Attached hereto as **Exhibit A** is a reduction, to 8 1/2" x 11", of the survey plat component of the Notice required by N.C.G.S. § 143-215.104M. The survey plat has been prepared and certified by a professional

land surveyor and meets the requirements of G.S. 47-30, and contains the following information required by N.C.G.S. § 143-215.104M:

(1) A description of the location and dimensions of the areas of potential environmental concern with respect to permanently surveyed benchmarks; and

(2) The type, location and quantity of regulated dry-cleaning solvent contamination and other contaminants known to exist on the Property.

Attached hereto as **Exhibit B**, is a legal description of the Property that would be sufficient as a description in an instrument of conveyance.

Pursuant to NCGS § 143-215.104M, a certified copy of this Notice must be filed within 15 days of receipt of DEQ's approval of the Notice or the effective date of the dry-cleaning solvent remediation agreement, whichever is later. Pursuant to NCGS § 143-215.104M, the copy of the Notice certified by DEQ must be recorded in the grantor index under the names of the owners of the land.

LAND-USE RESTRICTIONS

NCGS § 143-215.104M requires that the Notice identify any restrictions on the current and future use of the Property that are necessary or useful to maintain the level of protection appropriate for the designated current or future use of the Property and that are designated in the dry-cleaning remediation agreement. The restrictions shall remain in force in perpetuity unless canceled by the Secretary of DEQ, or his/her designee, after the hazards have been eliminated, pursuant to NCGS §143-215.104M. Those restrictions are hereby imposed on the Property, and are as follows:

- 1. Without prior written approval from DEQ, the Property shall not be used for mining or extraction of coal, oil, gas or any mineral or non-mineral substances.
- 2. No activities that encounter, expose, remove or use groundwater (for example, installation of water supply wells, fountains, ponds, lakes or swimming pools that use groundwater, or construction or excavation activities that encounter or expose groundwater) may occur on the Property without prior approval of DEQ.
- 3. Soil in "Area A" may not be removed or disturbed unless approved in writing in advance by DEQ or its successor in function, except for routine landscape maintenance and emergency utility repair. In the event of emergency utility repair, DEQ shall be given written notice of any such emergency repair no later than the next business day, and further related assessment and remedial measures may be required.
- 4. No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in "Area A" of the Property, as shown on Exhibit A, without prior approval of DEQ.

- 5. In January of each year, on or before January 31st, the owner of any portion of the Property shall submit a notarized Annual Certification of Land-Use Restrictions to DEQ certifying that this Notice remains recorded at the Register of Deeds' office, and that the land-use restrictions are being complied with.
- 6. No person conducting environmental assessment or remediation at the Property or involved in determining compliance with applicable land-use restrictions, at the direction of, or pursuant to a permit or order issued by DEQ may be denied access to the Property for the purpose of conducting such activities.
- 7. The owner of any portion of the Property shall cause the instrument of any sale, lease, grant, or other transfer of any interest in the property to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Notice. The failure to include such a provision shall not affect the validity or applicability of any land-use restriction in this Notice.

RIGHT OF ENTRY

The property owner grants and conveys to DEQ, its agents, contractors, and employees, and any person performing pollution remediation activities under the direction of DEQ, access at reasonable times and under reasonable security requirements to the Property to determine and monitor compliance with the land-use restrictions set forth in this Notice. Such investigations and actions are necessary by DEQ to ensure that use, occupancy, and activities of and at the Property are consistent with the land-use restrictions and to ensure that the structural integrity and continued effectiveness of any engineering controls (if appropriate) described in the Notice are maintained. Whenever possible, at least 48 hours advance notice will be given to the Property Owner prior to entry. Advance notice may not always be possible due to conditions such as response time to complaints and emergency situations.

REPRESENTATIONS AND WARRANTIES

The Property Owner hereby represents and warrants to the other signatories hereto:

- i) that the Property Owner is the sole owner of the Property; **or** that the Property Owner has provided to DEQ the names of all other persons that own an interest in or hold an encumbrance on the Property and have notified such persons of the Property Owner's intention to enter into this Notice;
- ii) that the Property Owner has the power and authority to enter into this Notice, to grant the rights and interests herein provided and to carry out all obligations hereunder; and
- iii) that this Notice will not materially violate or contravene or constitute a material default under any other agreement, document or instrument to which the Property Owner is a party or by which the Property Owner may be bound or affected.

ENFORCEMENT

The above land-use restrictions shall be enforceable without regard to lack of privity of estate or contract, lack of benefit to particular land, or lack of any property interest in particular land. The land-use restrictions shall be enforced by any owner of the Property. The land-use restrictions may also be enforced by DEQ through the remedies provided in NCGS § 143-215.104P or by means of a civil action; by any unit of local government having jurisdiction over any part of the Property; and by any person eligible for liability protection under the DSCA who will lose liability protection if the restrictions are violated. Any attempt to cancel any or all of this Declaration without the approval of the Secretary of DEQ (or its successor in function), or his/her delegate, shall be subject to enforce any of the above restrictions shall in no event be deemed a waiver of the right to do so thereafter as to the same violation or as to one occurring prior or subsequent thereto.

If a land-use restriction set out in this Notice required under NCGS § 143-215.104.M is violated, the owner of the Property at the time the land-use restriction is violated, the owner's successors and assigns, and the owner's agents who direct or contract for alteration of the contamination site in violation of a land-use restriction shall be liable for remediation of all contaminants to unrestricted use standards.

FUTURE SALES, LEASES, CONVEYANCES AND TRANSFERS

When any portion of the Property subject to this Notice is sold, leased, conveyed or transferred, the deed or other instrument of transfer shall contain in the description section, in no smaller type than that used in the body of the deed or instrument, (1) a statement that the property has been contaminated with dry-cleaning solvent and, if appropriate, cleaned up under the Act and (2) a reference by book and page to the recordation of this Notice.

The Property Owner shall notify DEQ within fourteen (14) calendar days of the effective date of any conveyance, grant, gift, or other transfer, whole or in part, of the Property Owner's interest in the Property. This notification shall include the name, business address and phone number of the transferee and the expected date of transfer.

The Property Owner shall notify DEQ within thirty (30) days following the petitioning or filing of any document by any person initiating a rezoning of the Property that would change the base zone of the Property.

This provision shall not apply to leases that do not provide for the right to take actions that would violate the prohibitions and restrictions of this Notice.

PROPERTY OWNER SIGNATURE

IN WITNESS WHEREOF, Property Owner has caused this instrument to be duly executed this _____ day of ______, 20____.

Cole TR Wilmington NC, LLC

By:

Name of contact

STATE OF _____ COUNTY OF _____

I, ______, a Notary Public of the county and state aforesaid, certify that ______ personally came before me this day and acknowledged that he/she is a Member of Cole TR Wilmington NC, LLC, a North Carolina limited liability corporation, and its Manager, and that by authority duly given and as the act of the company, the foregoing Notice of Dry-Cleaning Solvent Remediation was signed in its name by him.

WITNESS my hand and official stamp or seal, this	_day of _	, 20
--	-----------	------

Name typed or printed	
Notary Public	
My Commission expires:	
[Stamp/Seal]	

APPROVAL AND CERTIFICATION

The foregoing Notice of Dry-Cleaning Solvent Remediation is hereby approved and certified.

North Carolina Department of Environmental Quality

By:

Jim Bateson, LG Chief, Superfund Section Division of Waste Management

Date

ATTACHMENT

LIMITED POWER OF ATTORNEY

I _____ "Property Owner", do hereby grant a limited power of attorney to DEQ and to DEQ's independent contractors, as follows:

DEQ and DEQ's independent contractors shall have the limited power of attorney to record this Notice, including its documentary and survey plat components, in accordance with N.C.G.S. § 143-215.104M on my "Property Owner" behalf. This limited power of attorney shall terminate upon completion of the recordation of the Notice.

Signature of P	roperty Owner				
Dated this	day of	, 20			
STATE OF COUNTY OF					
I,		, a No	otary Public, de	o hereby certify that eared before me this	day and
signed this "L	imited Power of Att	torney".	cisonany app	carea before me una	auy and
WITNESS my	y hand and official s	stamp or seal, this _	day of	, 20	
Name typed of	r printed				
Notary Public					
My Commissi	on expires:				
[Stamp/Seal]	-				

CERTIFICATION OF REGISTER OF DEEDS

The foregoing documentary component of the Notice of Dry-Cleaning Solvent Remediation, and the associated plat, are certified to be duly recorded at the date and time, and in the Book and on the Page(s), shown on the first page hereof.

Register of Deeds for New Hanover County

By:	
(signature)	Date
Name typed or printed:	
Deputy/Assistant Register of Deeds	

EXHIBIT A REDUCTION OF SURVEY PLAT

SURVEY PLAT - EXHIBIT A TO THE NOTICE OF DRY-CLEANING SOLVENT REMEDIATION

THE FORMER WINTER PARK CLEANERS - DSCA SITE DC650013

SOURCE PROPERTY OWNER: COLE TR WILMINGTON NC, LLC PID: R06107-002-006-000 SOURCE PROPERTY ADDRESS: 1437 SOUTH COLLEGE ROAD, WILMINGTON TOWNSHIP, NEW HANOVER COUNTY, NC

I, E. MATTHEW CASH, LICENSED AS A PROFESSIONAL LAND SURVEYOR IN THE STATE OF NORTH CAROLINA, DO HEREBY CERTIFY THAT THIS PLAT WAS DRAWN BY ME FROM AN ACTUAL SURVEY MADE UNDER MY SUPERVISION AND COMPLETED ON JANUARY 25, 2019 USING DEED BOOK 5751, PAGE 1885 OF THE NEW HANOVER COUNTY REGISTRY, THAT THE BOUNDARIES NOT SURVEYED ARE CLEARLY INDICATED AS DRAWN FROM THE REFERENCES SHOWN HEREON: THAT THE RATIO OF PRECISION BEFORE ADJUSTMENT AS CALCULATED IS 1:158,645. THAT THIS MAP WAS PREPARED IN ACCORDANCE WITH NORTH CAROLINA 1:158,646; THAT THIS MAP WAS PREPARE GENERAL STATUTES 47-30, AS AMENDED.

1 - 5045

WITNESS MY ORIGINAL SIGNATURE AND SEAL THIS _____ DAY OF ___

E. MATTHEW CASH, PLS

I HEREBY CERTIFY THAT THIS PLAT IS OF THE FOLLOWING TYPE: CS. 47-30 (f(11)(c))). THIS SURVEY IS OF AN EVALUATING PARCEL OR PARCELS OF LAND OR ONE OR MORE EXISTING FARCEL AND DOES NOT CREATE A NEW STREET OR CHANGE AN EXISTING STREET.

CERTIFICATE OF REVIEW OFFICER STATE OF NORTH CAROLINA COUNTY OF NEW HANDVER

I, EVIEW OFFICER OF NEW HANOVER COUNTY, CERTIFY THAT THE MAP OF PLAT TO WHICH THIS CERTIFICATION IS AFFIXED MEETS ALL STATUTORY REQUIREMENTS FOR RECORDING.

DATE

PRELIMINARY PLAT

NOT FOR RECORDATION

CONVEYANCES OR SALES

VICINITY MAP N.T.S.

SURVEY NOTES

. 2019 C46

SENTE L-1045 P

SURVE

ATTHEN

- THIS IS AN EXHIBIT TO A NOTICE OF DRY-CLEANING SOLVENT REMEDIATION. THIS IS **NOT** A SUBDIVISION OF LAND. THIS SURVEY WAS PERFORMED ON THE GROUND WITH A COMPLETION DATE OF JANUARY 25, 2019.

- 6.
- THIS SURVEY WAS PERFORMED ON THE OROUND WITH A COMPLETON DATE OF JANUARY 25, 2019. AREAS SHOWN ON THIS PLAT COMPUTED BY THE CORFINATE METHOD. AREAS SHOWN ON THIS PLAT COMPUTED BY THE CORFINATE METHOD. SUBJECT PROPERTY IS SUBJECT TO THE ORDER OF WAY, EASEMENTS, COVENANTS, RESTRICTIONS, AND APPUTENTIONNOES OF RECORD. SUBJECT PROPERTY IS NOT LOCATED IN A SPECIAL FLOOD HAZARD AREA PER FEMA FIRM NO. 3720313600K, EFFECTIVE DATE AUGUST 28, 2018. DISTANCES SHOWN ON THE PLAT ARE HORIZONTAL GROUND DISTANCES UNDED OTHERWISE. ALL BEARINGS, DISTANCES, AND COORDINATES SHOWN ON THE PLAT ARE BASED ON NORTH CAROLINA CALL BEARINGS, DISTANCES, AND COORDINATES SHOWN ON THE PLAT ARE BASED ON NORTH CAROLINA 8.
- STATE PLANE GRID NAD 83 (2011) ADJUSTMENT UNLESS NOTED OTHERWISE. 10. VERTICAL DATUM IS NAVD88 (GEOID 12B).

APPROVED FOR THE PURPOSES OF N.C.G.S. 143-215.104M.

___ STATE

COUNTY

A NOTARY PUBLIC OF SAID COUNTY AND STATE, DO HEREBY CERTIFY THAT

DID PERSONALLY APPEAR AND SIGN BEFORE ME THIS THE _____ DAY OF ____, 20____.

N.C.G.S. 143-215.104M(d) REQUIRES THAT WHEN PROPERTY FOR WHICH A NOTICE OF DRY-CLEANING SOLVENT FEWENIATION HAS BEEN FILED IS SOLD, LEASED, CONVEYED OR TRANSFERRED, THE DEED OR OTHER INSTRUMENT OF TRANSFER SHALL CONTAIN IN THE DESCRIPTION SECTION, IN NO SMALLER TYPE THAN THAT USED IN THE BODY OF THE DEED OR INSTRUMENT, A STATEMENT THAT THE PROPERTY HAS BEEN CONTAININATED WITH DRY-CLEANING SOLVENT AND, IN APPROPRIATE, CLEANED, UNDER THIS PART. USE THE FOLLOWING

THIS PROPERTY HAS BEEN CONTAMINATED WITH DRY-CLEANING SOLVENT. A NOTICE OF DRY-CLEANING SOLVENT REMEDIATION IS RECORDED IN THE NEW HANOVER COUNTY REGISTER OF DEEDS OFFICE AT

PAGE QUESTIONS CONCERNING THIS MATTER MAY BE DIRECTED TO THE NORTH CAROLINA DIVISION OF

WASTE MANAGEMENT, SUPERFUND SECTION, DRY-CLEANING SOLVENT CLEANUP ACT (DSCA) PROGRAM, OR ITS SUCCESSOR IN FUNCTION. 1646 MAIL SERVICE CENTER, RALEGH, NC 27699-1646.

- 11. SOIL BORING LOCATIONS WERE PROVIDED BY ATC GROUP SERVICES IN A MAP TITLED "SOIL QUALITY MAP" DATED NOVEMBER 2018. SOIL BORINGS WERE NOT LOCATED DURING THE SURVEY AND ARE SHOWN FOR REFERENCE PURPOSES ONLY.
- 3 MONITORING WELL 1 WAS NOT FOLIND DURING THE SURVEY THE LOCATION SHOWN ON THE PLAT WAS PROVDED BY ATC GROUP SERVICES IN A MAP TITLED "PROPOSED LAND USE CONTROL AREAS" DATED FEBRUARY 2018.

GENERAL NOTES

DEQ ACKNOWLEDGEMENT

JIM BATESON, LG CHIEF, SUPERFUND SECTION DIVISION OF WASTE MANAGEMENT

NOTARY CERTIFICATE:

NOTARY PUBLIC (SIGNATURE)

MY COMMISSION EXPIRES: ____

STATEMENT TO SATISFY N.C.G.S. 143-215.104M(d):

DEED STATEMENT

DEED BOOK

THE AREAS AND TYPE OF CONTAMINATION DEPICTED UPON THE PLAT ARE APPROXIMATIONS DERIVED FROM THE BEST AVAILABLE INFORMATION AT THE TIME OF FILING.

COORDINATE SYSTEM: US STATE PLANE 1983 ZONE: NORTH CAROLINA 3200 HORIZONTAL DATUM: NAD 83 (2011) VERTICAL DATUM: NAVD 88 (GEOID 128) UNIT OF MEASURE: US SURVEY FEET					
WELL ID	GRID NORTHING	GRID EASTING	TOP OF CASING ELEVATION		
MW-1		SEE SURVEY NOTE #12			
MW-2	169588.13	2335670.60	41.31		
MW-3	169564.71	2335713.67	41.21		
MW-4	169567.85	2335793.97	41.44		
MW-5	169493.06	2335893.89	39.34		

MCADA

The John R. McAdams Company, Inc 2905 Meridian Parkway Durham, NC 27713

> phone 919. 361. 5000 fax 919. 361. 2269 license number: C-0293

www.mcadamsco.com

CONTACT

E. MATTHEW CASH, PLS cash@mcadamsco.com PHONE: 919.361.5000

CLIENT

ATC GROUP SERVICES, LLC 2725 E. MILLBROOK RD SUITE 121 RALEIGH, NC 27604 PHONE: 919, 871, 0999

I ACKNOWLEDGE THAT I HAVE FULL AUTHORITY TO LEGALLY EXECUTE A DEED FOR THIS PROPERTY.

SIGNATURE

NOTARY CERTIFICATE:

OWNER ACKNOWLEDGEMENT

STATE COUNTY

A NOTARY PUBLIC OF SAID COUNTY AND STATE, DO HEREBY CERTIFY THAT

DID PERSONALLY APPEAR AND SIGN BEFORE ME THIS THE ____ DAY OF

_20___

NOTARY PUBLIC (SIGNATURE)

MY COMMISSION EXPIRES

REVISIONS

NO.

LOND ON NO
2019-01-25
1"=30'
EMC
EMC
AGS19000-B1
AGS-19000

THE DOCUMENTARY COMPONENT OF THE NOTICE OF DRY-CLEANING SOLVENT REMEDIATION, WHICH IDENTIFIES CONTROLS OR LIMITATIONS ON THE USE OF THIS PROPERTY, IS RECORDED AT:

(15A NCAC 25) FOR ONE OR MORE OF THE FOLLOWING CONTAMINANTS: NAPHTHALENE, 2-METHYLNAPHTHALENE.

DEED BOOK

CONTAMINANT STATEMENT

PAGE

GROUNDWATER IN WELLS MW-1 AND MW-3 EXCEEDED THE APPLICABLE 2L WATER QUALITY

GROUNDWATER IN WELLS NW-I AND NW-S EXCELUE THE APPLICABLE 2L WATER VOLUTI STANDARDS (15A NCAC 2L:2000 FOR ONE OF MORE OF THE FOLLOWING CONTAMINANTS: BENZENE, ETHYLBENZENE, NAPHHALENE, TOTAL XYLENES, ISO-ROPYLBENZENE, N-PROPYLBENZENE, 12, 2-HINTHEHTMEBENZENE, 1,3,5-TIMBETHYLBENZENE, 1-WETHYLNAPHTHALENE, 2-WETHYLNAPHTHALENE, CS-CB ALIFHATICS, C9-C12 ALIFHATICS, C9-C10 AROMATICS, C9-C12 ALIFHATICS AND C9-C11 AROMATICS. SOIL IN BORING SB-2 EXCEEDED THE ASSOCIATED RESIDENTIAL RISK BASED SCREENING LEVEL

DATE

PLAN INFORMATION

EXHIBIT B PROPERTY LEGAL DESCRIPTION

Legal Description

All that certain piece, parcel or tract of land situate, lying and being on the northern side of US 76/Oleander Drive at the intersection with the eastern side of US 117/NC 132/South College Road in the County of New Hanover, State of North Carolina, containing 1.49 acres, more or less, and having according to plat of survey entitled "Amended and Restated Dedication Plat For CAP Wilmington, LLC" prepared by MSP & Associates Land Surveying, Inc. dated March 19, 2012 as revised on December 13, 2012 and recorded in the Office of the Register of Deeds for New Hanover County, North Carolina in Plat Book 57 at Page 229 on December 17, 2012, the following metes and bounds, to-wit:

Beginning at a pk nail at a mitered intersection of the northern right of way of Oleander Drive (Variable R/W) and the eastern right of way of South College Road (Variable R/W); thence with said right of way of South College Road the following calls: N. 06-45-42 E. a distance of 186.30 feet to a pk nail found; thence leaving said right of way S. 83-18-50 E. a distance of 303.36 feet to a 3/4"open top found along the western right of way of 47th Street; thence with said right of way S. 06-37-49 W. a distance of 226.46 feet to a point along the northern right of way of Oleander Drive (Variable R/W); thence with said right of way the following calls: N. 83-23-18 W. a distance of 81.08 feet to a point; thence N. 06-35-38 E. a distance of 16.09 feet to a pk nail found; thence N. 83-21-24 W. a distance of 198.27 feet to a pk nail found; thence with mitered intersection N. 38-26-48 W. a distance of 34.49 feet to a pk nail found, the Point of Beginning. APPENDIX E

EXAMPLE ANNUAL CERTIFICATION OF LAND-USE RESTRICTIONS

Annual Certification of Land-Use Restrictions

<u>Site Name:</u>	Winter Park Cleaners
<u>Site Address:</u>	1437 South College Road, Wilmington, New Hanover County
DSCA ID No:	DC650013

ANNUAL CERTIFICIATION of LAND-USE RESTRICTIONS

Pursuant to land-use restriction number 5 (the land-use restrictions are included as part of this form for reference) in the Notice of Dry-Cleaning Solvent Remediation (Notice) signed by Cole TR Wilmington NC, LLC and recorded in Deed Book______ on <date> at the New Hanover County Register of Deeds Office, Cole TR Wilmington NC, LLC hereby certifies, as an owner of at least part of the property that is the subject of the Notice, that the Notice remains recorded at the New Hanover County Register of Deeds office and the land-use restrictions therein are being complied with.

Duly executed this day of, 2	0	
Cole TR Wilmington NC, LLC		
By:		
Name typed or printed:		
STATE OF		
COUNTY OF		
I a Notary Public of the	county and state	aforesaid certify that
personally came before me this day	and the foregoing	certification was signed
by him/her.		
WITNESS my hand and official stamp or seal, this	day of	, 20
Name typed or printed.		
Name typed of primed.		

My Commission expires: ______ [Stamp/Seal] APPENDIX F

EXAMPLE DOCUMENTS ANNOUNCING THE PUBLIC COMMENT PERIOD

Environmental Quality

ROY COOPER Governor MICHAEL S. REGAN Secretary MICHAEL SCOTT Director

<Date>

<name>, <City Manager/County Health Director> <address> <city>, NC <zip>

Subj: Remediation of Dry-Cleaning Solvent Contamination DSCA Site # DC650013 Winter Park Cleaners, 1437 South College Road, Wilmington

Dear <name>:

The Dry-Cleaning Solvent Cleanup Act of 1997 (DSCA), North Carolina General Statutes (N.C.G.S.) Sections 143-215.104A through 143-215.104U, provides for the assessment and remediation of properties that may have been or were contaminated by chlorinated solvents. To satisfy the requirements of N.C.G.S. 143-215.104L, this letter serves as the **Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site** (NOI) approved by the North Carolina Department of Environmental Quality (DEQ).

The NOI must provide, to the extent known, a legal description of the location of the DSCA Site, a map showing the location of the DSCA Site, a description of the contaminants involved and their concentrations in the media of the DSCA Site, a description of the intended future use of the DSCA Site, any proposed investigation and remediation, and a proposed Notice of Dry-Cleaning Solvent Remediation (NDCSR) prepared in accordance with N.C.G.S. Section 143-215.104M. The required components of the NOI are included in the attached Risk Management Plan, and are available during the public comment period on our website at:

https://deq.nc.gov/about/divisions/waste-management/superfund-section/special-remediation-branch/dsca-publicnotices-announcements

The DSCA Program is providing a copy of the NOI to all local governments having jurisdiction over the DSCA Site. A 30-day public comment period is being held from <date>, until <date>. Written comments may be submitted to DEQ no later than <date>. Written requests for a public meeting may be submitted to DEQ no later than <date>. All such comments and requests should be sent to:

Sue Murphy, DSCA Remediation Unit Division of Waste Management, NCDEQ 1646 Mail Service Center Raleigh, North Carolina 27699-1646

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200 A Summary of the NOI is being published in the Star News, copies are being sent to owners of property within and contiguous with the area of contamination, and a copy of the Summary will be conspicuously posted at the Site during the public comment period.

If you have any questions, please feel free to contact me at (919)707-8354.

Sincerely,

Sue Murphy, DSCA Project Manager Division of Waste Management, NCDEQ

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200

Public Notice

SUMMARY OF NOTICE OF INTENT TO REMEDIATE A DRY-CLEANING SOLVENT FACILITY OR ABANDONED SITE

N.C. Department of Environmental Quality Division of Waste Management Dry-Cleaning Solvent Cleanup Act (DSCA) Program

Winter Park Cleaners DSCA Site # DC650013

Pursuant to N.C.G.S. §143-215.104L, on behalf of Cole TR Wilmington NC, LLC, the North Carolina Department of Environment Quality's (NCDEQ's) private contractor has prepared a Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI). The purpose of this Summary of the NOI is to notify the community of the proposed remedy for the contamination site and invite comment on the proposed remedy.

Winter Park Cleaners formerly conducted dry-cleaning operations at 1437 South College Road, in Wilmington, North Carolina. The property is currently occupied by the Trader Joe's. Drycleaning solvent contamination in soil and/or ground water has been identified at the following parcel(s):

1437 South College Road, in Wilmington; Parcel No. R06107-002-006-000

An investigation of the extent of contamination has been completed. A risk assessment of the contaminated properties concluded that the contamination poses no unacceptable risks. A Risk Management Plan has been prepared which proposes using land-use controls to prevent current and future risks at the affected properties.

The elements of the complete NOI are included in the Risk Management Plan (RMP) which is available online at http://portal.ncdenr.org/web/wm/DSCA/PublicNotices.

The public comment period begins ______, 20__, and ends ______, 20__.

Comments must be in writing and submitted to NCDEQ no later than ______, 20__. Written requests for a public meeting may be submitted to NCDEQ no later than ______, 20___. 20___. Requests for additional information should be directed to Sue Murphy at (919)707-8354. All comments and requests should be sent to:

Sue Murphey, DSCA Remediation Unit Division of Waste Management, NCDEQ 1646 Mail Service Center Raleigh, North Carolina 27699-1646

NORTH CAROLINA Environmental Quality

ROY COOPER Governor MICHAEL S. REGAN Secretary MICHAEL SCOTT Director

<date>

<property owner>
<mailing address>
<city, state, zip>

Subj: Dry-Cleaning Solvent Contamination at Winter Park Cleaners, 1437 South College Road, Wilmington, New Hanover County, NC DSCA ID # DC650013

Dear <property owner>:

You are receiving this letter because your property at <adjacent property address> is adjacent to an area contaminated with dry-cleaning solvents. There are no actions required on your part and your property is not contaminated. This letter is only for notification purposes. The Dry-Cleaning Solvent Clean-up Act (DSCA) Program has completed an assessment of the drycleaning solvent contamination associated with the former Winter Park Cleaners at 1437 South College Road in Wilmington. The property is currently occupied by Traer Joe's. A remedial strategy to address the site contamination has been prepared, and in accordance with our program's statutes, the community has an opportunity to review and comment on the proposed strategy.

The attached Summary of the Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI) provides a brief description of the proposed remedy, a web link to the complete NOI, and the dates and procedures for commenting on the proposed remedy. If you do not have access to the internet, we ask that you contact us to request a hard copy of the complete NOI.

If you have questions, please contact me at Sue.Murphy@ncdenr.gov or (919) 707-8354.

Sincerely,

Sue Murphy, DSCA Project Manager Division of Waste Management, NCDEQ

Attachments:Summary of the NOIcc:DSCA Site # DC650013 File

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200