

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Summary of Draft Report: Jordan Lake Water Quality Model Development

James Bowen Associate Professor (Ret.) Civil and Environmental Engineering Department UNC Charlotte

> JLOW/DWR Fall Stakeholder Meeting, Nov 2, 2023

Summarizing Final Report (in draft)

NC DEQ Project - Task Order # CW28707

Project Title: Jordan Lake Water Quality Model Development

September 2023 Final Report (Draft, Version 1)

Submitted by

James D. Bowen Civil and Environmental Engineering Department University of North Carolina at Charlotte

A Report to the NC Division of Water Resources Raleigh, North Carolina

September 30, 2023

Study Objectives:

- Setup 3-d model of Jordan Lake
- Calibrate Model
- Investigate system functioning
- Test nutrient (N,P) reduction scenarios

Follow-up of UNC Collaboratory Project (2019, 2020)

Jordan Lake Responses to Reduced Nutrient Loading: Results from a New Three-Dimensional Mechanistic Water Quality Model

James D. Bowen, William Langley, and Babatunde Adeyeye Department of Civil and Environmental Engineering, UNC Charlotte

December 2019

https://nutrients.web.unc.edu/files/2019/12/Reservoir-Model-UNC-Charlotte.pdf

Collaboratory Project Objectives:

- a) Quantify and compare nutrient sources w/r to location and composition
- b) Investigate how lake circulation affects delivery of nutrients to various regions of the lake
- c) Compare the efficacy of various nitrogen and phosphorus watershed loading reductions for reducing algal levels in the reservoir.
- d) Estimate how long it will take for the benefits of nutrient loading reductions to be fully realized.

Follow-up of UNC Collaboratory Project (2019, 2020)

Jordan Lake Responses to Reduced Nutrient Loading: Results from a New Three-Dimensional Mechanistic Water Quality Model

James D. Bowen, William Langley, and Babatunde Adeyeye Department of Civil and Environmental Engineering, UNC Charlotte

December 2019

https://nutrients.web.unc.edu/files/2019/12/Reservoir-Model-UNC-Charlotte.pdf

Collaboratory Project Objectives:

- a) Quantify and compare nutrient sources w/r to location and composition
- b) Investigate how lake circulation affects delivery of nutrients to various regions of the lake
- c) Compare the efficacy of various nitrogen and phosphorus watershed loading reductions for reducing algal levels in the reservoir.

 d) Estimate how long it will take for the benefits of nutrient loading reductions to be fully realized. Approach: Use a material-balance-based lake nutrient response model

Water, Nutrients, Organic Matter

Modeling Approach: Create a Mechanistic Model Using Material Balances for Water, Heat, Momentum, Mass

Analogous to a Bank Account

Model (EFDC) includes 3 Algal Functional Groups

The WUNCO

The WILLIAM STATES LEE COLLEGE *of* ENGINEERING UNC CHARLOTTE

- Lake has two arms (Haw, New Hope)
- Most of watershed in Haw arm
- Most of lake volume in New Hope arm
- Causeways in New Hope arm restrict circulation
- Large fluctuations in water
- surface (~6 m 2014-2016)

Haw/New Hope Watershed Divide

- Lake has two arms (Haw, New Hope)
- Most of watershed in Haw arm
- Most of lake volume in New Hope arm
- Causeways in New Hope arm restrict circulation
- Large fluctuations in water
- surface (~6 m 2014-2016)

- Lake has two arms (Haw, New Hope)
- Most of watershed in Haw arm
- Most of lake volume in New Hope arm
- Narrows & Causeways in New Hope arm restrict circulation
- Large fluctuations in water
- surface (~6 m 2014-2016)

Model Setup, 3-d Mechanistic, a New Grid

- Lake divided into 407 cells horizontally
- Each cell divided vertically into up to 25 layers (~.4 m), using a z-grid layering method
- Bottom elevations use new bathymetry plus LIDAR data
- Model time period (2014-2016) is recent and has good chlorophyll data coverage
- Lake is modeled for 2+ years (Jan. '14-Feb. '16) at a ~100 second time step

Hydrologic Analysis (comparison to historical): 2014-2016 model time period: Yearly Rainfall

Hydrologic Analysis (comparison to historical): 2014-2016 model time period: Average Streamflows

Hydrologic Analysis (comparison to historical): 2014-2016 model time period: Cumulative Nitrogen Loading to Lake

Hydrologic Analysis (comparison to historical): 2014-2016 model time period: Cumulative Phosphorus Loading to Lake

Model Predictions Compared to DWR Temp, Nutrients, DO, Chl-a Data

- Long-term monitoring data available for Jordan Lake
- 18 stations in both Haw River and New Hope Creek arms of lake
- Data available since the 1980's

Model Calibration: Elevation @ Dam, Time Series, Calibration Stats

- Note ~6 m range in water surface elevation
- Model meets calibration performance criteria

Calibration Statistic	Value for 2014-2016 time period	Units
Mean Error (predicted – observed)	-0.02	m
Normalized Mean Error	-0.0%	%
Root Mean Square Error	0.23	m
Normalized Root Mean Square Error	0.3%	%
Mean Absolute Error	0.16	m
Normalized Mean Absolute Error	0.2%	%
Coefficient of determination (R ²)	95.7%	%
Number of Model/Data Comparisons	749	-
Nash-Sutcliffe Model Efficiency	93.5%	%

Model Calibration: Temperatures – Time Histories, Scatter Plot, Calibration Stats

Model Calibration: Chorophyll-a – Time Histories, CDF, Calibration Stats

Model meets calibration performance criteria

Calibration Statistic	Value for 2014-2016 time period	Units
Mean Error (predicted – observed)	-5.37	ug/L
Normalized Mean Error	-14.2%	%
Root Mean Square Error	27.2	ug/L
Normalized Root Mean Square Error	72.1%	%
Mean Absolute Error	18.9	ug/L
Normalized Mean Absolute Error	49.9%	%
Coefficient of determination (R ²)	28.3%	%
Number of Model/Data Comparisons	584	-
Nash-Sutcliffe Model Efficiency	-0.184	-

Model Calibration: Chorophyll-a – Time Histories, CDF, Calibration Stats

Model meets calibration performance criteria

Calibration Statistic	Value for 2014-2016 time period	Units
Mean Error (predicted – observed)	-5.37	ug/L
Normalized Mean Error	-14.2%	%
Root Mean Square Error	27.2	ug/L
Normalized Root Mean Square Error	72.1%	%
Mean Absolute Error	18.9	ug/L
Normalized Mean Absolute Error	49.9%	%
Coefficient of determination (R ²)	28.3%	%
Number of Model/Data Comparisons	584	-
Nash-Sutcliffe Model Efficiency	-0.184	-

Results Summary, A Look Back

Key Takeaways in NC Policy Collaboratory Report THE UNIVERSITY OF NORTH CAROLINA JORDAN LAKE STUDY

Final Report to the North Carolina General Assembly, December 2019

https://collaboratory.unc.edu/files/2020/01/2019-jordan-lake-final-report.pdf

• *The* WILLIAM STATES LEE COLLEGE *of* ENGINEERING UNC CHARLOTTE

3-d Mechanistic Model – Key Takeaways

- The majority of nutrients (N and P) entering the lake are from watershed sources, primarily from the Haw River. These nutrients are mostly in particulate and organic forms that are not immediately available to phytoplankton.
- Only a very small fraction of inflowing Haw River water makes its way to the region above the two causeways in the New Hope Creek arm of the lake. In this region, local inflows (Morgan Creek, New Hope Creek, Northeast Creek) supply the majority of nutrient inputs.
- The benthic sediments of Jordan Lake act as a sink for the particulate fraction of organic nutrients, nitrate, and dissolved oxygen. Benthic sediments are also the major source of bioavailable nutrients, providing more than 75% of phosphate and 90% of ammonia to the lake.

Results from Simulated Dye Introduction to Haw River Inflow

- Haw River
 Contributes
 >90% of water
 in Haw Arm
- Haw River
 Contributes
 only ~1% of
 water in Upper
 New Hope
 Arm

Jordan Lake		Time-Average Contrib Wate	oution from Haw River er (%)
Region	Station	2014-2015	2017-2018
Haw River	CPF055C	100%	100%
	CPF055D	100%	100%
	CPF055E	100%	100%
	Average	93.5%	93.1%
Above Causeways	CPF086C	0.0%	1.0%
	CPF086D	0.8%	2.8%
	CPF086F	1.0%	3.2%
	Average	0.0%	1.2%
Between Causeways	CPF087B3	12.0%	20.1%
	CPF087D	20.1%	30.0%
	Average	16.0%	25.0%
Below Causeways	CPF0880A	59.2%	70.4%
	Average	59.2%	70.4%

 The WILLIAM STATES LEE COLLEGE of ENGINEERING UNC CHARLOTTE

Results from Simulated Dye Introduction to Haw River Inflow

- Haw River
 Contributes
 >90% of water
 in Haw Arm
- Haw River
 Contributes
 only ~1% of
 water in Upper
 New Hope
 Arm

		Time-Average Contrib	ution from Haw River
Jordan Lake Region	Station	2014-2015	2017-2018
Haw River	CPF055C	100%	100%
	CPF055D	100%	100%
	CPF055E	100%	100%
	Average	93.5%	93.1%
Above Causeways	CPF086C	0.0%	1.0%
	CPEORED	0.8%	2.8%
	CPF086F	1.0%	3.2%
	Average	0.0%	1.2%
Between Causeways	CPF087B3	12.0%	20.1%
	CPF087D	20.1%	30.0%
	Average	16.0%	25.0%
Below Causeways	CPF0880A	59.2%	70.4%
	Average	59.2%	70.4%

• The WILLIAM STATES LEE COLLEGE of ENGINEERING UNC CHARLOTTE

3-d Mechanistic Model – Key Takeaways, cont'd

For the five-year time period studied (2014-2018), the observed 90th percentile photic-zone chlorophyll a concentration at eighteen monitoring stations across Jordan Lake was 72 μg/l, which is 44% above the North Carolina water quality criteria value of 40 μg/l.

Analysis of 2014-2018 Chl a Data

	Lake Region	Station	Number of <u>Çhl</u> a samples	Chl a median concentration (µg/L)	90th percentile <u>Chla</u> a concentration (µg/L)	Reduction needed for 90th percentile <u>Chl</u> a concentration at 40 µg/L
	Haw River	CPF055C	74	29.0	63.7	37%
_		CPF055D	72	25.0	44.9	11%
		CPF055E	73	28.0	44.0	9%
	Above	CPF081A1C	74	57.5	90.4	56%
	Causeways	CPF086C	74	58.5	89.0	55%
		CPF086F	74	52.5	81.7	51%
	Between Causeways	CPF087B3	74	34.0	52.4	24%
		CPF087D	74	29.5	53.0	25%
	Below Causeways	CPF0880A	74	28.0	42.0	5%
	Jordan take	All 18 Stations	1004	36.0	72.0	44%

Results from 2023 Model – Nutrient Reduction Scenario Tests

- Watershed loadings of organic & inorganic N & P loading reduced from 0% to 70% (63 cases + base)
- Compared chlorophyll-a concentrations and fraction of values above 40 ug/L (criteria value)
- Analyzed entire lake + 3 regions (Haw, Upper New Hope & Morgan, Middle New Hope)
- Adjusted chlorophyll-a for regions so model agrees w/ data @ 90th percentile

Results from 2023 Model – Nutrient Reduction Scenario Tests

UNC CHARLOTTE

Results: Lake Responds to Reduced N and/or P Loading (all stations) (NB: N given as frac in med)

		Station Set:	All Stati	ions					M	ed	chl-a	(ug/	L)					
4				72224	Nitrog	en Loadir	g Reduct	tion (%)				1 0.						
NR02 83 1		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7									
P loading	09	31.2	10.4	29.5	28.2	26.8	25.1	21.7	17.3									
reduction	10%	50.0	29.3	28.4	27.2	25.8	24.4	21.2	17.2									
(%)	20%	28.7	28.1	27.3	26.2	24.8	23.5	20.8	17.0									
	30%	27.2	26.7	26.0	25.1	23.8	22.6	20.1	16.7									
ä	40%	25.6	25.2	24.7	23.9	22.8	21.5	19.3	16.3									
	50%	23.9	23.7	23.3	22.6	21.6	20.4	18.6	15.8									
	60%	22.2	22.0	21.7	21.2	20.3	19.2	17.7	15.1									
	70%	20.1	20.0	19.8	19.5	18.9	18.0	16.7	14.4)								
		5.0	10.0	15.0	Color	Scale	20.0	25.0	40.0		Station Set:	All Stati	ons		Frac	. > 40) ug/l	L
2		5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0					Nitroge	n Loading	Reduction	n (%)	
											0%	10%	20%	30%	40%	50%	60%	70%
		Ν	Лore	N re	duct	ion	P	loading	09	x	0.37	0.35	0.32	0.30	0.28	0.24	0.20	0.10
							r	eduction	10	1%	0.35	0.33	0.30	0.28	0.25	0.22	0.17	0.10
	_						(%)	20	1%	0.31	0.29	0.27	0.25	0.22	0.19	0.15	0.09
	5								30	1%	0.29	0.27	0.24	0.22	0.20	0.15	0.12	0.07
ť									40	1%	0.27	0.26	0.23	0.21	0.19	0.14	0.10	0.06
7	n								50	1%	0.26	0.24	0.22	0.20	0.17	0.13	0.09	0.05
2	ב א								60	%	0.24	0.23	0.20	0.18	0.16	0.12	0.08	0.04
2	<u>۲</u>								70	1%	0.23	0.21	0.19	0.17	0.15	0.12	0.0	0.04
(5	ב																	
(2													Color Sc	ale			

Results: Lake Response More Sensitive to N than P (P reduction effect is smaller) – All Stations

		Station Set:	All Stat	ions					ſ	Mec	l chl-a	(ug/	L)					
2		Market Inc.	1	1 22000	Nitrog	en Loadin	g Reduct	ion (%)		-								
12203 212 - 4		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7									
P loading	0%	31.2	30.4	29.5	28.2	26.8	25.1	21.7	17.3									
reduction						45.0												
(%)	20%	28.7	28.1	27.3	26.2	24.8	23.5	20.8	17.0									
	30%	27.2	26.7	26.0	25.1	23.8	22.6	20.1	16.7									
	40%	25.6	25.2	24.7	23.9	22.8	21.6	19.3	16.3									
	50%	23.9	23.7	23.3	22.6	21.6	20.4	18.6	15.8									
	60%	22.2	22.0	21.7	21.2	20.3	19.2	17.7	15.1									
	70%	20.1	20.0	19.8	19.5	18.9	18.0	16.7	14.4									
	0	5.0	10.0	15.0	Color 20.0	Scale 25.0	30.0	35.0	40.0		Station Set:	All Static	ons	Miterare	Frac	> 40	ug/L	
										_	0%	10%	20%	20%	A0%	50%	60%	70%
			Логе	N re	duct	ion	P	loading	, [0%	0.37	0.35	0.32	0.30	0.28	0.24	0.20	0.10
				_				eduction		10%	0.25	0.33	0.30	0.28	0.25	0.27	0.17	0.10
								2 autor		20%	0.33	0.30	0.30	0.25	0.23	0.10	0.15	0.00
2							1	70)		20%	0.31	0.23	0.27	0.25	0.22	0.15	0.13	0.05
 +										30%	0.29	0.27	0.24	0.22	0.20	0.15	0.12	0.07
(40%	0.27	0.26	0.23	0.21	0.19	0.14	0.10	0.06
7										50%	0.26	0.24	0.22	0.20	0.17	0.13	0.09	0.05
2										60%	0.24	0.23	0.20	0.18	0.16	0.12	0.08	0.04
2	ጉ 🔹									70%	0.23	0.21	0.19	0.17	0.15	0.12	0.07	0.04
(2	ע										_							
(5													Color Sc	ale			
2	2									0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Results: N vs. P sensitivity varies from Haw to New Hope (P limited in Haw, N limited in New Hope)

		Station Set:	Haw S	tations	Nitrog	en Loadir	ng Reduct	tion (%)			Haw -	Med	ch
		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7				
P loading	0%	28.4	28.4	28.1	27.9	27.5	27.2	25.5	21.8				
reduction	10%	26.9	10.9	26.7	26.4	20.2	25.6	24.5	21.5				
(%)	20%	25.3	25.2	25.1	24.8	24.8	24.0	23.3	20.6				
	30%	23.5	23.6	23.5	23.3	23.2	22.6	21.8	19.7				
ĵ	40%	21.7	21.7	21.6	21.5	21.3	21.2	20.2	18.7				
1	50%	19.6	19.6	19.6	19.5	19.3	19.6	18.5	17.4				
ļ	60%	17.5	17.5	17.5	17.3	17.2	17.4	17.1	15.7				
3	70%	15.2	15.3	15.2	15.2	15.1	15.3	15.7	14.2			Moraar	
	0	5.0	10.0	15.0	Color 20.0	Scale 25.0	30.0	35.0	40.0		Set:	Upper I Hope	New
		_		_							0.0	0.1	0
			Μ	ore N	l red	uctio	on	Ρ	loading	0%	33.6	31.5	2
								re	duction	10%	32.9	30.3	2
	_							(%	6)	20%	31.6	29.3	2
	LO LO								6761	30%	30.7	28.4	2
	Ţ									40%	29.5	27.3	2
	ň									50%	27.7	25.8	2
	e C									60%	25.9	24.2	2
	ے د	-								700/	22.0	27.6	2
	<u>با</u> رە								ļ	70%	23.8	22.4	2
	More										5.0	10.0	
										U	5.0	10.0	1

d chl-a (ug/L)

0.2

28.9

28.0

27.2

26.0

25.1

24.0

22.6

20.9

15.0

0.3

25.3

24.9

24.3

23.7

22.7

21.8

20.8

19.3

20.0

Color Scale

N.H. - Med chl-a (ug/L)

Nitrogen Loading Reduction (%)

0.5

17.0

16.9

16.8

16.8

16.5

16.3

16.0

15.5

30.0

0.6

13.1

13.1

13.0

12.9

12.8

12.6

12.6

12.2

35.0

0.7

9.2 9.2

9.2

9.2

9.1

9.0

8.9

8.8

40.0

0.4

21.5

21.3

20.9

20.4

20.0

19.3

18.7

17.6

25.0

Results: N vs. P sensitivity varies from Haw to New Hope (P sensitive in Haw, N sensitive in New Hope)

		Station Set:	Haw S	tations							Ha
					Nitrog	en Loadir	ng Reduct	tion (%)			
		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		
P loading	0%	28.4	28.4	28.1	27.9	27.5	27.2	25.5	21.8		
reduction	10%	26.9	26.9	26.7	26.4	26.2	25.6	24.5	21.5		
(%)	20%	25.3	25.2	25.1	24.8	24.8	24.0	23.3	20.6		
	30%	23.5	23.6	23.5	23.3	23.2	22.6	21.8	19.7		
j.	40%	21.7	21.7	21.6	21.5	21.3	21.2	20.2	18.7		
	50%	19.6	19.6	19.6	19.5	19.3	19.6	18.5	17.4		
-	60%	17.5	17.5	17.5	17.3	17.2	17.4	17.1	15.7		
	70%	15.2	15.3	15.2	15.2	15.1	15.3	15.7	14.2		
					Color	Scale					S
	0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	_	-
			M	ore N	l red	uctio	n	Р	loading	0%	
								re	duction	10%	
								19	4	20%	-
	L L							14	<i>.</i> ′	20%	-
	Ę						_			30%	-
	C n				Note	e hig	her c	chl-a		40%	-
	ğ				valu	es in	NH	vs		50%	
	E E							v 5		60%	
	٩				Haw	/ (15)	% - 4	0%		70%	
	ore				diffe	erenc	e)				
	Σ										

Haw - Med chl-a (ug/L)

N.H. - Med chl-a (ug/L)

tation Upper New Set: Hope

Nitrogen Loading Reduction (%)

				NILLOG	en Loadin	ig Reduct	1011 (20)	
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
0%	33.6	31.5	28.9	25.3	21.5	17.0	13.1	9.2
.0%	32.9	30.3	28.0	24.9	21.3	16.9	13.1	9.2
:0%	31.6	29.3	27.2	24.3	20.9	16.8	13.0	9.2
0%	30.7	28.4	26.0	23.7	20.4	16.8	12.9	9.2
10%	29.5	27.3	25.1	22.7	20.0	16.5	12.8	9.1
60%	27.7	25.8	24.0	21.8	19.3	16.3	12.6	9.0
60%	25.8	24.2	22.6	20.8	18.7	16.0	12.6	8.9
0%	23.8	22.4	20.9	19.3	17.6	15.5	12.2	8.8
				Color	Scale			
0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0

Results: Significant Load Reductions Needed to Get to Frac > 40 ug/L < 0.10 (w.q. criteria)

Station	All Station
Set:	All Stations

Plo rec (%)

		Nitrogen Loading Reduction (%)													
		0%	10%	20%	30%	40%	50%	60%	70%						
ading	0%	0.37	0.35	0.32	0.30	0.28	0.24	0.20	0.10						
uction	10%	0.35	0.33	0.30	0.28	0.25	0.22	0.17	0.10						
	20%	0.31	0.29	0.27	0.25	0.22	0.19	0.15	0.09						
	30%	0.29	0.27	0.24	0.22	0.20	0.15	0.12	0.07						
	40%	0.27	0.26	0.23	0.21	0.19	0.14	0.10	0.06						
	50%	0.26	0.24	0.22	0.20	0.17	0.13	0.09	0.05						
	60%	0.24	0.23	0.20	0.18	0.16	0.12	0.08	0.04						
	70%	0.23	0.21	0.19	0.17	0.15	0.12	0.07	0.04						

All Stations: Frac > 40 ug/L

60-70% N, 10-40% P reduction needed

Haw Stations

			,	Color Scal	e			
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Haw Stations: Frac > 40 ug/L

	More N reduction	Nitrogen Loading Reduction (%)											
			0%	10%	20%	30%	40%	50%	60%	70%			
	P loading	0%	0.31	0.31	0.29	0.27	0.27	0.28	0.28	0.17			
no	reduction	10%	0.28	0.27	0.26	0.24	0.24	0.24	0.25	0.16			
Cti.	(%)	20%	0.24	0.23	0.22	0.20	0.19	0.20	0.20	0.14			
luc	=211	30%	0.18	0.18	0.16	0.15	0.13	0.14	0.14	0.11			
re P rec	0-30% N. 40-70% P	40%	0.14	0.13	0.12	0.10	0.08	0.07	0.08	0.07			
	roduction needed	50%	0.12	0.12	0.10	0.08	0.07	0.05	0.04	0.04			
	reduction needed	60%	0.11	0.10	0.09	0.07	0.06	0.04	0.02	0.02			
10		70%	0.10	0.09	0.08	0.06	0.05	0.03	0.01	0.00			

Station

Results: Significant Load Reductions Needed to Get to Frac > 40 ug/L < 0.10 (w.q. criteria)

Station	Morgan &
Set.	Upper New
Jett	Hope

	Nitrogen Loading Reduction (%)													
		0%	10%	20%	30%	40%	50%	60%	70%					
loading	0%	0.45	0.44	0.42	0.39	0.35	0.26	0.17	0.07					
duction	10%	0.45	0.43	0.41	0.39	0.35	0.26	0.17	0.07					
6)	20%	0.43	0.42	0.40	0.38	0.34	0.26	0.16	0.07					
	30%	0.42	0.40	0.39	0.37	0.33	0.25	0.16	0.07					
	40%	0.40	0.39	0.37	0.36	0.32	0.25	0.16	0.07					
	50%	0.38	0.37	0.36	0.34	0.31	0.24	0.16	0.07					
	60%	0.37	0.35	0.34	0.33	0.30	0.23	0.15	0.07					
	70%	0.35	0.34	0.33	0.31	0.28	0.22	0.15	0.07					

Up NH & Morg Stations: Frac > 40 ug/L

70% N, 0% P reduction needed

50%	0.38	0.37	0.36	0.34	0.31	0.24	0.16	0.07										
60%	0.37	0.35	0.34	0.33	0.30	0.23	0.15	0.07										
70%	0.35	0.34	0.33	0.31	0.28	0.22	0.15	0.07					Middle NH Stations:					
				Color Sci	ale					Station	Middle	New	F	rac >	40 u	g/L		
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9								Set: Hope Nitrogen Loading Reduction (%)										
										0%	10%	20%	30%	40%	50%	60%	70%	
] [More	e N re	educt	tion		P loadi	ing	0%	0.26	0.24	0.22	0.17	0.13	0.11	0.08	0.03	
					\rightarrow		reduct	ion	10%	0.25	0.23	0.20	0.17	0.12	0.10	0.07	0.03	
							(%)		20%	0.23	0.21	0.19	0.16	0.12	0.09	0.06	0.02	
									30%	0.22	0.20	0.18	0.15	0.11	0.09	0.06	0.02	
									40%	0.21	0.19	0.17	0.14	0.10	0.08	0.05	0.02	
								, 1	50%	0.18	0.16	0.14	0.12	0.09	0.07	0.05	0.02	
		3	0-50	%N,	10-6	0% F)		60%	0.16	0.14	0.13	0.10	0.07	0.05	0.04	0.01	
	reduction needed						70%	0.14	0.13	0.11	0.09	0.06	0.05	0.03	0.01			
,									Color Scale									
•									0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	

Summary and Conclusions

- New 3-d model of Jordan Lake developed and used to test nutrient reduction scenarios
- Model meets calibration criteria for key state variables
- The lake is less sensitive overall to P vs. N load reductions, but not for all regions (Haw P sensitive, UNH insensitive to P load reduction)
- Significant reductions needed to meet chl-a criteria, but differ in arms of lake (Haw: 20% N, 50% P; UNH: 70% N, 0 % P)
- Model to undergo peer review in coming year

