Prepared for:

NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

RECEIVED

MAR 2 9 2017

Received MAR 2 9 2017

DEQ-FAYETTEVILLE REGIONAL OFFICE

Air Permits Section

PSD PERMIT APPLICATION North Carolina Renewable Power – Lumberton, LLC Lumberton, North Carolina

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

March 2017

PSD PERMIT APPLICATION NORTH CAROLINA RENEWABLE POWER – LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

Received MAR 2 9 2017

Air Permits Section

Prepared for:

NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

1050 Crown Pointe Parkway Suite 550 Atlanta, GA 30338 Tel: 404-315-9113

Frank Burbach Principal

March 2017

Telephone (404) 315-9113 • Fax (404) 315-8509 • www.envplanning.com

PSD PERMIT APPLICATION NORTH CAROLINA RENEWABLE POWER – LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

TABLE OF CONTENTS

1	INTRODUCTION1							
	1.1 1.2	PSD Applicability						
2	Proc	CESS DESCRIPTION						
	2.1 2.2	Proposed Changes to the Facility						
3	EMIS	SION CALCULATIONS METHODOLOGY						
	3.1	Boiler Emission Factors73.1.1 Wood Combustion Emission Factors73.1.2 Poultry Litter Combustion Emission Factors73.1.3 Fuel Oil Combustion Emission Factors8						
4	Regu	LATORY REVIEW9						
	4.1 4.2	Prevention of Significant Deterioration of Air Quality Review [15A NCAC 2D .0530]						

	4.2.3	NSPS for Large Municipal Waste Combustors for Which
		Modification or Reconstruction is Commenced After June 19, 1996
		[40 CFR Part 60 Subpart Eb]
	4.2.4	NSPS for Stationary Compression Ignition Internal Combustion Engines [40 CFR Part 60 Subpart IIII]
4.3	Natio	nal Emission Standards for Hazardous Air Pollutants (NESHAP) [40
	CFR	Parts 63; 15A NCAC 2D .1110 and .11111
	4.3.1	NESHAP for Area Sources: Industrial, Commercial, and
		Institutional Boilers [40 CFR Part 63 Subpart JJJJJJ]11
	4.3.2	NESHAP for Reciprocating Internal Combustion Engine (RICE) [40
4.4	A aid I	CFR Part 63 Subpart ZZZZ J
4.4		State Air Pollution Pule (CSAPP)
4.5	State	Pules
4.0	4 6 1	Particulates from Wood Burning Indirect Host Evenences [15.4
	4.0.1	NCAC 2D 05041
	4.6.2	Sulfur Dioxide Emissions from Combustion Sources [15A NCAC 2D
		.0516]
	4.6.3	Control of Visible Emissions [15A NCAC 2D .0521]14
	4.6.4	Control of Odorous Emissions [15A NCAC 2D .1806]14
	4.6.5	Particulates from Miscellaneous Industrial Processes [15A NCAC 2D 0515]
	4.6.6	Toxic Air Pollutant Procedures and Standards [15A NCAC 20
		.0700, 15A NCAC 2D .1100]
4.7	Other	Rules
	4.7.1	Prevention of Accidental Releases [40 CFR 68, CAA Section
		112(r)]15
	4.7.2	Non-Hazardous Secondary Materials (NHSM) [40 CFR 241]15
	4.7.3	Local Zoning Consistency Determination
TESTI	NG AND	Monitoring17
-		
5.1	Testin	¹⁹ 17
5.2	Monit	oring18

5

ii

APPENDICES

Appendix E	Appendix D	Appendix C	Appendix B					Appendix A
BACT Analysis	Zoning Consistency Determination	PPUSA NHSM Determination Letter	Emissions Calculations	Figure 3 - General Area Map	Figure 2 - Plant Site Map	Figure 1 - Process Flow Diagram	Attachment A - Figures	Application Forms

DCN: NCRPPSD1001

H

March 2017

1 **INTRODUCTION**

North Carolina Renewable Power - Lumberton, LLC (NCRP) took ownership of the Lumberton Energy, LLC cogeneration power plant located at 1866 Hestertown Road, Lumberton (Robeson County) in January 2015. At the time, the facility had not operated since 2009. The facility consisted of two (2) identical stoker boilers (Emission Source ID Nos. ES-1A and ES-1B), one steam turbine generator and ancillary equipment. The boilers were permitted to burn coal, natural gas, No. 2 and No. 4 fuel oil, tire derived fuel (TDF), pelletized paper fuel, flyash briquette, and non-Commercial and Industrial Solid Waste Incineration (CISWI) wood. On February 20, 2015, NCRP was issued the NCDAQ Permit No. 05543T20 to reflect the change of ownership.

On March 19, 2015, NCRP applied to modify the permit to remove coal, No. 2 and No. 4 fuel oil, TDF, pelletized paper, and flyash briquettes from the fuel mix and add poultry litter as an alternate fuel. Low sulfur fuel oil is still used a t the boilers for limited startup purposes. Based on emission estimates that were developed using stack test data from a similar facility, NCRP requested PSD synthetic minor limits of less than 250 tons per year for NOx, CO, and SO₂. NCDAQ issued Permit No. 05543T21 on May 29, 2015 to modify the facility's permit accordingly. Additionally, Permit No. 05543T22 was issued on June 12, 2015 to correct a typographical error.

On July 7, 2015, the boilers were restarted, firing on non-CISWI wood only, and on October 16, 2015 poultry litter was added to the fuel mix for the first time. After restarting the boilers, NCRP discovered that the CO emissions were considerably higher than anticipated. Because the cumulative CO emissions approached the 250 tpy CO emissions limit, the COMPANY voluntarily shut down the BOILERS on March 7, 2016. On August 1, 2016, the North Carolina Environmental Management Commission ("EMC") approved a Special Order By Consent that allowed NCRP to restart the boilers following the completion of various, specified boiler maintenance ("First SOC"). NCRP conducted the specified maintenance and restarted the boilers on August 13, 2016. CO emissions from the boilers continued to by higher than expected following completion of the maintenance and on February 27, 2017, the EMC approved a second Special Order By Consent (the "Later SOC") that required submittal of a PSD permit application within 60 days of the effective date of the Later SOC. This PSD application was prepared and submitted in accordance with the Later SOC.

1.1 **PSD** Applicability

Prior to submittal of the March 2015 permit application in which the PSD synthetic minor limits were requested, the facility was classified as a PSD major source. Therefore, any PSD pollutants with emissions increases that equal or exceed the PSD significant emission rates (SERs) are subject to PSD review. Table 1.1 on the following page summarizes the emissions increases DCN: NCRPPSD1001 1

March 2017

associated with the modification of the boilers authorized by Permit No. 05543T21 (*i.e.*, the addition of poultry litter and removal of coal, TDF, and other materials from the fuel mix) and PSD applicability. Detailed calculations are provided in Appendix B.

Pollutant	Baseline Actual Emissions* (ton/yr)	Projected Actual Emissions (ton/yr)	Emissions Increases (ton/yr)	PSD Major Modification Threshold (ton/yr)
СО	5.75	847.53	841.78	100
NO _x	70.20	235.43	165.23	40
SO ₂	170.90	421.88	250.98	40
TSP/PM	4.50	56.50	52.00	25
PM ₁₀	2.40	67.80	65.40	15
PM _{2.5}	0.95	50.85	49.90	10
VOC	0.60	56.50	55.90	40
Lead	0.00033	0.09	0.09	0.6
H_2SO_4	2.24	58.39	56.15	7
CO ₂ e	46,117	438,825	392,708	75,000

Table 1.1 PSD Applicability

*Baseline Actual Emissions are based on 2007 and 2008 emissions as they represent the most recent two years of actual operation prior to the modification of the boilers authorized by Permit No. 05543T21.

As shown in the Table 1.1 above, the emissions increases of CO, NO_x, SO₂, TSP, PM₁₀, PM_{2.5}, VOC, H₂SO₄, and CO₂e are greater than their respective thresholds and are therefore subject to PSD review. Therefore, this application includes Best Available Control Technology (BACT) analysis for these pollutants (Appendix E). An impact analysis (dispersion modeling) for all of these pollutants except VOC, H₂SO₄, and CO₂e pollutants will be submitted under separate cover. The PSD rules do not require modeling of VOC, H₂SO₄, and CO₂e emissions as there are no National Ambient Air Quality Standards (NAAQS) for these pollutants.

1.2 Application Contacts

The contact persons for additional information regarding this submittal are Mr. Steven R. Ingle, P.E., of NCRP and Mr. Frank Burbach of EPS who is the air quality permitting consultant for this project. Mr. Ingle may be reached at (205) 545-8759, and Mr. Burbach may be reached at (678) 336-8531.

2 PROCESS DESCRIPTION

NCRP will operate the existing two stoker boilers (Source ID Nos. ES-1A, ES-1B) fueled with wood biomass and poultry litter as cogeneration units. Most the steam produced by the boilers will be fed to the existing turbine to generate electricity which will be sold to the local utility. A small portion of the steam may be sent to a third party, Alamac American Knits facility. A simplified process flow diagram is provided as Figure 2.1 below. Detailed process description is provided in Section 2.2.

Figure 2.1 Process Flow Diagram

2.1 **Proposed Changes to the Facility**

As mentioned previously, the proposed changes in this PSD application were previously authorized in Permit No. 05543T21. These changes include the removal of coal, TDF, and other materials from the fuel mix and the addition of poultry litter as an alternate fuel. Three biomass belt dryers (Source ID Nos. ES-17, ES-18, and ES-19) were also added to the Facility in Permit

No. 05543T21. This application requests a PSD review of the modifications authorized by Permit No. 05543T21. No further modifications are requested as part of this application.

2.2 Process Equipment and Operations

All process equipment and operations described in this section are already permitted in the existing Title V permit and were existing at the facility prior to the introduction of poultry litter as a fuel.

2.2.1 Stoker Boilers (Source ID Nos. ES-1A and ES-1B)

The primary emission sources at the facility are two stoker boilers rated at 215 million British thermal units per hour (MMbtu/hr) each. The two boilers are identical and are fueled with non-CISWI wood and poultry litter. A small amount of fuel oil (approximately 10 gal/yr) is used for startup. The boilers are equipped with the following air pollution control equipment: selective non-catalytic reduction (SNCR) for NOx control, multiclones and baghouses for filterable $PM/PM_{10}/PM_{2.5}$, and good combustion practices for minimizing CO and organic emissions. Additionally, sorbent injection (trona or sodium bicarbonate) will be used to control SO₂ and acid gas emissions.

2.2.2 Fly Ash Silo (Source ID Nos. ES-3)

Fly ash is removed from the boilers' baghouses and stored in a silo (Source ID No. ES-3). Particulate emissions from the silo will be controlled by a bin vent filter atop the silo. The fly ash is tested for metals content on a prescribed basis and managed in accordance with all applicable regulations. Based on market demand and other factors, the fly ash may have a beneficial reuse in applications such as fertilizer, concrete aggregate or as a soil amendment.

2.2.3 Raw Material Receiving, Handling, and Storage (Source ID Nos. IES-8, IES-9, IES-10, and IES-11)

2.2.3.1 Wood Fuel

The wood biomass chips are delivered onsite by the supplier via trucks (Source ID Nos. IES-8 and IES-9). Facility personnel conduct an initial inspection of the wood chips to look for significant signs of contamination (e.g., visible presence of debris including large amount of plastic or metal). Wood chip shipments that do not meet the facility's quality control standards are rejected and returned to the supplier. Wood chips that pass the initial quality inspection are transferred into a hopper to a receiving bin. From the receiving bin, the wood chips are conveyed to an outdoor storage pile (Source ID No. IES-10). Emissions from the biomass handling operations are considered fugitive and will not be impacted by this project.

The wood storage piles (Source ID No. IES-10) are fenced and equipped with water cannons for fire protection. Wood chips will be conveyed to the biomass belt dryers (Source ID Nos. ES-17, ES-18, ES-19) as needed. Wind erosion emissions from the storage pile are considered fugitive and below insignificant thresholds (*i.e.*, less than 5 tons per year of all criteria pollutant and HAP less than 1,000 lb/yr).

2.2.3.2 Poultry Litter

Poultry litter is delivered onsite by the supplier via trucks. Similar to wood biomass, poultry litter shipments that do not meet the facility's quality control standards are rejected and returned to the supplier. Quality control standards for poultry litter may include visual inspection, moisture, heat content, and contaminant level testing. Poultry litter that passes the quality inspection is transferred into a hopper and a receiving bin via a magnetic separation system to remove ferrous metal constituents. From the receiving bin, the poultry litter is conveyed to a warehouse (New Unit, Source ID No. IES-16) for storage. The poultry litter is blended as needed to achieve the proper moisture and heat content for efficient combustion. Emissions from the poultry litter handling operations and storage are considered fugitive and below insignificant thresholds (*i.e.*, less than 5 tons per year of all criteria pollutant and HAP less than 1,000 lb/yr).

2.2.4 Sorbent Storage Silo (Source ID No. IES-13)

Sorbent material (trona or sodium bicarbonate) will be injected in the flue gas exhaust upstream of the baghouse to control SO_2 and acid gas emissions. The sorbent will be stored in a silo (Source ID No. IES-13). If additional milling of the sorbent is required prior to injection, NCRP will use a completely enclosed milling system with negligible emissions.

2.2.5 Biomass Belt Dryers (New Units, Source ID Nos. IES-17, IES-18, IES-19)

The facility proposes to installed three new belt dryers which will be used to reduce the moisture content of wood chips from 50% to 7%. To date, these three belt dryers have not been operated. The belt dryers are approximately 4,000 square feet total with a maximum capacity of 6 tons per hour (per dryer). Hot water from the condenser will be the sole heat source to the dryers when the sources begin operations. The dryers will operate at a maximum temperature of 122 °F. Due to the low operating temperature of the dryers, NCRP anticipates that emissions from the dryers will be below insignificant thresholds (*i.e.*, less than 5 tons per year of all criteria pollutant and HAP less than 1,000 lb/yr). The facility proposes to conduct a stack test for VOC emissions from one of the belt dryers within 180 days after startup. Dried chips will be stored outside prior to shipment offsite as product.

2.2.6 Other Ancillary Equipment

Other ancillary equipment at the Facility include the following:

- Diesel Fired Emergency Fire Pump 340 hp (Source ID No. ES-1)
- Diesel Storage Tank 500 gallons (Source ID No. IES-2)
- Fire Pump Fuel Oil Storage Tank 250 gallons (Source ID No. IES-3)
- Solvent Parts Cleaner 20 gallons (Source ID No. IES-4)
- Turbine Lube Oil Tank Vent 950 gallons (Source ID No. IES-5)
- Cooling Towers 19,190 gallons per minute (Source ID No. IES-6)
- Aqueous Ammonia Tank 10,000 gallons (Source ID No. ES-15)

3 EMISSION CALCULATIONS METHODOLOGY

For the purposes of this application, the pollutants of concern were restricted to regulated pollutants under the Clean Air Act. These pollutants include NO_x , SO_2 , PM, CO, volatile organic compounds (VOC), sulfuric acid, hazardous air pollutants (HAP), and selected North Carolina toxic air pollutants (TAP).

3.1 Boiler Emission Factors

Emissions from the boiler are estimated using the following methodology:

3.1.1 Wood Combustion Emission Factors

Emission factors for wood biomass combustion in the boilers are selected from the following sources, in order of hierarchy:

- Boiler and air pollution control device (APCD) vendor guarantees. As shown in Appendix B, vendor guarantees are available for NO_x, SO₂, PM, CO, HCl, VOC, and ammonia (NH₃).
- EPA AP-42 Section 1.6 Wood Residue Combustion in Boilers (9/03) for hazardous air pollutants (HAPs) and toxic air pollutants (TAPs).
- May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP Kenansville is a sister-site of the Lumberton facility with identical boilers.

3.1.2 Poultry Litter Combustion Emission Factors

Emission factors for poultry litter combustion in the boilers are estimated from the following sources:

- CCCP Kenansville Poultry Litter Test Burn data conducted in July 2014.
- CCCP Kenansville Poultry Litter Test Burn data conducted in May and July 2013.

The emission factor sources referenced above are included in Appendix B.

3.1.3 Fuel Oil Combustion Emission Factors

A small amount of fuel oil (up to 10 gallons per year) is used during boiler startups. Emission factors for fuel oil combustion during startups are based on EPA AP-42 Section 1.3 – Fuel Oil Combustion (5/10).

4 REGULATORY REVIEW

This section discusses regulations that are potentially applicable to the proposed project.

4.1 Prevention of Significant Deterioration of Air Quality Review [15A NCAC 2D .0530]

As mentioned in the Introduction Section (Section 1), the facility was an existing PSD major source prior to the issuance of Permit No. 05543T21 in 2015, which added poultry litter and removed coal, TDF, and other materials from the fuel mix and applied facility-wide 250-tpy emissions limitations. For the purpose of this application, NCRP is evaluating PSD applicability of the modification authorized by Permit No. 05543T21 based on the assumption that the facility is an existing PSD major source. Therefore, any PSD pollutants for which the increase in emissions resulting from the modification are greater than the significant emission rates (SERs) for major sources are subject to PSD review. Because the boilers had not operated since 2009, the baseline actual emissions were determined based on the 2007 and 2008 emissions The projected actual emissions were calculated as described in the Emissions inventories. Calculation Methodology Section (Section 3). The differences between these values were then determined to represent the emissions increases for PSD applicability purposes. The PSD SERs were exceeded for the following pollutants: CO, NO_x, SO₂, TSP, PM₁₀, and PM_{2.5}, VOC, H₂SO₄, and CO2e. Therefore, a BACT analysis was performed for these pollutants (Appendix E). Additionally, an impact analysis is being performed for CO, NO_X, SO₂, TSP, PM₁₀, and PM_{2.5}, as these pollutants have National Ambient Air Quality Standards (NAAQS). The modeling report will be submitted to the agency under separate cover.

4.2 New Source Performance Standards [15A NCAC 2D 0524]

4.2.1 NSPS for Industrial - Commercial - Institutional Steam Generating Units [40 CFR Part 60 Subpart Db]

NSPS Subpart Db applies to boilers with a heat input capacity of greater than 100 MMBtu/hr which are constructed, modified, or reconstructed after June 19, 1984. Because the boilers only burn very low sulfur oil (during startup) and wood biomass with a potential SO₂ emission rate of 0.32 lb/MMBtu heat input or less, no SO₂ limit of the NSPS will apply [40 CFR 60.42b(k)(2)].

The permit limits the fuel oil usage during startup to less than 10% of the annual capacity. Therefore, the NSPS NO_x limit does not apply to the boilers [40 CFR 60.44b(c)].

Since the boilers were constructed, reconstructed, or modified after February 28, 2005, the boilers are subject to a PM emission limit of 0.03 lb/MMBtu [40 CFR 60.43b(h)(1)]. Also, because the boilers combust wood, they are subject to a limit of 20% opacity (6-minute average), except for one 6-minute period per hour of no more than 27% opacity [40 CFR 60.43b(f)].

NCRP conducted an initial NSPS performance test for PM while burning poultry litter on December 22, 2016. The test results indicated compliance.

4.2.2 NSPS for Commercial and Industrial Solid Waste Incineration Units [40 CFR Part 60 Subpart CCCC]

The NSPS for Commercial and Industrial Solid Waste Incineration Units (40 CFR 60 Subpart CCCC) does not apply to this facility because the boilers are not classified as Industrial Solid Waste Incineration units and will not burn solid waste as defined under 40 CFR 241. Note that poultry litter to be burned at the facility will be acquired and supplied by Poultry Power USA (PPUSA) who received a determination letter from NCDAQ on March 8, 2013 (Applicability Determination No. 2131) stating that the poultry litter as described in the letter meets the legitimacy criteria under 40 CFR 241.3(d)(1) and is a non-solid waste fuel in accordance with 40 CFR 241.3(b)(4). A copy of the Applicability Determination letter is included in Appendix C.

4.2.3 NSPS for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which Modification or Reconstruction is Commenced After June 19, 1996 [40 CFR Part 60 Subpart Eb]

This NSPS does not apply to the facility because the boilers are not classified as municipal waste combustor units.

4.2.4 NSPS for Stationary Compression Ignition Internal Combustion Engines [40 CFR Part 60 Subpart IIII]

The NSPS for Stationary Compression Ignition (CI) Internal Combustion Engines (ICE) (40 CFR Part 60 Subpart IIII) applies to owners and operators of CI ICE that are manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006. This rule is applicable to the existing 340 hp emergency fire pump (Source ID No. ES-1) at the facility.

The emergency fire pump (Source ID No. ES-1) is a certified engine which meets the applicable emissions limits specified in 40 CFR 60.4211(c). A non-resettable hour meter is installed, and non-emergency operation for maintenance and readiness testing of the fire pump will be limited to 100 hours per year (per 60.4209(a) and 60.4211(e)).

National Emission Standards for Hazardous Air Pollutants 4.3 (NESHAP) [40 CFR Parts 63; 15A NCAC 2D .1110 and .1111]

4.3.1 NESHAP for Area Sources: Industrial, Commercial, and Institutional Boilers [40 CFR Part 63 Subpart JJJJJJ]

NCRP is subject to the NESHAP Subpart JJJJJJ. Since the facility was constructed before June 4, 2010, the boilers (Source ID Nos. ES-1A, ES-1B) are considered to be existing sources under the NESHAP. The applicable requirements from the NESHAP are summarized below:

Compliance Date: Within 30 days of re-start (40 CFR 63.11210(j)).

Startup/Shutdown Work Practice Standard: Minimize startup and shutdown periods following the manufacturer's recommended procedures. If manufacturer's recommended procedures are not available, follow recommended procedures for a unit of similar design for which manufacturer's recommended procedures are available (40 CFR 63.11201, Table 2 of Subpart JJJJJJ).

- Tune-Up Work Practice Standard: Conduct an initial and biennial tune-up of the boiler • (40 CFR 63.11201, Table 2 of Subpart JJJJJJ) following the tune-up procedures under 40 CFR 63.11223. Each tune-up must occur within 25 months of the previous tune-up.
- One-Time Energy Assessment Work Practice Standard: Conduct a one-time energy assessment (40 CFR 63.11201, Table 2 of Subpart JJJJJJ) following the definition in 40 CFR 63.11237 and the procedures in Table 2 of Subpart JJJJJJ.
- General Requirements: Operate and maintain the boilers, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source (40 CFR 63.11205(a)).
- Initial Work Practice Compliance Demonstration: The initial biennial tune-up must be conducted and reported in the Notification of Compliance Status report. Therefore, it must be conducted within 30 days of re-start. The startup and shutdown work practices must also be reported in the Notification of Compliance Status report (40 CFR
- Initial Notification: Due within 120 days of startup (40 CFR 63.11225(a)(2)).

- Notification of Compliance Status: Due within 60 days after completing the initial tuneup and energy assessment, including the applicable certifications from 40 CFR 63.11225(a)(4).
- Biennual Compliance Certification Report: Must be prepared by March 1 of each year following the year in which a biennial tune-up is conducted. If any deviations from applicable requirements occurred, the report must be submitted by March 15. The content of the report is specified in 40 CFR 63.11225(b)(1) through (4).
- Recordkeeping Requirements: Records of tune-ups must be maintained as specified in 40 CFR 63.11225.
- Definitions: The following specific definitions apply:

Biomass means any biomass-based solid fuel that is not a solid waste. This includes, but is not limited to, wood residue and wood products (e.g., trees, tree stumps, tree limbs, bark, lumber, sawdust, sander dust, chips, scraps, slabs, millings, and shavings); animal manure, including litter and other bedding materials; vegetative agricultural and silvicultural materials, such as logging residues (slash), nut and grain hulls and chaff (e.g., almond, walnut, peanut, rice, and wheat), bagasse, orchard prunings, corn stalks, coffee bean hulls and grounds. This definition of biomass is not intended to suggest that these materials are or are not solid waste.

Biomass subcategory includes any boiler that burns at least 15 percent biomass on an annual heat input basis.

4.3.2 NESHAP for Reciprocating Internal Combustion Engine (RICE) [40 CFR Part 63 Subpart ZZZZ]

The RICE NESHAP applies to the emergency fire pump (Source ID No. ES-1); however, the only applicable requirement is to meet any applicable provisions of NSPS IIII (40 CFR 63.6590(c)). No further requirements, including the initial notification and other NESHAP provisions, apply to the fire pump engine under this rule. See section 4.2.4 for discussion on the NSPS IIII requirements.

4.4 Acid Rain Program [15A NCAC 2Q .0400]

The boilers are currently subject to the Acid Rain Program. Even though the boilers will no longer burn fossil fuel (coal), since coal was used as fuel in the past, the boilers will still be considered "fossil fuel fired" in accordance with 40 CFR 72.2:

Fossil fuel-fired means the combustion of fossil fuel or any derivative of fossil fuel, alone or in combination with any other fuel, independent of the percentage of fossil fuel consumed in any calendar year (expressed in MMBtu).

This is consistent with EPA letter¹ to CMS Generation Craven County Wood Energy dated

In summary, a unit, such as Craven County Unit ES5A, that is combusting fossil fuel and meets the other requirements for being an affected unit and thus subject to the Acid Rain Program requirements would not become an unaffected unit and no longer subject to these requirements simply by switching entirely to non-fossil fuel.

The current permit contains applicable Acid Rain Program requirements including SO2 allowance allocations and NOx requirements. No changes to the Acid Rain Program permit

Cross-State Air Pollution Rule (CSAPR) 4.5

On July 6, 2011, the EPA finalized the Cross-State Air Pollution Rule (CSAPR) to replace CAIR. However, on December 30, 2011, CSAPR was stayed prior to implementation. On October 23, 2014, the U.S. Court of Appeals for the District of Columbia Circuit granted the EPA's motion to lift the stay of CSAPR. Through subsequent EPA rulings, CSAPR took effect

NCRP will comply with all applicable CSAPR requirements and emissions allowance from 2015

4.6 **State Rules**

4.6.1 Particulates from Wood Burning Indirect Heat Exchangers [15A NCAC 2D

This standard applies to the boilers because they burn wood. The allowable PM emission limit is determined as follows:

$$E = 1.1698 * O(-0.2230)$$

Where:

E = allowable emission limit for PM (in lb/MMBtu) Q = maximum heat input (in MMBtu/hr)

¹ See <u>http://www.epa.gov/airmarkets/progsregs/arp/docs/craven_county.pdf</u>

FP

Based on the 215 MMBtu/hr maximum heat input (per boiler), the allowable emission limit for PM while burning wood biomass is 0.35 lb/MMBtu. Operation of the COMS will be used to demonstrate compliance with this standard. Note that NSPS 40 CFR 60 Subpart Db includes a more stringent PM limit of 0.03 lb/MMBtu. Therefore, the 15A NCAC 2D .0504 PM limit is

4.6.2 Sulfur Dioxide Emissions from Combustion Sources [15A NCAC 2D .0516]

This standard limits SO₂ emissions from the boilers to 2.3 lbs/MMBtu heat input. Compliance with this standard will be demonstrated by firing biomass (low sulfur) and ultra-low sulfur fuel oil during startup. The current permit includes the applicable limits and requirements to demonstrate compliance with this standard. No change is expected to be required for section 15A

4.6.3 Control of Visible Emissions [15A NCAC 2D .0521]

This standard requires that visible emissions from the boilers shall not be more than 20% opacity when averaged over a six-minute period. However, six-minute averaging periods may exceed 20% not more than once in any hour and not more than four times in any 24-hour period. The current permit includes the applicable limits and requirements to demonstrate compliance with this standard. No change is expected to be required for section 15A NCAC 2D .0521 of the

4.6.4 Control of Odorous Emissions [15A NCAC 2D .1806]

This standard requires that the facility shall not be operated without implementing management practices or installing and operating odor control equipment sufficient to prevent odorous emissions from the facility from causing or contributing to odors beyond the facility's boundary. As mentioned in Section 2.2.3, the poultry litter will be stored in a warehouse (Source ID No. IES-16) which will be completely enclosed under negative pressure and vented to the boilers to

4.6.5 Particulates from Miscellaneous Industrial Processes [15A NCAC 2D .0515]

This standard regulates PM emissions for industrial process for which no other emission control standard applies. Those processes include fuel handling, fly and bottom ash handling, and the The current permit includes the applicable limits and requirements to demonstrate compliance with this standard. No change is expected to be required for section 15A

4.6.6 Toxic Air Pollutant Procedures and Standards [15A NCAC 2Q .0700, 15A NCAC

This standard requires facilities that emit a toxic air pollutant (TAP) greater than its respective Toxic Air Pollutant Emission Rates (TPERs) to obtain a permit. The current permit includes the applicable limits and requirements to demonstrate compliance with this standard. In accordance with North Carolina recent legislation, the standard does not apply to sources for which a MACT or GACT standard pursuant to 40 CFR Parts 61 or 63 applies. Since the boilers (Source ID Nos. ES-1A, ES-1B) and emergency fire pump (Source ID No. ES-1) are regulated under 40 CFR Part 63, the TAP standard does not apply. Please note that since no MACT or GACT standard applies to the aqueous ammonia storage tank (Source ID No. ES-15), the TAP standard still applies to this emission unit. NCRP plans to supplement this application with a modeling demonstration showing ambient impacts of TAPs that may be emitted in excess of the associated TPERs.

4.7 **Other Rules**

4.7.1 Prevention of Accidental Releases [40 CFR 68, CAA Section 112(r)]

The aqueous ammonia has a maximum ammonia concentration of 19%. Under 40 CFR 68, the Risk Management Plan (RMP) threshold for aqueous ammonia is 20%. Therefore, an RMP is not required.

4.7.2 Non-Hazardous Secondary Materials (NHSM) [40 CFR 241]

The boilers are not classified as Industrial Solid Waste Incineration units and will not burn solid waste as defined under 40 CFR 241 as discussed below.

4.7.2.1 Wood Biomass

Wood biomass to be burned at the facility includes non-Commercial/Industrial Solid Waste Incineration (CISWI) wood. In the final amendments to the Non-Hazardous Secondary Materials rule (NHSM rule) [40 CFR 241] promulgated on February 7, 2013, "clean cellulosic biomass" is

Clean cellulosic biomass means those residuals that are akin to traditional cellulosic biomass, including, but not limited to: Agricultural and forest-derived biomass (e.g., green wood, forest thinnings, clean and unadulterated bark, sawdust, trim, tree harvesting residuals from logging and sawmill materials, hogged fuel, wood pellets, untreated wood pallets); urban wood (e.g., tree trimmings, stumps, and related forest-derived biomass from urban settings); corn stover and other biomass crops used specifically for the production of cellulosic biofuels (e.g., energy cane, other fast growing grasses,

byproducts of ethanol natural fermentation processes); bagasse and other crop residues (e.g., peanut shells, vines, orchard trees, hulls, seeds, spent grains, cotton byproducts, corn and peanut production residues, rice milling and grain elevator operation residues); wood collected from forest fire clearance activities, trees and clean wood found in disaster debris, clean biomass from land clearing operations, and clean construction and demolition wood. These fuels are not secondary materials or solid wastes unless Clean biomass is biomass that does not contain contaminants at concentrations not normally associated with virgin biomass materials.

The wood biomass to be used at the facility meets the definition of clean cellulosic biomass provided above. Therefore, it is considered a fuel and not solid waste.

4.7.2.2 Poultry Litter

Poultry litter burned at the facility is acquired and supplied by Poultry Power USA (PPUSA) who received a determination letter from NCDAQ on March 8, 2013 (Applicability Determination No. 2131) stating that the poultry litter as described in the letter meets the legitimacy criteria under 40 CFR 241.3(d)(1) and is a non-solid waste fuel in accordance with 40 CFR 241.3(b)(4). A copy of the Applicability Determination letter is included in Appendix C.

4.7.3 Local Zoning Consistency Determination

Robeson County and the City of Lumberton have been identified as having jurisdiction over the land on which the facility is located. Zoning consistency determination requests were submitted to Robeson County and the City of Lumberton in accordance with the requirements of N.C.G.S. §143-215.108(f) and 15 NCAC 02Q .0507(d)(1) when the permit application for Permit No. 05543T21 was submitted. No additional equipment and no expansion of existing operations is being requested in this PSD application. The zoning consistency determinations received from Robeson County and the City of Lumberton are included in Appendix D.

5 **TESTING AND MONITORING**

To demonstrate compliance with the proposed emissions limits and applicable regulations, the

5.1 Testing

Table 5.1 provides a summary of the proposed testing.

D-11		1 Four reading
rollutant	Test Type	
NO _x	CEMS	Requirement / Regulation
50		BACT Limit Compliance
302	CEMS	BACTI
СО	CEMS	BACT Limit Compliance
Voc		BACT Limit Compliance
	Stack Test	BACT Limit C
PM/PM ₁₀ /PM _{2.5}	Stack Test	BACT Limit Compliance
		NSPS
HC1	Staals Terri	BACT Limit Compliance
	Stack Test	HAP synthetic minor source on C
ulturic Acid Mist	Stack Test	PACTA :
		BACI Limit Compliance

Table 5.1 Proposed Testing

5.2 Monitoring

Table 5.2 provides a summary of the proposed monitoring.

Pollutant Parameter Frequency **Averaging Period** Requirement / Boiler Regulation NO_x Emissions Continuous (CEMS) 30-Day Rolling BACT Limit Compliance SO₂ Emissions Continuous (CEMS) 30-Day Rolling BACT Limit Compliance CO Emissions Continuous (CEMS) 30-Day Rolling BACT Limit Compliance PM/PM10/PM2.5 Opacity Continuous (COMS) 6-Minute NSPS CO_2e Emissions Monthly 12-month Rolling BACT Site-Wide HC1 Calculated on a Emissions HAP Synthetic Monthly Basis 12-Month Minor Limit

Table 5.2 Proposed Monitoring

APPENDIX A Application Forms

Received MAR 2 9 2017

FORM AA

ADMINISTRATIVE APPLICATION (GENERAL INFORMATION)

	NOTE- APPLICATION W	ILL NOT BE	PROCESSED WIT	HOUT THE	FOLLOWING:	an i Gitti	ILS SECUS
Local Zoning Consister modification only)	ncy Determination (new or		Appropriate Number of	Copies of App	lication	Application F	ee (if required)
Responsible Official/A	utborized Contact Signature						
	attorized contact signature	CENEDAL	INFORMATION	10.000	and the second second		
		GENERAL	INFORMATION			With the second	
egal Corporate/Owner Name:	North Carolina Renewable Power -	Lumberton, LLC					
te Address (011 Address) Liss 1	1966 Upstorferum Bred						
ite Address (911 Address) Line 1.	1000 Hestertown Road						
ite Augless Line 2.			Chotor	North Core	line		
in Code: 28359			County	Robeson			
.p 0000. 20005		CONTACT	INFORMATION	100003011		ALC: NOT THE	a series and
esponsible Official/Authorized Con	fact:		Invoice Cor	tact: St	even R. Ingle		
ame/Title: Steven R. Ingle, Vice P	President - Engineering		Name/Title:	Steven R.	nale. Vice President	- Engineering	
lailing Address Line 1: 2100 Southbri	idge Parkway, Suite 540		Mailing Addr	ess Line 1: 21	00 Southbridge Park	way. Suite 540	
lailing Address Line 2:			Mailing Addr	ess Line 2;			
ity: Birmingham State:	AL Zir	p Code: 3	5209 City: Birmi	ngham	State:	AL	Zip Code: 3520
rimary Phone No.: (205) 54	5-8759 Fax No.:		Primary Pho	ne No.:	(205) 545-8759	Fax No.:	
econdary Phone No.:			Secondary F	hone No.:			
mail Address: single@greenfuelsener	rgy.com		Email Addre	ss: single@gre	enfuelsenergy.com		
acility/Inspection Contact:			Permit/Tech	nical Contact.			
ame/Title: Steven R. Ingle, Vice P	resident - Engineering		Name/Title:	Steven R. I	ngle, Vice President	- Engineering	
failing Address Line 1: 2100 Southbrid	dge Parkway, Suite 540		Mailing Addr	ess Line 1: 21	00 Southbridge Park	way, Suite 540	
lailing Address Line 2;			Mailing Addr	ess Line 2:			
ity: Birmingham State:	AL Zip	Code: 3	5209 City: Birmi	ngham	State:	AL	Zip Code: 3520
hary Phone No.: (205) 545	5-8759 Fax No.:		Primary Pho	ne No.:	(205) 545-8759	Fax No.:	
econdary Phone No.:			Secondary P	hone No.:			
mail Address: single@greenfuelsener	:gy.com		Email Addre	ss: single@gre	enfuelsenergy.com		
	AP	PLICATION IS	S BEING MADE F	OR			Mark CENT
New Non-permitted Facility/Gree	enfield Modification of Fac	ility (permitted)	Rener Rener	wal Title V	Renewa	al Non-Title V	
Name Change D Owners	ship Change Administrative Am	endment		wal with Modifi	cation	1	(2000 - 10) - 10 - 10
of the second second states of the second	FACILITY CLASSIF	ICATION AFT	ER APPLICATION	V (Check Or	nly One)		
					Synthetic Minor	12	Title V
General	Small	CILITY (Plant	Prohibitory Small				A REAL PROPERTY AND A REAL
General escribe nature of (plant site) operation(Small FA	CILITY (Plant	Site) INFORMAT	ON		THAN A	
General escribe nature of (plant site) operation(4 MW biomass-fired power generation f	Small FAi (s): facility utilizing clean cellulosic biomass	CILITY (Plant	Prohibitory Small Site) INFORMAT	ON fuel.			
General escribe nature of (plant site) operation(4 MW biomass-fired power generation f	Small FAi (s): facility utilizing clean cellulosic biomass	CILITY (Plant	Prohibitory Small Site) INFORMAT	ON fuel. . 7800166			
General General escribe nature of (plant site) operation(4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911/22111	Small FA (s): facility utilizing clean cellulosic biomass 7	CILITY (Plant : (non-CISWI) woo	Prohibitory Small Site) INFORMAT ad and poultry litter for Facility ID No Current/Previ	fuel. 1. 7800166 ious Air Permit	No. 05543T23	Expiration Date	e: 9/30/2017
General Cescribe nature of (plant site) operation(WW biomass-fired power generation f rimary SIC/NAICS Code: 4911/22111 acility Coordinates:	Small FA (s): facility utilizing clean cellulosic biomass 7 Latitude: 34.5949222	CILITY (Plant : (non-CISWI) woo	Prohibitory Small Site) INFORMAT ad and poultry litter for Facility ID No Current/Previ Longitude: -7	ON fuel. 2. 7800166 ious Air Permit 78.9946	No. 05543T23	Expiration Date	e: 9/30/2017
General escribe nature of (plant site) operation(4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911 / 22111 acility Coordinates: tops this application contain onfidential data?	Small FA (s): facility utilizing clean cellulosic biomass 7 Latitude: 34.594922 VES I NO	CILITY (Plant : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT ad and poultry litter for Facility ID No Current/Previ Longitude: -7 'If yes, please contac plication.***	ON fuel. 2. 7800166 ious Air Permit 78.9946 t the DAQ Reg (See Instructi	No. 05543T23 gional Office prior to ons)	Expiration Date	e: 9/30/2017
General escribe nature of (plant site) operation (4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911 / 22111 acility Coordinates: oes this application contain onfidential data?	Small FA (s): facility utilizing clean cellulosic biomass 17 Latitude: 34.594922 VES MO PERSON O	CILITY (Plant : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT ad and poultry litter for Facility iD No Current/Previ Longitude: -7 'If yes, please contac oplication.*** FREPARED APF	ON fuel. . 7800166 ious Air Permit 78.9946 t the DAQ Reg (See Instructi PLICATION	No. 05543T23 gional Office prior fo	Expiration Data	e: 9/30/2017
General escribe nature of (plant site) operation 4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911/22111 acility Coordinates: oes this application contain onfidential data? erson Name: Frank Burbach	Small FA (s): facility utilizing clean cellulosic biomass 7 Latitude: 34.594922 VES MO PERSON O	CILITY (Plant : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT ad and poultry litter for Facility ID No Current/Previ Longitude: -7 *If yes, please confac oplication.*** FPREPARED APF Firm Name:	ON fuel. . 7800166 ious Air Permit 78.9946 t the DAQ Req (See Instructi PLICATION Environmental	No. 05543T23 gional Office prior to ons) Planning Specialists,	Expiration Data o submitting the	a: 9/30/2017
General escribe nature of (plant site) operation 4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911 / 22111 acility Coordinates: oes this application contain onfidential data? erson Name: Frank Burbach lailing Address Line 1: 1050 Crown Po	Small FA (s): facility utilizing clean cellulosic biomass 7 Latitude: 34.594922 YES MO PERSON O inte Parkway	CILITY (Plant : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT od and poultry litter for Facility ID Nc Current/Previ Longitude: -7 "If yes, please contac oplication.*** FPREPARED APPF Firm Name: Mailing Addre	ION fuel. 2. 7800166 ious Air Permit 78.9946 t the DAQ Reg (See Instructi PLICATION Environmental ass Line 2: Suit	No. 05543T23 gional Office prior to ons) Planning Specialists, e 550	Expiration Date o submitting the	e: 9/30/2017 his
General escribe nature of (plant site) operation(4 MW biomass-fired power generation f 4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911 / 22111 acility Coordinates: toes this application contain onfidential data? erson Name: Frank Burbach lailing Address Line 1: 1050 Crown Po ity: Atlanta	Small FA (s): facility utilizing clean cellulosic biomass 7 Latitude: 34.594922 VES M NC PERSON C inte Parkway State: GA	CILITY (Plant : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT od and poultry litter for Facility ID Nc Current/Prev. Longitude: -7 "If yes, please contac oplication.*** TPREPARED APP Firm Name: Mailing Addre Zip Code: 30	ION fuel. 2. 7800166 ious Air Permit 78.9946 1 the DAQ Reg (See Instruction PLICATION Environmental ass Line 2: Suit 1338	No. 05543T23 gional Office prior to ons) Planning Specialists, a 550	Expiration Date o submitting the Inc.	e: 9/30/2017 his
General escribe nature of (plant site) operation 4 MW biomass-fired power generation f 4 MW biomass-fired power generation f rimary SIC/NAICS Code: 4911 / 22111 acility Coordinates: oes this application contain onfidential data? erson Name: Frank Burbach lailing Address Line 1: 1050 Crown Po ity: Atlanta hone No.: (678) 336-8531	Small FA (s): facility utilizing clean cellulosic biomass 17 Latitude: 34.594922 YES MO PERSON O inte Parkway State: GA Fax No.: (404) 315-8509	CILITY (Plant : (non-CISWI) woo : (non-CISWI) woo : : : : : : : : : : : : : : : : : :	Prohibitory Small Site) INFORMAT od and poultry litter for Facility ID No Current/Prev Longitude: -7 'If yes, please confact oplication.*** TPREPARED APF Firm Name: Mailing Addres Zip Code: 30 Email Addres	In the second se	No. 05543T23 gional Office prior to ons) Planning Specialists, e 550 envplanning.com	Expiration Data o submitting the Inc.	e: 9/30/2017 his b
General Genera	Small FA (s): facility utilizing clean cellulosic biomass facility utilizing clean cellulosic biomass I7 Latitude: 34.594922 I7 YES I NO PERSON O Inte Parkway State: GA Fax No.: (404) 315-8509 SIGNATURE OF RE	CILITY (Plant : (non-CISWI) wood : (non-CISWI) wood : approximate and the second secon	Prohibitory Small Site) INFORMAT od and poultry litter for Facility ID Nc Current/Prev Longitude: -: 'If yes, please confac oplication.*** TPREPARED APF Firm Name: Mailing Addres OFFICIAL/AUTHC	Non fuel. 2.7800166 ious Air Permit 78.9946 1 the DAQ Reg (See Instructi PLICATION Environmental ass Line 2: Suit 338 s: fburbach@ SRIZED COI	No. 05543T23 gional Office prior to ons) Planning Specialists, e 550 envplanning.com	Expiration Data o submitting ti Inc. County: Dakat	e: 9/30/2017
General escribe nature of (plant site) operation 4 MW biomass-fired power generation I 4 MW biomass-fired power generation I acility Coordinates: oes this application contain onfidential data? erson Name: Frank Burbach ailing Address Line 1: 1050 Crown Po ity: Atlanta hone No.: (678) 336-8531 ame (typed): Steven R. Ingle	Small FA (s): facility utilizing clean cellulosic biomass facility utilizing clean cellulosic biomass I7 Latitude: 34.594922 VES M NO PERSON O inte Parkway State: GA Fax No.: (404) 315-8509 SIGNATURE OF RE	CILITY (Plant : (non-CISWI) woo : R FIRM THAT :SPONSIBLE	Prohibitory Small Site) INFORMAT od and poultry litter for Facility iD Nc Current/Prev Longitude: "If yes, please contac oplication.*** FPREPARED APF Firm Name: Mailing Addres OFFICIAL/AUTHC Title: Vice Pr	Non fuel. 7800166 ious Air Permit 78.9946 t the DAQ Reg (See Instructi PLICATION Environmental ass Line 2: Suit 338 S: fburbach@ DRIZED COI esident - Engin	No. 05543T23 gional Office prior to ons) Planning Specialists, a 550 envplanning.com TTACT eering	Expiration Date o submitting the inc.	e: 9/30/2017
General Generation	Small FA (s): facility utilizing clean cellulosic biomass I T Latitude: 34.594922 VES M NO PERSON O inte Parkway State: GA Fax No.: (404) 315-8509 SIGNATURE OF RE	CILITY (Plant (non-CISWI) woo (non-CISWI) woo R FIRM THAT SPONSIBLE	Prohibitory Small Site) INFORMAT od and poultry litter for Facility ID Nc Current/Prev Longitude: "If yes, please contac oplication.*** FPREPARED APF Firm Name: Mailing Addre Zip Code: 30 Email Addres OFFICIAL/AUTHO Title: Vice Pr Date:	ON fuel. . 7800166 ious Air Permit 78.9946 t the DAQ Req (See Instructi VLICATION Environmental ass Line 2: Suit 3338 is: fburbach@ ORIZED CON esident - Engin	No. 05543T23 gional Office prior to ons) Planning Specialists, a 550 envplanning.com ITACT eering	Expiration Date o submitting the Inc.	e: 9/30/2017 his

FORM AA (continued, page 2 of 2)

ADMINISTRATIVE APPLICATION

	AA
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL	BURNING ST
(Company Name) hereby formally requests renewal of Air Permit No.	
There have been no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.	
Is your facility subject to 40 CFR Part 68 "Prevnetion of Accidental Releases" - Section 112(r) of the Clean Air Act?	
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?	_
	_
In accordance with the provisions of Title 15A 20, 0513, the responsible official of	
hereby formally requests renewal of Air Permit No. (Air Permit No.) and further certifies that	
(1) The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the	
North Carolina Title V regulations at 15A NCAC 2Q .0500;	
(2) The current air quality permit cits all applicable requirements and provides the method or methods for determing compliance with the applicable requirements;	
(3) The facility is currently in compliance, and shall continue to comply, with all applicable requiremetns. (Note: As provided under 15A NCAC 2Q .0512	
compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);	
 (4) For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis; (5) The facility shall fulfill applicable ephagoed monitoring requirements and submit a compliance perification as required by 40 CEP. Bast 64 	
The responsible official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief	
formed after reasonable inquiry, are true, accurate, and complete.	
SECTION AA3- APPLICATION FOR NAME CHANGE	are all the
New Facility Name:	
Former Facility Name:	
An official facility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been	
modifications to the originally premitted facility that would require an air quality permit since the last permit was issued and if ther has been an ownership change	
associated with this name change.	
SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE	
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below.	
The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the	
parcing described on page 1 or this form has been or will be transferred on (date). There have been no modifications to the originally	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1);	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1);	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink):	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink):	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name:	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name:	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name:	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact;	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact; Name (typed or print):	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title:	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title:	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact; Name (typed or print): Title: X Signature (Blue Ink):	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink):	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink): Date:	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink): Z Signature (Blue Ink): Date: Former Legal Corporate/Owner Name:	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink): Date: Former Legal Corporate/Owner Name: In lieu of the seller's signature on this form, a letter may be submitted with the seller's signature indicating the ownership change	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink):	
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink):	
Signature of New (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink):	
Signature of New. (Buver) Responsible Official/Authorized Contact (as typed on page 1); X Signature (Blue Ink): Date: New Facility Name: Former Facility Name: Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink): Date: Former Legal Corporate/Owner Name: In lieu of the seller's signature on this form, a letter may be submitted with the seller's signature indicating the ownership change SECTION AA5- APPLICATION FOR ADMINISTRATIVE AMENDMENT Describe the requested administrative amendment here (attach additional documents as necessary):	

Attach Additional Sheets As Necessary

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16	NCDEQ/Division of Air Quality -	Application for Air Permit to Co	onstruct/Operate	A2
	EMISSION SOURCE LISTING: New, I	Modified, Previously Unpe	ermitted, Replaced, Deleted	
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE	
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
Statistics.	Equipment To Be ADDED By This App	lication (New, Previously	Unpermitted, or Replacement)	i santi
	N/A			
a a star was the	Existing Permitted Equipm	ent To Be MODIFIED By	This Application	10 V 1
ES-1A	Boiler 1A	CD-1A 1A2 1A3 1A4	Register Multiculone SNCB Serbert Inighting	
ES-1R	Boiler 1B	CD-18, 182, 183, 184	Bagfilter, Multicyclone, SNCR, Solbent Injection	<u> </u>
			Daginter, Multicyclone, SNCR, Solbent Injection	
S De la companya de la	Equipment To Be	DELETED By This App	lication	
	N/A			

1	12(r) APPLICAB	LITY INFORMATION		A 3			
Is your facility subject to 40 CFR Part 68 "Prevention of Accid	lental Releases" - Section	112(r) of the Federal Clean Air Act?	Yes 🖸	No			
If No, please specify in detail how your facility avoided applic	ability:	Facility does not store chemicals at levels exceeding the applicable					
		112(r) thresholds.					
If your facility is Subject to 112(r), please complete the follow	ing:						
A. Have you already submitted a Risk Management Plan	(RMP) to EPA Pursuant to	o 40 CFR Part 68.10 or Part 68.150?					
Yes 🗋 No Specify required RM	P submittal date:	If submitted, RMP submittal date:					
B. Are you using administrative controls to subject your failed and the subject you	acility to a lesser 112(r) pro	ogram standard?					
Yes 🛄 No If yes, please specify	:						
C. List the processes subject to 112(r) at your facility:							
PROCESS DESCRIPTION	PROCESS LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL	MAXIMUM I	NTENDED RY (LBS)			

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	Application fo	r Air Permit to	Construct/C	perate	-	В	
MISSION SOURCE DESCRIPTION:		EMISSIC			OURCE ID NO): FS-1A ES-1	В		
Boilers 1A and 1B are identical stoker boilers with	max heat in	out capacity of 2	15 MMBtu/hr	CONTROL D		(S): CD-1A CE)-1A2 CD-1A	3 CD-1A4	
each.				CD-1B, CD-1	B2, CD-1B3, C	D-1B4			
OPERATING SCENARIO	0F	1	EMISSION POINT (STACK) ID NO(S): EP-1 (shared stack)						
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS	ATTACH FLO	N DIAGRAM):						
Boilers 1A and 1B are existing boilers burning nor	-CISWI woo	d and poultry litt	er. The fuel m	ix is predicted	to be up to 85	% poultry litter a	and 15% woo	d, by weight.	
See Attachment A for Process Flow Diagram.									
TYPE OF EMISSION SOURC	E (CHECK A	AND COMPLET	E APPROPRI	ATE FORM B	B9 ON THE	FOLLOWING	PAGES):		
Coal,wood,oil, gas, other burner (Form B1)		Woodwor	king (Form B4)	Manu	. of chemicals/	coatings/inks	(Form B7)	
Int.combustion engine/generator (Form B2)	Coating/fi	nishing/printing	g (Form B5)	Incine	ration (Form B8	3)			
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Other	(Form B9)			
START CONSTRUCTION DATE: 10/16/2015 (fir	st firing of po	ultry litter)	DATE MANU	FACTURED:	1983				
MANUFACTURER / MODEL NO .: Foster Wheel	er		EXPECTED (OP. SCHEDUL	E: <u>24</u> HR/	DAY <u>7</u> D	AY/WK <u>52</u>	_WK/YR	
IS THIS SOURCE SUBJECT TO? 🗹 NSPS	(SUBPARTS	5?):b		NESH/	AP (SUBPART	rs?):_JJJJJJ			
PERCENTAGE ANNUAL THROUGHPUT (%): D	EC-FEB	25 MAR-M/	AY 25	JUN-AUG	25	SEP-NOV 2	5		
CRITERIA AI	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS	SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM10)]							
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		1							
SULFUR DIOXIDE (SO2)		1							
NITROGEN OXIDES (NOx)		See Appendix B - Emission Calculations							
CARBON MONOXIDE (CO)									
/OLATILE ORGANIC COMPOUNDS (VOC)		1							
LEAD		1							
OTHER		1							
HAZARDOUS	IR POLL	JTANT EMIS	SIONS INF	ORMATIO	V FOR THIS	S SOURCE			
		SOURCE OF	EXPECTE	D ACTUAL POTE			NTIAL EMISSIONS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	FROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
		See Appendix B	- Emission Ca	alculations					
TOXIC AIR	POLLUTA	NT EMISSIC	ONS INFOR	MATION FO	OR THIS S	OURCE			
		SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS	
	CASNO		lin lin	/br	lb	day		olur	
TORIC AIR FOLLOTANT	CAS NO.	TACTOR		/111		uay		Si yi	
		See Appendix B	- Emission Ca	alculations					
Attachments: (1) emissions calculations and supporting	documentation	n; (2) indicate all m	equested state a	and federal enfor	ceable permit li	nits (e.g. hours o	f operation, em	ission rates) and	
Ideacribe how these are manitared and with what from a	nev: and (3) de	scribe any monito	pring devices ga	uges, or test por	ts for this sourc	ė.			

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B1

REVISED 09/2	2/16		NCDEQ/Division of	Air Quality - A	pplication fo	r Air Pe	rmit to Construct	/Operate	e	B1
EMISSION SC Boilers 1A and each.	URCE DESCRIPTIC)N: ker boile	ers with max heat inp	out capacity of 2	215 MMBtu/hr	EMISSI CONTR CD-1B,	ON SOURCE ID N OL DEVICE ID N CD-1B2, CD-1B3,	NO: ES- D(S): CI CD-1B4	1A, ES-1B D-1A, CD-1A2, CD-1A3 I	3, CD-1A4
OPERATING S	SCENARIO:		1OF1	1		EMISSI	ON POINT (STAC	K) ID N	O(S): EP-1 (shared sta	ack)
DESCRIBE US	SE: PROCE	ESS HE	AT	SPACE HEAT		~	ELECTRICAL GE	NERAT	ION	
		NUOUS	USE	STAND BY/EN	ERGENCY		OTHER (DESCR	IBE):		
HEATING MED	CHANISM:	v	INDIRECT		DIRECT					
MAX. FIRING	RATE (MMBTU/HOU	JR):								
WOOD-FIRED BURNER										
WOOD TYP	PE: 🗹 BARK	v	WOOD/BARK	WET WO	OD	☑ DF	NY WOOD		OTHER (DESCRIBE)	i
PERCENT MC	ISTURE OF FUEL:_	19	- 50%							
	UNCONTROLLED			D WITH FLYAS	H REINJECT	ON		CONTR	OLLED W/O REINJE	CTION
FUEL FEED M	ETHOD: Screw Cor	veyor		HEAT TRANS	FER MEDIA:	1		Потн	IER (DESCRIBE)	
		1.18		COAL-F	RED BUR	NER		1 2		
TYPE OF BOI	LER		IF OTHER DESCRI	IBE:						
PULVERIZED	OVERFEED STO	KER	UNDERFEED	STOKER	SPR	EADER	STOKER	F	LUIDIZED BED	
WET BED		LED		LED	🗌 имсо	NTROLL	ED		CIRCULATING	
DRY BED		D		D FLYASH R			H REINJECTION		RECIRCULATING	
					NO FL	YASH R	EINJECTION			
		80 - 18 ¹		OIL/GAS-	FIRED BUI	RNER				
TYPE OF BOIL	ER:	UTILIT	Y INDUS					INSTITU	JTIONAL	
TYPE OF FIRI	NG:	NORM	AL TANGE	ENTIAL LOW NOX BURNERS			NERS	NO LOW NOX BURNER		
		14		OTHER FUE	L-FIRED E	URNE	R			
TYPE(S) OF F	UEL:Wood/Pou	ultry Litte	er	PERCENT	MOISTURE:	25 - 3	0%			
TYPE OF BOIL	ER:	UTILIT	Y 🗌 INDUS	STRIAL		Ercial		INSTITU	JTIONAL	
TYPE OF FIRI	NG:	_	TYPE(S) OF (CONTROL(S) (II	F ANY):					
			FUEL USAG	GE (INCLUD	E STARTU	P/BAC	KUP FUELS)	1-1-1-1		
				MAXIMUM DESIGN				REQUESTED CAPACITY		ACITY
FU	EL TYPE		UNITS		CAPACITY (UNIT/HF	۲)		LIMITATION (UNIT	7/HR)
Wood		ton/hr p	er boiler		23.	00				
Wood/Poultry I	Litter Mix	ton/hr p	er boiler		23.	0				
Fuel Oil (startu	p only)	gal/yr p	er boiler	CTICC (COL		1 77114			2,690.6 Mgal/y	r
		FUEL	CHARACTERI	STICS (CON		L IHA		CABLE		TNT
					PECIFIC		SULFUR CONT		ASH CONT	
	FUEL IT	'E		BIU	CONTENT		(% BY WEIG	41)	(% BY WEI	GHT)
Wood				4,730 Btu/lb			<0.1%		3.6	
Wood/Poultry	Litter Mix	_		4,719 Btu/lb			<1%		1.6	
Fuel Oil (startu	p only)			140 MMBtu/Mg	jal		0.0015%		N/A	
COMMENTS:										

Attach Additional Sheets As Necessary

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEO/Di	vision of Air Quality	- Application for	Air Permit to (TN/ Construct/Oneral	te .	
CONTROL DEVICE ID NO: CD-14 CD-11	B	CONTROLS EMIS	SIONS FROM WH)(S) ES-14 ES-18	
EMISSION POINT (STACK) ID NO(S):	FP-1	POSITION IN SERI			NC) 4 OF 4	
OPERATING S	CENARIO:	I COMON IN CEN					onno
1 OF	1		P.F. SEAL REO	UIRED (PER 2	a 0112)2 Lz	I VES	
DESCRIBE CONTROL SYSTEM: The bagfilter (CD-1A, CD-1B) and multicyle The mechanical multi-cyclone dust collected botential fire hazard to the bagfilters.	one (CD-1A2, C or is upstream o	D-1B2) systems have f the bagfilters to remo	a minimum contr ove larger sized du	ol efficiency of ust particles and	95% for particulat d char from the flu	e matter. le gas that would oth	ierwise pose as a
POLLUTANTS COLLECTED:			PM/PM10/PM2.	5			_
BEFORE CONTROL EMISSION RATE (LI	B/HR):		See Appendix B	- Emission Cal	culations		_
CAPTURE EFFICIENCY:			100 %		%	%	%
CONTROL DEVICE EFFICIENCY:			95 %		%	%	%
CORRESPONDING OVERALL EFFICIEN	CY:		95 %		%	_%	_%
EFFICIENCY DETERMINATION CODE:			2				_
TOTAL AFTER CONTROL EMISSION RA	TE (LB/HR):		See Appendix B	- Emission Cal	culations		_
RESSURE DROP (IN H ₂ 0): MIN:	MAX: 10	GAUGE?	YES	L NO	41001 ABC		
SULK PARTICLE DENSITY (LB/FT"):			INLET TEMPER	ATURE (°F):	MIN 320	MAX 365	
POLLUTANT LOADING RATE: 259.2	LB/HR	GR/F1°	OUTLET TEMPE	ERATURE (°F)	MIN 320	MAX 365	
NLET AIR FLOW RATE (ACFM): 91,000			FILTER OPERA	TING TEMP (°F	=): 375		
IO. OF COMPARTMENTS: 6	NO. OF BAGS	PER COMPARTMEN	NT: 126		LENGTH OF BA	G (IN.): 79	
NO. OF CARTRIDGES: NA	FILTER SURF.	ACE AREA PER CAR	RTRIDGE (FT ²):		DIAMETER OF E	BAG (IN.): 6	
TOTAL FILTER SURFACE AREA (FT ²): 1	1.6	AIR TO CLOTH RA	TIO: 7,818				
DRAFT TYPE: INDUCED/NEG	ATIVE	FORCED/POSITIVI	E	FILTER MA	TERIAL:	WOVEN 2	FELTED
DESCRIBE CLEANING PROCEDURES:					PAR	RTICLE SIZE DISTR	BUTION
AIR PULSE		SONIC			SIZE	WEIGHT %	CUMULATIV
REVERSE FLOW		SIMPLE BAG COLI	LAPSE		(MICRONS)	OF TOTAL	%
		RING BAG COLLAI	PSE		0-1		
					1-10	1	
ESCRIBE INCOMING AIR STREAM:					10-25		
loiler flue gas					25-50		
					50-100		
					>100	1	
					-100	TOT	AL = 100
						101.	AL = 100
JOMMENTS:			THE OF THE CON	INCLUEVICE			
Filters are inspected annually during plant s	shutdown.						

FORM C4

CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/Divi	ision of Air Qua	lity - Applic	ation for Air Pe	ermit t	o Construct/O	perate	
CONTROL DEVICE ID NO: CD-1	A2, CD-1B2	CONTROLS E	MISSIONS I	FROM WHICH E	EMISS	ION SOURCE I	D NO(S): ES-1A,	ES-1B
EMISSION POINT (STACK) ID NO	S): EP-1 (shared stack)	POSITION IN	SERIES OF	CONTROLS		NO.	2 OF	4 UNITS
OPERAT	ING SCENARIO:	1 1 1 1 S						
	OF1 nulticylone (CD-1A2, CD-1E collector will be installed up rs.	32) systems will ostream of the b	P.E. SEAL	REQUIRED (PE num control effic emove larger siz	ER 2Q iciency zed du	.0112)? of 95% for part st particles and	YES	NO
		See Attach	ment B - I	Emissions Ca	alcula	ntions		
PECODE CONTROL EMISSION P		0007111001						
CAPTURE EFFICIENCY:				- % 	%			
CONTROL DEVICE EFFICIENCY:				%	%	·		%
CORRESPONDING OVERALL EFI	ICIENCY:			%	%		%	%
EFFICIENCY DETERMINATION C	DDE:							
TOTAL AFTER CONTROL EMISS	ON RATE (LB/HR):						-	_
PRESSURE DROP (IN. H ₂ 0):	0.5 MIN	<u>2.8</u> MAX						
INLET TEMPERATURE (°F):	<u>320</u> MIN	365_ MAX		OUTLET TEMP	PERA	TURE (°F):	<u>320</u> MIN	<u>365_</u> MAX
INLET AIR FLOW RATE (ACFM):	91,000			BULK PARTICI	LE DE	NSITY (LB/FT ³)	£	
POLLUTANT LOADING RATE (GR	2/FT ³): 16.5		VOI ONE		-			
SETTLING CHAMBER		G	YCLONE					AULHOTCLONE
LENGTH (INCHES):	INLET VELOCITY (FT/SE	EC):	- 47			RECTANGLE	NO, TUBES: 20	
WIDTH (INCHES):	DIMENSIONS (INCI	HES) See instru	ctions		.	UTILIZED		
VELOCITY (ET/SEC.)	W:	Lb:		FLOW RATE ((GPM):			
NO, TRAYS:	De:	Lc:		MAKE UP RAT	TE (GP	°M):	LOUVERS?	
NO. BAFFLES:	D:	S:					VES	NO
	TYPE OF CYCLONE:		TIONAL		EFFICI	ENCY	OTHER	
DESCRIBE MAINTENANCE PROC	EDURES:						PARTICLE SIZE	DISTRIBUTION
						SIZE (MICRONS)	OF TOTAL	CUMULATIVE %
DESCRIBE INCOMING AIR STRE	AM:				+	0-1		1
Boiler flue gas						1-10	-	
						10-25		
						25-50		
						50-100		
						>100		
		0070 770						TOTAL = 100
							IPCE/S):	
UN A SEPARATE PAGE, ATTACH	I A DIAGRAM OF THE REL				OIIS	ENISSION SOL		

Attach Additiona

FORM C9 CONTROL DEVICE (OTHER)

REVISED 09/22/16	NCDEQ/Division of	f Air Quality - Ap	plication for A	ir Permit to Co	instruct/Ope	rate			C9
ONTROL DEVICE ID NO: CD-	1A4, CD-1B4	CONTROL	S EMISSIONS	FROM WHICH	EMISSION S	OURCE ID	NO(S): E	S-1A, ES-	-1B
EMISSION POINT (STACK) ID N	O(S): EP-1 (shared stack)	POSITION	IN SERIES OF	CONTROLS:	NO. 3	OF 4	UNITS		
OPER	ATING SCENARIO:								
	<u>1_OF_1_</u>		P.E. SEAL	REQUIRED (PI	ER 2Q .0112)	? 🗸	YES	NO NO	
DESCRIBE CONTROL SYSTEM: Dry sorbent injection system will b dry alkaline sorbent is injected in t (commonly known as trona) will be	e added to control sulfur d the duct work between the e used as the sorbent.	ioxide and hydroc mechanical dust d	hloric acid on a collector and th	an as needed b e baghouse. So	asis as detern odium bicarbo	nined by sta mate or soc	ack testing. lium sesqui	A sodium carbonate	-based
POLI UTANT(S) COLLECTED:		SO ₂ HCl (if	needed)						
BEFORE CONTROL EMISSION	RATE (LB/HR):	002, 1101 (1			<u></u>			-	
CAPTURE EFFICIENCY:		5	~%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	%		%	
CONTROL DEVICE EFFICIENCY	/.		%	%	3	%		~%	
CORRESPONDING OVERALL E	FFICIENCY:			%		~ %		—%	
EFFICIENCY DETERMINATION	CODE:	9 <u>—</u>	-		3				
TOTAL AFTER CONTROL EMISS	SION RATE (LB/HR):	·			()				
PRESSURE DROP (IN. H ₂ 0):	MIN	MAX Negl.	BULK PAR	TICLE DENSIT	Y (LB/FT ³) N/	A			
INLET TEMPERATURE (°F):	320 MIN 365	 MAX	OUTLET T	EMPERATURE	(°F):	32(MIN	365	MAX
INLET AIR FLOW RATE (ACFM):	91,000		OUTLET A	IR FLOW RATE	E (ACFM): 91	,000	-		
INLET AIR FLOW VELOCITY (FT	/SEC):		OUTLET A	IR FLOW VELC	CITY (FT/SE	C):			
INLET MOISTURE CONTENT (%):		FOR	CED AIR	INDUCED	AIR			
COLLECTION SURFACE AREA	(FT ²): N/A		FUEL USE	 D: N/A		FUEL	USAGE R/	ATE: N/A	
DESCRIBE ANY AUXILIARY MA Sodium bicarbonate or sodium se	TERIALS INTRODUCED IN squicarbonate (commonly	NTO THE CONTR known as trona) v	OL SYSTEM: vill be used as	the sorbent.					
DESCRIBE ANY MONITORING L	JEVICES, GAUGES, TEST	PORTS, ETC:							
ATTACH A DIAGRAM OF THE R	ELATIONSHIP OF THE CO	ONTROL DEVICE	TO ITS EMISS	SION SOURCE	(S):				
COMMENTS:									
Attach ma	nufacturer's specificatio	ns, schematics, a	and all other d	rawings neces	ssary to desc	ribe this c	ontrol.		

Attach Additional Sheets As Necessary

FORM C9 CONTROL DEVICE (OTHER)

REVISED 09/22/16	NCDEQ/Division of A	r Quality - Applica	ation for Air Perr	nit to Co	onstruct/	Operate			C9
JONTROL DEVICE ID NO: CD-1	A3, CD-1B3	CONTROLS E	AISSIONS FROM	WHICH	EMISSI	ON SOU	RCE ID NO(S)	: ES-1.	A, ES-1B
EMISSION POINT (STACK) ID NO	(S): EP-1 (shared stack)	POSITION IN S	ERIES OF CONT	ROLS:	NO.	1 0	= 4 UN	ITS	
OPERA	TING SCENARIO:								
1	OF1	1	P.E. SEAL REQU	IRED (P	ER 2Q .0	112)?	V YES		NO
DESCRIBE CONTROL SYSTEM: A selective non-catalytic reduction post-combustion flue gas. The SN(ammonia/urea reagent to form nitro	(SNCR) system will be adde CR process involves the gas ogen and water vapor.	d to each boiler to phase reaction of	reduce NOx emis NOx in the flue ga	sions. A	n ammon e absence	ia or urea e of a cat	a reagent will l alyst) with the	oe inject injected	ed into the
POLLUTANT(S) COLLECTED:	See Att	achment B - Ei	missions Calc	ulation	s				
BEFORE CONTROL EMISSION R	ATE (LB/HR):								
CAPTURE EFFICIENCY:			%	~%			%		%
CONTROL DEVICE EFFICIENCY:			%	%			%		%
CORRESPONDING OVERALL EF	FICIENCY:		%	~ %			%		%
EFFICIENCY DETERMINATION C	ODE:				2				
TOTAL AFTER CONTROL EMISS	ION RATE (LB/HR):						· ·		
PRESSURE DROP (IN. H ₂ 0):	MINN	IAX E	BULK PARTICLE	DENSIT	Y (LB/FT	³): N/A			
INLET TEMPERATURE (°F):	1650 MIN _ 1750 N	1AX (OUTLET TEMPER	RATURE	(°F):		1650 MIN		1750 MAX
INLET AIR FLOW RATE (ACFM):	266,000	0	OUTLET AIR FLO	W RATE	E (ACFM)	: 266,00	0		
INLET AIR FLOW VELOCITY (FT/	SEC):		OUTLET AIR FLO	W VELC	CITY (FI	(SEC):			
INLET MOISTURE CONTENT (%)	:		FORCED A	IR [EDAIR			
COLLECTION SURFACE AREA (F	-T ²): N/A	F	UEL USED:				EUEL USAG	E RATE	
DESCRIBE ANY AUXILIARY MATI	Pendor specifications. ERIALS INTRODUCED INTO I be used as the reagent.) THE CONTROL :	SYSTEM:						
DESCRIBE ANY MONITORING DE	EVICES, GAUGES, TEST PC	KIS, EIC:							
ATTACH A DIAGRAM OF THE RE	LATIONSHIP OF THE CONT	FROL DEVICE TO	ITS EMISSION S	OURCE	(S):				
COMMENTS:									
							41.42		
Attach man	iutacturer's specifications,	scnematics, and	all other drawing	js neces	ssary to c	lescribe	this control.		

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/Div	ision of Air Quali	ty - Application	for Air Permit	to Construct/Op	perate		D1
CRITERIA	AIR POLLUTAN	T EMISSIONS	INFORMATIC	ON - FACILITY	-WIDE		n in
		EXPECTE EMIS (AFTER CO	D ACTUAL SIONS ONTROLS /	POTENTIAL (BEFORE C	EMISSIONS	POTENTIAL (AFTER CO	. EMISSIONS ONTROLS /
		LIVITA				LIVITA	atur a
		ton	s/yr		is/yr	ton	s/yr
		See Attachme	nt B - Emission	IS Calculations			
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)							
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})							
SULFUR DIOXIDE (SO2)							
NITROGEN OXIDES (NOx)							
CARBON MONOXIDE (CO)							
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD							
GREENHOUSE GASES (GHG) (SHORT TONS)							
OTHER							
HAZARDOUS	AIR POLLUTA	NT EMISSION	S INFORMAT	ION - FACILIT	Y-WIDE		
		EXPECTE	DACTUAL				
		EMIS: (AFTER CO	SIONS ONTROLS (TIONS)	(BEFORE C	ONTROLS /	POTENTIAL (AFTER CO	EMISSIONS ONTROLS /
	CASNO	ton	ehr	ton	ehr	ton	shir
See Attachment B - Emissions Calculations	OAO NO.		5/91		Siyi		Sryi
See Adactiment B - Emissions Galculations							
TOXIC AIF	RPOLLUTANT	EMISSIONS IN	IFORMATION	- FACILITY-W	1DE	72.7	
INDICATE REQUESTED ACTUAL EMISSIONS AFTER 2Q .0711 MAY REQUIRE AIR DISPERSION MODELIN	G. USE NETTING	FORM D2 IF N	ISSIONS ABO\ ECESSARY.	/E THE TOXIC F		ON RATE (TPEF	R) IN 15A NCAC
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/dav	lb/vear	Yes	No	
See Attachment B - Emissions Calculations				in you.			
					5		
COMMENTS		L		L			
COMMENTS.							

AIR POLLUTA	NT NETTING WORKSHEE	T AND FACILITY-WID	E EMISSION SUMMAR	Y
REVISED 09/22/16	NCDEQ/Division of Air Quality - App	plication for Air Permit to Constru	ict/Operate	D2
PURPOSE OF NETTING: AIR TO	DXICS			£`
TOXIC AIR POLLUTANT:	See Table 3 of Appendix B - Emission	ns Calculations CAS NO.:		
EMISSION SOURCE ID NOS .:				
SECTIO	ON A - EMISSION OFFSETTING	S ANALYSIS FOR MODIFIE	D/NEW SOURCES	
Summarize in this section	EMIS	SSIONS - USE APPROPRIATE COL	LUMNS ONLY	
using the B forms	LB/YEAR	LB/DAY	LB/HR	
MODIFICATION	See Table 2 of Annandix P Emission	a Calculations		
INCREASE	See Table 5 of Appendix B - Emission	IS CAICUIACIONS		
- MINUS -	- MINUS -	- MINUS -	- MINUS -	
MODIFICATION				
DECREASE				
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =	
NET CHANGE				
FROM MODIFICATION				
- See 2315 182 51	SECTION B - FACILITY-WIE	DE EMISSION NETTING AN	IALYSIS	1977
CREDITABLE		o Osla latta a		
INCREASE	See Table 3 of Appendix B - Emission	is calculations		
- MINUS -	- MINUS -	- MINUS -	- MINUS -	
CREDITABLE				
DECREASE				
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =	
NET CREDITABLE				
CHANGE		•		
	SECTION C - FAC	LITY-WIDE EMISSIONS		-024
TOTAL FACILITY				
EMISSIONS	See Table 3 of Appendix B - Emission	is Calculations		
TPER LEVELS (2Q .0711)				
Are the total facility-wide emission	s less than the TPER levels?:	YES	NO NO	
If YES, no further analysis is requi	red.			
Air dispersion modeling analysis is (TPER) and the source emitting th	s required if the total facility-wide emission e toxic air pollutant is not exempted by 1	n level is greater than the 2Q .0711 5A NCAC 2Q .0702(a)(27) "Exempti	Toxic Air Pollutant Permitting Emiss ions".	ions Rate
CHECK HERE IF AN AIR DISPER	SION MODELING ANALYSIS IS REQUI	RED 🗌		
If air dispersion modeling analysis modeling plan requirements.	is required, complete the stack paramete	ers section of Form D3-1 for each e	mission source that emits this TAP.	Review the
COMMENTS:				
Exempt from air dispersion modeli MACT).	ing analysis per 15A NCAC 2Q .0702(a)(27)(b), as the facility is subject to 40	0 CFR 63 Subpart JJJJJJ (Area Sou	rce Boiler
	Attach Additiona	I Sheets As Necessary		

FORM D2

FORM D2A AIR POLLUTANT "PROJECT ONLY" NETTING WORKSHEET

PURPOSE OF NETTING: PREVE PSD AIR POLLUTANT: See Table		cation for Air Permit to Col	nstruct/Operat	D2A
PSD AIR POLLUTANT: See Table	ENTION OF SIGNIFICANT DETERIORATION (PS	D)		
	a 1 of Attachment B - Emissions Calculations			
EMISSION SOURCE ID NO. AND	DESCRIPTION:			
EMISSION SOURCE ID NO. AND	DESCRIPTION:			
EMISSION SOURCE ID NO. AND	DESCRIPTION:			
EMISSION SOURCE ID NO. AND	DESCRIPTION:			
SECTION	A - EMISSION OFFSETTING ANALYS	SIS FOR MODIFIED/N	EW SOURCES IN PROJECT	
	Summarize in this section		EMISSIONS	
	using the B forms		TONS/YR	
	MODIFICATION INCREASE			
	- MINUS -			200
	MODIFICATION DECREASE			
	= EQUALS =			1.2.2.18
"PR	OJECT' NET CHANGE FROM MODIFICATION			
PSD SIGNIFICANC	E LEVEL FOR SPECIFIC POLLUTANT [40 CFR 5	51.166(b)(23)]		
IS THE "PROJECT" NET CHANGI	E LESS THAN THE SIGNIFICANCE LEVEL?	YES 🗌	NO	
If YES, no further analysis is requir	ed.			
If NO, then a further evaluation sho	ould be done using creditable emissions at the faci	ility for each specific pollutar	nt over a contemporaneous time period.	
COMMENTS:				

Attach Additional Sheets As Necessary
FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REV	ISED 09/22/16 NCDENR/Division of Air Qua	lity - Application for Air Perm	it to Construct/Operate	D4
	ACTIVITIES	S EXEMPTED PER 2	2Q .0102 OR	
	INSIGNIFICANT ACTIVI	TIES PER 2Q .0503	FOR TITLE V SOURCES	
	DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR IN ACTIVITY	SIGNIFICANT
1,	Diesel Storage Tank	500 gallons	15A NCAC 2Q .0503 (8)	
	(Source ID No. IES-2)			
2.	Fire Pump Fuel Oil Storage Tank (Source ID No. IES-3)	250 gallons	15A NCAC 2Q .0503 (8)	
3.	Solvent Parts Cleaner (Source ID No. IES-4)	20 gallons	15A NCAC 2Q .0503 (8)	
4.	Turbine Lube Oil Tank Vent	950 gallons	15A NCAC 2Q .0503 (8)	
5.	Cooling Tower	19,190 gpm	15A NCAC 2Q .0503 (8)	
6.	Truck Dumper No.1 for Receiving Biomass Fuel	96.0 tons/hour	15A NCAC 2Q .0503 (8)	
7.	Truck Dumper No.2 for Receiving Biomass Fuel	96.0 tons/hour	15A NCAC 2Q .0503 (8)	
8.	Fuel Storage Piles (Source ID No. IES-10)	Approx. 2.2 acres	15A NCAC 2Q .0503 (8)	
9.	Fuel Material Handling (including conveyors, from end loader/dozer and other vehicular traffic in the fuel yard) (Source ID No. IES-11)	nt- 44.0 tons/hour e	15A NCAC 2Q .0503 (8)	
10.	Paved Roads (Source ID No. IES-12A)	9,680 VMT/yr	15A NCAC 2Q .0503 (8)	
11.	Unpaved Roads (Source ID No. IES-12B)	6,000 ∨MT/yr	15A NCAC 2Q .0503 (8)	
12.	Sorbent Silo (Source ID No. (ES-13)	657 tons/year	15A NCAC 2Q .0503 (8)	
13.	Poultry Litter Storage		15A NCAC 2Q .0503 (8)	
14.				
15.				
16.				
17.				

Received

	FORM D5 MAR 2 9 2017
	TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION
RE	NOTED 09/22/16 NOTED 20/22/16 NOTED 20
A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.
в	SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.
с	CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.
D	PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.
E	PROFESSIONAL ENGINEERING SEAL PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).
	/. Lisa Manning attest that this application for North Carolina Renewable Power - Lumberton LLC
	has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.
	(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) PLACE NORTH CAROLINA SEAL HERE
	NAME: Lisa Manning DATE: COMPANY: ADDRESS: TU Stavnes Ave, Ashevilli, NC 20001 TELEPHONE: B28-450-3980 SIGNATURE: PAGES CERTIFIED: Amit Application + supporting daments Torns AA, A2/A3, B1, C1, C4, C9, D1, D2, D2A, D4, D5, E1, E2, E3, E4, E5, E6, NAMATIVE, CAKS, Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT
_	

c

D

E

FORM E1

	TITLE V GENERAL	INFORMATION			
REVISED 06/01/16	NCDEQ/Division of Air Quality - App	dication for Air Permit to	Construct/Operate		E1
IF YOUR THIS FORI	FACILITY IS CLASSIFIED AS "MAJO MAND ALL OTHER REQUIRED "E" I	OR" FOR TITLE V FORMS (E2 THRO	YOU MUST COMF UGH E5 AS APPL	PLETE ICABLE)	
Indicate here if your facility is subject to Title V by:	EMISSIC	DNS 🗹	OTHER		
If subject to Title V by "OTHER", specify why:		(specify)	NESHAP (MACT)		
If you are or will be subject to any maximum achie	vable control technology standards (MACT) issued pu	irsuant to section			
112(d) of the Clean Air Act, specify below:				WACT	
EMISSION SOURCE ID	Weed and poultry litter fired boiler		40 CER 63 Subpart 1111		
ES-18	Wood and poultry litter fired boiler		40 CFR 63 Subpart JJJJ	1JJ	
ES-1	Emergency Fire Pump		40 CFR 63 Subpart ZZZ	Z	
List any additional regulation which are requested the shield should be granted:	to be included in the shield and provide a detailed exp	ianation as to why			
REGULATION	EMISSION SOURCE (Include ID)			EXPLANATION	
	·				
Comments:					

FORM E2 EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/1	6 NCDEQ/Divi	sion of Air Quality - Applic	ation for Air Permit to	Construct/Operate	E2
EMISSION SOURCE ID NO.	EMISSION SOURCE DESCRIPTION	OPERATING SCENARIO INDICATE PRIMARY (P) OR ALTERNATIVE (A)	POLLUTANT	APPLICABLE REGULATION	
ES 1	Coal/Wood Boiler	P - Coal	PM	NCAC 2D .0503	
		A - Wood	PM	NCAC 2D .0504	
			PM	NCAC 02D .0504, NCAC 02D .0524, .0614, PSD BACT	NCAC 02D
			SO2	NCAC 02D .0516, SB3, NCAC 02Q .0 02Q .0402, 40 CFR Part 97, Subparts BBBBB, and CCCCC, PSD BACT	317, NCAC AAAAA,
			Visible Emissions	NCAC 02D .0524	
			со	NCAC 02D .0530, NCAC 02Q .0317, 1	PSD BACT
ES-1A, ES-1B	Wood/Poultry Litter Boiler	P - Wood/Poultry Litter	Sulfuric Acid Mist	NCAC 02D .0530, PSD BACT	
			HAPs	NCAC 02D .1111, NCAC 02Q .0317	
			NOx	NCAC 02Q .0317, NCAC 02Q .0402, 4 Part 97, Subparts AAAAA, BBBBB, an PSD BACT	40 CFR Id CCCCC,
			voc	PSD BACT	
l l			Mercury	SB3 BACT	
			Odors	NCAC 02D .1806	

REVISED 9/2	22/16	NCDENR/Division Of Air Q	uality - Application f	ior Air Perm	nit to Construct/Operate	E3
			Regulated Poll	utant	PM	
Emission So	urce ID NO. ES-1A,	ES-1B	Applicable Rec	Julation	NCAC 02D .0504, NCAC 02D .0524, NCAC 02D .0	0614, SB3
Alternative O	perating Scenario (AO	S) NO:				
	A	TTACH A SEPARATE PAG	E TO EXPAND ON	I ANY OF	THE BELOW COMMENTS	
		MO	NITORING REQUI	REMENTS	3	
Is Cor	mpliance Assurance M	onitoring (CAM) 40 CER Part 64				
13 001						
It yes,	, is CAM Plan Attached	i (if applicable, CAM plan must t	oe attached)?	res		
Descr	The Monitoring Device	Туре:	Pressure drop indi	cator; Cont	tinuous Opacity Monitors (COMS)	-
Other	The Monitoring Location	1: Describe In Detail):	Un each pagniter,	On stack	ation of evidence durational and material	-
coller	Monitoring Methods (1	Pescribe in Detaily.	the control devices	Isual Inspec	intervity	-
CONSC	CUUT UTIL IVI ICANA. F	unual internal inspection of	the control devices	Structurar	Integrity.	
						-
Desc	ribe the frequency and	duration of monitoring and how	/ the data will be recor	ded (i.e., eve	verv 15 minutes, 1 minute instantaneous	
readi	ngs taken to produce a	in hourly average):		· ·		
The p	pressure drop is reco	orded at least once weekly w	when the boiler is op	erating. Th	he 6-minute average opacity is determined by	
the C	OMS.					
						_
						_
		RECO	RDKEEPING REQ	UIREMEN	ITS	
Data ((Parameter) being reco	rding:	See below.			-
Frequ	analy of record keeping	(How often is data recorded?):	De	to Himo of	and recorded actions processing drap (once	
week	while the boiler is	(now otten is data recorded ;).	downtime (weekly)	results of	feach inspection (monthly or annual based	-
on re	quirement): results of	operating), periods of bolion	ance from manufac	turer's recc	ormendations and corrections made (as	-
need	ed). Opacity (6-minu	te average opacity from CO	MS)		Shinehuations and corrections made (as	-
	ou), epsely (e	to diference openant in the part				-
						-
8						-
		RE	PORTING REQUIR	REMENTS		
Corre		· · · ·	0	·	n s osno i concentral	
Gener	ally describe what is o	aing reported:	Summary or mornic	oring and re	ecordkeeping activities; when requested,	-
<u>Inain</u>	tenance performed c	In multiciones or bagiliters, c	EXCess emission rep	DORIS.		-1
2						
2 <u></u>						-
						- 2
8=						-
Frequency:		NTHLY	QUARTERI		EVENT SIA MONTHS	
	OT	HER (DESCRIBE):				
		NER INVISION	TESTING			1 . s.?
Specify propo	osed reference test me	thod:	Per permit's General	Condition JJ	J; Methods 3A/3B, 5/5B, 17, 1, 9	
Specify refere	ence test method rule a	and citation:	Per permit's General	Condition JJ	J; reference methods in 40 CFR 60.46b(d)(1)-(7)	
Specify testin	g frequency:		As required; initial			-
	NOTE - Proposed	test method subject to app	proval and possibl	le change	during the test protocol process	-

REVISED 9/22/16	NCDENR/Division Of	Air Quality - Application for Air Per	mit to Construct/Operate	E3
		Regulated Pollutant	SO2	
		-	NCAC 02D .0516, NCAC 02Q .0317, NCAC 020	2 .0402,
Emission Source ID I		Applicable Regulation	SB3, 40 CFR Part 97, Subparts AAAAA, BBBBB	3, and
Alternative Operation		Applicable Regulation		
Anomative operating		PAGE TO EXPAND ON ANY OF		
	ATTAOTTA SEPARATE	MONITODING DECUIDEMENT		
		MONTORING REQUIREMENT	3	
Is Compliance	e Assurance Monitoring (CAM) 40 CFR	Part 64 Applicable? Yes	⊠ No	
If yes, is CAM	Plan Attached (if applicable, CAM plan	n must be attached)?	□ No	
Describe Mon	itoring Device Type:	SO2 Continuous Emissions	Monitoring System (CEMS)	
Describe Mon	nitoring Location:	Stack		
Other Monitor	ing Methods (Describe In Detail):	<u>N/A</u>		_
Describe the readings take 1-minute ins	frequency and duration of monitoring a en to produce an hourly average): stantaneous readings taken to prod	and how the data will be recorded (i.e., luce an hourly averge.	every 15 minutes, 1 minute instantaneous	_
	F	RECORDKEEPING REQUIREMEI	NTS	
Data (Parame	eter) being recording:	SO2 emissions		
Frequency of	recordkeeping (How often is data recor	rded?) <u>1-minute instantaneous rea</u> d	dings taken to produce an hourly averge.	_
				-2
		REPORTING REQUIREMENTS		
Generally des any permit d	cribe what is being reported: leviations.	Semiannual summary repor	t including facility wide SO2 emissions and	
				_
·				_
Frequency:			C EVERY SIX MONTHS	
		TESTING		-
		TL311NG		110 12
Specify proposed refe	erence test method:	Per permit's General Condit	ion JJ	_
Specify reference tes	t method rule and citation:	Per permit's General Conditi		_
Specity testing freque	ency: - Proposed test method subject (Initial and as-required therea	aner.	_
INCIL-		a approval and possible clighte	and the rear protocol process	

REVISED 9/22/16 NCDENR/Division Of Air G	uality - Application for Air Perr	nit to Construct/Operate	E3
	Regulated Pollutant	Visible Emissions	
Emission Source ID NO. ES-1A, ES-1B	Applicable Regulation	NCAC 02D .0524	
Alternative Operating Scenario (AOS) NO:			
ATTACH A SEPARATE PAG	E TO EXPAND ON ANY OF	THE BELOW COMMENTS	
MC	NITORING REQUIREMENT	S	
Is Compliance Assurance Monitoring (CAM) 40 CFR Part 64	Applicable? Yes	☑ No	
If yes, is CAM Plan Attached (if applicable, CAM plan must l	be attached)? Yes	🗆 No	
Describe Monitoring Device Type:	COMS		
Describe Monitoring Location:	On stack		_
Other Monitoring Methods (Describe In Detail):	N/A		
			-
Describe the frequency and duration of monitoring and how	the data will be recorded (i.e., ev	very 15 minutes, 1 minute instantaneous	
readings taken to produce an hourly average):			
6-minute averages.			_
			-
			_
			_
RECO	RDKEEPING REQUIREMEN	ITS	
Data (Paramatar) being reporting:	Oncoitre		
Data (Farameter) being recording.	Opacity		-
Frequency of recordkeeping (How often is data recorded?):	The data is r	ecorded as 6-minute averages.	
			-
			-
			-
· · · · · · · · · · · · · · · · · · ·			-
			_
RE	PORTING REQUIREMENTS		
Constally describe what is being reported:	Evenes omission reports. Ma	nitoring and recordly aring activities	
Generally describe what is being reported.	Excess emission reports. No	nitoring and recordicepting activities.	-
-			
3			-
		~	-
Frequency: MONTHLY	QUARTERI	☑ EVERY SIX MONTHS	
OTHER (DESCRIBE):			
	TESTING		
Specify proposed reference test method:	N/A		
Specify reference test method rule and citation:	N/A		
Specify testing frequency:	Ν/Δ		-
NOTE - Proposed test method subject to ap	proval and possible change	during the test protocol process	-

REVISED 9/22/16	NCDENR/Division Of Air	Quality - Applica	ation for Air Pern	nit to Construct/Operate	E3	5
		Regulated	d Pollutant	со		
Emission Source ID	NO. ES-1A, ES-1B	Applicabl	e Regulation	NCAC 02D .0530, NCAC 02Q .0317		
Alternative Operating	3 Scenario (AOS) NO:					
	ATTACH A SEPARATE PA	GE TO EXPAN	D ON ANY OF	THE BELOW COMMENTS		
	Marine Ma	ONITORING RI	EQUIREMENT	S		E
Is Compliance	e Assurance Monitoring (CAM) 40 CFR Part	64 Applicable?	Yes	☑ No		
If yes, is CAM	Plan Attached (if applicable, CAM plan mus	st be attached\?	Yes			
Describe Mon	hitoring Device Type:	CO CEMS				
Describe Mon	hitoring Location:	Stack				
Other Monitor	ring Methods (Describe In Detail):	N/A				
Describe the readings take 1 minute ins	frequency and duration of monitoring and ho in to produce an hourly average): tantaneous readings taken to produce a	ow the data will be an hourly averag	recorded (i.e., ev je.	rery 15 minutes, 1 minute instantaneous		
CARLS IN THE	PE	OPDKEEDING	REQUIREMEN	ITE		_
	Rec	ORDREEPING	REQUIREMEN	113		-
Data (Parame	eter) being recording:	CO emissions	6			
Frequency of Emissions a	recordkeeping (How often is data recorded? re calculated monthly.): <u>1-minute insta</u>	antaneous readi	ings taken to produce an hourly average.	_	
7						
3						
	Frank and the second	REPORTING RE	OUIREMENTS		1	
			CONCEMENTO			-
Generally des any permit d	cribe what is being reported: eviations.	Semiannual s	ummary report	including facility wide CO emissions and		
7						
Frequency:	MONTHLY		RI	EVERY SIX MONTHS		
		TEET				-
and the second		IESI	ING			
Specify proposed refe	erence test method:	Per permit's G	Seneral Condition	on JJ		
Specify reference test	t method rule and citation:	Per permit's G	Seneral Conditio	on JJ		
Specify testing freque	incy:	Initial; as requ	ired.	denting the test water of		
NUTE	- Froposed test method subject to a	ipproval and po	ssible change	ouring the test protocol process		

REVISED 9/22/16	NCDENR/Division Of Air G	Quality - Applicat	tion for Air Pern	nit to Construct/Operate		E3
		Regulated	Pollutant	Sulfuric Acid Mist		
Emission Source ID NO.	ES-1A, ES-1B	Applicable	Regulation	NCAC 02D .0530		
Alternative Operating Sce	enario (AOS) NO:					
	ATTACH A SEPARATE PAG	GE TO EXPAND	O ON ANY OF	THE BELOW COMMENTS		
2 5 9 1	MC	DNITORING RE	QUIREMENTS		a fris film i e n	
Is Compliance Ass	surance Monitoring (CAM) 40 CFR Part 6	4 Applicable?	Yes	☑ No		
If yes, is CAM Plar	n Attached (if applicable, CAM plan must	be attached)?	🗌 Yes	🗌 No		
Describe Monitorir	ng Device Type:	N/A				
Describe Monitorir	ng Location:	N/A				
Other Monitoring N	Methods (Describe In Detail):	N/A				
Describe the freque readings taken to N/A	uency and duration of monitoring and how produce an hourly average):	v the data will be r	recorded (i.e., ev	ery 15 minutes, 1 minute instantan	>ous	
	DECC	DOKEEDING	COURCHEN	70		_
	KEUL	RUKEEPINGI	REQUIREMEN	115		
Data (Parameter) I	being recording:	N/A				
Frequency of reco	rdkeeping (How often is data recorded?):		N/A			

•		-				i (
÷						
	RE	PORTING REC	UIREMENTS			1731
Generally describe	what is being reported:	N/A				5
7						1
						1
Frequency:	MONTHLY		R	EVERY 6 MONTHS		
	OTHER (DESCRIBE):					
		TESTI	NG			1. N. N. N. N.
Spanify proposed reference	to tost method	Dor normille O	anaral Canaliti-	- 11		
Specify reference test met	thod rule and citation	Per permitte C	eneral Conditio	ni JJ		/
Specify testing frequency:		Initial as-requi	red			
NOTE - PI	roposed test method subject to ap	proval and pos	sible change	during the test protocol proc	ess	

REVISED	9/22/16	NCDENR/Division Of Air C	Quality - Applica	tion for Air Perr	nit to Construct/Operate	E3
			Regulated	d Pollutant	Hazardous Air Pollutants (HAP)	
Emission S	Source ID NO. ES	-1A, ES-1B	Applicable	e Regulation	NCAC 02D .1111, NCAC 02Q .0317	
Alternative	Operating Scenario	(AOS) NO:				
		ATTACH A SEPARATE PAG	GE TO EXPAN	D ON ANY OF	THE BELOW COMMENTS	
		MC	DNITORING RE		S	111295
ls C	Compliance Assurance	e Monitoring (CAM) 40 CFR Part 6	4 Applicable?	Yes	☑ No	
l If ve	es. is CAM Plan Atta	ched (if applicable, CAM plan must	be attached)?	☐ Yes		
Des	scribe Monitoring De	vice Type:	N/A			
Des	scribe Monitoring Loc	cation:	N/A			_
Othe	er Monitoring Metho	ds (Describe In Detail):	N/A			
Des	scribe the frequency	and duration of monitoring and how	v the data will be	recorded (i.e., ev	very 15 minutes, 1 minute instantaneous	
rea N/A	idings taken to produ M	ice an hourly average):				
100	n					
1	Q.1. 19 (21) A.	RECO	ORDKEEPING	REQUIREMEN	ITS	
Data	a (Parameter) being	recording:	<u>N/A</u>			
Frec	nuency of recordkee	ning (How often is data recorded?)	HCI and CL ar	o optimated on	a monthly and 10 month basis using fuel use	
and	d emission factors	prescribed in the permit		e estimateu on	a monthly and 12-month basis using fuel usa	ige
		protection in the period				
						_
		RE	EPORTING RE	QUIREMENTS		1.10
Gen	erally describe what	is being reported	Annual Compl	iance Certificat	tion. Semiannual summany report including	
mor	nitoring and record	keeping activities, monthly & 12	2-month rolling	HCI and chlorin	the emissions from the boilers, total HAP	;
emi	issions from the bo	pilers, and any permit deviations	s.			
7.=						
						_
England		MONTHLY				
Frequenc	;y:	MONTHLY		રા	E EVERT SIX MONTHS	
		OTHER (DESCRIBE): ANNUA	L			
3.3			TESTI	NG		thinks:
Specify prop	posed reference test	t method:	DAQ Approved	d Test Method;	Per permit's General Condition JJ.	
Specify refe	erence test method n	ule and citation:	NCAC 02D .26	601; Per permit	's General Condition JJ.	
Specify test	ting frequency:		Initial; as requi	ired.		
	NOTE - Propos	sed test method subject to ap	proval and pos	ssible change	during the test protocol process	

REVISED 9/22/16	NCDENR/Division Of Air (Quality - Applicat	ion for Air Pern	nit to Construct/Operate	E3
		Regulated	Pollutant	NOx	
Emission Source ID NO		Applicable	Desulation	NCAC 02Q .0317, NCAC 02Q .0402, 40 CFR Part	97,
Altornative Operating Se		Applicable	Regulation	Subparts AAAAA, BBBBB, and CCCCC, SB3	
Alternative Operating Sc					
A 12012 1.1	ATTACH A SEFARATE PAG			THE BELOW COMMENTS	
	inc	DAILORING RE	QUIKEMEN 13		
Is Compliance As	surance Monitoring (CAM) 40 CFR Part 6	4 Applicable?	Yes	☑ No	
If yes, is CAM Pla	an Attached (if applicable, CAM plan must	be attached)?	Yes	□ No	
Describe Monitori	ing Device Type:	NOx CEMS			_
Describe Monitori	ing Location:	Stack			
Other Monitoring	Methods (Describe In Detail):	N/A			-
					-
					_
Describe the free	uency and duration of monitoring and how	v the data will be r	ecorded (i.e., ev	ery 15 minutes, 1 minute instantaneous	
readings taken to	produce an hourly average):				
1-minute instan	taneous readings taken to produce a	n hourly average),		-
					-
					-
	RECO	ORDKEEPING F	REQUIREMEN	ITS	
Data (Damana tan)	had a start of the	10			
Data (Parameter)	being recording:	NOX emissions			-
Frequency of reco	ordkeeping (How often is data recorded?):	1-minute instar	ntaneous readi	ings taken to produce an bourly average	
				nge taken te produce an neany average.	
7					-
					-
-					
-					-
S 5 Caulter and	RE	EPORTING REC	UIREMENTS		
Generally describ	e what is being reported:	Summary of m	onitoring and r	ecordkeeping activities. Semiannual	
summary report	including facility wide NOx emissions	s and any permit	deviations.		
					-
<u></u>					
0					-
Frequency:			1	☑ EVERY SIX MONTHS	
					1.1
		TESTIN	IG		
Specify proposed referen	MONTHLY OTHER (DESCRIBE):	TESTIN Per permit's Ge	IG eneral Conditio	n J1	
Specify proposed referen Specify reference test me	MONTHLY OTHER (DESCRIBE):	TESTIN Per permit's Ge Per permit's Ge	IG eneral Conditio eneral Conditio	on JJ	
Specify proposed referen Specify reference test me Specify testing frequency	MONTHLY OTHER (DESCRIBE):	TESTIN Per permit's Ge Per permit's Ge Initial; as requi	IG eneral Conditio eneral Conditio ed.	n JJ	

REVISED 9/22/16	NCDENR/Division Of Air (Quality - Applicat	tion for Air Perm	nit to Construct/Operate		E3
		Regulated	Pollutant	Volatile Organic Compounds		
Emission Source ID NO.	ES-1A, ES-1B	Applicable	Regulation	SB3		
Alternative Operating Scer	nario (AOS) NO:					
	ATTACH A SEPARATE PAC	GE TO EXPAN	O ON ANY OF	THE BELOW COMMENTS		
	M	ONITORING RE	QUIREMENTS		17251217	
Is Compliance Ass	urance Monitoring (CAM) 40 CFR Part 6	4 Applicable?	Yes	☑ No		
If yes, is CAM Plan	Attached (if applicable, CAM plan must	be attached)?	Yes	🗌 No		
Describe Monitoring	g Device Type:	N/A				
Describe Monitoring	g Location:	N/A				
Other Monitoring M	lethods (Describe In Detail):	N/A				
_						
Describe the frequeries taken to p	ency and duration of monitoring and how produce an hourly average):	w the data will be n	recorded (i.e., evo	ery 15 minutes, 1 minute instantaneous		
	REC	ORDKEEPING I	REQUIREMEN	TS		
Data (Parameter) b	eing recording:	<u>N/A</u>				
Frequency of record	dkeeping (How often is data recorded?):		N/A			
2						
3 						
	RI	EPORTING REC	UIREMENTS			
Generally describe	what is being reported:	<u>N/A</u>				
2						
Frequency:	MONTHLY		R	EVERY 6 MONTHS		
	OTHER (DESCRIBE):					
		TESTI	NG		15-15-27	
Specify proposed reference	e test method:	Per permit's G	eneral Conditio	n .L1		
Specify reference test meth	nod rule and citation	Per permit's G	eneral Conditio	in JJ		
Specify testing frequency:		Initial: as-requi	ired.			
NOTE - Pr	oposed test method subject to ap	proval and pos	ssible change	during the test protocol process		

REVISE	ED 9/22/16	NCDENR/Division Of Air (Quality - Application	for Air Perm	nit to Construct/Operate		E3
			Regulated Po	ollutant	Mercury		
Emissio	on Source ID NO.	ES-1A, ES-1B	Applicable Re	egulation	SB3		
Alternat	tive Operating Sce	nario (AOS) NO:					
		ATTACH A SEPARATE PAG	GE TO EXPAND O	N ANY OF	THE BELOW COMMENTS		
	S n 5 4 20 1	M	ONITORING REQU	JIREMENTS			
ŀ	s Compliance Ass	surance Monitoring (CAM) 40 CFR Part 6	64 Applicable?	Yes	☑ No		
r	f ves. is CAM Pla	n Attached (if applicable, CAM plan must	be attached)?	Yes	□ No		
	Describe Monitorir		Same as PM.				
	Describe Monitorir	Ig Location:	Same as PM.				
	Other Monitoring N	Methods (Describe In Detail):	Same as PM.				
1	Describe the freque readings taken to Same as PM.	lency and duration of monitoring and how produce an hourly average):	w the data will be reco	orded (i.e., eve	ery 15 minutes, 1 minute instantaneous		
_							
-							
8							
Describe the frequency and duration of monitoring and how the data will be recorded (i.e., every 15 minutes, 1 minute instantaneous readings taken to produce an hourly average): Same as PM.							
F	Data (Parameter) I Frequency of reco	being recording: rdkeeping (How often is data recorded?):	Same as PM.	ame as PM.			
<u></u>							
-							
-							
-							
186.73		R	EPORTING REQUI	REMENTS		* 0.50.	12 E M
G	Generally describe	what is being reported:	Same as PM.				
-							
_							
4							
Freque	PDCV:				I EVERY SIX MONTHS		
rioque	littey.						
			TESTING				
Specify	proposed reference	ce test method:	Same as PM.				
Specify r	reference test me	thod rule and citation:	Same as PM.				
Specify t	testing frequency:		Same as PM.				
	NOTE - P	roposed test method subject to ap	oproval and possib	ble change	during the test protocol process		

FORM E4 EMISSION SOURCE COMPLIANCE SCHEDULE

VISED 09/22/16	NCDEQ/Division of Air Q	uality - Application for Air Permit to Construct/Operate	E
C	OMPLIANCE STATUS WIT	H RESPECT TO ALL APPLICABLE REQUIREMENTS	
Will each emission source these requirements?	at your facility be in compliance wit	h all applicable requirements at the time of permit issuance and continue to comply	with
YES	√ NO If cc	NO, complete A through F below for each requirement for which ompliance is not achieved.	
Will your facility be in such requirements or	compliance with all applicat	ole requirements taking effect during the term of the permit and me	et
🗋 yes	DDECQ/Division of Air Quality - Application for Air Permit to Construct/Operate COMPLIANCE STATUS WITH RESPECT TO ALL APPLICABLE REQUIREMENTS Interpretation of a compliance with all applicable requirements at the time of permit issuance and concompliance is not achieved. Interpretation of the permit issuance and concompliance with all applicable requirements at the time of permit issuance and concompliance is not achieved. Interpretation of existing emissions source(s), is each emission source currently in compliance with all applicable requirements to not achieved. Application is for a modification of existing emissions source(s), is each emission source currently in compliance with all applicable requirement for which compliance is not achieved. A Emission Source Description (Include ID NO.) ES-1A & ES-1B Boilers A & B B. Identify applicable requirement for which compliance is not achieved. Permit Condition limits CO emissions to less than 250 tons per 12 consecutive months. This limit may be exceeded temporarity in accordance with Special Order by Consent. PSD permit application to how compliance will be achieved with this applicable requirements: Dr PSD permit application of how compliance will be achieved with this applicable requirements: Dr PSD permit application to be submitted. Dr Secocial Order by Consent Dr Secocial Order by Consent Dr Secocial Order by Co		
If this application is for a m	odification of existing emissions so	urce(s), is each emission source currently in compliance with all applicable requirem	ients?
Sec. Yes	✓ NO If	NO, complete A through F below for each requirement for which ompliance is not achieved.	
A. Emission	Source Description (Include ID NO	.) ES-1A & ES-1B Boilers A & B	
C. Narrative PSD per	d temporarily in accordance with description of how compliance will mit application to be submitted.	Special Order by Consent.	
D. Detailed S Step(s) See Spec	Schedule of Compliance: ial Order by Consent	Date Expected	
E. Frequenc See Spec	y for submittal of progress reports (ial Order by Consent.	6 month minimum):	
F. Starting d	ate of submittal of progress reports	See Special Order by Consent.	

FORM E5 TITLE V COMPLIANCE CERTIFICATION (Required)

REVISED	09/22/16		NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate					
	In acco	ordance with th	ne provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company official of:					
	SITE NA	AME:	North Carolina Renewable Power - Lumberton, LLC MAR 2 9 2017					
	SITE AD	DDRESS:	1866 Hestertown Road					
	CITY, N	C :	Lumberton, NC 28358					
	COUNT	Υ:	Robeson					
	PERMIT	I NUMBER :	05543T23					
	CERTIF	TIES THAT (Chec	k the appropriate statement(s):					
		The facility is in co	ompliance with all applicable requirements					
		In accordance with modification meets permit application.	n the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed minor s the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to process the					
	1	The facility is not o	currently in compliance with all applicable requirements					
		If this box is check	ked, you must also complete Form E4 "Emission Source Compliance Schedule"					
The und informa	dersign tion an	ed certifies und d belief formed	der the penalty of law, that all information and statements provided in the application, based I after reasonable inquiry, are true, accurate, and complete.	on				
5		5	Date: 3-24-17					
1	Signat	ure of respons	ible company official (REQUIRED, USE BLUE INK)					
	Steven	R. Ingle, Vice Pre	esident - Engineering					
The und informa	Name,	, Title of respon	nsible company official (Type or print)					

FORM E6 COMPLIANCE ASSURANCE MONITORING (CAM) PLAN (4 pages)

REVI	SED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E6-1
5			
For C	CAM-affected emission u	nits, the applicant must submit additional information in the form of a CAM Plan as required under 40 CFR 64.	
For in	formation about the CAM	rule and this form, please refer to 40 CFR 64 and 15A NCAC 2D .0614.	
Addit	ional information (including	guidance documents may be found at the following URLs:	
	https://www3.epa.gov/ttn	/emc/cam.html	
	https://deg.nc.gov/about/	divisions/air-quality/air-quality-enforcement/compliance-assurance-monitoring	
		SOURCE INFORMATION	
1.	Facility Name:	North Carolina Renewable Power - Lumberton, LLC	
2.	Permit Number:	05543723	
3.	Date Form Prepared:	March 1, 2017	
		BASIS OF CAM SUBMITTAL	
4.	Mark the appropriate be	ox below as to why this CAM Plan is being submitted as part of this application:	
	Renewal Application: A	ALL Emission Units (Pollutant Specific Emission Units [PSEUs] considered separately with respect to EACH regulated air	
	pollutant) for which a CA	M Plan has NOT vet been approved needs to be addressed in this CAM Plan submittal.	
	See Renewal Procedure	s per 15 A NCAC 2Q .0513.	
	Initial Application (Sub	mitted after 4/20/1998): Only large PSEUs (PSEUs with potential post control device emissions of an applicable regulated air	
	pollutant that are equal to	o or greater than major source threshold levels) need to be addressed in this CAM Plan submittal.	
	See Initial Application Pro	scedures per 15A NCAC 2Q .0505(1).	
	Significant Modification	n to Large PSEUs: Only large PSEUs (PSEUs with potential post control device emissions of an applicable regulated air	
	pollutant that are equal to	to carget best only larget location with period and period better structure threads on the addressed in this CAM Plan submittal.	
	For large PSEUs with an	approved CAM Plan, only address the appropriate monitoring requirements affected by the significant modification.	
	See Significant Modificat	ion Procedures per 15 A NCAC 2Q .0516.	
		CAM APPLICABILITY DETERMINATION	As for the l
5.	To determine CAM app	licability, a PSEU must meet <u>ALL</u> of the following criteria (If not, then the remainder of this form need not be completed):	
	A. The PSEU is located	, at a major source;	
	b. The PSEU is subject	to an emission immutation of standard for the applicable regulated an pointuant tracts <u>NOT</u> electricity,	
	NSPS (40 CFR I	Part 60 or NESHAP (40 CFR Part 61 and 63) proposed after 11/15/1990.	
ľ –	 Stratospheric oz 	one protection requirements.	
	 Acid Rain progra 	am requirements.	
	 Emission limitation 	ons or standards for which a Title V permit specifies a continuous compliance determination method, as defined in the	
	CAM rule (40 CF	R 64.1), Continuous Compliance Determination Method.	
	 An emission cap 	, that meets the requirements specified in 40 CFR 70.4(b)(12).	
	If the PSEU is subject	t to both Exempt and Not Exempt emission standards for the same pollutant, then the facility is required to determine the	
	CAM applicability for	Not exempt emission standards.	
	D The PSEU uses an a	tau-on control device to achieve compliance with an emission initiation of standard,	
	threshold levels: and		
	E. The PSEU is NOT a	n exempt backup utility power emission unit that is municpally owned and appropriately documentd as provided in	
	15A NCAC 2D .0614	i(b)(2).	

Attach Additional Sheets As Necessary

Page 1 of 4

		BACKGROUND DATA	AND INFORMATION	a started in the second	E6-2
6. Complete the background	ne following table for <u>ALL</u> PSEUs t I data and information for each PS I space is needed, please attach a	hat need to be addressed EU in order to supplement nd label additional sheets a	in this CAM Plan submit t the submittal requirem as appropriate.	tal. This section is to be used to ents specified in 40 CFR 64.4.	provide
PSEU Designation	PSEU Description	Pollutant	Control Device	[®] Emission Limitation OR Standard	^b Monitoring Requirement
ES-1A & 1B	Boilers A & B	PM/PM ₁₀ /PM _{2.5}	Baghouse	0.03/0.036/0.031 lb/MMBtu	Continuous Opacity Monitoring System (COMS)
		,			
1					
ļ					
			_		
^a Indicate the	emission limitation or standard for a	ny applicable requirement th	at constitutes an emisson	limitation, emission standard, or st	andard of
control devic	 Examples of emission limitations ce parameters, or other forms of spe monitoring requirements for the con 	or standards may include a p cific design, equipment, ope trol device that are required	permitted emission limitati rational or maintenance re by an applicable regulatio	on, applicable regulations, work pra equirements. In or permit condition.	acuces, process or

Attach Additional Sheets As Necessary

Page 2 of 4

² CAM MONITORING APPROACH CRITERIA

E6-3

7. Complete this section for EACH PSEU and for each affected pollutant that needs to be addressed in this CAM Plan submittal. This section may be copied as needed for each PSEU. This section is to be used to provide monitoring data and information for EACH indicator selected for EACH PSEU in order to meet the monitoring design criteria specified in 40 CFR 64.3 and 64.4. If more than two indicators are being selected for a PSEU or if additional space is need, attach and label with the apprtopriate PSEU designation, pollutant, and indicator Nos.

PSEU DESIGNATION		POLLUTANŤ	^b INDICATOR NO. 1	^b INDICATOR NO. 2
7a.	General Criteria Describe the <u>monitoring approach</u> used to measure the indicators.	PM/PM10/PM2.5	Opacity	
	^c Establish the appropriate <u>indicator range</u> or the procedures for establishing the indicator range which provides a reasonable assurance of compliance	PM/PM10/PM2.5	Any 3-hour block average opacity > 12 percent	
	[®] Provide <u>Quality Improvement Plan (QIP)</u> Thre <u>shold</u> levels.	PM/PM10/PM2.5	Any 4 excursions within any 6-month period	
7b.	Performance criteria Provide the <u>Specification for Obtaining</u> <u>Representative Data</u> (Such as detector location and installation specifications).	PM/PM10/PM2.5	The COMS shall be installed, in accordance with 40 CFR 60 App B, Perf Spec 1 and App F, Proc 3.	
	Provide <u>Quality Assurance and Quality</u> <u>Control (QA/QC) Practices</u> that are adequate to ensure the continuing validity of the data, considering manufacturerer's recommendations	PM/PM10/PM2.5	The COMS shall be calibrated, in accordance with 40 CFR 60 App B, Perf Spec 1 and App F, Proc 3.	
	^e Provide the <u>Monitoring Frequency</u> Provide the <u>Data Collection Procedures</u> that will be used	PM/PM10/PM2.5	Continuous The COMS shall be operated and maintained in accordance with manufacturer's recommendations.	
	Provide the <u>Data Averaging Period</u> for the purpose of determining whether an excursion or exceedance has occurred	PM/PM10/PM2.5	3-hour block averages	

^a If a Continuous Emission Monitoring System (CEMS), Continuous Opacity Monitoring System (COMS), or Predictive Emission Monitoring System (PEMS) is used, then this section need not be completed <u>ONLY</u> for the CEMS, COMS, or PEMS, <u>EXCEPT</u> that the Special Criteria Information of 40 CFR 64.3(d) must be provided. Special Criteria Information may be provided on a separate sheet.

^b Describe all indicators to be monitored which satisfy 40 CFR 64.3(a). Indicators of emission control performance for the control device and associated capture system may include measured or predicted emissions (including visible emissions or opacity), process and control device operating parameters that affect control device (and capture system) efficiency or emission rates, or recorded findings of inspection and maintenance activities.

^c Indicator ranges may be based on a single maximum or minimum value or at multiple levels that are relevant to distinctly different operating conditions, expressed as a function of process variables, expressed as maintaining the applicable indicator in a particular operational status or designated condition, or established as interdependent between more than one indicator. In addition, unless specifically stated otherwise by an applicable requirement, the owner or operator shall monitor the indicators to detect any <u>bypass</u> of the control deivce (or capture system) to the atmosphere.

^d The QIP threshold is based on the number of excursions identified in a reporting period. (Example: if the historical monitoring data for a facility indicates that the indicator range was exceeded 10 times in a 6-month period, the threshold could be established at no more than 10 excursions outside the indicator range during a 6-month reporting period.) The threshold levels also could be established based on the duration of excursions as a percentage of operating time.

At a minimum, the owner of a large PSEU must collect four or more data values equally spaced over each hour and average the values. All other PSEUs must collect data at least once per 24-hour period or possibly more to provide reasonable assurance of compliance over the anticipated range of operating conditions.

Attach Additional Sheets As Necessary

Page 3 of 4

	RATIONALE AND JUSTIFICATION	E6-4
8.	Complete this section for EACH PSEU and for each affected pollutant that needs to be addressed in this CAM Plan submittal. This section may be c	o <i>pied as</i> esion criteria
	specified in 40 CFR 64.3 and 64.4. If more than two indicators are being selected for a PSEU or if additional speace is needed, attach additional she	ets and label
	with the appropriate PSEU designation, pollutant, and indicator Nos.	

	PSEU DESIGNATION	POLLUTANT
-		
9.	INDICATORS AND THE MONITORING APPROACH: Provide the rationale and the indicators. Also provide any data suporting the rationale and justification. Ex quality assurance and control practices proposed and the manufacturer's recommendesignation and pollutant).	justification for the selection of the indicators and the monitoring approach used to measure cplain the reasons for any differences between the verification of operational status or the mendations. (If addiional space is needed, attach and label with the appropirate PSEU
	Opacity is an appropriate surrogate for PM emissions and control device effectiv	eness. The opacity of the PM emissions will be monitored in the stack continuously.
40	INDICATOR BANCES. Brouido the rationale and justification for the selection of	t the indicator ranges. The rationale and justification shall indicate how EACH indicator
10.	range was selected by either a <u>Compliance or Performance Test</u> , a <u>Test Plan an</u> for each indicator range, include the specific information required below for that PSEU designation and pollutant):	<u>d Schedule</u> , or by <u>Engineering Assessments</u> . Depending on which method is being used specific indicator range. (If additional space is needed, attach and label with the appropriate
	 <u>COMPLIANCE or PERFORMANCE TEST</u> (Indicator ranges determined from conducted under regulatory specified conditions or under conditions represe may be supplemented by engineering assessments and manufacturer's recor or performance test results that were used to determine the indicator range significant change in the control system performance or the selected indicator 	n control device operating parameter data obtained during a compliance or performance test intative of maximum potential emissions under anticipated operating conditions. Such data ommendations). The rationale and justification shall <u>include</u> a summary of the compliance and documentation indicating that no changes have taken place that could result in a or ranges since the compliance or performante test was conducted and approved by DAQ.
	 <u>TEST PLAN AND SCHEDULE</u> (Indicator ranges will be determined from a p appropriate activities prior to use of the monitoring). The rationale and justif use of the monitoring as expeditiously as practical after approval of this CAN of the minitoring exceed 180 days after approval. 	roposed implementation plan and schedule for installing, testing, and performing any other ication shall <u>include</u> the proposed implementation plan and schedule that will provide for // Plan, but in no case shall the schedule for completing installation and beginning operation
ļ	 ENGINEERING ASSESSMENTS (Indicator ranges or the procedures for est such as manufacturer's design criteria and historical monitoring data, becau performance testing unnecessary). The rationale and justification shall <u>inclu</u> indicator range. 	ablishing indicator ranges are determined from engineering assessments and other data, se factors specific to the type of monitoring, control device, or PSEU make compliance or <u>ude</u> documentaion demonstrating that compliance testing is not required to establish the
	A 3-hour block average was selected to be commensurate with the reference m	ethod test, which consists of three one-hour sampling events averaged.

Attach Additional Sheets As Necessary

Page 4 of 4

ATTACHMENT A Figures

APPENDIX B Emissions Calculations

Table 4. Emission Rates for Modeling

	Hourly Potential (Ib/hr)												
Pollutant	Boilers (ES-1A, ES- 1B)	Starter Fuel (ES-1A, ES- 1B)	Emergency Fire Pump (ES-1)	Fly Ash Silo (ES-3)	Drum Dryer (ES-22)	Parts Cleaner (IES-4)	Cooling Towers (IES-6)	Truck Dump 1 (IES-8)	Truck Dump 2 (IES-9)	Fuel Piles (IES-10)	Fuel Handling (IES-11)	Roads (IES-12)	Sorbent Silo (IES-13)
co	193.50	15.36	1.95	-	2.77	-					(<u> </u>
NOx	68.80	73.71	2.25	-	3.29	-	-	-				-	
SO2	68.80	0.65	0.70	-	0.04		_					-	<u> </u>
PM	12.90	10.14	0.11	0.02	1.39	-	0.34	0.04	0.04	0.99	0.39	- 0.34	- 0.19
PM10	15.48	10.14	0.11	0.01	1.39		0.34	0.07	0.02	0.55	0.55	0.34	0.18
PM2.5	11.61	10.14	0.11	0.00	1.39	-	0.34	0.02	0.02	0.50	0.18	0.04	0.10

Emission Rate In	crease (lb/hr)
со	192.19
NOx	52.77
SO2	29.78
VOC	12.76
PM	11.87
PM10	14.93
PM2.5	11.39

Table 7. Starter Fuel Potential Emissions Calculation

HAP/TAPs

For all pollutants listed below, emissions are based on AP-42 Chapter 1.3 (05/2010).

	Emission Eactor	Convert ¹	Starter Eucl DTE ²	
Pollutant	(lb/Mgal)	to lb/br	(tons/ur)	HAD or TAD2
Benzene	2 14E-04	6 57E-04	2.885.04	
Ethylbenzene	6 36E-05	1.95E-04	2.00L-04	
Toluene	6.20E-03	1.950-04	9.24E.02	
Formaldehyde	3 30E-02	1.01E 01	0.34E-03	
Nanhthalene	1 12E 02	2.47E 02	4.44E-02	
1 1 1-Trichloroethane	2.36E.04	7.255.04	2.17E.04	
Xylenes	1.09E-04	2 25E 04	3.17E-04	
Acenanhthylene	2.53E-07	7.77E 07	2.405.07	
Acenaphthene	2.115.05	6.49E.05	3.40E-07	
Fluorene	2.TTE-05	1 275 05	2.04E-00	
Phenanthrene	1.055.05	2.225.05	0.01E-00	
Anthracene	1.000-00	3.23E-03	1.41E-05	
Fluoranthene	1.22E-00	3.75E-00	1.04E-00	
Pyrene	4.04E-00	1.49E-05	0.31E-00	
Benzo(a)anthracene	4.25E-00	1.312-05	5.72E-00	
Chrysone	4.01E-00	1.23E-00	5.39E-06	HAP
Benzo(b)fluoranthene	2.30E~00	1.31E-00	3.20E-06	
Benzo(k)fluoranthene	1.40E-00	4.55E-06	1.99E-06	
Indeno(1,2,3,a,d)nyrana	1.40E-00	4.35E-00	1.99E-06	HAP
Dibenzo(a b)anthracono	2.14E-00	0.57E-00	2.88E-06	HAP
Benzo(a,hi)antiliacene	1.07E-00	5.13E-06	2.25E-06	HAP
Octachloredihenze a diovine	2.20E-00	0.94E-06	3.04E-06	HAP
Antimony	5.10E-09	9.52E-09	4.1/E-09	HAP
Arconic	0.20E-03	1.01E-02	7.06E-03	HAP
Barium	1.32E-03	4.05E-03	1.78E-03	HAP
Bandin	2.37E-03	7.69E-03	3.46E-03	
Codmium	2.78E-05	8.54E-05	3.74E-05	HAP
Chromium (total)	3.98E-04	1.22E-03	5.35E-04	HAP
Coholt	1.09E-03	3.36E-03	1.4/E-03	HAP
Managanaga	0.02E-03	1.85E-02	8.10E-03	HAP
Moroury	3.00E-03	9.21E-03	4.04E-03	HAP
Niekol	1.13E-04	3.47E-04	1.52E-04	HAP
Solonium	8.45E-02	2.60E-01	1.14E-01	HAP
Venedium	6.83E-04	2.10E-03	9.19E-04	HAP
Vanadium	3.18E-02	9.77E-02	4.28E-02	TAP
Lead	1.51E-03	4.64E-03	2.03E-03	HAP
Connor	3.4/E-01	1.0/E+00	4.67E-01	TAP
Copper	1./6E-03	5.41E-03	2.37E-03	TAP
	3.73E-02	1.15E-01	5.02E-02	TAP
Phosphorus	9.46E-03	2.91E-02	1.27E-02	TAP
ZINC	2.91E-02	8.94E-02	3.91E-02	TAP

Notes:

1. To convert to lb/hr, the following equations are used (for example):

Benzene EF (lb/hr) = Benzene EF (lb/Mgal) x Boiler Max Heat Input (MMBtu/hr) ÷ Heat Content of No. 2 Fuel Oil (MMBtu/Mgal) 2. PTE is calculated as follows:

Benzene PTE (tons/yr) = Benzene EF (lb/Mgal) x No. 2 Fuel Oil Annual Usage Limit (Mgal/yr) + 2,000 (lb/ton)

Table 1. PSD Applicability Analysis

PSD Applicability Applysis	Emissions (ton/yr)									
too replicability rilatysis	CO	NOx	SO2	VOC	PM	PM10	PM2.5	Lead	H2504	C02e
Baseline	5.75	70.20	170.90	0.60	4.50	2.40	0.95	0.00033	2.74	46 117
Future Potential	847.53	301.34	421.88	56.50	56.50	67.80	67.80	0.09	58 39	137 005
Emissions Increase	841.78	231.14	250.98	55.90	52.00	65.40	66.85	0.09	56.15	201 700
PSD Thresholds	100	40	40	40	25	15	10	0.05	7	75 000
Triggers PSD?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Ves

Table 7. Starter Fuel Potential Emissions Calculation

No. 2 fuel oil will be used as starter fuel of the boiler. The fuel oil usage will be limited to 10% of the annual capacity of the boiler (for avoidance of NOx limit under NSPS Db).

The fuel oil usage limit is calculated as follows: Boiler Max Heat Input Max Annual Op Hrs =

430 MMBtu/hr 8760 hr/yr

Boiler Annual Capacity = Boiler Max Heat Input (MMBtu/hr) x Max Annual Op Hrs (hr/yr) Boiler Annual Capacity = 3,766,800 MMBtu/yr

10% of Boiler Annual Capacity = Boiler Annual Capacity x 10%10% of Boiler Annual Capacity =376,680 MMBtu/yr

 No. 2 Fuel Oil Heat Content =
 140.0 MMBtu/Mgal

 No. 2 Fuel Oil Usage Limit = 10% of Boiler Annual Capacity / No. 2 Fuel Oil Heat Content

 No. 2 Fuel Oil Usage Limit =
 2,690.6 Mgal/yr

 (Per NSPS Db at 10% Boiler Annual Capacity)

Maximum Fuel Sulfur:

0.0015 S by weight (ULSD)

CRITERIA POLLUTANTS

For all pollutants listed below, emissions are based on AP-42 Chapter 1.3 (05/2010):

				Starter Fuel PTF ²
Pollutant	Emission Factor	Units	Convert to lb/hr ¹	(tons/yr)
NOx	24.0	lb/Mgal	73.7	32.29
CO	5.0	lb/Mgal	15.4	6.73
PM (filterable+condensable)	3.3	lb/Mgal	10.1	4.44
SO ₂	0.21	lb/Mgal	0.7	0.29
VOC	0.2	lb/Mgal	0.6	0.27

Table 8. Emergency Fire Pump Engine Potential Emissions Calculation

The emergency fire pump engine will be used for emergency fire purposes only. Scheduled maintainence/testing will be limited to 9 hours per year (45 minutes/month). Potential emissions are estimated based on maximum operation of 500 hours per year.

Engine Power in hp	340 hp
Fuel Type:	Diesel
Maximum Fuel Sulfur:	0.0015% S by weight
Max Operating Hours:	500 hr/yr

The engine meets NSPS Subpart IIII emissions standards for NOx/NMHC, CO, and PM (Model year 2009+). For other pollutants, emissions are based on AP-42 Section 3.3 (10/96):

					Fire Pump
		Emission		Convert to	PTE
Pollutant	CAS	Factor	Units	lb/hr	(tons/yr)
NOx+NMHC		3.0	gr/hp-hr	2.2	0.56
CO	_	2.6	gr/hp-hr	1.9	0.49
PM		0.15	gr/hp-hr	0.1	0.03
SO ₂		2.05E-03	lb/hp-hr	0.7	0.17
VOC		2.51E-03	lb/hp-hr	0.9	0.21
Benzene	71-43-2	9.33E-04	lb/MMBtu	2.22E-03	5.55E-04
Toluene	108-88-3	4.09E-04	lb/MMBtu	9.73E-04	2.43E-04
Xylenes	1330-20-7	2.85E-04	lb/MMBtu	6.78E-04	1.70E-04
Propylene	115-07-1	2.58E-03	lb/MMBtu	6.14E-03	1.54E-03
1,3 Butadiene	106-99-0	3.91E-05	lb/MMBtu	9.31E-05	2.33E-05
Formaldehyde	50-00-0	1.18E-03	lb/MMBtu	2.81E-03	7.02E-04
Acetaldehyde	75-07-0	7.67E-04	lb/MMBtu	1.83E-03	4.56E-04
Acrolein	107-02-8	9.25E-05	lb/MMBtu	2.20E-04	5.50E-05
Naphthalene	91-20-3	8.48E-05	lb/MMBtu	2.02E-04	5.05E-05
Acenaphthylene	POM	5.06E-06	lb/MMBtu	1.20E-05	3.01E-06
Acenaphthene	POM	1.42E-06	lb/MMBtu	3.38E-06	8.45E-07
Fluorene	POM	2.92E-05	lb/MMBtu	6.95E-05	1.74E-05
Phenanthrene	РОМ	2.94E-05	lb/MMBtu	7.00E-05	1.75E-05
Anthracene	POM	1.87E-06	lb/MMBtu	4.45E-06	1.11E-06
Fluoranthene	POM	7.61E-06	lb/MMBtu	1.81E-05	4.53E-06
Pyrene	POM	4.78E-06	lb/MMBtu	1.14E-05	2.84E-06
Benzo(a)anthracene	POM	1.68E-06	lb/MMBtu	4.00E-06	1.00E-06
Chrysene	POM	3.53E-07	lb/MMBtu	8.40E-07	2.10E-07
Benzo(b)fluoranthene	POM	9.91E-08	lb/MMBtu	2.36E-07	5.90E-08
Benzo(k)fluoranthene	POM	1.55E-07	lb/MMBtu	3.69E-07	9.22E-08
Benzo(a)pyrene	50-32-8	1.88E-07	lb/MMBtu	4.47E-07	1.12E-07
Indeno(1,2,3,c,d)pyrene	POM	3.75E-07	lb/MMBtu	8.93E-07	2.23E-07
Dibenzo(a,h)anthracene	POM	5.83E-07	lb/MMBtu	1.39E-06	3.47E-07
Benzo(g,h,i)perylene	POM	4.89E-07	lb/MMBtu	1.16E-06	2.91E-07

Notes:

1. PM₁₀ and PM_{2.5} are assumed to be equal to the NSPS PM emission rate.

2. To convert from lb/MMBtu to lb/hp-hr, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used.

Table 9. Fly Ash Silo Potential Emission Calculatioin

	Design Maximum Flow Rate (acfm) ¹	Outlet Particulate Grain Loading (grain/scf)	PM Emissions (lb/hr)	PM ₁₀ Emissions (lb/hr)	PM _{2.5} Emissions (lb/hr)	PM Annual Emissions (tons/yr)	PM ₁₀ Annual Emissions (tons/yr)	PM _{2.5} Annual Emissions (tons/yr)
ES-3 Fly Ash Silo	500.00	0.005	0.02	1.01E-02	1.01E-03	0.09	0.04	0.00

k Values AP-42 Section 13.2.4 Aggregate Handling and Storage Piles, Aerodynamic Particle Size Multiplier for Equation 1

Total Suspended

Particulate	0.74
PM10	0.35
PM2.5	0.035

¹Volumetric flow through the dust collector (fabric filter).

²Lb/hr = [(scf/hr) * (grains/scf)] / (7000 grains/lb)

³Annual emissions (TPY) based on 8760 hours per year operation. TPY = (lb/hr) * (8760/2000)

⁴PM₁₀ calculation uses particle size multiplier based on AP-42, Section 13.2.4; lb/hr (PM₁₀) = lb/hr (TSP) * (k PM₁₀/k TSP)

⁵PM_{2.5} calculation uses particle size multiplier based on AP-42, Section 13.2.4; lb/hr (PM_{2.5}) = lb/hr (TSP) * (k PM_{2.5}/k TSP)

Table 10-1. Drum Dryer System Potential Emissions Calculation - Criteria Pollutants Evaporation & Natural Gas Combustion

Emission factors for criteria pollutants from natural gas combustion and evaporation for the drum dryer equipped with low NOx burners are selected from EPA AP-42 Chapter 10.6.2 – Particleboard there is no value provided in that chapter.

Evaporation

Max. Annual Wood Capacity 289080 tons wood/yr (33 tons/hr * 8760 hr/yr = 289,080 tons/yr)

Combustion

Total Drver Burner Capacity	66.2	MMRtu/br
Total BTO Capacity	00.2	TANADO (U/TI)
Total KTO Capacity		IVIIVIBTU/NF
Total System Capacity	67.2	MMBtu/hr
Max. Operating Hours	8760	hr/yr
Natural Gas Heat Content	1020	Btu/scf

				UNCONTROLLED	EMISSION RATES	1	CONTROLLED	EMISSION RATES		
Pollutant Category	Pollutant	Emission Factors	Emission Factor Units	Emissions (Ib/hr)	Emissions (tpy)	Control Efficiency ^{1,2,3}	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source ⁴	Comment
Criteria Pollutant	со	0.082	lb/MMBtu	5.53	24.24	50%	2.77	12.12	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	Used AP-42 Chapter 1.4
Criteria Pollutant	NOx	0.049	lb/MMBtu	3.29	14.43	0%	3.29	14.43	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	factors; AP-42 Chapter 10.6.2 does not list
Criteria Pollutant	SO ₂	0.001	lb/MMBtu	0.04	0.17	0%	0.04	0.17	EPA AP-42 Chapter 1.4 – Natural Gas Combustion in Boilers	emission factors for these pollutants.
Criteria Pollutant	voc	2.0	Ib/ODT	66.00	289.08	95%	3.30	14.45	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	
Criteria Pollutant	PM	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	Emission factors based on "Rotary dryer, direct
Criteria Pollutant	PM ₁₀	0.42	lb/ODT	13.86	60.71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	softwood" in AP-42 Chapter 10.6.2
Criteria Pollutant	PM _{2.5}	0.42	Ib/ODT	13.86	60,71	90%	1.39	6.07	EPA AP-42 Chapter 10.6.2 – Particleboard Manufacturing	

Notes:

1. Drum dryer VOC, PM, and CO emissions controlled by a multiclone and a 1 MMBtu/hr, natural gas-fired RTO.

2. RTO VOC control efficiency taken to be 295% per https://www3.epa.gov/ttnchie1/mkb/documents/fregen.pdf. RTO CO control efficiency taken from vendor email

3. It is assumed that the combined control efficiency of the multiclone and RTO is 90% on PM, PM₀, and PM_{2.5} emissions.

4. AP-42 emission factors are only provided for PM. Assumed filterable PN₁₀ and PM_{2.5} emission factors are the same as the filterable PM

5. CO, NO_v SO₂ emissions due to evaporation are not determined in Chapter 10.6.2. Therefore, AP-42 Chapter 1.4 emission factors are used for these pollutants

Table 10-2. Drum Dryer System Potential Emissions Calculation - HAP Combustion & Evaporation

Emission factors for hazardous air pollutants (HAPs) from combustion and evaporation in rotary dryers taken from AP-42 Chapter 10.6.2 - Particleboard otherwise taken from AP-42 Chapter 1.4

Evaporation

Combustion

Max. Annual Wood Capacity Max. Operating Hours	289080 8760	tons wood/yr hr/yr	(33 tons/hr * 8760 hr/yr = 289,080 tons/yr)
Total Dryer Burner Capacity	66.2	MMBtu/hr	
Total RTO Capacity	1	MMBtu/hr	
Total System Capacity	67.2	MMBTU/hr (Burne	ers and RTO)
Max. Operating Hours	8760	hr/yr	
Natural Gas Heat Content	1020	Btu/scf	
			UNCONTROLLED

		UNCONT	ROLLED		CONTR	OLLED			
				EMISSIO	N RATES		EMISSIO	N RATES	
Pollutant Category	Pollutant	CAS	Emission Factors	Emissions	Emissions	Control	Emissions	Emissions	Emission Factor
			(Ib/ODT)	(lb/hr)	(tpy)	Efficiency ¹	(lb/hr)	(tpy)	Source
НАР/ТАР	Formaldehyde	50-00-0	0.01	0.28	1.24	95%	0.01	0.06	AP-42 Chapter 10.6.2
НАР	Methanol	67-56-1	0.07	2.41	10.55	95%	0.12	0.53	AP-42 Chapter 10.6.2
	Total HAP		0.08	2.69	11.79	95%	0.13	0.59	AP-42 Chapter 10.6.2

Table 10-2. Drum Dryer System Potential Emissions Calculation - HAP Combustion & Evaporation

Emission factors for hazardous air pollutants (HAPs) from combustion and evaporation in rotary dryers taken from AP-42 Chapter 10.6.2 - Particleboard otherwise taken from AP-42 Chapter 1.4

				UNCONT	ROLLED		CONTR	ROLLED	
				EMISSIO	N RATES		EMISSIO	N RATES	
Pollutant Category	Pollutant	CAS	Emission Factors	Emissions (lb/br)	Emissions	Control	Emissions	Emissions	Emission Factor
НАР	Acenaphthene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	Acenaphthylene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	Anthracene	РОМ	2.35E-09	1.58E-07	6.93E-07	95%	7.91E-09	3.46E-08	AP-42 Chapter 1.4
HAP	Benz(a)anthracene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР/ТАР	Benzene	71-43-2	2.06E-06	1.38E-04	6.06E-04	95%	6.92E-06	3.03E-05	AP-42 Chapter 1.4
HAP/TAP	Benzo(a)pyrene	50-32-8	1.18E-09	7.91E-08	3.46E-07	0%	7.91E-08	3.46E-07	AP-42 Chapter 1.4
НАР	Benzo(b)fluoranthene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	Benzo(g,h,i)perylene	РОМ	1.18E-09	7.91E-08	3.46E-07	95%	3.95E-09	1.73E-08	AP-42 Chapter 1.4
НАР	Benzo(k)fluoranthene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	Chrysene	РОМ	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	Dibenzo(a,h)anthracene	РОМ	1.18E-09	7.91E-08	3.46E-07	95%	3.95E-09	1.73E-08	AP-42 Chapter 1.4
НАР	Dichlorobenzene	95-50-1	1.18E-06	7.91E-05	3.46E-04	95%	3.95E-06	1.73E-05	AP-42 Chapter 1.4
НАР	7,12- Dimethylbenz(a)anthracene	57-97-6	1.57E-08	1.05E-06	4.62E-06	95%	5.27E-08	2.31E-07	AP-42 Chapter 1.4
НАР	Fluoranthene	POM	2.94E-09	1.98E-07	8.66E-07	95%	9.88E-09	4.33E-08	AP-42 Chapter 1.4
НАР	Fluorene	РОМ	2.75E-09	1.84E-07	8.08E-07	95%	9.22E-09	4.04E-08	AP-42 Chapter 1.4
НАР	Formaldehyde	50-00-0	7.35E-05	Ap-42 Chater 10.6.2 emission factor used for formaldehyde					AP-42 Chapter 1.4
НАР/ТАР	Hexane	110-54-3	1.76E-03	1.19E-01	5.19E-01	95%	5.93E-03	2.60E-02	AP-42 Chapter 1.4
НАР	Indeno(1,2,3-cd)pyrene	193-39-5	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	3-Methylchloranthrene	56-49-5	1.76E-09	1.19E-07	5.19E-07	95%	5.93E-09	2.60E-08	AP-42 Chapter 1.4
НАР	2-Methylnaphthalene	РОМ	1.96E-08	1.32E-06	5.77E-06	95%	6.59E-08	2.89E-07	AP-42 Chapter 1.4

Table 10-2. Drum Dryer System Potential Emissions Calculation - HAP Combustion & Evaporation

Emission factors for hazardous air pollutants (HAPs) from combustion and evaporation in rotary dryers taken from AP-42 Chapter 10.6.2 - Particleboard otherwise taken from AP-42 Chapter 1.4

				UNCONT	ROLLED		CONTR	ROLLED	1
				EMISSIC	N RATES		EMISSIO	N RATES	
Pollutant Category	Pollutant	CAS	Emission Factors (Ib/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Control Efficiency ¹	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
НАР	Naphthalene	91-20-3	5.98E-07	4.02E-05	1.76E-04	95%	2.01E-06	8.80E-06	AP-42 Chapter 1.4
НАР	Phenanathrene	85-01-8	1.67E-08	1.12E-06	4.91E-06	95%	5.60E-08	2.45E-07	AP-42 Chapter 1.4
НАР	Pyrene	POM	4.90E-09	3.29E-07	1.44E-06	95%	1.65E-08	7.21E-08	AP-42 Chapter 1.4
НАР/ТАР	Toluene	108-88-3	3.33E-06	2.24E-04	9.81E-04	95%	1.12E-05	4.91E-05	AP-42 Chapter 1.4
	Total HAP			0.119	0.522	95%	0.006	0.026	AP-42 Chapter 1.4
			Total HAP	2.81	12.32		0.14	0.62	AP-42 Chapter 1.4 & AP-42 Chapter 10.6.2

Notes:

1. RTO VOC control efficiency taken to be ≥95% per https://www3.epa.gov/ttnchie1/mkb/documents/fregen.pdf.

Table 11. Parts Cleaner (IES-4) Potential Emission Calculations

Calculation Parameters:		
Dimensions:	2.5 ft	Estimated
	4 ft	Estimated
	10 ft2	Estimated
VOC Emission Factor ¹	0.08 lb/hr/ft2	
Hours of Operation	2000 hr/yr	(Estimated)

	VOC Emissions (lb/hr)	VOC Emissions (tons/yr)
IES-4 Solvent Parts Cleaner	0.80	0.80

Notes:

1. VOC emission factor (lb/hr/ft2) taken from AP-42, Vol. I, Ch 2.6: Solvent Degreasing, Table 4.6-2.

2. Annual Emissions (tons/yr) = x (lb/hr) * 2000 (hr/yr) / 2000 (lb/ton)

Table 12. Cooling Towers (IES-6) Potential Emission Calculations

Calculation Parameters:		
Recirculation Rate	11,250 gal/min	(Estimated from rates for other power plants)
	675,000 gal/hr	
Drift	0.0006 %	(Estimated from rates for other power plants)
Density of Water	8.34 lb/gal	
TDS Concentration	10,000 ppm	(Estimated)

					PM	PM ₁₀	PM _{2.5}
		РМ	PM ₁₀	PM _{2.5}	Annual	Annual	Annual
		Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
		(lb/hr)	(lb/hr)	(lb/hr)	(tons/yr)	(tons/yr)	(tons/yr)
IES-6 Coolin	g Tower	3.38E-01	3.38E-01	3.38E-01	1.48	1.48	1.48

Notes:

1. Annual Emissions (tons/yr) = x (lb/hr) * 8760 (hr/yr) / 2000 (lb/ton)

2. Assume PM_{10} and $\mathsf{PM}_{2.5}$ emissions are similar to PM emission estimates.
Table 13. Truck Dumps (IES-8 & -9) Potential Emission Calculations

ſ	0.74 PM K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
	0.35 PM ₁₀ K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
	0.053 PM _{2.5} K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
	7.6 U - Average Wind Speed (mph)	National Climatic Data Center - average wind speed for Raleigh, NC
	10 M - Wood Moisture Content (%)	Lowest estimated wood moisture content
	96 Maximum Hourly Production Rate (tons/hr)	Estimate for Proposed Operational Parameters
	445709 Maximum Annual Production Rate (TPY)	Estimate for Proposed Operational Parameters
		(Based on maximum hourly boiler firiing rates (42.4 tph) @ 8760 hours plus throughput needed to fill stockpiles

					PM ₁₀	PM _{2.5}						
Emission		Max Hourly	Max Annual		Emission	Emission	Hourly PM	Annual PM	Hourly PM ₁₀	Annual PM ₁₀	Hourly PM _{2.5}	Annual PM _{2.5}
Source ID		Throughput	Throughput	PM Emission	Factor	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
No.	Source Description	(tons/hr)	(TPY)	Factor (lb/ton) ²	(lb/ton) ²	(lb/ton) ²	(lb/hr) ³	(TPY) ⁴	(lb/hr) ³	(TPY) ⁴	(lb/hr) ³	(TPY) ⁴
IES-8	Truck Dumper No. 1	96	445709	0.000428766	0.000202795	3.07089E-05	0.041	0.096	0.019	0.045	0.003	0.007
IES-9	Truck Dumper No. 2	96	445709	0.000428766	0.000202795	3.07089E-05	0.041	0.096	0.019	0.045	0.003	0.007

PSD Permit Application North Carolina Renewable Power - Lumberton, LLC Lumberton, NC

Table 14. Fuel Piles (IES-10) Potential Emission Calculations

Emission Source ID No.	Emission Source Description	Pile Area (acres)	Pile Length (ft)	Pile Width (ft)	Height of Storage Pile (ft)	Pile Surface Area ¹ (m ²)	PM (lb/hr)	PM (tpy)	PM ₁₀ (lb/hr)	PM ₁₀ (tpy)	PM _{2.5} (lb/hr)	PM _{2.5} (tpy)
	Fuel Storage Pile											
EIS-10	(North Pile Area)	0.75	340	100	25	3926.48	0.496	2.17	0.248	1.09	0.037	0.16
	Fuel Storage Pile											
EIS-10	(South Pile Area)	0.7	340	100	25	3926.48	0.496	2.17	0.248	1.09	0.037	0.16
						Total	0.99	4.34	0.50	2.17	0.07	0.33

Calculated Emission Factors^{2,3}

PM	PM10	PM2.5
(g/m2-day)	(g/m2-day)	(g/m2-day)
1.37	0.69	0.10

1. Surface area of piles calculated as half cylinders $S = 0.5 * 2\pi hL + 2\pi h^2$

Where:

h = the average of the pile height and 1/2 of the width

```
b = 1/2 width
```

c = height

As the two piles are connected at the center, the surface area of one half circle (the end of the half cylinder) has been subtracted from each.

2. EPA Report 451/R-93-001, "Models for Estimating Air Emissions Rates from Superfund Remedial Actions"

 $\begin{array}{l} \mathsf{EF} = 1.9 \ x \ (s/15) \ x \ ((365-p)/235) \ x \ (f/15) \qquad (\mathsf{Equation 7-9}) \\ \mathsf{Where:} \\ \mathsf{EF} = \mathsf{emission factor} \ (g/m^2 \mathsf{-day}) \\ \mathsf{p} = \mathsf{number of days in a year with at least 0.254 \ mm \ (0.01 \ in) \ of \ precipitation \\ \mathsf{p} = 110 \ \mathsf{days per AP-42 \ Figure \ 13.2.2-1} \\ \mathsf{s} = \mathsf{surface \ material \ silt \ content} \ (\%) \\ \mathsf{s} = 7.5 \ \% \ \mathsf{per \ AP-42 \ Table \ 13.2.4-1; \ value \ for \ overburden \\ \end{array}$

f = fraction of time wind >5.4 m/s at mean pile height

f = 20 per Table 7-3, Default Values for Estimating PM Emissions from Other Area Sources

3. PM Fractions (AP-42, Section 13.2.5-3)

Particle Size	k
PM30	1
PM10	0.5
PM2.5	0.075

Table 15. Material Handling - Transfer Operations (IES-11) Potential Emission Calculations

0.74 PM K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.35 PM ₁₀ K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
0.053 PM _{2,5} K Value	AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles (January 1995)
7.5 U - Average Wind Speed (mph)	National Climatic Data Center - average wind speed for Raleigh, NC
10 M - Wood Moisture Content (%)	Lowest estimated wood moisture content
44 Maximum Hourly Production Rate (tons/hr)	Estimate for Proposed Operational Parameters
385440 Maximum Annual Production Rate (TPY)	Estimate for Proposed Operational Parameters

r												
					PM ₁₀	PM2.5						Annual
Emission		Max Hourly	Max Annual	PM Emission	Emission	Emission	Hourly PM	Annual PM	Hourly PM ₁₀	Annual PM ₁₀	Hourly PM _{2.5}	PM25
Source ID		Throughput	Throughput	Factor	Factor	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
No.	Source Description	(tons/hr)	(TPY)	(lb/ton) ¹	(lb/ton) ¹	(lb/ton) ^{1,4}	(lb/hr) ²	(TPY) ³	(lb/hr) ²	(TPY) ³	(lb/hr) ²	(TPY) ₃
	Transfer Point - Truck Dumper Hopper to											
IES-11	Screen Supply Conveyor	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
	Transfer Point - Screen Supply Conveyor to Disc					1						
15-11	Screen	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
IES-11	Conveyor	44.0	205 4 40	4.945.94	1.007.01							
103-11	Transfer Boint - Screen Accents Conveyor to	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
IFS-11	Wood Fuel Transfer Conveyor	44.0	295//0	4 315 04	1.005.04	3.055.05	1 055 03	0.435.00				
	Transfer Point - Wood Fuel Transfer Conveyor	44.0	383440	4.212-04	1.99E-04	2.95E-05	1.851-02	8.12E-02	8.77E-03	3.84E-02	1.30E-03	5.69E-03
IES-11	to Storage Pile	44.0	385440	4 21E-04	1 995-04	2 955-05	1 855-02	9 175 02	9 775 02	3 845 03	1 205 02	5 605 00
	Transfer Point - Wood Fuel Transfer Conveyor				1.552 01	2.552 05	1.000 02	0.121-02	0.772-03	3.04L-02	1.502-03	3.09E-05
IES-11	to Top Distribution Conveyor	44.0	385440	4.21E-04	1.99E-04	2.95E-05	1.85E-02	8.12E-02	8.77E-03	3.84E-02	1.30F-03	5 69F-03
	Transfer Point - Top Distribution Conveyor to											0.002.00
IES-11	Reclaim Pile A1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Top Distribution Conveyor to											
IES-11	Reclaim Pile A2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Top Distribution Conveyor to											
IES-11	Reclaim Pile B1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
ICC 11	Page Point - Top Distribution Conveyor to											
163-11	Transfer Point - Reclaim Dile A1 to Boiler A	22.0	192720	4.216-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IFS-11	Beclaim Slat No. 1	22.0	102720	4 215 04	1 005 04	2.055.05	0.375.03	1.005 00	4 205 00			
ILD II	Transfer Point - Reclaim Pile A2 to Boiler A	22.0	192720	4.210-04	1.99E-04	2.95E-05	9.272-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Reclaim Slat No. 2	22.0	192720	4 21E-04	1 99F-04	7 955.05	B 275 02	4 065 00	4 305 03	1 035 03	6 405 04	2.045.07
	Transfer Point - Reclaim Pile B1 to Boiler A		LULILO	4.210.04	1.552-04	2.550-05	3.271-03	4.000-02	4.592-05	1.926-02	6.49E-04	2.84E-03
IES-11	Reclaim Slat No. 1	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06F-02	4.39F-03	1 92F-02	6 49F-04	2.84E-03
	Transfer Point - Reclaim Pile B2 to Boiler A						5121 2 05	4.002 02	4.552 05	1.521,-02	0.452-04	2.041-03
IES-11	Reclaim Slat No. 2	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.926-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Reclaim Slat No. 1 to											
IES-11	Boiler A Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Reclaim Slat No. 2 to											
IES-11	Boiler A Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
150.11	Transfer Point - Boiler B Reclaim Slat No. 1 to											
IE2-11	Boller B Cross Chain Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Boiler B Cross Chain Conveyor	22.0	103730	4 215 04	1.005.04	2.055.05	0.075.00					
11.5 11	Boner & Cross Chain Conveyor	22.0	192720	4.212-04	1.991-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Cross Chain Conveyor											
IES-11	to Secondary Screen A Feed Conveyor	22.0	192720	4 215-04	1 99F-04	2 955-05	9 275-03	4.066.02	1 305 03	1 625 62	6 405 04	2 945 02
					21002 04	2.552 03	5.272-05	4.002-02	4.532-05	1.522-02	0.496-04	2.64E-03
	Transfer Point - Boiler B Cross Chain Conveyor											
IES-11	to Secondary Screen B Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Secondary Screen A Feed											
IES-11	Conveyor to Boiler A Secondary Screen	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Secondary Screen B Feed											
152-11	Conveyor to Boiler & Secondary Screen	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
155 11	Conveyor to Boiler & Seed Conveyor	22.0	400700	1 345 44								
123-11	Transfer Point - Secondary Screen B Feed	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Conveyor to Boiler B Feed Conveyor	22.0	192720	4 215-04	1.005-04	2 955 75	0.275.02	4.055.02	4 205 02	1 035 03	C 405 04	
	,,		152720	4.212 04	1.352-04	2.331-03	3.272-03	4.002-02	4.396-03	1.922-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Overfeed Bucket											
IES-11	Elevator to Boiler A Overfeed Return Conveyor	22.0	192720	4.21E-04	1.995-04	2.95E-05	9.27E-03	4.06E-02	4.39F-03	1 92F-02	6 49F-04	2 84E-03
	Transfer Point - Boiler A Overfeed Return									LISEC OL	01152 01	2.042 00
IES-11	Conveyor to Boiler A Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Feed Conveyor to										· · · · · · · · · · · · · · · · · · ·	
IES-11	Boiler A Bin Feed Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
156.11	Fransfer Point - Boiler B Overfeed Bucket										()	
102-11	Elevator to Boller B Overfeed Return Conveyor	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IFS-11	Conveyor to Boiler B Bin Food Conveyor	22.0	103730	4 745 44	1.005.04							
163-11	Transfer Point - Boiler B Feed Conveyor to	22.0	192720	4.21E-04	1.99E-04	2.952-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Boiler B Bin Feed Conveyor	22.0	192720	4.21F-04	1 995-04	2 955-05	9 275.02	4.065.00	4 205 02	1 0 25 0 2	5 405 DA	2 045 00
	Transfer Point - Boiler A Bin Feed Conveyor to	22.0	132120	T.21E-04	1.395*04	2.335-05	3.2/E-U3	4.00E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
IES-11	Fuel Bin 3A	22.0	192720	4,21E-04	1,995-04	2,955-05	9.27F-02	4.065-02	4 395-02	1 925-02	6.495-04	2 845 02
	Transfer Point - Boiler A Bin Feed Conveyor to					E.001 03	5.272-03	4.002-02	4.332-03	1.522-02	0.432*04	2.040-03
IES-11	Fuel Bin 2A	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39F-03	1.92F-02	6.49F-04	2.845-02
	Transfer Point - Boiler A Bin Feed Conveyor to									1.546-02	0.102-04	2.041-03
IES-11	Fuel Bin 1A	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Bin Feed Conveyor to											
IES-11	Fuel Bin 3B	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03

Table 15. Material Handling - Transfer Operations (IES-11) Potential Emission Calculations

1						Total	0.39	1.71	0.18	0.81	0.03	0.12
IES-11	Fuel Bin 1B	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.27E-03	4.06E-02	4.39E-03	1.92E-02	6.49E-04	2.84E-03
	Transfer Point - Boiler A Bin Feed Conveyor to											2.012.03
IES-11	Fuel Bin 2B	22.0	192720	4.21E-04	1.99E-04	2.95E-05	9.278-03	4.06E-02	4.39E-03	1.92E-02	6.49F-04	2 845-03
	Transfer Point - Boiler A Bin Feed Conveyor to											

¹Emission factors calculated utilizing AP-42 Section 13.2.4 calculation: EF = K*0.0032*(U/5)^{1.3}/(M/2)^{1.4}

² Hourly emissions calculated utilizing maximum hourly throughput

³ Annual emissions calculated utilizing maximum annual throughput

⁴ PM_{2.5} calculation uses particle size multiplier from AP-42 Section 13.2.4 (approximately 7% of PM is PM_{2.5})

Table 15. Material Handling - Transfer Operations (IES-11) Potential Emission Calculations Fuel Material Handling - Emission Estimates

Source ID NIES-11 Front-End Loader/Dozer Operations

Material Silt Content (s) ¹	1.6 %
Material Moisture Content (M)	10 %
Number of Dozers	1
Annual Operating Hours	8760
Particle size scaling factor, PM ₁₀	0.75
Particle size scaling factor, PM _{2.5}	0.105

Emission Factor Equations² PM (TSP \leq 30 um)³

EF_{PM} (lb/hr/dozer) = (5.7*(s)^{1.2})/(M)^{1.3}

<u><</u>15 um⁴

EF_{PM15} (lb/hr/dozer) = (1.0*(s)^{1.5})/(M)^{1.4}

Source ID		Emission	Factor, EF (lb/	'hr/dozer)		1	PM _{2.5}			
No.	Source Description	PM	PM ₁₀	PM _{2.5}	PM (lb/hr)	PM ₁₀ (lb/hr)	{lb/hr}	PM (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)
IES-11	Front-End Loader/Dozer Operations	0.50	0.06	0.05	0.50	0.06	0.05	2.20	0.26	0.23

¹Source: AP-42, Chapter 13.2.4 Aggregate Handling and Storage Piles, Table 13.2.4-1 (Crushed limestone)

²Source: AP-42, Chapter 11.9 Western Surface Coal Mining, Table 11.9-1 (bulldozing - overburden)

 $^3\text{Multiply}$ the TSP predictive equation by the $\text{PM}_{2.5}$ scaling factor to determine the $\text{PM}_{2.5}$ emission factor

 4 Multiply the PM₁₅ predictive equation by the PM₁₀ scaling factor to determine the PM₁₀ emission factor

PSD Permit Application North Carolina Renewable Power - Lumberton, LLC Lumberton, NC

Traffic Details

No. Contraction	Statistics of the second		Seg	ments Trave	ied
Chip Trucks	Average Weight (tons)	Number of Trucks per Year	A	В	с
Chip Trucks	27.5	12,000	2	1	0
Cars	1	9,100	2	0	1

							(in the	1	Emissions				
		Length		Average Weight	Emissic	Emission Factors (Ib/VMT)		VIT) PM		PM ₁₀		PM2.5	
Segment	Paved/Unpaved	(miles)	VMT	(tons)	РМ	PM ₁₀	PM _{2.5}	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
A	Paved	0.1	4,220	16.1	0.1174	0.0235	0.0058	0.06	0.23	0.01	0.05	0.003	0.01
B	Unpaved	0.5	6,000	27.5	0.4119	0.0467	0.0047	0.28	0.86	0.03	0.10	0.003	0.01
C	Paved	0.6	5,460	1	0.0069	0.0014	0.0003	0.004	0.02	0.001	0.003	0.0002	0.001
							Total:	0.34	1.11	0.04	0.15	0.01	0.02

1. Paved Roads (AP-42 Section 13.2.1)

Hourly Emissions

 $E = k (sL)^{0.91} (W)^{1.02}$ (Equation 1)

where:

E = particulate emission factor (having units matching the units of k)

k = particulate size multiplier for particle size range and units of interest

sL = road surface silt loading (grams per square meter - g/m^2)

 $sL=0.6 \ \ for \ Ubiquitous \ Baseline \ ADT < 500 \ (Table \ 13.2.1-3) \\ W = average \ weight \ (tons) \ of \ the \ vehicles \ traveling \ the \ road$

Constants (AP-42, Section 13.2.1)

Particle Size	k (lb/VMT)
PM30	0.011
PM10	0.0022
PM2.5	0.00054

2. Unpaved Roads (AP-42 Section 13.2.2)

Hourly Emissions

$E = k (s/12)^{a} (W/3)^{b}$ (Equation 1a)

where:

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

s = 8.4 % per AP-42 Table 13.2.2-1

W = mean vehicle weight (tons)

Constants (AP-42 Section 13.2.2, Table 13.2.2-2; values for industrial roads)

Particle Size	k (lb/VMT)	a	b
PM30	4.9	0.7	0.45
PM10	1.5	0.9	0.45
PM2.5	0.15	0.9	0.45

Annual Emissions

 $E_{ext} = E (1-P/4N)$ (Equation 2)

where:

E_{ext} = annual emission factor (Ib/VMT)

E = emission factor from Equation 1

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

P = 110 days per Figure 13.2.2-1

N = number of hours in the averaging period

N = 365 days per year

Annual Emissions

where:

 $E_{ext} = E[(365-P)/365]$ (Equation 2)

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (Ib/VMT)

E = emission factor from Equation 1a

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation

P = 110 days per Figure 13.2.2-1

Table 17. Sorbent Silo (IES-13) Potential Emission Calculations

AP-42 Section 11.26, Talc Processing

Summary of Particle Size Distributions for Talc Processing, Table 11.26-2 (Storage, bagging, air classification

PM10	0.568 Cumulative percent less than diameter
PM2.5	0.031

Hourly Sorbent Throughput (lb/hr):	50,000
Annual Sorbent Througput (lb/year):	1314000
Annual Sorbent Througput (tons/year):	657

Total Suspended Particulate (TSP) Calculations

	Emission Factor ¹	Hourly	Annual	Annual
Source	(lb/1,000 PM)	Emissions (lb/hr)	Emissions (lb/year)	Emissions (tons/year)
Sorbent Silo	0.0036	0.18	4.7304	0.0023652

PM₁₀ Calculations

	Emission	Hourly	Annual	Annual
	Factor ^{1,2}	Emissions	Emissions	Emissions
Source	(lb/ton)	(lb/hr)	(lb/year)	(tons/year)
Sorbent Silo	2.04E-03	1.02E-01	2.69E+00	1.34E-03

PM_{2.5} Calculations

	Emission	Hourly	Annual	Annual
	Factor ^{1,2}	Emissions	Emissions	Emissions
Source	(lb/ton)	(lb/hr)	(Ib/year)	(tons/year)
Sorbent Silo	1.12E-04	5.58E-03	1.47E-01	7.33E-05

¹Table 11.26-1, Emission Factor for Talc Processing (Crushed talc storage bin loading, with fabric filter)

²PM₁₀ and PM_{2.5} emission factors calculated based on PM emission factor multiplied by the cumulative percent less than diameter

PSD Permit Application North Carolina Renewable Power - Lumberton, LLC Lumberton, NC Table 2. Facility-Wide Potential Emissions (PTE) Summary

 \frown

						Hourly	Potential (lb/hr)					_	
Pollutant	Boilers (ES-1A, ES-1B)	Starter Fuel (ES-1A, ES-1B)	Emergency Fire Pump (ES-1)	Fly Ash Silo (ES-3)	Drum Dryer (ES-22)	Parts Cleaner (IES-4)	Cooling Towers (IES-6)	Truck Dump 1 (IES-8)	Truck Dump 2 (IES-9)	Fuel Piles (IES-10)	Fuel Handling (IES-11)	Roads (IES-12)	Sorbent Silo (IES-13)
со	193.50	15.36	1.95	-	2.77	-	-	-	-	-	-	-	-
NOx	68.80	73.71	2.25	-	3.29	-	-	-	-	-	-		-
\$02	68.80	0.65	0.70	-	0.04	-	-	-	-	-	-	-	-
PM	12.90	10.14	0.11	0.02	1.39	-	0.34	0.04	0.04	0.99	0.39	0.34	0.18
PM10	15.48	10.14	0.11	0.01	1.39	-	0.34	0.02	0.02	0.50	0.18	0.04	0.10
PM2.5	11.61	10.14	0.11	0.00	1.39	-	0.34	0.00	0.00	0.07	0.03	0.01	0.01
VOC	12.90	0.61	0.21		3.30	0.80	-	-		-	-	-	-
Lead	2.06E-02	0.00	-	-		-	-	-	-	-	-	-	-
Highest Individual HAP (HCI)	2.71	-	-	-	-	-	-	-	-	-	-	-	-
Total HAP	4.20	0.45	0.00	-	0.14	-	-	-	-	-	-	-	-

						Annual	Potential Emission	ns (tons/year)						
Pollutant	Boilers	Starter Fuel	Emergency Fire	Fly Ash Silo	Drum Dryer	Parts Cleaner	Cooling Towers	Truck Dump 1	Truck Dump 2	Fuel Piles	Fuel Handling	Roads	Sorbent Silo	-
	(ES-1A, ES-1B)	(ES-1A, ES-1B)	Pump (ES-1)	(ES-3)	(ES-22)	(IES-4)	(IES-6)	(IES-8)	(IES-9)	(IES-10)	(IES-11)	(IES-12)	(IES-13)	Facility-Wide
CO	847.53	6.73	0.49	-	12.12	-	-	-	-	12		· ·	-	866.86
NOx	301.34	32.29	0.56	-	14.43	-		-	-	-	-	-		348.62
SO2	301.34	0.29	0.17	-	0.17	-	-	-	-		-	-	-	301.98
PM	56.50	4.44	0.03	0.09	6.07	-	1.48	0.10	0.10	4.34	1.71	1.11	0.00	75.97
PM10	67.80	4 .44	0.03	0.04	6.07	-	1.48	0.05	0.05	2.17	0.81	0.15	0.00	83.08
PM2.5	50.85	4.44	0.03	0.00	6.07	-	1.48	0.01	0.01	0.33	0.12	0.02	0.00	63.35
VOC	56.50	0.27	0.21	-	14.45	0.80	-	-		-	-	-	-	72.24
Lead	0.09	0.00	-		-	1	-	-	-	-		-	-	0.09
Highest Individual HAP (HCI)	11.87	-	-	-			-	-	-		-	-	-	11.87
Total HAP	18.41	0.19	0.00		0.62	-	-	-	-			-	-	19.22

PSD Permit Application North Carolina Renewable Power - Lumberton, LLC Lumberton, NC

Table 3. TPER Summary

 \frown

Note Oracle Oracle Ander Ander Patricia Gradination Patricia Gradinatino Patricia Gradination Patrici				TPER L	evels							Potentia	tential Emissions						Comparison of Emissions			Levels
Image Image <th< th=""><th></th><th></th><th colspan="2">Acute Chronic Systemic Acute Potential Emissions from Carcinogens Toxicants Toxicants Irritants Boiler Burning 100% Biom</th><th>ons from % Biomass</th><th colspan="3">Potential Emissions from rom Boiler Burning Litter/Wood omass Mix</th><th colspan="3">d Potential Emissions from Fire Pump</th><th>Potenti Fa</th><th>al Emissio acility-Wie</th><th>ons from de</th><th></th><th>Chronic</th><th>Acute Systemic</th><th>Acute</th></th<>			Acute Chronic Systemic Acute Potential Emissions from Carcinogens Toxicants Toxicants Irritants Boiler Burning 100% Biom		ons from % Biomass	Potential Emissions from rom Boiler Burning Litter/Wood omass Mix			d Potential Emissions from Fire Pump			Potenti Fa	al Emissio acility-Wie	ons from de		Chronic	Acute Systemic	Acute				
Accisization Dial	Pollutant	CAS	ib/yr	lb/day	ID/hr	ib/nr	ib/yr	ib/day	lo/hr	ib/yr	ib/day	ib/hr	ib/yr	ib/day	io/nr	ib/yr	ID/day	lib/nr	Carcinogens	Toxicants	Toxicants	Irritants
Action Dials Dials <t< td=""><td>Acetaldehyde</td><td>75-07-0</td><td></td><td></td><td></td><td>28.43</td><td>306.24</td><td>0.84</td><td>0.03</td><td></td><td></td><td>-</td><td>0.91</td><td>0.04</td><td>0.002</td><td>307.15</td><td>0.88</td><td>0.04</td><td>N/A</td><td>N/A</td><td>N/A</td><td>No</td></t<>	Acetaldehyde	75-07-0				28.43	306.24	0.84	0.03			-	0.91	0.04	0.002	307.15	0.88	0.04	N/A	N/A	N/A	No
Action Dirac Dira Dirac Dirac <th< td=""><td>Acetic Acid</td><td>64-19-7</td><td></td><td></td><td></td><td>3.9</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>N/A</td><td>N/A</td><td>N/A</td><td>No</td></th<>	Acetic Acid	64-19-7				3.9						<u> </u>							N/A	N/A	N/A	No
Algebrain Alge	Acrolein	107-02-8				0.08	561.25	1.54	0.06				0.11	0.005	2.20E-04	561.36	1.54	0.06	N/A	N/A	N/A	No
Amman Pick P Pick P Pick P Pick P <td>Acrylonitrile</td> <td>107-13-1</td> <td></td> <td>1.3</td> <td>1.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N/A</td> <td>No</td> <td>No</td> <td>N/A</td>	Acrylonitrile	107-13-1		1.3	1.05							-	 						N/A	No	No	N/A
Anno: Constant Constant <t< td=""><td>Ammonia</td><td>7664-41-7</td><td></td><td></td><td></td><td>2.84</td><td>60268.80</td><td>165.12</td><td>6.88</td><td></td><td></td><td></td><td></td><td></td><td></td><td>60268.80</td><td>165.12</td><td>6.88</td><td>N/A</td><td>N/A</td><td>N/A</td><td>Yes</td></t<>	Ammonia	7664-41-7				2.84	60268.80	165.12	6.88							60268.80	165.12	6.88	N/A	N/A	N/A	Yes
Addit A transmit Automa Component PAGE A A.S.M P.A.M	Aniline	62-53-3			1.05				-				I						N/A	N/A	No	NA
Addexist 133-214 7.444 10.3 -	Arsenic And Inorganic Arsenic Compounds	7440-38-2	0.194				82.87	0.23	0.009	90.12	0.25	0.01	-			90.12	0.25	0.01	Yes	N/A	N/A	N/A
Alundes 13.54-0 11.00 13.54-0 11.00 10.00 24.28 0.	Asbestos	1332-21-4	7.748 x 10-3																No	N/A	N/A	N/A
Backede Dial Call Call Call Call <	Aziridine	151-56-4	-	0.3												-			N/A	No	N/A	N/A
Beach Beach Sample Image Sample Sample <td>Benzene</td> <td>71-43-2</td> <td>11.069</td> <td></td> <td></td> <td></td> <td>247.86</td> <td>0.68</td> <td>0.03</td> <td></td> <td></td> <td></td> <td>1.11</td> <td>0.05</td> <td>0.002</td> <td>248.97</td> <td>0.73</td> <td>0.03</td> <td>Yes</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Benzene	71-43-2	11.069				247.86	0.68	0.03				1.11	0.05	0.002	248.97	0.73	0.03	Yes	N/A	N/A	N/A
Bandon/Invince Do.2.4 Jobe Do.2.4 Jobe Do.2.4 Do.2.4 <thdo.2.4< th=""> Do.2.4 Do.2</thdo.2.4<>	Benzidine And Salts	92-87-5	1.384 x 10-3										_			-			No	<u>N/A</u>	N/A	N/A
Bandy Chorde Differ Differ <thdiffer< th=""> <thdiff< th=""> Diffe</thdiff<></thdiffer<>	Benzo(A)Pyrene	50-32-8	3.044				9.79	0.03	0.001				2.24E-04	1.07E-05	5 4.47E-07	9.79	0.03	0.001	Yes	N/A	N/A	N/A
Baylian Atak 0.01 7.774-75 0.376 - 4.14 0.01 2.776 - 5.43 0.01 2.776-75 5.776 N.A N.A <td>Benzyl Chloride</td> <td>100-44-7</td> <td></td> <td></td> <td>0.53</td> <td>1.11</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N/A</td> <td>N/A</td> <td>No</td> <td>N/A</td>	Benzyl Chloride	100-44-7			0.53	1.11			_										N/A	N/A	No	N/A
Berline Moride 778-47 0.376 0 0	Beryllium	7440-41-7	0.378				4.14	0.01	4.73E-04	3.24	0.009	3.70E-04				4.14	0.01	4.73E-04	Yes	N/A	N/A	N/A
sexultari general Titori Second Sec	Beryllium Chloride	7787-47-5	0.378											_					No	N/A	N/A	N/A
Bendiminaria	Berylhum Fluoride	7787-49-7	0.378								-		_		_				No	N/A	N/A	N/A
Backwilde Chromate Agenetic (Actes) 0.034 1	Beryllium Nitrate	13597-99-4	0.378									-							No	N/A	N/A	N/A
Bit Characterization Size All Outly V/A V/A <th< td=""><td>Bioavailable Chromate Pigments (As Cr6+)</td><td></td><td>0.008</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>No</td><td>N/A</td><td>N/A</td><td>N/A</td></th<>	Bioavailable Chromate Pigments (As Cr6+)		0.008																No	N/A	N/A	N/A
Branne Difference Variable Ausset A	Bis-Chloromethyl Ether	542-88-1	0.034																No	N/A	N/A	N/A
1.3.But data 1.3.But data 1.5.But data 0.402 0.3.E 0.5 0.002 9.3.E 0.5 0.00 0.002 9.3.E 0.5 No N/A N/A <td>Bromine</td> <td>7726-95-6</td> <td></td> <td></td> <td></td> <td>0.21</td> <td></td> <td>_</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>No</td>	Bromine	7726-95-6				0.21												_	N/A	N/A	N/A	No
CadmiumCadmiumCadmiumCadmiumCadmiumCadmiumCadmiumConcNoN	1,3-Butadiene	1.06-99-0	40.585										0.05	0.002	9.31E-05	0.05	0.002	9.31E-05	No	N/A	N/A	N/A
Cadmim Arcaitar S43-96-8 0.507 0.50 0.507 0.507 0.	Cadmium	7440-43-9	0.507				15.44	0.04	0.002	8.59	0.02	9.80E-04				15.44	0.04	0.002	Yes	N/A	N/A	N/A
Cadmingronide 778942-6 0.507 7 6 7 6 7 6 7 <td>Cadmium Acetate</td> <td>543-90-8</td> <td>0.507</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>No</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Cadmium Acetate	543-90-8	0.507					-							_				No	N/A	N/A	N/A
Carbon Disulifié S75-50 T <th< td=""><td>Cadmium Bromide</td><td>7789-42-6</td><td>0.507</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1.1</td><td>No</td><td>N/A</td><td>N/A</td><td>N/A</td></th<>	Cadmium Bromide	7789-42-6	0.507															1.1.1	No	N/A	N/A	N/A
Carbon intervanishinde S523-5 613.006 - 169.0 - 169.0 - 169.0 - 169.0 0.04 <t< td=""><td>Carbon Disulfide</td><td>75-15-0</td><td></td><td>7.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>N/A</td><td>No</td><td>N/A</td><td>N/A</td></t<>	Carbon Disulfide	75-15-0		7.8										_					N/A	No	N/A	N/A
Choine Choine </td <td>Carbon Tetrachloride</td> <td>56-23-5</td> <td>618.006</td> <td></td> <td></td> <td></td> <td>169.51</td> <td>0.46</td> <td>0.02</td> <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td> <td>169.51</td> <td>0.46</td> <td>0.02</td> <td>No</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Carbon Tetrachloride	56-23-5	618.006				169.51	0.46	0.02				1000			169.51	0.46	0.02	No	N/A	N/A	N/A
Chorobarene 108-907 92.7 9.7 9.7 9.7 9.2	Chlorine	7782-50-5		1.6		0.95	6780.24	18.58	0.77	356.43	0.98	0.04				6780.24	18.58	0.77	N/A	Yes	N/A	No
Chier or	Chlorobenzene	108-90-7		92.7			124.30	0.34	0.01					_	_	124.30	0.34	0.01	N/A	No	N/A	N/A
Chioropre Cresol1399-731853.6911.2011	Chloroform	67-66-3	396.631				105.47	0.29	0.01						_	105.47	0.29	0.01	No	N/A	N/A	N/A
Cresci 139-77-3 (b) (b) (c) (c) <t< td=""><td>Chloroprene</td><td>126-99-8</td><td></td><td>18.5</td><td>3.69</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>N/A</td><td>No</td><td>No</td><td>N/A</td></t<>	Chloroprene	126-99-8		18.5	3.69										_				N/A	No	No	N/A
P-Dicklarodenzene 106-46-7 K K K K K K N/A N/A <th< td=""><td>Cresol</td><td>1319-77-3</td><td></td><td></td><td>2.32</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>N/A</td><td>N/A</td><td>No</td><td>N/A</td></th<>	Cresol	1319-77-3			2.32									_					N/A	N/A	No	N/A
Dicklorodifluoromethane 75-71-8 104 104 104 10	P-Dichlorobenzene	106-46-7				69.5													N/A	N/A	N/A	No
Dicklordiversembane 75-43	Dichlorodifluoromethane	75-71-8		10445.4														1.1.1.1	N/A	No	N/A	N/A
Dif2-Enhyliner/DifDatate 1.781 7 1.3 1.3 0.18 4.85E-04 2.02E-05 0 0 0.18 4.85E-04 2.02E-05 N/A N/A N/A N/A Dimethyl Sulfate 77-78-1 0 0.1 0.18 4.85E-04 2.02E-05 0 0 0.18 4.85E-04 2.02E-05 N/A N/A N/A N/A N/A L-Dioxane 123-011 0.58 755.891 0.1 2.05 0.1 0 0.1 <td>Dichlorofluoromethane</td> <td>75-43-4</td> <td></td> <td>21.1</td> <td></td> <td>N/A</td> <td>No</td> <td>N/A</td> <td>N/A</td>	Dichlorofluoromethane	75-43-4		21.1															N/A	No	N/A	N/A
Dimetry Sulfate 77-78-1 0.1<	Di(2-Ethylhexyl)Phthalate	117-81-7		1.3			0.18	4.85E-04	2.02E-05							0.18	4.85E-04	\$ 2.02E-05	N/A	No	N/A	N/A
14-Dictane 129-11 23.6 23.6 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7	Dimethyl Sulfate	77-78-1		0.1															N/A	No	N/A	N/A
Epichlorohydrin106-89-87655.89117655.8911 <td>1,4-Dioxane</td> <td>123-91-1</td> <td></td> <td>23.6</td> <td></td> <td>N/A</td> <td>No</td> <td>N/A</td> <td>N/A</td>	1,4-Dioxane	123-91-1		23.6															N/A	No	N/A	N/A
EthyleActate 141-78-6 141-78-6 10 147.41 10 10 10 10 147.41 10 1	Epichlorohydrin	106-89-8	7655.891														_		No	N/A	N/A	N/A
Ethylenediamine 107-15-3 12.6 12.6 2.63 I	Ethyl Acetate	141-78-6			147.41														N/A	N/A	No	N/A
Ethylene Dibromide106-93-436.896101010207.170.570.02YesN/AN/AN/AEthylene Dichloride107-062350.5111010100.010.010.01100.01109.240.00109.240.00N/AN/AN/AN/AN/AEthylene Oxide Monoethyl Ether102-05109.452.495.1211210 </td <td>Ethylenediamine</td> <td>107-15-3</td> <td></td> <td>12.6</td> <td>2.63</td> <td></td> <td>11/A</td> <td>No</td> <td>No</td> <td>N/A</td>	Ethylenediamine	107-15-3		12.6	2.63														11/A	No	No	N/A
Ethylene Dichloride107-02350.51100109.240.300.01109.240.300.01N/o<	Ethylene Dibromide	106-93-4	36.896				207.17	0.57	0.02							207.17	0.57	0.02	Yes	N/A	N/A	N/A
Ethylene Glycoid Monoethyl Ether110-80-55.122010NoN/ANoNoN/AEthylene Oxide75-21-82.490.400.1100<	Ethylene Dichloride	107-06-2	350.511				109.24	0.30	0.01							109.24	0.30	0.01	No	N/A	N/A	N/A
Ethylene Oxide75-21-82.490. <t< td=""><td>Ethylene Glycol Monoethyl Ether</td><td>110-80-5</td><td></td><td>5.1</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>N/A</td><td>No</td><td>No</td><td>N/A</td></t<>	Ethylene Glycol Monoethyl Ether	110-80-5		5.1	2												_		N/A	No	No	N/A
Ethy Mercaptan 75-08-1 0 0.11 0 <td>Ethylene Oxide</td> <td>75-21-8</td> <td>2.49</td> <td></td> <td>No</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Ethylene Oxide	75-21-8	2.49																No	N/A	N/A	N/A
Huorides7664-39-30.60.70.260.80.80.00.00.0N/ANoN/ANoN/ANoN/ANoN/ANoN/A <td>Ethyl Mercaptan</td> <td>75-08-1</td> <td></td> <td></td> <td>0.11</td> <td></td> <td>N/A</td> <td>N/A</td> <td>No</td> <td>N/A</td>	Ethyl Mercaptan	75-08-1			0.11														N/A	N/A	No	N/A
Formaldehyde 50-00-0 Image: Constraint of the state of the st	Fluorides	7664-39-3		0.7	0.26														N/A	No	No	N/A
Hexachlorocyclopentadiene 77-47-4 2.5 x 10-2 0.01 I I I I I I No No No No No No N/A Hexachlorodibenzo-P-Dioxin 57653-85-7 0.007 I <td>Formaldehyde</td> <td>50-00-0</td> <td></td> <td></td> <td></td> <td>0.16</td> <td>824.93</td> <td>2.26</td> <td>0.09</td> <td></td> <td></td> <td></td> <td>1.40</td> <td>0.07</td> <td>0.003</td> <td>826.33</td> <td>2.33</td> <td>0.10</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>No</td>	Formaldehyde	50-00-0				0.16	824.93	2.26	0.09				1.40	0.07	0.003	826.33	2.33	0.10	N/A	N/A	N/A	No
Hexachlorodibenzo-P-Dioxin 57653-85-7 0.007 Image: Constraint of the system of the	Hexachlorocyclopentadiene	77-47-4		2.5 x 10-2	0.01														N/A	No	No	N/A
N-Hexane 110-54-3 46.3 46.3 N/A No N/A	Hexachlorodibenzo-P-Dioxin	57653-85-7	0.007													1			No	N/A	N/A	N/A
	N-Hexane	110-54-3		46.3															N/A	No	M75	N/A

Table 3. TPER Summary

 \frown

		TPER Levels					Potential Emissions												Comparison of Emissions to TPER Levels			
Pollutant	CAS	Carcinogens	Chronic Toxicants Ib/day	Acute Systemic Toxicants Ib/br	Acute Irritants	Potent Boiler Bu	tial Emissio urning 100	ons from % Biomass	Potentia Boiler Bu	al Emissio rning Litt Mix	ons from ter/Wood	Potentia	al Emissior Pump	is from Fire	Potenti Fi	al Emissio acility-Wid	ns from le	Carrinogan	Chronic	Acute Systemic	Acute	
Hevana Isomers Excent N Hevana	043		107 007	1.57111	270.07	10/ 11	they do y	107111	1007 11	15,009	iney iti	1.57 11	in a day	in a finite	10/11	107 00 9	10714	Carcinogens	Toxicants	Toxicants	Irritants	
Hydrazine	202 01 2		2 5 4 10 7		379.07							-	_	-				N/A	N/A	N/A	NO	
Hydrogen Chloride	7647.01.0		2.5 X 10-2		0.74	22550.00	CA 70	3 70	00000.00	222.04	0.45	-			02000.00	227.04	0.46	N/A	NO	N/A	N/A	
Hydrogen Cyanida	7647-01-0		- F 0	1.10	0.74	23650.00	J 64.79	2.70	82869.60	227.04	9.46		_		82869.60	227.04	9.46	0.02	N/A	N/A	Tes	
Hydrogen Cluarida	74-90-8		5.9	1.10	0.20		-											N/A	NO	NO	N/A	
Hydrogen Sulfide	7004-39-3	+	1.5		0.26							<u> </u>						N/A	NO	N/A	NO	
Malais Aphydrida	100.21.6	ł	5.1	0.11					<u> </u>			I		_				N/A	No	N/A	N/A	
Manazanasa And Compounds	108-31-6		0.5	Ų.11				-		0.70								N/A	No	No	N/A	
Manganese And Compounds	7439-96-5		1.3			43.69	0.12	0.005	285.55	0.78	0.03				285.55	0.78	0.03	N/A	No	N/A	N/A	
Manganese Cyclopentadienyi Incarbonyi	12079-65-1		2.5 x 10-2									-		_				N/A	No	N/A	N/A	
Manganese Tetroxide	1317-35-7		0.3							-		<u> </u>						N/A	No	N/A	N/A	
Mercury, Aikyi	7439-97-6		2.5 x 10-3			13.18	0.04	0.002	4.17	0.01	4.76E-04				13.18	0.04	0.002	N/A	No	N/A	N/A	
Mercury, Aryl And Inorganic Compounds	7439-97-6		2.5 x 10-2			13.18	0.04	0.002	4.17	0.01	4.76E-04	·			13.18	0.04	0.002	N/A	No	N/A	N/A	
Method Chinese	7439-97-6		2.5 x 10-2			13.18	0.04	0.002	4.17	0.01	4.76E-04	-		_	13.18	0.04	0.002	N/A	No	N/A	N/A	
Methyl Chloroform	71-55-6		505.4		257.98	116.77	0.32	0.01				-			116.77	0.32	0.01	N/A	No	N/A	No	
Methylene Chloride	75-09-2	2213.752		1.79		1092.37	2.99	0.12				L			1092.37	2.99	0.12	No	N/A	No	N/A	
Methyl Ethyl Ketone	78-93-3		155.8		93.19	20.34	0.06	0.002					-		20.34	0.06	0.002	N/A	No	N/A	No	
Nethyl Isobutyl Ketone	108-10-1		107.8		31.59									_				N/A	No	N/A	No	
Methyl Mercaptan	74-93-1			0.05									_	_		_		147.4	$f_{A_{i}}(\Delta)$	No	N/A	
	13463-39-3		2.5 x 10-2														_	N.P.A	No	N/A	Ney A	
Nickel Metal	7440-02-0		0.3		I	124.30	0.34	0.01	64.00	0.18	0.007				124.30	0.34	0.01	N/3	Yes	N/A	N/A	
Nickel, Soluble Compounds, As Nickel	7440-02-0		2.5 x 10-2			124.30	0.34	0.01	64.00	0.18	0.007			_	124.30	0.34	0.01	N/A	No	- M/A	N/A	
Nickei Subsulfide	12035-72-2	0.194																No	N/A	N/4	N/A	
Nitric Acid	7697-37-2				1.05											_		N/A	N/=	Δ_{i}/Δ_{i}	No	
Nitrobenzene	98-95-3		2.5	0.53														N/A	No	No	N/A	
N-Nitrosodimethylamine	62-75-9	4.612																No	N/A	N/A	N/A	
Non-Specific Chromium (Vi) Compounds (As Cr6+)	7440-47-3	0.008				79.10	0.22	0.009	43.34	0.12	0.005				79.10	0.22	0.009	Yes	N/A	N/A	N/A	
Pentachlorophenol	87-86-5		0.1	0.03		0.19	5.26E-04	2.19E-05							0.19	5.26E-04	2.19E-05	17A	No	No	N/A	
Perchloroethylene	127-18-4	17525.534				143.14	0.39	0.02							143.14	0.39	0.02	No	N/A	N/A	N/A	
Phenol	108-95-2			1		192.11	0.53	0.02							192.11	0.53	0.02	N/A	h/δ	No	N/A	
Phosgene	75-44-5		0.1															h/4	No	N/A	N/A	
Phosphine	7803-51-2				0.14													14/2	$\mathbb{P}_{q} \geq \mathcal{X}$	N/A	No	
Polychlorinated Biphenyls	1336-36-3	7.656																No	N/A	N/A	N/A.	
Soluble Chromate Compounds (As Cr6+)			2.6 x 10-2															N/2	No	56/A	N/A	
Styrene	100-42-5			11.16		174.78	0.48	0.02			1				174.78	0.48	0.02	N/A	制度	No	N/A	
Sulfuric Acid	7664-93-9		0.5	0.11		41434.80	113.52	4.73	116770.80	319.92	13.33		1		116770.80	319.92	13.33	N/A	Yes	Yes	N/A	
Tetrachlorodibenzo-P-Dioxin	1746-01-6	2.767 x 10-4																No	4, 4	N/A	N/A	
1,1,1,2-Tetrachloro-2,2,-Difluoroethane	76-11-9		2190.2											1				167 A	No	N/A	N/A	
1,1,2,2-Tetrachloro-1,2-Difluoroethane	76-12-0		2190.2														_	Nº A	No	N/A	N/A	
1,1,2,2-Tetrachloroethane	79-34-5	581.11																No	N/A	N/A	N/A	
Toluene	108-88-3		197.96		58.97	163.48	0.45	0.02				0.49	0.02	9.73E-04	163.97	0.47	0.02	51/A	No	N/A	No	
Toluene Diisocyanate, 2, 4-(584-84-9) And 2, 6- (91-08-7) Isomers	584-84-9		8.4 x 10-3									-						51/A	No	N/A	N/A	
Toluene Diisocyanate, 2, 4-(584-84-9) And 2, 6- (91-08-7) Isomers	91-08-7		8.4 x 10-3				1											517.5	No	N/A	N/A	
Trichloroethylene	79-01-6	5442.14				113.00	0.31	0.01		-					113.00	0.31	0.01	No	N/A	N/A	N/A	
Trichlorofluoromethane	75-69-4			589.66		154.44	0.42	0.02							154.44	0.42	0.02	N/A	N/A	No	N/A	
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1				1000.32													N/A	N/3	N 'A	No	
Vinyl Chloride	75-01-4	35.051				67.80	0.19	0.008							67.80	0.19	0.008	Yes	N/A	N/5	N/A	
Vinylidene Chloride	75-35-4		5.1															N/A	No	6.25	9.4	
Xylene	1330-20-7		113.7		68.44	94.17	0.26	0.01				0.34	0.02	6.78E-04	94.51	0.27	0.01	N/A	No	N/A	No	
	1						+	- /		-								,				

Table 5. Boilers ES-1A & ES-1B Baseline Actual Emissions

1	Annual Emissions (tpy)											24-Month Annualized Emissions (tpy)											
	со	NOx	PM	PM10	PM2.5	SO2	voc	Lead	H2SO4	CO2e	со	NOx	PM	PM10	PM2.5	SOZ	voc	Lead	H2SO4	CO2e			
2005	1.9	21.2	1.4	0.8	0.3	65.2	0.5	0.0001	0.75	15,239	-	-	-	-		-	-	-	-	-			
2006	2.7	30.3	1.8	1.1	0.4	77.4	0.5	0.00015	1.03	21,655	2.30	25.75	1.60	0.95	0.35	71.30	0.50	0.00	0.89	18446.71			
2007	6.1	82.1	4	2.4	1	164	0.6	0.00035	2.38	48,924	4.40	56.20	2.90	1.75	0.70	120.70	0.55	0.00	1.71	35,289			
2008	5.4	58.3	3.5	2.1	0.9	177.8	0.6	0.0003	2.09	43,310	5.75	70.20	3.75	2.25	0.95	170.90	0.60	0.00	2.24	46,117			
2009	1.3	13.2	5.5	2.7	0.7	40.7	0.3	0.00005	0.49	10,426	3.35	35.75	4.50	2.40	0.80	109.25	0.45	0.00	1.29	26,868			
2010	0	0.1	0	0	0	0	0.3	0	0	1.9	0.65	6.65	2.75	1.35	0.35	20.35	0.30	0.00	0.25	5,214			
2011	0	0.1	0	0	0	0	0.3	0	0	1.9	0.00	0.10	0.00	0.00	0.00	0.00	0.30	0.00	0.00	1.90			
2012	0	Q.1	0	0	0	0	0.3	0	0	1.8	0.00	0.10	0.00	0.00	0.00	0.00	0.30	0.00	0.00	1.85			
2013	0	0	0	0	0	0	0.3	0	0	0	0.00	0.05	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.90			
2014	0	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00			
								Baseline A	Actual Emis	sions (tpy):	5.75	70.20	4.50	2.40	0.95	170.90	0.60	0.00	2.24	46,117			
									Basel	ine Period:	2007/2008	2007/2008	2008/2009	2008/2009	2007/2008	2007/2008	2007/2008	2007/2008	2007/2008	2007/2008			

Notes:

 \sim

1. Baseline Emissions are based on NCDAQ Emission Reports, except CO2e. CO2e baseline determined from 2009 reported emissions, using ratio of CO emissions.

2. The facility did not operate 2010 through 2014.

Table 6-1. Boiler Potential Emissions Calculation - Criteria Pollutants

Input Capacity per Boiler:	215 MMBtu/hr
Number of Boilers:	2
Total Boiler Capacity:	430 MMBtu/hr
Max Annual Operation:	8,760 hours

Wood/Litter Mix Combustion (Expected mix: 15% wood, 85% litter)

			PRE-0	CONTROL E	MISSION RATES	1		POST-CON	TROL EMISS	ION RATES]
Pollutant Category	Pollutant	(Ib/MMBtu)	(lb/hr)	(tpy)	Pre-Control Emission Factor Source	Control	Control Efficiency	(Ib/MMBtu)	(lb/hr)	(tpy)	c
Criteria Pollutant	со	0.45	193.50	847.5	Same as post-control emissions	Good Combustion	N/A	0.45	193.50	847.5	Based on BAC Ib/MMBtu (whi mix)
Criteria Pollutant	NOx	0.21	89.58	392.4	Back calculated from post- combustion lb/MMBtu emission factor and control efficieny	SNCR	40%	0.125	53.75	235.4	Based on prop limit of 0.16 lb wood/litter mix
Criteria Pollutant	SO2	0.80	344.00	1,506.7	Estimated using typical sulfur contents of wood and litter, and assuming 50% furnace capture.	Low Sulfur Wood/ Litter Mix	80%	0.16	68.80	301.3	Based on BA0 Reduction (wh mix). Also lim
Criteria Pollutant	voc	0.03	12.90	56.5	Same as post-control emissions	Good Combustion	N/A	0.03	12.90	56.5	No change is existing SB3 E
Criteria Pollutant	PM (filterable)	0.60	258.00	1,130.0		Cyclone + Baghouse	95%	0.03	12.90	56.5	Based on NSF lb/MMBtu
Criteria Pollutant	PM ₁₀ (filterable + condensable)	0.72	309.60	1,356.0	Back calculated from post- combustion Ib/MMBtu emission	Cyclone + Baghouse	95%	0.036	15.48	67.8	Based on BA0 guarantee
Criteria Pollutant	PM _{2.5} (filterable + condensable)	0.54	232.20	1,017.0		Cyclone + Baghouse	95%	0.027	11.61	50.9	Proposed new limited by mod
Greenhouse Gas Pollutant	CO2e	233.00	100,188	438,825	Same as post-control emissions	Good Combustion	N/A	233.00	100,188	438,825	Factors from E Mandatory Re 1 and C-2. Se

Notes:

Litter ("Biomass

1. Fuel oil usage has been excluded from the GHG emission calculation as the factors for each pollutant are lower than the factors for wood and litter.

2. Greenhouse gas emissions were calculated using the following emission factors from EPA's Mandatory Reporting Rule, Tables C-1 and C-2:

Wood ("Biomass Fuels - solid: wood and wood residuals")

CO2	93.80 kg/MMBtu
CH₄	7.2E-03 kg/MMBtu
N ₂ O	3.6E-03 kg/MMBtu
fuels - solīd:	solid byproducts")

CO2	105.51 kg/MMBtu
CH ₄	3.2E-02 kg/MMBtu
N ₂ O	4.2E-03 kg/MMBtu

The factors above were converted to CO₂e using the following global warming potentials from Table A-1 of the MRR:

CO2	1
CH₄	25
N ₂ O	298

The developed factor is converted from kg to lb and weighted based on 15% wood and 85% litter being fired in the boiler.

omments

CT CO limit of 0.45 en burning wood/litter

oosed SB3 BACT NOx /MMBtu (when burning :)

CT SO2 limit of 80% hen burning wood/litter hited by modeling.

requested to the BACT VOC limit PS PM limit of 0.03

CT limit and vendor

BACT limit. Also, leling.

EPA Greenhouse Gas eporting Rule, Tables Cee Notes 1 and 2.

Table 6-2. Emission Factors of HAPs and Air Toxics From Wood and Litter Combustion

Wood Combustion

 \sim

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

Boiler and air pollution control device (APCD) vendor guarantees for HCl and NH3.
 EPA AP-42 Chapter 1.6 – Wood Residue Combustion in Boilers (9/03)

3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP

Poultry Litter and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

													Poultry L	$\pi er + Bic$	mass com	ustion						
							CCN	Aay 2013 (I	ES-1A)	CC Ju	y 2013 ((ES-1B)	CC	July 2014	(ES-1B)	4						
				Poultry Li	tter (includin	ig bedding)%		67%		N•	ot specif	ied		25%		4						
						Biomass%		33%		N N	ot specif	ied		75%								
				Heat	t Input Rate	During Tests	186	MM	Btu/hr	183	M	/IBtu/hr	180	M	MBtu/hr							
				100% Wood Biomass Co	mbustion					Stack Test	Emissi	on Factors				Maximum Emiss	ions from Poultry Litter	+ Biomass C	Combustion	Pote	ential Emise	sions
					T	r							(Care-197)		1	T						
Pollutant Category	Pollutant	CAS	Emission Factors (lb/MMBtu)	Emission Factor Source	Emíssion: (lb/hr)	Emission s s (tpy)	Ib/MMBtu	lb/hr	Final Ib/MMBtu	lb/MM8tu	lb/hr	Final Ib/MMBtu	Ib/MMBt	tu Ib/hr	Final	Litter/Wood Mix Emission Factor Used in Calcs (lb/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source	Emissions (Ib/hr)	Emissions (tpy)
НАР	нсі	7647-01-0	0.0063	Vendor Guarantee. Use of low chlorine content wood.	2.71E+00	11.87			No	t used, NES	HAP lim	it used inste	ead.			0.0063	MACT avoidance	2.71	11.87	Poultry Litter + Biomass	2.71	11.87
VHAP	Acetaldehyde	75-07-0	8.13E-05	CCCP Kenansville May 2010 Test Data	3.50E-02	0.15														Biomass	3.50E-02	0.15
VHAP	Acetophenone		3.20E-09	AP-42 Chapter 1.6	1.38E-06	6.03E-06														Biomass	1.38E-06	6.03E-06
VHAP	Acrolein	107-02-8	1.49E-04	CCCP Kenansville May 2010 Test Data	6.41E-02	0.28													- 11	Biomass	6.41E-02	0.28
VHAP	Benzene	71-43-2	6.58E-05	CCCP Kenansville May 2010 Test Data	2.83E-02	0.12														Biomass	2.83E-02	0.12
VHAP	bis(2-Ethylhexyl)phthalate	117-81-7	4.70E-08	AP-42 Chapter 1.6	2.02E-05	8.85E-05		1												Biomass	2.02E-05	8.85E-05
VHAP	Bromomethane	74-83-9	1.50E-05	AP-42 Chapter 1.6	6.45E-03	0.03			1	1	1									Biomass	6.45E-03	0.03
VHAP	Carbon Tetrachloride	56-23-5	4.50E-05	AP-42 Chapter 1.6	1.94E-02	0.08														Biomass	1. <u>94E-</u> 02	0.08
	Chlorine	7782-50-5	0.0018	CCCP Kenansville May 2010 Test Data	7.74E-01	3.39		0.0176	9.46E-05		0.0135	7.38E-05		0.0098	7 5.48E-05	0.0001	Max emission rate from CC stack tests. ¹	0.04	0.18	Biomass	7.74E-01	3.39
VHAP	Chlorobenzene	108-90-7	3.30E-05	AP-42 Chapter 1.6	1.42E-02	0.06					1		-							Biomass	1.42E-02	0.06
VHAP	Chloroform	67-66-3	2.80E-05	AP-42 Chapter 1.6	1.20E-02	0.05												2		Biomass	1.20E-02	0.05
VHAP	Chloromethane	74-87-3	2.30E-05	AP-42 Chapter 1.6	9.89E-03	0.04											and the second second			Biomass	9.89E-03	0.04
VHAP	Cumene	98-82-8	N/A	AP-42 Chapter 1.6																		
VHAP	Di-n-butylphthalate	84-74-2	N/A	AP-42 Chapter 1.6		1			-													
VHAP	2.4-Dinitrophenol	51-28-5	1.80E-07	AP-42 Chapter 1.6	7.74E-05	3.39E-04														Biomass	7.74E-05	3.39E-04
VHAP	2,4-Dinitrotoluene	121-14-2	N/A	AP-42 Chapter 1.6			2.2.1															
VHAP	1,4-Dichlorobenzene	106-46-7	N/A	AP-42 Chapter 1.6																		<u></u>
VHAP	1,2-Dichloroethane	107-06-2	2.90E-05	AP-42 Chapter 1.6	1.25E-02	0.05														Biomass	1.25E-02	0.05
VHAP	1,2-Dichloropropane	78-87-5	3.30E-05	AP-42 Chapter 1.6	1.42E-02	0.06					-				_					Biomass	1.42E-02	0.06
VHAP	Ethylbenzene	100-41-4	3.10E-05	AP-42 Chapter 1.6	1.33E-02	0.06								-						Biomass	1.33E-02	0.06
VHAP	Formaldehyde	50-00-0	2.19E-04	CCCP Kenansville May 2010 Test Data	9.42E-02	0.41														Biomass	9.42E-02	0.41
VHAP	n-Hexane	110-54-3	N/A	AP-42 Chapter 1.6																		
VHAP	Methanol	67-56-1	N/A	AP-42 Chapter 1.6																		
VHAP	Methyl Isobutyl Ketone	108-10-1	N/A	AP-42 Chapter 1.6																		
VHAP	Methylene Chloride	75-09-2	2.90E-04	AP-42 Chapter 1.6	1.25E-01	0.55						ļ			-					Biomass	1.25E-01	0.55
VHAP	Naphthalene	91-20-3	9.70E-05	AP-42 Chapter 1.6	4.17E-02	0.18										┫━━━━┥				Biomass	4.17E-02	0.18
VHAP	4-Nitrophenol	100-02-7	1.10E-07	AP-42 Chapter 1.6	4.73E-05	2.07E-04					-									Biomass	4.73E-05	2.07E-04
	Pentachlorophenol	87-86-5	5.10E-08	AP-42 Chapter 1.6	2.19E-05	9.61E-05				L										Biomass	2.19E-05	9.61E-05
VHAP	Phenol	108-95-2	5.10E-05	AP-42 Chapter 1.6	2.19E-02	0.10					-			-	_					Biomass	2.19E-02	0.10
VHAP	Propionaldehyde	123-38-6	6.10E-05	AP-42 Chapter 1.6	2.62E-02	0.11								-	_					Biomass	2.62E-02	0.11
VHAP	Styrene	100-42-5	4.64E-05	2010 Test Data	2.00E-02	0.09														Biomass	2,00E-02	0.09
VHAP	Taluene	108-88-3	4.34E-05	CCCP Kenansville May 2010 Test Data	1.87E-02	0.08														Biomass	1.87E-02	0.08
VHAP	Tetrachloroethene	127-18-4	3.80E-05	AP-42 Chapter 1.6	1.63E-02	0.07														Biomass	1.63E-02	0.07
VHAP	1,1,1-Trichloroethane	71-55-6	3.10E-05	AP-42 Chapter 1.6	1.33E-02	0.06														Biomass	1.33E-02	0.06
VHAP	Trichloroethylene	79-01-6	3.00E-05	AP-42 Chapter 1.6	1.29E-02	0.06								_						Biomass	1.29E-02	0.06
VHAP	2,4.6-Trichlorophenol	88-06-2	2.20E-08	AP-42 Chapter 1.6	9.46E-06	4.14E-05														Biomass	9.46E-06	4.14E-05
VHAP	Vinyl Chloride	75-01-4	1.80E-05	AP-42 Chapter 1.6	7.74E-03	0.03													<u> </u>	Biomass	7.74E-03	0.03
VHAP	Xylenes	1330-20-7	2.50E-05	AP-42 Chapter 1.6	1.08E-02	0.05		-			-			_					-	Biomass	1.08E-02	0.05
VHAP	HF	7664-39-3	N/A	AP-42 Chapter 1.6																		
Metal HAP	Antimony	7440-36-0	7.90E-06	AP-42 Chapter 1.6	3.40E-03	0.01						I								Biomass	3.40E-03	0.01

Table 6-2. Emission Factors of HAPs and Air Toxics From Wood and Litter Combustion

~

Wood Combustion Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy: 1. Boiler and air pollution control device (APCD) vendor guarantees for HCI and NH3.

- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)
- 3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP

Poultry Litter and Wood Biomass Combined Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

							Poultry Litter + Biomass Combust						ustion		1							
							CC May 2013 (ES-1A) CC July 2013 (ES-1B) CC July 2014 (ES-1B)									1						
				Poultry Li	tter (including	bedding)%	% 67% Not specified 25%															
						Biomass%		33%		N	ot specif	fied	185	75%	10. 4	-						
			_	Hea	t Input Rate E	During Tests	186	MM	Btu/hr	183	M	MBtu/hr	180	MN	/Btu/hr							_
				100% Wood Biomass Co	mbustion					Stack Test Emission Factors						Maximum Emis	sions from Poultry Litter	+ Biomass C	ombustion	Pot	ential Emiss	ions
Pollutant Category	Pollutant	CAS	Emission Factors (lb/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emission s (tpy)	lb/MMBtu	lb/hr	Final Ib/MMBtu	Ib/MMBtu	lb/hr	Final Ib/MMBtu	ib/MMBtu	lb/hr	Final Ib/MMBtu	Litter/Wood Mix Emission Factor Used in Calcs (Ib/MMBtu)	Emission Factor Source	Emissions (Ib/hr)	Emissions (tpy)	Emission Factor Source	Emissions (Ib/hr)	Emissions (tpy)
Metal HAP	Arsenic	7440-38-2	2.20E-05	AP-42 Chapter 1.6	9.46E-03	0.04		4.45E-03	2.39E-05							2.39E-05	Max emission rate from CC stack tests.	0.01	0.05	Litter + Biomass	1.03E-02	0.05
Metal HAP	Beryllium	7440-41-7	1.10E-06	AP-42 Chapter 1.6	4.73E-04	0.002		1.60E-04	8.60E-07							8.60E-07	Max emission rate from CC stack tests.	0.00	0.00	Biomass	4.73E-04	0.002
Metal HAP	Cadmium	7440-43-9	4.10E-06	AP-42 Chapter 1.6	1.76E-03	800.0		4.24E-04	2.28E-06							2,28E-06	Max emission rate from CC stack tests.	0.00	0.00	Biomass	1,76E-03	0.008
Metal HAP	Chromium (Total)	7440-47-3	2.10E-05	AP-42 Chapter 1.6	9.03E-03	0.04		2.14E-03	1.15E-05							1.15E-05	Max emission rate from CC stack tests.	0.00	0.02	Biomass	9.03E-03	0.04
Metal HAP	Cobalt	7440-48-4	6.50E-06	AP-42 Chapter 1.6	2.80E-03	0.01														Biomass	2.80E-03	0.01
Metal HAP	Lead	7439-92-1	4.80E-05	AP-42 Chapter 1.6	2.06E-02	0.09	2.86E-05	5.32E-03	2.86E-05							2.86E-05	Max emission rate from CC stack tests.	0.01	0.05	Biomass	2.06E-02	0.09
Metal HAP	Manganese	7439-96-5	1.16E-05	CCCP Kenansville May 2010 Test Data	4.99E-03	0.02		1.41E-02	7.58E-05							7.58E-05	Max emission rate from CC stack tests.	0.03	0.14	Poultry Litter + Biomass	3.26E-02	0.14
Metal HAP	Mercury	7439-97-6	3.50E-06	AP-42 Chapter 1.6	1.51E-03	0.007		2.06E-04	1.11E-06							1.11E-06	Max emission rate from CC stack tests.	0.00	0.00	Biomass	1.51E-03	0.007
Metal HAP	Nickel	7440-02-0	3.30E-05	AP-42 Chapter 1.6	1.42E-02	0.06		3.16E-03	1.70E-05							1.70E-05	Max emission rate from CC stack tests.	0.01	0.03	Biomass	1, 42E-02	0.06
Metal HAP	Selenium	7782-49-2	2.80E-06	AP-42 Chapter 1.6	1.20E-03	0,005	2.41E-07	2.15E-03	2.41E-07							2.41E-07	Max emission rate from CC stack tests.	0.00	0.00	Biomass	1.20E-03	0.005
POM	Acenaphthene	POM	9.10E-07	AP-42 Chapter 1.6	3.91E-04	0.002														Biomass	3.91E-04	0.002
POM	Acenaphthylene	POM	5.00E-06	AP-42 Chapter 1.6	2.15E-03	0.009														Biomass	2.15E-03	0.009
POM	Anthracene	POM	3.00E-06	AP-42 Chapter 1.6	1.29E-03	0.006														Biomass	1.29E-03	0.006
POM	Benzo(a)anthracene	POM	6.50E-08	AP-42 Chapter 1.6	2.80E-05	1.22E-04					-				-					Biomass	2.80E-05	1.22E-04
POM	Benzo(a)pyrene	50-32-8	2.60E-06	AP-42 Chapter 1.6	1.12E-03	0.005														Biomass	1,12E-03	0.005
РОМ	Benzo(b)fluoranthene	POM	1.00E-07	AP-42 Chapter 1.6	4.30E-05	1.88E-04					-									Biomass	4.30E-05	1.88E-04
РОМ	Benzo(e)pyrene	POM	2.60E-09	AP-42 Chapter 1.6	1.12E-06	4.90E-06														Biomass	1.12E-06	4.90E-06
POM	Benzo(g,h,i)perylene	POM	9.30E-08	AP-42 Chapter 1.6	4.00E-05	1.75E-04					-									Biomass	4.00E-05	1.75E-04
POM	Benzo(j,k)fluoranthene	POM	1.60E-07	AP-42 Chapter 1.6	6.88E-05	3.01E-04														Biomass	6.88E-05	3.01E-04
POM	Benzo(k)fluoranthene	POM	3.60E-08	AP-42 Chapter 1.6	1.55E-05	6.78E-05					-									Biomass	1.55E-05	6.78E-05
POW	2-Unioronaphtnaiene	POM	2.40E-09	AP-42 Chapter 1.6	1.032-06	4.52E-06				I										Biomass	1.03E-06	4.52E-05
POM	Disassia biasthassana	POM	3.602-08	AP-42 Chapter 1.6	1.63E-05	7.16E-05														Biomass	1.03E-05	7.10E-00
POM	Eluoreathope	IPOM	9.10E-09	AP-42 Unapter 1.6	3.91E-06	1./TE-05					-		-							Biomass	5.91E-00	1.7 TE-00
	Fluoranniene	POM	1.60E-06	AP-42 Chapter 1.6	0.00E-04	0.003														Biomass	0.00E-04	0.003
POM	Indeno(1.2.3 c d)ourene	POM	8 705 08	AP-42 Chapter 1.6	3 74E 05	1 645 04														Biomass	3.745-05	1.645.04
POM	Monochlorobiohenyl	POM	2 20E-10	AP-42 Chapter 1.6	9.465-08	4 14E-07														Biomass	9.465-08	A 14E-07
POM	2-Methyloaphthalene	POM	1.60E-07	AP-42 Chapter 1.6	6.88E-05	3.01E-04														Biomass	6 88E-05	3.01E-04
POM	Phenanthrene	POM	7.00E-06	AP-42 Chapter 1.6	3.01E-03	0.01					+			1		1				Biomass	3.01E-03	0.01
POM	Pyrene	POM	3.70E-06	AP-42 Chanter 1.6	1.59E-03	0.007			-											Biomass	1.59E-03	0.007
POM	Pervlene	POM	5.20E-10	AP-42 Chapter 1.6	2.24E-07	9.79E-07							1							Biomass	2 24E-07	9.79E-07
Total PAH (POM)	Total PAH (POM)	TotalPAH(POM	2.80E-05	AP-42 Chapter 1.6	1.20E-02	0.05					-							1		Biomass	1.20E-02	0.05
DBF	Heptachlorodibenzo-p-furans	DBF	2.40E-10	AP-42 Chapter 1.6	1.03E-07	4.52E-07					-	-						1.		Biomass	1.03E-07	4.52E-07
DBF	Hexachlorodibenzo-p-furans	DBF	2.80E-10	AP-42 Chapter 1.6	1.20E-07	5.27E-07														Biomass	1.20E-07	5.27E-07
DBF	Octachlorodibenzo-p-furans	DBF	8.80E-11	AP-42 Chapter 1.6	3.78E-08	1.66E-07			-											Biomass	3.78E-08	1.66E-07
OBF	Pentachlorodibenzo-p-furans	DBF	4.20E-10	AP-42 Chapter 1.6	1.81E-07	7.91E-07														Biomass	1.81E-07	7.91E-07
DBF	2,3,7.8-Tetrachlorodibenzo-p-furans	DBF	9.00E-11	AP-42 Chapter 1.6	3.87E-08	1.70E-07	-													Biomass	3.87E-08	1.70E-07
DBF	Tetrachlorodibenzo-p-furans	DBF	7.50E-10	AP-42 Chapter 1.6	3.23E-07	1.41E-06														Biomass	3.23E-07	1.41E-06
DBD	Heptachlorodibenzo-p-dioxins	DBD	2.00E-09	AP-42 Chapter 1.6	8.60E-07	3.77E-06														Biomass	8.60E-07	3.77E-06
DBD	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxins	DBD	3.18E-11	NCDENR Memo (6/11)	1.37E-08	5.99E-08														Biomass	1.37E-08	5.99E-08

Table 8-2, Emission Factors of HAPs and Air Toxics From Wood and Litter Combustion

Wood Combustion

 \sim

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy:

- 1. Boiler and air pollution control device (APCD) vendor guarantees for HCI and NH3.
- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)
 3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP

Poultry Litter and Wood Biomass Combined Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

													Poultry Litt	ter + Bion	nass Comb	ustion]		
							CC May 2013 (ES-1A) CC July 2013 (ES-1B) CC July 2014 (ES-1B)								1							
				Poultry Lit	tter (includin	g bedding)%	% 67% Not specified 25%]				1							
						Biomass%	6 33% Not specified 75%						1				1					
				Heat	Input Rate	During Tests	186	MM	Btu/hr	183	M	MBtu/hr	180	MN	1Btu/hr	1				1		
				100% Wood Biomass Cor	mbustion					Stack Test	: Emissi	on Factors				Maximum Emiss	ions from Poultry Litter	+ Biomass C	Combustion	Pot	ential Emis	sions
	1			1			<u> </u>		1	1					······	,	1	1			T	
Pollutant Category	Pollutant	CAS	Emission Factors (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emission 5 S (tpy)	lb/MMBtu	ib/hr	Final Ib/MMBtu	lb/MMBtu	lb/hr	Final Ib/MMBtu	ib/MMBtu	lb/hr	Final	Litter/Wood Mix Emission Factor Used in Calos (Ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source	Emissions (lb/hr)	; Emissions (tpy)
DBD	Octachlorodibenzo-p-dioxins	DBD	6.60E-08	AP-42 Chapter 1.6	2.84E-05	1.24E-04	-	1												Biomass	2.84E-05	1.24E-04
DBD	Pentachlorodibenzo-p-dioxins	DBD	1.50E-09	AP-42 Chapter 1.6	6.45E-07	2.83E-06					· · · ·				t					Biomass	6.45E-07	2.83E-06
DBD	2,3,7,8-Tetrachlorodibenzo-p-dioxin	DBD	8.60E-12	AP-42 Chapter 1.6	3.70E-09	1.62E-08								1				1		Biomass	3.70E-09	1.62E-08
DBD	Tetrachlorodibenzo-p-dioxins	DBD	4.70E-10	AP-42 Chapter 1.6	2.02E-07	8.85E-07		1				<u> </u>								Biomass	2.02E-07	8.85E-07
PCB	Decachlorobiphenyl	PCB	2.70E-10	AP-42 Chapter 1.6	1.16E-07	5.09E-07							1					1		Biomass	1.16E-07	5.09E-07
PCB	Dichlorobiphenyl	PCB	7.40E-10	AP-42 Chapter 1.6	3.18E-07	1.39E-06	r —					<u> </u>								Biomass	3.18E-07	1.39E-06
PCB	Heptachlorobiphenyl	PCB	6.60E-11	AP-42 Chapter 1.6	2.84E-08	1.24E-07		1										1		Biomass	2.84E-08	1.24E-07
PCB	Hexachlorobiphenyl	PCB	5.50E-10	AP-42 Chapter 1.6	2.37E-07	1.04E-06					<u> </u>	t								Biomass	2.37E-07	1.04E-06
PCB	Pentachlorobiphenvl	PCB	1.20E-09	AP-42 Chapter 1.6	5.16E-07	2.26E-06								1					1	Biomass	5.16E-07	2.26E-06
PCB	Trichlorobiohenvl	PCB	2.60E-09	AP-42 Chapter 1.6	1.12E-06	4.90E-06						<u> </u>		1						Biomass	1.12E-06	4.90E-06
PCB	Tetrachlorobinhenvl	PCB	2.50E-09	AP-42 Chapter 1.6	1.08E-06	4.71E-06		1		· · · ·					-					Biomass	1.08E-06	4.71E-06
Total PCB	Total PCB	1336-36-3	7.93E-09	AP-42 Chapter 1.6	3.41E-06	1 49E-05			<u> </u>			1		+				· ·		Biomass	3 41E-06	1.49E-05
НАР	1.3 Butadiana	105.00.0	NUA	AP 42 Chapter 1.6	0.412-00	1.402.00			<u> </u>						-			-		Diginiado	0.412.00	1.102.00
		1100-99-0	N/A	AF-42 Chapter 1.6	4 005 - 00	+ 10.44		· ·	┝───		ļ				1					Disease	4.005.00	10.11
TOTAL HAP		07.04.4	9.77E-03		4.20E+00	18.41			ļ			l								Biomass	4.20E+00	18.41
	Acetone	167-64-1	1.90E-04	AP-42 Chapter 1.6	8.17E-02	0.36	L		<u> </u>		<u> </u>		<u> </u>					÷ - , ·		Biomass	8.17E-02	0.36
TAP	Benzaldenyde	100-52-7	8.50E-07	AP-42 Chapter 1.6	3.66E-04	0.002		L		<u> </u>										Biomass	3.66E-04	0.002
TAP	Benzoic Acid	05-85-0	4.70E-08	AP-42 Chapter 1.6	2.02E-05	8.85E-05			-		<u> </u>				<u> </u>			<u> </u>		Biomass	2.02E-05	8.85E-05
TAP	bis(2-chlorolsopropyl)ether	108-60-1	N/A	AP-42 Chapter 1.6							<u> </u>							· · · ·	<u> </u>			
TAP	Bromodichioromethane	175-27-4	N/A	AP-42 Chapter 1.6	<u> </u>			<u> </u>			<u> </u>					J						·
TAP	Butylbenzylphthalate	85-68-7	N/A	AP-42 Chapter 1.6			L			1	ļ											<u> </u>
TAP	n-butyraldehyde	123-72-8	N/A	AP-42 Chapter 1.6							<u> </u>	-										
TAP	Carbazole	86-74-8	1.80E-06	AP-42 Chapter 1.6	7.74E-04	0.003	ļ					_	-	<u> </u>		·				Biomass	7.74E-04	0.003
TAP	Carbon disulfide	75-15-0	N/A	AP-42 Chapter 1.6	-								-									
TAP	Carene-3	13466-78-9	<u>N/A</u>	AP-42 Chapter 1.6								L	Į	<u> </u>		·	-					<u> </u>
	2-Chlorophenol	95-57-8	2.40E-08	AP-42 Chapter 1.6	1.03E-05	4.52E-05							- <u> </u>							Biomass	1.03E-05	4.52E-05
ТАР	Crotonaldehyde	123-73-9	9.90E-06	AP-42 Chapter 1.6	4.26E-03	0.02		·	L					ļ						Biomass	4.26E-03	0.02
TAP	Cymene-p	99-87-6	N/A	AP-42 Chapter 1.6								1	1		i							
TAP	1,2-Dibromoethane	106-93-4	5.50 <u>E-05</u>	AP-42 Chapter 1.6	2.37E-02	0.10			L			<u> </u>			[Biomass	2.37E-02	0.10
TAP	1,2-Dichloroethene	540-59-0	N/A	AP-42 Chapter 1.6																I		\square
TAP	Diethylphthalate	84-66-2	N/A	AP-42 Chapter 1.6							<u> </u>							L				
ТАР	2,5-Dimethyl benzaldehyde	5779-94-2	N/A	AP-42 Chapter 1.6	<u> </u>									ļ					1			
ТАР	4.6-Dinitro-2-methylphenol	534-52-1	N/A	AP-42 Chapter 1.6																1		
TAP	Di-n-octyl phthalate	117-84-0	<u>N/A</u>	AP-42 Chapter 1.6					<u> </u>		I											
TAP	Ethanol	64-17-5	N/A	AP-42 Chapter 1.6					1		[L		I		<u> </u>
ТАР	Hexachlorobenzene	118-74-1	<u>N/A</u>	AP-42 Chapter 1.6								L				<u> </u>						
<u>TAP</u>	Hexanal	66-25-1	7.00E-06	AP-42 Chapter 1.6	3.01E-03	0.01		<u> </u>					L							Biomass	3.01E-03	0.01
ТАР	Isobutyiraldehyde	78-84-2	1.20E-05	AP-42 Chapter 1.6	5.16E-03	0.02		<u> </u>										L		Biomass	5.16E-03	0.02
TAP	Isopropanol	67-63-0	N/A	AP-42 Chapter 1.6											Ļ					ļ		
ТАР	Isovaleralde <u>hyde</u>	590-86-3	N/A	AP-42 Chapter 1.6																		
TAP	МЕК	78-93-3	5.40E-06	AP-42 Chapter 1.6	2.32E-03	0.01				I			1		L					Biomass	2.32E-03	0.01
ТАР	Methane	74-82-8	2.10E-02	AP-42 Chapter 1.6	9.03E+00	39.55														Biomass	9.03E+0 <u>0</u>	39.55
TAP	2-Nitrophenol	88-75-5	2.40E-07	AP-42 Chapter 1.6	1.03E-04	4.52E-04														Biomass	1.03E-04	4.52E-04
TAP	alpha-Pinene	80-56-8	N/A	AP-42 Chapter 1.6																		
ТАР .	beta-Pinene	127-91-3	N/A	AP-42 Chapter 1.6																		
TAP	Pentanal	110-62-3	N/A	AP-42 Chapter 1.6																		
ТАР	Propanal	123-38-6	3.20E-06	AP-42 Chapter 1.6	1.38E-03	0.006														Biomass	1.38E-03	0.006
ТАР	alpha-Terpineol	98-55-5	N/A	AP-42 Chapter 1.6																		
TAP	m,p,o-Tolualdehyde	various	N/A	AP-42 Chapter 1.6															1			
TAP	m,p-Tolualdehyde	various	1.10E-05	AP-42 Chapter 1.6	4.73E-03	0.02														Biomass	4.73E-03	0.02
TAP	o-Tolualdehyde	529-20-4	7.20E-06	AP-42 Chapter 1.6	3.10E-03	0.01														Biomass	3.10E-03	0.01

PSD Permit Application North Carolina Renewable Power - Lumberton, LLC Lumberton, NC

Table 6-2. Emission Factors of HAPs and Air Toxics From Wood and Litter Combustion

Wood Combustion

 \frown

Emission factors HAPs and Air Toxics from wood biomass combustion in the boiler are selected from the following sources, in order of hierarchy: 1. Boiler and air pollution control device (APCD) vendor guarantees for HCI and NH3.

- 2. EPA AP-42 Chapter 1.6 Wood Residue Combustion in Boilers (9/03)
- 3. May 2010 Emission test data for Coastal Carolina Clean Power, LLC's Kenansville, NC Facility (CCCP Kenansville) for chlorine, manganese, formaldehyde, acetaldehyde, acrolein, styrene, benzene, and toluene. CCCP

Poultry Litter and Wood Biomass Combined

Emission factors from Coastal Carolina Clean Power, LLC (Kenansville, NC). Test runs from May 2013, July 2013, and July 2014.

							Poultry Litter + Biomass Combustion											1				
							CC M	ay 2013 (8	ES-1A)	CC July 2013 (ES-1B)			CC JU	uly 2014 (E	ES-1B)					1		
				Poultry Lit	tter (includin	g bedding)%		67%		N	ot specif	ied		25%		1						
						Biomass%		33%		N	ot specif	ied		75%		1						
				Heat	Input Rate I	During Tests	186	MM	Btu/hr	183	MN	MBtu/hr	180	MM	Btu/hr	1						
				100% Wood Biomass Con	nbustion					Stack Test	Emissi	on Factors				Maximum Emissions from Poultry Litter + Biomass Combustion					ential Emiss	sions
Pollutant Category	Pollutant	CAS	Emission Factors (ib/MMBtu)	Emission Factor Source	Emissions (lb/hr)	Emission s s (tpy)	lb/MMBtu	lb/hr	Final Ib/MMBtu	lb/MMBtu	lb/hr	Final Ib/MMBtu	lb/MMBtu	ib/hr	Final Ib/MMBtu	Litter/Wood Mix Emission Factor Used in Calcs (lb/MMBtu)	Emission Factor Source	Emission s (lb/hr)	Emissions (tpy)	Emission Factor Source	Emis s ions (Ib/hr)	Emissions (tpy)
TAP	1.2.4-Trichlorobenzene	120-82-1	N/A	AP-42 Chapter 1.6																		
TAP	1.1.2-Trichloroethane	79-00-5	N/A	AP-42 Chapter 1.6		1																
TAP	Trichloroethene	79-01-6	3.00E-05	AP-42 Chapter 1.6	1.29E-02	0.06											1			Biomass	1.29E-02	0.06
TAP	Trichlorofluoromethane	75-69-4	4.10E-05	AP-42 Chapter 1.6	1.76E-02	0.08														Biomass	1.76E-02	0.08
TAP	Valeraldehyde	110-62-3	N/A	AP-42 Chapter 1.6			1															
Trace Element TAP	Barium	7440-39-3	1.70E-04	AP-42 Chapter 1.6	7.31E-02	0.32			1											Biomass	7.31E-02	0.32
Trace Element TAP	Copper	7440-50-8	_4.90E-05	AP-42 Chapter 1.6	2.11E-02	0.09			1											Biomass	2.11E-02	0.09
Trace Element TAP	Iron	7439-89-6	9.90E-04	AP-42 Chapter 1.6	4.26E-01	1.86														Biomass	4.26E-01	1.86
Trace Element TAP	Molybdenum	7439-98-7	2.10E-06	AP-42 Chapter 1.6	9.03E-04	0.004														Biomass	9.03E-04	0.004
Trace Element TAP	Phosphorus	7723-14-0	2.70E-05	AP-42 Chapter 1.6	1.16E-02	0.05														Biomass	1.16E-02	0.05
Trace Element TAP	Potassium	7440-09-7	3.90E-02	AP-42 Chapter 1.6	1.68E+01	73.45														Biomass	1.68E+01	73.45
Trace Element TAP	Silver	7440-22-4	1.70E-03	AP-42 Chapter 1.6	7.31E-01	3.20														Biomass	7.31E-01	3.20
Trace Element TAP	Sodium	7440-23-5	3.60E-04	AP-42 Chapter 1.6	1.55E-01	0.68														Biomass	1.55E-01	0.68
Trace Element TAP	Strontium	7440-24-6	1.00E-05	AP-42 Chapter 1.6	4.30E-03	0.02												2		Biomass	4.30E-03	0.02
Trace Element TAP	Thallium	7440-28-0	N/A	AP-42 Chapter 1.6																		
Trace Element TAP	Tin	7440-31-5	2.30E-05	AP-42 Chapter 1.6	9.89E-03	0.04														Biomass	9.89 <u>E-03</u>	0.04
Trace Element TAP	Titanium	7440-32-6	2.00E-05	AP-42 Chapter 1.6	8.60E-03	0.04		12.2.2.												Biomass	8.60E-03	0.04
Trace Element TAP	Vanadium	7440-62-2	9.80E-07	AP-42 Chapter 1.6	4.21E-04	0.002														Biomass	4.21E-04	0.002
Trace Element TAP	Yttrium	7440-65-5	3.00E-07	AP-42 Chapter 1.6	1.29E-04	5.65E-04														Biomass	1.29E-04	5.65E-04
Trace Element TAP	Zinc	7440-66-6	4.20E-04	AP-42 Chapter 1.6	1.81E-01	0.79														Biomass	1.81E-01	0.79
TAP	Chloride	16887-00-6	N/A	AP-42 Chapter 1.6																		
TAP	Flouride	16984-48-8	N/A	AP-42 Chapter 1.6		1																
TAP	Propylene	115-07-1	N/A	AP-42 Chapter 1.6																		
TAP	Ammonia slip	7664-41-7	1.60E-02	Vendor Guarantee.	6.88E+00	30.13														Biomass	6.88E+00	30.13
ТАР	Sulfuric acid mist	7664-93-9	0.011	Vendor Guarantee. Use of low sulfur content wood.	4.73E+00	20.72										0.031	Vendor Guarantee. Proper fuel Mix.	13.33	58.39	Poultry Litter + Biomass	1.33E+01	68.39

ABBREVIATIONS: POM = Polycylic Organic Matter

DBF = Dibenzofurans

DBD = Dibenzodioxins

PCB = Polychlorinated biphenyls

Notes 1. Chlorine emissions from 100% wood combustion are higher than litter/wood mix. Therefore, wood only combustion factor used.

APPENDIX C PPUSA NHSM Determination Letter

North Carolina Department of Environment and Natural Resources

Division of Air Quality Sheila C. Holman Director

John E. Skvarla, III Secretary

Pat McCrory Governor

March 8, 2013

Mr. Kerry Varkonda Development Director Poultry Power, USA 4300 Marsh Landing Parkway, Suite 201 Jacksonville Beach, FL 32250

SUBJECT: Applicability Determination No. 2131 Poultry Power USA NHSM Determination

Dear Mr. Varkonda:

The North Carolina Division of Air Quality (NC DAQ) received your letter dated November 27, 2012 summarizing your analysis of used poultry litter from various sources. The NC DAQ received additional information in a letter dated January 31, 2013 as well as various e-mail correspondences submitted by Ms. Fern A. Paterson of Parker Poe Adams & Bernstein LLP on your behalf. Poultry Power USA (PPUSA) is proposing to burn used poultry litter as a fuel in a new boiler. The boiler will be used to generate steam for the production of electricity.

Used poultry litter is a non-hazardous secondary material (NHSM) within the meaning of Title 40, Part 241 of the Code of Federal Regulations (40 CFR Part 241). The used poultry litter described in your correspondence referenced above will be processed by PPUSA. It meets the legitimacy criteria provided in 40 CFR §241.3. The NC DAQ has determined, therefore, the combustion of this material would not be subject to the requirements of the Commercial and Industrial Solid Waste Incineration (CISWI) emission standard. This determination relies on the language of the recently published Federal rules defining NHSM, and 40 CFR Part 60, Subpart CCCC. As the former is only effective as of April 8, 2013, please be advised that this determination is not effective until that date.

Background

On February 7, 2013 the EPA published revisions to the CISWI regulations and the Solid Wastes Used as Fuels or Ingredients in Combustion Units rule (also known as the NHSM rule).¹ The CISWI rule (for new units) will become effective on August 7, 2013. It includes a definition of "contained gaseous material" and indicates that the definition of solid waste given in 40 CFR §258.2 is to be used to determine if a material is a solid waste.

Permitting Section 1641 Mail Service Center, Raleigh, North Carolina 27699-1641 217 West Jones Street, Raleigh, North Carolina 27603 Phone: 919-707-8405 / Fax: 919-715-0717 Internet: <u>www.ncair.org</u> An Equal Opportunity \ Affirmative Action Employer – Made in part by Recycled Paper

¹78 Fed. Reg 9112 (2013).

Note that the NHSM rule still states that "non-hazardous secondary materials that are combusted are solid wastes," unless they can be exempted under either 40 CFR §241.3(b) or through a petition to the US EPA under 40 CFR §241.3(c). The EPA's interpretation makes it clear that to be subject to the CISWI rule a unit must burn a "solid waste" as that term is defined at 40 CFR §258.2 and does not qualify for one of the NHSM exemptions at 40 CFR §241.3. If the material is not a solid waste as defined in 40 CFR §258.2, its combustion is not subject to CISWI. Alternatively, the combustion of a solid waste can be exempt from CISWI if the conditions under 40 CFR Part 241 can be met.

Whether a material is a solid waste depends on whether 40 CFR §258.2 or the NHSM rule is being relied upon. Recent memoranda from the NC DOJ are instructive in both contexts. Specifically, the NC DOJ memorandum of September 28, 2009 described ten factors that define whether a material is a solid waste under 40 CFR §258.2. Alternatively, the NC DOJ memorandum of July 20, 2011 defines whether a material is a solid waste in the context of the NHSM rule, and lists five factors that should be considered when making the determination under three subparts of that rule.²

Project as Described

PPUSA is developing a project to construct a new boiler fueled by processed used poultry litter. The project is being developed in response to the Renewable Energy and Energy Efficiency Portfolio Standards (REPS) adopted by the North Carolina state legislature in 2007. Under the REPS, North Carolina electric power suppliers are required to utilize used poultry litter as a resource to generate at least 900,000 megawatt-hours (MWh) of electricity by the year 2014.

Once operational, the PPUSA plant would produce electricity and Renewable Energy Certificates (REC) which would be sold to electric utilities and/or cooperatives. As part of the project, PPUSA plans to install a new boiler, emissions control equipment, and fuel handling, storage and processing equipment. PPUSA is currently preparing its air permit application for submission to NC DAQ. The purpose of this letter and analysis is to evaluate the proposed use of used poultry litter as fuel.

PPUSA will produce the fuel by gathering used poultry litter from nearby poultry houses and processing it into a non-solid waste fuel. Based on the description of the process, and the chemical analysis of the material, NC DAQ determines that the processed used poultry litter meets the legitimacy criteria in 40 CFR § 241.3(d)(1) and is a non-solid waste fuel pursuant to 40 CFR § 241.3(b)(4).

Analysis under 40 CFR Part 241

The NHSM definitional rule defines "processing" in 40 CFR § 241.2 as:

...any operations that transform discarded non-hazardous secondary material into a non-waste fuel or non-waste ingredient product. Processing includes, but is not limited to, operations necessary to: Remove or destroy contaminants; significantly improve the fuel characteristics of the material, e.g.,

² These subparts were given as,

⁽¹⁾ Traditional fuels and clean cellulosic biomass (40 CFR §241.2),

 ⁽²⁾ Fuels or ingredient products used in a combustion unit that are made from discarded materials (40 CFR §241.3(b)(4)), and
 (3) Screen time and downtood on the second seco

⁽³⁾ Scrap tires and dewatered pulp and paper sludges (40 CFR §241.4(a)(1), and (4)).

sizing or drying the material in combination with other operations; chemically improve the as-fired energy content; or improve the ingredient characteristics. Minimal operations that result only in modifying the size or the material by shredding do not constitute processing for the purposes of this definition.

PPUSA will collect used poultry litter generated from poultry farms and grow houses that are owned and operated by poultry growers in North Carolina and South Carolina. PPUSA then will prepare the used poultry litter to improve the fuel combustion properties of the used poultry litter to produce an engineered, non-solid waste fuel as follows:

- Material Assessment & Contaminant Removal. PPUSA personnel will visually observe each load of used poultry litter received and will physically remove observable foreign objects such as rocks and debris. The material will also be passed through a magnetic separation system to remove any ferrous metal constituents.
- Moisture and Heat Content Testing. PPUSA will test the moisture content of each load and determine the approximate lower heating value (LHV) of the material as received.
- Sampling and Contaminant Level Analysis. PPUSA will collect representative samples of the used poultry litter. The samples will be analyzed by a laboratory to determine the contaminant levels and ensure the levels are comparable to those in traditional solid fuels, including coal and biomass.
- Storage. Following contaminant removal and sampling, the used poultry litter will be stored. Storage of the used poultry litter will be segregated by moisture content.
- Screening and Sizing. PPUSA will screen the used poultry litter to produce material with the appropriate size, surface area, and density for efficient combustion in a boiler designed for solid fuel firing.
- **Blending.** The used poultry litter will be blended as needed to achieve the proper moisture and heat content for efficient combustion.

The steps listed above, including the removal of metal contaminants, sampling, testing, analysis, blending, and enhancement of fuel characteristics including size, surface area, density, and moisture content, transform the used poultry litter into a non-solid waste fuel.³

I. Legitimacy Criteria

Under 40 CFR § 241.3, a NHSM that is burned is a solid waste unless it can meet the criteria listed in 40 CFR §241.3(b) or 40 CFR §241.4(a). For the particular NHSM of processed used poultry litter the legitimacy criteria are given in 40 CFR §241.3(d)(1) and state that the NHSM must: (a) be managed as a valuable commodity; (b) have meaningful heat content and be used as a fuel in a combustion unit with energy recovery; and (c) contain contaminants or groups of contaminants at levels comparable in concentration to or lower than those in traditional fuels which the combustion unit is designed to burn. The used poultry litter that PPUSA proposes to burn meets each of these three criteria as detailed below.

a. Managed as a Valuable Commodity - 40 CFR 241.3(d)(1)(i)

³ See Letter from Becky Weber, Director, Air and Waste Mgmt. Div., U.S. EPA, Region 7, to Mr. Gregory Haug, P.E., Resource Enterprises, LLC (Apr. 3, 2012), available at <u>http://www.epa.gov/osw/nonhaz/define/pdfs/Lhoist-engineered-fuels.pdf</u>.

NHSMs that are managed as a valuable commodity must not be stored for a period that exceeds reasonable time frames and must be managed in a manner that is consistent with analogous fuels (or otherwise adequately contained to prevent releases to the environment). PPUSA will store the used poultry litter in an enclosed building for a period not to exceed 90 days prior to burning the material as a fuel. PPUSA anticipates that processed fuel will typically be stored for approximately four days prior to use in the energy system. The purpose of maintaining the used poultry litter in an enclosed building is to prevent loss of the material to the environment, manage odors from the material, and limit moisture content in the fuel. The storage operations are consistent with typical management of wood chips and other biomass fuels.

b. Meaningful Heating Value - 40 CFR 241.3(d)(1)(ii)

In the preamble to the final NHSM definitional rule, the EPA indicated that materials with heat contents of less than 5,000 British thermal units per pound (Btu/lb) contain meaningful heat "if the energy recovery unit can cost-effectively recover meaningful energy from the NHSM used as fuel."⁴ Factors that may be considered include "whether the facility encounters a cost savings due to not having to purchase significant amounts of traditional fuels they otherwise would need, whether they are purchasing the non-hazardous secondary materials to use as a fuel, whether the non-hazardous secondary materials to use an a fuel, whether their operation produces energy that is sold for a profit...."⁵

PPUSA analyzed the heat content of used poultry litter samples collected from poultry houses in North Carolina and South Carolina. PPUSA proposes to burn used poultry litter from these and other similarly situated poultry farms. The used poultry litter that was sampled and tested is expected to be representative of the used poultry litter that PPUSA proposes to burn. The lower heating value (as received) of the sampled material ranges between 1,917 and 5,735 Btu/lb. The average lower heating value (as received) is 3,992 Btu/lb. The average higher heating value of the used poultry litter (as received) is 4,435 Btu/lb. As a basis of comparison, the higher heating value of green wood chips (as received) on a wet basis is 4,300 Btu/lb. A summary of the data received on the heat content of the used poultry litter is provided in Attachment 1 of your November 27, 2012 submittal.

PPUSA proposes to burn the processed used poultry litter in an energy system that will be selfsustaining and able to fire the used poultry litter without the addition of supplemental fuels after startup. The energy system will cost-effectively recover meaningful energy from the used poultry litter, which will be sold at a profit to electric utilities through REC sales agreements. Because the used poultry litter will be burned in a self-sustaining combustion system to recover energy that will be sold for a profit, the material has meaningful heating value and meets the legitimacy criterion under 40 CFR 241.3(d)(1)(ii). Whether the process may or may not be profitable in the absence of the NC REPS is not considered.

c. Comparable Contaminant Concentrations - 40 CFR 241.3(d)(1)(iii)

For an NHSM to be classified as a non-solid waste fuel, it must "contain contaminants or groups of contaminants at levels comparable in concentration to or lower than those in traditional fuel(s) which

⁴ 76 Fed. Reg. 15,541 (Mar. 11, 2011).

⁵ 76 Fed. Reg. 15,523 (Mar. 11, 2011).

the combustion unit is designed to burn."⁶ The US EPA issued a Comparable Contaminant Guidance Concept Paper indicating its intent to "address questions raised by industry, assist them in making determinations under the rule, and ensure their use of the flexibility embodied in the rule."7 The guidance was provided on November 29, 2011, including tables that provide both a range and an average of compiled contaminant concentrations for coal, untreated wood and biomass materials, and fuel oils.⁸ It is US EPA's stated intent that contaminant levels should be compared in such a manner that traditional fuel samples could not be "considered solid waste if burned in the very combustion units designed to burn them."⁹ Further clarification was provided in the February 7, 2013 rule noting that "when comparing contaminant levels between NHSMs and traditional fuels, persons are not limited to comparing average concentrations. Traditional fuel contaminant levels can vary considerably and the full range of contaminant values may be used."¹⁰ It is important to note that the traditional fuel used in the comparison need not be the traditional fuel the applicant will burn or is even permitted to burn. The only requirement is that the unit is designed to burn the traditional fuel used in the comparison.¹¹ This means that the unit will be subject to emission standards different, and possibly less stringent than those that would be required had the unit been permitted to burn the traditional fuel used in the comparison.

The EPA also clarified somewhat what the method of comparison used should measure. To avoid a metric comparison that would possibly define a traditional fuel itself as not meeting the legitimacy criteria, applicants should use the entire range of contaminant values of traditional fuels to compare with values in the NHSM. However, the comparison must also recognize the variability of contaminant values in the NHSM. That is, "the full range of traditional fuel contaminant values can only be used if persons also consider some measure of variability in the NHSM contaminant data."¹² It is not clear, unfortunately, whether the EPA believes that the maximum stated values provided for traditional fuels are the actual maximum values or not. Alternatively, the EPA would recognize the variability of contaminant levels in the traditional fuels.

The EPA has also approved the processing of mixed NHSM streams in which the average contaminant level of the mixture is used in the comparison rather than comparing the contaminant levels in each NHSM material stream contributing to the ultimate processed fuel. US EPA used this approach because the concentrations of the individual NHSM material streams were "not reflective of the concentration . . . in the engineered fuel products." Later the EPA affirmed that the processed mixture would be sampled and tested to confirm legitimacy. This indicates that materials may be blended in order to reduce their contaminant levels to below the traditional fuel levels. This would be distinguished from the prohibition of this method for the definition of hazardous waste (so-called "Mixture Rule"). PPUSA is similarly proposing to produce a non-solid waste fuel by collecting multiple streams of used poultry litter collected from different poultry houses in North Carolina and

^{6 40} CFR 241.3(d)(1)(iii).

⁷ US EPA, "Non-Hazardous Secondary Materials (NHSM) Rule: Comparable Contaminant Guidance Concept Paper" (July 11, 2011), available at http://www.epa.gov/osw/nonhaz/define/pdfs/nhsm-concept.pdf

⁸ US EPA, "Contaminant concentrations in Traditional Fuels: Tables for Comparison" (November 29, 2011), available at http://www.epa.gov/osw/nonhaz/define/pdfs/nhsm_cont_tf.pdf .

⁹ 76 Fed. Reg. 80841 (Dec. 23, 2011). See also Letter from Donald R. van der Vaart, Chief, Permit Section, NC Div. Air Quality, to Mr. John Prestage, Sr. Vice President, Prestage Farms, P. 6 (July 19, 2012), available at http://www.ncair.org/permits/memos/prestage% 20tarms% 20NHSM% 20determination.pdf. ¹⁰ 78 FR 9112 at 9144. (Feb. 7, 2013).

¹¹ Id. at 9145.

¹² Id. at 9152.

South Carolina. The NHSM streams will then be processed to produce the final fuel product. Nonetheless, the NC DAQ did not use the US EPA approach for the contaminant concentration analysis, but rather looked at the variability of contaminant concentrations in sampled used poultry litter streams, and compared the upper prediction limits (UPLs) to the high end of the traditional fuel levels.

The EPA has made clear that no single statistical method or test should be defined in this regard.¹³ In one instance the EPA responded to a commenter who compared the 99% UPL of chlorine in pulp and paper sludge with "chlorine concentrations observed in coal."¹⁴ In a subsequent discussion, the EPA offered as an example method that met their approval the comparison of the 90% predicted level of the contaminant in the NHSM with the maximum value in the traditional fuel.¹⁵ Therefore, the US EPA has condoned comparing of UPLs against the maximum traditional fuel levels based on either a 99% or 90% confidence level. It is not clear whether US EPA would condone the use of a UPL based on a confidence level below 90% in this regard.

PPUSA is proposing to install and operate an energy system that is designed to burn solid fuel, including but not limited to all coal ranks (*i.e.*, anthracite, bituminous, sub-bituminous, and lignite), wood chips, timber, bark, and other biomass. The predicted contaminant levels of the processed fuel were compared to the following contaminant levels in coal, wood, and other biomass materials:

- Metals: Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Mercury, Nickel, Selenium
- Total Halogens (including chlorine and fluorine)
- Additional Precursors: Nitrogen, Sulfur

Results of Comparison

There are long established statistical tests to determine whether two materials are statistically different based on samples from both material populations. However, the US EPA is simply interested in not designating a candidate NHSM as solid waste if doing so based on its contaminant level would *ever* also define the traditional fuel as a solid waste as well.¹⁶ To this end, the US EPA has indicated that a variety of comparisons could be made. For example, the highest contaminant levels in the NHSM could be compared against the highest contaminant levels in the relevant traditional fuels. Alternatively, the average values of the NHSM could be compared with the average values of the traditional fuels. "Anything less could result in 'traditional fuel' samples being considered solid waste if burned in the very combustion units designed to burn them – not the Agency's intent in either the 2011 NHSM final rule or today's proposed rule."¹⁷ However, using different bases for comparison could lead to different results. The US EPA warned that "[i]t would not be appropriate to compare an average NHSM contaminant value to the high end of a traditional fuel range, as the existence of an

¹³ "The agency disagrees that any one statistical tool or comparison methodology will fit every situation given the variety of NHSMs, traditional fuels, contaminants and combustion units that exist." 78 Fed. Reg. 9112 at 9168.

¹⁵ Id. at 9153.

¹⁶ Indeed, the EPA points out in its proposed rule that, for example, the coals used in a comparison need not be limited to the coal received from either the current or past suppliers. Of course, in cases where the unit is not permitted to burn coal, but is designed to burn coal, any coal rank can be considered including anthracite, lignite, bituminous, and sub-bituminous. 76 Fed. Reg. 80477 (Dec. 23, 2011).

¹⁷ 76 Fed. Reg. 80841 (Dec. 23, 2011).

average implies multiple data points from which a more suitable statistic (e.g., range or standard deviation) could have been calculated." Finally, the EPA warned that "in the context of an inspection or enforcement action, the Agency will evaluate the appropriateness of alternative methodologies and data sources on a case-by-case basis when determining whether the legitimacy criteria have been met."¹⁸

In this case, each predicted contaminant concentration of the processed used poultry litter is comparable to the contaminant concentrations in coal or wood. For total halogen content, the NC DAQ calculated the UPL for various confidence intervals for the total halogen content in poultry litter on an as-fired basis. Total halogens in used poultry litter is predominately comprised of chlorine.

UPL Confidence Level	Total Halogens, ppm at 28% moisture by weight
90	8.275
95	8,870
99	10,093

According to EPA responses to comments, these values should be compared with the maximum observed total halogen content for coal on an as-fired basis, which is 8,610 ppm at 7% moisture by weight.¹⁹ The UPL of total halogens in used poultry litter based on a 90% confidence level is below the maximum concentration of total halogens in coal. Therefore, the total halogen concentration in used poultry litter is comparable to coal, and the material is not a solid waste. Since the poultry litter satisfies this criterion under 40 CFR §241.3 there is no reason to consider used poultry litter under the definition of solid waste under 40 CFR §258.2.

Conclusion

As described in the letters received from you or on your behalf, the used poultry litter does meet the legitimacy criteria provided in 40 CFR § 241.3(d)(1). Therefore, the NC DAQ has determined that it is not a solid waste when used as fuel in a combustion unit. As a result of this determination, the proposed boiler would not be subject to the combustion source emission standards promulgated pursuant to Section 129 of the Clean Air Act. If you have any questions regarding this determination, please contact-ment (919) 707-8475.

Sincerely der Va

Donald R. van der Vaart, Ph.D., J.D., P.E. Chief

cc: Fayetteville Regional Office Central Files

¹⁸ 76 Fed. Reg. 80482-3. (Dec. 23, 2011).

¹⁹ Note that the EPA approved the comparison of the UPL of the NHSM with the maximum value for the traditional fuel rather than with the UPL of the traditional fuel.

APPENDIX D Zoning Consistency Determination

1050 Crown Pointe Parkway Suite 550 Atlanta, Georgia 30338

(404) 315-9113 Telephone (404) 315-8509 Fax

March 26, 2015

Mr. Steven Vozzo, Environmental Regional Supervisor NC DENR, Division of Air Quality Fayetteville Regional Office, Systel Bldg. 225 Green Street, Suite 714 Fayetteville, NC 28301-5095

Subject: Air Quality Permit Modification Application North Carolina Renewable Power – Lumberton, LLC Lumberton, Robeson County, North Carolina Air Quality Permit No. 05543T20 Facility ID: 7800166

Dear Mr. Vozzo:

The enclosed Zoning Consistency Determination forms are being submitted on behalf of North Carolina Renewable Power – Lumberton, LLC (NCRP). These forms are provided as a supplement to the application submitted on March 17, 2015.

Please call me if you have any questions or require additional information.

Sincerely,

nya

Tri Drucker Associate

Enclosure: Zoning Consistency Determination Forms

cc: Steve Ingle, North Carolina Renewable Power - Lumberton, LLC

Tri Drucker Associate

(678) 336-8561 Direct Line tdrucker@envplanning.com

Zoning Consistency Determination

,

Received

MAR 2 9 2017

Facility Name	North Carolina Renewable Power - Lumberton, LLC
Facility Street Address	1866 Hestertown Road
Facility City	Lumberton
Description of Process	Electric Power and Steam Generating Facility
SIC/NAICS Code	4911
Facility Contact	Steve Ingle
Phone Number	(205) 397-5157
Mailing Address	4599 East Lake Boulevard
Mailing City, State Zip	Birmingham, AL 35217
Based on the information give	en above:
K I have received a copy of	the air permit application (draft or final) AND
 There are no applicable z The proposed operation If The proposed operation If (please include a copy) The determination is pend Other: 	soning ordinances for this facility at this time S consistent with applicable zoning ordinances Enclosed Special We Permit S NOT consistent with applicable zoning ordinances of the rules in the package sent to the air quality office) ing further information and can not be made at this time
Agency	City of Lumberton
Name of Designated Official	Artriel Ashew Kirchner
Title of Designated Official	Assistant Directory PL+N.S
Signature	Anthi
Date	3/18/2015
Please forward to the facility m at the appropriate address as ch	nailing address listed above and the air quality office necked on the back of this form.

Courtesy of the Division of Environmental Assistance and Outreach www.ncEnvironmentalAssistance.org 877-623-6748

HOLD CITY OF LUMBERTON

2014008237 ROBESON CO, NC FEE \$26.00 PRESENTED & RECORDED 11-04-2014 09:08:51 AM VICKI L LOCKLEAR Assister of Dece 0': YOLAND WILLIAMS

NORTH CAROLINA SPECIAL USE PERMIT **ROBESON COUNTY** APPLICANT: Poultry Power USA PROPERTY OWNER: Alamac Acquisitions, LLC. (1018-03-001) & Lumberton Investments 1, LLC. (1018-03-001-01) FILE NUMBER: 11.012 TAX MAP: 1018-03-001 and 1018-03-001-01 DEED REFERENCE: Deed Book 1189 Page 804 and Deed Book 1738 Page 809 **PROPOSED USE:** Gasification and steam/electric power cogeneration facility **MEETING DATE:** September 16, 2014

Cartine data listed acrove, the Enargier of Adjustment of the only of Lumburton metro consider an application to issue a Special Use Permit for the aforelisted proposed use of property at the aforelisted property location.

Having heard all the evidence and argument presented at the hearing, the Board finds that the application is complete, that the application complies with all of the applicable requirements of the Lumberton Land Use Ordinance for the development proposed, and that, therefore, the application to make use of the above-described property for the purpose indicated is hereby approved, subject to all applicable provisions of the Lumberton Land Use Ordinance and the following conditions:

(1) The applicant shall complete the development strictly in accordance with the plans submitted to and approved by this Board, a copy of which is filed in the Planning and Neighborhood Services Department of the City of Lumberton, North Carolina.

(2) In granting the Special Use Permit, the Board has placed the following additional conditions or requirements upon the owner, his successors and assigns in exercising the rights granted herein:

None Noted

(3) This permit shall automatically expire within one (1) year after the aforelisted meeting date if the use authorized herein has <u>not</u> been commenced when no substantial construction, erection, alteration, excavation, demolition, or similar work is necessary before commencement of such use or less than tem (10) percent of the total cost of all construction, erection, alteration, excavation or similar work on any development authorized herein has been completed on the site.

(4) If any of the conditions affixed hereto or any part thereof shall be held invalid or void, then this permit shall be void and of no effect.

If this permit authorizes development on a tract of land larger than one acre, nothing authorized by the permit may be done until the property owner properly executes and returns to Book 1970 Page 705

the City the attached acknowledgement of the issuance of this permit so that the City may have it recorded in the Robeson County Registry.

IN WITNESS WHEREOF, The City of Lumberton has caused this permit to be issued in its name, and the undersigned, being all of the property owners of the above-described property, do hereby accept this Special Use Permit, together with all its conditions, as binding on them and their successors in interest.

CITY OF LUMBERTON BY Chairman, Board of Adjustment

ATTEST:

G

enpor Secretary, Board of Adjustment

The undersigned, being all of the owners of the above described property, do hereby acknowledge: (1) receipt of this Special Use Permit, (2) that no work may be done pursuant to this permit accept in accordance with all of its conditions and requirements, and (3) that this restriction shall be binding on them and their successors in interest.

(SEAL) UWING STATE OF NORTH CAROLINA COUNTY OF Mecklenban I, 🕾 Doster , a Notary Public in and for said County and hannan State, do hereby certify that Thomas Jomes Hckithrickpersonally appeared before

me this day and acknowledged the due execution of the foregoing instrument.

WITNESS my hand and Notorial Seal this day of October , 20 14 lano t

Notary Public

My Commission Expires: 9/23/2017

Book 1970 Page 706

The undersigned, being all of the owners of the above described property, do hereby acknowledge; (1) receipt of this Special Use Permit, (2) that no work may be done pursuant to this permit except in accordance with all of its conditions and requirements, and (3) that this restriction shall be binding on them and their successors in interest.

C+O alamac America Frito (SEAL)

STATE OF NORTH CAROLINA

C

Ú

I, ______, a Notary Public in and for said County and State, do hereby certify that <u>Robert Samuel Hester</u> personally appeared before

me this day and acknowledged the due execution of the foregoing instrument.

WITNESS my hand and Notorial Seal this day of 2014 Nalte Notary Public My Commission Expires: 1000007 h

Received **Zoning Consistency Determination** MAR 2 0 2017

		1000 2 3 2011
Facility Name	North Carolina Renewable Power - Lumberton, LLC	Air Permits Section
Facility Street Address	1866 Hestertown Road	
Facility City	Lumberton	
Description of Process	Electric Power and Steam Generating Facility	
SIC/NAICS Code	4911	
Facility Contact	Steve Ingie	
Phone Number	(205) 397-5157	
Mailing Address	4599 East Lake Boulevard	
Mailing City, State Zip	Birmingham, AL 35217	
Based on the information give	n above:	
✓ I have received a copy of t	he air permit application (draft or final) AND	
 There are no applicable zo The proposed operation IS The proposed operation IS (please include a copy of The determination is pendin Other: Not of the termination of termination o	ning ordinances for this facility at this time consistent with applicable zoning ordinances NOT consistent with applicable zoning ordinances of the rules in the package sent to the air quality office ag further information and can not be made at this time within our Zoning Jurisd	ce) e
Agency	Robeson County	
Name of Designated Official	Dixon Ivey, Jr.	
Title of Designated Official	Director Pl -	1

nning

5

Inspections

Signature

Date

Please forward to the facility mailing address listed above and the air quality office at the appropriate address as checked on the back of this form.

3/18

Courtesy of the Division of Environmental Assistance and Outreach www.ncEnvironmentalAssistance.org 877-623-6748

15

APPENDIX E BACT Analysis

Prepared for:

NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

PSD BACT ANALYSIS North Carolina Renewable Power – Lumberton, LLC Lumberton, North Carolina

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

March 2017

PSD BACT ANALYSIS NORTH CAROLINA RENEWABLE POWER – LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

Prepared for:

NORTH CAROLINA RENEWABLE POWER - LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

1050 Crown Pointe Parkway Suite 550 Atlanta, GA 30338 Tel: 404-315-9113

Frank Burbach Principal

March 2017

Telephone (404) 315-9113 • Fax (404) 315-8509 • www.envplanning.com

EPS

PSD BACT ANALYSIS NORTH CAROLINA RENEWABLE POWER – LUMBERTON, LLC 1866 Hestertown Road Lumberton, NC 28359

TABLE OF CONTENTS

1	INTRODUCTION1		
	1.1	BACT Determination Approach2	
2	CARBON MONOXIDE AND VOLATILE ORGANIC COMPOUND BACT		
	2.1	Identify All Control Technologies4	
	2.2	Eliminate Technically Infeasible Options5	
	2.3	Rank Remaining Options5	
	2.4	Evaluate Most Effective Controls6	
	2.5	BACT Determination for CO6	
3	NITROGEN OXIDES BACT		
	3.1	Identify All Control Technologies	
	3.2	Eliminate Technically Infeasible Options	
	3.3	Rank Remaining Options	
	3.4	Evaluate Most Effective Controls	
	3.5	BACT Determination for NO _X	
4	SULF	UR DIOXIDE BACT	
	4.1	Identify All Control Technologies	
	4.2	Eliminate Technically Infeasible Options	
	4.3	Rank Remaining Options	
	4.4	Evaluate Most Effective Controls	
	4.5	BACT Determination for SO ₂	
5	SULF	URIC ACID MIST BACT14	
	5.1	Identify All Control Technologies14	
	5.2	Eliminate Technically Infeasible Options14	
	5.3	Rank Remaining Options14	
	5.4	Evaluate Most Effective Controls14	
	5.5	BACT Determination for H ₂ SO ₄ 15	

EPS

6	PARTICULATE MATTER BACT		16
	6.1	Identify All Control Technologies	16
	6.2	Eliminate Technically Infeasible Options	
	6.3	Rank Remaining Options	
	6.4	Evaluate Most Effective Controls	
	6.5	BACT Determination for PM	
7	GREENHOUSE GAS BACT		40
	7.1	Identify All Control Technologies	
-	7.1 7.2	Identify All Control Technologies Eliminate Technically Infeasible Options	
	7.1 7.2 7.3	Identify All Control Technologies Eliminate Technically Infeasible Options Rank Remaining Options	
	7.1 7.2 7.3 7.4	Identify All Control Technologies Eliminate Technically Infeasible Options Rank Remaining Options Evaluate Most Effective Controls	

ATTACHMENTS

Attachment A Fibrominn Biomass Power Plant Permit Excerpt

1 INTRODUCTION

NCRP's biomass power plant in Lumberton, North Carolina consists of two 215 MMBtu/hr stoker boilers that provide steam to an electrical generator. The boilers were previously permitted to burn coal, natural gas, fuel oil, tire derived fuel, pelletized paper, flyash briquette, and non-Commercial and Industrial Solid Waste Incineration (CISWI)-subject wood. In Permit No. 05543T21, coal and tire derived fuels were removed from the fuel mix and poultry litter was added as a fuel. NCRP continued to use non-CISWI-subject wood, but discontinue the use of coal, natural gas, tire derived fuel, and flyash briquette, and will only use fuel oil for startup purposes. The poultry litter may comprise up to 85% of the fuel input.

Because the facility is a major source with respect to Prevention of Significant Deterioration (PSD) regulations, an evaluation of the emissions increases resulting from the addition of poultry litter was performed to determine PSD applicability. As described in the Section 1.1 of the application, based on calculated emissions increases, PSD was triggered for carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NO_X), sulfur dioxide (SO₂), sulfuric acid mist (SAM, or H₂SO₄), particulate matter (PM), including both particulate matter 10 micrometers or less in diameter (PM₁₀) and particulate matter 2.5 micrometers or less in diameter (PM_{2.5}), and greenhouse gases (GHG). Accordingly, this appendix provides an analysis of Best Available Control Technology (BACT) for each of these pollutants. Additionally, North Carolina Senate Bill 3 (SB3) requires the use of BACT level control on all renewable power facilities for any New Source Review (NSR) regulated pollutants that do not trigger PSD BACT. Therefore, this BACT analysis includes lead and mercury control to satisfy the SB3 requirements.

The facility's permit already contains BACT limits for burning non-CISWI-subject wood that were established in a 2012 permit. A summary of those BACT limits alongside these newly proposed limits is presented in Table 1.1. Please note that the control technologies described in the table have been implemented at the facility and have been shown to achieve the BACT limits while burning non-CISWI wood only.

Table 1.1 BACT Li	mits Summary
-------------------	--------------

Pollutant	Emission Limits when burning non-CISWI-subject wood [Compliance Method]	Emission Limits when burning non-CISWI-subject wood and poultry litter mix [Compliance Method]	Control Technology
Carbon monoxide (CO)	0.45 lb/MMBtu [stack test: 3-1 hr run average]	0.45 lb/MMBtu [stack test: 3-1 hr run average]	Good combustion control
Volatile organic compounds (VOC)	0.03 lb/MMBtu [stack test: 3-run average]	0.03 lb/MMBtu [stack test: 3-run average]	Good combustion control
Nitrogen oxides (NO _X)	0.125 lb/MMBtu [CEMS: 30-day rolling average]	0.125 lb/MMBtu [CEMS: 30-day rolling average]	Selective non- catalytic reduction (SNCR)
Sulfur dioxide (SO ₂)	0.025 lb/MMBtu [CEMS: 30-day rolling average]	0.16 lb/MMBtu [CEMS: 30-day rolling average]	Dry sorbent injection
Sulfuric acid mist (SAM)	0.011 lb/ MMBtu [stack test: 3-run average]	0.027 lb/ MMBtu [stack test: 3-run average]	Dry sorbent injection
PM (filterable only)	0.030 lb/MMBtu [stack test: 3-run average]	0.030 lb/MMBtu [stack test: 3-run average]	Multi-cyclone and baghouse
PM ₁₀ (filterable & condensable)	0.036 lb/MMBtu [stack test: 3-run average]	0.036 lb/MMBtu [stack test: 3-run average]	Multi-cyclone and baghouse
PM _{2.5} (SAM, filterable, and condensable)	0.011 lb/MMBtu [stack test: 3-run average]	0.027 lb/MMBtu [stack test: 3-run average]	Multi-cyclone and baghouse
Lead (SB3 BACT Only)	NA	2.86 x 10 ⁻⁵ lb/MMBtu	Multi-cyclone and baghouse
Mercury (SB3 BACT Only)	5 x 10 ⁻⁶ lb/MMBtu [stack test: 3-run average]	5 x 10 ⁻⁶ lb/MMBtu [stack test: 3-run average]	Multi-cyclone and baghouse
Greenhouse Gases (CO2e)	NA	438,825 tons/yr [rolling 12-month estimates]	Good combustion control

1.1 BACT Determination Approach

The BACT analysis considers the technical practicability and economic reasonableness of control options using the "top-down" approach outlined in EPA's "New Source Review Workshop Manual" (Draft, October 1990).

The key steps in determining BACT for a project include:

1. Identify all control technologies

- 2. Eliminate technically infeasible options
- 3. Rank remaining control technologies by control effectiveness
- 4. Evaluate most effective controls, and
- 5. Select BACT.

Also, BACT does not include redefining of a source and must be an available technology that has been demonstrated successfully in operation. For a boiler specifically, the BACT review does not require consideration of alternate fuels if the boiler is not already designed to burn the alternate fuel.

The following resources were used to evaluate available control technology options:

- The EPA RACT/BACT/LAER Clearinghouse (RBLC)
- Other Federal and State NSR permits, permit applications, and associated reports
- Literature search of recent control technology for similar units

Fibrominn Biomass Power Plant¹ in Minnesota ("Fibrominn") was the only identified wood/poultry litter-fired facility with BACT limits that had been achieved/demonstrated. An excerpt of the relevant BACT limits are included in Attachment A of this analysis.

¹ Fibrominn Biomass Power Plant Permit <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=10861</u>

2 CARBON MONOXIDE AND VOLATILE ORGANIC COMPOUND BACT

CO and VOCs are generated during the combustion process as the result of incomplete thermal oxidation of the carbon contained within the fuel. Emissions can be decreased by controlling several factors such as boiler design, excess oxygen, combustion residence time, and proper airfuel ratio.

2.1 Identify All Control Technologies

Potentially applicable CO and VOC control technologies are:

- Catalytic oxidation,
- Thermal oxidation, and
- Good combustion practices

Catalytic Oxidation: Catalytic oxidation (also called catalytic incineration) is a post-combustion control that oxidizes CO to carbon dioxide (CO2) and causes the destruction of VOCs in the presence of a catalyst. An acceptable flue gas temperature range for catalyst operation is 450°F to 1,100°F. The oxidation process takes place spontaneously, without requiring any additional reactants into the flue gas stream. The catalyst serves to lower the activation energy necessary for complete oxidation of these incomplete combustion products. Catalytic oxidation has been used primarily to control CO and VOC on combustion turbines firing natural gas. Oxidation catalysts are susceptible to deactivation due to impurities present in the exhaust gas stream. Arsenic, iron, sodium, phosphorus and silica will act as catalyst poisons causing a reduction in catalyst activity and pollutant removal efficiencies. Oxidation catalysts are also subject to masking and/or blinding by fly ash contained in the exhaust gas stream of a biomass fired boiler. Because of the potential for oxidation catalyst fouling and/or deactivation on the biomass-fired boilers, the catalyst units must be located downstream of the particulate control device (fabric filter). Therefore, a supplemental burner will be necessary to reheat the flue gas to the requisite temperatures. Additionally, these systems can be sensitive to the VOC inlet stream flow conditions and can contribute to catalyst deactivation.²

² Air Pollution Control Technology Factsheet – Catalytic Incinerator https://www3.epa.gov/ttncatc1/cica/files/fcataly.pdf

Thermal Oxidation: Thermal oxidation (also called thermal incineration) causes the destruction of CO and VOCs through a separate combustion process. The process destroys CO by passing the gas stream though a high temperature region. It consists of a combustion chamber, a burner, and a heat exchanger/shell that preheats the incoming air. Thermal oxidizers are usually operated between 1,500°F and 1,800°F to achieve an 85% reduction in CO. The thermal oxidizer components are subject to fouling by PM. Accordingly, for biomass-fired boilers, the thermal oxidizer would need to be located downstream of the boiler's PM control device. In addition, a thermal oxidizer requires a source of supplemental fuel, typically natural gas, to raise the exhaust stream to the required oxidation temperature.

Good Combustion Practices: Good combustion practices are based on proper boiler design and proper operation of the boiler. Good combustion practices mean operation of the boiler at high combustion efficiency, thereby reducing products of incomplete combustion. Good combustion practices include operation at sufficiently high combustion temperatures, adequate residence time, adequate excess air, and adequate turbulence, which ensures good mixing and availability of oxygen for efficient combustion. Reducing emissions of CO and VOCs can be accomplished by increasing the air available for combustion and/or the combustion temperature. However, proper balance should be maintained in order to avoid increase in NO_X emissions.

2.2 Eliminate Technically Infeasible Options

Catalytic oxidation requires detailed knowledge of the influent stream is needed. The composition of the poultry litter is expected to vary, so the presence of compounds that could potentially act as catalyst poisons will be unknown. Therefore, it is considered technically infeasible to use catalytic oxidation as the control technology for CO and VOC reduction.

Thermal oxidation has primarily been applied to industrial exhaust streams to reduce VOC and hazardous air pollutant (HAP) emissions. The conversion of CO into CO₂ is a by-product of the process. Thermal oxidation is applicable only to gas streams with high levels of CO, VOCs and HAPs, such as chemical processing facilities. Due to the expected concentration of CO from the boilers, this control technique is considered technically infeasible because the CO emission rate is not expected to improve from an add-on thermal oxidation process.

Therefore, good combustion practices is the only demonstrated and technically feasible control measure for CO and VOC reduction for the wood/poultry litter-fired boilers.

2.3 Rank Remaining Options

Good combustion practices provide efficiencies up to 50% CO and VOC control.

2.4 Evaluate Most Effective Controls

There are no additional costs or significant collateral environmental issues that would eliminate good combustion practices as BACT.

2.5 BACT Determination for CO

The facility proposes good combustion practices to minimize CO and VOC emissions from the wood/litter-fired boilers. By utilizing good combustion practices, the facility can achieve a CO emission rate of 0.45 lbs/MMBtu on a 30-day rolling average from each boiler when combusting a mix of wood and poultry litter as fuel. Good combustion will also achieve the previously-determined VOC BACT limit for wood combustion of 0.03 lb/MMBtu. This control technology is consistent with the technology implemented in the Fibrominn permit action (Attachment A) for wood/poultry-litter fired boilers.

3 NITROGEN OXIDES BACT

NO_X primarily consists of nitrogen oxide (NO) and nitrogen dioxide (NO₂). NO_X emissions from combustion sources consist of two components: thermal NO_X and fuel NO_X. Thermal NO_X results when atmospheric nitrogen is oxidized at the high temperatures occurring in the boiler firebox to yield NO, NO₂, and other oxides of nitrogen. Most thermal NO_X is formed in high-temperature areas where combustion air has mixed sufficiently with the fuel to produce a peak temperature. The rate of formation of thermal NO_X is a function of residence time and free oxygen and varies exponentially with peak flame temperature. Fuel NO_X is formed from oxidation of chemically bound nitrogen present in the fuel. Most boiler NO_X emissions originate as NO. NO generated by the combustion process is further oxidized downstream of the combustion zone or in the atmosphere to the more stable NO₂ molecule.

3.1 Identify All Control Technologies

Potentially applicable NO_X control technologies are:

- Selective catalytic reduction (SCR),
- Regenerative selective catalytic reduction (RSCR),
- Selective non-catalytic reduction (SNCR), and
- Flue gas recirculation (FGR)

Selective Catalytic Reduction (SCR): The SCR is a post-combustion control technology that involves a catalyst bed installed upstream of the PM control device, between the boiler economizer and combustion air preheater. The temperature range of flue gas at this point is between 650°F and 750°F. Ammonia is injected into the flue gas stream and catalytically reduces the NOx to molecular nitrogen and water. Reductions of 70-90%³ can be achieved from this technology. An SCR is technically infeasible for biomass combustion because the flue gas is heavily laden with alkali/alkaline compounds and causes rapid catalyst deactivation. The alkaline nature of wood ash has been known to deactivate the SCR catalyst by poisoning and fouling. Poisoning is the main cause of catalyst deactivation since alkaline salts, which embed into the pores of the catalyst, and sodium cause irreversible poisoning.

³ Air Pollution Control Technology Factsheet - SCR http://www.epa.gov/ttn/catc/dir1/fscr.pdf

Regenerative Selective Catalytic Reduction (RSCR): RSCR is another type of SCR capable of achieving an NO_X removal efficiency of greater than 80%. It is called regenerative SCR because it has a highly efficient direct heat transfer which results in an overall heat recovery of greater than 95%. The "hot-side" SCR is a conventional SCR system (described above) that is located prior to the air heater and upstream of the PM control device where the flue gas exhaust stream is at the optimum temperature range of 650°F to 750°F. The "cold-side" SCR or RSCR, is located downstream of the PM control device. The flue gas temperature at this location is lower than the required temperature range for optimum catalytic reduction in the "hot-side" SCR system, so a natural gas- or oil-fired duct burner is used to provide supplemental fuel to increase the flue gas temperature to the appropriate range. Prior to the flue gas entering the RSCR, ammonia is injected to ensure it is well mixed with the flue gas. Then the flue gas enters the RSCR and passes upward through a ceramic bed that has been heated by the duct burner. The hot ceramic bed increases the temperature of the flue gas to a maximum of 650°F prior to passing through the catalyst bed.

Selective Non-Catalytic Reduction (SNCR): SNCR is the NO_X control measure commonly used for wood/poultry litter-fired boilers. SNCR is a post combustion control technology that involves ammonia or urea injection, but not in the presence of a catalyst. SNCR, like SCR, involves the reaction of NO_X with ammonia by which NO_X is converted to molecular nitrogen and oxygen. Without the use of a catalyst, the NO_X reduction reaction temperature must be tightly controlled between between 1,600 °F and 1,800°F for optimum efficiency. Below 1,600°F, ammonia will not fully react, resulting in unreacted ammonia that is emitted into the atmosphere (referred to as ammonia slip). If the temperature rises above 2,200°F, the ammonia added will be oxidized, resulting in an increased level of NO_X emissions.

Flue Gas Recirculation (FGR): FGR technology is based on reducing thermal NO_x formation by introducing inert flue gas, which reduces oxygen concentration and absorbs heat, thereby reducing peak flame temperatures. FGR involves extracting a portion of the flue gas from the economizer or air heater outlet and reintroducing it to the furnace through a separate duct and a fan to the combustion air duct that feeds the windbox. The recirculated flue gas is mixed with the combustion air to reduce peak flame temperature, thereby suppressing NO_x formation. FGR is most effective for natural gas and low nitrogen-containing fuels because it reduces thermal NO_x.

3.2 Eliminate Technically Infeasible Options

SCR technology has been applied to natural gas-fired electrical utility boilers ranging in size from 250 to 8,000 MMBtu/hr and is widely used for large gas turbines. Installation of a conventional SCR is not an option on wood/poultry litter-fired units due to the high levels of catalyst poisons and particulates present in the ash. The high content of soluble potassium or sodium in the wood fuels causes a rapid deactivation of the SCR catalyst. Because the potassium

or sodium ion resembles the ammonium ion, the potassium or sodium ion may block access of the ammonium ion to active sites thus causing the deactivation. Similarly, RSCR is not feasible as it relies on the use of a catalyst. Therefore, the technically feasible control options for NO_X are SNCR and FGR.

3.3 Rank Remaining Options

The NO_x control technologies considered technically feasible for biomass-fired boilers are SNCR and FGR. The control efficiency ranges for the technically feasible NO_x control technologies are as follows: SNCR⁴ 30-50%, FGR <20%.

SNCR is the NO_X control measure most commonly used for wood-fired boilers. SNCR typically provides up to 50% NO_X reduction. SNCR efficiency is dependent on the ratio of ammonia to NO_X. Increasing the ammonia injection rate increases the control efficiency but also increases the amount of ammonia slip. Ammonia emissions are a concern because ammonia compounds are contributors to regional haze and visibility degradation. Ammonia also is absorbed in the fly ash. Optimal operation of an SNCR system is achieved by balancing the ammonia injection rate during load changes to ensure maximum NO_X control while limiting ammonia slip from the SNCR system.

In FGR technology 10-30% the gas is re-circulated and mixed with the combustion air. The resulting dilution in the flame decreases the temperature and availability of oxygen therefore reducing thermal NO_x formation. Flue gas recirculation for NO_x control is more attractive for new boilers than as a retrofit.

3.4 Evaluate Most Effective Controls

The energy impacts associated with the installation and operation of these control technologies are considered reasonable. There are also no significant collateral environmental issues that would justify rejection of these control technologies as BACT.

3.5 BACT Determination for NO_X

The facility proposes SNCR technology to achieve a NO_X emission rate of 0.125 lb/MMBtu on a 30-day rolling average for each boiler when combusting a mix of wood and poultry litter as fuel. This control technology is consistent with the technology implemented on other permit actions

⁴ Air Pollution Control Technology Factsheet - SNCR <u>http://www.epa.gov/ttn/catc/dir1/fsncr.pdf</u>

for wood/poultry litter-fired boilers identified during this evaluation. This control technology is also consistent with the technology implemented in the Fibrominn permit action for wood/poultry litter-fired boilers.

4 SULFUR DIOXIDE BACT

Emissions of sulfur oxides from spreader stoker boilers result from the oxidation of sulfur present in the fuel. Sulfur oxides formed during combustion are primarily SO_2 with minor amounts of sulfur trioxides (SO_3) and gaseous sulfates. These sulfur compounds form as the sulfur contained in the fuel is oxidized during the combustion process. Uncontrolled sulfur oxide emissions from biomass-fired boilers vary directly with the sulfur content. Due to the naturally occurring alkaline (i.e., calcium) content of the woody biomass fuel, a portion of the SO_2 will react within the combustion process to form calcium sulfate compounds which comes out as ash.

4.1 Identify All Control Technologies

Potentially applicable SO₂ control technologies are:

- Dry flue gas desulfurization (Dry FGD),
- Wet flue gas desulfurization (Wet FGD), and
- Inherently low sulfur fuel

Air pollution controls involve reacting SO_2 with an alkaline reagent to form sulfite and sulfate salts.

Dry Flue Gas Desulfurization (FGD): Dry FGD is an established technology, with removal efficiency typically in the range of 90%.⁵ Dry FGD control systems include spray dryer absorbers, circulating dry scrubbers, and sorbent injection systems. In a spray dryer absorber control system, the combustion process exhaust stream passes through the sprayer dryer absorber upstream of a particulate matter control device. An alkaline slurry (typically lime) is injected in the spray dryer absorber using rotary atomizer or fluid nozzles. The liquid sulfite/sulfate salts that form from the reaction of the alkaline slurry with SO₂ are dried by heat contained in the exhaust stream. Fabric filter is used on the particulate control device, the alkaline reagent may further react the SO₂ that passes through the filter cake.

Circulating dryer scrubber technology uses flue gas, ash, and lime sorbent to form a fluidized bed in an absorber vessel. Water is added to the circulating dry scrubber absorber vessel to enhance the lime and SO_2 absorption reactions. Byproducts leave the absorber in the dry form with the flue gas for subsequent removal by the downstream particulate control device.

⁵ Air Pollution Control Technology Factsheet - FGD <u>http://www.epa.gov/ttn/catc/dir1/ffdg.pdf</u>

A dry sorbent injection (DSI) system pneumatically injects a powdered sorbent directly into the furnace, the economizer, or downstream ductwork. DSI systems typically use calcium or sodium based alkaline reagents. A DSI system requires no slurry equipment or reactor vessel because the sorbent is stored and injected dry into the flue duct where it reacts with the SO₂. The sulfite/sulfate salt reaction products are then removed using particulate control equipment. Newer DSI applications have achieved greater than 90% SO₂ control efficiencies.

Wet FGD: In a wet FGD system, the flue gas passes through a recirculating alkaline slurry that absorbs and neutralizes the SO₂. Most wet FGD systems use limestone or lime as the alkali source. The performance of a wet FGD system varies with individual unit design; however, removal efficiencies in the range of 98% are achievable.⁶ In the wet scrubbing process, the flue gas is contacted with an alkaline solution or slurry (typically lime or limestone) in an absorber. The temperature of the flue gas is reduced to its adiabatic saturation temperature and the SO₂ is removed from the flue gas by absorption and reaction with the alkaline medium. Resulting waste product is a slurry containing both reacted and unreacted alkaline materials. There are numerous design variations of wet scrubbers, with wet limestone systems being the most common process used. Generally, for lower sulfur fuel, it is more difficult to achieve the higher percent sulfur removal rates. The range of SO₂ reduction efficiency at wet scrubber installations is higher than that for dry scrubbing.

Inherently low sulfur fuel: Wood is an inherently low sulfur fuel. Because SO_2 is generated during the combustion process as a result of the thermal oxidation of the sulfur contained in the fuel, the combustion of low sulfur fuel produces lower SO_2 emissions.

4.2 Eliminate Technically Infeasible Options

Due to location and area restrictions at the facility, an FGD system would be required to be installed upstream of the baghouse used to remove PM. For this reason, wet FGD is not feasible as it is not recommended to introduce moisture to baghouse filters.

Using inherently low sulfur fuel (wood) is not technically feasible since the fuel mixture will be up to 85% poultry litter. Low sulfur wood would not significantly impact the SO₂ emissions since the majority of the sulfur will come from the poulty litter. Additionally, the precise composition of the poultry litter is variable, so the concentrations of sulfur in the mixture will also be variable.

⁶ Air Pollution Control Technology Factsheet - FGD <u>http://www.epa.gov/ttn/catc/dir1/ffdg.pdf</u>

4.3 Rank Remaining Options

Dry FGD may achieve removal of SO_2 emissions up to 90% depending upon the concentration of SO_2 in the exhaust gases.

4.4 Evaluate Most Effective Controls

Depending on the type and size, dry FGD systems are considered to have high capital cost and variable operations and maintenance costs.⁷ Total costs range greatly from \$500 to \$4,000 per ton of pollutant removed for a facility of this size. However, this is not expected to be cost prohibitive at this facility.

4.5 BACT Determination for SO₂

The facility proposes to utilize a DSI system to control SO₂. Based on the anticipated sulfur content of the fuel and a DSI control efficiency of 80% (consistent with the BACT determination for Fibrominn), the facility anticipates a maximum emission rate of 0.16 lb/MMBtu on a 30-day rolling average.

⁷ Air Pollution Control Technology Factsheet - FGD <u>http://www.epa.gov/ttn/catc/dir1/ffdg.pdf</u>

5 SULFURIC ACID MIST BACT

Small concentrations of sulfuric acid mist will be emitted from the wood/poultry-fired boilers due to the sulfur content of the wood and poutry litter fuel. H_2SO_4 is formed by the further oxidation of SO_2 to sulfur trioxide (SO₃). SO₃ readily combines with water vapor (H₂O) available in the flue gas to form H_2SO_4 . When flue gas containing H_2SO_4 vapor is cooled, sulfuric acid mist condenses to form a sub-micron aerosol mist.

5.1 Identify All Control Technologies

The amount of H_2SO_4 formed is dependent upon the amount of SO_3 and water vapor present and the temperature of the flue gas. Consequently, the control of H_2SO_4 emissions will be in direct correlation with SO_2 removal. Therefore, the control technology proposed to minimize SO_2 emissions to meet BACT applies to H_2SO_4 as well.

5.2 Eliminate Technically Infeasible Options

Refer to Section 4.2 for the discussion of the technically infeasible SO₂ BACT options. These also apply to H_2SO_4 .

5.3 Rank Remaining Options

A dry FGD system is the only technically feasible control measure for H_2SO_4 reduction on biomass/poultry litter-fired boilers at this facility.

5.4 Evaluate Most Effective Controls

Refer to Section 4.4 for the evaluation of dry FGD costs.

5.5 BACT Determination for H₂SO₄

The facility can achieve an H_2SO_4 emission rate of 0.027 lb/MMBtu with use of a dry sorbent injection system. This rate was developed based on emissions modeling and stack testing at the facility and is consistent with the Fibrominn permit limit of 0.031 lb/MMBtu.

6 PARTICULATE MATTER BACT

PM may fall under three categories: particles that cannot be condensed (filterable PM), filterable and condensable particles less than 10 microns in diameter (PM_{10}), and filterable and condensable particles less than 2.5 microns in diameter ($PM_{2.5}$). This section addresses all three forms of PM as their controls are similar. Also, this section includes control analysis for lead and mercury, which are subcomponents of PM and are similarly controlled.

6.1 Identify All Control Technologies

Potentially applicable PM control technologies are:

- Cyclone,
- Baghouse,
- Electrostatic precipitator (ESP),
- Wet scrubber, and
- Settling chamber

Cyclone: Cyclones are referred to as "precleaners" because they are typically used to reduce inlet loading of PM to a downstream treatment device and are often used in series. Cyclones use inertia to remove particles from the gas stream, primarily PM with diameters greater than 10 microns. The cyclone imparts centrifugal force on the gas stream, forcing particles toward the cyclone walls. Particles are collected at the bottom of the cyclone tubes as the gas stream exits the top of the tube for further treatment. The collection efficiency of cyclones varies as a function of particle size and design. However, the control efficiency range for single cyclones is estimated to be 70-90% for PM.

Baghouse: A baghouse contains sets of fabric filters used to capture primarily $PM_{2.5}$ and PM_{10} . Control efficiency for baghouses is typically in the range of 99-99.9%. Moisture and corrosives content are the most significant limits to this technology and should be considered during the design phase. Additionally, it is recommended that larger particles (>10 microns) be removed prior to treatment with fabric filters.

Electrostatic precipitator (ESP): EPSs use electrical forces to move particulates onto collector plates where there are either "rapped" off by mechanical means (dry ESP) or washed off, typically with water (wet ESP). Operating efficiencies are in the range of 90-99.9% removal.

ESPs in general are not suited for use in processes which are highly variable because they are sensitive to fluctuations in gas stream conditions.⁸

Wet scrubber: Scrubbers may be constructed in a wide variety of styles (spray chamber, Venturi scrubber, fiber-bed scrubber, etc.), but all use the same general operational theory of water droplets capturing PM in a gas stream. Depending on the style of scrubber, PM control efficiencies range from 50-99.9%

Settling chamber: Like the cyclone, a settling chamber is another style of precleaner used to primarily remove larger particulates greater than 10 microns in diameter from a gas stream. This technology uses gravity to collect the particulates prior to further treatment. Air will enter through the upper side of the chamber and travel laterally through the chamber to exit at the opposite upper side. As the gas flow travels from one side of the chamber to the other, larger particulates fall out of the air stream via gravity. Contol efficiencies vary greatly depending on the size of the chamber and the composition of the PM in the gas.

6.2 Eliminate Technically Infeasible Options

ESPs are not well-suited for highly variable gas stream conditions, such as those expected to be at this facility. Additionally, ESPs require a significant footprint for construction which is not currently available at the facility. For these reasons, an ESP is not considered a feasible control option.

Wet scrubbers create solid waste and wastewater that will need to be treated or disposed of. Due to location and sizing restrictions at this facility, the installation of such wastewater treatment system is not feasible. Offsite waste disposal may also be prohibitively high in cost.

Like the ESP and wet scrubber options, the settling chamber requires available space for consturuction which is not currently available onsite. Additionally, the settling chamber is a precleaner technology which still requires additional PM treatment. For these reasons, a settling chamber is not feasible at this facility.

6.3 Rank Remaining Options

Of the technologically feasible control alternatives, a cyclone system in series with a baghouse will have the highest removal efficiency of each type/size of PM at approximately 99.9%. As the facility already has these controls in place, no further ranking is needed.

⁸ Air Pollution Control Technology Factsheet – Dry Electrostatice Precipitator <u>https://www3.epa.gov/ttncatc1/cica/files/fdespwpl.pdf</u>

6.4 Evaluate Most Effective Controls

The facility currently has an operational cyclone/baghouse system onsite; therefore, no additional costs are associated with this control option. Additionally, this combination of technologies is typically the most effective for PM removal at a facility of this type.

6.5 BACT Determination for PM

The facility proposes the use of multi-cyclones in series with a baghouse system to reduce the total PM by 99.9%, resulting in limits of 0.03 lb/MMBtu for filterable PM, 0.036 lb/MMBtu for filterable and condensable PM₁₀, 0.027 lb/MMBtu for filterable and condensable PM_{2.5}, 2.86 x 10^{-5} lb/MMBtu for lead, and 5 x 10^{-6} lb/MMBtu for mercury. The multi-cyclones and baghouses are currently present at the facility and were tested for PM₁₀ and PM_{2.5} on February 11, 2016. The test results showed an PM₁₀ emission rate of 0.012 lb/MMBtu and the PM_{2.5} was shown to be 0.0109 lb/MMBtu, which are below the emission limits begin requested here. The mercury emissions were tested on December 19, 2015 and the results showed an emission rate of 1.54 x 10^{-8} lb/MMBtu, which is also below the proposed limit.

7 GREENHOUSE GAS BACT

Three pollutants make up the greenhouse gases (GHG) formed from combustion: carbon dioxide (CO_2) , nitrous oxide (N_2O) , and methane (CH_4) . Only CO_2 is generated in significant quantities and is therefore the primary pollutant reviewed for BACT.

7.1 Identify All Control Technologies

Potentially applicable carbon dioxide control technologies are:

- Carbon capture and storage (CCS)
- Lower-emitting processes and practices, consisting of:
 - Boiler design
 - Lower-emitting fuels
 - Good combustion practices

Carbon Capture and Storage (CCS): CCS is an add-on technology that consists of removing CO₂ from the gas stream, transporting it to a sequestering site, and injecting it into a geological storage structure. Currently there are no full-scale storage sites available as the technology is still in the experimental stage of development.

Lower-emitting Processes and Practices: CO_2 emissions from boilers can be decreased by controlling several factors such as boiler design, fuel type, and combustion practices. These factors can be adjusted to improve the boiler's efficiency, thereby reducing the amount of fuel used to provide the steam load.

7.2 Eliminate Technically Infeasible Options

Although CCS could be considered technically feasible, there are no applications of this technology on similar facilities as the technology is still in its developmental stage. Additionally, CO₂ storage facilities are not available at this time. Therefore, CCS is eliminated from consideration. Boiler design is not feasible in NCRP's case, as the boilers are existing. Any modifications to the boilers to improve combustion will be addressed as part of the "Good Combustion Practices" option. The use of lower-emitting fuels, although technically feasible, would not be appropriate as NCRP will be burning biomass. According to EPA's Guidance for

Determining Best Available Control Technology for Reducing Carbon Dioxide Emissions from Bioenergy Production published in March 2011, biogenic CO₂ emissions have less impact on climate change than fossil fuels. Finally, good combustion practices are technically feasible at the NCRP plant.

7.3 Rank Remaining Options

The ony remaining technically feasible option is Good Combustion Practices.

7.4 Evaluate Most Effective Controls

Good combustion practices will affect boiler efficiency, thereby reducing and maintaining optimal CO_2 emissions. There are no additional costs or significant collateral environmental issues that would eliminate good combustion practices as BACT.

7.5 BACT Determination for GHG

The facility proposes good combustion practices to minimize GHG emissions from the wood/litter-fired boilers. By utilizing good combustion practices the facility can maximize fuel efficiency and thereby minimize resulting GHG emissions. This control technology is consistent with the technology implemented on other permit actions for wood/poultry litter-fired boilers identified during this evaluation. The proposed limit for GHG BACT is an annual emission limit of 438,825 tons CO₂e per year.

ATTACHMENT A Fibrominn Biomass Power Plant Permit Excerpt

TABLE A: LIMITS AND OTHER REQUIREMENTS

Facility Name:	Fibrominn Biomass Power Plant
Permit Number:	15100038 - 004

Γ

Subject Item:	EU 001 Biomass Boiler
Associated Items:	CE 001 Ammonia or Urea Injection
	CE 003 Wet Limestone Injection (SDA)
	CE 004 Fabric Filter - High Temperature, i.e. T>250 Dogrees F
	MR 001 O2 Monitor (stack)
	MR 002 NOx Monitor
	MR 003 SO2 Monitor (stack)
	MR 004 Opacity Monitor
	MR 005 O2 Monitor (inlet to SDA)
	MR 006 CO Monitor
	MR 007 SO2 Monitor (inlet to SDA)
	SV 001 Boiler

What to do	
EMISSION LIMITS	Why to do it
Unless otherwise noted, the emission limits below apply at all times except dur periods of startup, shutdown, or malfunction. Duration of startup, shutdown, or malfunction periods are limited to 3 hours per occurrence.	ring r
The startup period commences when the affected facility begins the continuous burning of biomass and does not include any warmup period when the facility is combusting natural gas or propane, and no biomass is being fed into the boiler.	3 5
une use of biomass solely to provide thermal protection of the grate or hearth during startup when biomass is not being fed to the boiler is not considered to b continous burning.)e
Total Particulate Matter: less than or equal to 0.02 lbs/million Btu heat input bas on three runs that are between 60 and 120 minutes in length.	ed Title I Condition: 40 CFR 52.21(j), BACT emission I
on three runs that are between 60 and 120 minutes in length.	d Title I Condition: 40 CFR 52.21(j), BACT emission limit
required below. Permit conditions below require the completion of the Performance Tests berformance test within 180 days of initial startup, and then quarterly thereafter use he company has completed a total of five tests. The proposed emission limit sha be submitted within 45 days of the submittal of the final test results.	: Intil all
pacity: less than or equal to 20 percent on a 6-minute average, except for one minute period per hour of not more than 27 percent opacity.	40 CFR 60.43b(f)
unrur Dioxide: less than or equal to 0.07 lbs/million Btu heat input or 80% control hichever is least stringent based on a 24-hour hour daily geometric average mission concentration or a 24-hour daily geometric average possed and a set of the string of the set o	Title I Condition: 40 CFR 52.21(j), BACT emission
itrogen Oxides: less than or equal to 0.16 lbs/million Btu heat input based on a 3 ay rolling average. This limit applies at all times including periods of startup, nutdown, or malfunction. The 30 day average emission rate is calculated as the erage of all hourly emissions data recorded by the monitoring system during the	10 Title I Condition: 40 CFR 52.21(j), BACT emission limit, also meets the requirements of 40 CFR 60.44b(l
new 30 day rolling average emission rate is calculated each steam generating it operating day.	
rogen Oxides: less than or equal to the following during any 30-day rolling erage period that both biomass and natural gas/propane are burned:	40 CFR 60.44b(I)
= [(0.10*Hgo) + (0.20*Hr)]/(Hgo + Hr)	
ere: Eo is the NOx emission limit in lb/mmBtu o is the heat input from combustion of natural gas/propane and s the heat input from combustion of any other fuel (biomass)	
nour daily average.	Title I Condition: 40 CFR 52.21(i) BACT option
rocnioric acid: less than or equal to 0.034 lbs/million Btu heat input or 95% trol, whichever is least stringent.	Title I Condition: 40 CER 63 43(b) MACT
	limit