JUL 2 4 2018

Air Permits Section

AIR PERMIT APPLICATION FOR THE DUKE ENERGY

CAPE FEAR STAR® FACILITY

JULY 2018

Duke Energy Progress, LLC 410 S. Wilmington Street Raleigh, NC 27601

Prepared by:

AECOM Technical Services of North Carolina, Inc. 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560

TABLE OF CONTENTS

1.0	Intro 1.1 1.2 1.3 1.4	Permit Requ Contact Info	onclusions uest prmation inization	1-1 1-1 1-2
2.0	Facilii 2.1	y Information Site Location 2.1.1 Clim	n and Project Description n natology and Meteorology	2-1 2-1 2-1
	2.2	Proposed Pr	inment Status of Area oject and Project Schedule	2-1 2-4
3.0	Proje			
	3.1	Material Har	ndling Emissions	
	3.2	Emissions fro	om the STAR® System	
	3.3	Summary of	Project Emissions	
4.0	Regula		pility	
	4.1	Federal Air C	Quality Regulations	
		4.1.1 40 C	FR 51 – New Source Review (NSR)/Prevention of Significant Deterio	oration
		4.1.2 40 C) FR 60 - New Source Performance Standards (NSPS)	4-1
		4.1.3 40 C	FR 63 – National Emission Standards for Hazardous Air Pollutants (
		4-2 4.1.4 40 Cf	FR 64 – The Compliance Assurance Monitoring Rule (CAM)	4-3
	4.2	4.1.5 40 CF	FR 70 – Title V Operating Permits	1-1
	4.2	4.2.1 2D.0	na Air Quality Regulations	4-5
		4.2.1 2D.0	0515 – Particulates from Miscellaneous Industrial Processes	4-5
			9516 – Sulfur Dioxide Emissions from Combustion Sources	4-6
			9521 - Control of Visible Emissions 9524 - New Source Performance Standards	4-6
		4.2.5 2D.0	530 - Prevention of Significant Deterioration	
		4.2.6 2D.0	540 – Particulates from Fugitive Dust Emission Sources	
		4.2.7 2D.1	100 and 2Q .0700 - Control of Toxic Air Pollutants	
		4.2.8 2D.1	111 - Maximum Achievable Control Technology	
		4.2.9 2D.1	200 – Control of Emissions from Incinerators	1.7
		4.2.10 2D .14	400 – Nitrogen Oxides	4-8
		4.2.11 Zonin	g Consistency Determination	
5.0	Air Qua		; Analysis	
	5.1	Introduction .		
	5.2	Background		L-C
	5.3	Area Descript	ion	5.1
	5.4	Air Quality An	alysis Approach	5-1
		5.4.1 AIr DI	spersion Model Selection	5-2
		5.4.2 Meter	orological Data	
		5.4.3 GOOd	Engineering Practice (GEP) Stack Height Analysis	
		5.4.4 Recep	tors	

5.4.5	Sources
5.4.6	Modeling Results

List of Tables

Table 3-1 Summary of PSD Compound Emissions

List of Figures

- Figure 2-1 Site Location
- Figure 2-2 Surrounding Topography
- Figure 2-3 Process Flow Diagram
- Figure 5-1 Site Emission Sources and Building Layout
- Figure 5-2 Long-term Modeling Receptor Grid
- Figure 5-3 Short-term Modeling Receptor Grid

List of Appendices

- Appendix A Permit Application Forms
- Appendix B Project Emissions Calculations
- Appendix C Toxics Modeling Checklist
- Appendix D Facility-Wide Toxic Pollutant Emission Rate (TPER) Analysis and Modeling Evaluation Results
- Appendix E Emissions Calculations Support Documentation
- Appendix F Drawings
- Appendix G Applicability Determination No. 2501
- Appendix H Zoning Consistency Determination

1.0 INTRODUCTION

Duke Energy Progress, LLC (Duke Energy) proposes to construct a fly ash beneficiation process at the site of the former Cape Fear Steam Electric Plant in Moncure, Chatham County, North Carolina. The facility will be owned by Duke Energy and operated by a third party. The beneficiation process is a staged turbulent air reactor (STAR®) which will process fly ash (wet or dry) into a variety of commercial products, such as for use in the concrete market. The process will use propane for start-up. Once the reactor reaches a certain temperature, the reaction is self-sustaining. The reactor will have emissions controls for the reduction of particulate matter and sulfur dioxide. Excess heat from the reactor will be used to dry the ash from the ponds. Auxiliary operations will include material handling, storage, and load out operations.

The Cape Fear Plant began operation in 1923 and was retired in March 2013. The facility's Title V air permit was rescinded later that year, and as a result, this application is submitted for a new facility (the Cape Fear STAR® facility).

1.1 Technical Conclusions

The following is a summary of the technical and regulatory conclusions in this permit application:

- Potential emissions of particulate matter, nitrogen oxides, carbon monoxide and sulfur dioxide will each be greater than 100 tons per year; therefore, the Cape Fear STAR[®] facility is a "major facility" as defined in 40 CFR 70.2 and must obtain a permit under Title V and 40 CFR Part 70.
- In accordance with NCDAQ regulations governing the Prevention of Significant Deterioration (PSD) of Air Quality and other applicable State and Federal regulations, major New Source Review (NSR) is not required for any compound. Appendix B contains project emissions calculations.
- A facility-wide air toxics analysis is included with this application.

1.2 Permit Request

Duke Energy is requesting that the Cape Fear STAR® facility be permitted using the procedures outlined in 15A NCAC 2Q.0501(c)(2) and .0504. Under these regulations, the project would be permitted using the two-step permitting process. Initially, a construction permit would be issued to Duke Energy to begin construction of the proposed facility. Within twelve months after the initial start-up of the facility, Duke Energy is required to apply for an operating permit. The required permit application forms are included in Appendix A.

The following information is included in this application as required under 15A NCAC 2Q.0305 for the permit review:

- 1. Completed permit application forms for the proposed project (Appendix A);
- 2. Emissions calculations (Appendix B);
- 3. Zoning consistency determination (Appendix H); and
- 4. The required application fee of \$9,751 per 15A NCAC 2Q .0200

1.3 Contact Information

Should NCDAQ have any questions or comments regarding this application, please contact Ms. Ann Quillian of Duke Energy Progress, LLC at (919) 546-6610 or Ms. Amy Marshall of AECOM at (919) 461-1251.

1.4 Report Organization

The remainder of this report is divided into the following sections:

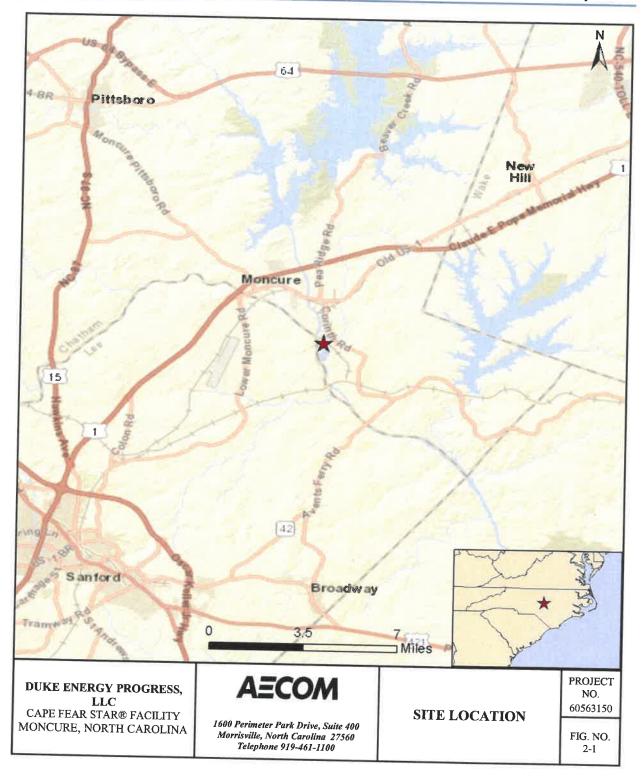
Facility Information and Project Description
Project Emissions
Regulatory Analysis
Air Quality Modeling Analysis

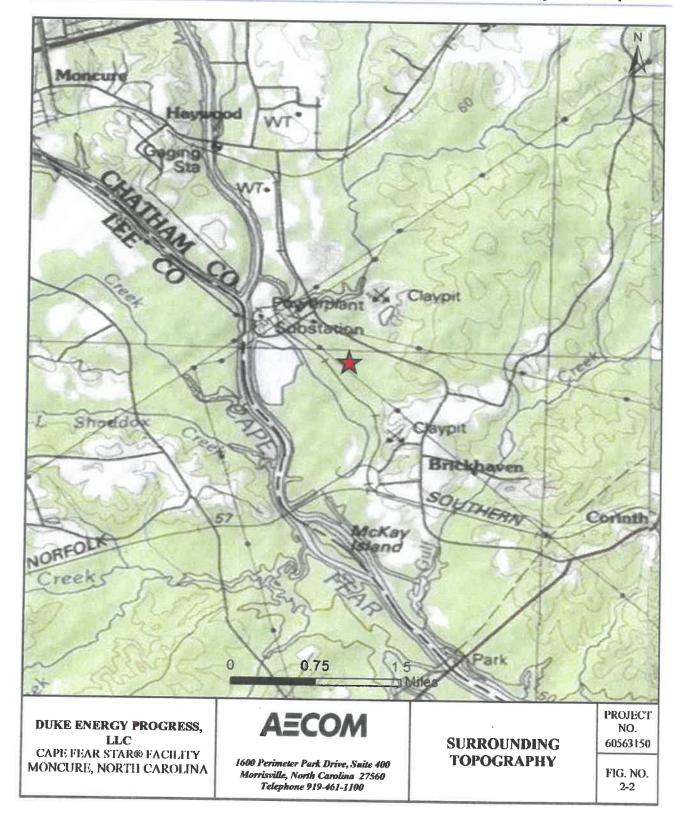
The table of contents contains a detailed listing of tables, figures, and appendices.

2.0 FACILITY INFORMATION AND PROJECT DESCRIPTION

2.1 Site Location

The proposed Cape Fear STAR® facility will be located at the site of the former Cape Fear Steam Electric Plant in Moncure, Chatham County, North Carolina. The plant site is approximately two miles southeast of Moncure. The approximate UTM coordinates are Zone 17, 678.183 km east and 3940.022 km north at an elevation of approximately 193 feet above mean sea level. The largest city near the site is Sanford, North Carolina. The site is located in the Piedmont region of North Carolina and the terrain surrounding the site can be considered gently rolling. Figure 2-1 shows the site location and Figure 2-2 presents the surrounding topography.


2.1.1 Climatology and Meteorology


The site lies within a general climatic region known as Humid Subtropical. Temperatures are moderate with long summers and brief winters. An extended summer drought may result from dominance of the Bermuda high pressure off the east coast. Warm, moist air from the tropics dominates summer conditions while cooler, drier continental polar air controls winter weather.

Daily mean air temperatures over most of North Carolina range between 5°C and 10°C in January, the coldest month, and between 24°C and 27°C in July, the warmest month. Annual precipitation averages about 127 cm/year throughout the region.

2.1.2 Attainment Status of Area

The current Section 107 attainment status designations for areas within the state of North Carolina are summarized in 40 CFR 81.334. Chatham County is classified as "better than national standards" for total suspended particulates (TSP, also referred to as Particulate Matter, PM, which includes particulate matter less than 10 microns, PM₁₀) and for sulfur dioxide (SO₂). Chatham County is designated as "unclassifiable/attainment" for carbon monoxide (CO), PM_{2.5}, Lead, 2015 8-hour standard for ozone, 1-hour standard for ozone, and 1-hour nitrogen dioxide (NO₂), is designated as "cannot be classified or better than national standards" for the annual NO₂ standard, and is designated as "attainment" for the 1997 8-hour standard for ozone.

2.2 Proposed Project and Project Schedule

Duke Energy proposes to construct the Cape Fear STAR® facility at the site of the former Cape Fear Steam Electric Plant in Moncure, Chatham County, North Carolina. The facility will reduce the carbon content of fly ash to a level acceptable for use in the concrete market. Duke Energy plans to begin construction in 2019. Operation of the facility is expected to begin in 2020.

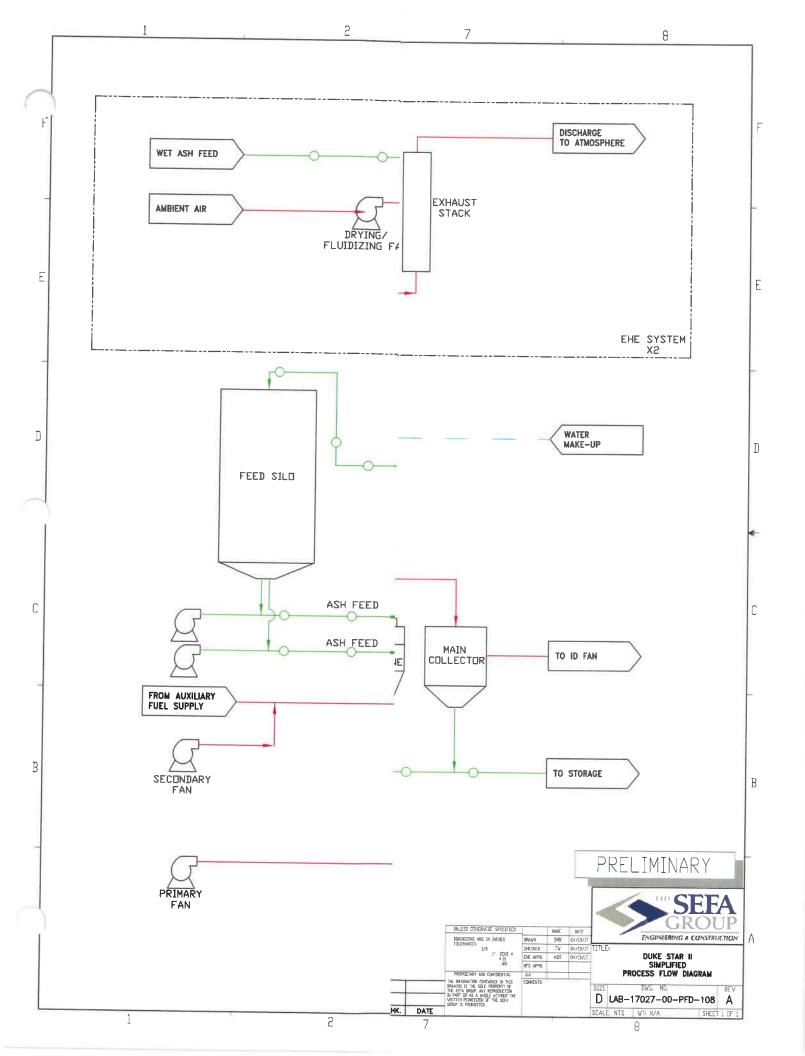
The STAR® system is a patented technology developed by The SEFA Group Inc. (SEFA) to process feedstock (of any carbon content) like fly ash (wet or dry) along with other ingredient materials into a variety of commercial products including a partial cement replacement. The following is a description of the STAR® process. Figure 2-3 illustrates a general process flow diagram for the proposed facility. Emissions from the process are described in Section 3.0 of this Application.

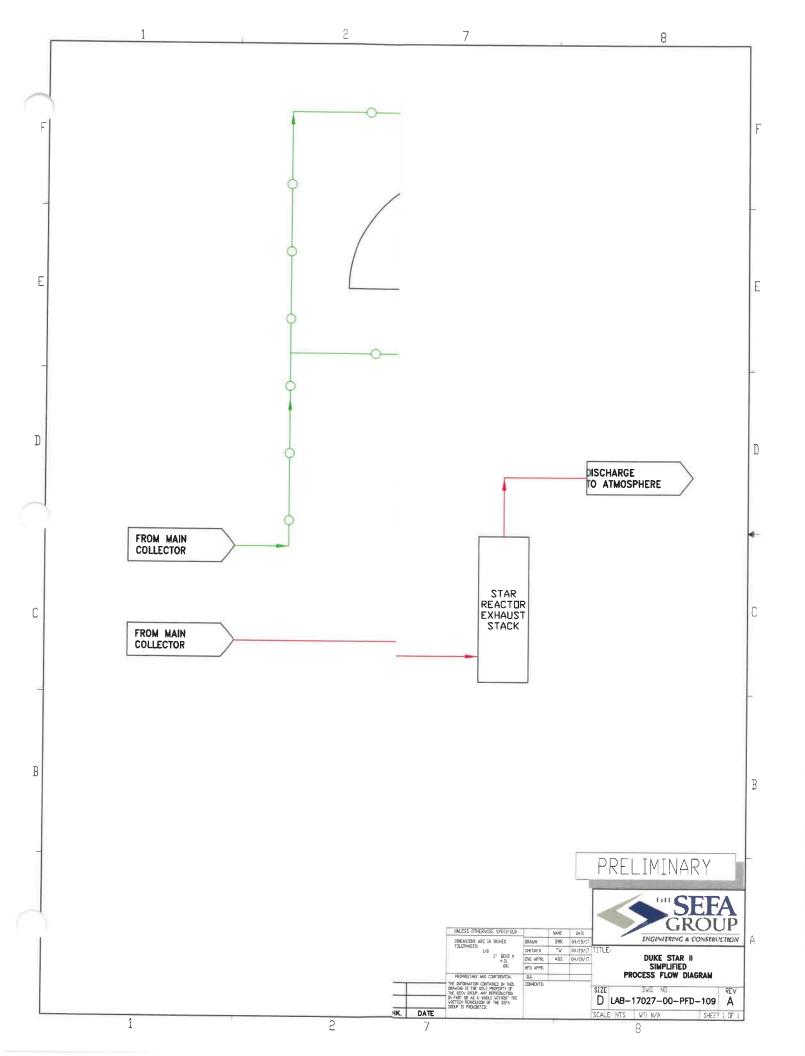
First, fly ash is excavated and staged for dewatering. Dewatered fly ash is then screened and crushed to remove contaminants and produce a consistent chemical composition and a finely divided free-flowing ash. Excavation and processing of materials from the ash ponds to meet the STAR® system fly ash (ingredient) specifications will be under the control of the Duke Energy. All fly ash reclaimed from an ash pond delivered for use as an ingredient in the STAR® system must first undergo processing by the owner to be:

- Free of all but minimal contaminants (e.g., organic debris, slag);
- Finely-divided and free-flowing,
- Have consistent moisture content of less than or equal to 25 percent; and
- Have a consistent chemical composition, including organic content measured by loss on ignition.

Processed fly ash is then delivered to the beneficiation process via trucks. The wet fly ash can be unloaded from the trucks into the storage shed or unloaded from the trucks to a pile that is then transferred to a storage shed by a front-end loader. The wet fly ash in the shed is transferred via front-end loader to a hopper at up to 70 wet tons per hour (tph). The fly ash is conveyed from the hopper to a de-lumper unit to reduce the "overs" material. The material is gravity discharged from the de-lumper into a fluidized external heat exchanger (EHE) which uses both pre-heated air and hot water to dry the fly ash.

Dried fly ash is discharged from the EHE either through a fixed height overflow weir or underflow discharge screw or rotary valves. Exhaust air from the EHE is routed to a high-efficiency bag filter for feedstock recovery and PM control. The fly ash is discharged to the EHE transfer silo prior to being sent to the feed silo. From the feed silo, the fly ash is introduced into the STAR® reactor where it is physically and chemically converted into a high-quality class F fly ash for beneficial use in ready mix concrete or other specialty products.


During startup of the STAR[®] reactor, the combustion air is pre-heated via propane-fired auxiliary burners with a rated heat input of 60 million British thermal units per hour (MMBtu/hr). Once the reactor reaches auto-ignition temperatures, the reaction is self-sustaining; however, under certain conditions auxiliary firing may be needed to maintain proper operating temperature.


After exiting the reactor, the fly ash entrained in the flue gas passes through a hot cyclone where solids are returned to the reactor for temperature control. The fly ash and flue gas leaving the hot cyclone is conveyed to the air preheater and then passes through a gas cooler. The cooled flue gas and ash passes through a fabric filter baghouse, which is an integral part of the process for product capture, and then exhausts to a dry flue gas desulfurization (FGD) system. The FGD exhaust is vented to the atmosphere through a stand-alone stack.

The FGD system consists of a circulating dry scrubbing system (CDS) and a fabric filter baghouse. Flue gas, hydrated lime and water are mixed in the CDS to absorb SO_2 . Particulate from the process is collected in the baghouse. The byproduct solids are discharged from the baghouse into a byproduct storage silo. The system is comprised of a three day storage silo with vent filter, fluidizing air stones and dry unloading spouts. Dry dust unloading spouts are telescoping spouts equipped with small ventilation fans that recirculate displaced air back to the top of the byproduct storage silo. Each spout also has a compact filter module.

Once the ash leaves the reactor, it is collected in the product recovery baghouse and pneumatically transferred to either the storage dome or the loadout silo, each equipped with a bin vent. The truck loadout station uses telescoping chutes and a negative pressure ventilation system to reduce fugitive emissions.

3.0 PROJECT EMISSIONS

To determine the appropriate permitting path for the Cape Fear STAR® facility, it was necessary to calculate the emissions expected to occur as a result of the proposed project. Project emissions for the new equipment are represented as potential emissions to provide the most conservative analysis of project emission impacts. This section provides a discussion of potential project emissions followed by a discussion of regulatory applicability in Section 4 of this permit application. Detailed emissions calculations are presented in Appendix B.

3.1 Material Handling Emissions

The material handling system includes one wet ash raw feed unloading pile, one wet ash storage shed, one wet ash EHE feed hopper, two EHE's, raw feed silos, one loadout silo, two loadout chutes, transfer silos, a product storage dome, FGD byproduct silo, FGD absorbent silo, screener, crusher, an ash basin, and haul roads.

Fugitive PM and metals emissions were calculated for the ash basin, unloading pile, haul roads, ash storage shed, EHE feed hopper, screener, and crusher. The emissions were calculated using the appropriate emissions factors from EPA's Compilation of Air Pollutant Emissions Factors, AP-42. Fly ash may contain trace quantities of heavy metals. Duke Energy performed a site-specific ash analysis; data obtained was used to calculate the emission rates for each metal. Appendix B contains detailed spreadsheets and example calculations.

Both the screener and the crusher will be driven by separate, diesel-fired internal combustion engines. Emissions of criteria pollutants and HAPs were calculated using a combination of New Source Performance Standards emission limits and AP-42 emission factors for diesel industrial engines. Greenhouse gas emissions were calculated using emissions factors from Tables C-1 and C-2 of 40 CFR 98, Subpart C.

PM emissions for the EHE's are based on the baghouse manufacturer's guaranteed outlet loading and anticipated volumetric flow rates.

Each silo is equipped with a bin vent product capture device to minimize product losses associated with the pneumatic transfer process. The truck loadout station uses telescoping chutes and a negative pressure ventilation system to reduce fugitive emissions.

Particulate emissions from the silos and product storage dome were estimated using the bin vent manufacturer's guaranteed outlet loading rate in conjunction with anticipated volumetric flow rates.

Trace metal concentration data discussed previously for the fugitive emissions were used in conjunction with the calculated PM emissions rates from the EHE's, silos, and product storage dome to estimate emissions of trace metal from the material handling activities. Appendix B contains detailed spreadsheets and example calculations.

3.2 Emissions from the STAR[®] System

Emissions from the STAR® system include PM, PM₁₀, PM_{2.5}, SO₂, nitrogen oxides (NOx), CO, volatile organic compounds (VOC), and greenhouse gases (GHG) from the auxiliary fuel and residual carbon in the fly ash. Emissions from the auxiliary fuel were estimated using the most recent emissions factors for propane-fired boilers contained in AP-42. The auxiliary fuel burners are a low-NOx design intended to comply with North Carolina NOx control regulations.

Factors for heavy metals emissions resulting from lime use in the dry scrubbing system are based on trace composition analyses for lime.

Emissions of NOx, CO, and sulfuric acid (H_2SO_4) mist from the processing of the residual carbon in the fly ash were estimated based on emissions estimates from other existing STAR[®] units. PM emissions from the STAR[®] are based on the baghouse manufacturer's guaranteed outlet loading and an anticipated volumetric flow rate.

Emissions of SO₂ are a function of the amount of fly ash processed through the reactor, the sulfur content of the ash, the amount of sulfur remaining in the product ash exiting the STAR® reactor, and the SO₂ air pollution control equipment removal efficiency, in this case the dry scrubber. Assuming ash sulfur content of 0.10 percent and 100 percent oxidation of the sulfur, the dry scrubber will be designed to provide 100 percent capture and can be operated with an SO₂ control efficiency of 95 percent.

The STAR[®] system will normally fire auxiliary fuel during system startup and will cut back on auxiliary fuel feed as the reactor reaches self-sustaining conditions. A conservative emissions calculation was performed by selecting the emissions for the highest emitting fuel on a pollutant by pollutant basis.

GHG emissions were also calculated from the STAR[®] reactor. GHG emissions were based on the annual propane usages and emissions factors from Table C-1 of 40 CFR 98, Subpart C, along with the loss on ignition of the ash. Appendix B provides detailed spreadsheets and example calculations.

3.3 Summary of Project Emissions

As presented in Table 3-1, the calculations demonstrate that emissions of all PSD-regulated pollutants (other than GHG) from the Cape Fear STAR® facility are below the new major source threshold. Appendix B contains detailed emissions calculations.

Table 3-1 PSD Applicability Summary

	Emissions, tpy									
	СО	NOx	SO2	PM^1	PM10 ²	PM2.5 ³	VOC	Pb	H ₂ SO4	CO2e
Potential Emissions	112	222	112	144	131	75	14.1	1.28E-03	4.38E-01	156,869
New Major Stationary Source Threshold	250	250	250	250	250	250	250	250	250	NA ⁴
PSD Review Required	NO	NO	NO	NO	NO	NO	NO	NO	No	NA ⁴

1. PM = PM (filterable)

2. PM₁₀ (total) =PM(condensable) + PM₁₀ (filterable)

3. PM_{2.5} (total) =PM(condensable) + PM_{2.5} (filterable)

4. Per the June 23, 2014 Supreme Court decision in Utility Air Regulatory Group v. EPA, EPA may not treat GHGs as an air pollutant for the specific purpose of determining whether a source is required to obtain a PSD permit.

4.0 REGULATORY APPLICABILITY

This section summarizes all federally-enforceable and state-enforceable air regulations that are potentially applicable to the Cape Fear STAR® facility. Both applicable and important non-applicable regulations are addressed. Supporting information for the proposed project is provided in the application forms contained in Appendix A. Information contained on the application forms is provided for determining regulatory applicability and demonstrating compliance with applicable requirements, and should not be considered proposed permit terms, limits, or conditions. Discussions pertaining to applicable regulatory requirements are separated into two categories: 1) Federal Air Quality Regulations and 2) North Carolina Air Quality Regulations.

4.1 Federal Air Quality Regulations

The federal regulations potentially applicable to the Cape Fear STAR® facility are Prevention of Significant Deterioration (PSD) regulations in 40 CFR 51.166; New Source Performance Standards (NSPS) in 40 CFR 60; National Emission Standards for Hazardous Air Pollutants (NESHAP) in 40 CFR 63; Compliance Assurance Monitoring (CAM) in 40 CFR 64; and Title V Operating Permit regulations in 40 CFR 70. A discussion of these regulations is provided in the following subsections.

4.1.1 40 CFR 51 – New Source Review (NSR)/Prevention of Significant Deterioration (PSD)

The PSD regulations apply to all new major stationary sources and major modifications to existing major stationary sources. Those sources are considered to belong to any one of the 28 source categories identified in 40 CFR 51.166 that has the potential to emit more than 100 tons per year of any PSD-regulated compound, or any other source which has the potential to emit more than 250 tons per year of any PSD compound.

As described in Section 1.0, Duke Energy proposes to construct the Cape Fear STAR® facility at the site of the former Cape Fear Plant for which the Title V air permit was rescinded in 2013. As a result, this application is submitted for the construction of a new facility. Because the Cape Fear STAR® facility is not one of the 28 source categories identified in 40 CFR 51.166, the project is considered a new major stationary source if it has the potential to emit more than 250 tons per year of any PSD compound.

The project emissions were evaluated to determine whether PSD permitting is required for the applicable PSD-regulated air pollutants, including CO, NOx, SO₂, PM, PM₁₀, PM_{2.5}, ozone, and Pb. The emission calculation methodology used to determine baseline emissions and potential project emissions was described in Section 3. Potential emissions from the project are less than 250 tons per year for each PSD-regulated air pollutants. Therefore, PSD review is not required for this project. Detailed emission calculations are presented in Appendix B.

4.1.2 40 CFR 60 - New Source Performance Standards (NSPS)

NSPS apply to any stationary source for which the standards are promulgated, and which is constructed, reconstructed or modified after the effective date of the applicable standard to the affected facility.

Standards of Performance for Commercial And Industrial Solid Waste Incineration Units (CISWI) (40 CFR 60, Subpart CCCC) applies to units that commenced construction after June 4, 2010 at any commercial or industrial facility, that combusts, or has combusted in the preceding 6 months, any solid waste as defined in 40 CFR part 241. In accordance with 40 CFR 241.3(b)(3), "non-hazardous secondary materials used as an ingredient in a combustion unit that meet the legitimacy criteria..." are not solid wastes. Additionally, in accordance with 40 CFR 241.3(b)(4), "...ingredient products that are used in a combustion unit and are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria" are not solid wastes. As defined in 40 CFR 241, fly ash is not a waste but an ingredient; therefore, the fly ash beneficiation process is not subject to CISWI.

The NSPS for Large Municipal Waste Combustors (40 CFR 60, Subpart Eb) apply to large municipal waste combustor units with a combustion capacity greater than 250 tons per day of municipal solid waste that initiated construction after September 20, 1994. According to 40 CFR 60.51b, a municipal waste combustor means "any equipment that combusts solid, liquid, or gasified municipal solid waste." Municipal solid waste means household, commercial, retail, or institutional waste and specifically excludes "industrial process or manufacturing wastes." Even if the raw fly ash were considered a solid waste, it does not meet the definition of municipal solid waste. The proposed fly ash beneficiation process, therefore, is not subject to 40 CFR 60, Subpart Eb.

Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (40 CFR 60, Subpart IIII) applies to owners and operators of stationary compression ignition (CI) internal combustion engines (ICE) that commence construction after July 11, 2005, where the stationary CI ICE are:

- (i) Manufactured after April 1, 2006, and are not fire pump engines, or
- (ii) Manufactured as a certified National Fire Protection Association fire pump engine after July 1, 2006."

The crusher and screener are both powered by diesel-fired CI ICE. The engines will commence construction (be ordered) after July 11, 2005, and be manufactured after April 1, 2006 and therefore, will be subject to Subpart IIII. Per 40 CFR 60.4201(a), Stationary CI ICE manufacturers must certify their 2007 model year and later non-emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new non-road CI engines in 40 CFR 89.112, 40 CFR 89.113, 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same model year and maximum engine power. The crusher and screener engines both have a displacement less than 10 liters per cylinder and engine power less than 3000 HP; therefore, the emissions standards under Subpart IIII apply.

4.1.3 40 CFR 63 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

The NESHAP for Stationary Reciprocating Internal Combustion Engines, or RICE MACT (40 CFR 63, Subpart ZZZZ), applies to new and existing ICEs located at major and area sources. The engines associated with the screening and crushing are subject to Subpart ZZZZ. However as per §63.6590(c), by

meeting the requirements of NSPS Subpart IIII for compression ignition engines, the affected source meets the requirements of Subpart ZZZZ.

The NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (40 CFR 63, Subpart DDDDD), establishes national emission limitations and work practice standards for HAP emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. A major source of HAP is any facility that has the potential to emit 10 tons per year or more of any single HAP, or 25 tons per year or more of any combination of HAP. The proposed facility will be an area source of HAP; therefore Subpart DDDDD would not apply.

The NESHAP for Industrial, Commercial, and Institutional Boilers Area sources (40 CFR 63, Subpart JJJJJJ) applies to industrial, commercial, and institutional boilers at an area source of HAP. An area source of HAP emissions is any source of HAP that is not a major source. Because none of the proposed emission units for the fly ash beneficiation process meet the definition of a boiler under 40 CFR 63.11237, Subpart JJJJJJ would not apply.

4.1.4 40 CFR 64 – The Compliance Assurance Monitoring Rule (CAM)

The CAM Rule (40 CFR Part 64) applies to pollutant-specific emissions units (PSEU) that are pre-control major sources and use a control device to comply with an emissions limit. For the CAM Rule to apply to a specific emission unit/pollutant, the following four criteria must be met:

- 1. The emission unit must be located at a major source for which a Part 70 or Part 71 permit is required.
- 2. The emission unit must be subject to an emission limitation or standard.
- 3. The emission unit must use a control device to achieve compliance with the emission limitation or standard.
- 4. The emission unit must have potential, pre-controlled emissions of the pollutant of at least 100 percent of the major source threshold.

Part 64 does not apply to emission limitations or standards proposed after November 15, 1990 pursuant to section 111 or 112 of the Clean Air Act (e.g., post-1990 NSPS or NESHAP) or where a continuous compliance determination method (e.g., CEMS) is used.

As discussed in Section 4.2, emissions of SO_2 from the STAR® reactor are subject to 15A NCAC 2D .0516 and potential pre-controlled emissions of SO_2 are greater than 250 tons per year; therefore, CAM applies. A CAM plan will be submitted with the application for an initial Title V operating permit twelve months after the initial start-up of the facility.

PM emissions from the proposed EHE's, STAR[®] reactor, and storage silos will be controlled by baghouses and bin vent filters. However, the equipment does not meet the CAM Rule control device definition as shown below:

Control device means equipment, other than inherent process equipment, that is used to destroy or remove air pollutant(s) prior to discharge to the atmosphere. The types of equipment that may commonly be used as control devices include, but are not limited to, fabric filters, mechanical collectors, electrostatic precipitators, inertial separators, afterburners, thermal or catalytic incinerators, adsorption devices (such as carbon beds), condensers, scrubbers (such as wet collection and gas absorption devices), selective catalytic or non-catalytic reduction systems, flue gas recirculation systems, spray dryers, spray towers, mist eliminators, acid plants, sulfur recovery plants, injection systems (such as water, steam, ammonia, sorbent or limestone injection), and combustion devices independent of the particular process being conducted at an emissions unit (e.g., the destruction of emissions achieved by venting process emission streams to flares, boilers or process heaters). For purposes of this part, a control device does not include passive control measures that act to prevent pollutants from forming, such as the use of seals, lids, or roofs to prevent the release of pollutants, use of low-polluting fuel or feedstocks, or the use of combustion or other process design features or characteristics. If an applicable requirement establishes that particular equipment which otherwise meets this definition of a control device does not constitute a control device as applied to a particular pollutant-specific emissions unit, then that definition shall be binding for purposes of this part.

Inherent process equipment means equipment that is necessary for the proper or safe functioning of the process, or material recovery equipment that the owner or operator documents is installed and operated primarily for purposes other than compliance with air pollution regulations. Equipment that must be operated at an efficiency higher than that achieved during normal process operations in order to comply with the applicable emission limitation or standard is not inherent process equipment. For the purposes of this part, inherent process equipment is not considered a control device.

The baghouses and bin vent filters are material recovery equipment and the Cape Fear STAR® facility would not be operated without the use of these control devices. Therefore, these devices can be considered inherent process equipment, and CAM does not apply.

4.1.5 40 CFR 70 – Title V Operating Permits

Title V of the Clean Air Act Amendments of 1990 (CAAA) outlines requirements for operating permit programs for major stationary sources of air pollution. According to 40 CFR 70.2, a major stationary source of air pollution for the purposes of Title V includes a source that emits, or has the potential to emit 100 tons per year or more of any regulated pollutant.

As presented in Section 1.1 and Table 3-1 of this application, potential emissions of PM_{10} , NOx, CO, and SO_2 will each be greater than 100 tons per year; therefore, the proposed facility is a "major facility" as defined in 40 CFR 70.2 and must obtain a permit under Title V and 40 CFR Part 70. Duke Energy requests approval to proceed with this project as a two-step permit modification using the procedures outlined in 15A NCAC 2Q.0501(c)(2) and .0504.

4.2 North Carolina Air Quality Regulations

The NCDAQ has promulgated air pollution control requirements under Subchapter 2D and 2Q of Title 15A, North Carolina Administrative Code. Most of these regulations are part of the North Carolina State Implementation Plan (SIP) for compliance with the Clean Air Act and most SIP regulations are federally enforceable. Generally, applicability requirements, such as those pertaining to requirements to obtain air quality permits and SIP compliance, are not discussed because these requirements are widely recognized as being applicable to sources of air pollution.

4.2.1 2D .0515 – Particulates from Miscellaneous Industrial Processes

This standard applies to any industrial process for which no other PM emission control standards are applicable. Allowable emissions rates are determined by the following equations:

 $E = 4.10 \times P^{0.67}$ for $P \leq 30$ tons per hour

 $E = 55.0 \times P^{0.11} - 40$ for P > 30 tons per hour

Where: E = allowable emission rate in pounds per hour P = process weight in tons per hour

The following proposed equipment will be subject to 15A NCAC 2D .0515:

EHE (Units 1 and 2)	٠	Transfer silo
Feed silo	•	Loadout
FGD byproduct silo	•	Loadout chute 1A
FGD absorbent silo	•	Loadout chute 1B
STAR [®] reactor	•	Screener
Storage Dome	•	Crusher
	Feed silo FGD byproduct silo FGD absorbent silo STAR® reactor	Feed siloFGD byproduct siloFGD absorbent siloSTAR® reactor

Compliance with this requirement is expected and appropriate monitoring and recordkeeping will be performed to verify this expectation. PM emissions from each silo and the storage dome will be controlled with bin vent filters. PM from the EHE's and STAR® reactor will be controlled using baghouses. All required inspections and maintenance on each bin vent filter and baghouse will be performed as recommended by the manufacturer. At a minimum, the following will be performed:

- Monthly external inspections of the ductwork, bin vents, and baghouses noting structural integrity;
- Monthly reading of the pressure gauges on the baghouses; and,
- Annual internal inspections of the bagfilters, noting the structural integrity and the condition of the filters.

Results of the inspections and maintenance will be recorded in an on-site logbook and a summary report of all monitoring and recordkeeping activities will be submitted every six months.

4.2.2 2D .0516 – Sulfur Dioxide Emissions from Combustion Sources

This rule limits emissions of SO₂ from any combustion source discharged through a vent, stack, or chimney to 2.3 pounds of SO₂ per million British thermal unit (MMBtu) input, unless the combustion source is subject to an SO₂ standard in 2D .0524, 0.527, .1110, .1111, .1205, .1206, .1210, or .1211.

The STAR[®] reactor is not subject to one of the aforementioned rules and is therefore subject to 2D .0516. Compliance with the standard is expected based on the conceptual design of the FGD control device.

To demonstrate compliance, testing shall be performed no later than 180 operating days after the STAR[®] reactor is placed into operation. These tests shall be performed separately to demonstrate compliance when processing low, medium, and high sulfur content fly ash.

During the performance tests, a minimum lime to sulfur ratio for each of the three sulfur content scenarios will be established. During normal operation, the lime to sulfur ratio will be monitored and recorded every fifteen minutes. Any three-hour rolling average of the lime to sulfur ratios measured during normal operation that fall below the minimum established value for the sulfur content range of the fly ash being processed will be considered an excursion. When an excursion occurs, the monitoring system will first be evaluated for proper operation. If the monitoring system is functioning properly, the cause of the excursion shall be determined and corrective measures shall be taken to reduce the potential for similar excursions. A summary report of all monitoring activities will be submitted to the NCDAQ every six months.

The diesel-fired engines associated with the screener and crusher are subject to 2D .0524 (NSPS Subpart IIII) and, as a result, are not subject to 2D .0516.

4.2.3 2D .0521 - Control of Visible Emissions

This rule applies to all fuel burning sources and other processes that may have visible emissions. For sources manufactured after July 1, 1971, visible emissions shall not be more than 20% opacity averaged over a six minute period. Opacity may exceed 20% one time in an hour, but not more than 4 times in 24 hours. Opacity may never exceed 87%. This limit applies to all equipment associated with the fly ash beneficiation process. Compliance will be achieved through the use of the proposed emission control equipment.

To assure compliance, Duke Energy will observe the STAR[®] reactor, each silo, the storage dome, the EHE's, the truck loadout chutes, the screener, and the crusher for any emissions above normal. Duke Energy will observe the STAR[®] reactor once a month, and all other sources once every six months. If emissions from these sources are observed to be above normal, Duke Energy will either:

- Take action to correct the above-normal emissions; or,
- Demonstrate the opacity is in compliance with 15A NCAC 2D .0521 using Method 9.

Duke Energy will record the results of the inspections and any maintenance in an on-site logbook and submit a summary report of all monitoring and recordkeeping activities every six months.

4.2.4 2D .0524 - New Source Performance Standards

NSPS applicability was addressed in Section 4.1.2 above.

4.2.5 2D .0530 - Prevention of Significant Deterioration

PSD applicability was addressed in Section 4.1.1 above.

4.2.6 2D .0540 – Particulates from Fugitive Dust Emission Sources

This rule requires that fugitive dust emissions not cause or contribute to substantive complaints, excessive fugitive dust emissions at the property boundary, or NAAQS violations. Dust emissions from the ash handling and loading/unloading sources are expected to be in compliance.

If substantive complaints or excessive fugitive dust emissions from the facility are observed beyond the property boundaries for six minutes in any one hour, using Reference Method 22 in 40 CFR, Appendix A, Duke Energy may be required to submit a fugitive dust plan as described in 15A 2D .0540(f).

4.2.7 2D .1100 and 2Q .0700 - Control of Toxic Air Pollutants

15A NCAC 2Q .0700 requires facilities that emit toxic air pollutants (TAPs) for which they are required to have a permit under 15A NCAC 2D .1100 to demonstrate compliance with the Acceptable Ambient Levels (AAL). TAP emissions from the Cape Fear STAR® facility are expected to exceed the levels contained in 2Q .0700; therefore, the facility is required to comply with 2D .1100. A detailed explanation of the toxic modeling analyses is presented in Section 5 of this application.

4.2.8 2D .1111 - Maximum Achievable Control Technology

Applicability of MACT standards was discussed in Section 4.1.3 of this report.

4.2.9 2D .1200 – Control of Emissions from Incinerators

Fly ash is not a waste material; instead, it is a feedstock (or an ingredient) for the Cape Fear STAR® facility. The fly ash is a raw material for the proposed Cape Fear STAR® facility. It is required to produce beneficiated product as per the standards of American Society for Testing and Materials (ASTM) Standard C618, and American Association of State Highway and Transportation Officials (AASHTO) Standard M 295 for pozzolan-grade fly ash.

Based on the determination that fly ash, as proposed to be used, is not a waste material, the Cape Fear STAR® facility is not subject to this requirement. NC DEQ's concurrence with this conclusion is supported by the documentation included in Appendix G.

4.2.10 2D .1400 – Nitrogen Oxides

Rules .1407 through .1409(b) and .1413 apply to facilities with potential emissions of NOx equal to or greater than 100 tons per year or 560 pounds per calendar day beginning May 1 through September 30 of any year in the following areas: (1) Cabarrus County; (2) Gaston County; (3) Lincoln County; (4) Mecklenburg County; (5) Rowan County; (6) Union County; and (7) Davidson Township and Coddle Creek Township in Iredell County. The Cape Fear STAR® facility is in Chatham County so this rule does not apply.

Rules .1416 through .1423 apply statewide and Rule .1409(c) applies to Gas Pipeline Stations. Rule .2400 has expired and is no longer valid. Rules .1416, .1417, .1419, .1420, .1421 and .1422 have been repealed and the Cape Fear STAR[®] facility does not fall under the category of a Gas Pipeline Station so this section does not apply.

Rule .1418 applies to any fossil fuel-fired stationary boiler, combustion turbine, or combined cycle system having a maximum design heat input greater than 250 million Btu per hour and large RICE rated at equal to or greater than 2,400 brake horsepower. The Cape Fear STAR® facility is not proposing any boiler or turbine or large IC engine which will meet the definition above so Rule .1418 does not apply.

Rule .1400 is not applicable to an incinerator or thermal or catalytic oxidizer used primarily for the control of air pollution, emergency generator, emergency use internal combustion engine and stationary ICE less than 2400 brake horsepower that operates no more than the following hours between May 1 and September 30:

- (A) for diesel engines: t = 833,333 / ES
- (B) for natural gas-fired engines: t= 700,280 / ES

where t equals time in hours and ES equals engine size in horsepower.

There are two stationary ICE proposed at the site:

- Screener Engine 91 hp, 2,600 hr/yr
- Crusher Engine 300 hp; 365 hr/yr.

Based on the equation provide above the diesel engines will be exempt if they operate less than the following hours:

- Screener Engine 9,157 hours
- Crusher Engine 2,777 hours

The diesel engines will operate less than the allowable hours; therefore, they are exempt.

AECOM

The STAR[®] process does not meet the definition of a fuel-burning operation or meet the definition of any such unit mentioned previously. The combustion of natural gas or propane during startup is direct-fired with all of the STAR[®] ingredients, including fly ash. As described above, rule .1400 is not applicable to the STAR[®] unit or any other units at the Cape Fear STAR[®] facility.

4.2.11 Zoning Consistency Determination

In accordance with §143-215.108(f) of the North Carolina General Statutes, a request for a zoning consistency determination was submitted to the Chatham County Planning and Zoning Director (Mr. Jason Sullivan). The Chatham County Planning and Zoning Department is the only local government having jurisdiction over any part of the land on which the facility and its appurtenances are located. A copy of the zoning consistency determination request is located in Appendix H.

5.0 AIR QUALITY MODELING ANALYSIS

5.1 Introduction

Duke Energy proposes to construct the Cape Fear STAR® facility at the site of the former Cape Fear Steam Electric Plant in Moncure, Chatham County, North Carolina. The facility will reduce the carbon content of fly ash to a level acceptable for use in the concrete market. The STAR® system is a patented technology developed by The SEFA Group Inc. (SEFA) to process feedstock (of any carbon content) like fly ash (wet or dry) along with other ingredient materials into a variety of commercial products including a partial cement replacement. Certain TAP emissions from the Cape Fear STAR® facility are expected to exceed the 15A NCAC 2Q .0711 emission rates requiring a permit; therefore, a facility-wide air toxics analysis was performed.

As shown in Appendix D, a toxic pollutant emission rate (TPER) analysis indicates the following:

- Arsenic and Inorganic Arsenic Compounds (ASC) Annual TPER exceeded;
- Benzene (71-43-2) Annual TPER exceeded;
- Beryllium (7440-41-7) Annual TPER exceeded; and,
- Sulfuric Acid (7664-93-9) Daily and hourly TPER exceeded.

Facility-wide modeling was conducted for the compounds listed above and the resulting modeled concentrations were compared to the applicable Acceptable Ambient Levels (AAL). The modeling methodology and assumptions are provided in the following sections.

5.2 Background

The Environmental Management Commission (EMC) instituted a health-based toxic air pollutant control program on May 1, 1990. NCDAQ implements this program that regulates emissions of 105 toxic air pollutants. Under this program, facilities must demonstrate compliance with 15A NCAC 2D .1104, "Toxic Air Pollutant Guidelines."

5.3 Area Description

The proposed Cape Fear STAR® facility will be located at the site of the former Cape Fear Steam Electric Plant in Moncure, Chatham County, North Carolina. The plant site is approximately two miles southeast of Moncure. The approximate UTM coordinates are Zone 17, 678.183 km east and 3940.022 km north at an elevation of approximately 193 feet above mean sea level. The largest city near the site is Sanford, North Carolina. The site is located in the Piedmont region of North Carolina and the terrain surrounding the site can be considered gently rolling.

5.4 Air Quality Analysis Approach

The analysis was based on requirements and recommendations contained in the NCDAQ's *Guidelines for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina*. A modeling protocol checklist is contained in Appendix C.

The following sections describe in detail the dispersion model selection, the meteorological data, the GEP building wake effect/downwash analysis, the modeling receptor grids, the emission sources, and the results of the modeling analysis.

5.4.1 Air Dispersion Model Selection

AERMOD Modeling System (version 15181)

Air emissions from the Cape Fear STAR® facility will occur from multiple source locations; thus, the modeling analysis was performed using the AERMOD computer dispersion model. The AERMOD model was used to model the separated sources and predict maximum ambient concentrations. The AERMOD modeling was conducted using regulatory default options.

5.4.2 Meteorological Data

A five-year meteorological data set (2013-2017) of surface meteorological data from the Chapel Hill-Horace Williams Airport (Station No. 93785) and upper-air sounding data also recorded at the Piedmont Triad International Airport in Greensboro, NC (Station No. 13723) were used in the modeling analysis. The meteorological data files were obtained from the NCDAQ.

The meteorological data set consisted of 8,760 hourly observations (8,784 hourly observations in 2012 and 2016) of the following parameters:

- wind speed;
- wind direction;
- ambient temperature;
- atmospheric stability; and
- mixing heights.

These data were used to calculate hourly plume rise and concentrations at downwind receptor locations for a period up to a year. Each year was processed individually and maximum predicted concentrations for the worst-case year are reported in the modeling results for comparison to the North Carolina toxic air pollutant AAL's.

5.4.3 Good Engineering Practice (GEP) Stack Height Analysis

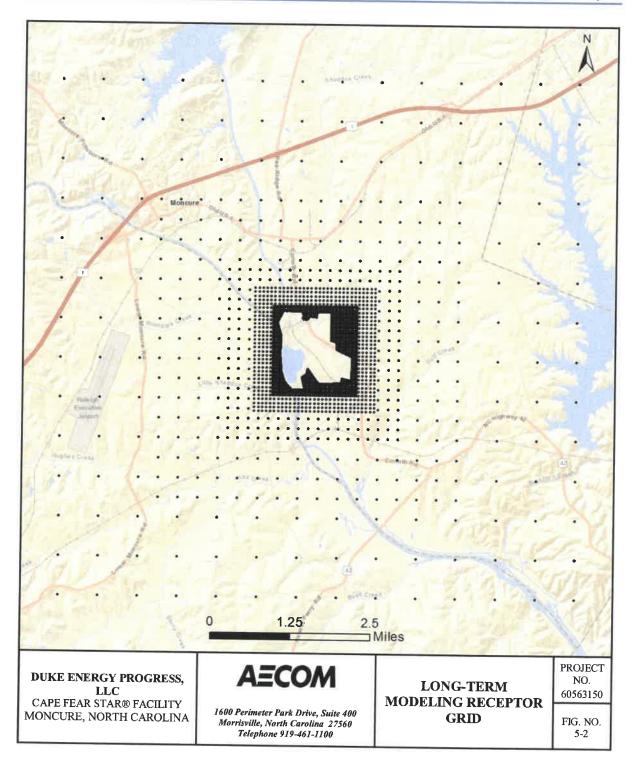
A Good Engineering Practice (GEP) stack height analysis was performed for all emission sources subject to a modeling analysis in order to determine if wake effects and downwash options need to be selected in the computer model. The GEP analysis was performed following the procedures outlined in the EPA documents *Guideline For Determination of Good Engineering Practice Stack Height (Technical Support Document For the Stack Height Regulations)* Revised (EPA-450/4-80-023R), the *User's Guide to the Building Profile Input Program* (October 1993), and the most recent version of the Oris Solutions "GEP-BPIP Prime" program.

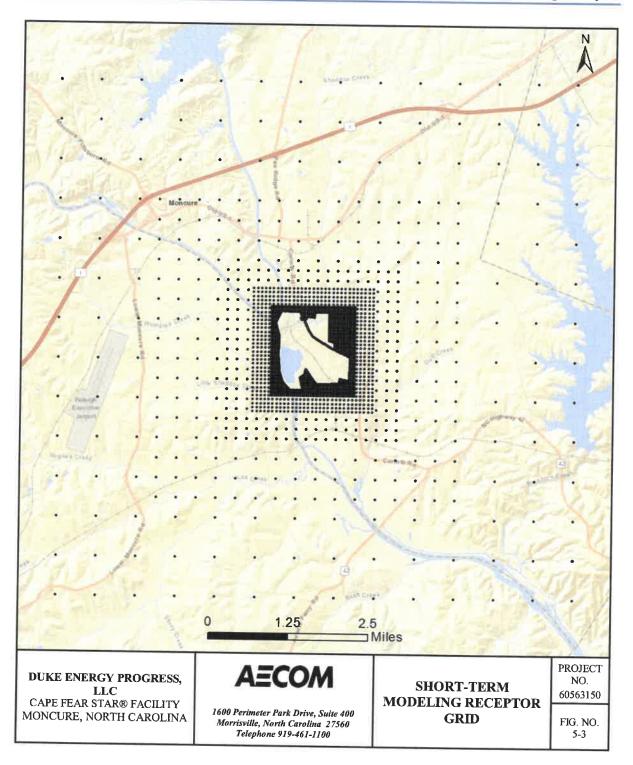
The building wake and downwash effect analysis was applied to each emission source. For each building, an area of wake and downwash effects extends outward to a distance of five times "L" (the

lesser of the maximum projected width or height of the building) directly downwind from the leeward side of the building. Wake effects were assumed to occur if the emission source is located within a rectangle composed of two lines perpendicular to the wind direction, one at 5L downwind of the building and the other at 2L upwind of the building, and by two lines parallel to the wind direction, each at 0.5L away from each side of the building.

As the wind direction rotates, the wake and downwash effect region of influence changes and is combined to form a GEP 5L region of influence in all wind directions. Any emission source within the region of influence is affected by wake and downwash effects. For buildings close to an emission source, wake and downwash effects were considered where the distance between the emission source and the nearest part of the building is less than or equal to 5L. Wake and downwash effects from buildings that are closer than the greater of either building's maximum projected width or height are considered to have one region of influence.

When an emission source height is less than the GEP height and is located within the region of influence, direction-specific building dimensions are included in the modeling analysis and either the Schulman-Scire or the Huber-Snyder equations are used for calculating the wake and downwash concentrations.


The GEP analysis was performed for proposed Cape Fear STAR® facility using the latest version of the Oris Solutions GEP program to demonstrate compliance with stack height regulations (40 CFR Part 51) and to determine which emission sources are impacted by building wake and downwash effects. The building heights and projected widths were input into the model for each ten degrees of wind direction. These building heights and projected widths are the same as are used for the GEP stack height calculation. Figure 5-1 presents the proposed Cape Fear STAR® facility layout.



5.4.4 Receptors

The dispersion modeling receptor grids were developed following procedures outlined in the *New Source Review Workshop Manual* (October 1990) and the revised *North Carolina Air Toxics Modeling Guidelines* (February 2014). A detailed discrete receptor grid system was created to assess air quality impacts in all directions to a distance of up to 4 km from the Cape Fear STAR® facility emission sources.

Discrete receptors were placed along the property line at 25-meter intervals. A 50-meter grid spacing was used from the property line out to a distance of approximately 100 meters. Receptors with an increasing grid spacing of 100, 250, 500 and 1,000 meters extend out to a distance of approximately 5,000 meters. Receptors were also place along Corinth Road for the short-term modeling grid. Figures 5-2 and 5-3 present the long-term and short- term modeling receptor grids. All receptor coordinates are expressed in UTM coordinates.

5.4.5 Sources

The Cape Fear STAR[®] facility will have multiple emission sources. The following sections describe the sources modeled.

5.4.5.1 Point Sources

The AERMOD model uses a steady-state Gaussian plume equation to model emissions from point sources such as stacks and vents. All point sources were modeled using nominal stack exhaust parameters. The following parameters were used for modeling the point sources: emission rates (grams/sec), stack height (m), stack diameter (m), stack exit velocity (m/sec), stack exhaust temperature (K), and direction-specific building dimensions (m). All point sources with rain caps or horizontal stacks were modeled with a default exit velocity of 0.01 m/s. Point sources include the EHE dust collector stacks, EHE transfer silo, reactor feed silo, product loadout silo, FGD absorbent silo, FGD byproduct silo, and the STAR® reactor exhaust stack.

5.4.5.2 Area Sources

The AERMOD model was used to simulate the effects of emissions from the ash basin as an area source. Modeling was performed by spreading emissions (grams per second) equally over the entire surface of the ash basin. Appendix D contains the area source parameters associated with the ash basin.

5.4.5.3 Volume Sources

The AERMOD model was used to simulate the effects of emissions from various volume sources including the unloading pile, wet ash handling and transfer, the screener, and the crusher. For each volume source modeled, an initial lateral (σ_{y0}) and vertical (σ_{z0}) dimension was calculated based on the physical dimensions of the source. As an example, the volume source parameters for the wet ash transfer were calculated as follows:

Fugitive Emissions from Wet Ash Transfer

Release Height = 1.5 m (X.X ft) σ_{y0} = length of side/4.3 = 3.05 m/4.3 = 0.71 m (10 ft) σ_{z0} = vertical dimension of source/2.15 = 3.08 m/2.15 = 1.43 m (10 ft)

5.4.6 Modeling Results

The modeling analysis followed the NCDAQ's *Guideline on Air Toxics Modeling* (as a default in lieu of county-specific guidelines); a copy of the modeling protocol checklist is included in Appendix C. Potential emissions were modeled for comparison to the respective AALs. Emission rates for all the potential model runs were multiplied by 1,000 to ensure a non-zero modeling concentration was obtained. Based on the resulting concentrations from the potential model run, the emission rates were then increased to an optimized rate such that modeled allowable emission rates result in ambient concentrations that are 98 percent of the AAL. Optimizing the emission rates provides the Cape Fear STAR® facility with additional operational flexibility, and should reduce the need for future TAP modeling analyses for these sources at the facility. Appendix D presents a summary of the maximum modeling results

for arsenic, benzene, beryllium, and sulfuric acid. A complete listing of all modeled emission rates is provided in Appendix D.

The TAP modeling analysis demonstrates that the maximum optimized TAP emissions of arsenic, benzene, beryllium, and sulfuric acid from the facility do not result in predicted ambient concentrations that exceed the respective AALs.

Appendix A

Permit Application Forms

AECOM

July 2018

FORM A

GENERAL FACILITY INFORMATION

REVISED 09/22/16			- Application for Air Permit to Construct/Operate			
	NOTE- APPLICATION	WILL NOT E	BE PROCESSED WITHOUT THE FOLLOWING:			
Local Zoning Consistency modification only)	Determination (new or	Ø	Appropriate Number of Copies of Application			
Responsible Official/Author	lzed Contact Signature	P.E. Seat (If required)				
		GENER	AL INFORMATION			
legel Corporate/Owner Name: C	Juka Energy Progress ULC					
	sh Beneficiation Process					
	00 C P and L Road					
ilte Address Line 2:						
hy: Moncure			State NC			
Op Code: 27559			County: Chatham			
		CONTA				
asponsible Official/Authorized Contact:			Invoice Contect:			
	nance & Operational Support		Name/Title: Cynthia Winston / Manager - Permitting and Compliance			
Address Line 1: 410 S. Wilmington			Mailing Addrass Line 1: 410 S. W/mington Street			
failing Address Line 2:	00001		Mailing Address Line 2			
	C Zip Code:	276				
rimary Phone No.: (919) 546-67		#19.				
econdary Phone No.:			Primary Phone No.* (919) 546-5538 Fax No.: (919) 546-6302 Secondary Phone No.*			
mail Address: Jon Kerin@duke-energy.co	m		Ernall Address: Cynteia Winston & duke-energy com			
cillty/inspection Contact:		10000				
ame/Title: Steven Conner/Manager Er	ritmenentat Canalace		Permit/Technicel Contact:			
lating Address Line 1: Duke Energy Prog	**		Name/Title: Ann Quillar/Lead Environmental Specialist			
alling Address Line 2:	ress, 1700 Dannaway Hoad		Mailing Address Line 1: 410 S. Witmington Street			
the second s			Malling Address Line 2.			
ty: Semora State: N		2734				
rimary Phone No.: (336) 597-62	13 Fax No.:		Primary Phone No : (919) 546-6610 Fax No.: (919) 546-6302			
econdary Phone No.:			Secondary Phone No :			
mail Address: Steven Conner@duke-ener			Email Address: Ann.Out an Odder energy.com			
[2] M M			N IS BEING MADE FOR			
New Non-permitted Facility/Greenfiel	2-0		d) 🗌 Renewal Title V 🔲 Renewal Non-Title V			
Name Change Dwnership			Renewal with Modification			
TI		HCATION /	AFTER APPLICATION (Check Only One)			
General [Small		Prohibitory Small Synthetic Minor I Title V			
escribe nature of (plant site) operation(s): (and the second se	ACILITY (PI	ant Site) INFORMATION			
			Facility ID No NA: New Facility			
rimary SIC/NA/CS Code; 4911			Current/Previous Air Permit Np. NA Expiration Date: NA			
acility Coordinates:	Latitude 35.5878	99	Longitude: +79.033311			
oes this application contain midential data?		10	***If yes, please contact the DAQ Regional Office prior to submitting this application.*** (See Instructions)			
	PERSON	OR FIRM T	HAT PREPARED APPLICATION			
rson Name; Amy M. Marshaz, PE			Firm Name: AECOM Technical Services of North Carolina			
Address Line 1: 1600 Perimeter Park	Drive		Mailing Address Line 2: Suite 400			
y: Morrisville	State: NC		Zip Code: 27560 County: Wake			
one No : (919) 481-1251	Fax No.: (I	919) 461-1415	Email Address: Amy Marshall @ascom.com			
			LE OFFICIAL/AUTHORIZED CONTACT			
ime (typed): Jon Kerin	10000		Title: VP CCP Governance & Operational Support			
Sinnatura/Blackle	in		Date: 20 July 2018			
The iso		dditional S	Sheets As Necessary Page 1			
U			Received			
			JUL 2 4 2018			

Air Permits Section

FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16	NCDEQ/Division of Air Quality - Applicat	ion for Air Permit to C	onstruct/Operate A2
	EMISSION SOURCE LISTING: New, Modified	d, Previously Unp	ermitted, Replaced, Deleted
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION
Eq	uipment To Be ADDED By This Application	(New, Previously	Unpermitted, or Replacement)
ES-1	Wet Ash Receiving (Transfer to Shed and Hopper)	NA	NA
ES-3	Unloading Pile	NA	NA
ES-4	Feed Silo	CD-4	Bin Vent Filter
ES-5	STAR® Ash Beneficiation	CD-5A & CD-5B	Flue Gas Desulfurization Scrubber and Baghouse
ES-6	FGD Byproduct Silo	CD-6	Bin Vent Filter
ES-7	FGD Hydrated Lime Silo	CD-7	Bin Vent Filter
ES-8	EHE - External Heat Exchanger A	CD-8	Baghouse
ES-9	EHE - External Heat Exchanger B	CD-9	Baghouse
ES-10	EHE Silo	CD-10	Bin Vent Filter
ES-11	Product Storage Dome	CD-11	Bin Vent Filter
ES-12	Loadout Silo	CD-12	Bin Vent Filter
ES-15	Ash Basin	NA	NA
ES-16	Ash Handling	NA	NA
ES-19	Screener	NA	NA
ES-20	Crusher	NA	NA
ES-21	Haul Roads	NA	NA
ES-22	Screener Diesel Engine	NA	NA
ES-23	Crusher Diesel Engine	NA	NA
	Existing Permitted Equipment To E		This Application
New Facility			
	Equipment To Be DELE	TED By This Ann	lication
NA - New Facility		The by this App	

112	(r) APPLICABI	ITY INFORMATION	A 3							
Is your facility subject to 40 CFR Part 68 "Prevention of Accid	ental Releases" - Secti	on 112(r) of the Federal Clean Air Act?	Yes V No							
If No, please specify in detail how your facility avoided application	ability:	Facility does not use, store or handle any regulated substances above their								
respective threshold quantity.										
If your facility is Subject to 112(r), please complete the followi	ng:									
A. Have you already submitted a Risk Management Plan	(RMP) to EPA Pursuan	t to 40 CFR Part 68.10 or Part 68.150?								
Yes No Specify required RMP										
B. Are you using administrative controls to subject your facility to a lesser 112(r) program standard?										
Yes No If yes, please specify:										
C. List the processes subject to 112(r) at your facility:	-									
PROCESS DESCRIPTION	PROCESS LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL	MAXIMUM INTENDED INVENTORY (LBS)							

Attach Additional Sheets As Necessary

			Application for	-				В
EMISSION SOURCE DESCRIPTION: Wet Ash I	Receiving (Tra	ansfer to Shed an	d Hopper)	EMISSION S	OURCE ID NO): ES-1		
				CONTROL D	EVICE ID NO	S): NA		
OPERATING SCENARIO	_OF	1		EMISSION P	OINT (STACK) ID NO(S): EP	P-1 & EP-2	
DESCRIBE IN DETAILTHE EMISSION SOURCI Transfer of ash to storage shed (EP-1) and hopp		ATTACH FLOW	DIAGRAM):					
TYPE OF EMISSION SOL	JRCE (CHEC	AND COMPLE	TE APPROPRIA	TE FORM B1-	B9 ON THE F		AGES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodwork			Manuf.	of chemicals/	coatings/inks (F	form B7)
Int.combustion engine/generator (Form B2)			ishing/printing (F		_	ation (Form Ba	3)	
Liquid storage tanks (Form B3)		L Storage sil	os/bins (Form B6	5)	 ✓ Other 	(Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 201	9			
MANUFACTURER / MODEL NO.: NA			EXPECTED OP	SCHEDULE:	24_ HR/DA	Y DAY	Y/WK <u>52</u> W	/K/YR
IS THIS SOURCE SUBJECT TO?	S (SUBPART	S?):		NESH.	AP (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT (%): [-NOV 25		
CRITERIA	AIR POLLU	ITANT EMISS	SIONS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIA	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTR	ROLS/LIMITS
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	AP-42	1.42E-02	4.07E-02	N/A	N/A	1.42E-02	4.07E-02	
PARTICULATE MATTER<10 MICRONS (PM10)	PARTICULATE MATTER<10 MICRONS (PM10)			1.92E-02	N/A	N/A	6.73E-03	1.92E-02
PARTICULATE MATTER<2.5 MICRONS (PM2.6)		AP-42	1.02E-03	2.91E-03	N/A	N/A	1.02E-03	2.91E-03
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	2.28E-07	6.51E-07	N/A	N/A	2.28E-07	6.51E-07
OTHER			N/A	N/A	N/A	N/A	N/A	N/A
HAZARDOUS	S AIR POLI	UTANT EMIS	SSIONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTED	ACTUAL				
		EMISSION	(AFTER CONTRO	DLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	(AFTER CONTR	OLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Antimony	7440-36-0		1.11E-07	3.17E-07	N/A	N/A	1.11E-07	3.17E-
Arsenic	7440-38-2		8.50E-07	2.43E-06	N/A	N/A	8.50E-07	2.43E-
Beryllium	7440-41-7	1 1	4.43E-08	1.26E-07	N/A	N/A	4.43E-08	1.26E-
Cadmium	7440-43-9	1	6.83E-09	1.95E-08	N/A	N/A	6.83E-09	1.95E-
Chromium	7440-47-3		2.70E-07	7.71E-07	N/A	N/A	2.70E-07	7.71E-
Chromium VI	SolCR6	Ach Analusi-	1.41E-08	4.03E-08	N/A	N/A	1.41E-08	4.03E-
Cobalt	7440-48-4	Ash Analysis	1.53E-07	4.38E-07	N/A	N/A	1.53E-07	4.38E-
Lead	7439-92-1]	2.28E-07	6.51E-07	N/A	N/A	2.28E-07	6.51E-
Manganese	7439-96-5]	1.11E-06	3.17E-06	N/A	N/A	1.11E-06	3.17E-
Mercury	7439-97-6		3.56E-09	1.02E-08	N/A	N/A	3.56E-09	1.02E-0
Nickel	7440-02-0]]	3.04E-07	8.69E-07	N/A	N/A	3.04E-07	8.69E-
Selenium	7782-49-2		2.00E-07	5.72E-07	N/A	N/A	2.00E-07	5.72E-0
TOXIC AI	R POLLUT	ANT EMISSIC	NS INFORM	ATION FOI	R THIS SO			
		SOURCE OF EMISSION	EXPECT	FED ACTUAL	EMISSIONS A	FTER CONTR	OLS / LIMITAT	IONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/h	r	lb/c	lay	Ib/	yr
Arsenic	7440-38-2		8.50E	-07	2.04	E-05	4.868	-03
Beryllium	7440-41-7	1	4.43E	-08	1.06	E-06	2.538	E-04
Cadmium	7440-43-9	. [6.83E	-09	1.64	E-07	3.90E	E-05
	SolCR6	Ash Analysis	1.41E	-08	3.38	E-07	8.05E	E-05
Chromium VI			1.41E-08		3.38E-07 2.66E-05		8.05E-05	
	7439-96-5] [1.11E	1.11E-06		E-05	6.34E-03 2.03E-05	
Chromium VI Manganese Mercury	7439-96-5 7439-97-6		1.11E 3.56E		2.66			

FORM B IC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Operat	e	B9
EMISSION SOURCE DESCRIPTION: Wet Ash Receiving (Transfer to S Hopper)	hed and	EMISSION SOURCE ID NO: ES-1		
		CONTROL DEVICE ID NO(S): NA		
OPERATING SCENARIO: 0F		EMISSION POINT (STACK) ID NO	D(S): EP-1 & EP-2	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Tr	ansfer of ash t	o storage shed and hopper		
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	
Wet Ash Throughput	Tons	70.0	LIMITATION	
	. 0110	10.0	11/7	
	1			
MATERIALS ENTERING PROCESS - BATCH OPERATIO	DN .	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	/R):		
FUEL USED: NA	TOTAL MAXI	MUM FIRING RATE (MILLION BTU	/HR): NA	
MAX. CAPACITY HOURLY FUEL USE: NA	REQUESTED	CAPACITY ANNUAL FUEL USE: I	NA	
COMMENTS:				

	ISSION SOL						KUES)	
REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality -	Application for	Air Permit to	Construct/Op	erate		B
EMISSION SOURCE DESCRIPTION: Unit	bading Pile			ÉMISSION S	OURCE ID NO	D: ES-3		
				CONTROL D	EVICE ID NO	S): NA		
OPERATING SCENARIO 1	OF	1		EMISSION P	OINT (STACK) ID NO(S): EF	P-3	
DESCRIBE IN DETAILTHE EMISSION SC		(ATTACH FLOW	DIAGRAM):					
Unloading pile windblown fugitive dust em	issions							
TYPE OF EMISSIO				TE FORM B1-	B9 ON THE F	OLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Forn			ing (Form B4)		Manuf	of chemicals/	coatings/inks (F	Form B7)
Int.combustion engine/generator (Forr	n B2)		ishing/printing (F	,		ation (Form B	8)	
Liquid storage tanks (Form B3)		L Storage sil	os/bins (Form Bi	3)	✓ Other	(Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 201	19			
MANUFACTURER / MODEL NO .: NA			EXPECTED OF	. SCHEDULE:	HR/D/	Y DAY	Y/WK <u>52</u> V	/K/YR
	NSPS (SUBPART	S?):		NESH,	AP (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT						-NOV 25		
CRITE	RIA AIR POLL	JTANT EMISS	SIONS INFOR	RMATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIA	L EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS
AIR POLLUTANT EMITTED		FACTOR	ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	1.68E-04	7.35E-04	N/A	N/A	1.68E-04	7.35E-04
PARTICULATE MATTER<10 MICRONS (PM	10)	AP-42	8.39E-05	3.67E-04	N/A	N/A	8.39E-05	3.67E-04
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	1.26E-05	5.51E-05	N/A	N/A	1.26E-05	5.51E-05
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC	;)		N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	2.69E-09	1.18E-08	N/A	N/A	2.69E-09	1.18E-08
OTHER			N/A	N/A	N/A	N/A	N/A	N/A
HAZARD	OUS AIR POL	LUTANT EMIS	SSIONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTED				EMISSIONS	
		EMISSION	AFTER CONTRO	OLS / LIMITS)	(BEFORE CONT		(AFTER CONTR	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	ib/hr	tons/yr
Antimony	7440-36-0		1.31E-09	5.73E-09	N/A	N/A	1.31E-09	5.73E-
Arsenic	7440-38-2	1	1.00E-08	4.39E-08	N/A	N/A	1.00E-08	4.39E-
Beryllium	7440-41-7	1	5.22E-10	2.28E-09	N/A	N/A	5.22E-10	2.28E-
Cadmium	7440-43-9	1	0.0EE 44				011111	3.53E-
Chromium			8.05E-11	3.53E-10	N/A	N/A	8.05E-11	
	7440-47-3	1		3.53E-10 1.39E-08	N/A N/A	N/A	8.05E-11	
Chromium VI	7440-47-3 SolCR6	-	3.18E-09	1.39E-08	N/A	N/A	3.18E-09	1.39E-
Chromium VI Cobalt		- Ash Analysis		1.39E-08 7.27E-10	N/A N/A	N/A N/A	3.18E-09 1.66E-10	1.39E- 7.27E-
	SolCR6	- Ash Analysis	3.18E-09 1.66E-10 1.81E-09	1.39E-08 7.27E-10 7.91E-09	N/A N/A N/A	N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09	1.39E- 7.27E- 7.91E-
Cobait	SolCR6 7440-48-4	Ash Analysis	3.18E-09 1.66E-10 1.81E-09 2.69E-09	1.39E-08 7.27E-10 7.91E-09 1.18E-08	N/A N/A N/A N/A	N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09	1.39E- 7.27E- 7.91E- 1.18E-
Cobalt Lead	SolCR6 7440-48-4 7439-92-1 7439-96-5	Ash Analysis	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08	1.39E- 7.27E- 7.91E- 1.18E- 5.73E-
Cobalt Lead Manganese	SolCR6 7440-48-4 7439-92-1	Ash Analysis	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E-
Cobalt Lead Manganese Mercury	SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0	Ash Analysis	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E-
Cobalt Lead Manganese Mercury Nicke! Selenium	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	-	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E-
Cobalt Lead Manganese Mercury Nicke! Selenium	SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0	-	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E-
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC	SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOR	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E-
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO.	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOF	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A FTER CONTR	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 1.03E- IONS
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOF	N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A FTER CONTR	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 0LS / LIMITAT	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 100S
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2 7440-38-2 7440-41-7	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOF TED ACTUAL I	N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/o	N/A N/A N/A N/A N/A N/A N/A FTER CONTR	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 0LS / LIMITAT	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 10NS yr -05
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h 1.00E	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOF FED ACTUAL I r -08 -10	N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 2.40	N/A N/A N/A N/A N/A N/A N/A FTER CONTR FTER CONTR =-07 =-08	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 OLS / LIMITAT Ib/ 8.77t	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 10NS yr 5-05 5-06
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Cadmium	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2 7440-41-7 7440-43-9 SoICR6	ANT EMISSIC	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h 1.00E 5.22E	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOF TED ACTUAL I r -08 -10 -11	N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 2.401 1.251	N/A N/A	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 OLS / LIMITAT Ib/ 8.771 4.578	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 10NS yr 5-05 5-06 5-07
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI Manganese	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2 7440-41-7 7440-43-9	ANT EMISSIC SOURCE OF EMISSION FACTOR	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h 1.00E 5.22E 8.05E	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOP TED ACTUAL 1 r r -08 -10 -11 -10	N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 2.400 1.251 1.931	N/A N/A N/A N/A N/A N/A N/A N/A N/A Stress FTER CONTR ay =-07 =-08 =-09 =-09	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 OLS / LIMITAT Ib/ 8.771 4.571 7.051	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.03E- 1.03E- 10NS yr 5-05 5-06 5-06 5-06
Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 CAIR POLLUT CAS NO. 7440-38-2 7440-41-7 7440-43-9 SoICR6	ANT EMISSIC SOURCE OF EMISSION FACTOR	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 DNS INFORM EXPECT Ib/h 1.00E 5.22E 8.05E 1.66E	1.39E-08 7.27E-10 7.91E-09 1.18E-08 5.73E-08 1.84E-10 1.57E-08 1.03E-08 ATION FOP TED ACTUAL 1 r r. 08 .10 .11 .10 .08	N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A EMISSIONS A Ib/c 2.400 1.251 1.931 3.991	N/A N/A N/A N/A N/A N/A N/A N/A N/A Stress FTER CONTR ay =-07 =-08 =-09 =-09 =-07	3.18E-09 1.66E-10 1.81E-09 2.69E-09 1.31E-08 4.19E-11 3.58E-09 2.36E-09 OLS / LIMITAT Ib/ 8.771 4.571 7.051 1.458	1.39E- 7.27E- 7.91E- 1.18E- 5.73E- 1.84E- 1.57E- 1.03E- 0 10NS yr 5-05 5-06 5-07 5-06 5-04

FORM B

FORM B9 EMISSION SOURCE (OTHER)

EMISSION SOURCE DESCRIPTION: Unloading Pile		or Air Permit to Construct/Operation	te B9				
		EMISSION SOURCE ID NO: ES-3					
		CONTROL DEVICE ID NO(S): NA	λ				
OPERATING SCENARIO: 1 OF 1	_	EMISSION POINT (STACK) ID NO	D(S): EP-3				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAN	wy. Onroduing pile w	nabiowin agitive dast emissions					
MATERIALS ENTERING PROCESS - CONTINUOUS P	ROCESS	MAX. DESIGN					
TYPE	UNITS	4 1	REQUESTED CAPACITY				
Area	Acres	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
	Acres	0.33 Acres	N/A				
MATERIALS ENTERING PROCESS - BATCH OPER	ATION	MAX. DESIGN	REQUESTED CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)				
		over Aon Fr (oren barron)	LIMITATION (UNIT/BATCH)				
AXIMUM DESIGN (BATCHES / HOUR):							
EQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	२):					
JEL USED: NA		UM FIRING RATE (MILLION BTU)	(HR)· NA				
		CAPACITY ANNUAL FUEL USE: N					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES) **REVISED 09/22/16** NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate В EMISSION SOURCE DESCRIPTION: Feed Silo EMISSION SOURCE ID NO: ES-4 CONTROL DEVICE ID NO(S): CD-4 OPERATING SCENARIO 1 OF EMISSION POINT (STACK) ID NO(S): EP-4 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Ash feed silo is filled pneumatically and equipped with a bin vent filter capture device. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7) Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Г Other (Form B9) START CONSTRUCTION DATE: 2019 DATE MANUFACTURED: 2019 MANUFACTURER / MODEL NO .: TBD EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YR IS THIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): NESHAP (SUBPARTS?); PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR-MAY SEP-NOV 25 JUN-AUG 25 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) AIR POLLUTANT EMITTED FACTOR lb/hr tons/yr lb/hr tons/vr lb/hr tons/yi PARTICULATE MATTER (PM) 2.83E-01 1.24E+00 N/A N/A 2.83E-01 1.24E+00 Vendor/ PARTICULATE MATTER<10 MICRONS (PM10) 2.60E-01 1.14E+00 N/A N/A 2.60E-01 1.14E+00 AP-42 PARTICULATE MATTER<2.5 MICRONS (PM2.5) 1.50E-01 6.57E-01 N/A N/A 1.50E-01 6.57E-01 SULFUR DIOXIDE (SO2) N/A N/A N/A N/A N/A N/A NITROGEN OXIDES (NOx) N/A N/A N/A N/A N/A N/A CARBON MONOXIDE (CO) N/A N/A N/A N/A N/A N/A VOLATILE ORGANIC COMPOUNDS (VOC) N/A N/A N/A N/A N/A N/A LEAD Ash Analysis 4.53E-06 1.98E-05 N/A N/A 4.53E-06 1.98E-05 OTHER N/A N/A N/A N/A N/A N/A HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR lb/hr tons/vr lb/h tons/yr lb/hr tons/yr Antimony 7440-36-0 2.21E-06 9.66E-06 N/A 9.66E-06 N/A 2.21E-06 Arsenic 7440-38-2 1.69E-05 7.40E-05 N/A N/A 1.69E-05 7.40E-05 Beryilium 7440-41-7 8.80E-07 3.85E-06 N/A N/A 8.80E-07 3.85E-06 Cadmium 7440-43-9 1.36E-07 5.95E-07 N/A N/A 1.36E-07 5.95E-07 Chromium 7440-47-3 5.36E-06 2.35E-05 N/A 5.36E-06 2.35E-05 N/A Chromium VI SolCR6 2.80E-07 1.23E-06 N/A N/A 2.80E-07 1.23E-06 Ash Analysis Cobalt 7440-48-4 3.05E-06 1.33E-05 1.33E-05 N/A N/A 3.05E-06 Lead 7439-92-1 4.53E-06 1.98E-05 N/A N/A 4.53E-06 1.98E-05 Manganese 7439-96-5 2.21E-05 9.66E-05 N/A N/A 2.21E-05 9.66E-05 Mercury 7439-97-6 7.07E-08 3.10E-07 N/A N/A 7.07E-08 3.10E-07 Nickel 7440-02-0 6.04E-06 2.65E-05 N/A N/A 6.04E-06 2.65E-05 Selenium 7782-49-2 3 98E-06 1.74E-05 N/A N/A 3.98E-06 1.74E-05 TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION TOXIC AIR POLLUTANT CAS NO. FACTOR lb/hr lb/dav ib/vr Arsenic 7440-38-2 1.69E-05 4.05E-04 1.48E-01 Beryllium 7440-41-7 8.80E-07 2.11E-05 7.71E-03 Cadmium 7440-43-9 1.36E-07 3.26E-06 1.19E-03 Chromium VI SolCR6 Ash Analysis 2.80E-07 6.72E-06 2.45E-03 Manganese 7439-96-5 2.21E-05 5.29E-04 1.93E-01 Mercury 7439-97-6 7.07E-08 1.70E-06 6.19E-04 Nickel 7440-02-0 6.04E-06 1.45E-04 5.29E-02 Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and cribe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source

FORM B

FORM B6
EMISSION SOURCE (STORAGE SILO/BINS)

REV/SED 09/22/16	NCDEC	2/Divis	ion of Air Quali	ty - Applic	atior	n for Air Permit to Co	nstruct/Operate	B 6
EMISSION SOURCE DESCRIP	PTION: Feed Sile	þ				EMISSION SC	OURCE ID NO: ES-4	
						CONTROL DE	VICE ID NO(S): CD-4	
OPERATING SCENARIO:		1	OF	1		EMISSION PC	DINT (STACK) ID NO(S): EP-4	
DESCRIBE IN DETAIL THE PR Ash feed silo is filled pneumation				capture de	evice.			
MATERIAL STORED: Fly Ash					_			
CAPACITY	CUBIC FEET:	76 000					IAL (LB/FT3): 60 (Bulk) 90 (Structural)	
DIMENSIONS (FEET)	HEIGHT: 97	76,000			TONS: 1,500			
	-	(0)	DIAMETER: 41		(OR) LENGTH: WIDTH: HEIGHT:			
ANNUAL PRODUCT THRO		is)	ACTUAL: 400,0				SIGN CAPACITY: 400,000	
PNEUMATICALLY FI	LLED		MEC	HANICALL	Y FI	LLED	FILLED FROM	
COMPRESSOR OTHER:				OR ATOR		RAILCAR TRUCK STORAGE PILE VI OTHER: EHE SIIO		
NO. FILL TUBES: 3								
MATERIAL IS UNLOADED TO: BY WHAT METHOD IS MATER Gravity								
MAXIMUM DESIGN FILLING RA	ATE OF MATER		NS/HR): 125					
MAXIMUM DESIGN UNLOADIN			,	5				
COMMENTS:								

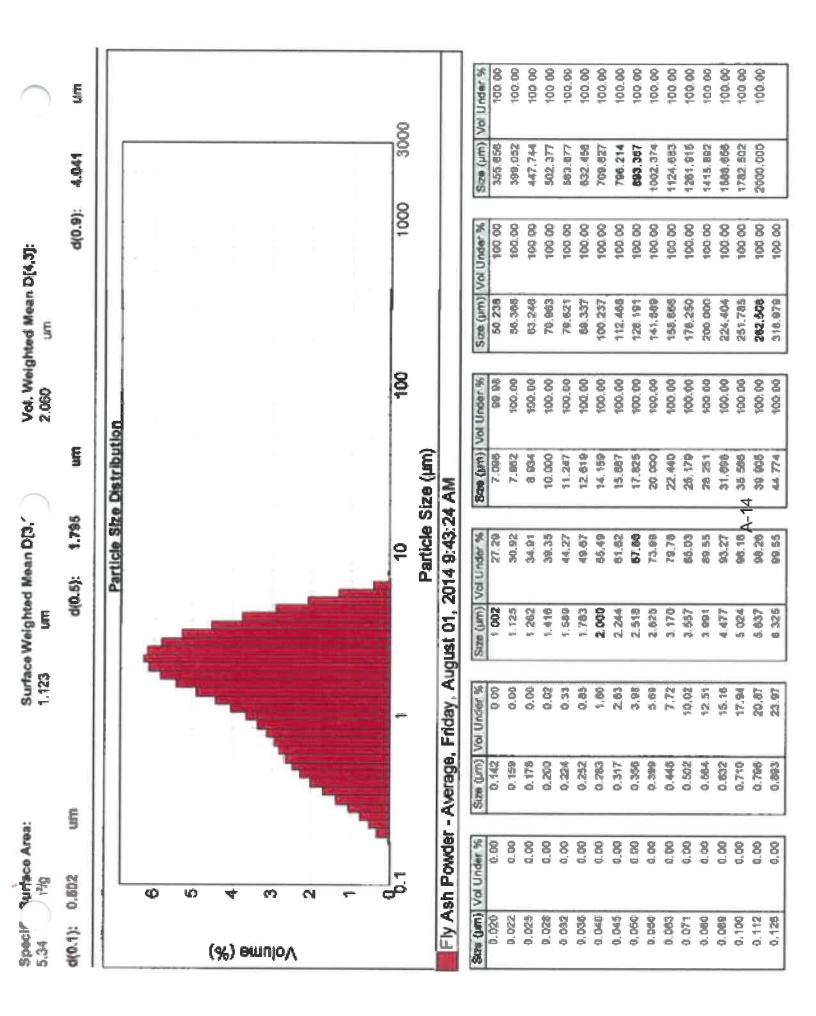
REVISED 09/22/16 NCE	EQ/Division of Air Qu	ality - Application for A	ir Permit to Construc	t/Operate			C1
CONTROL DEVICE ID NO: CD-4	CONTROLS EMISS	SIONS FROM WHICH EN	ISSION SOURCE ID	NO(S): ES-4			
EMISSION POINT (STACK) ID NO(S): EP-4	POSITION IN SER	ES OF CONTROLS			NO. 1 C)F 1	UNITS
OPERATING SCENARIO:							
OF_1		P.E. SEAL REQUIRED	(PER 2q .0112)?		YES		NO NO
DESCRIBE CONTROL SYSTEM:							
Bin vent filter for particulate control on the feed silo.							
Note: Actual bin vent filter expected outlet loading is 0.001 gr/dscf.	A conservative value of	of 0.005 gr/scf is used to	estimate potential emi	ssions.			
POLLUTANTS COLLECTED:		PM	PM10	PM2.5			
BEFORE CONTROL EMISSION RATE (LB/HR):		NA	NA	NA			-
CAPTURE EFFICIENCY:		NA %	NA	% NA	%		~
CONTROL DEVICE EFFICIENCY:		NA %	NA	% NA	%		- %
CORRESPONDING OVERALL EFFICIENCY:		<=0.005 gr/dscf %	<=0.005 gr/dscf	% <=0.005 gr/ds	cf %		- %
EFFICIENCY DETERMINATION CODE:		2	2		2		-
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		2.83E-01	2.60E-01	1.50E	-01		•
							•
PRESSURE DROP (IN H ₂ 0): MIN: 10 MAX: 15	GAUGE?	YES	D NO				
BULK PARTICLE DENSITY (LB/FT ³): 25		INLET TEMPERATURE	: (°F):	MIN: 200	MAX: 35	0	
POLLUTANT LOADING RATE: NA	GR/FT ³	OUTLET TEMPERATUR	RE (°F)	MIN: 200	MAX: 35	0	
INLET AIR FLOW RATE (ACFM): 6,600 SCFM		FILTER OPERATING T	EMP (°F): 350				
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER CO	MPARTMENT: 144			LENGTH OF BAG (IN	l.): 120		
NO. OF CARTRIDGES: FILTER SURFACE ARE	A PER CARTRIDGE (FT ²): 259		DIAMETER OF BAG	(IN.): 6		
TOTAL FILTER SURFACE AREA (FT ²): 2,260	AIR TO CLOTH RA	TIO: 3:1					
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIVE		FILTER MATERIA	L: [WOVEN	7	FELTED
DESCRIBE CLEANING PROCEDURES:				PAR	TICLE SIZE I	DISTRIBUT	TION
AIR PULSE	SONIC			SIZE	WE	GHT %	CUMULATIVE
	SIMPLE BAG COLL	APSE		(MICRONS)	OF	OTAL.	%
	RING BAG COLLAR	SE		0-1			
OTHER:				1-10			
DESCRIBE INCOMING AIR STREAM: Air stream will contain fly ash	ь.			10-25			
				25-50			
				50-100			
				>100			
						ΤΟΤΑ	L = 100
				Supplier specific, 80%	(average siz	e) passing	325 mesh
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE R	ELATIONSHIP OF TH	E CONTROL DEVICE TO	TS EMISSION SOU	RCE(S):			
COMMENTS:							

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality - App	lication for Air	Permit to Con	struct/Operate	e		В
EMISSION SOURCE DESCRIPTION: STAR					OURCE ID NO			
						S): CD-5A & C	:D-5B	
OPERATING SCENARIO 1	OF 1) ID NO(S): EP		
DESCRIBE IN DETAILTHE EMISSION SOU			M)-	LIMISSION FO	UNIT (STACK)) ID NO(3). 2P	-0	
The STAR® Ash Beneficiation Process will p products.				dry) along with	other ingredie	ent materials in	to a variety of (commercial
TYPE OF EMISSI	ON SOURCE (CHEC	K AND COMPLETE A	PPROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAGE	S):	
Coal,wood,oil, gas, other burner (Form E		Woodworking (F					coatings/inks (F	form B7)
Int.combustion engine/generator (Form I	32)	Coating/finishing	g/printing (Form	B5)	Inciner	ation (Form B8	3)	
Liquid storage tanks (Form B3)		Storage silos/bin	ns (Form B6)		🗹 Other ((Form B9)	,	
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 201	9			
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF	. SCHEDULE:	24 HR/DA	Y 7 DAY	r/WK 52 W	/K/YR
IS THIS SOURCE SUBJECT TO?	SPS (SUBPARTS?):	NESHAP (SUBPARTS?):						
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25	MAR-MAY 25	JUN-AUG		SEP-NOV	25		
CRIT	ERIA AIR POLL	UTANT EMISSION						1528
		SOURCE OF	EXPECTED		1		EMISSIONS	
		EMISSION	(AFTER CONTR		(RECORE CONT	TROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	(BEFORE CON	T	(AFTER CONT lb/hr	
PARTICULATE MATTER (PM)		THUT ON	1.61E+01	7.04E+01	NA	tons/yr		
PARTICULATE MATTER<10 MICRONS (PM10)		1	1.48E+01	6.48E+01	NA	NA	1.61E+01 1.48E+01	
PARTICULATE MATTER<2.5 MICRONS (PM2)		-	8.52E+00	3.73E+01	NA		8.52E+00	
SULFUR DIOXIDE (SO2)	/	-	2.57E+01	1.12E+02	5.14E+02	NA 2.25E+03		
NITROGEN OXIDES (NOx)		Worst Case:	4.76E+01				2.57E+01	
CARBON MONOXIDE (CO)		Propane Firing (AP- 42) & Fly Ash		2.08E+02	NA	NA	4.76E+01	Image: Notes Notes tons/yr 7.04E+01 6.48E+01 3.73E+01 1.12E+02 2.08E+02 9.81E+01 9.81E+01 9.81E+00 8.45E-06
VOLATILE ORGANIC COMPOUNDS (VOC)		(Manufacturer)	2.24E+01 2.24E+00	9.81E+01	NA	NA	2.24E+01	_
LEAD		-		9.81E+00	NA	NA	2.24E+00	
H2SO4		-	1.93E-06	8.45E-06	NA	NA	1.93E-06	
CO2e		-	1.00E-01	4.38E-01	NA	NA	1.00E-01	4.38E-01
	ING AIR SUING	LUTANT EMISSIC	3.54E+04	1.55E+05		NA	3.54E+04	1.55E+05
		SOURCE OF	EXPECTED		K 1113 300		EMISSIONS	
		EMISSION	(AFTER CONTR		(BEFORE CONT		(AFTER CONTI	
				ocor ciwino;		· · · · ·	(AFTER CONT	tons/yr
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR		tons/vr	lb/hr	tonstur	lb/br	tonsiyi
HAZARDOUS AIR POLLUTANT	CAS NO. 7440-36-0	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	2 395-0
Antimony	7440-36-0	FACTOR	lb/hr 5.46E-07	2.39E-06	NA	NA	5.46E-07	
Antimony Arsenic	7440-36-0 7440-38-2	FACTOR	lb/hr 5.46E-07 3.05E-06	2.39E-06 1.34E-05	NA NA	NA NA	5.46E-07 3.05E-06	1.34E-0
Antimony Arsenic Beryllium	7440-36-0 7440-38-2 7440-41-7	FACTOR	lb/hr 5.46E-07 3.05E-06 4.34E-07	2.39E-06 1.34E-05 1.90E-06	NA NA NA	NA NA NA	5.46E-07 3.05E-06 4.34E-07	1.34E-0 1.90E-0
Antimony Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9		lb/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07	2.39E-06 1.34E-05 1.90E-06 2.89E-06	NA NA NA NA	NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07	1.34E-0 1.90E-0 2.89E-0
Antimony Arsenic Beryllium Cadmium Chromium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	Manufacturer Estimates and	lb/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05	NA NA NA NA	NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05	1.34E-0 1.90E-0 2.89E-0 5.35E-0
Antimony Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3	Manufacturer Estimates and Compositional	lb/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05	NA NA NA NA NA	NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06	1.34E-00 1.90E-00 2.89E-00 5.35E-05 1.41E-05
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1	Manufacturer Estimates and	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06	NA NA NA NA NA NA	NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5	Manufacturer Estimates and Compositional	lb/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6	Manufacturer Estimates and Compositional	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0	Manufacturer Estimates and Compositional	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06	1.34E-0: 1.90E-0: 2.89E-0: 5.35E-0: 1.41E-0: 8.45E-0: 3.73E-0: 7.04E-0: 3.38E-0:
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	Manufacturer Estimates and Compositionat Analysis	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08	1.34E-0: 1.90E-0: 2.89E-0: 5.35E-0: 1.41E-0: 8.45E-0: 3.73E-0: 7.04E-0: 3.38E-0:
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	Manufacturer Estimates and Compositional	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06	1.34E-0: 1.90E-0: 2.89E-0: 5.35E-0: 1.41E-0: 8.45E-0: 3.73E-0: 7.04E-0: 3.38E-0:
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TO	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 (/C AIR POLLU)	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	5.46E-07 3.05E-06 4.34E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 9.15E-0 0
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 CAS NO.	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL	NA NA NA NA NA NA NA NA NA EMISSIONS A	NA NA NA NA NA NA NA NA NA SE	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 10NS
Antimony Arsenic Beryllium Cadmium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT H2SO4	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 (CAS NO. 7664-93-9	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h 1.00E	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL rr -01	NA NA NA NA NA NA NA NA NA EMISSIONS A	NA NA NA NA NA NA NA NA NA SE	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 10NS
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT H2SO4 Arsenic	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 (CAS NO. 7664-93-9 7440-38-2	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION FACTOR	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL rr -01	NA NA NA NA NA NA NA NA NA MA EMISSIONS A Ib/c 2.408	NA NA NA NA NA NA NA NA NA SE	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 10NS yr E+02
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT H2SO4 Arsenic Beryllium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 (IC AIR POLLUT) CAS NO. 7664-93-9 7440-38-2 7440-41-7	Manufacturer Estimates and Compositional Analysis Analysis SOURCE OF EMISSION FACTOR Manufacturer	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h 1.00E	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL IT -01 -06	NA NA NA NA NA NA NA NA NA MA EMISSIONS A Ib/c 2.408	NA NA NA NA NA NA NA NA FTER CONTR	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 COLS / LIMITAT	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 9.15E-0 10NS yr =+02 E-02
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT H2SO4 Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 (CAS NO. 7664-93-9 7440-38-2	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION FACTOR	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h 1.00E 3.05E	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL IT -01 -06 -07	NA NA NA NA NA NA NA NA NA MA MA EMISSIONS A Ib/c 2.400 7.331	NA NA NA NA NA NA NA NA FTER CONTR tay E+00 E-05 E-05	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 0LS / LIMITAT	1.34E-0 1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 10NS yr =+02 E-02 E-03
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT H2SO4 Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 (IC AIR POLLUT) CAS NO. 7664-93-9 7440-38-2 7440-41-7	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION FACTOR Manufacturer Estimates and	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h 1.00E 3.05E 4.34E	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL rr -01 -06 -07 -07	NA NA	NA NA NA NA NA NA NA NA SE FTER CONTR day E+00 E-05 E-05 E-05 E-05	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 COLS / LIMITAT Ib/ 8.761 2.67 3.80	1.34E-00 1.90E-00 2.89E-00 5.35E-00 3.73E-00 7.04E-00 3.38E-00 9.15E-00 10NS yr E+02 E-03 E-03
Antimony Arsenic Beryllium Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 (IC AIR POLLUT) CAS NO. 7664-93-9 7440-38-2 7440-38-3	Manufacturer Estimates and Compositional Analysis ANT EMISSIONS SOURCE OF EMISSION FACTOR Manufacturer Estimates and Compositional	Ib/hr 5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 INFORMATI EXPEC Ib/h 1.00E 3.055E 4.34E 6.55E	2.39E-06 1.34E-05 1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ON FOR TH TED ACTUAL IT -01 -06 -07 -05	NA NA NA NA NA NA NA NA NA MA MA MA CHISSIONS A Ib/c 2.400 7.331 1.044 1.58	NA NA NA NA NA NA NA NA NA TE FTER CONTR day E+00 E-05 E-05 E-05 E-05 E-05 E-03	5.46E-07 3.05E-06 4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 XOLS / LIMITAT Ib/ 8.761 3.80 5.77	yr =+02 =-02 =-03 =-03 =-01

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary J


FORM B9 EMISSION SOURCE (OTHER)

	sion of Air Quality - Application	for Air Permit to Construct/Opera	ate	B9
EMISSION SOURCE DESCRIPTION: STAR® Ash B	eneficiation	EMISSION SOURCE ID NO: ES-	-5	
		CONTROL DEVICE ID NO(S): C	D-5A & CD-5B	
OPERATING SCENARIO:1 OF	1	EMISSION POINT (STACK) ID N	IO(S): EP-5	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FL flyash (wet or dry) along with other ingredient materia propane burners are only used for startup or to maint startup burners have a combined heating capacity of	als into a variety of commercial pro tain temperature in the reactor sho	oducts. The fly ash is not a fuel and ould the fly ash not contain enough	does not undergo og	mbuetion The
MATERIALS ENTERING PROCESS - CO	NTINUOUS PROCESS	MAX. DESIGN	DEQUESTE	
TYPE	UNITS		REQUESTED	
Reactor - Feed Ash	MMBtu	CAPACITY (UNIT/HR) 140.0	LIMITATION	
Propane	MMBtu	60	NA	
, iopano		00	NA	
MATERIALS ENTERING PROCESS - I	BATCH OPERATION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	
		on non (on non (on no Arch)	EIMITATION (U	NIT/BATCH)
AXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	D).		
UEL USED: Propane				
OLL OOLD. I Topane		MUM FIRING RATE (MILLION BTU CAPACITY ANNUAL FUEL USE:		
AX. CAPACITY HOURLY FUEL USE: 663 gal/hr				

FORM C9 CONTROL DEVICE (OTHER)

REVISED 09/22/16	CDEQ/Division of Air Q	uality - Appli	cation for Air Permit to	Construct/Operate	Ð	C9	
CONTROL DEVICE ID NO: CD-5A			MISSIONS FROM WH			- Contraction of the second se	
EMISSION POINT (STACK) ID NO(S): EP-			SERIES OF CONTROL		OF 2 UNITS		
OPERATING S	CENARIO:						
	1		P.E. SEAL REQUIRED	(PER 2Q .0112)?	✓ YES	NO	
DESCRIBE CONTROL SYSTEM: Dry scrut	ber for SO2 removal						
POLLUTANT(S) COLLECTED:		SO2					
BEFORE CONTROL EMISSION RATE (LB	/HR):	513.6				-	
CAPTURE EFFICIENCY:	· · · · · ·	NA	%	%	%	%	
CONTROL DEVICE EFFICIENCY:	95		%	%	~ %		
CORRESPONDING OVERALL EFFICIENC	Y:	NA		%	_%	-%	
EFFICIENCY DETERMINATION CODE:	-	2		/	_ ^ _	- 1	
TOTAL AFTER CONTROL EMISSION RAT	E (LB/HR):	25.68					
		20100		(<u> </u>		_	
PRESSURE DROP (IN. H ₂ 0): <u>4</u> N	IN <u>10</u> MAX		BULK PARTICLE DEN	SITY /I B/FT3)- 150			
INLET TEMPERATURE (°F): 300 M			OUTLET TEMPERATU		150_MIN	225 MAX	
INLET AIR FLOW RATE (ACFM): 68,000 ad			OUTLET AIR FLOW R				
INLET AIR FLOW VELOCITY (FT/SEC):	and op. (object definition	Jigiti)	OUTLET AIR FLOW VI			ni design)	
INLET MOISTURE CONTENT (%): 28.2% c	n (25% design)		FORCED AIR	(
COLLECTION SURFACE AREA (FT ²): NA	P. (2010 deal911)		I FORCED AIR INDUCED AIR FUEL USED: NA FUEL USAGE RATE: NA				
DESCRIBE ANY AUXILIARY MATERIALS I	NTRODUCED INTO THE	E CONTROL S	SYSTEM: None				
DESCRIBE ANY MONITORING DEVICES,	GAUGES, TEST PORTS	S, ETC: Typica	I for this type of installa	ion.			
ATTACH A DIAGRAM OF THE RELATIONS	HIP OF THE CONTROL	DEVICE TO	ITS EMISSION SOURC	:E(S):			
COMMENTS:							
Attach manufactur	er's specifications, sch	ematics, and	all other drawings neo	cessary to describe	this control.		
	Attach Add	ditional Sh	neets As Necess	ary			

CONTROL DEVICE ID NO: CD-5B EMISSION POINT (STACK) ID NO(S):			lity - Application for Air P				C
EMISSION POINT (STACK) ID NO(S):		CONTROLS EMISSION	S FROM WHICH EMISSIO	ON SOURCE ID NO	D(S): ES-5		
77 7	· · · · · ·	POSITION IN SERIES C	OF CONTROLS			NO. 2 OF 2	UNITS
OPE	ERATING SCENARIO:						
DESCRIBE CONTROL SYSTEM:	_1OF		P.E. SEAL REQUIRED	(PER 2q .0112)?		VES	NO
baghouse for particulate control on t	the STAR® Ash Beneficiation	on Process.					
POLLUTANTS COLLECTED:			РМ	PM10	PM2.5		
SEFORE CONTROL EMISSION RATE	E (LB/HR):		NA	NA	NA		-
CAPTURE EFFICIENCY:			100 %			100 %	- %
CONTROL DEVICE EFFICIENCY:			>99.9 %	>99.9	% >99.9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- %
CORRESPONDING OVERALL EFFICI	IENCY.		<=0.025 gr/acf %	<=0.025 gr/acf	% <=0.025 gr/ac		- ⁷⁰ %
EFFICIENCY DETERMINATION CODE			2		2	2 70	- 70
TOTAL AFTER CONTROL EMISSION			1.61E+01	1.48E+0			-
			1.012+01	1.4dE+U	1 8.52E	+00	-
PRESSURE DROP (IN H20): MIN:	MAX: Avg: 4-12 wc	GAUGE?	I√ YES	NO			
BULK PARTICLE DENSITY (LB/FT ³): :	30		INLET TEMPERATURE	(°F):	MIN: 180	MAX: 200 (400 des	ign excursion)
OLLUTANT LOADING RATE:	LB/HR	↓J GR/FT ³ 371 (design)	OUTLET TEMPERATUR	RE (°F)	MIN: 175	MAX: 195 (400 des	sign excursion)
NLET AIR FLOW RATE (ACFM): 76,9	15		FILTER OPERATING TE	EMP (°F): 191			
O. OF COMPARTMENTS: 4	NO. OF BAGS PER C	OMPARTMENT: 169			LENGTH OF BAG (IN	v.): 315	
NO. OF CARTRIDGES:	FILTER SURFACE AR	REA PER CARTRIDGE (FT ²)	:		DIAMETER OF BAG	(IN.): 6	
TOTAL FILTER SURFACE AREA (FT ²	?): 26,790	AIR TO CLOTH RATIO:	2.87				
DRAFT TYPE: 1-1 INDUCED/N	EGATIVE	VI FORCED/POSITIVE		FILTER MATER	IAi ·	I I WOVEN	FELTED
							INCLIGU
DESCRIBE CLEANING PROCEDURE	S:					TICLE SIZE DISTRIBU	
ESCRIBE CLEANING PROCEDURE:		ISONIC			PAR	TICLE SIZE DISTRIBU	TION
		I ISONIC	Æ		PAR		
AIR PULSE		ISIMPLE BAG COLLAPS	E		PAR SIZE (MICRONS)	WEIGHT %	TION
I AIR PULSE			E		PAR SIZE (MICRONS) 0-1	WEIGHT %	
√IAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10	WEIGHT %	CUMULATIVE
√fAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10 10-25	WEIGHT %	CUMULATIVE
√fAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10 10-25 25-50	WEIGHT %	CUMULATIVE
√IAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WEIGHT %	
√IAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10 10-25 25-50	TICLE SIZE DISTRIBU WEIGHT % OF TOTAL	CUMULATIVE %
REVERSE FLOW ! MECHANICAL/SHAKER		I ISIMPLE BAG COLLAPS			PAR SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	TICLE SIZE DISTRIBU WEIGHT % OF TOTAL	CUMULATIVE
√IAIR PULSE REVERSE FLOW MECHANICAL/SHAKER OTHER:	The FGD byproduct entrain	I ISIMPLE BAG COLLAPS	rough baghouse for partic	ulate control	PAR SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 >100 See attached jpeg.	TICLE SIZE DISTRIBU WEIGHT % OF TOTAL	CUMULATIVE %

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

		n of Air Quality -	Application for	Air Permit to (Construct/Ope	erate		В
EMISSION SOURCE DESCRIPTION: FGD Byp	roduct Silo			EMISSION SO	OURCE ID NO	: ES-6		
				CONTROL DI	EVICE ID NO(S): CD-6		
OPERATING SCENARIO 1	OF	1		EMISSION PO	DINT (STACK)	ID NO(S): EP-	6	
DESCRIBE IN DETAILTHE EMISSION SOURC The byproduct solids from the dry FGD system a				2B) into a bypro	oduct storage s	ilo.		
TYPE OF EMISSION S	DURCE (CHEC	K AND COMPLE	TE APPROPRIA	TE FORM B1-	39 ON THE FO	LLOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)			ng (Form B4)				oatings/inks (Fo	m B7)
Int.combustion engine/generator (Form B2)		Coating/fini	shing/printing (Fo	orm B5)		ation (Form B8)		
Liquid storage tanks (Form B3)		l⊻ Storage silc	s/bins (Form B6)	Other (I	Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	ACTURED: 201	9			
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF	P. SCHEDULE:	24 HR/DA	Y <u>7</u> DAY	WK <u>52</u> WI	K/YR
IS THIS SOURCE SUBJECT TO?	PS (SUBPARTS	?):		NESH4	P (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25	MAR-MAY	25 JUN	N-AUG 25	SEP-NO	DV 25		
CRITERIA	AIR POLL	JTANT EMISS	IONS INFOR	RMATION FO	OR THIS SO	OURCE	The state	
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)			1.61E+01	7.04E+01	N/A	N/A	1.61E+01	7.04E+01
PARTICULATE MATTER<10 MICRONS (PM10)		Vendor/ AP-42	1.48E+01	6.48E+01	N/A	N/A	1.48E+01	6.48E+01
PARTICULATE MATTER<2.5 MICRONS (PM2.5)			8.52E+00	3.73E+01	N/A	N/A	8.52E+00	3.73E+01
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Lime Analysis	1.93E-06	8.45E-06	N/A	N/A	1.93E-06	8.45E-06
OTHER			N/A	N/A	N/A	N/A	N/A	N/A
HAZARDOU	JS AIR POL	LUTANT EMIS	SIONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Antimony	7440-36-0		5.46E-07	2.39E-06	N/A	N/A	5.46E-07	2.39E-0
Arsenic	7440-38-2				NI/A	N/A	3.05E-06	1.34E-0
Beryllium			3.05E-06	1.34E-05	N/A		0.000 001	
Dorymon	7440-41-7	-	3.05E-06 4.34E-07	1.34E-05 1.90E-06	N/A N/A	N/A	4.34E-07	1.90E-0
Cadmium	7440-41-7 7440-43-9							
		-	4.34E-07	1.90E-06	N/A	N/A	4.34E-07	2.89E-0
Cadmium	7440-43-9	Lime Analysis	4.34E-07 6.59E-07	1.90E-06 2.89E-06	N/A N/A	N/A N/A	4.34E-07 6.59E-07	2.89E-0 5.35E-0
Cadmium Chromium	7440-43-9 7440-47-3	Lime Analysis	4.34E-07 6.59E-07 1.22E-05	1.90E-06 2.89E-06 5.35E-05	N/A N/A N/A	N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05	2.89E-0 5.35E-0 1.41E-0
Cadmium Chromium Cobalt	7440-43-9 7440-47-3 7440-48-4	Lime Analysis	4.34E-07 6.59E-07 1.22E-05 3.21E-06	1.90E-06 2.89E-06 5.35E-05 1.41E-05	N/A N/A N/A N/A	N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06	2.89E-0 5.35E-0 1.41E-0 8.45E-0
Cadmium Chromium Cobalt Lead Manganese	7440-43-9 7440-47-3 7440-48-4 7439-92-1	Lime Analysis	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0
Cadmium Chromium Cobalt Lead Manganese Mercury	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5	Lime Analysis	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	-	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	Lime Analysis	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06	1.90E-0 2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	-	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A N/A N/A	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	ANT EMISSIC	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A N/A STER CONTR	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 IONS
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AR POLLUTANT	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 NR POLLUT	ANT EMISSIC	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM EXPEC	1.90E-06 2.89E-06 5.36E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL	N/A N/A N/A N/A N/A N/A N/A R THIS SOL	N/A N/A N/A N/A N/A N/A N/A N/A STER CONTR	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 9.15E-0 IONS
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic	7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 INF POLLUT CAS NO.	ANT EMISSIC	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM EXPEC	1.90E-06 2.89E-06 5.36E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL	N/A N/A N/A N/A N/A N/A N/A RTHIS SOL EMISSIONS A	N/A N/A N/A N/A N/A N/A N/A N/A FTER CONTR	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 OLS / LIMITAT	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 10NS
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC A TOXIC AIR POLLUTANT Arsenic Beryllium	7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 IR POLLUT CAS NO. 7440-38-2	ANT EMISSIC SOURCE OF EMISSION FACTOR	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM EXPEC Ib/t 3.05E	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL rr =-06 =-07	N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/(7.33	N/A N/A N/A N/A N/A N/A N/A N/A N/A FTER CONTR E-05 E-05	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 OLS / LIMITAT	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 3.38E-0 9.15E-0 10NS fyr E-02 E-03
Cadmium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AR POLLUTANT Arsenic Beryllium Cadmium	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 INF POLLUT CAS NO. 7440-38-2 7440-41-7	ANT EMISSIC	4.34E-07 6.59E-07 1.22E-05 3.21E-06 1.93E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM EXPECTION 10/1 3.05E 4.34E	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL Tr E-06 E-07 E-07	N/A N/A N/A N/A N/A N/A N/A R THIS SOL EMISSIONS A Ib/(7.33 1.04	N/A N/A N/A N/A N/A N/A N/A N/A N/A FTER CONTR iay E-05 E-05 E-05	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 OLS / LIMITAT Ib/ 2.67 3.80	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 9.15E-0 IONS Vyr E-02 E-03 E-03
Cadmium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC A	7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 IMP POLLUT CAS NO. 7440-38-2 7440-43-9	ANT EMISSIC SOURCE OF EMISSION FACTOR	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 DNS INFORM EXPEC 1b/r 3.05E 4.34E 6.59E	1.90E-06 2.89E-06 5.35E-05 1.41E-05 8.45E-06 3.73E-04 7.04E-08 3.38E-05 9.15E-06 ATION FOF CTED ACTUAL Tr E-06 E-07 E-07 E-05	N/A N/A N/A N/A N/A N/A N/A R THIS SOL EMISSIONS A Ib/c 7.33 1.04	N/A N/A N/A N/A N/A N/A N/A N/A N/A FTER CONTR day E-05 E-05 E-05 E-05 E-03	4.34E-07 6.59E-07 1.22E-05 3.21E-06 8.52E-05 1.61E-08 7.71E-06 2.09E-06 OLS / LIMITAT bb/ 2.67/ 3.80 5.77	2.89E-0 5.35E-0 1.41E-0 8.45E-0 3.73E-0 7.04E-0 3.38E-0 9.15E-0 9.15E-0 10NS

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B6
EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/	Divisi	on of Air Quality -	Application	for Air F	Permit to Cons	struct/Operate	B6
EMISSION SOURCE DESCR	IPTION: FGD Bypro	duct	Silo		E	EMISSION SOL	JRCE ID NO: ES-6	
					C	CONTROL DEV	/ICE ID NO(S): CD-6	
OPERATING SCENARIO:	1		OF1		E	MISSION POIL	NT (STACK) ID NO(S): EP-6	
DESCRIBE IN DETAIL THE								
The byproduct solids from the	e dry FGD system a	re disc	charged from the fa	bric filter ba	ghouse (CD-2B) into a t	byproduct storage silo.	
MATERIAL STORED: Byprod	ucts from EGD				DENSIT		AL (LB/FT3): 30 (Bulk) 95 (Structural)	
CAPACITY	CUBIC FEET: 3	192				7.9 (@ 30lb/ft ³		
DIMENSIONS (FEET)	HEIGHT: 64		DIAMETER: 13	(OR)	LENGTH		WIDTH: HEIGHT:	
ANNUAL PRODUCT TH			ACTUAL: TBD	(01)			IGN CAPACITY: 6,000	
PNEUMATICALLY		<i>"</i>		ICALLY FI			FILLED FROM	100
J-BLOWER		1.1						-
			SCREW CONVEY				RAILCAR	
COMPRESSOR		1.1	BELT CONVEYOR				TRUCK	
OTHER:				UR				
			OTHER:				OTHER: Dry Scrubber	
NO. FILL TUBES: 1								
MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO								
BY WHAT METHOD IS MATE Gravity	ERIAL UNLOADED	FROM	1 SILO?					
MAXIMUM DESIGN FILLING	RATE OF MATERIA	AL (TO	ONS/HR): TBD					
MAXIMUM DESIGN UNLOAD		· ·						
COMMENTS:								
Dry dust unloading spouts are Each spout also has it's own o	e telescoping spouts compact filter modu	s equiț le.	oped with small ven	tilation fans	that reci	rculate displace	ed air back to the top of the byproduct sto	rage silo.

	NCD	EQ/Division of Air Q	uality - Application for Al	r Permit to Constru	ct/Operate			C1
CONTROL DEVICE ID NO: CD-6			SIONS FROM WHICH EM					
EMISSION POINT (STACK) ID NO(S): EF	2-6	POSITION IN SER	IES OF CONTROLS			NO. 1 C)F 1	UNITS
OPERAT	ING SCENARIO:						_	
1	_OF_1		P.E. SEAL REQUIRED	(PER 2g .0112)?		I I YES		1~110
DESCRIBE CONTROL SYSTEM:								1-1
Bin vent filter for particulate control on the	FGD byproduct silo.							
POLLUTANTS COLLECTED:			PM	PM10	PM2.5			
BEFORE CONTROL EMISSION RATE (L	B/HR):		NA	NA	NA			-
CAPTURE EFFICIENCY:			NA %	NA	% NA			-
CONTROL DEVICE EFFICIENCY:			NA %	NA	% NA	%		- 70
CORRESPONDING OVERALL EFFICIEN	CY:		<=0.005 gr/dscf %	<=0.005 gr/dscf				_%
EFFICIENCY DETERMINATION CODE:	01.		2			2 /dscf %		_ %
TOTAL AFTER CONTROL EMISSION RA	TE (I B/HR):		4.50E-02	4.445.00				-
			4.50E-02	4.14E-02	Z.c	9E-02		-
PRESSURE DROP (IN H20): MIN: 4	MAX: 20	GAUGE?	√ YES					
BULK PARTICLE DENSITY (LB/FT ³): 25-3		GAUGET	INLET TEMPERATURE	(°E);	MAL CO	14434 05		
· · · · · · · · · · · · · · · · · · ·		GR/FT ³	OUTLET TEMPERATUR		MIN: 50 MIN: 50	MAX: 25 MAX: 25		
INLET AIR FLOW RATE (ACFM): 1050 SC			FILTER OPERATING TE		WIN: OU	IVIAX: 20	0	
NO. OF COMPARTMENTS: 1	NO. OF BAGS PER COM	MDARTMENT 18	THEFEIX OF ERATING IT	IVIF (F). 30-230	LENCTURE	(1) 100		
NO. OF CARTRIDGES:	FILTER SURFACE ARE		(FT ²).		LENGTH OF BAG			
TOTAL FILTER SURFACE AREA (FT ²): 2		AIR TO CLOTH RA			DIAMETER OF BA	G (IN.): 6		
DRAFT TYPE: INDUCED/NEG		FORCED/POSITIV		FILTER MATERIA		I I WOVEN	1.1	FELTED
	14	TTORGEDIT OUTIN						
DESCRIBE CLEANING PROCEDURES:								
DESCRIBE CLEANING PROCEDURES:		SONIC			P	ARTICLE SIZE I	DISTRIBU	TION
I I AIR PULSE		SONIC			P, SIZE	WEI	DISTRIBU GHT %	CUMULATIVE
AIR PULSE	1	SIMPLE BAG COLI			Pi SIZE (MICRONS)	WEI	DISTRIBU	TION
I ✓I AIR PULSE REVERSE FLOW IMECHANICAL/SHAKER	1				Pi SIZE (MICRONS) 0-1	WEI	DISTRIBU GHT %	CUMULATIVE
√ AIR PULSE REVERSE FLOW IMECHANICAL/SHAKER OTHER:		SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10	WEI	DISTRIBU GHT %	CUMULATIVE
I ✓I AIR PULSE REVERSE FLOW IMECHANICAL/SHAKER	 stream will contain FGD b	SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10 10-25	WEI	DISTRIBU GHT %	CUMULATIVE
I √I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: AIr	 stream will contain FGD b	SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10 10-25 25-50	WEI	DISTRIBU GHT %	CUMULATIVE
I √I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: AIr	 stream will contain FGD b	SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WEI	DISTRIBU GHT %	CUMULATIVE
I √I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: AIr	 stream will contain FGD b	SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10 10-25 25-50	WEI	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I √I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: AIr	 stream will contain FGD b	SIMPLE BAG COLLA	PSE		P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
 ↓ AIR PULSE ↓ REVERSE FLOW ↓ IMECHANICAL/SHAKER ↓ OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, time, and inerts from fresh time 	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I ✓I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %
I AIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER: DESCRIBE INCOMING AIR STREAM: Air carbonate, lime, and inerts from fresh lime	ן stream will contain FGD b	SIMPLE BAG COLLA RING BAG COLLA yproducts including c	PSE alcium sulfites and sulfate	s, calcium	P, SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, E	ARTICLE SIZE I WEIN OF 1	DISTRIBU GHT % FOTAL	TION CUMULATIVE %

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	NCDEQ/Divisio	on of Air Quality -	Application for	Air Permit to	Construct/Op	erate		B
EMISSION SOURCE DESCRIPTION: FGD Hyp	drated Lime Silo			EMISSION S	OURCE ID NO): ES-7		
				CONTROL D	EVICE ID NO(S): CD-7		
OPERATING SCENARIO 1	OF	1		-		ID NO(S): EP-	7	
DESCRIBE IN DETAILTHE EMISSION SOUR(Storage of absorbent (hydrated lime) used in the			DIAGRAM):	1				
TYPE OF EMISSION S	OURCE (CHEC	K AND COMPLE	TE APPROPRIA	TE FORM B1-	B9 ON THE FO	OLLOWING PA	GES)	
Coal,wood,oil, gas, other burner (Form B1)			ng (Form B4)			of chemicals/co		rm B7)
Int.combustion engine/generator (Form B2)		Coating/fini	shing/printing (Fo	orm B5)		ation (Form B8)	•	
Liquid storage tanks (Form B3)			s/bins (Form B6)			Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	ACTURED: 201	9	_	_	
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF			Y 7 DAY	/WK 52 WI	K/YR
IS THIS SOURCE SUBJECT TO?	PS (SUBPARTS	S?):	1	pena	AP (SUBPART		<u> 02</u> m	VIIV
PERCENTAGE ANNUAL THROUGHPUT (%):			25 JUN	V-AUG 25				
CRITERIA	AIR POLL	UTANT EMISS						
		SOURCE OF	EXPECTED		1		EMISSIONS	
		EMISSION	(AFTER CONTR		(REFORE CON	TROLS / LIMITS)	r	2010 (11472)
AIR POLLUTANT EMITTED		FACTOR	ib/hr	tons/yr	lb/hr	tons/yr	(AFTER CONTR ib/hr	
PARTICULATE MATTER (PM)		- morent	4.50E-02	1.97E-01	N/A			tons/yr
PARTICULATE MATTER<10 MICRONS (PM10)		Vendor/	4.14E-02	1.81E-01	N/A N/A	N/A N/A	4.50E-02 4.14E-02	1.97E-01
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		- AP-42	2.39E-02	1.04E-01	N/A N/A			
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	2.39E-02	1.04E-01
NITROGEN OXIDES (NOx)			N/A	N/A	N/A N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A		-	N/A	N/A	N/A
LEAD		Lime Analysis	5.40E-08	N/A 2.37E-07	N/A	N/A	N/A	N/A
OTHER		Cime Analysis	N/A	2.37E-07	N/A N/A	N/A	5.40E-08	2.37E-07
						N/A	N/A	N/A
HAZARDOU	IS AIR POL	LUTANT EMIS	SIONS INFO					
HAZARDOU	IS AIR POL	SOURCE OF	SIONS INFO	RMATION		SOURCE	EMISSIONS	
HAZARDOU	IS AIR POL	1		ACTUAL	FOR THIS :	SOURCE POTENTIAL	EMISSIONS	
HAZARDOU HAZARDOUS AIR POLLUTANT	CAS NO.	SOURCE OF	EXPECTED	ACTUAL	FOR THIS	POTENTIAL IROLS / LIMITS)	(AFTER CONTR	ROLS / LIM:TS)
		SOURCE OF EMISSION	EXPECTED (AFTER CONTR	ACTUAL OLS / LIMITS) tons/yr	FOR THIS : (BEFORE CON Ib/hr	SOURCE POTENTIAL IROLS / LIMITS) tons/yr	(AFTER CONTR Ib/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08	ACTUAL OLS/LIMITS) tons/yr 6.70E-08	(BEFORE CON Ib/hr N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A	(AFTER CONTR Ib/hr 1.53E-08	ROLS / LIMITS) tons/yr 6.70E-08
HAZARDOUS AIR POLLUTANT Antimony	CAS NO. 7440-36-0	SOURCE OF EMISSION	EXPECTED (AFTER CONTR Ib/hr	ACTUAL OLS/LIMITS) tons/yr 6.70E-08 3.74E-07	FOR THIS : (BEFORE CONT Ib/hr N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A	(AFTER CONTR lb/hr 1.53E-08 8.55E-08	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic	CAS NO. 7440-36-0 7440-38-2	SOURCE OF EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08	ACTUAL OLS / LIMITS) tons/yr 6.70E-08	FOR THIS : (BEFORE CON Ib/hr N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A	(AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium	CAS NO. 7440-36-0 7440-38-2 7440-41-7	SOURCE OF EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08	ACTUAL OLS/LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08	FOR THIS : (BEFORE CONT Ib/hr N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A	(AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9	SOURCE OF EMISSION	EXPECTED (AFTER CONTR 1.53E-08 8.55E-08 1.22E-08 1.85E-08	DRMATION DRMATION OLSTLINITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08	FOR THIS (9EFORE CON' Ib/hr N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A	(AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08	tons/yr tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07	Description ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06	FOR THIS : (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08	COLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08	Description ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07	FOR THIS (BEFORE CON Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07	Cols / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 3.42E-07 9.00E-08 5.40E-08	RMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06	Colls / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-96-5	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06	RMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10	Colls / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickel Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07	Coll S / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickei Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10	Coll S / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickel Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08	COLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickel Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR Lime Anaiysis	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM	RMATION ACTUAL OLS / LIMIYS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08	tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ONS
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Cobait Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 <i>IR POLLUT</i>	SOURCE OF EMISSION FACTOR Lime Anaiysis ANT EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM EXPEC	RMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR TED ACTUAL	FOR THIS : (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A	(AFTER CONTF Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ONS
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickei Selenium TOXIC AIR POLLUTANT Arsenic	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-6 7439-97-6 7440-02-0 7782-49-2 <i>IR POLLUT</i> CAS NO.	SOURCE OF EMISSION FACTOR Lime Anaiysis ANT EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM EXPEC	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR TED ACTUAL r -08	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 OLS / LIMITATI	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 9.46E-07 2.56E-07 ONS yr E-04
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR POLLUTANT Arsenic Beryllium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7439-97-6 7439-97-6 7440-02-0 7782-49-2 <i>JR POLLUT</i>	SOURCE OF EMISSION FACTOR Lime Anaiysis ANT EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM EXPEC Ib/h 8.55E	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR TED ACTUAL r -08	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 OLS / LIMITATI	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-06 9.46E-07 2.56E-07 0NS yr E-04 E-04
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Cobait Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7439-92-1 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 <i>IR POLLUT</i> CAS NO. 7440-38-2 7440-41-7	SOURCE OF EMISSION FACTOR Lime Anaiysis ANT EMISSION	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM EXPEC Ib/h 8.55E 1.22E	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR TED ACTUAL r -08 -08	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL TROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 OLS / LIMITATI Ib/; 7.49E 1.06E	ROLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-06 1.97E-05 9.46E-07 2.56E-07 0NS yr E-04 E-04 E-04
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Cobait Lead Manganese Mercury Nickel Selenium TOXIC A	CAS NO. 7440-36-0 7440-38-2 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-44-7 7439-92-1 7439-96-5 7440-02-0 7782-49-2 IR POLLUT CAS NO. 7440-38-2 7440-38-3	SOURCE OF EMISSION FACTOR Lime Anaiysis ANT EMISSION FACTOR	EXPECTED (AFTER CONTR Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 DNS INFORM EXPEC Ib/h 8.55E 1.22E 1.85E	PRMATION ACTUAL OLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 ATION FOR ************************************	FOR THIS (BEFORE CON' Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL TROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTE Ib/hr 1.53E-08 8.55E-08 1.22E-08 1.85E-08 3.42E-07 9.00E-08 5.40E-08 2.39E-06 4.50E-10 2.16E-07 5.85E-08 OLS / LIMITATI Ib/ 7.49E 1.06E 1.62E	COLS / LIMITS) tons/yr 6.70E-08 3.74E-07 5.32E-08 8.08E-08 1.50E-06 3.94E-07 2.37E-07 1.04E-05 1.97E-09 9.46E-07 2.56E-07 CONS yr E-04 E-04 E-04 E-02

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Storage of absorbent (hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD TONS: 78.0 DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED FILLED FILLED FOM [] BLOWER SCREW CONVEYOR RAILCAR COMPRESSOR BLOWER BUCKET ELEVATOR STORAGE PILE OTHER: BUCKET ELEVATOR STORAGE PILE NO. FILL TUBES: 1 MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD SY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 25	REVISED 09/22/16	NCDEQ)/Divis	ion of Air Qu	ality - Ap	plicatio	n for Ai	r Permit to Cor	nstruct/Operate	B6
COPERATING SCENARIO:	EMISSION SOURCE DESCRIP	PTION: FGD Hyd	Irated L	ime Silo				EMISSION SO	DURCE ID NO: ES-7	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Storage of absorbent (hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD TONS: 78.0 DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED FILLED FILLED FOM [] BLOWER SCREW CONVEYOR RAILCAR COMPRESSOR BLOWER BUCKET ELEVATOR STORAGE PILE OTHER: BUCKET ELEVATOR STORAGE PILE NO. FILL TUBES: 1 MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD SY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 25								CONTROL DE	VICE ID NO(S): CD-7	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Storage of absorbent (hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD system. MATERIAL STORED: Hydrated lime) used in the dry FGD TONS: 75.0 DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 FILLED FROM J BLOWER J BLOWER J BLOWER J BLOWER J BLOWER J BLOWER J BLOKET ELEVATOR J BLOKET ELEVATOR J BLOKET ELEVATOR J BLOKET ELEVATOR MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD SY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	OPERATING SCENARIO:		1	OF	1					
CAPACITY CUBIC FEET: 6,000 TONS: 75.0 DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED FILLED FROM I SCREW CONVEYOR I RAILCAR I BELT CONVEYOR I RAILCAR I BELT CONVEYOR I STORAGE PILE I BUCKET ELEVATOR I STORAGE PILE IOTHER: I BUCKET ELEVATOR I STORAGE PILE INO. FILL TUBES: 1 I OTHER: OTHER: OTHER: IMAXIMUM ACFM: 1,050 MATERIAL UNLOADED FROM SILO? MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 26					A):					
CAPACITY CUBIC FEET: 6,000 TONS: 75.0 DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (OR) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED FILLED FROM I SCREW CONVEYOR I RAILCAR I BELT CONVEYOR I RAILCAR I BELT CONVEYOR I STORAGE PILE I BUCKET ELEVATOR I STORAGE PILE IOTHER: I BUCKET ELEVATOR I STORAGE PILE INO. FILL TUBES: 1 I OTHER: OTHER: OTHER: IMAXIMUM ACFM: 1,050 MATERIAL UNLOADED FROM SILO? MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 26	MATERIAL STORED: Hydrater	lime					DENSI			
DIMENSIONS (FEET) HEIGHT: 65.8 DIAMETER: 15 (<i>OR</i>) LENGTH: WIDTH: HEIGHT: ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED MECHANICALLY FILLED MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED MECHANICALLY FILLED MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED MECHANICALLY FILLED MECHANICALLY FILLED MAXIMUM DESIGN L' I RAILCAR BLOWER SCREW CONVEYOR I RAILCAR BELT CONVEYOR II BELT CONVEYOR II STORAGE PILE OTHER: II BUCKET ELEVATOR II STORAGE PILE III NO. FILL TUBES: 1 III OTHER: OTHER: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1	6.000						IAL (LB/F13): 30 (DUIK), 95 (Structural)	
ANNUAL PRODUCT THROUGHPUT (TONS) ACTUAL: 2,497 MAXIMUM DESIGN CAPACITY: 4,161 PNEUMATICALLY FILLED FILLED FROM I SCREW CONVEYOR I I COMPRESSOR I I BLOWER I I BELT CONVEYOR I I BELT CONVEYOR I I BUCKET ELEVATOR I I MAXIMUM ACFM: 1,050 OTHER: MAXIMUM ACFM: 1,050 I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					15	-				
PNEUMATICALLY FILLED MECHANICALLY FILLED FILLED FROM [7] BLOWER SCREW CONVEYOR RAILCAR COMPRESSOR BELT CONVEYOR RAILCAR OTHER: BUCKET ELEVATOR STORAGE PILE OTHER: OTHER: OTHER: MAXIMUM ACFM: 1,050 OTHER: OTHER: MAXIMUM ACFM: 1,050 SMATERIAL UNLOADED FROM SILO? NA MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475		-				(0/)	LENG			_
Image: Construction of the construc			(5)					MAXIMUM DE		
I COMPRESSOR I BELT CONVEYOR I TRUCK I OTHER: I BUCKET ELEVATOR I STORAGE PILE OTHER: OTHER: OTHER: OTHER: OTHER: MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD MATERIAL IS UNLOADED TO: Material is sent to dry FGD BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475							LLED		FILLED FROM	_
I OTHER: I BUCKET ELEVATOR I STORAGE PILE OTHER: OTHER: OTHER: MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA									RAILCAR	
OTHER: OTHER:	COMPRESSOR		11	BELT CONV	'EYOR				V TRUCK	
NO. FILL TUBES: 1 MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	OTHER:			BUCKET EL	EVATOR				STORAGE PILE	
MAXIMUM ACFM: 1,050 MATERIAL IS UNLOADED TO: Material is sent to dry FGD BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475				OTHER:					OTHER:	
MATERIAL IS UNLOADED TO: Material is sent to dry FGD BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	NO. FILL TUBES: 1									
BY WHAT METHOD IS MATERIAL UNLOADED FROM SILO? NA MAXIMUM DESIGN FILLING RATE OF MATERIAL (TONS/HR): 25 MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	MAXIMUM ACFM: 1,050									
MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	BY WHAT METHOD IS MATER NA	RIAL UNLOADED) FROM	/I SILO?						
MAXIMUM DESIGN UNLOADING RATE OF MATERIAL (TONS/HR): 0.475	MAXIMUM DESIGN FILLING R			NS/UD)- 26						
			_				_			
	COMMENTS:									

REVISED 09/22/16	NCDEQ/Division of Air Q	uality - Application for A	ir Permit to Construc	t/Operate					C1
CONTROL DEVICE ID NO: CD-7	CONTROLS EMIS	SIONS FROM WHICH EM	ISSION SOURCE ID	NO(S): ES-7					
EMISSION POINT (STACK) ID NO(S): EP-7	POSITION IN SER	RIES OF CONTROLS			NO.	1 (OF	1 U	INITS
OPERATING SCENARIO:									
0F		P.E. SEAL REQUIRED	(PER 2q .0112)?		11	YES		Ŀ	/I NO
DESCRIBE CONTROL SYSTEM: Bin vent filter for particulate control on the FGD hydrated lime s	storage silo.								
POLLUTANTS COLLECTED:		PM	PM10	DMD 5			_		
BEFORE CONTROL EMISSION RATE (LB/HR):		NA	NA	PM2.5					
CAPTURE EFFICIENCY:		NA %	NA	% NA		%			
CONTROL DEVICE EFFICIENCY:		NA %	NA	% NA		%		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3
CORRESPONDING OVERALL EFFICIENCY:		<=0.005 gr/dscf %	<=0.005 gr/dscf		gr/dscf	-			9
EFFICIENCY DETERMINATION CODE:		2	2-0.003 girdaci	<pre>c</pre>	2			7	5
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		4.50E-02	4.14E-02		2.39E-02				
. ,				-		-	-		
PRESSURE DROP (IN H ₂ 0): MIN: 4 MAX: 20	GAUGE?	IVI YES	I NO						
BULK PARTICLE DENSITY (LB/FT ³): 25-30		INLET TEMPERATURE	: (°F):	MIN: 50		MAX: 2	50		
POLLUTANT LOADING RATE: NA		OUTLET TEMPERATU	RE (°F)	MIN: 50		MAX: 2	50		
INLET AIR FLOW RATE (ACFM): 1,050 SCFM		FILTER OPERATING T	EMP (°F): 50-250						
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER	COMPARTMENT: 16			LENGTH OF B	AG (IN.): 1	20			
NO. OF CARTRIDGES: FILTER SURFACE	AREA PER CARTRIDGE	(FT ²):		DIAMETER OF	BAG (IN.): 6			
TOTAL FILTER SURFACE AREA (FT ²): 259	AIR TO CLOTH RA	ATIO: 4:1							
DRAFT TYPE: IVINDUCED/NEGATIVE	J-FORCED/POSITIV	E	FILTER MATERIA	L:	- 11	WOVEN	N	√ F	ELTED
DESCRIBE CLEANING PROCEDURES:	_				PARTIC	LE SIZE	DISTR	RIBUTK	M
AIR PULSE	SONIC			SIZE		WE	IGHT 9	%	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL	LAPSE		(MICRON	IS)	OF	TOTA	L	%
MECHANICAL/SHAKER	RING BAG COLLA	PSE		0-1					
OTHER:				1-10					
DESCRIBE INCOMING AIR STREAM: Air stream will contain h	ydrated lime.			10-25					
				25-50					
				50-100					
				>100					
							٦	TOTAL :	= 100
				Supplier specific	c, 80% (a	verage s	ize) pa	issing 3	25 mesh
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING TH	E RELATIONSHIP OF TH	HE CONTROL DEVICE TO	TTS EMISSION SOU	RCE(S):		_			
COMMENTS:									
	Attach Add	litional Sheets As	Nacassa						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES) **REVISED 09/22/16** NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate В EMISSION SOURCE DESCRIPTION: EHE - External Heat Exchanger A EMISSION SOURCE ID NO: ES-8 CONTROL DEVICE ID NO(S): CD-8 OPERATING SCENARIO OF EMISSION POINT (STACK) ID NO(S): EP-8 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Process heat exchanger uses preheated air and hot water to dry ash TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7) Incineration (Form B8) Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Storage silos/bins (Form B6) Liquid storage tanks (Form B3) Other (Form B9) START CONSTRUCTION DATE: 2019 DATE MANUFACTURED: 2019 MANUFACTURER / MODEL NO.: NA EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YR IS THIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) AIR POLLUTANT EMITTED FACTOR lb/hr tons/yr lb/hr tons/yr ib/hr tons/y PARTICULATE MATTER (PM) 6.86E+00 3.00E+01 N/A N/A 6.86E+00 3.00E+01 Vendor/ PARTICULATE MATTER<10 MICRONS (PM12) 6.31E+00 2.76E+01 N/A N/A 6.31E+00 2.76E+01 AP-42 PARTICULATE MATTER<2.5 MICRONS (PM2 s) 3.63E+00 1.59E+01 N/A N/A 3.63E+00 1.59E+01 SULFUR DIOXIDE (SO2) N/A N/A N/A N/A N/A N/A NITROGEN OXIDES (NOx) N/A N/A N/A N/A N/A N/A CARBON MONOXIDE (CO) N/A N/A N/A N/A N/A N/A VOLATILE ORGANIC COMPOUNDS (VOC) N/A N/A N/A N/A N/A N/A LEAD Ash Analysis 1.10E-04 4.81E-04 N/A N/A 1.10E-04 4.81E-04 OTHER N/A NI/A N/A N/A N/A N/A HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS **EMISSION** (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO. FACTOR lb/hr tons/vr ib/hr tons/yr lb/hr tons/yr Antimony 7440-36-0 5.35E-05 2.34E-04 N/A N/A 5.35E-05 2.34E-04 Arsenic 7440-38-2 4.09E-04 1.79E-03 N/A N/A 4.09E-04 1.79E-03 Beryllium 7440-41-7 2.13E-05 9.34E-05 N/A N/A 2.13E-05 9.34E-05 Cadmium 7440-43-9 3.29E-06 1.44E-05 N/A N/A 3.29E-06 1.44E-05 Chromium 7440-47-3 1.30E-04 5.69E-04 N/A 5.69E-04 N/A 1.30E-04 Chromium VI SolCR6 6.79E-06 2.97E-05 N/A N/A 6 79E-06 2 97E-05 Ash Analysis Cobalt 7440-48-4 7.39E-05 3.23E-04 N/A N/A 7.39E-05 3 23E-04 Lead 7439-92-1 1.10E-04 4.81E-04 N/A 1 10E-04 4 81E-04 N/A Manganese 7439-96-5 5.35E-04 2.34E-03 N/A 5 35E-04 2.34E-03 N/A Mercury 7439-97-6 1.71E-06 7.51E-06 7.51E-06 N/A N/A 1.71E-06 Nickel 7440-02-0 1.46E-04 6.42E-04 6.42E-04 N/A N/A 1.46E-04 Selenium 7782-49-2 9.65E-05 4.23E-04 N/A N/A 9.65E-05 4.23E-04 TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION TOXIC AIR POLLUTANT CAS NO. FACTOR lb/hr lb/day lb/yr Arsenic 7440-38-2 4.09E-04 9.83E-03 3.59E+00 Beryllium 7440-41-7 2.13E-05 5.12E-04 1.87E-01 Cadmium 7440-43-9 3.29E-06 2.88E-02 7.90E-05 Chromium VI SolCR6 Ash Analysis 6.79E-06 1.63E-04 5.95E-02 Manganese 7439-96-5 5.35E-04 4.68E+00 1.28E-02 Mercury 7439-97-6 1.71E-06 4.11E-05 1.50E-02 Nickel 7440-02-0 1.46E-04 3.52E-03 1.28E+00 Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B

FORM B9 EMISSION SOURCE (OTHER)

EMISSION SOURCE DESCRIPTION: EHE - External Heat Exchanger A		or Air Permit to Construct/Operat	e	B9
	ł	EMISSION SOURCE ID NO: ES-8	}	
		CONTROL DEVICE ID NO(S): CE	0-8	
OPERATING SCENARIO: 0F		EMISSION POINT (STACK) ID NO	D(S): EP-8	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): P	rocess heat exc	hanger uses preheated air and hot	water to dry ash.	
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	
TYPE	UNITS	4 1		
Fly Ash		CAPACITY (UNIT/HR)	LIMITATION(
гу Азп	Tons	35.0	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATIO	DN	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	Later			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y			
FUEL USED: NA	1	MUM FIRING RATE (MILLION BTU		
MAX. CAPACITY HOURLY FUEL USE: NA COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE: I	NA	

REVISED 09/22/16	CDEQ/Division of Air 0	Quality - Application for Ai	ir Permit to Construc	t/Operate				C1
CONTROL DEVICE ID NO: CD-8	CONTROLS EMIS	SSIONS FROM WHICH EM	ISSION SOURCE ID	NO(S): ES-8				
EMISSION POINT (STACK) ID NO(S): EP-8	POSITION IN SEP	RIES OF CONTROLS			NO. 1	OF	1 UNITS	
OPERATING SCENARIO:								
OF_1		P.E. SEAL REQUIRED	(PER 2q .0112)?		171 YES	S	I I NO	
DESCRIBE CONTROL SYSTEM: Baghouse for particulate control on EHE - External Heat Exchan-	ger A.							
POLLUTANTS COLLECTED:		PM	PM10	PM2.5		_		
BEFORE CONTROL EMISSION RATE (LB/HR):		NA	NA	NA				
CAPTURE EFFICIENCY:		NA %	NA	% NA	%		%	
CONTROL DEVICE EFFICIENCY:		99.95 %	99.95	%	99.95 %		%	
CORRESPONDING OVERALL EFFICIENCY:		<=0.025 gr/dscf %	<=0.025 gr/dscf	% <=0.025 g	r/dscf %		%	
EFFICIENCY DETERMINATION CODE:		2	2		2			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		6.86E+00	6.31E+00	3.	63E+00			
PRESSURE DROP (IN H ₂ 0); MIN: MAX: 10	GAUGE?	VI YES	I NO					
BULK PARTICLE DENSITY (LB/FT ³): 60		INLET TEMPERATURE		MIN: 180	MA	X: 325		
POLLUTANT LOADING RATE: NA	βR/FT ²	OUTLET TEMPERATUR	RE (°F)	MIN: 150	MA	X: 300		
INLET AIR FLOW RATE (ACFM): 32,000 scfm		FILTER OPERATING T						
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER (COMPARTMENT: 528			LENGTH OF BAG	G (IN.): 26.2	5 Ft		
NO. OF CARTRIDGES: FILTER SURFACE A	REA PER CARTRIDGE	: (FT ²);		DIAMETER OF B				
TOTAL FILTER SURFACE AREA (FT ²): 20,925	AIR TO CLOTH R	ATIO: 3:1						
DRAFT TYPE: IVINDUCED/NEGATIVE	I FORCED/POSITIN		FILTER MATERIA	L:	I IWO	VEN	IVI FELTED	
DESCRIBE CLEANING PROCEDURES:					PARTICLE S	ZE DIST		1.2
AIR PULSE	SONIC			SIZE		WEIGHT	% CUMU	LATIVE
REVERSE FLOW	SIMPLE BAG COL	LLAPSE		(MICRONS	S)	OF TOTA	. I .	%
MECHANICAL/SHAKER	RING BAG COLLA	APSE		0-1	-			
OTHER:				1-10				
DESCRIBE INCOMING AIR STREAM: Air stream will contain fly a	ash.			10-25				
				25-50				
				50-100				
				>100				
					- *		TOTAL = 100	
				Particle Size Dist	ribution 0-10	0 micron \	with an average	of 20
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE	RELATIONSHIP OF T	HE CONTROL DEVICE TO	TS EMISSION SOU		-			
COMMENTS:								

REVISED 09/22/16	NCDEQ/Division	of Air Quality -	Application for	Air Permit to	ED FOR A Construct/Op			В
EMISSION SOURCE DESCRIPTION: EH					OURCE ID NO			
					EVICE ID NO			
OPERATING SCENARIO 1	OF	1			DINT (STACK)		0	
DESCRIBE IN DETAILTHE EMISSION SO				EMISSION P	JINT (STACK)	10 NO(5): EP	-9	
Process heat exchanger uses preheated a			Dironam).					
TYPE OF EMISSIO	N SOURCE (CHECI		E APPROPRIA	TE FORM B1-	B9 ON THE FO		AGES):	
Coal,wood,oil, gas, other burner (Forr		Woodworki	ng (Form B4)		Manuf.	of chemicals/c	oatings/inks (F	Form B7)
Int.combustion engine/generator (For	m B2)		shing/printing (F	,		ation (Form B8)	
Liquid storage tanks (Form B3)		L Storage sil	os/bins (Form B6	i)	🗹 Other (Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 201	9			
MANUFACTURER / MODEL NO.: NA			EXPECTED OP	SCHEDULE:	HR/DA	Y <u>7</u> DAY	//WK <u>52</u> W	VK/YR
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	\$?):		NESH/	AP (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT					25 SEP-			
CRITE	RIA AIR POLLU	ITANT EMISS	IONS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Vender	6.86E+00	3.00E+01	N/A	N/A	6.86E+00	3.00E+0
PARTICULATE MATTER<10 MICRONS (PM	fi10)	Vendor/ AP-42	6.31E+00	2.76E+01	N/A	N/A	6.31E+00	2.76E+0
PARTICULATE MATTER<2.5 MICRONS (PI	M _{2.5})		3.63E+00	1.59E+01	N/A	N/A	3.63E+00	1.59E+01
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VO	C)		N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	1.10E-04	4.81E-04	N/A	N/A	1.10E-04	4.81E-04
OTHER			N/A	N/A	N/A	N/A	N/A	N/A
HAZARI	DOUS AIR POLI	UTANT EMIS	SSIONS INFO	RMATION	FOR THIS	SOURCE	- n 17	
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTRI	OLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
	CAS NO.					4		tons/yr
HAZARDOUS AIR POLLUTANT	OAG NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tonary
HAZARDOUS AIR POLLUTANT Antimony	7440-36-0	FACTOR	lb/hr 5.35E-05	tons/yr 2.34E-04	lb/hr N/A	N/A	lb/hr 5.35E-05	
Antimony		FACTOR						2.34E-
Antimony Arsenic	7440-36-0	FACTOR	5.35E-05	2.34E-04	N/A	N/A	5.35E-05	2.34E- 1.79E-
	7440-36-0 7440-38-2	FACTOR	5.35E-05 4.09E-04	2.34E-04 1.79E-03	N/A N/A	N/A N/A	5.35E-05 4.09E-04	2.34E- 1.79E- 9.34E-
Antimony Arsenic Beryllium	7440-36-0 7440-38-2 7440-41-7	FACTOR	5.35E-05 4.09E-04 2.13E-05	2.34E-04 1.79E-03 9.34E-05	N/A N/A N/A	N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05	2.34E- 1.79E- 9.34E- 1.44E-
Antimony Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06	2.34E-04 1.79E-03 9.34E-05 1.44E-05	N/A N/A N/A N/A	N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06	2.34E- 1.79E- 9.34E- 1.44E- 5.69E-
Antimony Arsenic Beryllium Cadmium Chromium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	FACTOR Ash Analysis	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E- 2.34E- 2.34E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-43-4 8olCR6 7440-48-4 7439-92-1 7439-96-5	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E- 2.34E- 7.51E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury	7440-36-0 7440-38-2 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-4 7440-48-4 7439-92-1 7439-92-5 7439-97-6	-	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E- 2.34E- 7.51E- 6.42E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-43-9 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-92-5 7439-97-6 7440-02-0	Ash Analysis	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E- 2.34E- 7.51E- 6.42E-
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-4 7440-48-4 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2	Ash Analysis	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXI	7440-36-0 7440-38-2 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-4 7440-48-4 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2	Ash Analysis ANT EMISSIC	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM	2.34E-04 1.79E-03 9.34E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATTON FOI TED ACTUAL	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 72 AIR POLLUT	Ash Analysis ANT EMISSIC SOURCE OF EMISSION	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC	2.34E-04 1.79E-03 9.34E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI TED ACTUAL	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 OLS / LIMITAT	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXI AIR POLLUTANT	7440-36-0 7440-38-2 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 CAIR POLLUT CAS NO.	Ash Analysis ANT EMISSIC SOURCE OF EMISSION	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI TED ACTUAL r -04	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 OLS / LIMITAT	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E TIONS /yr E+00
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium	7440-36-0 7440-38-2 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-92-1 7439-97-6 7440-02-0 7782-49-2 IC AIR POLLUT CAS NO. 7440-38-2	Ash Analysis ANT EMISSIC SOURCE OF EMISSION	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC Ib/h 4.09E	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI TED ACTUAL r -04 -05	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 OLS / LIMITAT	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E TIONS /yr E+00 E-01
Antimony Ansenic Beryllium Cadmium Chromium Chromium Chromium U Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	7440-36-0 7440-33-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-92-1 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-38-2 7440-38-2 7440-41-7	Ash Analysis ANT EMISSIC SOURCE OF EMISSION	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC Ib/h 4.09E 2.13E	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI TED ACTUAL r -04 -05 -06	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 0LS / LIMITAT Ib. 3.591 1.87	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E (10NS (yr E+00 E-01 E-02
Antimony Antsenic Beryllium Cadmium Chromium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7440-36-0 7440-33-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-92-1 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-38-2 7440-38-2 7440-41-7 7440-43-9	Ash Analysis ANT EMISSIC SOURCE OF EMISSION FACTOR	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC Ib/h 4.09E 2.13E 3.29E	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 2.34E-03 7.51E-06 6.42E-04 4.23E-04 ATION FOI TED ACTUAL r -04 -05 -06 -06	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 OLS / LIMITAT Ib 3.599 1.87 2.88	2.34E 1.79E 9.34E 1.44E 5.69E 2.97E 3.23E 4.81E 2.34E 7.51E 6.42E 4.23E (Vyr E+00 E-01 E-02 E-02
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-33-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-92-1 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-02-0 7782-49-2 7440-38-2 7440-38-2 7440-41-7 7440-43-9 SolCR6	Ash Analysis ANT EMISSIC SOURCE OF EMISSION FACTOR	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 DNS INFORM EXPEC Ib/h 4.09E 2.13E 3.29E 6.79E	2.34E-04 1.79E-03 9.34E-05 1.44E-05 5.69E-04 2.97E-05 3.23E-04 4.81E-04 4.23E-04 4.23E-04 ATION FOI TED ACTUAL r -04 -05 -06 -04	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	5.35E-05 4.09E-04 2.13E-05 3.29E-06 1.30E-04 6.79E-06 7.39E-05 1.10E-04 5.35E-04 1.71E-06 1.46E-04 9.65E-05 0LS / LIMITAT Ib 3.599 1.87 2.88 5.95	2.34E- 1.79E- 9.34E- 1.44E- 5.69E- 2.97E- 3.23E- 4.81E- 2.34E- 7.51E- 6.42E- 4.23E- 7.51E- 6.42E- 4.23E- 7.51E- 6.42E- 4.23E- 7.51E- 6.42E- 4.23E- 7.51E- 6.42E- 1.42E- 7.51E- 6.42E- 1.42E- 7.51E- 6.42E- 1.42E- 7.51E- 6.42E- 1.42E- 7.51E- 6.42E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.42E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 1.52E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.51E- 7.52E-

FORM B ECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES

FORM B9 EMISSION SOURCE (OTHER)

EMISSION SOURCE ID CONTROL DEVICE ID N EMISSION POINT (STA heat exchanger uses preheated a MAX. DESIGN ITS CAPACITY (UNIT/H	NO(S): CD-9 ACK) ID NO(S): EP-9
EMISSION POINT (STA heat exchanger uses preheated a MAX. DESIGN	ICK) ID NO(S): EP-9 air and hot water to dry ash.
heat exchanger uses preheated a	air and hot water to dry ash.
MAX. DESIGN	
	REQUESTED CAPACITY
CAPACITY (UNIT/P	
ons 35.0	
ons 35.0	N/A
MAX, DESIGN	REQUESTED CAPACITY
CHES/YR):	
L MAXIMUM FIRING RATE (MILL	LION BTU/HR): NA
JESTED CAPACITY ANNUAL FU	
	MAX. DESIGN ITS CAPACITY (UNIT/BA

	SIONS FROM WHICH EM		NO(S): ES-9	NO. 1 O	- 1	UNITS
		(PER 2q .0112)?			- 1	
	P.E. SEAL REQUIRED	(PER 2q .0112)?		√∦ES		1 110
	P.E. SEAL REQUIRED	(PER 2q .0112)?		ôES		I INO
	PM	PM10	PM2.5			
	NA		-			-
	NA %	NA	-	%		- %
	99.95 %	99.95		99.95 %		- %
	<=0.025 gr/dscf %		-			~ ~
						-
						-
GAUGE?	V YES	E NO			_	
			MIN: 180	MAX: 325		
GR/FT ³	OUTLET TEMPERATUR	RE (°F)			_	
	FILTER OPERATING TE	EMP (°F): 250				
ARTMENT: 528			LENGTH OF BAG	(IN.): 26.25 Ft		
PER CARTRIDGE	(FT ²):					
AIR TO CLOTH RA	TIO: 3:1					
		FILTER MATERIA	۱L:	WOVEN	1	FELTED
			Р	ARTICLE SIZE D		
SONIC			SIZE	WEIG	HT %	CUMULATIVE
SIMPLE BAG COLI	APSE		(MICRONS)			%
RING BAG COLLA	PSE					1
						· · · · ·
			- 100		TOT	L = 100
			Particle Size Distri	bution 0-100 mic		
ATIONSHIP OF TH	E CONTROL DEVICE TO	ITS EMISSION SOL			0.1 999L(3 D	
	GR/FT ³ ARTMENT: 528 PER CARTRIDGE (AIR TO CLOTH RA FORCED/POSITIVI SONIC SIMPLE BAG COLLA ATIONSHIP OF TH	NA NA NA 99.95 99.95 % 2 6.86E+00 GAUGE? I/-I YES INLET TEMPERATURE GR/FT ³ OUTLET TEMPERATURE FILTER OPERATING TE FILTER OPERATING TE ARTMENT: 528 FILTER OPERATING TE PER CARTRIDGE (FT ²): NIR TO CLOTH RATIO: 3:1 FORCED/POSITIVE SONIC SMPLE BAG COLLAPSE NING BAG COLLAPSE XING BAG COLLAPSE ATIONSHIP OF THE CONTROL DEVICE TO	NA NA NA NA NA NA NA NA NA NA 99.95 % 99.95 <=0.025 gr/dscf	NA NA NA 99.95 99.95 Sector 2 2 2 6.86E+00 6.31E+00 3.6 GRUE? I VES I NO INLET TEMPERATURE (*F): MIN: 180 GR/FT ³ OUTLET TEMPERATURE (*F): MIN: 180 GR/FT ³ OUTLET TEMPERATURE (*F): MIN: 150 FILTER OPERATING TEMP (*F): 250 ARTMENT: 528 LENGTH OF BAG PER CARTRIDGE (FT ²): DIAMETER OF BAG NA ORCED/POSITIVE FILTER MATERIAL: FILTER MATERIAL: SONIC SIZE (MICRONS) IMR BAG COLLAPSE 0-1 1-10 IN/G BA	NA NA NA NA NA NA NA NA % NA % NA NA % NA % NA 99.95 % 99.95 % 99.95 %	NA NA NA NA % Source 99.95 % 99.95 % ====================================

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES) NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate **REVISED 09/22/16** В EMISSION SOURCE DESCRIPTION: EHE SIIO EMISSION SOURCE ID NO: ES-10 CONTROL DEVICE ID NO(S): CD-10 OPERATING SCENARIO OF EMISSION POINT (STACK) ID NO(S): EP-10 DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM): Transfer silo equipped with a bin vent product capture device. TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES): Coal,wood,oil, gas, other burner (Form B1) Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7) Int.combustion engine/generator (Form B2) Coating/finishing/printing (Form B5) Incineration (Form B8) Storage silos/bins (Form B6) Liquid storage tanks (Form B3) Other (Form B9) START CONSTRUCTION DATE: 2019 DATE MANUFACTURED: 2019 MANUFACTURER / MODEL NO .: TBD EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YR IS THIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): NESHAP (SUBPARTS?): PERCENTAGE ANNUAL THROUGHPUT (%); DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25 CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) AIR POLLUTANT EMITTED FACTOR ib/hr tons/vr lb/hr tons/yr lb/hr tons/yr PARTICULATE MATTER (PM) 1.11E+00 4.88E+00 N/A N/A 1.11E+00 4.88E+00 Vendor/ PARTICULATE MATTER<10 MICRONS (PM10) 1.03E+00 4.49E+00 N/A N/A 1.03E+00 4.49E+00 AP-42 PARTICULATE MATTER<2.5 MICRONS (PM2.5) 5.91E-01 2.59E+00 N/A N/A 5.91E-01 2.59E+00 SULFUR DIOXIDE (SO2) N/A N/A N/A N/A N/A N/A NITROGEN OXIDES (NOx) N/A N/A N/A N/A N/A N/A CARBON MONOXIDE (CO) N/A N/A N/A N/A N/A N/A VOLATILE ORGANIC COMPOUNDS (VOC) N/A N/A N/A N/A N/A N/A LEAD Ash Analysis 1.78E-05 7.81E-05 N/A 7.81E-05 N/A 1.78E-05 OTHER N/A N/A NI/A N/A N/A N/A HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) HAZARDOUS AIR POLLUTANT CAS NO FACTOR lb/hr tons/vr Ib/h tons/yr lb/hr tons/yr Antimony 7440-36-0 3.81E-05 8.69E-06 N/A N/A 8.69E-06 3.81E-05 Arsenic 7440-38-2 6.65E-05 2.91E-04 N/A N/A 6.65E-05 2.91E-04 Beryllium 7440-41-7 3.47E-06 1.52E-05 N/A N/A 3.47E-06 1.52E-05 Cadmium 7440-43-9 5.35E-07 2.34E-06 N/A N/A 5.35E-07 2.34E-06 Chromium 7440-47-3 2.11E-05 9.25E-05 N/A N/A 9.25E-05 2.11E-05 Chromium Vi SolCR6 1.10E-06 4.83E-06 N/A N/A 1.10E-06 4.83E-06 Ash Analysis Cobalt 7440-48-4 1.20E-05 5.26E-05 N/A N/A 1.20E-05 5.26E-05 Lead 7439-92-1 1.78E-05 7.81E-05 N/A N/A 1.78E-05 7.81E-05 Manganese 7439-96-5 8 69E-05 3.81E-04 N/A N/A 8.69E-05 3.81E-04 Mercury 7439-97-6 2.79E-07 1 22E-06 N/A N/A 2.79E-07 1.22E-06 Nickel 7440-02-0 2.38E-05 1.04E-04 N/A N/A 2.38E-05 1.04E-04 Selenium 7782-49-2 1.57E-05 6.87E-05 N/A N/A 1.57E-05 6 87E-05 TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS EMISSION TOXIC AIR POLLUTANT FACTOR CAS NO lb/hr lb/day lb/yr Arsenic 7440-38-2 6.65E-05 1.60E-03 5.83E-01 Bery!lium 7440-41-7 347E-06 8.32E-05 3.04E-02 Cadmium 7440-43-9 5 35E-07 1.28E-05 4.69E-03 Chromium VI SolCR6 Ash Analysis 1 10E-06 2.65E-05 9.66E-03 Manganese 7439-96-5 8 69E-05 2.09E-03 7.61E-01 Mercury 7439-97-6 2.79E-07 6.695-06 2.44E-03 Nickel 7440-02-0 2.38E-05 5.71E-04 2.08E-01 Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and lescribe how these are monitored and with what frequency, and (3) describe any monitoring devices, gauges, or test ports for this source

FORM B

	EM	ISSION S	SOURCE (S	TORAG	E SILO/E	BINS)		
REVISED 09/22/16	NCDEQ/Div	ision of Air G	uality - Application	on for Air F	ermit to Con	struct/Operate	e	B 6
EMISSION SOURCE DESCRIP	PTION: EHE Silo			E	MISSION SO	URCE ID NO: 8	ES-10	
				c	ONTROL DE	VICE ID NO(S)	: CD-10	
OPERATING SCENARIO:	1	OF	1	E	MISSION PO	INT (STACK) I	D NO(S): EP-10	
DESCRIBE IN DETAIL THE PR Transfer silo equipped with a bi	•		AM):					
MATERIAL STORED: Fly Ash				DENSITY		AL /L B/ET2): 6	0 (bulk) 90 (structural)	
CAPACITY	CUBIC FEET: NA			TONS: 3		AL (LB/F13). 0	o (buik) so (structural)	
DIMENSIONS (FEET)	HEIGHT: 100	DIAMETER	R: 41 (OR)			WIDTH:	HEIGHT:	
ANNUAL PRODUCT THRO		ACTUAL:						
PNEUMATICALLY FI			ECHANICALLY I	MAXIMUM DESIGN CAPACITY: 400,000 CALLY FILLED FROM				
BLOWER		SCREW C	ONVEYOR			RAILC		
COMPRESSOR		BELT CON						
			LEVATOR			STORAGE PILE		
	' '	OTHER:						
NO. FILL TUBES: 3	L	JUTHER.				JOIHE	R: EHE A & B (ES-8 & 9)	
MAXIMUM ACFM: 9,000								
MATERIAL IS UNLOADED TO:	NA Material is transf	erred in proce	es to the STAD®	Ash Bonofi	alation Brooos	a (ER 2)		
		ened in proce	55 U UIC STARD,	ASIT Deriello	Jacon Proces	s (co-z)		
BY WHAT METHOD IS MATER Gravity								
MAXIMUM DESIGN FILLING R								
MAXIMUM DESIGN UNLOADIN	IG RATE OF MATER	IAL (TONS/H	R): 75					
COMMENTS:								

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16 N	CDEQ/Division of Air	Quality - Application for A	Ir Permit to Constru	ct/Operate		C1
CONTROL DEVICE ID NO: CD-10		SSIONS FROM WHICH E				
EMISSION POINT (STACK) ID NO(S): EP-10		RIES OF CONTROLS			NO. 1 OF 1	UNITS
OPERATING SCENARIO:						
OF		P.E. SEAL REQUIRED	(PER 2q .0112)?		YES	V NO
DESCRIBE CONTROL SYSTEM:						
Bin vent filter for particulate control on the EHE Silo.						
POLLUTANTS COLLECTED:		PM	PM10	PM2.5		
BEFORE CONTROL EMISSION RATE (LB/HR):		NA	NA	NA		New York
CAPTURE EFFICIENCY:		NA %	NA	% NA	%	%
CONTROL DEVICE EFFICIENCY:		NA %	NA	% NA	%	%
CORRESPONDING OVERALL EFFICIENCY:		<=0.025 gr/dscf %	<=0.025 gr/dscf	% <=0.025 gr/da	scf %	%
EFFICIENCY DETERMINATION CODE:		2		2	2	-
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		1.11E+00	1.03E+0	5.91	E-01	-
PRESSURE DROP (IN H ₂ 0): MIN: MAX: Avg: 10-15 w	GAUGE?	Lukro .	1.1.1.1			
BULK PARTICLE DENSITY (LB/FT ³): 25	GAUGE?	VYES				
POLLUTANT LOADING RATE: NA	βR/FT ³	INLET TEMPERATURE		MIN: 100	MAX: 250	
INLET AIR FLOW RATE (ACFM): 6,500	1 Proi i	OUTLET TEMPERATU		MIN: 100	MAX: 250	
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER (FILTER OPERATING T	EMP ("F): 200	T		
	REA PER CARTRIDGE	(ET2).		LENGTH OF BAG (II		
TOTAL FILTER SURFACE AREA (FT ²): 1,056				DIAMETER OF BAG	(IN.): 2.25	
DRAFT TYPE: IJINDUCED/NEGATIVE	AIR TO CLOTH R					
DESCRIBE CLEANING PROCEDURES:	PTOROLD/POSITI		FILTER MATERIA			FELTED
	SONIC				TICLE SIZE DISTRIBL	T
REVERSE FLOW		1.000		SIZE	WEIGHT %	CUMULATIVE
I IMECHANICAL/SHAKER	SIMPLE BAG CO			(MICRONS)	OF TOTAL	%
OTHER:	RING BAG COLL	APSE		0-1		
DESCRIBE INCOMING AIR STREAM: Air stream will contain fly a	eh.			1-10		
	ion.			10-25		
				25-50		
				50-100		
				>100		
						AL = 100
				Supplier specific, 94%	6 passing 325 mesh	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING THE	RELATIONSHIP OF T	HE CONTROL DEVICE TO	D ITS EMISSION SOL	JRCE(S):		
COMMENTS:						
	Attenda Ante					

REVISED 09/22/16 EMISSION SOURCE DESCRIPTION: Proc		n of Air Quality -	rippiloation for					В
	eer elorage bonno				OURCE ID NO			
OPERATING SCENARIO 1	OF	4			EVICE ID NO(
		1		EMISSION P	OINT (STACK) ID NO(S): EP	-11	
DESCRIBE IN DETAILTHE EMISSION SO Product storage dome equipped with a bin			DIAGRAM):					
		K AND COMPLE	TE APPROPRIA	TE FORM B1-	B9 ON THE F		AGES):	
Coal,wood,oil, gas, other burner (Form	.,	=	ing (Form B4)		Manuf.	of chemicals/o	oatings/inks (F	orm B7)
Int.combustion engine/generator (Form	1 B2)		ishing/printing (F			ation (Form B8	3)	
Liquid storage tanks (Form B3)		Storage sil	os/bins (Form B6	\$)	C Other (Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA					
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF				//WK <u>52</u> W	K/YR
	NSPS (SUBPART				AP (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT (-NOV 25		
CRITE	RIA AIR POLLU	1	SIONS INFOR	MATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTED				EMISSIONS	
		EMISSION	(AFTER CONTR			TROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Vendor/	2.57E-01	1.13E+00	N/A	N/A	2.57E-01	1.13E+0
PARTICULATE MATTER<10 MICRONS (PM		AP-42	2.37E-01	1.04E+00	N/A	N/A	2.37E-01	1.04E+0
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)		1.36E-01	5.97E-01	N/A	N/A	1.36E-01	5.97E-0
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC	;)		N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	4.12E-06	1.80E-05	N/A	N/A	4.12E-06	1.80E-03
OTHER		AITAAIT FRAM	N/A	N/A	N/A	N/A	N/A	N/A
RAZARD	OUS AIR POLI	1			FOR THIS	SOURCE		
		SOURCE OF	EXPECTED				EMISSIONS	
HAZARDOUS AIR POLLUTANT		EMISSION	(AFTER CONTRO		(BEFORE CONT	r	(AFTER CONTR	
Antimony	CAS NO. 7440-36-0	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Arsenic	7440-38-0	4	2.01E-06	8.79E-06	N/A	N/A	2.01E-06	8.79E
Beryllium	7440-38-2		1.54E-05	6.73E-05	N/A	N/A	1.54E-05	6.73E-
Cadmium	7440-43-9	- 1	8.00E-07	3.50E-06	N/A	N/A	8.00E-07	3.50E
Chromium	7440-43-9	-	1.23E-07	5.41E-07	N/A	N/A	1.23E-07	5.41E-
Chromium VI	SolCR6	1	4.87E-06 2.55E-07	2.13E-05 1.12E-06	N/A	N/A	4.87E-06	2.13E
Cobalt	7440-48-4	Ash Analysis	2.55E-07 2.77E-06	1.12E-06 1.21E-05	N/A	N/A	2.55E-07	1.12E
Lead	7439-92-1	1	2.77E-06 4.12E-06	1.21E-05 1.80E-05	N/A N/A	N/A	2.77E-06	1.21E
Vanganese	7439-96-5		4.12E-06 2.01E-05	1.80E-05 8.78E-05	N/A N/A	N/A N/A	4.12E-06	1.80E-
	7439-96-5		6.43E-08	2.82E-05			2.01E-05	8.78E-
VIELCUTY	7440-02-0	1	5.49E-06	2.82E-07 2.41E-05	N/A N/A	N/A N/A	6.43E-08 5.49E-06	2.82E- 2.41E-
			0.402-00		N/A	N/A		
Nickel		1 1	3.62E-06	1.58E_051		11//5	3.62E-06	1.58E-
Mercury Nickel Selenium TOXI (7782-49-2	ANT EMISSIC	3.62E-06	1.58E-05 ATION FOR		IRCE		
Nickel		SOURCE OF	ONS INFORM	ATION FOR	R THIS SOL		OLS / LIMITAT	IONS
Nickel Selenium TOXIC	7782-49-2		ONS INFORM	ATION FOR	R THIS SOL	FTER CONTR	OLS / LIMITAT	
Nickel Selenium TOXIC OXIC AIR POLLUTANT	7782-49-2 C AIR POLLUT	SOURCE OF EMISSION	EXPECT	ATION FOR	R THIS SOL EMISSIONS A	FTER CONTR		yr.
Vickel Selenium TOXIC TOXIC AIR POLLUTANT Visenic	7782-49-2 C AIR POLLUT. CAS NO.	SOURCE OF EMISSION	DNS INFORM EXPECT	ATION FOR	R THIS SOL EMISSIONS A Ib/c	FTER CONTR lay E-04	lb/j	yr 5-01
Vickel Selenium TOXIC AIR POLLUTANT Arsenic Seryllium	7782-49-2 CAIR POLLUT CAS NO. 7440-38-2	SOURCE OF EMISSION	DNS INFORM EXPECT Ib/h 1.54E	ATION FOR TED ACTUAL I r -05 -07	R THIS SOL EMISSIONS A Ib/c 3.68	FTER CONTR lay E-04 E-05	lb/; 1.35E	vr E-01 Ê-03
Nickel Selenium TOXIC AIR POLLUTANT Arsenic Seryllium Cadmium	7782-49-2 CAIR POLLUT CAS NO. 7440-38-2 7440-41-7	SOURCE OF EMISSION	DNS INFORM EXPECT Ib/h 1.54E 8.00E	ATION FOR TED ACTUAL 1 -05 -07 -07	R THIS SOL EMISSIONS A Ib/c 3.681 1.921	FTER CONTR lay E-04 E-05 E-06	lb/ <u>)</u> 1.35E 7.01E	vr =-01 =-03 =-03
Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7782-49-2 C AIR POLLUT CAS NO. 7440-38-2 7440-41-7 7440-43-9	SOURCE OF EMISSION FACTOR	DNS INFORM EXPECT 1.54E 8.00E 1.23E	ATION FOR TED ACTUAL 1 -05 -07 -07 -07	R THIS SOU EMISSIONS A Ib/c 3.681 1.921 2.961	FTER CONTR lay E-04 E-05 E-06 E-06	1.35E 7.01E 1.08E	vr E-01 E-03 E-03 E-03
Nickel	7782-49-2 C AIR POLLUT, CAS NO. 7440-38-2 7440-41-7 7440-43-9 SolCR6	SOURCE OF EMISSION FACTOR	DNS INFORM EXPECT bb/h 1.54E 8.00E 1.23E 2.55E	ATION FOR FED ACTUAL I 005 007 007 007 005	R THIS SOU EMISSIONS A Ib/c 3.681 1.921 2.961 6.111	FTER CONTR lay E-04 E-05 E-06 E-06 E-04	16/1 1.35E 7.01E 1.08E 2.23E	vr E-01 E-03 E-03 E-03 E-01

FORM B ECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

		DIAISI	on of All addit	y - Applicatio	on for Air Permit to Co	onstruct/Operate	B6
EMISSION SOURCE DESCRIP	PTION: Product S	torage	Dome		EMISSION S	OURCE ID NO: ES-11	
					CONTROL D	EVICE ID NO(S): CD-11	
OPERATING SCENARIO:		1	OF1		EMISSION PO	OINT (STACK) ID NO(S): EP-11	
DESCRIBE IN DETAIL THE PR Product storage dome equippe				<u>.</u>			
MATERIAL STORED: Fly Ash		-		_	DENSITY OF MATER		
CAPACITY	CUBIC FEET: N	۵		_	TONS: 30,000	RIAL (LB/FT3): 60 (bulk) 90 (structural)	_
DIMENSIONS (FEET)	HEIGHT: 125	_	DIAMETER: 41	(OR)			
ANNUAL PRODUCT THRO			ACTUAL: 400,0			WIDTH: HEIGHT: ESIGN CAPACITY: 400,000	
PNEUMATICALLY FI		.,		IANICALLY F		FILLED FROM	
BLOWER COMPRESSOR DTHER: NO. FILL TUBES: 3 MAXIMUM ACFM: 6,000 SCFM MATERIAL IS UNLOADED TO: BY WHAT METHOD IS MATER pneumatic conveyance MAXIMUM DESIGN FILLING R/ MAXIMUM DESIGN FILLING R/ MAXIMUM DESIGN UNLOADIN COMMENTS:	Product loadout	Silo (E	I SILO?	OR ATOR		RAILCAR TRUCK STORAGE PILE	

REVISED 09/22/16	NCE	EQ/Division of Air (Quality - Application for A	ir Permit to Construc	t/Operate		C1
CONTROL DEVICE ID NO: CD-11			SSIONS FROM WHICH EN				
EMISSION POINT (STACK) ID NO(S): EP-	-11	POSITION IN SEI	RIES OF CONTROLS			NO. 1 OF 1	UNITS
OPERATI	NG SCENARIO:						
1	_OF1		P.E. SEAL REQUIRED	(PER 2g.0112)?		YES	1~NO
DESCRIBE CONTROL SYSTEM:			- the				
Bin vent filter for particulate control on the	product storage dome.						
Note: Actual bin vent filter expected outlet	loading is 0.001 gr/dscf.	A conservative value	of 0.005 ar/scf is used to	estimate notential emi	ssions		
	0 0			astantato potoritida enti			
POLLUTANTS COLLECTED:			PM	PM10	PM2.5		
BEFORE CONTROL EMISSION RATE (LE	3/HR):		NA	NA	NA		_
CAPTURE EFFICIENCY:			NA %	NA	% NA		
CONTROL DEVICE EFFICIENCY:			NA %	NA		%	%
CORRESPONDING OVERALL EFFICIENC	~v.		<=0.005 gr/dscf %		% NA	%	%
EFFICIENCY DETERMINATION CODE:	51.			<=0.005 gr/dscf	% <=0.005 gr/		%
TOTAL AFTER CONTROL EMISSION RAT			2	2		2	
TO THE R FER CONTROL EMISSION FOR			2.57E-01	2.37E-01	1.3	6E-01	_
PRESSURE DROP (IN H ₂ 0): MIN:		0.11050	1.11/00				
BULK PARTICLE DENSITY (LB/FT ³): 25	MAX: Avg: 10-15 wg	GAUGE?	VI YES	NO			
		βR/FT ³	INLET TEMPERATURE		MIN: 200	MAX: 400	
	LB/HR	pros i	OUTLET TEMPERATU		MIN: 200	MAX: 400	
INLET AIR FLOW RATE (ACFM): 6,000 sc			FILTER OPERATING T	EMP ("F): 400			
NO. OF COMPARTMENTS: 1	NO. OF BAGS PER CO				LENGTH OF BAG		
NO. OF CARTRIDGES:	FILTER SURFACE ARE	1			DIAMETER OF BA	G (IN.): 6	
TOTAL FILTER SURFACE AREA (FT ²): 2,3		AIR TO CLOTH R					
DRAFT TYPE: I-1 INDUCED/NEGA	ATIVE	JFORCED/POSITIN	/E	FILTER MATERIA			I FELTED
DESCRIBE CLEANING PROCEDURES:	ATIVE I	✓!FORCED/POSITI\	/E	FILTER MATERIA		RTICLE SIZE DISTRIE	
DESCRIBE CLEANING PROCEDURES: I√IÂIR PULSE	1	ISONIC		FILTER MATERIA			
DESCRIBE CLEANING PROCEDURES: IVIÂIR PULSE IREVERSE FLOW	1			FILTER MATERIA	PA	RTICLE SIZE DISTRIB	UTION
DESCRIBE CLEANING PROCEDURES: IVIAIR PULSE IREVERSE FLOW i IMECHANICAL/SHAKER	1	ISONIC	LLAPSE	FILTER MATERIA	PA	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I / IAIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER:	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS)	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: IVIAIR PULSE IREVERSE FLOW i IMECHANICAL/SHAKER	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS) 0-1	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I / IAIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER:	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS) 0-1 1-10	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I / IAIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER:	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS) 0-1 1-10 10-25	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I √IAIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER:	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS) 0-1 1-10 10-25 25-50	RTICLE SIZE DISTRIE	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I √IAIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER:	1	ISONIC ISIMPLE BAG COL RING BAG COLLA	LLAPSE	FILTER MATERIA	PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	RTICLE SIZE DISTRIB WEIGHT % OF TOTAL	CUMULATIVE
DESCRIBE CLEANING PROCEDURES: I√IÂIR PULSE IREVERSE FLOW IMECHANICAL/SHAKER IOTHER: DESCRIBE INCOMING AIR STREAM: AIR S	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB WEIGHT % OF TOTAL	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I / IAIR PULSE I REVERSE FLOW I IMECHANICAL/SHAKER I OTHER:	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: IVIAIR PULSE IREVERSE FLOW I IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: IVIAIR PULSE IREVERSE FLOW I IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I√IÁIR PULSE I IREVERSE FLOW i IMECHANICAL/SHAKER I IOTHER: DESCRIBE INCOMING AIR STREAM: AIRS ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %
DESCRIBE CLEANING PROCEDURES: I √IÂIR PULSE IREVERSE FLOW i IMECHANICAL/SHAKER IOTHER: DESCRIBE INCOMING AIR STREAM: AIR 6 ON A SEPARATE PAGE, ATTACH A DIAG	l stream will contain fly ast	ISONIC SIMPLE BAG COL RING BAG COLLA	LAPSE APSE		PA SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 Supplier specific, 9-	RTICLE SIZE DISTRIB	UTION CUMULATIVE %

			Application for	Air Permit to	Construct/Op	erate		В
EMISSION SOURCE DESCRIPTION: Load	out Silo			EMISSION S	OURCE ID NO	: ES-12		
				CONTROL D	EVICE ID NO	S): CD-12		
OPERATING SCENARIO 1	OF	1		EMISSION P	OINT (STACK	ID NO(S): EP	-12, EP-13, & E	P-14
DESCRIBE IN DETAILTHE EMISSION SO		ATTACH FLOW	DIAGRAM):					
Product loadout silo equipped with bin vent	filer.							
		_		TE FORM B1-	B9 ON THE F	DLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Form		<u> </u>	ing (Form B4)		Manuf.	of chemicals/o	oatings/inks (F	orm B7)
L Int.combustion engine/generator (Form Liquid storage tanks (Form B3)	B2)	Coating/fin	ishing/printing (F	form B5)	_	ation (Form B8	i)	
		Storage sil	os/bins (Form B6			Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA					
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF	A			//WK <u>52</u> W	K/YR
	NSPS (SUBPART				AP (SUBPART			
PERCENTAGE ANNUAL THROUGHPUT (NOV 25		
CRITER	IA AIR POLL	1			OR THIS S	OURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	_
		EMISSION	(AFTER CONTR			ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Vendor/	2.61E-01	1.14E+00	N/A	N/A	2.61E-01	1.14E+00
PARTICULATE MATTER<10 MICRONS (PM1		AP-42	2.38E-01	1.04E+00	N/A	N/A	2.38E-01	1.04E+00
PARTICULATE MATTER<2.5 MICRONS (PM	.5)		1.38E-01	6.02E-01	N/A	N/A	1.38E-01	6.02E-01
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	8.23E-06	3.61E-05	N/A	N/A	8.23E-06	3.61E-05
OTHER		LITANT FAM	N/A	N/A	N/A	N/A	N/A	N/A
MAZARDA	DUS AIR PÒL	1			FORTHIS	SOURCE		
		SOURCE OF	EXPECTED				EMISSIONS	
VAZABROUS AIR DOLLUTANT		EMISSION	(AFTER CONTR		(BEFORE CONT		(AFTER CONTR	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT Antimony	CAS NO.	FACTOR	lb/hr	tons/yr	ib/hr	tons/yr	lb/hr	tons/yr
	7440-36-0	- 1	4.01E-06	1.76E-05	N/A	N/A	4.01E-06	1.76E-0
					N/A	N/A	3.07E-05	1.35E-(
			3.07E-05	1.35E-04				7.01E-0
Beryllium	7440-41-7		1.60E-06	7.01E-06	N/A	N/A	1.60E-06	
Beryllium Cadmium	7440-41-7 7440-43-9	-	1.60E-06 2.47E-07	7.01E-06 1.08E-06	N/A N/A	N/A	2.47E-07	1.08E-0
Beryllium Cadmium Chromium	7440-41-7 7440-43-9 7440-47-3	-	1.60E-06 2.47E-07 9.75E-06	7.01E-06 1.08E-06 4.27E-05	N/A N/A N/A	N/A N/A	2.47E-07 9.75E-06	1.08E-0 4.27E-0
Arsenic Beryllium Cadmium Chromium Chromium VI Cobatt	7440-41-7 7440-43-9 7440-47-3 SolCR6	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07	7.01E-06 1.08E-06 4.27E-05 2.23E-06	N/A N/A N/A N/A	N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07	1.08E-0 4.27E-0 2.23E-0
Beryllium Cadmium Chromium Chromium VI Cobalt	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06	1.08E-(4.27E-(2.23E-(2.43E-(
Beryllium Cadmium Chromium Chromium VI Cobalt Lead	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06	1.08E-0 4.27E-0 2.23E-0 2.43E-0 3.61E-0
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-96-5	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05	1.08E-0 4.27E-0 2.23E-0 2.43E-0 3.61E-0 1.76E-0
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury	7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07	1.08E-0 4.27E-0 2.23E-0 3.61E-0 1.76E-0 5.63E-0
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel	7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0	Ash Analysis	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05	1.08E-0 4.27E-0 2.23E-0 3.61E-0 1.76E-0 5.63E-0 4.81E-0
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	-	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07	1.08E-0 4.27E-0 2.23E-0 2.43E-0 3.61E-0 1.76E-0 5.63E-0 4.81E-0
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium	7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0	-	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05	1.08E-(4.27E-(2.23E-(2.43E-(3.61E-(1.76E-(5.63E-(4.81E-(
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	-	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FO	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 1.76E- 5.63E- 4.81E- 3.17E-
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Marcury Nickel Selenium TOXIC	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	ANT EMISSIC	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A SIRCE	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 1.76E- 5.63E- 4.81E- 3.17E- 10NS
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium TOXIC AIR POLLUTANT	7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 FAIR POLLUT	ANT EMISSIC SOURCE OF EMISSION	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL	N/A N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A N/A N/A N/A TRCE	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT	1.08E- 4.27E-4 2.23E-0 2.43E-0 3.61E-0 1.76E-0 5.63E-0 4.81E-4 3.17E-0 10NS
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium TOXIC AIR POLLUTANT Arsenic	7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 #AIR POLLUT CAS NO.	ANT EMISSIC SOURCE OF EMISSION	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL r -05	N/A N/A N/A N/A N/A N/A N/A N/A N/A RTHIS SOU EMISSIONS A	N/A N/A N/A N/A N/A N/A N/A N/A TRCE FTER CONTR	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 5.63E- 3.63E- 4.81E- 3.17E- 10NS yr E-01
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium	7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-6 7440-48-4 7439-92-7 7439-97-6 7440-02-0 7762-49-2 FAIR POLLUT CAS NO. 7440-38-2	ANT EMISSIC SOURCE OF EMISSION	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC bb/h 3.07E	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL r -05 -06	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 7.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A TRCE FTER CONTR ay =-04 E-05	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 1.76E- 5.63E- 4.81E- 3.17E- 10NS yr 5-01 5-02
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium TOXIC AIR POLLUTANT Arsenic Seryllium Sadmium	7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-6 7440-48-4 7439-92-7 7440-48-4 7439-92-7 7440-41-7	ANT EMISSIC SOURCE OF EMISSION	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC Ib/h 3.07E 1.60E	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL r -05 -06 -07	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 7.37 3.84	N/A N/A N/A N/A N/A N/A N/A N/A N/A TRCE FTER CONTR E-04 E-05 E-06	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT 1b/ 2.69E 1.40E	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 5.63E- 4.81E- 3.17E- 10NS yr 5-01 5-02 5-03
Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-97-6 7440-02-0 7782-49-2 ARR POLLUT 7440-38-2 7440-41-7 7440-38-2 7440-41-7 7440-38-9	ANT EMISSIC SOURCE OF EMISSION FACTOR	1.60E-06 2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC Ib/h 3.07E 1.60E 2.47E	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL r -05 -06 -07 -07	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 7.37 3.84/ 5.921	N/A N/A N/A N/A N/A N/A N/A N/A N/A TRCE FTER CONTR E-04 E-05 E-06 E-05	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT 1b/ 2.699 1.400 2.166	1.08E- 4.27E- 2.23E- 2.43E- 3.61E- 5.63E- 4.81E- 3.17E- 10NS yr 5-01 5-02 5-03
Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Vickel Selenium	7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7439-97-6 7440-02-0 7782-49-2 #AIR POLLUT 7440-38-2 7440-41-7 7440-41-7 7440-43-9 SolCR6	ANT EMISSIC SOURCE OF EMISSION FACTOR	1.60E-06 2.47E-07 9.75E-06 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 DNS INFORM EXPEC ⁻ Ib/h 3.07E 1.60E 2.47E 5.09E	7.01E-06 1.08E-06 4.27E-05 2.23E-06 2.43E-05 3.61E-05 1.76E-04 5.63E-07 4.81E-05 3.17E-05 ATION FOJ TED ACTUAL r -05 -06 -07 -07 -05	N/A N/A N/A N/A N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/c 7.37 3.844 5.921 1.221	N/A D D	2.47E-07 9.75E-06 5.09E-07 5.54E-06 8.23E-06 4.01E-05 1.29E-07 1.10E-05 7.24E-06 OLS / LIMITAT 1b/ 2.699 1.400 2.166 4.46E	1.08E-0 4.27E-0 2.23E-0 2.43E-0 3.61E-0 1.76E-0 3.17E-0 3.17E-0 3.17E-0 10NS yr 5-01 5-02 5-03 5-01

FORM B C EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCE)

REVISED 09/22/16	NCDEQ	/Divisi	ion of Air Quality -	Application	n for Air Permit to Con	struct/Operate	B6
EMISSION SOURCE DESCRI	PTION: Loadout S	Silo			EMISSION SO	URCE ID NO: ES-12	
					CONTROL DE	VICE ID NO(S): CD-12	
OPERATING SCENARIO:		1	OF 1		EMISSION PO	INT (STACK) ID NO(S): EP-12, EP-13, & E	EP-14
DESCRIBE IN DETAIL THE PF Product loadout silo equipped			OW DIAGRAM):				
MATERIAL STORED: Fly Ash					DENSITY OF MATERI	AL (LB/FT3): 60 (bulk) 90 (structural)	
CAPACITY	CUBIC FEET:	48,058	3		TONS: 1,442		
DIMENSIONS (FEET)	HEIGHT: 35	_	DIAMETER: 38.6			WIDTH: HEIGHT:	
ANNUAL PRODUCT THR	-	S)	ACTUAL: 400,000			SIGN CAPACITY: 400,000	
PNEUMATICALLY F				ICALLY FI		FILLED FROM	
BLOWER COMPRESSOR OTHER:			SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATO OTHER:				'n
NO. FILL TUBES: 2							
MAXIMUM ACFM: 6,000 scfm							
MATERIAL IS UNLOADED TO	: Trucks						
BY WHAT METHOD IS MATER Gravity	RIAL UNLOADED	FROM	A SILO?				
MAXIMUM DESIGN FILLING R	ATE OF MATER	AL (TO	DNS/HR): 75				
MAXIMUM DESIGN UNLOADIN	NG RATE OF MA	TERIA	L (TONS/HR): 100				
COMMENTS: 7. B6							
		A	ttach Addition	al Shee	ts As Necessary	<i>y</i>	

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Division of Air	Quality - Application for Ai	ir Permit to Constru	ict/Operate				C1
CONTROL DEVICE ID NO: CD-12	CONTROLS EM	SSIONS FROM WHICH EN	ISSION SOURCE I	D NO(S): ES-12				
EMISSION POINT (STACK) ID NO(S): EP-12	POSITION IN SE	RIES OF CONTROLS			NO.	1 OF	1 L	JNITS
OPERATING SCENARIO:	ار بدا بروغاری							
OF		P.E. SEAL REQUIRED	(PER 2q.0112)?		I I YE	IS		NO
DESCRIBE CONTROL SYSTEM:								
Bin vent filter for particulate control on the product loadout silo.								
Note: Actual bin vent filter expected outlet loading is 0.001 gr/ds	scf. A conservative valu	e of 0.005 gr/scf is used to a	estimate potential er	nissions.				
POLLUTANTS COLLECTED:		PM	PM10	PM2.5				
BEFORE CONTROL EMISSION RATE (LB/HR):		NA	NA	NA				
CAPTURE EFFICIENCY:		NA %	NA	% NA	%		9	6
CONTROL DEVICE EFFICIENCY:		NA %	NA	% NA	%		9	6
CORRESPONDING OVERALL EFFICIENCY:		<=0.005 gr/dscf %	<=0.005 gr/dscf	% <=0.005 gr/	dscf %		%	6
EFFICIENCY DETERMINATION CODE:		2		2	2			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		2.61E-01	2.38E-0	1 1.3	8E-01			
PRESSURE DROP (IN H ₂ 0): MIN: 4 MAX: 20	GAUGE?]√ YES	I NO					
BULK PARTICLE DENSITY (LB/FT ³): 60		INLET TEMPERATURE	(°F):	MIN: 70	M	AX: 400		
POLLUTANT LOADING RATE: NA	βR/FT ^s	OUTLET TEMPERATUR	RE (°F)	MIN: 70	M	AX: 400		
INLET AIR FLOW RATE (ACFM): 6,000 scfm		FILTER OPERATING T	EMP (°F): 70-400					
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER	COMPARTMENT: 144			LENGTH OF BAG	(IN.): 120)		
NO. OF CARTRIDGES: FILTER SURFACE	AREA PER CARTRIDG	E (FT ²):		DIAMETER OF BA		_		
TOTAL FILTER SURFACE AREA (FT ²): 2,260	AIR TO CLOTH F	ATIO: 2.65:1						
DRAFT TYPE: IVINDUCED/NEGATIVE	IFORCED/POSITI	VE	FILTER MATERI	AL:	I IW	OVEN	/ F	ELTED
DESCRIBE CLEANING PROCEDURES:				P/	ARTICLE	SIZE DIST	RIBUTK	M
VIAIR PULSE	I SONIC			SIZE		WEIGHT	%	CUMULATIVE
I REVERSE FLOW	I SIMPLE BAG CO	LLAPSE		(MICRONS)		OF TOT		%
MECHANICAL/SHAKER	I I RING BAG COLL	APSE		0-1				
1 IOTHER:				1-10			-	
DESCRIBE INCOMING AIR STREAM: Air stream will contain fly	ash.			10-25				
				25-50				
				50-100				
				>100				
							TOTAL :	= 100
				Supplier specific, 9	4% passi			
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING TH	E RELATIONSHIP OF 1	THE CONTROL DEVICE TO	ITS EMISSION SO					
COMMENTS:								

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	NCDEQ/Division	n of Air Quality -	Application for	Air Permit to	Construct/Or	erate		В
EMISSION SOURCE DESCRIPTION: Ash E				1	OURCE ID NO			
					EVICE ID NO			
OPERATING SCENARIO 1	OF	1					45	
DESCRIBE IN DETAILTHE EMISSION SOL			DIACOAND.	LEWISSION P	UNT (STACK) ID NO(S): EP	-15	
Dust may be generated by wind erosion of e			DIAGRAM):					
TYPE OF EMISSION	SOURCE (CHEC	K AND COMPLET	E APPROPRIA	TE FORM B1-	B9 ON THE F	OLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Form I	B1)	Woodworki	ng (Form B4)		Manuf.	of chemicals/	coatings/inks (F	Form B7)
Int.combustion engine/generator (Form	B2)	Coating/fin	ishing/printing (F	Form B5)	Inciner	ation (Form B8	3)	
Liquid storage tanks (Form B3)		Storage sile	os/bins (Form Bé	5)	🖸 Other (Form B9)		
START CONSTRUCTION DATE: NA			DATE MANUFA	CTURED: NA				
MANUFACTURER / MODEL NO .: NA			EXPECTED OF	. SCHEDULE:		Y 7 DAY	//WK 52 V	VK/YR
IS THIS SOURCE SUBJECT TO?	SPS (SUBPART	S?):		NESH/	AP (SUBPART	'S?):		
PERCENTAGE ANNUAL THROUGHPUT (%	b): DEC-FEB 2	5 MAR-MAY	25 JI	JN-AUG	25 SEP	-NOV 25		
CRITER	A AIR POLL	JTANT EMISS	IONS INFOR	MATION F	OR THIS S	OURCE	1.00	
		SOURCE OF	EXPECTED		1		EMISSIONS	
		EMISSION	(AFTER CONTR		/BEEORE CON	TROLS / LIM!TS)	1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	ib/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	4.78E-02	2.09E-01	N/A	N/A	4.78E-02	-
PARTICULATE MATTER<10 MICRONS (PM16)	AP-42	2.39E-02	1.05E-01	N/A	N/A N/A	4.78E-02 2.39E-02	2.09E-01
PARTICULATE MATTER<2.5 MICRONS (PM2		AP-42	3.59E-02	1.57E-02	N/A			1.05E-01
SULFUR DIOXIDE (SO2)	2/	711-72	N/A	N/A		N/A	3.59E-03	1.57E-02
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis			N/A	N/A	N/A	N/A
OTHER		Asir Analysis	7.66E-07	3.35E-06 N/A	N/A	N/A	7.66E-07	3.35E-06
			N/A		N/A	N/A	N/A	N/A
HAZARDO	IS AIR POLI	ITANT EMIS			EOD THIS			
HAZARDO	OUS AIR POLI		SIONS INFO	RMATION	FOR THIS	SOURCE		
HAZARDO	OUS AIR POLI	SOURCE OF	SIONS INFO	ACTUAL		SOURCE POTENTIAL	EMISSIONS	
		SOURCE OF EMISSION	SIONS INFO	DRMATION ACTUAL DLS/LIMITS)	(BEFORE CONT	SOURCE POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	SOURCE OF	SIONS INFO EXPECTED (AFTER CONTRO Ib/hr	ACTUAL OLS / LIMITS) tons/yr	(BEFORE CONT Ib/hr	SOURCE POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT Ib/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT Antimony	CAS NO. 7440-36-0	SOURCE OF EMISSION	SIONS INFO EXPECTED (AFTER CONTRO Ib/hr 3.73E-07	ACTUAL OLS / LIMITS) tons/yr 1.63E-06	(BEFORE CONT Ib/hr N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A	(AFTER CONTR Ib/hr 3.73E-07	RCLS / LIMITS) tons/yr 1.63E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic	CAS NO. 7440-36-0 7440-38-2	SOURCE OF EMISSION	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06	ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05	(BEFORE CON Ib/hr N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A	(AFTER CONT ib/hr 3.73E-07 2.86E-06	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium	CAS NO. 7440-36-0 7440-38-2 7440-41-7	SOURCE OF EMISSION	SIONS INFC EXPECTED (AFTER CONTRO 1b/hr 3.73E-07 2.86E-06 1.49E-07	DRMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07	(BEFORE CONT Ib/hr N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A N/A	(AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07	RCLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9	SOURCE OF EMISSION	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08	DRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07	(BEFORE CONT Ib/hr N/A N/A N/A N/A	SOURCE POTENTIAL (ROLS / LIMITS) tons/yr N/A N/A N/A N/A	(AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9	SOURCE OF EMISSION	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A	SOURCE POTENTIAL rRoLs / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6	SOURCE OF EMISSION	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08	RMATION ACTUAL OLS / LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SolCR6 7440-48-4	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRO b/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7440-48-4 7439-92-1 7439-96-5	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL (ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium VI Cobatt Lead Manganese Mercury	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRI- lb/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL (ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRI- lb/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL rols/LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2	SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL rols/LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06	ROLS / LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC	CAS NO. 7440-38-2 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-3 SolCR6 7440-48-4 7439-92-1 7439-92-1 7439-92-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT	SOURCE OF EMISSION FACTOR Ash Analysis ANT EMISSIC	SIONS INFC EXPECTED (AFTER CONTR Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 NS INFORM	RMATION ACTUAL OLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 2.295E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	CAS NO. 7440-38-2 7440-38-2 7440-41-7 7440-41-7 7440-43-9 7440-43-9 7440-43-3 7440-43-4 7440-48-4 7440-48-4 7439-92-1 7439-92-1 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT	SOURCE OF EMISSION FACTOR Ash Analysis	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7440-99-6 7440-02-0 7782-49-2 AIR POLLUTT CAS NO. 7440-38-2	SOURCE OF EMISSION FACTOR Ash Analysis ANT EMISSIC	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TIONS
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-44-3 SoiCR6 7440-48-4 7439-92-1 7440-20-0 7782-49-2 AIR POLLUTT CAS NO. 7440-38-2 7440-38-2 7440-38-2 7440-41-7	SOURCE OF EMISSION FACTOR Ash Analysis ANT EMISSIC	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL r -06	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TIONS yr E-02
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobait Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1 7440-99-6 7440-02-0 7782-49-2 AIR POLLUTT CAS NO. 7440-38-2	SOURCE OF EMISSION FACTOR Ash Analysis ANT EMISSIC	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC Ib/h 2.86E	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL r -06 -07	(BEFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTI Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.50I	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TIONS yr E-02 E-03
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobait Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-44-3 SoiCR6 7440-48-4 7439-92-1 7440-20-0 7782-49-2 AIR POLLUTT CAS NO. 7440-38-2 7440-38-2 7440-38-2 7440-41-7	SOURCE OF EMISSION FACTOR Ash Analysis ANT EMISSIC	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC Ib/h 2.86E 1.49E	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL r -06 -07 -08	(8EFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A <t< td=""><td>(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.50I 1.30I</td><td>ROLS/LIMITS) tons/yr 1.63E-0 4.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TIONS yr E-02 E-03 E-04</td></t<>	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.50I 1.30I	ROLS/LIMITS) tons/yr 1.63E-0 4.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TIONS yr E-02 E-03 E-04
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	CAS NO. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-8-4 7439-92-1 7439-96-5 7440-02-0 7782-49-2 AIR POLLUTT CAS NO. 7440-38-2 7440-38-2 7440-43-9	SOURCE OF EMISSION FACTOR Ash Analysis SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC Ib/h 2.86E 1.49E 2.30E	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL r -06 -07 -08	(8EFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A <t< td=""><td>(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.50I 1.30I 2.011</td><td>ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TONS yr E-02 E-03 E-04 E-04</td></t<>	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.50I 1.30I 2.011	ROLS/LIMITS) tons/yr 1.63E-0 1.25E-0 6.52E-0 1.01E-0 3.97E-0 2.07E-0 2.26E-0 3.35E-0 1.63E-0 5.24E-0 4.47E-0 2.95E-0 TONS yr E-02 E-03 E-04 E-04
HAZARDOUS AIR POLLUTANT Antimony Arsenic Beryllium Cadmium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic	CAS NO. 7440-36-0 7440-38-2 7440-43-9 7440-41-7 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9 7440-43-9	SOURCE OF EMISSION FACTOR Ash Analysis SOURCE OF EMISSION FACTOR	SIONS INFC EXPECTED (AFTER CONTRO Ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 INS INFORM EXPEC Ib/h 2.86E 1.49E 2.30E 4.74E	PRMATION ACTUAL DLS/LIMITS) tons/yr 1.63E-06 1.25E-05 6.52E-07 1.01E-07 3.97E-06 2.07E-07 2.26E-06 3.35E-06 1.63E-05 5.24E-08 4.47E-06 2.95E-06 ATTON FOF TED ACTUAL r -06 -07 -08 -06	(8EFORE CONT Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	SOURCE POTENTIAL IROLS / LIMITS) tons/yr N/A N/A <t< td=""><td>(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.500 1.30U 2.011 4.15U</td><td>ROLS/LIMITS) tons/yr 1.63E-00 1.25E-00 6.52E-00 1.01E-00 3.97E-00 2.07E-00 2.07E-00 2.26E-00 3.35E-00 1.63E-00 5.24E-00 4.47E-00 2.95E-00 70NS yr E-02 E-03 E-04 E-04 E-02</td></t<>	(AFTER CONTI ib/hr 3.73E-07 2.86E-06 1.49E-07 2.30E-08 9.06E-07 4.74E-08 5.15E-07 7.66E-07 3.73E-06 1.20E-08 1.02E-06 6.73E-07 OLS / LIMITAT Ib/ 2.500 1.30U 2.011 4.15U	ROLS/LIMITS) tons/yr 1.63E-00 1.25E-00 6.52E-00 1.01E-00 3.97E-00 2.07E-00 2.07E-00 2.26E-00 3.35E-00 1.63E-00 5.24E-00 4.47E-00 2.95E-00 70NS yr E-02 E-03 E-04 E-04 E-02

FORM B9 EMISSION SOURCE (OTHER)

	/ - Application	for Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION: Ash Basin		EMISSION SOURCE ID NO: ES	S-15	
		CONTROL DEVICE ID NO(S):	NA	
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID	NO(S): EP-15	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): I	Just may be ge	nerated by wind erosion of exposi	ed area within the ash	Dasin.
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	MAX. DESIGN	REQUESTED		
ТҮРЕ	UNITS	-		
Active Basin Area	Acres	CAPACITY (UNIT/HR) 174 Acres	LIMITATION	
	Acres	114 AURS		
	-			
	-			
	-			
MATERIALS ENTERING PROCESS - BATCH OPERATI			DEOLIEOTE	
	_	MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
				_
MAXIMUM DESIGN (BATCHES / HOUR):	1			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/			
FUEL USED: NA		MUM FIRING RATE (MILLION B		
MAX. CAPACITY HOURLY FUEL USE: NA	REQUESTE	CAPACITY ANNUAL FUEL USE	- NA	

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NC	DEQ/Division	n of Air Quality -	Application for	Air Permit to	Construct/Op	erate		В
EMISSION SOURCE DESCRIPTION: Ash Hand	lling			EMISSION S	OURCE ID NO	: ES-16		
				CONTROL D	EVICE ID NO(S): NA		
OPERATING SCENARIO 1	OF	1					-16, EP-17, & I	EP-18
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOW	DIAGRAM):	l				
Emission sources (1) Ash is excavated and place stockpile within basin.	ed in windrow	s; (2) Windrowed	ash is loaded in	to screener/cru	usher; (3) Scre	ened and crus	hed ash is plac	ced in
TYPE OF EMISSION SOL	JRCE (CHECH	AND COMPLET	E APPROPRIA	TE FORM B1-	B9 ON THE F	DLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Form B1)		Woodworki	ng (Form B4)		Manuf.	of chemicals/o	oatings/inks (F	Form B7)
Int.combustion engine/generator (Form B2)		Coating/fini	shing/printing (F	orm B5)		ation (Form B8	1)	
Liquid storage tanks (Form B3)		Storage sile	os/bins (Form Be	3)	🖸 Other (Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 201	9			
MANUFACTURER / MODEL NO.: NA			EXPECTED OF	. SCHEDULE:	HR/DA	Y DAY	//WK <u>52</u> W	/K/YR
IS THIS SOURCE SUBJECT TO?	S (SUBPARTS	S?):		NESH/	AP (SUBPART	'S?):		
PERCENTAGE ANNUAL THROUGHPUT (%): [-NOV 25		
CRITERIA	AIR POLLU	ITANT EMISS	IONS INFOR	RMATION F	OR THIS S	OURCE		
		SOURCE OF	EXPECTED	ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	1.99E-02	8.72E-02	N/A	N/A	1.99E-02	8.72E-02
PARTICULATE MATTER<10 MICRONS (PM10)		AP-42	9.42E-03	4.13E-02	N/A	N/A	9.42E-03	4.13E-02
PARTICULATE MATTER<2.5 MICRONS (PM2.6)		AP-42	1.43E-03	6.25E-03	N/A	N/A	1.43E-03	6.25E-03
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	3.19E-07	1.40E-06	N/A	N/A	3.19E-07	1.40E-06
OTHER			N/A	N/A	N/A	N/A	N/A	N/A
HAZARDOUS	SAIR POLL	UTANT EMIS	SIONS INFO	RMATION	FOR THIS	SOURCE		
		SOURCE OF	EXPECTED			POTENTIAL	EMISSIONS	
		SOURCE OF EMISSION	EXPECTED	ACTUAL	(BEFORE CONT		AFTER CONTR	ROLS/LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.			ACTUAL	(BEFORE CONT Ib/hr			ROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT Antimony	CAS NO. 7440-36-0	EMISSION	(AFTER CONTR	ACTUAL DLS / LIMITS)		ROLS / LIMITS)	(AFTER CONTR	
	-	EMISSION	(AFTER CONTR Ib/hr	ACTUAL OLS / LIMITS) tons/yr	lb/hr	ROLS / LIMITS) tans/yr	(AFTER CONTR Ib/hr	tons/yr
Antimony	7440-36-0	EMISSION	(AFTER CONTR Ib/hr 1.55E-07	ACTUAL DLS / LIMITS) tons/yr 6.80E-07	lb/hr N/A	ROLS / LIMITS) tons/yr N/A	(AFTER CONTF Ib/hr 1.55E-07	tons/yr 6.80E-07
Antimony Arsenic	7440-36-0 7440-38-2	EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06	Ib/br N/A N/A	ROLS / LIMITS) tons/yr N/A N/A	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06	tons/yr 6.80E-07 5.21E-06
Antimony Arsenic Beryllium	7440-36-0 7440-38-2 7440-41-7	EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07	Ib/hr N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08	tons/yr 6.80E-07 5.21E-06 2.71E-07
Antimony Arsenic Beryllium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9	EMISSION FACTOR	(AFTER CONTR: Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08	Ib/hr N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A	(AFTER CONTR lb/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08
Antimony Arsenic Beryllium Cadmium Chromium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07	ACTUAL OLS / LIMTS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06	Ib/hr N/A N/A N/A N/A	ROLS / LIMITS) tans/yr N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08	Ib/hr N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A	(AFTER CONTF Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07	lb/hr N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SolCR6 7440-48-4 7439-92-1	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06	Ib/hr N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT/ Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoICR6 7440-48-4 7439-92-1 7439-96-5	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT/ Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	Ash Analysis	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 ATION FOR	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT/ Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.35E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	EMISSION FACTOR Ash Analysis	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 ATTON FOF	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium VI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC All	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 R POLLUT	Ash Analysis Ash Analysis SOURCE OF EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM EXPEC	ACTUAL DLS/LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 ATTON FOF	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR POLLUTANT	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 R POLLUT , CAS NO.	Ash Analysis Ash Analysis SOURCE OF EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM EXPEC	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 ATTON FOF	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 70NS yr E-02
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium UI Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR POLLUTANT Arsenic	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7449-92-0 7782-49-2 POLLUT , CAS NO. 7440-38-2	Ash Analysis Ash Analysis SOURCE OF EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM EXPEC Ib/h 1.19E	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 1.23E-06 ATTON FOF TED ACTUAL r -06 -08	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT 0LS / LIMITAT	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 1.23E-06 70NS yr E-02 E-04
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR POLLUTANT Arsenic Beryllium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 R POLLUT, CAS NO. 7440-38-2 7440-38-2 7440-41-7	Ash Analysis Ash Analysis SOURCE OF EMISSION	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 INS INFORM EXPEC Ib/h 1.19E 6.19E	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 1.23E-06 ATTON FOF TED ACTUAL 1 r -06 -08 -09	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT 0LS / LIMITAT	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 1.23E-06 70NS yr E-02 E-04 E-05
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR TOXIC AIR Cadmium Cadmium	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 R POLLUT , 7440-38-2 7440-38-2 7440-43-9	EMISSION FACTOR Ash Analysis SOURCE OF EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 2.80E-07 INS INFORM EXPEC Ib/h 1.19E 6.19E 9.56E	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.23E-06 ATTON FOF TED ACTUAL 1 r -06 -08 -09 -08	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A N/A N/A N/A N/A N/A N/A N/A	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT 0LS / LIMITAT 1.0/4 5.422 8.375	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 1.23E-06 70NS yr E-02 E-04 E-05 E-04
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7449-92-0 7742-49-2 R POLLUT7 7440-38-2 7440-38-2 7440-43-9 SoiCR6	EMISSION FACTOR Ash Analysis SOURCE OF EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 VINS INFORM EXPEC Ib/h 1.19E 6.19E 9.55E 1.97E	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 1.23E-06 ATTON FOF TED ACTUAL 1 r -06 -08 -09 -08 -06	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A Ima	(AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT Ib/ 1.04I 5.42I 8.37I 1.73I	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 2.02 E-04 E-02 E-04 E-02
Antimony Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Cobalt Lead Manganese Mercury Nickel Selenium TOXIC AIR TOXIC AIR FOLLUTANT Arsenic Beryllium Cadmium Chromium VI Manganese	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 SoiCR6 7440-48-4 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 R POLLUT7 7440-38-2 7440-38-2 7440-38-2 7440-43-9 SoiCR6 7439-96-5	EMISSION FACTOR Ash Analysis SOURCE OF EMISSION FACTOR	(AFTER CONTR Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 4.98E-09 4.25E-07 2.80E-07 2.80E-07 INS INFORM EXPEC Ib/h 1.19E 6.19E 9.56E 1.97E	ACTUAL DLS / LIMITS) tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 ATTON FOF TED ACTUAL 1 r -06 -09 -08 -09 -09	Ib/hr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ROLS / LIMITS) tons/yr N/A Imaget ((AFTER CONT Ib/hr 1.55E-07 1.19E-06 6.19E-08 9.56E-09 3.77E-07 1.97E-08 2.14E-07 3.19E-07 1.55E-06 4.98E-09 4.25E-07 2.80E-07 0LS / LIMITAT 0LS / LIMITAT 1.041 5.421 8.371 1.731 1.361	tons/yr 6.80E-07 5.21E-06 2.71E-07 4.19E-08 1.65E-06 8.63E-08 9.39E-07 1.40E-06 6.80E-06 2.18E-08 1.86E-06 1.23E-06 1.25E-0

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

	- Application	for Air Permit to Construct/Operat	te	B9
EMISSION SOURCE DESCRIPTION: Ash Handling		EMISSION SOURCE ID NO: ES-1	16	
		CONTROL DEVICE ID NO(S): NA	A Contraction of the second seco	
OPERATING SCENARIO: 0F 1		EMISSION POINT (STACK) ID NO	D(S): EP-16, EP-17,	& EP-18
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): E ash is loaded into screener/crusher (EP-17); (3) Screened and crushed a	mission source ash is placed ii	s (1) Ash is excavated and placed i n stockpile within basin (EP-18).	n windrows (EP-16);	(2) Windrowed
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	FSS	MAX DECION	DEQUERTER	01010/51
TYPE	1	MAX. DESIGN	REQUESTED	
Ash throughput	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Aan undugnput	tons	165.0	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATIO			2501/50755	
	7	MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	1			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y			
FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	1	MUM FIRING RATE (MILLION BTU		
	DEQUERTER	CAPACITY ANNUAL FUEL USE: N	1.4	

Attach Additional Sheets as Necessary

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality -	Application for	Air Permit to	Construct/Op	erate		В
EMISSION SOURCE DESCRIPTION: Scre	ener			EMISSION S	OURCE ID NO	: ES-19		
				CONTROL D	EVICE ID NO(S): NA		
OPERATING SCENARIO 1	OF	1		EMISSION P	DINT (STACK)	ID NO(S): EP	-19	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS	ATTACH FLOW	DIAGRAM):					
Ash is screened to produce free flowing fer	edstock suitable for	the STAR® Ash	Beneficiation Pro	ocess.				
		_		TE FORM B1-				
Coal,wood,oil, gas, other burner (Form		=	/oodworking (Form B4) Manuf. of chemicals/coatings/inks (Form I					
L Int.combustion engine/generator (Form	1 B2)		ishing/printing (F			ation (Form B8	3)	
Liquid storage tanks (Form B3)		L Storage sil	os/bins (Form B6		✓ Other (Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA					_
MANUFACTURER / MODEL NO.: TBD			EXPECTED OP				WK <u>52</u> WI	K/YR
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS		_	- Inne	AP (SUBPART			
PERCENTAGE ANNUAL THROUGHPUT (-					NOV 25		
CRITEI	RIA AIR POLLU	1	SIONS INFOR	RMATION F	OR THIS S	OURCE		1401
		SOURCE OF	EXPECTED				EMISSIONS	
	EMISSION	(AFTER CONTR			ROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS	
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	ib/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	3.63E-01	1.59E+00	N/A	N/A	3.63E-01	1.59E+00
PARTICULATE MATTER<10 MICRONS (PM		AP-42	1.22E-01	5.35E-01	N/A	N/A	1.22E-01	5.35E-01
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	8.25E-03	3.61E-02	N/A	N/A	8.25E-03	3.61E-02
SULFUR DIOXIDE (SO2)			N/A	N/A	N/A	N/A	N/A	N/A
NITROGEN OXIDES (NOx)			N/A	N/A	N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC	5)		N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analysis	5.81E-06	2.55E-05	N/A	N/A	5.81E-06	2.55E-05
OTHER	0110 410 001		N/A	N/A	N/A	N/A	N/A	N/A
HAZARD	OUS AIR POLI	SOURCE OF			FOR THIS	SOURCE		
			EXPECTED				EMISSIONS	
		EMISSION	(AFTER CONTRO		(BEFORE CONT		(AFTER CONTR	ROLS / LIMITS)
	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Antimony Arsenic	7440-36-0	4	2.83E-06	1.24E-05	N/A	N/A	2.83E-06	1.24E-
	7440-38-2		2.17E-05	9.49E-05	N/A	N/A	2.17E-05	9.49E-
Beryllium Cadmium	7440-41-7	4	1.13E-06	4.94E-06	N/A	N/A	1.13E-06	4.94E-
Chromium	7440-43-9	4	1.74E-07	7.63E-07	N/A	N/A	1.74E-07	7.63E-
Chromium VI	7440-47-3 SolCR6		6.88E-06	3.01E-05	N/A	N/A	6.88E-06	3.01E-
Cobalt	7440-48-4	Ash Analysis	3.59E-07 3.91E-06	1.57E-06	N/A	N/A	3.59E-07	1.57E-
Lead	7440-48-4			1.71E-05 2.55E-05	N/A	N/A	3.91E-06	1.71E-
Manganese	7439-92-1		5.81E-06 2.83E-05		N/A	N/A	5.81E-06	2.55E-
Mercury	7439-96-5		2.83E-05 9.08E-08	1.24E-04	N/A	N/A	2.83E-05	1.24E-
Nickel	7440-02-0		9.08E-08 7.75E-06	3.97E-07 3.40E-05	N/A	N/A	9.08E-08	3.97E-
Selenium	7782-49-2		5.11E-06	3.40E-05 2.24E-05	N/A N/A	N/A	7.75E-06	3.40E-0
	CAIR POLLUT	ANT EMISSIC				N/A	5.11E-06	2.24E-(
1011					1110 300			
		SOURCE OF EMISSION	EXPECT	TED ACTUAL	EMISSIONS A	FTER CONTR	OLS / LIMITAT	IONS
	CAS NO.	FACTOR	lb/h	ir 🛛	lb/c	lay	lb/	'yr
TOXIC AIR POLLUTANT	ONO NO.		2 17E	-05		-		
	7440-38-2		2.17E-05		5.20E-04		1.90E-01	
Arsenic			1.13E	-06	2.71E-05		9.89E-03	
Arsenic Beryllium	7440-38-2	-			2.71		9.89	E-03
Arsenic Beryllium Cadmium	7440-38-2 7440-41-7	Ash Analysis	1.13E	-07		E-06		
Arsenic Beryllium Cadmium Chromium VI	7440-38-2 7440-41-7 7440-43-9	Ash Analysis	1.13E	-07 -07	4.18	E-06 E-06	1.53i 3.15i	E-03
TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI Manganese Mercury	7440-38-2 7440-41-7 7440-43-9 SolCR6	Ash Analysis	1.13E 1.74E 3.59E	-07 -07 -05	4.18 8.62	E-06 E-06 E-04	1.53	E-03 E-01

FORM B SSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCE

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Operat	te E	39
EMISSION SOURCE DESCRIPTION: Screener		EMISSION SOURCE ID NO: ES-1		
		CONTROL DEVICE ID NO(S): NA		
OPERATING SCENARIO: 0F 1		EMISSION POINT (STACK) ID NO	D(S): EP-19	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): / Beneficiation Process.	Ash is screened	to produce free flowing feedstock s	uitable for the STAR® Ash	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED CAPAC	
TYPE	UNITS	-		
Wet Ash Throughput	Tons	CAPACITY (UNIT/HR) 165.0	LIMITATION(UNIT/HF	()
	TOIIS	105.0	N/A	_
				-
	-			
	-			
	-			_
MATERIALS ENTERING PROCESS - BATCH OPERATI	ON	MAX. DESIGN	REQUESTED CAPAC	
ТҮРЕ	UNITS	4 1		
	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BAT	CH)
				_
MAXIMUM DESIGN (BATCHES / HOUR):				_
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: NA		MUM FIRING RATE (MILLION BTU	/HD)- NA	
		CAPACITY ANNUAL FUEL USE: 1		
MAX. CAPACITY HOURLY FUEL USE: NA		CALACITTANNUAL FUEL USE. I		

Attach Additional Sheets as Necessary

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality -	Application for	Air Permit to	Construct/Op	perate		В
EMISSION SOURCE DESCRIPTION: Crush	ner				OURCE ID NO			
					EVICE ID NO			
OPERATING SCENARIO 1	OF	1) ID NO(S): EF	2-20	_
DESCRIBE IN DETAILTHE EMISSION SOL	IRCE PROCESS	(ATTACH FLOW	DIAGRAM):		entr (enter	, 10 100(0). EI		
Ash is crushed to remove large particles and	d produce free flo	wing feedstock su	itable for the ST.	AR® Ash Bene	eficiation Proce	955.		
TYPE OF EMISSION	SOURCE (CHEC	K AND COMPLE	TE APPROPRIA	TE FORM B1-	B9 ON THE F	OLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Form	B1)	Woodwork	Woodworking (Form B4) Manuf. of chemicals/coatings/inks (For					
Int.combustion engine/generator (Form	B2)	Coating/fin	ishing/printing (F	Form B5)		ation (Form B	3)	
L Liquid storage tanks (Form B3)		Storage sil	os/bins (Form Be	3)	Other	(Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUFA	CTURED: 20	19			
MANUFACTURER / MODEL NO .: TBD			EXPECTED OF	. SCHEDULE:		Z DAY	WK <u>52</u> W	K/YR
IS THIS SOURCE SUBJECT TO?	SPS (SUBPART	S?):		NESH.	AP (SUBPART			
PERCENTAGE ANNUAL THROUGHPUT (%	6): DEC-FEB 2	5 MAR-MAY	25 JU			-NOV 25		
CRITER	IA AIR POLL	JTANT EMISS	IONS INFOR					1000
		SOURCE OF	EXPECTED				EMISSIONS	
		EMISSION	(AFTER CONTR		(RECODE DOM	TROLS / LIMITS)	1	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	1	ROLS / LIMITS)
PARTICULATE MATTER (PM)		AP-42	1.98E-01	8.67E-01	N/A	N/A	ib/hr 1.98E-01	tons/yr
PARTICULATE MATTER<10 MICRONS (PM10)	AP-42	8.91E-02	3.90E-01	N/A N/A			8.67E-01
PARTICULATE MATTER<2.5 MICRONS (PM2		AP-42	1.65E-02	7.23E-02		N/A	8.91E-02	3.90E-01
SULFUR DIOXIDE (SO2)	57	01-76	N/A	N/A	N/A	N/A	1.65E-02	7.23E-02
NITROGEN OXIDES (NOx)		-			N/A	N/A	N/A	N/A
CARBON MONOXIDE (CO)			N/A	N/A	N/A	N/A	N/A	N/A
VOLATILE ORGANIC COMPOUNDS (VOC)			N/A	N/A	N/A	N/A	N/A	N/A
LEAD		Ash Analusia	N/A	N/A	N/A	N/A	N/A	N/A
OTHER		Ash Analysis	3.17E-06	1.39E-05	N/A	N/A	3.17E-06	1.39E-05
	ILS AIR POL	LUTANT EMIS	N/A	N/A	N/A	N/A	N/A	N/A
10-00-00		SOURCE OF			FUR INIS			
			EXPECTED				EMISSIONS	
HAZARDOUS AIR POLLUTANT	CAS NO.	EMISSION	(AFTER CONTRO		(BEFORE CONT		(AFTER CONTR	
Antimony	7440-36-0	FACTOR	ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Arsenic			1.54E-06	6.76E-06	N/A	N/A	1.54E-06	6.76E-0
Beryllium	7440-38-2	4 1	1.18E-05	5.18E-05	N/A	N/A	1.18E-05	5.18E-0
Cadmium	7440-41-7	4 1	6.16E-07	2.70E-06	N/A	N/A	6.16E-07	2.70E-0
	7440-43-9	4 4	9.50E-08	4.16E-07	N/A	N/A	9.50E-08	4.16E-0
Chromium	7440-47-3	4 1	3.75E-06	1.64E-05	N/A	N/A	3.75E-06	1.64E-0
Chromium VI	SolCR6	Ash Analysis	1.96E-07	8.59E-07	N/A	N/A	1.96E-07	8.59E-0
Cobalt		, ion rangely one						
Load	7440-48-4		2.13E-06	9.34E-06	N/A	N/A	2.13E-06	9.34E-0
Lead	7439-92-1		3.17E-06		N/A N/A	N/A N/A	2.13E-06 3.17E-06	
Manganese	7439-92-1 7439-96-5	-	3.17E-06 1.54E-05	9.34E-06 1.39E-05 6.76E-05				1.39E-0
Manganese Mercury	7439-92-1 7439-96-5 7439-97-6		3.17E-06	9.34E-06 1.39E-05	N/A	N/A	3.17E-06	9.34E-00 1.39E-05 6.76E-05 2.17E-07
Manganese Mercury Nickel	7439-92-1 7439-96-5 7439-97-6 7440-02-0		3.17E-06 1.54E-05 4.95E-08 4.23E-06	9.34E-06 1.39E-05 6.76E-05	N/A N/A	N/A N/A	3.17E-06 1.54E-05	1.39E-05 6.76E-05
Manganese Mercury Nickel Selenium	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2		3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.17E-06 1.54E-05 4.95E-08	1.39E-03 6.76E-03 2.17E-03
Manganese Mercury Nickel Selenium	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	3.17E-06 1.54E-05 4.95E-08 4.23E-06	1.39E-03 6.76E-03 2.17E-03 1.85E-03
Manganese Mercury Nickel Selenium TOXIC	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INFORM	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOR	N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A JRCE	3.17E-06 1.54E-05 4.95E-08 4.23E-06	1.39E-09 6.76E-09 2.17E-07 1.85E-09 1.22E-09
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INFORM	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOR TED ACTUAL I	N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A N/A JRCE FTER CONTR	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUTA CAS NO. 7440-38-2	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM EXPECT	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOR TED ACTUAL I	N/A N/A N/A N/A R THIS SOU	N/A N/A N/A N/A JRCE FTER CONTR	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 1.22E-0
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM EXPECT Ib/h	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOR TED ACTUAL I	N/A N/A N/A N/A R THIS SOU EMISSIONS A	N/A N/A N/A N/A JRCE FTER CONTR ay E-04	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 10NS yr E-01
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUTA CAS NO. 7440-38-2	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM, EXPECT Ib/n 1.18E	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOR TED ACTUAL 1 r 05 07	N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/a 2.841	N/A N/A N/A N/A N/A FTER CONTR E-04 E-05	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT Ib/ 1.04E	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 10NS yr E-01 E-03
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUTA CAS NO. 7440-38-2 7440-41-7	ANT EMISSIO	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM EXPEC1 Ib/n 1.18E- 6.16E-	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOP TED ACTUAL 1 r 05 07 08	N/A N/A N/A N/A R THIS SOU EMISSIONS A [b/d 2.841 1.486	N/A N/A N/A N/A N/A TRCE FTER CONTR ay =-04 =-05 =-06	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT Ib/ 1.04E 5.39E	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 10NS yr E-01 E-03 E-04
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT CAS NO. 7440-38-2 7440-41-7 7440-43-9	ANT EMISSIO SOURCE OF EMISSION FACTOR	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM EXPECT Ib/n 1.18E- 6.16E- 9.50E-	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOP TED ACTUAL 1 r 05 07 08 07	N/A N/A N/A N/A R THIS SOU EMISSIONS A Ib/d 2.841 1.488 2.286	N/A N/A N/A N/A N/A JRCE FTER CONTR ay =-04 =-05 =-06 =-06	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT Ib/ 1.04E 5.39E 8.33E	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 10NS yr E-01 E-03 E-04 E-03
Manganese Mercury Nickel Selenium TOXIC AIR POLLUTANT Arsenic Beryllium Cadmium Chromium VI	7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 AIR POLLUT, CAS NO. 7440-38-2 7440-41-7 7440-43-9 SolCR6	ANT EMISSIO SOURCE OF EMISSION FACTOR	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 INS INFORM EXPECT Ib/n 1.18E 6.16E- 9.50E- 1.96E-	9.34E-06 1.39E-05 6.76E-05 2.17E-07 1.85E-05 1.22E-05 ATION FOP TED ACTUAL 1 r 05 07 08 07 05	N/A N/A N/A N/A R THIS SOU EMISSIONS A EMISSIONS A Ib/d 2.841 1.486 2.286 4.700	N/A N/A N/A N/A N/A JRCE FTER CONTR lay =-04 =-06 =-06 =-04 =-04	3.17E-06 1.54E-05 4.95E-08 4.23E-06 2.79E-06 OLS / LIMITAT Ib/ 1.048 5.398 8.338 1.728	1.39E-0 6.76E-0 2.17E-0 1.85E-0 1.22E-0 10NS yr E-01 E-03 E-04 E-03 E-04 E-03 E-01

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

crushed to	EMISSION SOURCE ID NO: ES- CONTROL DEVICE ID NO(S): N/ EMISSION POINT (STACK) ID N remove large particles and produc	A
	EMISSION POINT (STACK) ID NO	D(S): EP-20
	EMISSION POINT (STACK) ID No	D(S): EP-20 he free flowing feedstock suitable fo
	remove large particles and produc	e free flowing feedstock suitable fo
	MAX. DESIGN	REQUESTED CAPACITY
UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Tons	165.0	N/A
	MAX. DESIGN	REQUESTED CAPACITY
JNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
TCHES/YF	<pre>};</pre>	
		MAX. DESIGN

Attach Additional Sheets as Necessary

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

ruct/Operate	,	В		
E ID NO: ES-21		-		
ID NO(S): NA				
STACK) ID NO(S): E	FP-21			
ed from the haul road n the rolling wheels a	ads from the forc and the road su	e of the wheel rface is		
THE FOLLOWING	G PAGES):			
odworking (Form B4)				
HR/DAY 7 DA	DAMANK 50	WK/YR		
JBPARTS?):	DATIWK _ 52	WINTE		
SEP-NOV 25	5			
	TIAL EMISSIONS			
DRE CONTROLS / LIMITS)	/	TROLS / LIMITS)		
o/hr tons/yr	_	tons/yr		
V/A N/A	2.04E-01	8.94E-01		
V/A N/A	5.26E-02	2.30E-01		
N/A N/A	5.27E-03	2.31E-02		
THIS SOURCE				
POTENTIA	IAL EMISSIONS			
RE CONTROLS / LIMITS)		TROLS / LIMITS)		
		tons/yr		
S SOURCE				
IONS AFTER CONTR		TIONS		
		, yı		
m	hits (e.g. hours of op	hits (e.g. hours of operation, emission rat		

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

EMISSION SOURCE DESCRIPTION: Haul Roads OPERATING SCENARIO:1 OF1			
		EMISSION SOURCE ID NO: ES-2	21
		CONTROL DEVICE ID NO(S): NA	A Contraction of the second seco
		EMISSION POINT (STACK) ID NO	D(S): EP-21
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAG amissions are generated from the haul roads from the force of particles are lifted and dropped from the rolling wheels and the	the wheels on the road s	surface. This force causes pulveriza	tion of the surface material. The
MATERIALS ENTERING PROCESS - CONTINUO	US PROCESS	MAX. DESIGN	REQUESTED CAPACITY
TYPE	T	4 1	
	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
MATERIALS ENTERING PROCESS - BATCH C	DPERATION	MAX. DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
AXIMUM DESIGN (BATCHES / HOUR):			
EQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):	
JEL USED: NA		MUM FIRING RATE (MILLION BTU)	/HR): NA
AX. CAPACITY HOURLY FUEL USE: NA		CAPACITY ANNUAL FUEL USE: N	

Attach Additional Sheets as Necessary

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisi	on of Air Quality	- Application fo	or Air Permit to	Construct/O	perate	NOLO,	В	
EMISSION SOURCE DESCRIPTION: Scre	ener Diesel Engi	ne	EMISSION SOURCE ID NO: ES-22					-	
				CONTROL DEVICE ID NO(S): NA					
OPERATING SCENARIO 1	OF	1		-	POINT (STACK		P-22		
DESCRIBE IN DETAILTHE EMISSION SO Diesel-fired screener engine. Expected to c	perate 2,600 hou	irs per year, howe	ver emissions pr	esented below	are on 8,760	hour per year o	operating basis	S.	
TYPE OF EMISSION	SOURCE (CHE			ATE FORM B1	-B9 ON THE F		AGES):		
☐ int.combustion engine/generator (Form ☐ Liquid storage tanks (Form B3)		Coating/fir	Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B7) Coating/finishing/printing (Form B5) Incineration (Form B8) Storage silos/bins (Form B6) Other (Form B9)						
START CONSTRUCTION DATE: 2019			DATE MANUF	,		(FOIM B3)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED O			Y 7 DAY	/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPAR	rs?): IIII		1000	AP (SUBPART		ZZZZ	INTR	
PERCENTAGE ANNUAL THROUGHPUT (S	%): DEC-FEB	25 MAR-MAY	 ′ 25 J	UN-AUG		-NOV 25			
		UTANT EMISS						100	
		SOURCE OF		DACTUAL	01 1110 3				
		EMISSION					L EMISSIONS		
AIR POLLUTANT EMITTED		FACTOR	(AFTER CONTI	tons/yr	(BEFORE CON	tons/yr	1	TROLS / LIMITS	
PARTICULATE MATTER (PM)		NSPS IIII	5.98E-02	2.62E-01	NA	NA	Ib/hr	tons/yr	
PARTICULATE MATTER<10 MICRONS (PM10)	NSPS IIII	5.98E-02	2.62E-01	NA	NA	5.98E-02 5.98E-02	2.62E-0 2.62E-0	
PARTICULATE MATTER<2.5 MICRONS (PM2	.5)	NSPS IIII	5.98E-02	2.62E-01	NA	NA	5.98E-02	2.62E-0	
SULFUR DIOXIDE (SO2)		AP-42	9.65E-04	4.23E-03	NA	NA	9.65E-02	4.23E-0	
NITROGEN OXIDES (NOx)		NSPS IIII	7.03E-01	3.08E+00	NA	NA	7.03E-04	4.23E+0	
CARBON MONOXIDE (CO)		NSPS IIII	7.48E-01	3.28E+00	NA	NA	7.48E-01	3.28E+0	
VOLATILE ORGANIC COMPOUNDS (VOC)		AP-42	2.29E-01	1.00E+00	NA	NA	2.29E-01	1.00E+0	
LEAD		AP-42	5.73E-06	2.51E-05	NA	NA	5.73E-06	2.51E-0	
CO2e		GHGRP	1.04E+02	4.56E+02	NA	NA	1.04E+02	4.56E+0	
HAZARDO	OUS AIR POL	LUTANT EMIS	SIONS INFO	RMATION	FOR THIS	SOURCE		4.002.10	
	1	SOURCE OF	EXPECTED				EMISSIONS		
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CONT		(AFTER CONT	ROLS / LIMITS	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
1,3-BUTADIENE	106-99-0	AP-42	2.49E-05	1.09E-04	NA	NA	2.49E-05	1.09E-04	
ACETALDEHYDE	75-07-0	AP-42	4.89E-04	2.14E-03	NA	NA	4.89E-04	2.14E-03	
ACROLEIN	107-02-8	AP-42	5.89E-05	2.58E-04	NA	NA	5.89E-05	2.58E-04	
BENZENE	71-43-2	AP-42	5.94E-04	2.60E-03	NA	NA	5.94E-04	2.60E-03	
FORMALDEHYDE	50-00-0	AP-42	7.52E-04	3.29E-03	NA	NA	7.52E-04	3.29E-03	
FOLUENE	108-88-3	AP-42	2.61E-04	1.14E-03	NA	NA	2.61E-04	1.14E-03	
YLENE (MIXED ISOMERS)	1330-20-7	AP-42	1.82E-04	7.95E-04	NA	NA	1.82E-04	7.95E-04	
ANTHRACENE	120-12-7	AP-42	1.19E-06	5.22E-06	NA	NA	1.19E-06	5.22E-06	
ACENAPHTHYLENE	208-96-8	AP-42	3.22E-06	1.41E-05	NA	NA	3.22E-06	1.41E-05	
CENAPHTHENE	83-32-9	AP-42	9.05E-07	3.96E-06	NA	NA	9.05E-07	3.96E-06	
LUORENE	86-73-7	AP-42	1.86E-05	8.15E-05	NA	NA	1.86E-05	8.15E-05	
YRENE	129-00-0	AP-42	3.04E-06	1.33E-05	NA	NA	3.04E-06	1.33E-05	
TOXIC	AIR POLLUT	ANT EMISSIO	NS INFORM	ATION FOR	R THIS SOL	IRCE			
		SOURCE OF EMISSION	EXPEC.	TED ACTUAL	EMISSIONS A	FTER CONTR	OLS / LIMITAT	TIONS	
	CAS NO.	FACTOR	ib/h		lb/d	ay	lb/	yr	
,3-BUTADIENE	106-99-0	AP-42	2.49E		5.98E	E-04	2.18	E-01	
	75-07-0	AP-42	4.89E		1.17	E-02	4.28	+00	
CROLEIN	107-02-8	AP-42	5.89E		1.416	-03	5.16	E-01	
ENIZENE	71-43-2	AP-42	5.94E-04		1.43E	-02	5.21E	+00	
			7.52E-04		1.80E-02		5.21E+00 6.58E+00		
ORMALDEHYDE	50-00-0	AP-42			1.80E	-02	6.58E	+00	
		AP-42 AP-42 AP-42	7.52E 2.61E	-04	1.80E 6.25E		6.58E 2.28E		

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B (Cont.)	
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)	

EMISSION SOURCE DESCRIPTION: Screene	CDEQ/Division			1	OURCE ID NO			В
					EVICE ID NO			
OPERATING SCENARIO 1	OF	1						
HAZARDOU	S AIR POL	LUTANT EMIS	SSIONS INF	OPMATION) ID NO(S): EP	-22	
	1	SOURCE OF			FOR THIS			
	1	EMISSION		DACTUAL			EMISSIONS	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	(AFTER CONTR lb/hr	T		TROLS / LIMITS)	(AFTER CON1	1
BENZO(G,H,I)PERYLENE	191-24-2	AP-42	3.11E-07	tons/yr 1.36E-06	lb/hr	tons/yr	lb/hr	tons/y
NAPHTHALENE	91-20-3	AP-42	5.40E-05	2.37E-04	NA	NA	3.11E-07	1.36E-0
PHENANTHRENE	85-01-8	AP-42	1.87E-05	8.20E-05	NA	NA	5.40E-05	2.37E-0
BENZ(A)ANTHRACENE	56-55-3	AP-42	1.07E-06	4.69E-06	NA	NA	1.87E-05	8.20E-0
BENZO(A)PHENANTHRENE (CHRYSENE)	218-01-9	AP-42	2.25E-07	9.85E-07	NA	NA	1.07E-06	4.69E-0
BENZO(A)PYRENE	50-32-8	AP-42	1.20E-07	9.85E-07 5.25E-07	NA NA	NA	2.25E-07	9.85E-0
BENZO(B)FLUORANTHENE	205-99-2	AP-42	6.31E-08	2.76E-07		NA	1.20E-07	5.25E-0
BENZO(J,K)FLUORENE (FLUORANTHENE)	206-44-0	AP-42	4.85E-06	2.12E-05	NA	NA	6.31E-08	2.76E-0
BENZO(K)FLUORANTHENE	207-08-9	AP-42	9.87E-08	4.32E-05	NA NA	NA	4.85E-06	2.12E-0
DIBENZO(A,H)ANTHRACENE	53-70-3	AP-42	3.71E-07	4.32E-07 1.63E-06	NA	NA	9.87E-08	4.32E-0
NDENO(1,2,3-CD)PYRENE	193-39-5	AP-42	2.39E-07	1.05E-00	NA	NA NA	3.71E-07	1.63E-0
RSENIC	7440-38-2	AP-42	2.55E-06	1.12E-05	NA	NA	2.39E-07 2.55E-06	1.05E-0
BERYLLIUM	7440-41-7	AP-42	1.91E-06	8.37E-06	NA			1.12E-0
CADMIUM	7440-43-9	AP-42	1.91E-06	8.37E-06	NA	NA NA	1.91E-06	8.37E-0
HROMIUM	SolCR6	AP-42	1.91E-06	8.37E-06	NA	NA	1.91E-06	8.37E-0
EAD	7439-92-1	AP-42	5.73E-06	2.51E-05	NA	NA	1.91E-06 5.73E-06	8.37E-0
ANGANESE	7439-96-5	AP-42	3.82E-06	1.67E-05	NA	NA	3.82E-06	2.51E-0
/ERCURY	7439-97-6	AP-42	1.91E-06	8.37E-06	NA	NA	1.91E-06	
lickel	7440-02-0	AP-42	1.91E-06	8.37E-06	NA	NA	1.91E-06	8.37E-0
ELENIUM	7782-49-2	AP-42	9.56E-06	4.19E-05	NA	NA	9.56E-06	4.19E-0
TOXIC A	R POLLUT	ANT EMISSIO				IRCE	9.50E-00	4.196-0
		SOURCE OF EMISSION	EXPEC	TED ACTUAL I			OLS / LIMITAT	TIONS
OXIC AIR POLLUTANT ENZO(A)PYRENE	CAS NO.	FACTOR	lb/h		lb/d	ay	lb/	/yr
RSENIC	50-32-8	AP-42	1.20E		2.87		1.05	E-03
ERYLLIUM	7440-38-2	AP-42	2.55E		6.12		2.23	E-02
ADMIUM	7440-41-7	AP-42	1.91E		4.598		1.67	E-02
	7440-43-9	AP-42	1.91E		4.598		1.67	E-02
ANGANESE	SolCR6	AP-42	1.91E		4.598		1.67	E-02
ERCURY	7439-96-5	AP-42	3.82E		9.178	-05	3.35	E-02
	7439-97-6	AP-42	1.91E	-06	4.595	-05	1.67	E-02
ICKEL	7440-02-0	AP-42	1.91E	-06	4.59E	-05	1.67	E-02

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B2 EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)

REV/SED 09/22/16	NCDEQ/Division of A	Air Quality - Applica	tion for Air Peri	mit to Construct/Operat	B	B2
EMISSION SOURCE DESCRIPTION	: Screener Diesel Engine			EMISSION SOURCE ID		
				CONTROL DEVICE ID		
OPERATING SCENARIO:	1 OF	1		EMISSION POINT (STA		
ENGINE SERVICE	EMERGENCY	SPACE H	FAT	ELECTRICAL G		
	PEAK SHAVER			creener operation	ENERATION	
GENERATOR OUTPUT (KW):				OPERATION (HRS/YR)	0.000	
ENGINE OUTPUT (HP): 91 bhp		ANTOFATEBACI	UAL HOURS OF	OPERATION (HRS/YR)	2,600	
TYPE ICE: GASOLINE ENGIN		GINE UP TO 600 HF		I ENONE ODEATED T	the sector and the	
OTHER (DESCRIE	BE):		1 DIESE	L ENGINE GREATER TH		UAL FUEL ENGINE
ENGINE TYPE						
EMISSION REDUCTION MODIFICAT		TIMING RETARD	PREIG	NITION CHAMBER CON	BUSTION 0	THER
OR STATIONARY GAS TUR	BINE (complete below)	NATURAL	GAS PIPELINE	COMPRESSOR OR TUP	BINE (complete below	w)
FUEL: NATURAL GAS	OIL	ENGINE TYPE:				URBINE
OTHER (DESCRIBE):		F	4-CYCLE RICH	BURN OTH	ER (DESCRIBE):	
CYCLE: COGENERATION	SIMPLE			MODIFICATIONS (DES		
REGENERATIVE	COMBINED				ECTIVE CATALYTIC	REDUCTION
CONTROLS: WATER-S	TEAM INJECTION		ND PRECOMBL			ILLOUG HON
UNCONTROLLED	LEAN-PREMIX			CHOR CHAMBER 1	CHOONTROLLED	
OTHER (SPECIFY):						
	FUEL USA	GE (INCLUDE	STARTUP/R			
			XIMUM DESIGN			
FUEL TYPE	UNITS		ACITY (UNIT/HR		REQUESTED CAPAC	
Diesel	gailons	0/1		·/	LIMITATION (UNIT/H	1R)
	gaiona				NA	
	UEL CHARACTER	STICS (COMPL				
				AT ANE AFFLICAE		
FUEL TYPE	BTU/UNIT		UNITS		SULFUR CONTE	NT
Diesel	19,300				(% BY WEIGHT)	
	13,500		pounds		0.0015%	
	MANUFACTURER'S				-	
POLLUTANT	NOX	CO				-
EMISSION FACTOR LB/UNIT			PM	PM10	VOC	OTHER
UNIT						
DESCRIBE METHODS TO MINIMIZE	//0121 = =1 //02 = 1 //01					
COMMENTS:						

Attach Additional Sheets As Necessary

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	NCDEQ/Divisio		Application for	Air Permit to	Construct/Op	Derate		В
EMISSION SOURCE DESCRIPTION: Crushe	r Diesel Engine			EMISSION S	OURCE ID NO): ES-23		
				CONTROL D	EVICE ID NO	(S): NA		
OPERATING SCENARIO	OF	1		EMISSION P	OINT (STACK) ID NO(S): EF	-23	
DESCRIBE IN DETAILTHE EMISSION SOUR	RCE PROCESS	(ATTACH FLOW	DIAGRAM):					
Diese!-fired crusher engine. Expected to oper								
TYPE OF EMISSION S				TE FORM B1	B9 ON THE F	OLLOWING P	AGES):	
Coal,wood,oil, gas, other burner (Form B		=	ing (Form B4)		Manuf.	of chemicals/	coatings/inks (Form B7)
Int.combustion engine/generator (Form B	2)		ishing/printing (I	,	_	ation (Form Ba	3)	
Liquid storage tanks (Form B3)		L_ Storage sil	os/bins (Form B	6)	_Other ((Form B9)		
START CONSTRUCTION DATE: 2019			DATE MANUE	ACTURED: 20	19			
MANUFACTURER / MODEL NO.: TBD			EXPECTED OF	P. SCHEDULE		7_DAY	WK <u>52</u> W	K/YR
IS THIS SOURCE SUBJECT TO?	SPS (SUBPART	S?): []]]	_	VESH	AP (SUBPART	S?):	7777	
PERCENTAGE ANNUAL THROUGHPUT (%)		5 MAR-MAY		UN-AUG		-NOV 25		
CRITERI	A AIR POLL	UTANT EMISS	IONS INFOR	RMATIONF	OR THIS S	OURCE		
		SOURCE OF	EXPECTER	ACTUAL		POTENTIA	EMISSIONS	
		EMISSION	(AFTER CONTR	OLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMIT
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	ib/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		NSPS IIII	1.97E-01	8.64E-01	NA	NA	1.97E-01	8.64E-0
PARTICULATE MATTER<10 MICRONS (PM10)		NSPS IIII	1.97E-01	8.64E-01	NA	NA	1.97E-01	8.64E-0
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		NSPS IIII	1.97E-01	8.64E-01	NA	NA	1.97E-01	8.64E-0
SULFUR DIOXIDE (SO2)		AP-42	3.18E-03	1.39E-02	NA	NA	3.18E-03	1.39E-0
NITROGEN OXIDES (NOx)		NSPS IIII	2.32E+00	1.02E+01	NA	NA	2.32E+00	1.02E+0
CARBON MONOXIDE (CO)		NSPS IIII	2.47E+00	1.08E+01	NA	NA	2.47E+00	1.08E+0
VOLATILE ORGANIC COMPOUNDS (VOC)		AP-42	7.54E-01	3.30E+00	NA	NA	7.54E-01	3.30E+0
LEAD		AP-42	1.89E-05	8.28E-05	NA	NA	1.89E-05	
CO2e		GHGRP	3.44E+02	1.50E+03	NA	NA		8.28E-0
HAZARDO	IS AIR POL	LUTANT EMIS					3.44E+02	1.50E+0
		SOURCE OF			I OK IIII S			1
		EMISSION	EXPECTED				EMISSIONS	
AZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	(AFTER CONTR	r	(BEFORE CONT	· · · · ·	(AFTER CONT	
I,3-BUTADIENE	106-99-0	AP-42	8.21E-05	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	75-07-0	AP-42		3.60E-04	NA	NA	8.21E-05	3.60E-04
	10+01-0	AF=42	1.61E-03	7.05E-03	NA	NA	1.61E-03	7.05E-0
ACROLEIN	107 00 0	140 40		8.51E-04	NA	NA		8.51E-0-
	107-02-8	AP-42	1.94E-04			-	1.94E-04	5
	71-43-2	AP-42	1.96E-03	8.58E-03	NA	NA	1.96E-03	8.58E-03
BENZENE FORMALDEHYDE	71-43-2 50-00-0	AP-42 AP-42	1.96E-03 2.48E-03	8.58E-03 1.09E-02	NA NA	NA NA	1.96E-03 2.48E-03	1.09E-02
BENZENE FORMALDEHYDE FOLUENE	71-43-2 50-00-0 108-88-3	AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04	8.58E-03 1.09E-02 3.76E-03	NA NA NA	NA NA NA	1.96E-03 2.48E-03 8.59E-04	1.09E-03 3.76E-03
SENZENE FORMALDEHYDE FOLUENE KYLENE (MIXED ISOMERS)	71-43-2 50-00-0 108-88-3 1330-20-7	AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04	8.58E-03 1.09E-02 3.76E-03 2.62E-03	NA NA NA NA	NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04	1.09E-02 3.76E-03 2.62E-03
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05	NA NA NA NA	NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06	1.09E-02 3.76E-02 2.62E-02 1.72E-03
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE ACENAPHTHYLENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05	NA NA NA NA	NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04	1.09E-02 3.76E-03 2.62E-03 1.72E-05
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE ACENAPHTHYLENE ACENAPHTHENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05	NA NA NA NA	NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06	1.09E-03 3.76E-03 2.62E-03 1.72E-03 4.65E-03
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04	NA NA NA NA NA	NA NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05	1.09E-0: 3.76E-0: 2.62E-0: 1.72E-0: 4.65E-0: 1.31E-0:
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE ACENAPHTHYLENE ACENAPHTHENE FLUORENE PYRENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06	1.09E-0: 3.76E-0: 2.62E-0: 1.72E-0: 4.65E-0: 1.31E-0: 2.69E-04
SENZENE FORMALDEHYDE FOLUENE (YLENE (MIXED ISOMERS) ANTHRACENE ACENAPHTHYLENE ACENAPHTHENE HUORENE YYRENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05	1.09E-0: 3.76E-0: 2.62E-0: 1.72E-0: 4.65E-0: 1.31E-0: 2.69E-04
SENZENE CORMALDEHYDE COLUENE (YLENE (MIXED ISOMERS) INTHRACENE INTHRACENE ICENAPHTHYLENE ICENAPHTHENE CENAPHTHENE ILUORENE YYRENE TOXIC A	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 NIR POLLUT	AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 SOURCE OF EMISSION	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL	NA NA NA NA NA NA NA NA NA NA R THIS SOL	NA NA NA NA NA NA NA NA NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05	1.09E-02 3.76E-02 2.62E-02 1.72E-02 4.65E-02 1.31E-02 2.69E-04 4.40E-02
SENZENE CORMALDEHYDE COLUENE (YLENE (MIXED ISOMERS) INTHRACENE ICENAPHTHYLENE ICENAPHTHENE CENAPHTHENE CONCENE YRENE TOXIC A OXIC AIR POLLUTANT	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 NIR POLLUT CAS NO.	AP-42 SOURCE OF EMISSION FACTOR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL	NA NA NA NA NA NA NA NA NA NA R THIS SOL	NA NA NA NA NA NA NA FTER CONTR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05	1.09E-02 3.76E-02 2.62E-03 1.72E-02 4.65E-02 1.31E-02 2.69E-04 4.40E-02
SENZENE CORMALDEHYDE COLUENE (YLENE (MIXED ISOMERS) INTHRACENE ICENAPHTHYLENE ICENAPHTHENE CENAPHTHENE CENAPHTHENE CONCENE YRENE TOXIC A OXIC AIR POLLUTANT ,3-BUTADIENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 VIR POLLUT CAS NO. 106-99-0	AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL	NA NA NA NA NA NA NA R THIS SOL	NA NA NA NA NA NA NA TRCE FTER CONTR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05	1.09E-02 3.76E-02 2.62E-02 1.72E-03 4.65E-02 1.31E-03 2.69E-04 4.40E-03 710NS
SENZENE SORMALDEHYDE SOLUENE SULENE SULENE SULENE SULENAPHTHYLENE SULUORENE SULUORENE SULUORENE SULUORENE SULUTANT SULUTANT SULUTANT	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 IIR POLLUT CAS NO. 106-99-0 75-07-0	AP-42 SOURCE OF EMISSION FACTOR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL r -05	NA NA NA NA NA NA NA R THIS SOL EMISSIONS A	NA NA NA NA NA NA NA TRCE FTER CONTR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 0LS / LIMITAT	1.09E-02 3.76E-03 2.62E-03 1.72E-03 4.65E-03 1.31E-03 2.69E-04 4.40E-03 TIONS
SENZENE SORMALDEHYDE SOLUENE SULENE SULENE SULENE SULENAPHTHYLENE SULUORENE SULUORENE SULUORENE SULUORENE SULUTANT	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 VIR POLLUT CAS NO. 106-99-0	AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL r -05 -03	NA NA NA NA NA NA NA R THIS SOL EMISSIONS A EMISSIONS A EMISSIONS A	NA NA NA NA NA NA NA NA TRCE FTER CONTR FTER CONTR	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 0LS / LIMITAT	1.09E-0: 3.76E-0: 2.62E-0: 1.72E-0: 4.65E-0: 1.31E-0: 2.69E-0- 4.40E-0: 7IONS 7IONS yr E-01 E+01
SENZENE SORMALDEHYDE SORMALDEHYDE SOLUENE (YLENE (MIXED ISOMERS) INTHRACENE ICENAPHTHYLENE ICENAPHTHENE SUORENE YYRENE TOXIC AIR POLLUTANT ,3-BUTADIENE CETALDEHYDE CROLEIN ENZENE	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 IIR POLLUT CAS NO. 106-99-0 75-07-0	AP-42	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-05 I.00E-	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FO TED ACTUAL r -05 -03 -04	NA NA NA NA NA NA NA R THIS SOL EMISSIONS A EMISSIONS A Ib/d 1.971 3.875	NA NA NA NA NA NA NA NA TRCE FTER CONTR FTER CONTR Hay =-03 =-02 =-03	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 0LS / LIMITAT Ib/ 7.19 1.41E	1.09E-0: 3.76E-0: 2.62E-0: 1.72E-0: 4.65E-0: 1.31E-0: 2.69E-0- 4.40E-0: 710NS 710NS 710NS 710NS
SENZENE SORMALDEHYDE SORMALDEHYDE SORMALDEHYDE SOLUENE SOLUENE SOLUENE SOLUENE SOLUCAIR POLLUTANT SOLUCAIR POLLUTANT SOLUEIN SENZENE SOLUEIN SENZENE SOLUENE SOLUCAIR POLLUENE SOLUCAIR SOLUENE SOLUCAIR SOLUENE SOLUCAIR S	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 //// POLLUT CAS NO. 106-99-0 75-07-0 107-02-8	AP-42	1.96E-03 2.48E-03 8.59E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 INS INFORM EXPEC ib/h 8.21E 1.61E	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FOI TED ACTUAL TED ACTUAL 03 -04 -03	NA NA NA NA NA NA NA NA R THIS SOL EMISSIONS A EMISSIONS A Ib/d 1.971 3.871 4.665	NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 0LS / LIMITAT Ib/ 7.19 1.411 1.70E	1.09E-02 3.76E-02 2.62E-03 1.72E-02 4.65E-02 1.31E-02 2.69E-04 4.40E-05 70NS Yr E-01 E+01 E+01 E+01 E+01
SENZENE SORMALDEHYDE SORMALDEHYDE SORMALDEHYDE SOLUENE SOLUENE SOLUENE SOLUCRENE SOLUCRENE SOLUCAIR POLLUTANT	71-43-2 50-00-0 108-88-3 1330-20-7 120-12-7 208-96-8 83-32-9 86-73-7 129-00-0 IR POLLUT CAS NO. 106-99-0 75-07-0 107-02-8 71-43-2	AP-42 AP-42	1.96E-03 2.48E-03 8.59E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 INS INFORM EXPEC ib/h 8.21E 1.61E 1.94E	8.58E-03 1.09E-02 3.76E-03 2.62E-03 1.72E-05 4.65E-05 1.31E-05 2.69E-04 4.40E-05 ATTON FOI TED ACTUAL r -05 -03 -04 -03 -03	NA NA NA NA NA NA NA NA R THIS SOL EMISSIONS AI EMISSIONS AI EMISSIONS AI EMISSIONS AI EMISSIONS AI EMISSIONS AI	NA NA	1.96E-03 2.48E-03 8.59E-04 5.99E-04 3.93E-06 1.06E-05 2.98E-06 6.13E-05 1.00E-05 0LS / LIMITAT Ib/ 7.19 1.411 1.700 1.72E	1.09E-02 3.76E-02 2.62E-03 1.72E-02 4.65E-02 1.31E-02 2.69E-02 4.40E-05 70NS Yr F-01 E+01 E+01 E+01 E+01

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B (Cont.) SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EMISSION SOURCE DESCRIPTION: Crusher	DEQ/Division			EMISSIONS	OURCE ID NO) ES-23		
					EVICE ID NO			_
OPERATING SCENARIO 1	OF	1		1) ID NO(S): EP	00	
HAZARDOU		LUTANT EMIS	SIONS INF				-23	
		SOURCE OF		DACTUAL	I OK MIS			
		EMISSION			/		EMISSIONS	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	(AFTER CONTI	tons/yr	(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS
BENZO(G,H,I)PERYLENE	191-24-2	AP-42	1.03E-06	4.50E-06	NA	tons/yr NA	lb/hr 1.03E-06	tons/yr
NAPHTHALENE	91-20-3	AP-42	1.78E-04	7.80E-04	NA	NA	1.78E-04	4.50E-0
PHENANTHRENE	85-01-8	AP-42	6.17E-05	2.70E-04	NA	NA	6.17E-04	2.70E-0
BENZ(A)ANTHRACENE	56-55-3	AP-42	3.53E-06	1.55E-05	NA	NA	3.53E-06	1.55E-0
BENZO(A)PHENANTHRENE (CHRYSENE)	218-01-9	AP-42	7.41E-07	3.25E-06	NA	NA	3.53⊑-06 7.41E-07	3.25E-0
BENZO(A)PYRENE	50-32-8	AP-42	3.95E-07	1.73E-06	NA	NA	3.95E-07	3.25E-0
BENZO(B)FLUORANTHENE	205-99-2	AP-42	2.08E-07	9.12E-07	NA	NA	2.08E-07	9.12E-0
BENZO(J,K)FLUORENE (FLUORANTHENE)	206-44-0	AP-42	1.60E-05	7.00E-05	NA	NA	1.60E-07	9.12E-0 7.00E-0
BENZO(K)FLUORANTHENE	207-08-9	AP-42	3.26E-07	1.43E-06	NA	NA	3.26E-07	1.43E-0
DIBENZO(A,H)ANTHRACENE	53-70-3	AP-42	1.22E-06	5.36E-06	NA	NA	1.22E-06	5.36E-0
NDENO(1,2,3-CD)PYRENE	193-39-5	AP-42	7.88E-07	3.45E-06	NA	NA	7.88E-07	3.45E-0
ARSENIC	7440-38-2	AP-42	8.40E-06	3.68E-05	NA	NA	8.40E-06	3.68E-0
BERYLLIUM	7440-41-7	AP-42	6.30E-06	2.76E-05	NA	NA	6.30E-06	2.76E-0
CADMIUM	7440-43-9	AP-42	6.30E-06	2.76E-05	NA	NA	6.30E-06	2.76E-0
CHROMIUM	SolCR6	AP-42	6.30E-06	2.76E-05	NA	NA	6.30E-06	2.76E-0
EAD	7439-92-1	AP-42	1.89E-05	8.28E-05	NA	NA	1.89E-05	8.28E-0
MANGANESE	7439-96-5	AP-42	1.26E-05	5.52E-05	NA	NA	1.26E-05	5.52E-0
MERCURY	7439-97-6	AP-42	6.30E-06	2.76E-05	NA	NA	6.30E-06	2.76E-0
NCKEL	7440-02-0	AP-42	6.30E-06	2.76E-05	NA	NA	6.30E-06	2.76E-0
SELENIUM	7782-49-2	AP-42	3.15E-05	1.38E-04	NA	NA	3.15E-05	1.38E-04
TOXIC AI	R POLLUT	ANT EMISSIC	NS INFORM	ATION FO	R THIS SOU			
		SOURCE OF EMISSION		TED ACTUAL	EMISSIONS A	FTER CONTR	OLS / LIMITA	TIONS
OXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/l		lb/c	lay	lb.	/yr
	50-32-8	AP-42	3.955		9.48		3.46	E-03
RSENIC	7440-38-2	AP-42	8.408		2.02	E-04	7.36	E-02
ERYLLIUM	7440-41-7	AP-42	6.305		1.51	E-04	5.52	E-02
	7440-43-9	AP-42	6.308		1.51	E-04	5.52	E-02
	SolCR6	AP-42	6.30E		1.51		5.52	E-02
IANGANESE	7439-96-5	AP-42	1.268		3.02	E-04	1.10	E-01
/IERCURY	7439-97-6	AP-42	6.30E		1.51	E-04	5.52	E-02
VICKEL	7440-02-0	AP-42	6.30E	E-06	1.51	E-04	5.52	E-02

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B2 EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)

REVISED 09/22/16	NCDEQ/Division of A	ir Quality - Application for A	ir Permit to Co	nstruct/Operate		B2
EMISSION SOURCE DESCRIPTION	I: Crusher Diesel Engine			ON SOURCE ID		
				OL DEVICE ID N		
OPERATING SCENARIO:	0F	1	EMISSIC	ON POINT (STA	CK) ID NO(S): EP-23	
ENGINE SERVICE	EMERGENCY	SPACE HEAT		LECTRICAL GE		
(CHECK ALL THAT APPLY)	PEAK SHAVER	VOTHER (DESCRIBI				
GENERATOR OUTPUT (KW):		ANTICIPATED ACTUAL HOU			365	_
ENGINE OUTPUT (HP): 300 bhp						
TYPE ICE: GASOLINE ENGI	NE	GINE UP TO 600 HP	DIESEL ENGINI	E GREATER TH	AN 600 HP	UAL FUEL ENGINE
OTHER (DESCRI				complete below)		ONE I OLL ENGINE
ENGINE TYPE RICH BUI	RN LEAN BURN	ý literatura de la companya de la co	1.	sample a below)		
EMISSION REDUCTION MODIFICA			PREIGNITION	HAMBER COM		
OR STATIONARY GAS TUR		NATURAL GAS PIP				THER
FUEL: NATURAL GAS		ENGINE TYPE: 2-CYCLI				
OTHER (DESCRIBE):	1 1 0.0	<u> </u>	E RICH BURN			
CYCLE: COGENERATION					ER (DESCRIBE):	
REGENERATIVE		NONSELECTIVE CATALY			RIBE):	
	TEAM INJECTION				ECTIVE CATALYTIC	REDUCTION
	LEAN-PREMIX	LIGLEAN BURN AND PREC	OMBUSTION C	HAMBER	UNCONTROLLED	
OTHER (SPECIFY):						
	EUEL US	CE /INCLUDE STADT	10/04/01/110	The series is		
	TUEL USA	GE (INCLUDE START		FUEL)		
FUEL TYPE	UNITS	MAXIMUM D			REQUESTED CAPAC	
Diesel		CAPACITY (U	NIT/HR)		LIMITATION (UNIT/F	IR)
Diesei	gallons				NA	
	FUEL CHARACTER	STICS (COMPLETE AL				
		OTIOD (COMPLETE AL		APPLICAB		
FUEL TYPE	BTU/UNIT	UNITS			SULFUR CONTEN	NT
Diesel	19,300				(% BY WEIGHT)	
	13,000	pounds			0.0015%	
	MANUFACTURER'S	SPECIFIC EMISSION	EACTORS (F 1	
POLLUTANT	NOX	CO CO	PM			
EMISSION FACTOR LB/UNIT			FIM	PM10	VOC	OTHER
UNIT						
DESCRIBE METHODS TO MINIMIZE	VISIBLE EMISSIONS DUF	RING IDLING, OR LOW LOAD	OPERATIONS:			
	Attach	Additional Sheets A	Nacassan			

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

	DEQ/Division of Air Quali						D1
CRI	TERIA AIR POLLUTAN	EMISSION	SINFORMATI	ON - FACILITY	-WIDE		
		ÉMI	SSIONS	POTENTIA	L EMISSIONS	POTENTI	AL EMISSION
		(AFTER C	CONTROLS /	(BEFORE (CONTROLS /	(AFTER	CONTROLS /
		LIMIT	ATIONS)	LIMIT	ATIONS)	LIMI	TATIONS)
		to	ins/yr	to	ns/yr	t	ons/yr
PARTICULATE MATTER (PM)			144		NA		144
PARTICULATE MATTER < 10 MICRONS (PM			131		A		131
PARTICULATE MATTER < 2.5 MICRONS (PM	1 _{2.5})		75.1		NA		75.1
			112		A		112
NITROGEN OXIDES (NOx)			222	1	NA		222
			112	1	NA		112
VOLATILE ORGANIC COMPOUNDS (VOC)		1	14.1	1	NA		14.1
		1.2	8E-03		A	1.;	28E-03
GREENHOUSE GASES (GHG) (SHORT TON	S - CO2e)	15	6,869	1	A	15	56,869
OTHER (H2SO4)			8E-01		A	4.3	38E-01
HAZAF	RDOUS AIR POLLUTAI	T EMISSION	IS INFORMAT	ION - FACILIT	Y-WIDE	1.16.15	
		EMIS	SIONS	POTENTIAL	EMISSIONS	POTENTIA	L EMISSIONS
		(AFTER C	ONTROLS /	(BEFORE C	ONTROLS /	(AFTER	CONTROLS /
		LIMITA	ATIONS)	LIMITA	TIONS)	LIMIT	ATIONS)
AZARDOUS AIR POLLUTANT EMITTED	CAS NO.	to	ns/yr	tor	is/yr	to	ons/yr
,3-Butadiene	106-99-0	4.6	9E-04	N	A	4.6	39E-04
Acetaldehyde	75-07-0	9.1	9E-03	l N	IA	9.1	19E-03
Acrolein	107-02-8	1.1	1E-03	N	IA	1.1	1E-03
Benzene	71-43-2	1.13	2E-02	N	IA	1.1	2E-02
Formaldehyde	50-00-0	1.41	1E-02	N	IA	1.4	1E-02
	108-88-3	4.90	DE-03	N	IA	4.9	0E-03
Kylene (Mixed Isomers)	1330-20-7	3.42	2E-03	N	IA	3.4	2E-03
Anthracene	120-12-7		IE-05		A	2.2	4E-05
	IC AIR POLLUTANT E	MISSIONS IN	FORMATION	- FACILITY-W	IDE		
NDICATE REQUESTED ACTUAL EMISSIONS ICAC 2Q .0711 MAY REQUIRE AIR DISPERS	FAFTER CONTROLS / LIN HON MODELING, USE NE	TTING FORM	MISSIONS ABO D2 IF NECESS/	VE THE TOXIC I ARY.			ER) IN 15A
OXIC AIR POLLUTANT EMITTED	CAS NO.	11-11			Modeling F		
12504	7664-93-9	1b/hr 1.00E-01	Ib/day	lb/year	Yes	No	
,3-Butadiene	106-99-0		2.40E+00	8.76E+02	X		
cetaldehyde	75-07-0	1.07E-04	2.57E-03	9.37E-01		X	
crolein	107-02-8	2.10E-03 2.53E-04	5.04E-02	1.84E+01		X	
enzene	71-43-2	2.55E-04	6.08E-03	2.22E+00		X	
ormaldehyde	50-00-0		6.13E-02	2.24E+01	X		
oluene	108-88-3	3.23E-03	7.75E-02	2.83E+01		X	
ylene (Mixed Isomers)	1330-20-7	1.12E-03	2.69E-02	9.81E+00		X	
y (50-32-8	7.80E-04	1.87E-02	6.83E+00		X	
enzo(a)Pyrene		5.15E-07	1.23E-05	4.51E-03		Х	

Attach Additional Sheets As Necessary

FORM D1 (Cont.) FACILITY-WIDE EMISSIONS SUMMARY

HAZAR	DOUS AIR POLLUT	ANT EMISSIC	INS INFORMA	TION - FACILI	TY-WIDE		
		EM (AFTER	ISSIONS CONTROLS / TATIONS)	POTENTIA (BEFORE	L EMISSIONS CONTROLS /	(AFTER	AL EMISSION CONTROLS
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.				ATIONS)		TATIONS)
Acenaphthylene	208-96-8		ons/yr 07E-05		ns/yr	t	ons/yr
Acenaphthene	83-32-9		70E-05		NA		07E-05
Fluorene	86-73-7				NA	1.	70E-05
Pyrene	129-00-0		50E-04	-	NA	3.	50E-04
Benzo(g,h,i)Perylene	191-24-2		73E-05		NA	5.	73E-05
Vaphthalene	91-20-3		36E-06		NA		36E-06
Phenanthrene	85-01-8		02E-03		A	1.(02E-03
Benz(a)Anthracene	56-55-3		52E-04	1	NA	3.5	52E-04
Benzo(a)Phenanthrene (Chrysene)	218-01-9		01E-05	-	NA	2.0	1E-05
Benzo(a)Pyrene	50-32-8		23E-06		NA	4.2	23E-06
Benzo(b)Fluoranthene	205-99-2		25E-06		NA	2.2	25E-06
Benzo(j,k)Fluorene (Fluoranthene)	206-44-0		9E-06		A	1.1	9E-06
Benzo(k)Fluoranthene	207-08-9		2E-05		A	9.1	2E-05
Dibenzo(a,h)Anthracene	53-70-3	-	6E-06		IA	1.8	6E-06
ndeno(1,2,3-CD)Pyrene	193-39-5		9E-06		IA	6.9	9E-06
ntimony	7440-36-0		0E-06	N	IA	4.5	0E-06
rsenic	7440-38-2	-	7E-04		IA	5.6	7E-04
eryllium	7440-38-2		8E-03		IA	4.3	8E-03
admium	7440-43-9		3E-04		IA	2.6	3E-04
hromium	7440-47-3		7E-05		A	7.3	7E-05
hromium VI	SolCR6		6E-03	N		1.4	6E-03
obalt	7440-48-4		6E-05	N		7.1	6E-05
ead	7439-92-1		4E-04	N		7.9	4E-04
anganese	7439-92-1		8E-03	N		1.2	8E-03
ercury	7439-96-5	1	DE-03	N		6.1	DE-03
ickel		-	1E-05	N	A	5.4	1E-05
elenium	7440-02-0		2E-03	N	A	1.62	2E-03
	7782-49-2		E-03	N	A	1.2	IE-03
DICATE REQUESTED ACTUAL EMISSIONS A CAC 2Q .0711 MAY REQUIRE AIR DISPERSIO	FIER CONTROLS / L N MODELING. USE N	MITATIONS E	VIESIONE ADO		ERMIT EMISSI		ER) IN 15A
XIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb4/ser	Modeling R		
senic	7440-38-2	1.00E-03	lb/day 2.40E-02	lb/year	Yes	No	
ryllium	7440-41-7	6.01E-05	2.40E-02 1.44E-03	8.76E+00 5.26E-01	X		
dmium	7440-43-9	1.68E-05			X		
romium VI	SolCR6	2.46E-05	4.04E-04 5.90E-04	1.47E-01		X	
nganese	7439-96-5	1.39E-03		2.15E-01		<u> </u>	
ercury	7439-97-6	1.24E-05	3.34E-02	1.22E+01		X	
ckel	7440-02-0		2.97E-04	1.08E-01		X	
MMENTS:	1 110-02-0	3.69E-04	8.86E-03	3.23E+00		Х	

Attach Additional Sheets As Necessary

	TECHNICAL ANALY	FORM D5 SIS TO SUPPORT PERMIT APPLICATION	
RE		y - Application for Air Permit to Construct/Operate	D5
	PROVIDE DETAILED TECHNICAL CALCU DEMONSTRATIONS MADE IN THIS APPLIC NECESSARY TO SUPPORT AND (LATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY ATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE SPECIFIC ISSUES ON SEPARATE PAGES:	
A	MATERIAL BALANCES, AND/OR OTHER METHODS FROM WH	ORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION HICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. H CABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PRO E CALCULATIONS.	NCLUDE
В	INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INC REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGU RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFO POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTION:	(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APP LUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORIN JLATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED O JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTIO) RMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDC S FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICAS WENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALC IPMENT, ETC. TO SUPPORT THESE CALCULATIONS.	G N PROCESS N OF DUS AIR BLE TO THIS
c	EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, M APPLICATION) CRITICAL TO ENSURING PROPER PERFORMA	PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR AN REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE IANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN INCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTIO T THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION O MAINTENANCE TO BE PERFORMED.	E PERTINENT THIS DN POTENTIA
D	PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTR/	DRM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WH ATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATO DR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRAT	RY ANALYSIS
E		O 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERIN DLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATI S. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).	
	I. Arry M. Marshall, P.E. att	est that this application for the Cape Fear STAR $^{ m e}$ Facility	
	has been revie in the engineering plans, calculations, and all other supporting doc design has been prepared in accordance with the applicable regul professionals, inclusion of these materials under my seal signifies In accordance with NC General Statutes 143-215.6A and 143-215	wed by me and is accurate, complete and consistent with the information supplied umentation to the best of my knowledge. I further attest that to the best of my knowledg ations. Although certain portions of this submittal package may have been developed by that I have reviewed this material and have judged it to be consistent with the proposed of 6B, any person who knowingly makes any false statement, representation, or certificatio clude a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.	other design. Note:
	(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) NAME: Amy M. Marshall. P.E. DATE: 7720118 COMPANY: AECOM Technical Services of NC. ADDRESS: 1600 Perimeter Park Dr Monisville NC TELEPHONE: 919-461-1251 SIGNATURE: Applendix A & Appendix B		re all
	(IDENTIFY ABOVE EACH PERMIT FORM AN THAT IS BEING CERTIFIED BY THI		

Appendix B

Project Emissions Calculations

Summary of Facility-Wide Potential Emissions

Pollutant	НАР	ТАР		Ash (ES-15,	Basin EP-15)			Unioad (ES-3,					ener , EP-19)			Screener Di (ES-22	esel Engine ¹ EP-22)	
			lb/hr	lb/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	ton/yr
Criteria Pollutants																100		
PM			4.78E-02	1.15E+00	4.19E+02	2.09E-01	1.68E-04	4.03E-03	1.47E+00	7.35E-04	3.63E-01	8.71E+00	3.18E+03	1.59E+00	5.98E-02	1.44E+00	5.24E+02	2.62E-01
PM10			2.39E-02	5.74E-01	2.09E+02	1.05E-01	8.39E-05	2.01E-03	7.35E-01	3.67E-04	1.22E-01	2.93E+00	1.07E+03	5.35E-01	5.98E-02	1.44E+00	5.24E+02	2.62E-01
PM2.5			3.59E-03	8.61E-02	3.14E+01	1.57E-02	1.26E-05	3.02E-04	1.10E-01	5.51E-05	8.25E-03	1.98E-01	7.23E+01	3.61E-02	5.98E-02	1.44E+00	5.24E+02	2.62E-01
со															7.48E-01	1.80E+01	6.55E+03	3.28E+00
NOx															7.03E-01	1.69E+01	6.16E+03	3.08E+00 4.23E-03
S02										1 105 00	E 04 E 00	1.005.04	C 005 00	0.555.05	9.65E-04 5.73E-06	2.32E-02 1.38E-04	8.45E+00 5.02E-02	4.23E-03 2.51E-05
Lead	H		7.66E-07	1.84E-05	6.71E-03	3.35E-06	2.69E-09	6.44E-08	2.35E-05	1.18E~08	5.81E-06	1.39E-04	5.09E-02	2.55E-05	2.29E-01	5.49E+00	2.00E+03	1.00E+00
VOC Greenhouse Gases				L				<u> </u>			1				2.292-01	J.49E+00	2.002.003	1.002.00
CO2		1	1				1	1			1		r -	1	1.04E+02	2.49E+03	9.10E+05	4.55E+02
Methane															4.21E-03	1.01E-01	3.69E+01	1.85E-02
N2O		+									1				8.43E-04	2.02E-02	7.38E+00	3.69E-03
CO2e															1.04E+02	2.50E+03	9.13E+05	4.56E+02
Inorganic, Non-metal Compounds																		
H2SO4		Т						T	1				1					
Organic Compounds		1.																
1,3-Butadiene	н	Т													2.49E-05	5.98E-04	2.18E-01	1.09E-04
Acetaldehyde	н	т													4.89E-04	1.17E-02	4.28E+00	2.14E-03
Acrolein	н	Т													5.89E-05	1.41E-03	5.16E-01	2.58E-04
Benzene	H	Т													5.94E-04	1.43E-02	5.21E+00	2.60E-03
Formaldehyde	н	Т													7.52E-04	1.80E-02	6.58E+00	3.29E-03
Toluene	н	Т													2.61E-04	6.25E-03	2.28E+00	1.14E-03
Xylene (Mixed Isomers)	H	Т						· · · · · · · · · · · · · · · · · · ·							1.82E-04	4.36E-03	1.59E+00	7.95E-04
PAH/POM																_		
Anthracene	Н							· · · · · · · · · · · · · · · · · · ·							1.19E-06	2.86E-05	1.04E-02	5.22E-06
Acenaphthylene	Н						l.		-						3.22E-06	7.74E-05	2.82E-02	1.41E-05
Acenaphthene	Н														9.05E-07	2.17E-05	7.92E-03	3.96E-06
Fluorene	Н														1.86E-05	4.46E-04	1.63E-01	8.15E-05
Pyrene	н														3.04E-06	7.31E-05	2.67E-02	1.33E-05
Benzo(g,h,i)Perylene	H						<u> </u>								3.11E-07	7.48E-06	2.73E-03	1.36E-06
Naphthalene	н														5.40E-05	1.30E-03	4.73E-01	2.37E-04
Phenanthrene	H														1.87E-05	4.49E-04	1.64E-01	8.20E-05 4.69E-06
Benz(a)Anthracene	H														1.07E-06 2.25E-07	2.57E-05 5.40E-06	9.37E-03 1.97E-03	9.85E-07
Benzo(a)Phenanthrene (Chrysene)	H											-			1.20E-07	2.87E-06	1.05E-03	5.25E-07
Benzo(a)Pyrene	H						S								6.31E-08	1.52E-06	5.53E-04	2.76E-07
Benzo(b)Fluoranthene Benzo(i,k)Fluorene (Fluoranthene)	H														4.85E-06	1.16E-04	4.25E-02	2.12E-05
Benzo(k)Fluoranthene	Н														9.87E-08	2.37E-06	8.65E-04	4.32E-07
Dibenzo(a,h)Anthracene	H												7		3.71E-07	8.91E-06	3.25E-03	1.63E-06
Indeno(1,2,3-CD)Pyrene	н														2.39E-07	5.73E-06	2.09E-03	1.05E-06
Metals	10			I			I	<u> </u>					-	· · · · · · · · · · · · · · · · · · ·				
Antimony	ΠH	1	3.73E-07	8.95E-06	3.27E-03	1.63E-06	1.31E-09	3.14E-08	1.15E-05	5.73E-09	2.83E-06	6.80E-05	2.48E-02	1.24E-05				
Arsenic	н	T	2.86E-06	6.85E-05	2.50E-02	1.25E-05	1.00E-08	2.40E-07	8.77E-05	4.39E-08	2.17E-05	5.20E-04	1.90E-01	9.49E-05	2.55E-06	6.12E-05	2.23E-02	1.12E-05
Beryllium	Ĥ	Т	1.49E-07	3.57E-06	1.30E-03	6.52E-07	5.22E-10	1.25E-08	4.57E-06	2.28E-09	1.13E-06	2.71E-05	9.89E-03	4.94E-06	1.91E-06	4.59E-05	1.67E-02	8.37E-06
Cadmium	H	Т	2.30E-08	5.51E-07	2.01E-04	1.01E-07	8.05E-11	1.93E-09	7.05E-07	3.53E-10	1.74E-07	4.18E-06	1.53E-03	7.63E-07	1.91E-06	4.59E-05	1.67E-02	8.37E-06
Chromium	н		9.06E-07	2.18E-05	7.94E-03	3.97E-06	3.18E-09	7.63E-08	2.78E-05	1.39E-08	6.88E-06	1.65E-04	6.03E-02	3.01E-05	1.91E-06	4.59E-05	1.67E-02	8.37E-06
Chromium VI	н	Т	4.74E-08	1.14E-06	4.15E-04	2.07E-07	1.66E-10	3.99E-09	1.45E-06	7.27E-10	3.59E-07	8.62E-06	3.15E-03	1.57E-06				
Cobalt	н		5.15E-07	1.24E-05	4.51E-03	2.26E-06	1.81E-09	4.34E-08	1.58E-05	7.91E-09	3.91E-06	9.38E-05	3.42E-02	1.71E-05				
Lead	н		7.66E-07	1.84E-05	6.71E-03	3.35E-06	2.69E-09	6.44E-08	2.35E-05	1.18E-08	5.81E-06	1.39E-04	5.09E-02	2.55E-05	5.73E-06	1.38E-04	5.02E-02	2.51E-05
Manganese	н	Т	3.73E-06	8.95E-05	3.27E-02	1.63E-05	1.31E-08	3.14E-07	1.15E-04	5.73E-08	2.83E-05	6.79E-04	2.48E-01	1.24E-04	3.82E-06	9.17E-05	3.35E-02	1.67E-05
Mercury	Н	Т	1.20E-08	2.87E-07	1.05E-04	5.24E-08	4.19E-11	1.01E-09	3.67E-07	1.84E-10	9.08E-08	2.18E-06	7.95E-04	3.97E-07	1.91E-06	4.59E-05	1.67E-02	8.37E-06
Nickel	н	Т	1.02E-06	2.45E-05	8.95E-03	4.47E-06	3.58E-09	8.60E-08	3.14E-05	1.57E-08	7.75E-06	1.86E-04	6.79E-02	3.40E-05	1.91E-06	4.59E-05	1.67E-02	8.37E-06
Selenium	н		6.73E-07	1.62E-05	5.90E-03	2.95E-06	2.36E-09	5.66E-08	2.07E-05	1.03E-08	5.11E-06	1.23E-04	4.47E-02	2.24E-05	9.56E-06	2.29E-04	8.37E-02	4.19E-05
Maximum Individual HAP			3.73E-06	8.95E-05	3.27E-02	1.63E-05	1.31E-08	3.14E-07	1.15E-04	5.73E-08	2.83E-05	6.79E-04	2.48E-01	1.24E-04	7.52E-04	1.80E-02	6.58E+00	3.29E-03
Total HAP Emissions			1.11E-05	2.66E-04	9.70E-02	4.85E-05	3.88E-08	9.32E-07	3.40E-04	1.70E-07	8.40E-05	2.02E-03	7.36E-01	3.68E-04	2.50E-03	6.00E-02	2.19E+01	1.09E-02

1 - In the TPER Analysis, chromium emissions from fuel firing are classified as soluble chromate compounds, as chromium (VI) equivalent.

 \sim

Criteria Pollutante		ID/III	ib/day	ID/yr	tonyr	ID/III	ib/day	IUIYI	UUUU	11100	Ininak	in ye
PM		1.98E-01	4.75E+00	1.73E+03	8.67E-01	1.97E-01	4.73E+00	1.73E+03	8.64E-01	1.18E-01	2.83E+00	1.03E+03
PM10		8.91E-02	2.14E+00	7.81E+02	3.90E-01	1.97E-01	4.73E+00	1.73E+03	8.64E-01	3.04E-02	7.29E-01	2.66E+02
PM2.5		1.65E-02	3.96E-01	1.45E+02	7.23E-02	1.97E-01	4.73E+00	1.73E+03	8.64E-01	3.04E-03	7.30E-02	2.67E+01
NOX						2.32E+00	5.56E+01	2.03E+04	1.020+01			
SO2						3.18E-03	7.64E-02	2.79E+01	1.39E-02			
Lead	т	3.17E-06	7.61E-05	2.78E-02	1.39E-05	1.89E-05	4.54E-04	1.66E-01	8.28E-05			
Voc.						7.54E-01	1.81E+01	6.61E+03	3.30 E+00			
CO2						3 425+02	8 22E+03	3 005+06	1 50 =+03			
Methane						1.39E-02	3.33E-01	1.22E+02	6.08E-02			
N2O						2.78E-03	6.67E-02	2.43E+01	1.22E-02			
CO2e						3.44E+02	8.25E+03	3.01E+06	1.50E+03			
norganic, Non-metal Compounds					1							
H2SO4												
Organic Compounds												
,3-Butadiene		-4				8.21E-05	1.97E-03	7.19E-01	3.60E-04			
Acetaldehyde						1.61E-03	3.87E-02	1.41E+01	7.05E-03			
Acrolein						1.94E-04	4.66E-03	1.70E+00	8.51E-04			
Der Izer le		-				7.905-03	4. /UE-UZ	1./2E+U1	4 00E 03			
onnanonyoo		4 -				2.400-04	0.001-02	1 505.00	2 120 D2			
Xylene (Mixed Isomers)						5.99E-04	1.44E-02	5.242+00	2.62E-03			
PAH/POM												
Anthracene	н					3.93E-06	9.42E-05	3.44E-02	1.72E-05			
Acenaphthylene	т					1.06E-05	2.55E-04	9.31E-02	4.65E-05			
Acenaphthene	T					2.98E-06	7.16E-05	2.61E-02	1.31E-05			
Fluorene						6.13E-05	1.47E-03	5.37E-01	2.69E-04			
Benzo(a.h.i)Perviene	I					1.000-00	2 48E-05	9 00F-02	4.50E-05			
Naphthalene	I					1.78E-04	4.27E-03	1.56E+00	7.80E-04			
Phenanthrene	I					6.17E-05	1.48E-03	5.41E-01	2.70E-04			
Benz(a)Anthracene	т					3.53E-06	8.47E-05	3.09E-02	1.55E-05			
Benzo(a)Phenanthrene (Chrysene)	Т					7.41E-07	1.78E-05	6.49E-03	3.25E-06			
Benzo(a)Pyrene	T	T				3.95E-07	9.48E-06	3.46E-03	1.73E-06			
Benzo(b)Fluoranthene	T					2.08E-07	4.99E-06	1.82E-03	9.12E-07			
Benzo(k)Eluorene (Hluoranthene)						1.60E-05	3.84E-04	1.40E-01	7.00E-05			
Dibenzo(a,h)Anthracene	T					1.22E-06	2.94E-05	1.07E-02	5,36E-06			
ndeno(1,2,3-CD)Pyrene	T					7.88E-07	1.89E-05	6.90E-03	3.45E-06			
Metals												
Antimony	н	1.54E-06	3.71E-05	1.35E-02	6.76E-06							
Arsenic	Ŧ	T 1.18E-05	2.84E-04	1.04E-01	5.18E-05	8.40E-06	2.02E-04	7.36E-02	3.68E-05			
Beryllium		T 6.16E-07	1.48E-05	5.39E-03	2.70E-06	6.30E-06	1.51E-04	5.52E-02	2.76E-05			
Cadmium		T 9.50E-08	2.28E-06	8.33E-04	4.16E-07	6.30E-06	1.51E-04	5.52E-02	2.76E-05			
Chromium	T	3.75E-06	9.01E-05	3.29E-02	1.64E-05	6.30E-06	1.51E-04	5.52E-02	2.76E-05			
Chromium VI	Ξ	T 1.96E-07	4.70E-06	1.72E-03	8.59E-07							
Cobalt	I	2.13E-06	5.12E-05	1.87E-02	9.34E-06							
Lead	н	3.17E-06	7.61E-05	2.78E-02	1.39E-05	1.89E-05	4.54E-04	1.66E-01	8.28E-05			
Manganese	H	F 1.54E-05	3.71E-04	1.35E-01	6.76E-05	1.26E-05	3.02E-04	1.10E-01	5.52E-05			
Mercury		T 4.95E-08	1.19E-06	4.34E-04	2.17E-07	6.30E-06	1.51E-04	5.52E-02	2.76E-05			
Nickel		T 4.23E-06	1.02E-04	3.70E-02	1.85E-05	6.30E-06	1.51E-04	5.52E-02	2.76E-05			
	T	2.79E-06	6.69E-05	2.44E-02	1.22E-05	3.15E-05	7.56E-04	2.76E-01	1.38E-04			
Selenium		1.54E-05	3.71E-04	1.35E-01	6.76E-05	2.48E-03	5.95E-02	2.17E+01	1.09E-02	0.00E+00	0.00E+00	0.00E+00
Selenium Maximum Individual HAP			1 105-03	4.02F-01	0 01E-04	20-3/C 2	1 095 01	7 99E+01	3 A1E-02	0 005+00		

Duke Energy Progress, LLC Cape Fear STAR® Project

Summary of Facility-Wide Potential Emissions

Pollutant

HAP

TAP

Crusher (ES-20, EP-20)

lb/hr

lb/day

Ib/yr

ton/yr

lb/hr

lb/day

Ib/yr

ton/yr

lb/hr

lb/day

lb/yr

ton/yr

Haul Roads (Loaded) (ES-21, EP-21)

Crusher Diesel Engine¹ (ES-23, EP-23)

0.00E+00 0.00E+00	Ib/hr 8.62E-02 2.22E-02 2.23E-03	
0.00E+00 0.00E+00	(ES-21, Ib/day 2.07E+00 5.34E-01 5.35E-02	Haul Roads
0.00E+00	EP-21) Ib/yr 7.55E+02 1.95E+02 1.95E+01	(Unloaded)
0.00E+00	ton/yr 3.78E-01 9.74E-02 9.76E-03	

Image: product set in the pr	Pollutant	НАР	TAP		Ash Handling (ES-16, EP-16, 17, 18)	ndling 16, 17, 18)		Wet Ash Re	ceiving (Transfé (ES-1, EP-1	Wet Ash Receiving (Transfer to Shed and Hopper) (ES-1, EP-1 & EP-2)	lopper)		Feed Silo (ES-4, EP-4)	ilo P-4)			STAR® Propane Firing ¹ (ES-5, EP-5)	ne Firing ¹ P-5)	
Material				lb/hr	Ib/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	tonlyr	lb/hr	Ib/day	lb/yr	ton/yr	lb/hr	Ib/day	ib/yr	ton/yr
Image: state in the s	Criteria Pollutants																		
Image: state in the s	PM			1.99E-02	4.78E-01	1.74E+02	8.72E-02	1.42E-02	3.42E-01	8.13E+01	4.07E-02	2.83E-01	6.79E+00	2.48E+03	1.24E+00	4.64E-01	1.11E+01	4.07E+03	2.036+00
Image: state	PM10			9.42E-03	2.26E-01	8.25E+01	4.13E-02	6.73E-03	1.62E-01	3.85E+01	1.92E-02	2.60E-01	6.25E+00	2.28E+U3	1.14E+UU	4.64E-U1	1.11E+01	4.U/E+U3	2.035+00
Image: state	PM2.5			1.43E-03	3.42E-02	1.25E+01	6.25E-03	1.02E-03	2.45E-02	5.82E+00	2.91E-U3	1.50E-U1	3.60=+00	1.31±+U3	0.3/E-UI	4.045-01	1.115+01	4.0/ET03	2.035700
Image: state in the s																4.8/E+00	1.18ETU2	7.550.404	2 70C 101
Image: section contact line contac	XON CO															0.02ET-00	1 50E-01	6 81E+01	2.00E-01
Image:	Lead	I		3.19E-07	7.65E-06	2.79E-03	1.40E-06	2.28E-07	5.47E-06	1.30E-03	6.51E-07	4.53E-06	1.09E-04	3.97E-02	1.98E-05	1000		-	12 122-14
International Internat	VOC															5.30E-01	1.27E+01	4.65E+03	2.32E+00
Image:	Greenhouse Gases																		
Image: manual state	CO2							-			-	-				8.32E+03	2.00E+05	7.29E+07	3.64E+04
Image: black	Methane															3.97E-01	9.52E+00	3.48E+03	1.74E+00
Wetaetional Image: mark to be added and the second and t	N2O															7.94E-02	1.90E+00	6.95E+02	3.48E-01
Name Nam Name Name	CO2e											_				8.35E+03	2.00E+05	7.31E+07	3.66E+04
Monte I <td>Inorganic, Non-metal Compounds</td> <td></td>	Inorganic, Non-metal Compounds																		
Control Image: Contro Image: Control Image: Control<	H2SO4		F																
Image Image <th< td=""><td>Organic Compounds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Organic Compounds																		
Photometry Mediationality I <td>1,3-Butadiene</td> <td>I</td> <td>F</td> <td></td>	1,3-Butadiene	I	F																
Image: black	Acetaldehyde	I	⊢																
Image: black	Acrolein	I	г																
Index Index <th< td=""><td>Benzene</td><td>н</td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Benzene	н	F																
Model member I </td <td>Formaldehyde</td> <td>I</td> <td>- - </td> <td></td>	Formaldehyde	I	- -																
Method Method<	I oluene	I																	
M M	Xylene (Mixed Isomers)	I	-																
me me<	PAH/POM										-								
Image Image <th< td=""><td>Anthracene</td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Anthracene	I																	
me me<	Acenaphthylene	I																	
Nithologene	Acenaphthene	I																	
NiPeryter I	Fluorene	E																	
Interpretent Interpretent<	Pyrene Bonny(s h Mondons	τι																	
montane montane <t< td=""><td>Delizu(g,ri,i)r el yleite Nanhthalana</td><td>. 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Delizu(g,ri,i)r el yleite Nanhthalana	. 1																	
Internet Interne Internet Internet	Dhenauthrane	. 1																	
Prime Prim Prime Prime	r retationers Benz(a)Anthrana	c 1																	
Total T <td>Banzo(a)Dhananthrana (Choisena)</td> <td>= =</td> <td></td>	Banzo(a)Dhananthrana (Choisena)	= =																	
Funcembrane H I <th< td=""><td>Benzo(a)Pvrene</td><td>E H</td><td> -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Benzo(a)Pvrene	E H	 -																
(Flotmet functione) (H)	Benzo(b)Fluoranthene	I																	
Image: function from from from from from from from from	Benzo(j,k)Fluorene (Fluoranthene)	н															2		
a.D.Mintenene H I <	Benzo(k)Fluoranthene	I																	
2.3-OD/yrete 1 1 1 156E-07 3.73E-06 1.16E-07 5.31E-06 1.16E-07 5.31E-06 1.36E-07 1.11E-07 2.48E-06 1.31E-07 2.48E-06 1.34E-07 2.34E-06 1.36E-07 1.31E-07 2.48E-07 1.31E-07 2.48E-07 1.31E-07 2.48E-07 1.31E-07 2.48E-07 1.31E-07 2.48E-07 1.34E-07 2.48E-07 1.36E-07 3.38E-07	Dibenzo(a,h)Anthracene	Т																	
V 1 1.55E-07 3.73E-06 1.36E-07 3.73E-06 1.36E-07 3.71E-07 2.46E-06 3.71E-07 2.37E-06 1.36E-07 3.36E-06 1.36E-07 3.46E-06 1.36E-07 3.46E-06 1.36E-07 3.46E-06 1.36E-07 1.36E-07 3.46E-07 1.36E-07 3.36E-06 1.36E-07 3.36E-07 3.36E-07<	Indeno(1,2,3-CD)Pyrene	н																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Metals									101100	11 04	0.041.00	201.06	1 005 00	O SEE OS				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anumony	c 1	-	1.005-07	3./3E-U0	1.305-U3	6.80E-07	1.11E-U/ 0.60E.07	2.005-U0	0.34E-04 4 86E-03	3.1/E-U/ 2.42E-06	2.2 IE-U0 1 60E-05	3.30E-03	1 48F-01	7 40E-05				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bendlinm	I		6 10F-00	1 40E-06	5 425-04	2.21E-00	0.JUE-07	1.06E_06	2 53E_04	2.43E-00	8 80E-07	2 11E-05	7 71E-03	3.85E-06				
m 3.77E-07 3.05E-06 3.16E-07 6.47E-06 7.71E-07 5.38E-06 1.77E-07 5.38E-06 1.77E-07 5.38E-07 1.72E-06 2.37E-05 3.77E-07 9.00E-07 1.72E-06 2.47E-06 2.36E-07 6.77E-06 2.46E-03 1.23E-06 2.36E-07 6.77E-06 2.36E-07 6.72E-06 2.36E-07 6.72E-07 2.36E-07 6.36E-07 6.35E-07 2.36E-07 6.32E-07 2.36E-07 0.37E-07 0.36E-06 0.36E-06 0.36E-07 0.37E-07 0.36E-07 0.	Cadmium	. 1		0.13E-00	2 20E-07	8 37E-05	4 10E-08	6.835-00	1.64E-07	3 905-05	1 95E-D8	1.36E-07	3 26F-06	1.19E-03	5.95E-07				
m VI H T 1.9F=08 4.73E-07 1.73E-04 8.35E-07 3.38E-07 8.05E-06 7.31E-06 7.23E-06 7.23E-06 7.23E-06 7.31E-07 8.72E-06 7.31E-07 8.72E-06 7.31E-07 8.33E-07 8.33E-07 8.33E-07 8.33E-07 8.35E-07 3.38E-07 8.36E-07 8.35E-07 3.38E-07 8.36E-07 8.37E-07 8.37E-05 1.33E-05 1.33E-07	Chromium	H	_	3.77E-07	9.06E-06	3.31E-03	1.65E-06	2.70E-07	6.47E-06	1.54E-03	7.71E-07	5.36E-06	1.29E-04	4.70E-02	2.35E-05				
H 2.14E-07 5.15E-06 1.88E-03 9.39E-07 1.56E-06 2.78E-07 1.58E-07 3.68E-06 8.76E-07 3.05E-06 7.31E-05 1.33E-05 1.34E-05 1.34E-05 1.34E-05 1.	Chromium VI	I	-	1.97E-08	4.73E-07	1.73E-04	8.63E-08	1.41E-08	3.38E-07	8.05E-05	4.03E-08	2.80E-07	6.72E-06	2.45E-03	1.23E-06				
H 1 3.19E-07 7.65E-06 2.78E-03 1.40E-06 5.47E-06 1.30E-07 6.51E-07 6.52E-04 1.30E-07 9.66E-05 6.317E-06 1.71E-06 6.19E-04 3.17E-06 1.30E-07 9.66E-05 9.66E-07 9.66E-05 9.17E-06 9.10E-07 9.66E-05 9.70E-08 1.71E-06 9.10E-07 9.66E-05 9.70E-08 1.71E-06 9.16E-07 9.66E-05 9.17E-06 9.16E-07 9.66E-05 9.17E-06 9.16E-07 9.16E-05 9.17E-06 9.16E-02 9.16E-07 9.16E-07 9.16E-02 9.16E-02 9.16E-07 9.16E-07 9.16E-07 9.16E-02 9.16E-02 9.16E-02 0.16E-02 0.16E-02	Cobalt	н		2.14E-07	5.15E-06	1.88E-03	9.39E-07	1.53E-07	3.68E-06	┝	4.38E-07	3.05E-06	7.31E-05	2.67E-02	1.33E-05				
see H T 1.55E-06 3.73E-05 1.36E-02 6.80E-05 6.34E-03 3.17E-06 5.29E-04 1.93E-01 9.66E-05 9.70E-06 9.10E-07 9.66E-05 9.70E-06 9.10E-07 9.10E-07 9.70E-07 9.66E-05 9.70E-07 9.70E-05 9.70E-07 9.70E-06 9.70E-05 9.70E-05 9.70E-05 9.70E-07 9.70E-05 9.70E-07 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-07 9.70E-05 9.70E-07 9.70E-07 9.70E-07 9.70E-07 9.70E-07 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-05 9.70E-07	Lead	н		3.19E-07	7.65E-06	2.79E-03	1.40E-06	2.28E-07	5.47E-06	-	6.51E-07	4.53E-06	1.09E-04	3.97E-02	1.98E-05				
H T 4.38E-09 1.19E-07 4.38E-05 2.18E-08 3.54E-08 3.54E-08 3.02E-08 1.02E-08 1.02E-06 3.10E-07 3.10E-07 3.10E-07 3.10E-07 3.01E-07 3.01E-07<	Manganese	п		1.55E-06	3.73E-05	1.36E-02	6.80E-06	1.11E-06	2.66E-05	6.34E-03	3.17E-06	2.21E-05	5.29E-04	1.93E-01	9.66E-05				
H T 4.25E-07 1.02E-05 3.73E-03 1.86E-06 3.04E-07 6.14E-03 8.69E-07 6.44E-06 1.45E-04 5.29E-02 2.66E-05 M M midividual HAP H Z 2.80E-07 1.02E-05 3.04E-07 1.02E-05 3.04E-07 1.02E-07 3.04E-07 1.04E-05 1.14E-05 2.66E-05 3.49E-05 1.14E-05 1.14E-05 0.00E+00 0.00E+00 <td>Mercury</td> <td>I</td> <td>F</td> <td>4.98E-09</td> <td>1.19E-07</td> <td>4.36E-05</td> <td>2.18E-08</td> <td>3.56E-09</td> <td>8.54E-08</td> <td>2.03E-05</td> <td>1.02E-08</td> <td>7.07E-08</td> <td>1.70E-06</td> <td>6.19E-04</td> <td>3.10E-07</td> <td></td> <td></td> <td></td> <td></td>	Mercury	I	F	4.98E-09	1.19E-07	4.36E-05	2.18E-08	3.56E-09	8.54E-08	2.03E-05	1.02E-08	7.07E-08	1.70E-06	6.19E-04	3.10E-07				
H 2.80E-07 6.72E-06 2.45E-03 1.23E-06 2.45E-03 1.23E-06 3.48E-06 1.74E-05 3.49E-02 1.74E-05 3.49E-02 0.00E+00 0.	Nickel	I	F	4.25E-07	1.02E-05	3.73E-03	1.86E-06	3.04E-07	7.30E-06		8.69E-07	6.04E-06	1.45E-04	5.29E-02	2.65E-05				
1.55E-06 3.73E-05 1.36E-05 6.80E-06 1.11E-06 2.66E-05 6.34E-03 3.17E-06 2.21E-05 6.528E-04 1.93E-01 9.66E-05 0.00E+00 0.00E+00 4.61E-06 1.11E-04 4.04E-02 2.02E-05 3.29E-06 7.91E-05 6.55E-05 1.57E-03 5.74E-01 2.87E-04 0.00E+00 0.00E+00 0.00E+00	Selenium	I		2.80E-07	6.72E-06	2.45E-03	1.23E-06	2.00E-07	4.81E-06	-	5.72E-07	3.98E-06	9.55E-05	3.49E-02	1.74E-05				
4.61E-06 1.11E-04 4.04E-02 2.02E-05 3.29E-06 7.91E-05 1.88E-02 9.41E-06 6.55E-05 1.57E-03 5.74E-01 2.87E-04 0.00E+00	Maximum Individual HAP			1.55E-06	3.73E-05	1.36E-02	6.80E-06	1.11E-06	2.66E-05	6.34E-03	3.17E-06	2.21E-05	5.29E-04	1.93E-01	9.66E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Total HAP Emissions			4.61E-06	1.11E-04	4.04E-02	2.02E-05	3.29E-06	7.91E-05	1.88E-02	9.41E-06	6.55E-05	1.57E-03	5.74E-U1	2.87E-04	0.00E+00	0.00E+UU	0.00±+00	0.005+00

C

Summary of Facility-Wide Potential Emissions

 In the TPER Analysis, chromium emissions from fuel firing are classified as solub chromate compounds, as chromium (VI) equivalent.

Pollutant	НАР	TAP		STAR® Ash (ES-5,	STAR® Ash Beneficiation (ES-5, EP-5)		STAR® Wor	STAR® Worst Case (Ash Beneficiation and Propane Firing) (ES-5, EP-5)	neficiation and I) P-5)	Propane		FGD Byproduct Silo (ES-6, EP-6)	duct Silo EP-6)			FGD Hydrated Lime (ES-7, EP-7)	ed Lime P-7)	
			lb/hr	Ib/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	ton/yr	lb/hr	Ib/day	lb/yr	ton/yr	lb/hr	Ib/day	lb/yr	tonlyr
Criteria Pollutants			101	00.100.0	10. 11.	10.110	1047.04		1 44T - 0E	7.046.04	1 505 00	1 001-100	2 01E 100	1 075 04	A EDE 02	1 DOF TOD	3 046402	1 07E_01
PM10			1.01E+U1	3.80E+U2	1.41E+U5	7.04E+01 6.40E+04	1.01E+01	3.806+02	1.416+05	6 48E±01	4.30E-02 4 14E-02	0.04E-01	3.545+02	1.37E-01	4.JUE-02 4 14F-02	9 94F-01	3.63F+02	1.815-01
PM2.5			8.52F+00	2.04F+02	7 46F+04	3 73F+01	8.52F+00	2.04E+02	7.46E+04	3.73E+01	2.39E-02	5.72E-01	2.09E+02	1.04E-01	2.39E-02	5.72E-01	2.09E+02	1.04E-01
CO			2.24E+01	5.38E+02	1.96E+05	9.81E+01	2.24E+01	5.38E+02	1.96E+05	9.81E+01								
NOX			4.76E+01	1.14E+03	4.17E+05	2.08E+02	4.76E+01	1.14E+03	4.17E+05	2.08E+02								
SO2			2.57E+01	6.16E+02	2.25E+05	1.12E+02	2.57E+01	-	2.25E+05	1.12E+02								
Lead	Н		1.93E-06	4.63E-05	1.69E-02	8.45E-06	1.93E-06	\vdash	1.69E-02	8.45E-06	5.40E-09	1.30E-07	4.73E-05	2.37E-08	5.40E-08	1.30E-06	4.73E-04	2.37E-07
VOC			2.24E+00	5.38E+01	1.96E+04	9.81E+00	2.24E+00	5.38E+01	1.96E+04	9.81E+00								
Greenhouse Gases																		
C02			3.54E+04	8.49E+05	3.10E+08	1.55E+05	3.54E+04	+	3.10E+08	1.55E+05								
Methane							3.97E-01	+	3.48E+03	1.74E+00								
			3 546404	8 405405	3 10E+08	1 550405	2 54E-UZ	8 40F+05	3 10/E+08	3.40E-01								
Inorganic. Non-metal Composinds			10-1-0-	0.496.400	0.105100	1.001	10-1-0-0	0.121.00	0.101.00	1.001.00					-			
H2SO4		F	1.00E-01	2.40E+00	8.76E+02	4.38E-01	1.00E-01	2.40E+00	8.76E+02	4.38E-01	1							
Organic Compounds																		
1,3-Butadiene	I	T						-	-									
Acetaldehyde	н	⊢																
Acrolein	н	Т																
Benzene	Т	Т																
Formaldehyde	Т	F																
Toluene	т	T																
Xylene (Mixed Isomers)	н	т																
PAH/POM																		
Anthracene	I																	
Acenaphthylene	Ŧ																	
Acenaphthene	I.							+										
Fluorene	I:																	
Pyrene Booradia bi Noradaaa	-																	
Derizu(g,ri,)/Feryterie Nanhthalene																		
Phene anthrene	= =																	
errenenterrene Benz(a)Anthracene	=																	
Benzo(a)Phenanthrene (Chrysene)	. I																	
Benzo(a)Pyrene	т	F																
Benzo(b)Fluoranthene	Н																	
Benzo(j,k)Fluorene (Fluoranthene)	т																	
Benzo(k)Fluoranthene	I																	
Indeno(1,2,3-CD)Pyrene																		
Metals																		
Antimony	Н		5.46E-07	1.31E-05	4.79E-03	2.39E-06	5.46E-07	1.31E-05	4.79E-03	2.39E-06	1.53E-09	3.67E-08	1.34E-05	6.70E-09	1.53E-08	3.67E-07	1.34E-04	6.70E-08
Arsenic	н	T	3.05E-06	7.33E-05	2.67E-02	1.34E-05	3.05E-06	7.33E-05	2.67E-02	1.34E-05	8.55E-09	2.05E-07	7.49E-05	3.74E-08	8.55E-08	2.05E-06	7.49E-04	3.74E-07
Beryllium	т	F.	4.34E-07	1.04E-05	3.80E-03	1.90E-06	4.34E-07	1.04E-05	3.80E-03	1.90E-06	1.22E-09	2.92E-08	1.06E-05	5.32E-09	1.22E-08	2.92E-07	1.06E-04	5.32E-08
Cadmium	I	F	6.59E-07	1.58E-05	5.77E-03	2.89E-06	6.59E-07	1.58E-05	5.77E-03	2.89E-06	1.85E-09	4.43E-08	1.62E-05	8.08E-09	1.85E-08	4.43E-07	1.62E-04	8.08E-08
Chromium	I		1.22E-05	2.93E-04	1.07E-01	5.35E-05	1.22E-05	2.93E-04	1.07E-01	5.35E-05	3.42E-08	8.21E-07	3.00E-04	1.50E-07	3.42E-07	8.21E-06	3.00E-03	1.50E-06
Chromium VI	<u> </u>	F	00 1.00							10 125		10 101 0	7 001 05	3 045 00	0 000	2 16E 06	7 005 04	2 0.45 07
			3.21E-UD	/./TE-U5	Z.8ZE-UZ	1.41E-U5	3.21E-00	1./TE-U5	2.62E-U2	1.416-03	8.00E-09	2.10E-U/	1.000-00	0.346-00	8.40E.00	2.10E-00	A 72E 04	0.37E 07
Lead Mananasa	E	F	1.93E-06	4.63E-U5	1.69E-02 7 46T 04	8.45E-06	1.936-06	4.63E-U5	1.69E-UZ	8.45E-U0	5.40E-09	1.30E-07	4.73E-U3	1 04E 06	0.40E-00 2 30E 06	5 77E-06	9.00E-04	1.04E-05
Mercury		- -	0.02E-U0	2.04E-03 3.86E-07	1.40E-UT	3.13E-U4	6.52E-US	2.04E-U3 3.86E_D7	1.40E-UI	3.13E-04	4 50E-11	3.12E-00 1 08E-09	3.94E-07	1.07E-10	4.50E-10	1.08E-08	3.94E-06	1.97E-09
Nickel			7.71E-06	1.85E-04	6 765-02	3.385-05	7.71E-06	1 85F-04	6.76F-02	3.38E-05	2.16E-08	5.18E-07	1.89E-04	9.46E-08	2.16E-07	5.18E-06	1.89E-03	9.46E-07
Selenium	н		2.09E-06	5.01E-05	1.83E-02	9.15E-06	2.09E-06	5.01E-05	1.83E-02	9.15E-06	5.85E-09	1.40E-07	5.12E-05	2.56E-08	5.85E-08	1.40E-06	5.12E-04	2.56E-07
Maximum Individual HAP			8.52E-05	2.04E-03	7.46E-01	3.73E-04	8.52E-05	2.04E-03	7.46E-01	3.73E-04	2.39E-07	5.72E-06	2.09E-03	1.04E-06	2.39E-06	5.72E-05	2.09E-02	1.04E-05
Total HAP Emissions			1.17E-04	2.81E-03	1.03E+00	5.13E-04	1.17E-04	2.81E-03	1.03E+00	5.13E-04	3.28E-07	7.87E-06	2.87E-03	1.44E-06	3.28E-06	7.87E-05	2.87E-02	1.44E-05
1 - In the TPER Analysis, chromium emissions from fuel firing are classified as soluble	ing are classified	l as soluble																

Duke Energy Progress, LLC Cape Fear STAR® Project

C

Summary of Facility-Wide Potential Emissions

 In the TPER Analysis, chromium emissions from fuel firing are classified as soluble chromate compounds, as chromium (VI) equivalent.

(

Pollutant	НАР	TAP		HE - External H (ES-8,	EHE - External Heat Exchanger A (ES-8, EP-8)	4	H H	EHE - External Heat Exchanger B (ES-9, EP-9)	it Exchanger B P-9)			EHE Silo (ES-10, EP-10)	Silo EP-10)			Product Storage Dome (ES-11, EP-11)	ige Dome P-11)	
Criteoria Dolli-trants			lb/hr	Ib/day	Ib/yr	ton/yr	lb/hr	lb/day	lbíyr	ton/yr	lb/hr	Ib/day	lb/yr	tonlyr	lb/hr	Ib/day	lb/yr	ton/yr
PINE POINTER POINTER			6 A6F+00	1 65F+02	8 01E+04	3 00E+01	REFLON	4 REELOD	-	2 00E 104	4.446.00	0.675.04	0 765 100	4 001 -00	0 131 04	0 477.00	0011.00	401.00
PM10			6.31E+00	1.51E+02	5.53E+04	2.76E+01	6.31E+00	+	5.53E+04	3.00E+01 2.76E+01	1.03F+00	2.46F+01	8.70E+03 8.98E+03	4.00E+00	2.3/E-01	5.68F+00	2.25E+U3 2.07E+03	1.13E+00
PM2.5			3.63E+00	8.72E+01	3.18E+04	1.59E+01	3.63E+00	+	+	1.59E+01	5.91E-01	1.42E+01	5.17E+03	2.59E+00	1.36E-01	3.27E+00	1.19E+03	5.97E-01
00																		
NUX SO2																		
	I		1 10E-04	2 63E-03	0 67E_01	4 845 04	1 105 04	2 635 03	0 601 04	1041	4 70F OF	4 OOF 0.4	1 101 04	1011	101 00			10 100 1
			10-10-1	20-100-1	2.04E-01	4.0 15-04	1.105-04	2.035-U3	8.02E-UI	4.81E-04	1./8E-U5	4.28E-04	1.50E-U1	7.81E-U5	4.12E-Ub	GU-388.8	3.61E-UZ	1.80E-05
Greenhouse Gases																		
C02							-		-	-						-		
Methane																		
N2O																		
		ł																
Draanie Compounds		_					-	_										
												Ì						
	c :	_ +					-											
		_ +																
		_																
hude		- +																
Mixed Isomers)																		
		_																
a	I											-						
lene																		
	: 1																	
a,h.i)Pervlene	I																	
a																		
cene																		
ane (Chrysene)																		
	T																	
	r																	
Joranthene)	н																	
	T																	
Uibenzo(a,h)Anthracene																		
							-		_								_	
Au			5 35E-05	1 28E-03	4 60F_01	2 34E_04	E 3EE OF	1 201 02	-	2 34E 04	0 201 00	2 00E 04	7 64E 00	2 041 75	0041.00	4 04L 0F	1 701 00	0 201 00
	T		4.09E-04	9.83E-03	3.59F+00	1 79F-03	4 09F-04	+	5 6	4.34E-04	6.65E_05	2.08E-04	6.83E-04	2.01E-U3	2.01E-00	4.61E-UD	1./0E-02	8./9E-Ub
Beryllium	T	L	2.13E-05	5.12E-04	1.87E-01	9.34E-05	2.13E-05	+	3 5	9.34E-05	3.47E-06	R 32E-05	3 N4F-07	1 525-05	A DDE-07	3.00E-04	7.01E_03	3 50E 06
Cadmium		L	3.29E-06	7.90E-05	2.88E-02	1.44E-05	-	+	+	-	5.35E-07	1.28E-05	4.69E-03	2.34E-06	1.23E-07	2.96F-06	1.01E-03	5.41F-07
	т		1.30E-04	3.12E-03	1.14E+00	5.69E-04	1.30E-04	+	1.14E+00	┝	2.11E-05	5.07E-04	1.85E-01	9.25E-05	4.87E-06	1 17F-04	4 27E-02	2 13E-05
um VI	Ľ	L	6.79E-06	1.63E-04	5.95E-02	2.97E-05	6.79E-06	+	┢	2.97E-05	1.10E-06	2.65E-05	9.66E-03	4.83E-06	2.55E-07	6.11E-06	2.23E-03	1.12E-06
t	Ŧ		7.39E-05	1.77E-03	6.47E-01	3.23E-04	7.39E-05	\vdash	-	3.23E-04	1.20E-05	2.88E-04	1.05E-01	5.26E-05	2.77E-06	6.65E-05	2.43E-02	1.21E-05
	I		1.10E-04	2.63E-03	9.62E-01	4.81E-04	-	-	⊢	4.81E-04	1.78E-05	4.28E-04	1.56E-01	7.81E-05	4.12E-06	9.88E-05	3.61E-02	1.80E-05
ese	T		5.35E-04	1.28E-02	4.68E+00	2.34E-03		\vdash	4.68E+00	\vdash	-	2.09E-03	7.61E-01	3.81E-04	2.01E-05	4.81E-04	1.76E-01	8.78E-05
λ	Ŧ		1.71E-06	4.11E-05	1.50E-02	7.51E-06	1.71E-06					6.69E-06	2.44E-03	1.22E-06	6.43E-08	1.54E-06	5.63E-04	2.82E-07
Nickel Solonium	I		1.46E-04	3.52E-03	1.28E+00	6.42E-04		-	-	6.42E-04	2.38E-05	5.71E-04	2.08E-01	1.04E-04	5.49E-06	1.32E-04	4.81E-02	2.41E-05
1 Individual HAP			8.00E-00	2.32E-U3	6.45E-U1	4.23E-04	+	+	+	4.23E-04	1.57E-05	3.76E-04	1.37E-01	6.87E-05	3.62E-06	8.68E-05	3.17E-02	1.58E-05
Total HAP Emissions			1.595-03	3.81E-02	1 305+01	6 04E-03	0.30E-04 1 50E-04	2 01E 02	4.08E+UU 1.30E+01	2.34E-03 6.06E.03	8.09E-U5	2.09E-03	7.01E-U1	3.81E-U4	2.01E-U5 5.057.05	4.81E-04	1./6E-01	8.78E-05
1 - In the TPER Analvsis. chromium emissions from fuel firing are classified as soluble	are classified	as soluble	1	1	1	0.300-0	1.002-00			0.835-03	40-30C-7	0.185-00	2.205700	1.134-05	00-108.0	3.43E-U3	5.21E-UI	2.61E-U4

C

Summary of Facility-Wide Potential Emissions

1 - In the TPER Analysis, chromium emissions from fuel firing are classified as soluble chromate compounds, as chromium (VI) equivalent.

				Loadout Silo	rt Silo			Loadout Silo Spouts	lo Spouts			Facility Total	v Total	
Pollutant	НАР	TAP		(ES-12,	EP-12)			(ES-12, EI	13 &14)					
			lb/hr	lb/day	lb/yr	ton/yr	lb/hr	lb/day	lb/yr	tonlyr	lb/hr	Ib/day	lbíyr	ton/yr
Unteria Poliurants			2 57E 01	6 17E400	2 26E402	1 136400	2 665-03	8 70E_02	1 046401	0 76F_03	9 08	789	288 105	144
PM10			2.37E-01	5.68F+00	2 07E+03	1 04F+00	1 73E-03	4 16E-02	9.246+00	4.62F-03	29.8	715	261.083	131
PM2.5			1.36E-01	3.27E+00	1.19E+03	5.97E-01	1.73E-03	4.16E-02	9.24E+00	4.62E-03	17.1	411	150,156	75.1
CO											25.6	615	224,379	112.2
NOX											50.6	1,215	443,442	222
SO2											25.68	616	224,981	112.49
Lead	I		4.12F-06	9.88E-05	3.61E-02	1.80F-05	4.12F-06	9.88E-05	3.61E-02	1.80E-05	2.91E-04	6.99E-03	2.55E+00	1.28E-03
VOC											3.22	77.4	28,234	14.1
Greenhouse Gases														
CO2											35,813	859,521	313,725,181	156,863
Methane											4.15E-01	9:96	3,635	1.82
N2O											8.30E-02	1.99	727	3.63E-01
CO2e											35,815	859,558	313,738,596	156,869
Inorganic, Non-metal Compounds													The second se	
H2SO4		F									1.00E-01	2.40E+00	8.76E+02	4.38E-01
Organic Compounds														
1,3-Butadiene	Т	Т									1.07E-04	2.57E-03	9.37E-01	4.69E-04
Acetaldehyde	Т	Т									2.10E-03	5.04E-02	1.84E+01	9.19E-03
Acrolein	н	Т									2.53E-04	6.08E-03	2.22E+00	1.11E-03
Benzene	I	F									2.55E-03	6.13E-02	2.24E+01	1.12E-02
shyde	I	Т									3.23E-03	7.75E-02	2.83E+01	1.41E-02
Toluene	I	F									1.12E-03	2.69E-02	9.81E+00	4.90E-03
Xylene (Mixed Isomers)	I	1									7.80E-04	1.87E-02	6.83E+00	3.42E-03
PAH/POM														
Anthracene	I										5.12E-06	1.23E-04	4.48E-02	2.24E-05
Acenaphthylene	I										1.38E-05	3.32E-04	1.21E-01	6.07E-05
Acenaphthene	I										3.89E-06	9.33E-05	3.40E-02	1.70E-05
Fluorene	I										7.99E-05	1.92E-03	7.00E-01	3.50E-04
Pyrene	н										1.31E-05	3.14E-04	1.15E-01	5.73E-05
Benzo(g,h,i)Perylene	I				p 14						1.34E-06	3.21E-05	1.17E-02	5.86E-06
	г										2.32E-04	5.57E-03	2.03E+00	1.02E-03
	п										8.05E-05	1.93E-03	7.05E-01	3.52E-04
Benz(a)Anthracene	Т								Ĩ		4.60E-06	1.10E-04	4.03E-02	2.01E-05
ithrene (Chrysene)	н										9.66E-07	2.32E-05	8.46E-03	4.23E-06
	I	F									5.15E-07	1.23E-05	4.51E-03	2.25E-06
	I										2.715-07	6.51E-06	2.38E-03	1.195-06
Joranthene)	I										2.08E-05	5.00E-04	1.826-01	9.12E-05
	I										4.24E-07	1.02E-05	3.72E-03	1.865-06
Ulbenzo(a,n)Anthracene	I :										1.60E-00	3.835-05	1.4UE-UZ	00-382-0
(1,z,s-cu)Pyrene	E										1.055-00	2.405-03	0-225-0	4.3UE-U0
Antimonic			2 01E 06	1 015 05	1 765 00	0 705 06	2 01E 06	4 04E 0E	1 765 00	0 70E A6	1 205 04	2 44E-02	4 13ETU0	5 87E-04
	. 1	F	1 545-05	3 685-04	1.705-02	6 72E-00	1 54E-05	2 695-04	1.35E_01	6 73E-00	1 005-03	2 ANE-02	8 76F+00	4 38F-03
	I		8 00E-07	1 92E-05	7 01E-03	3 50E-06	8 DDE-07	1 975-05	7 01E-03	3 50E-06	6.01E-05	1.44E-03	5.26E-01	2.63E-04
	I		1.23F-07	2.96F-06	1.08F-03	5.41E-07	1 23E-07	2.96F-06	1.08E-03	5.41E-07	1.68E-05	4.04E-04	1.47E-01	7.37E-05
	T		4.87E-06	1.17E-04	4.27E-02	2.13E-05	4.87E-06	1.17E-04	4.27E-02	2.13E-05	3.34E-04	8.02E-03	2.92E+00	1.46E-03
VI.	н	F	2.55E-07	6.11E-06	2.23E-03	1.12E-06	2.55E-07	6.11E-06	2.23E-03	1.12E-06	1.64E-05	3.93E-04	1.43E-01	7.16E-05
	н		2.77E-06	6.65E-05	2.43E-02	1.21E-05	2.77E-06	6.65E-05	2.43E-02	1.21E-05	1.81E-04	4.35E-03	1.59E+00	7.94E-04
	т		4.12E-06	9.88E-05	3.61E-02	1.80E-05	4.12E-06	9.88E-05	3.61E-02	1.80E-05	2.91E-04	6.99E-03	2.55E+00	1.28E-03
Manganese	I	F	2.01E-05	4.81E-04	1.76E-01	8.78E-05	2.01E-05	4.81E-04	1.76E-01	8.78E-05	1.39E-03	3.34E-02	1.22E+01	6.10E-03
	I	. –	6.43E-08	1.54E-06	5.63E-04	2.82E-07	6.43E-08	1.54E-06	5.63E-04	2.82E-07	1.24E-05	2.97E-04	1.08E-01	5.41E-05
	I	H	5.49E-06	1.32E-04	4.81E-02	2.41E-05	5.49E-06	1.32E-04	4.81E-02	2.41E-05	3.69E-04	8.86E-03	3.23E+00	1.62E-03
Selenium	I		3.62E-06	8.68E-05	3.17E-02	1.58E-05	3.62E-06	8.68E-05	3.17E-02	1.58E-05	2.76E-04	6.62E-03	2.41E+00	1.21E-03
Maximum Individual HAP			2.01E-05	4.81E-04	1.76E-01	8.78E-05	2.01E-05	4.81E-04	1.76E-01	8.78E-05	3.23E-03	7.75E-02	2.83E+01	1.41E-02
Total HAP Emissions			5.95E-05	1.43E-03	5.21E-01	2.61E-04	5.95E-05	1.43E-03	5.21E-01	2.61E-04	1.47E-02	3.52E-01	1.29E+02	6.43E-02
 In the TPER Analysis, chromium emissions from fuel firing are classified as soluble 	g are classified	l as soluble												

C

Summary of Facility-Wide Potential Emissions

 In the TPER Analysis, chromium emissions from fuel firing are classified as soluble chromate compounds, as chromium (VI) equivalent.

Duke Energy Progress, LLC

Cape Fear STAR® Project

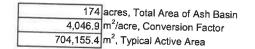
Summary of Facility-Wide Criteria Pollutant Potential Emissions

Pollutant	Total Emissions (tpy)	Exceeds 250 tpy?
PM	144	No
PM10	131	No
PM2.5	75	No
SO2	112	No
NOx	222	No
со	112	No
VOC	14.1	No
Lead	1.28E-03	No
Sulfuric Acid Mist	4.38E-01	No
CO2e ¹	156,869	NA

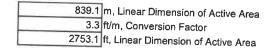
1 - Per the June 23, 2014 Supreme Court decision in Utility Air Regulatory Group v. EPA, EPA may not treat GHGs as an air pollutant for the specific purpose of determining whether a source is required to obtain a PSD permit.

Facility-Wide Throughputs

Global	
8,760 hr/yr, Potential Operating Hours per Year	FGD Byproduct and Hydrated Lime Silos Bin Vents
4.85 mph, Average 2013-2017 wind speed (IGX Chapel Hill)	1,050 acfm, air flow rate
	0.005 gr/scf, emission loading rate
Ash	
429,000 ton/yr, Excavated Ash	EHE A and B Dust Collectors
15% Ash Moisture Content (conservative estimate)	32,000 scfm, air flow rate, per dust collector
	0.025 gr/scf, emission loading rate
Wet Ash Transfer to Shed and Hopper	
70 ton/hr	EHE Silo Bin Vent
400,000 ton/yr	6,500 acfm, air flow rate
	0.025 gr/scf, emission loading rate*
Feed Silo Bin Vent	5
125 ton/hr, filling rate	Product Storage Dome
75 ton/hr, unloading rate	6,000 scfm, air flow rate
400,000 ton/yr	0.005 gr/scf, emission loading rate*
6,600 scfm, air flow rate	
0.005 gr/scf, emission loading rate*	Loadout Silo Bin Vent
	75 ton/hr
STAR Reactor (Exhaust Stack)	400,000 ton/yr
140 MMBtu/hr, max heat input	6,000 scfm, air flow rate
14,500 Btu/lb, heating value of carbon	0.005 gr/scf, emission loading rate*
3 76% loss on ignitizer (LON	anon, emission loading rate
3.76% loss on ignition (LOI), min value for conservative overestimate of emissions.	Corooner Directory
0.10% need ash sulful content, average (0.05%) multiplied by a asfaty factor (a	Screener Diesel Engine 8,760 Hours of Operation
y siger a dami, gas now rate	
0.025 gr/acf, emission loading rate	165 Tons per hour throughput
	91 hp, Engine Output
STAR Propane Start-Up Burner	
and the state of the builter	640,000 btu/hr, Max Heat Input
60 MMBtu/hr, max heat input	
60 MMBtu/hr, max heat input 90,500 Btu/gal, heating value of propane	Crusher Diesel Engine
60 MMBtu/hr, max heat input	Crusher Diesel Engine 8,760 Hours of Operation
60 MMBtu/hr, max heat input 90,500 Btu/gal, heating value of propane	Crusher Diesel Engine 8,760 Hours of Operation 165 Tons per hour throughput
60 MMBtu/hr, max heat input 90,500 Btu/gal, heating value of propane	Crusher Diesel Engine 8,760 Hours of Operation


*Actual bin vent filter expected outlet loading is 0.001 gr/dscf. A conservative value of 0.005 gr/scf is used to estimate potential emissions.

Emissions Estimate: Ash Basin


Source ID: ES-15 Emission Point ID: EP-15

Dust may be generated by wind erosion of exposed area within an industrial facility. Section 13.2.5 of the U.S. EPA's AP-42 document was used to estimate emissions.

The first step is to calculate a height-to-base ratio to determine if Equation (4) can be used to determine the friction velocity (u*):

Assuming a square area, this active area yields an approximate length as follows:

15 ft, Approximate Mean Elevation of the Active Area (Above Grade)

Per page 13.2.5-5 of AP-42, if the height to base ratio is less than 0.2 then Equation (4) can be used to calculate the friction velocity (u*).

Therefore equation (4) from AP-42 13.2.5 can be used for calculation of the friction velocity.

Per the following website: http://www.nc-climate.ncsu.edu (maintained by the North Carolina State Climate Office), the anemometer height for the fastest mile data is:

10 m, Anemometer Height

Since the reported fastest wind speeds are from an anemometer of height 10 m, using equation (5) on page 13.2.5-6 is not necessary:

When the calculated friction velocity (u^{*}) exceeds the threshold friction velocity (u^{*}), emissions from wind erosion occur. As shown in Equation 3 of AP-42, if $u^* \le u^*_t$, emissions are zero.

From Table 13.2.5-2 threshold friction velocity (ut*) is as follows. The most conservative value presented in AP-42 has been used.

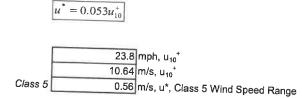
0.43 m/s, ut* Threshold Friction Velocity

Therefore, in order to generate emissions, the following wind speed must be exceeded.

3,600 sec/hr, Conversion Factor 1,609.3 m/mile, Conversion Factor

18.15 mph, u₁₀ 8.11 m/s, u₁₀ 0.43 m/s, u*

Duke Energy Progress, LLC


Cape Fear STAR® Project

Emissions Estimate: Ash Basin

AERMOD allows users to account for the variability of wind speed when determining offsite impacts. The scalars below are used based on the respective wind speed range. (AERMOD User Guide 3.3.4. Using Variable Emission Rates). There are zero wind based emissions in classes 1 thru 4 because the threshold friction velocity is not exceeded (ut*). The scalar for Class 5 is determined as the ratio of emission factors for Class 5 and Class 6. Emission factor derivation follows.

Wind Speed Range Class 1 2 3 4 5 6 Scalar 0 0 0 0 0.11 where: 1.00 Class 1 = 0 - 3.4 mph Class 2 = 3.4 - 6.8 mph Class 3 = 6.8 - 11.3 mph Class 4 = 11.3 - 18.1 mph Class 5 = 18.1 - 23.8 mph Class 6 = greater than 23.8 mph

The emissions rate (which is dependent on the friction velocity (u*)) varies linearly with wind speed. For Class 5, emissions will increase linearly as wind speed increases. AERMOD does not facilitate the variable emission rates based on wind speed. Therefore, the friction velocity for Class 5 is determined using the upper end wind speed of 23.8 mph. Using Equation (4) on page 13.2.5-5, the equivalent friction velocity (u*) may be

The friction velocity for Class 6 is determined using the average of the maximum daily wind gusts for each month.

 46.00
 mph, u₁₀*
 Maximum daily wind gust for IGX April 2014-April 2018. Taken from http://www.nc-climate.ncsu.edu

 20.56
 m/s, u₁₀*
 .

 Class 6
 1.09
 m/s, u*, Class 6 Wind Speed Range

Equation (3) from AP-42 13.2.5

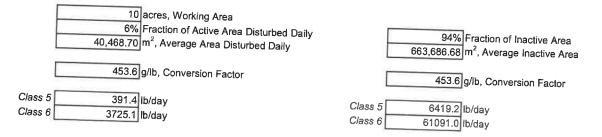
Emission factors for Class 5 and Class 6 are determined using AP-42 Section 13.2.5 Equation (3) which is shown below:

$$PM\left(\frac{g}{m^2}\right) = 58 \left(u^* - u^*\right)^2 + 25 \left(u^* - u^*\right)$$

Where:

u* is the friction velocity (m/s) u*t is the threshold friction velocity (m/s)

 Class 5
 4.39 g/m² (of Disturbed Area), Class 5 Wind Speed Range


 Class 6
 41.75 g/m² (of Disturbed Area), Class 6 Wind Speed Range

Duke Energy Progress, LLC

Cape Fear STAR® Project

Emissions Estimate: Ash Basin

As stated in AP-42, on page 13.2.5-2, emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. Only a fraction of the active area is disturbed each day. This disturbed area is used to calculate the potential

The facility will implement mitigation to suppress dust emissions. Control efficiencies are based on engineering judgment and supported by WRAP Fugitive Dust Handbook, September 7, 2006. The controlled emission rates for Class 5 and Class 6 emissions are as follows:

Class 5** Class 6**	152.7	b/day	Class 5	1203.01D/day	
E	1452.0	b/day	Class 6	12218.2 lb/day	

For the purposes of determining potential emissions for permitting, wind data has been applied as shown below.

Total Class 5 Emissions 1436.5 lb/day Total Class 6 Emissions 13671.0 lb/day Fraction of time in Class 5 0.0008 (approximately 7 hours in Class 5) Fraction of time in Class 6

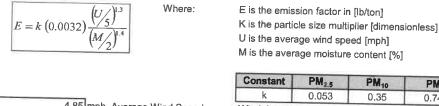
0.0000 (0 hours in Class 6)

Time fraction spent in Class 5 and Class 6 determined by analyzing hourly wind speeds for the 5 year period required to be modeled 2013-2017 from DAQ Approved Met Data. The worst case year (year with the most hours) was used to determine the time fraction. For Class 5 it was 2015.

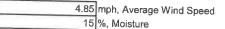
> Total emissions per day 1.15 lb/day

Emissions from the ash pond will only occur when Class 5 and Class 6 wind speed conditions are met. AERMOD will utilize meteorological data to determine when these conditions occur. For the purposes of the PSD analysis, permitting, and TPER evaluation, it is conservatively assumed that

Compound	Avg Ash Analysis (ppm)	Emissions lb/hr	Emissions lb/day	Emissions Ib/year	Emissions tons/year
PM	1.00 **	4.78E-02	1.15	418.98	2.09E-01
PM10	0.50 **	2.39E-02	5.74E-01	209.49	
PM2.5	0.08 **	3.59E-03	8.61E-02	31,42	1.05E-01
Lead	16.01	7.66E-07	1.84E-05	6.71E-03	1.57E-02
Arsenic	59.71	2.86E-06	6.85E-05	2.50E-02	3.35E-06
Antimony	7.80	3.73E-07	8.95E-06	3.27E-02	1.25E-05
Beryllium	3.11	1.49E-07	3.57E-06	1.30E-03	1.63E-06
Cadmium	0.48	2.30E-08	5.51E-07	2.01E-03	6.52E-07
Chromium	18.95	9.06E-07	2.18E-05	7.94E-03	1.01E-07
Chromium VI	0.99	4.74E-08	1.14E-06	4.15E-04	3.97E-06
Cobalt	10.77	5.15E-07	1.24E-05	4.13E-04 4.51E-03	2.07E-07
Manganese	77.99	3.73E-06	8.95E-05	4.51E-03 3.27E-02	2.26E-06
Mercury	0.25	1.20E-08	2.87E-07		1.63E-05
Nickel	21.36	1.02E-06	2.45E-07	1.05E-04	5.24E-08
Selenium	14.07	6.73E-07	1.62E-05	8.95E-03	4.47E-06
P/TAD aminaia a f		0.702-07	1.022-05	5.90E-03	2.95E-06


HAP/TAP emission factors for the fly ash is based on site-specific ash analysis.

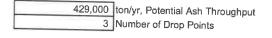
** PM distribution factors (k value) taken from AP-42 Page 13.2.5-3 All other values in ppm.


Emissions Estimate: Ash Handling

Source ID: ES-16 Emission Point ID: EP-16, 17, 18

Section 13.2.4 (Aggregate Handling and Storage Piles) of U.S. EPA's AP-42 document is used to estimate emissions from the handling of material at an industrial site. The "Drop Equation" is shown below:

PM_{2.5} PM10 PM 0.053


0.35 0.74 Wind data from IGX Chapel Hill Airport, 2013-2017

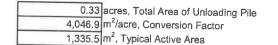
Expected ash moisture: 20% +/- 5%

Expected Drop Points

Drop Point 1 (EP-16) Ash is excavated from it's respective basin and placed in windrows in that basin Drop Point 2 (EP-17) Windrowed ash is loaded into screener / crusher within it's respective basin Drop Point 3 (EP-18) Screened and crushed ash is placed in stockpile within it's respective basin

The HAP and TAP emissions are derived from the PM estimate based on the average trace element analysis: Emissions are calculated assuming a maximum throughput of ash:

Ash Trace Element				Emis	Emissions		
Analysis	t Average Ash Emission Concentration Factor (ppm) (lb/ton)	lbs/hr	ibs/day	lbs/year	tons/year		
PM		1.36E-04	1.99E-02	4.78E-01	1.74E+02	8.72E-02	
PM10		6.41E-05	9.42E-03	2.26E-01	8.25E+01	4.13E-02	
PM2.5		9.71E-06	1.43E-03	3.42E-02	1.25E+01	6.25E-03	
Antimony	7.80	1.06E-09	1.55E-07	3.73E-06	1.36E-03	6.80E-07	
Arsenic	59.71	8.09E-09	1.19E-06	2.85E-05	1.04E-02	5.21E-06	
Beryllium	3.11	4.22E-10	6.19E-08	1.49E-06	5.42E-04	2.71E-07	
Cadmium	0.48	6.51E-11	9.56E-09	2.29E-07	8.37E-05	4.19E-08	
Chromium	18.95	2.57E-09	3.77E-07	9.06E-06	3.31E-03	1.65E-06	
Chromium VI	0.99	1.34E-10	1.97E-08	4.73E-07	1.73E-04	8.63E-08	
Cobalt	10.77	1.46E-09	2.14E-07	5.15E-06	1.88E-03	9.39E-07	
Lead	16.01	2.17E-09	3.19E-07	7.65E-06	2.79E-03	1.40E-06	
Manganese	77.99	1.06E-08	1.55E-06	3.73E-05	1.36E-02	6.80E-06	
Mercury	0.25	3.39E-11	4.98E-09	1.19E-07	4.36E-02	2.18E-08	
Nickel	21.36	2.90E-09	4.25E-07	1.02E-05	3.73E-03	1.86E-06	
Selenium	14.07	1.91E-09	2.80E-07	6.72E-06	2.45E-03	1.23E-06	


Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis.

Emissions Estimate: Unloading Pile

Source ID: ES-3 Emission Point ID: EP-3

Dust may be generated by wind erosion of exposed area within an industrial facility. Section 13.2.5 of the U.S. EPA's AP-42 document was used to estimate emissions.

The first step is to calculate a height-to-base ratio to determine if Equation (4) can be used to determine the friction velocity (u*):

Assuming a square area, this active area yields an approximate length as follows:

4 ft, Approximate Mean Elevation of the Active Area (Above Grade)

Per page 13.2.5-5 of AP-42, if the height to base ratio is less than 0.2 then Equation (4) can be used to calculate the friction velocity (u*).

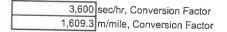
0.033 Calculated Height to Base Ratio

Therefore equation (4) from AP-42 13.2.5 can be used for calculation of the friction velocity.

Per the following website: http://www.nc-climate.ncsu.edu (maintained by the North Carolina State Climate Office), the anemometer height for the fastest mile data is:

10 m, Anemometer Height

Since the reported fastest wind speeds are from an anemometer of height 10 m, using equation (5) on page 13.2.5-6 is not necessary:


When the calculated friction velocity (u*) exceeds the threshold friction velocity (ut*), emissions from wind erosion occur. As shown in Equation 3 of AP-42, if $u^* \leq u_t^*$, emissions are zero.

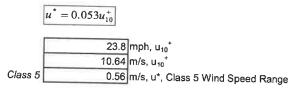
From Table 13.2.5-2 threshold friction velocity (ut*) is as follows. The most conservative value presented in AP-42 has been used.

0.43 m/s, ut* Threshold Friction Velocity

Therefore, in order to generate emissions, the following wind speed must be exceeded.

18.15 mph, u₁₀⁺ 8.11 m/s, u₁₀* 0.43 m/s, u*

Duke Energy Progress, LLC


Cape Fear STAR® Project

Emissions Estimate: Unloading Pile

AERMOD allows users to account for the variability of wind speed when determining offsite impacts. The scalars below are used based on the respective wind speed range. (AERMOD User Guide 3.3.4. Using Variable Emission Rates). There are zero wind based emissions in classes 1 thru 4 because the threshold friction velocity is not exceeded (ut*). The scalar for Class 5 is determined as the ratio of emission factors for Class 5 and Class 6. Emission factor derivation follows.

Wind Speed Range Class 2 3 4 5 6 Scalar 0 0 0 0 0.11 1.00 where: Class 1 = 0 - 3.4 mph Class 2 = 3.4 - 6.8 mph Class 3 = 6.8 - 11.3 mph Class 4 = 11.3 - 18.1 mph Class 5 = 18.1 - 23.8 mph Class 6 = greater than 23.8 mph

The emissions rate (which is dependent on the friction velocity (u*)) varies linearly with wind speed. For Class 5, emissions will increase linearly as wind speed increases. AERMOD does not facilitate the variable emission rates based on wind speed. Therefore, the friction velocity for Class 5 is determined using the upper end wind speed of 23.8 mph. Using Equation (4) on page 13.2.5-5, the equivalent friction velocity (u*) may be

46.00 mph, u10

20.56 m/s, u₁₀

The friction velocity for Class 6 is determined using the average of the maximum daily wind gusts for each month.

Class 6

1.09 m/s, u*, Class 6 Wind Speed Range

Emission factors for Class 5 and Class 6 are determined using AP-42 Section 13.2.5 Equation (3) which is shown below:

$$PM\left(\frac{g}{m^{2}}\right) = 58 \left(u^{*} - u_{1}^{*}\right)^{2} + 25 \left(u^{*} - u_{1}^{*}\right)$$

Equation (3) from AP-42 13.2.5

Maximum daily wind gust for IGX April 2014-April 2018. Taken from http://www.nc-climate.ncsu.edu

Where:

 u^* is the friction velocity (m/s) u^*_t is the threshold friction velocity (m/s)

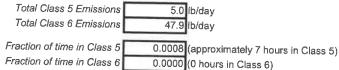
 Class 5
 4.39
 g/m² (of Disturbed Area), Class 5 Wind Speed Range

 Class 6
 41.75
 g/m² (of Disturbed Area), Class 6 Wind Speed Range

Duke Energy Progress, LLC

Cape Fear STAR® Project

Emissions Estimate: Unloading Pile


As stated in AP-42, on page 13.2.5-2, emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. Only a fraction of the active area is disturbed each day. This disturbed area is used to calculate the potential daily emission rate.

0.33 acres, Working Area 100% Fraction of Active Area Disturbed Daily 1,335.47 m ² , Average Area Disturbed Daily	0% Fraction of Inactive Area
453.6 g/lb, Conversion Factor	453.6 g/lb, Conversion Factor
Class 5 12.9 lb/day Class 6 122.9 lb/day	Class 5 0.0 lb/day Class 6 0.0 lb/day

The facility will implement mitigation to suppress dust emissions. Control efficiencies are based on engineering judgment and supported by WRAP Fugitive Dust Handbook, September 7, 2006. The controlled emission rates for Class 5 and Class 6 emissions are as follows:

	61%	Apply Water every 3.2 hours to disturbed areas	80%	Inherent Moisture and Watering
Class 5**	5.0	lb/day Class 5		lb/dav
Class 6**	47.9	lb/day Class 6		lb/day

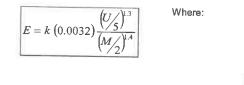
For the purposes of determining potential emissions for permitting, wind data has been applied as shown below.

Time fraction spent in Class 5 and Class 6 determined by analyzing hourly wind speeds for the 5 year period required to be modeled 2013-2017 from DAQ Approved Met Data. The worst case year (year with the most hours) was used to determine the time fraction. For Class 5 it was 2015. No Class 6 hours were identified.

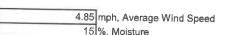
Total emissions per day 4.03E-03 lb/day

Emissions from the ash pond will only occur when Class 5 and Class 6 wind speed conditions are met. AERMOD will utilize meteorological data to determine when these conditions occur. For the purposes of the PSD analysis, permitting, and TPER evaluation, it is conservatively assumed that Class 6 condition occur year round.

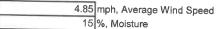
Compound	Avg Ash Analysis (ppm)	Emissions Ib/hr	Emissions Ib/day	Emissions Ib/year	Emissions tons/year
PM	1.00 **	1.68E-04	4.03E-03	1.47E+00	7.35E-04
PM ₁₀	0.50 **	8.39E-05	2.01E-03	7.35E-01	3.67E-04
PM _{2.5}	0.08 **	1.26E-05	3.02E-04	1.10E-01	5.51E-05
Antimony	7.80	1.31E-09	3.14E-08	1.15E-05	5.73E-09
Arsenic	59.71	1.00E-08	2.40E-07	8.77E-05	4.39E-08
Beryllium	3.11	5.22E-10	1.25E-08	4.57E-06	2.28E-09
Cadmium	0.48	8.05E-11	1.93E-09	7.05E-07	3.53E-10
Chromium	18.95	3.18E-09	7.63E-08	2.78E-05	1.39E-08
Chromium VI	0.99	1.66E-10	3.99E-09	1.45E-06	7.27E-10
Cobalt	10.77	1.81E-09	4.34E-08	1.58E-05	7.91E-09
Lead	16.01	2.69E-09	6.44E-08	2.35E-05	1.18E-08
Manganese	77.99	1.31E-08	3.14E-07	1.15E-04	5.73E-08
Mercury	0.25	4.19E-11	1.01E-09	3.67E-07	1.84E-10
Nickel	21.36	3.58E-09	8.60E-08	3.14E-05	1.57E-08
Selenium	14.07	2.36E-09	5.66E-08	2.07E-05	1.03E-08


HAP/TAP emission factors for the fly ash is based on site-specific ash analysis.

** PM distribution factors (k value) taken from AP-42 Page 13.2.5-3 All other values in ppm.


Emissions Estimate: Wet Ash Receiving (Transfer to Shed and Hopper)

Source ID: ES-1 Emission Point ID: EP-1 & EP-2


Section 13.2.4 (Aggregate Handling and Storage Piles) of U.S. EPA's AP-42 document is used to estimate emissions from the handling of material at an industrial site. The "Drop Equation" is shown below:

E is the emission factor in [lb/ton] K is the particle size multiplier [dimensionless] U is the average wind speed [mph] M is the average moisture content [%]

Constant PM2.5 PM 10 PM k 0.053 0.35 0.74 Wind data from IGX Chapel Hill Airport, 2013-2017

Expected ash moisture: 20% +/- 5%

Expected Drop Points

Drop Point 1

Ash is transported from it's respective basin to the STAR feedstock building Assumed 50% control as a result of 3-sided enclosure Drop Point 2 Ash is loaded into feed hopper.

The HAP and TAP emissions are derived from the PM estimate based on the average trace element analysis: Emissions are calculated assuming a maximum throughput of ash:

70	ton/hr
400,000	ton/yr, Potential Ash Throughput
	Number of Drop Points

	Concentration Fac			Emissions		
Ash Trace Element Analysis		Emission Factor (Ib/ton)	lbs/hr	lbs/day	lbs/year	tons/year
PM		1.36E-04	1.42E-02	3.42E-01	8.13E+01	4.07E-02
PM10	-	6.41E-05	6.73E-03	1.62E-01	3.85E+01	1.92E-02
PM2.5		9.71E-06	1.02E-03	2.45E-02	5.82E+00	2.91E-03
Antimony	7.80	1.06E-09	1.11E-07	2.66E-06	6.34E-04	3.17E-07
Arsenic	59.71	8.09E-09	8.50E-07	2.04E-05	4.86E-03	2.43E-06
Beryllium	3.11	4.22E-10	4.43E-08	1.06E-06	2.53E-04	1.26E-07
Cadmium	0.48	6.51E-11	6.83E-09	1.64E-07	3.90E-05	1.95E-08
Chromium	18.95	2.57E-09	2.70E-07	6.47E-06	1.54E-03	7.71E-07
Chromium VI	0.99	1.34E-10	1.41E-08	3.38E-07	8.05E-05	4.03E-08
Cobalt	10.77	1.46E-09	1.53E-07	3.68E-06	8.76E-04	4.38E-07
Lead	16.01	2.17E-09	2.28E-07	5.47E-06	1.30E-03	6.51E-07
Manganese	77.99	1.06E-08	1.11E-06	2.66E-05	6.34E-03	3.17E-06
Mercury	0.25	3.39E-11	3.56E-09	8.54E-08	2.03E-05	1.02E-08
Nickel	21.36	2.90E-09	3.04E-07	7.30E-06	1.74E-03	8.69E-07
Selenium	14.07	1.91E-09	2.00E-07	4.81E-06	1.14E-03	5.72E-07

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis.

Emissions Estimate: Screener

Source ID: ES-19 Emission Point ID: EP-19

ת		
Ľ		
1		
2		
i.		
5		
2		
ń		
1		
1		

429,000	8,760	24	165
Capacity, ton/yr	Hours of operation, hr/yr	Hours of operation, hr/day	Capacity, ton/hr

Pollutant	Emission Factor		Potential Er	Potential Emission Rates		-
	lb/ton	lb/hr	lb/dav	lb/vear	tonewar	
PM	2.20E-03	3.63E-01	8.71F+00	3 18F+03	1 505-100	
PM ₁₀	7.40E-04	1 22F-01	2 03E+00	4 071.00	1.001100	
DAA			2.001.00	1.0/ 5+03	5.35E-01	
T W2.5	5.00E-05	8.25E-03	1.98E-01	7.23E+01	3.61E-02	
Pollutant	Ash Conc.	Emission Factor ²		Potential E	Potential Emission Rates	
	bpm	lb/ton	lb/hr	Ib/dav	lhhiar	tomotion
Antimony	7.80E+00	1.72E-08	2.83E-06	6.80E-05	2 48F-02	1 24E OF
Arsenic	5.97E+01	1.31E-07	2.17E-05	5 20E-04	1 005 01	
Bervllium	3 11E+00	A BAE NO	00 L 00 F		1.3UE-UT	8.48E-UD
		0.046-08	1.13E-06	2.71E-05	9.89E-03	4.94E-06
Cadmium	4.80E-01	1.06E-09	1.74E-07	4.18E-06	1.53E-03	7 63E-07
Chromium	1.90E+01	4.17E-08	6.88E-06	1.65E-04	6 03E_03	0.1E 05
Chromium VI	9.90E-01	2.18E-09	3.59E-07	8 62E-06	3 46E 00	0.012-03
Cobalt	1.08E+01	2.37E-08	3.91E-06	0.38F.05	0.101-00	1.3/E-00
Lead	1.60E+01	3 575-08	5 91E DE	4 00F 04	0.446-04	1.71E-U5
Mananasa	7 001 104	1010	0.011-00	1.38E-04	5.09E-02	2.55E-05
200100	1.0015701	1./ZE-U/	2.83E-05	6.79E-04	2.48E-01	1.24E-04
Mercury	2.50E-01	5.50E-10	9.08E-08	2 18F-06	7 045 04	2 075 07
					+0-10p./	0-1/20

 Selenium
 1.41E+01
 3.10E-08
 5.11E-06
 1.23E-04
 4.47E-02
 2.24E-05

 1. Emission Factor for Screening operation from AP-42. Table 11.19.2-2. Factor is based on controlled screening with wet suppression, as ash is screened affer dewatering but prior to drying.

3.97E-07 3.40E-05

7.95E-04 6.79E-02

2.18E-06 1.86E-04

9.08E-08 7.75E-06

4.70E-08

2.14E+01

Nickel

2. HAP/TAP emission factors for the fly ash is based on site-specific ash analysis.

Emissions Estimate: Screener Diesel Engine

Source ID: ES-22 Emission Point ID: EP-22

Potential emissions from diesel-firad engine used to operate screener

Emission Factor Conversions (for emission factors published in only one set of units)

$$\begin{split} & EF \frac{lb}{hp-hr} = EF \frac{lb}{MMbtu} \times \frac{7000 \ Btu}{hp-hr} \times \frac{MMBtu}{10^6 \ Btu} \\ & EF \frac{lb}{MMBtu} = EF \frac{lb}{hp-hr} \times \frac{hp-hr}{7000 \ Btu} \times \frac{10^6 \ Btu}{MMBtu} \end{split}$$

Emissions Calculations

 $\mathcal{E}missions \frac{lb}{hr} = \mathcal{E}F \frac{lb}{hp - hr} \times \frac{hp - hr}{1 hr} \qquad \qquad \mathcal{E}missions \frac{lb}{day} = \mathcal{E}missions \frac{lb}{hr} \times \frac{24 hr}{day}$ $\mathcal{E}missions \frac{lb}{year} = \mathcal{E}missions \frac{lb}{hr} \times \frac{Operating hr}{year} \qquad \qquad \mathcal{E}missions \frac{ton}{year} = \mathcal{E}missions \frac{lb}{year} \times \frac{1 ton}{2000 \ lb}$

Fuel:	Diesel	_
Unit Rating:	68	k₩
	91	bhp
Sulfur Content:	0.0015	%
Operating Hours:	8,760	hr/yr

CAS#	Compound					Emission Facto IC Engines (<44 Emission Factor (Ib/MMBtu)		Hourly Emissions	Daily Emissions	Annual En	issions	Emissio Factor Referen
Grownikes	use Bas Pollutanta	-				(Ito/M/MBtu)	(its/hap-har)	(0.717)	(Tb/day)	and the state of t	net	
CO ₂	CARBON DIOXIDE					1.63E+02	1.14E+00	1.04E+02	2.49E+03	(lbryr)	(ton/y i	-
CH4	METHANE			-	_	6.61E-03	4.63E-05	4.21E-03		9.10E+05	4.55E+02	2
N ₂ O	NITROUS OXIDE	1	-	+	-	1.32E-03	9.26E-06		1.01E-01	3.69E+01	1.85E-02	З
CO ₂ e	GREENHOUSE GAS	+	+	+	+	1.64E+02		8.43E-04	2.02E-02	7.38E+00	3.69E-03	3
Criteria P	ellutants.	-	-	-	-		1.15E+00	1.04E+02	2.50E+03	9.13E+05	4.56E+02	4
CO	CARBON MONOXIDE (CD)		-	-		(lb/MMBtu)	(lb/hp-hr)	(lb/hr)	(lb/day)	(lb/yr)	(ton/yr)	-
NO _x	NITROGEN QXIDES (NO.)	-	-	-		1.17E+00	8.22E+03	7_48E-01	1.80E+01	6.55E+03	3.28E+00	5
PM		-	-	-		1.10E+00	7.73E-03	7.03E-01	1.69E+01	6.16E+03	3.08E+00	5
PM ₁₀	PARTICULATE MATTER (PM)	_	-	_		9.39E-02	6.58E-04	5.98E-02	1.44E+00	5.24E+02	2.62E-01	5
PM _{2.5}	PARTICULATE MATTER<10 MICRONS (PM					9.39E-02	6.58E-04	5.98E-02	1.44E+00	5.24E+02	2.62E-01	5
	PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	1			9.39E-02	6.58E-04	5.98E-02	1.44E+00	5.24E+02		_
SO2	SULFUR DIOXIDE (SO2)					1.52E-03	1.06E-05	9.65E-04			2.62E-01	5
PBC	LEAD	+	-		-	9.00E-06			2.32E-02	8.45E+00	4.23E-03	6
VOC	VOLATILE ORGANIC COMPOUNDS (VOC)	1	-	+	+	3.60E-01	6.30E-08	5.73E-06	1.38E-04	5.02E-G2	2.51E-05	7
Organic C	Compounds	TAF	1000	1 .P.4	1 2200		2.51E-03	2.29E-01	5.49E+00	2.00E+03	1.00E+D0	8
106-99-0	1,3-BUTADIENE	Y	Y	- Hereit	and the second	(Ib/MMEtu)	(lb/hp-hr)	(lb/hr)	(lit/day)	(lb/yr)	(landyr)	
75-07-0	ACETALDEHYDE	Y	Y	-	-	3.91E-05	2_74E-07	2.49E-05	5 98E-04	2.18E-01	1.09E+04	9
07-02-8	ACROLEIN	Y	Y	-	+	7.67E-04	5.37E-06	4.89E-04	1.17E-02	4.28E+00	2.14E-03	9
71-43-2	BENZENE	Y	Y	-	+	9.25E-05	6.48E-07	5.89E-05	1.41E-03	5.16E-01	2.58E-04	9
0-00-0	FORMALDEHYDE	Y	Y	-	-	9.33E-04	6.53E-06	5.94E-04	1.43E-02	5.21E+00	2.60E-03	9
08-88-3	TOLUENE		Y	-	-	1.18E-03	8.26E-06	7.52E-04	1.80E-02	6.58E+00	3.29E-03	9
	XYLENE (MIXED (SOMERS)	Y		-	-	4.09E-04	2.86E-06	2.61E-04	6.25E-93	2.28E+00	1.14E-03	9
		Y	Y	-	-	2.85E-04	2.00E-06	1.82E+04	4.38E-03	1.59E+00	7.95E-04	9
	Aromatic Hydrocarbons (PAH) &	-	-	1.00	-	the second s					TOOL OF	-
PAH	Organi≡ Matter (POM)	17.0	HAF	10000	and the second second	(Ib/MMStu)	(lb/hp-hr)	(lb/hr)	(libritare)	(iliai)yet)	(ton/yr)	
	TOTAL	1	Y	Y	Y	1.68E-04	1.18E-06	1.07E-04	2.57E-03	9.37E-01		-
20-12-7	ANTHRACENE		Y	Y	Y	1.87E-06	1.31E-08	1.19E-06	2.86E-05	1.04E-02	4,695-04	9
08-96-8	ACENAPHTHYLENE		Y	Y	Y	5.06E-06	3.54E-08	3.22E-06	7.74E-05		5.22E-06	9
	ACENAPHTHENE		Y	Y	Y	1.42E-06	9.94E-08	9.05E-07	2.17E-05	2.82E-02	1.41E-05	9
6-73-7	FLUORENE		Y	Y	Y	2.92E-05	2.04E-07	1.86E-05		7.92E-03	3.96E-06	9
29-00-0	PYRENE		Y	Y	Y	4.78E-06	3.35E-08	3.04E-05	4.46E-04	1.63E-01	8.15E-05	9
91-24-2	BENZO G,H,I)PERYLENE		Y	Y	Y	4.89E-07	3.42E-09	3.11E-07	7.31E-05	2.67E-02	1.33E-05	9
1-20-3	NAPHTHALENE		Y	Y	Y	8.48E-05	5.94E-07		7.48E-06	2.73E-03	1.36E-06	8
5-01-8	PHENANTHRENE		Y	Y	Y	2.94E-05	2.06E-07	5.40E-05	1.30E-03	4.73E-01	2.37E-04	9
6-55-3	BENZ A ANTHRACENE		Y	Y	Y	1.68E-36	1.18E-08	1.87E-05	4.49E-04	1.64E-01	8.20E+05	9
18-01-9	BENZO A)PHENANTHRENE (CHRYSENE)	-	Y	Y	Y	3.53E-07		1.07E-06	2.57E-05	9.37E-03	4.69E-06	9
0-32-8	BENZO(A)PYRENE	Y	Y	Y	Y		2.47E-09	2.25E-07	5.40E-06	1.97E-03	9.85E-07	9
05-99-2	BENZO B FLUORANTHENE	-	Y	Y	Y	1.88E-07	1.32E-09	1.20E-07	2.87E-06	1.05E-D3	5.25E-07	9
06-44-0	BENZO(J,K)FLUORENE (FLUORANTHENE	-	Y	Y	Y	9.91E-08	6.94E-10	6.31E-08	1.52E-06	5.53E-04	2.76E-07	9
07-08-9	BENZO K FLUORANTHENE	-	Y	Y	Y	7.61E-06	5.33E-08	4.85E-06	1.16E-04	4.25E-02	2,12E-05	9
3-70-3	DIBENZO A, H ANTHRACENE	-	Y	r Y	Y	1.55E-07	1.09E+09	9.87E-08	2.37E-06	8.65E-04	4.32E-07	9
93-39-5	INDEND(1.2.3-CD)PYRENE		Y	-		5.83E-07	4.08E-09	3.71E-07	8.91E-06	3.25E-03	1.63E-06	9
2011/201	THE REAL POOL THENE	TĂP		Y	Y	3.75E-07	2.63E+09	2.39E-07	5.73E-06	2.09E-03	1.05E-06	9
sc	ARSENIC	and the local division of the local division	HAP	PAH	PON	(Its/MM2Hu)	(Ib/hp-hr)	(Ib/Ars	(iteriay)	Robri	(ten/w)	-
	BERYLLIUM	Y	Y	-		4.00E-96	2.80E-08	2.55E-08	6.12E-05	2.23E-02	1.12E-05	7
	CADMIUM	Y	Y			3.00E-06	2.10E-08	1.91E-06	4.59E-05	1.67E-02	8.37E-06	7
	CADMIUM	Y	Y			3.00E-06	2.10E-08	1.91E+06	4.59E-05	1.67E+02	8.37E-06	7
		Y	Y	_		3.00E-06	2,10E-08	1.91E-06	4.59E-05	1.67E-02	8.37E-06	
	LEAD		Y			9.00E-06	6.30E-08	5.73E-06	1.38E-04	5.02E-02		7,10
	MANGANESE	Y	Y			6.00E-06	4.20E-08	3.82E-06	9.17E-05	3.35E-02	2.51E-05	7
	MERCURY	Y	Y			3.00E-06	2.10E-08	1.91E-06	4.59E-05		1.67E-05	7
40-02-0		Y	Y			3.00E-06	2.10E-08	1.91E-06	4.59E-05	1.67E-02	8.37E-06	7
	SELENIUM		Y			1.50E-05	1.05E-07	9.56E-06	2.29E-04	1,67E-02 8.37E-02	8.37E-06 4.19E-05	7
C S												7

Emissions Estimate: Crusher

Source ID: ES-20 Emission Point ID: EP-20

Capacity, ton/yr	1 445 4
Hours of operation. hr/vr	1011
Hours of oneration br/day	0,100
- man of operation, filload	24

5,400 ,760 24 165

Capacity, ton/hr

Pollutant	Emission Factor ¹		Potential Er	Potential Emission Rates		-
	lb/ton	lb/hr	lb/dav	hivear	terebrar.	
PM	1 20F-03	1 085 01	100.114		runsvyear	
MU		1:00-10	4.7 JETUU	1./3E+03	8.67E-01	
L'IM10	5.40E-04	8.91E-02	2.14E+00	7.81E+02	3 ODF 01	_
PM _{2.5}	1.00E-04	1.65E-02	3.96E-01	1.45E+02	7 235-02	_
	Ach Conc	Emination F. 4				
Pollutant		Emission Factor -		Potential E	Potential Emission Rates	
	bpm	lb/ton	lb/hr	lh/dav	hhidar	Annal
Antimony	7.8	9.36E-09	1 54E-06	2 745 06	1 011 00	cons/ye
Arsenic	R0 71			0.1 IE-03	1.35E-UZ	6.76E-0
	09.11	/.1/E-U8	1.18E-05	2.84E-04	1.04E-01	5.18F-0
Derymun	3.11	3.73E-09	6.16E-07	1 48E-05	5 20E 03	
Cadmium	0.48	5 76E-10	O EDE DO	00 100 0	0.736-00	Z./UE-U
Chromina			3.3UE-U0	2.28E-U6	8.33E-04	4.16E-0
CHICATION	18.95	2.27E-08	3.75E-06	9 01E-05	3 205 02	TAC A
Chromium VI	0.99	1.19E-09	1.96F-07	4 70E-06	4 70F 00	0-10-10-10-10-10-10-10-10-10-10-10-10-10
Cobo#			12 10011	1.1 00-10	1.12E-03	8.59E-0

 Selenium
 14.07
 1.69E-08
 2.79E-06
 6.69E-05
 2.44E-02
 1.22E-05

 1. Emission Factor for Crushing operation from AP-42, Table 11.19.2-2. Factor is based on controlled crushing with wet suppression, as ash is crushed after dewatering but prior to drying.
 1.39E-05 6.76E-05 2.17E-07 ear 9.34E-06 0.086-2.78E-02 1.35E-01 4.34E-04 3.70E-02 1.87E-02 7.61E-05 3.71E-04 1.19E-06 1.02E-04 6.69E-05 5.12E-05 1.54E-05 4.95E-08 4.23E-06 2.79E-06 2.13E-06 3.17E-06 1.92E-08 9.36E-08 3.00E-10 2.56E-08 1.29E-08 10.77 77.99 0.25 21.36 16.01 Manganese Mercury Cobalt Lead Nickel

2. HAPTAP emission factors for the fiy ash is based on site-specific ash analysis.

Emissions Estimate: Crusher Diesel Englne

Source ID: ES-23 Emission Point ID: EP-23

Potential emissions from diesel-fired engine used to operate screener

Emission Factor Conversions (for emission factors published in only one set of units)

$$\begin{split} & EF\frac{lb}{hp-hr}=EF\frac{lb}{MMbtu}\times\frac{7000\ Btu}{hp-hr}\times\frac{MMBtu}{10^{5}\ Btu}\\ & EF\frac{lb}{MMBtu}=EF\frac{lb}{hp-hr}\times\frac{hp-hr}{7000\ Btu}\times\frac{10^{6}\ Btu}{MMBtu} \end{split}$$

Fuel: Diesel Unit Rating 224 kW 300 bhp Sulfur Conte 0.0015 % Operating Hours 8,760 hr/y

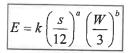
Emissions Calculations

 $Emissions \frac{lb}{hr} = EF \frac{lb}{hp - hr} \times \frac{hp - hr}{1 hr} \qquad Emissions \frac{lb}{day} = Emissions \frac{lb}{hr} \times \frac{24 hr}{day}$ $Emissions \frac{lb}{year} = Emissions \frac{lb}{hr} \times \frac{Operating hr}{year} \qquad Emissions \frac{ton}{year} = Emissions \frac{lb}{year} \times \frac{1 ton}{2000 lb}$

CAS#						Emission Factors (Ib/MMBtu) 1					Annual Emissions	
	Compound				IC Engines (<447 KW, 600 HP) Emission Emission		Hourty	Daily Emissions	Annual Em			
-						Factor (Ib/MMBtu)	Factor (lb/hp-hr)	Emissions		Annual Chi	18610[15	Factor Reference
	ut= Gas Pollutants				1	(Ib/MMBru)	(Iwhp-hr)	(lb/hr)	ZINDE (S			
CO2	CARBON DIOXIDE					1.63E+02	1.14E+00	3.42E+02	<u>(16/c)</u>	(lta/y=)	(tonlyr)	-
CH4	METHANE	-	-	+	-	6.61E-03			8.22E+03	3.00E+06	1.50E+03	2
N ₂ O	NITROUS OXIDE	+	-	+	-		4.63E-05	1.39E-02	3.33E-01	1.22E+02	6.08E-02	3
COze	GREENHOUSE GAS	+	-	+	-	1.32E-03	9.26E-06	2.78E-03	6.67E-02	2.43E+01	1.22E-02	3
	Pollutants	-	_	_	_	1.64E+02	1.15E+00	3.44E+02	8.25E+03	3.01E+06	1.50E+03	4
CO	CARBON MONOKIDE (CD)	100	1			(ib/MMEELiii)	(ib/hp-hr)	(is/n/)	(lb/day)	0.012.00		**
NO,	N/TROGEN OXIDES (NG.)	-	-	-		1.17E+00	8.22E-03	2.47E+00	5.92E+01	2.16E+04	(toniyr) 1.08E+01	
PM		-	_			1.10E+00	7.73E-03	2.32E+00	5.56E+01	2.03E+04	1.02E+01	5
	PARTICULATE MATTER (PM)					9.39E-02	6.58E-04	1.97E-01	4.73E+00			5
PM ₁₀	PARTICULATE MATTER<10 MICRONS (PM	10)				9.39E-02	6.58E-04	1.97E-01	4.73E+00	1.73E+03	8.64E-01	5
PM _{2.5}	PARTICULATE MATTER <2.5 MICRONS (PM	12.5)		-	-	9.39E-02	6.58E-04	1.97E-01		1.73E+03	8.64E-01	5
SOz	SULFUR DIOXIDE (SO ₂)	T	-	-	-	1.52E-03	1.06E-05		4.73E+00	1.73E+03	8.64E-01	5
PBC	LEAD	-	-	+	+			3.18E-03	7.64E-02	2.79E+01	1.39E-02	6
VOC	VOLATILE ORGANIC COMPOUNDS (VOC)	+	-	+	-	9.00E-06	6.30E-08	1.89E-05	4.54E-04	1.66E-01	8.28E-05	7
Organic	Compounds	1000	HAP	PAR	1900	3.60E-01	2.61E-03	7.54E-01	1.B1E+01	6.61E+03	3.306+00	8
106-99-0	1.3-BUTADIENE	Y	Y	PAG	a sector	(Ib/MMBru)	(Ib/ho-hit)	(Ubsiter)	(lb/da.)	(listyr)	(ton/yr)	
75-07-0	ACETALDEHYDE	Y	+ Y	+	-	3.91E-05	2.74E-07	8.21E-05	1.97E-03	7.19E-01	3.60E-04	9
107-02-8	ACROLEIN			-	-	7.67E-04	5.37E-06	1.61E-03	3.87E-02	1.41E+01	7.05E-03	9
71-43-2	BENZENE	Y	Y	+	-	9.25E-05	6.48E-07	1.94E-04	4.66E-03	1.70E+00	8.51E-04	9
0-00-0	FORMALDEHYDE		Y	-	-	9.33E-04	6.53E-06	1.96E-03	4.70E-02	1.72E+01	8.58E-03	9
08-88-3	TOLUENE	Y	Y	-		1.18E-03	B.26E-06	2.48E-03	5.95E-02	2.17E+01	1.09E-02	9
	XYLENE (MIXED (SOMERS)	Y	Y	-	-	4.09E-04	2.86E-06	8.59E-04	2.06E-02	7.52E+00	3.76E-02	
NY TRAILERS	TATCERE DWAED (SUMERS)	Y	Y			2.85E-04	2.00E-06	5.99E-04	1.44E-02	5.24E+00		9
Divovci	c Aromatic Hydrocartonos (PAH) & : Organic Matter (POM)	TAP	-	-	1				THE DE	0.24E*00	2.62E+03	9
AH	TOTAL	TAP	HAP	and the second second	and the second second	(1b:MMBtu)	(IP/hp-hr)	(ibcitr)	(lisiday)	(Respect)	(torayr)	-
20-12-7	ANTHRACENE	-	Y	Y	Y	1.68E-04	1.18E-06	3.53E-04	8.47E-03	3.09E+00	1.55E-03	9
08-96-8	ACENAPHTHYLENE	-	Y	Y	Y	1.87E-06	1.31E-08	3.93E-06	9.42E-05	3.44E-02	1.72E-05	9
3-32-9	ACENAPHTHENE	-	-	Y	Y	5.06E-06	3.54E-68	1.06E-05	2.55E-04	9.31E-02	4.65E-05	9
6-73-7	FLUORENE	-	Y	Y	Y	1.42E-06	9.94E-09	2.9BE-06	7.16E-05	2.61E-02	1.31E-05	9
29-00-0	PYRENE	-	Y	Y	Y	2.92E-05	2.04E-07	6.13E-85	1.47E-03	5,37E-01	2.69E-04	9
91-24-2	BENZO(G,H,!)PERYLENE	-	Y	Y	Y	4.78E-06	3.35E-08	1.00E-05	2.41E-04	B.79E-02	4.40E-05	9
1-20-3	NAPHTHALENE	-	Y	Y	Y	4.89E-07	3.42E-09	1,03E-06	2.46E-05	9.00E-02	4.40E-06	9
5-01-8	PHENANTHRENE	_	Y	Y	Y	B.48E-05	5.94E-07	1.78E-04	4.27E-03	1.56E+00	7.80E-04	9
6-55-3	BENZIAJANTHRACENE	-	Y	Y	Y	2.94E+05	2.06E-07	6.17E-05	1.48E-03	5.41E-D1	2.70E-04	
18-01-9			Y	Y	Y	1.68E-06	1.18E-08	3.53E-06	8.47E-05	3.09E-02		9
0-32-8	BENZO A PHENANTHRENE (CHRYSENE) BENZO A PYRENE		Y	Y	Y	3.53E-07	2.47E-09	7.41E-07	1.78E-05	6.49E-03	1.55E-05	9
05-99-2		Y	Y	Y	Y	1.88E-07	1.32E-09	3.95E-07	9.48E-06		3.25E-06	9
06-44-0	BENZO BIFLUORANTHENE		Y	Y	Y	9.91E-08	6.94E-10	2.08E-07	4.99E-06	3.46E-03 1.82E-03	1.73E-06	9
07-08-9	BENZO J.K.FLUORENE (FLUORANTHENE)	-	Y	Y	Y	7.61E-06	5.33E-08	1.60E-05	3.84E-04		9.12E-07	9
3-70-3	BENZOK IFLUORANTHENE		Y	Y	Y	1.55E-07	1.09E-09	3.26E-07	7.81E-06	1.40E-01	7.00E-05	9
3-70-3	DIBENZO(A,H)ANTHRACENE		Y	Y	Y	5.83E-07	4.08E-09	1.22E-06	2.94E-05	2.85E-03	1.43E-06	9
90-38-2	INDENO(1.2.3-CD)PYRENE	-	Y	γ	Y	3.75E-07	2.63E-09	7.88E-07		1.07E-02	5.36E-06	9
10		74P	HAP	РАН	2017	(IL/MMBRU)	(Ib/hp-hr)	(tt/hr)	1.89E-05	6.90E-03	3.45E-06	9
SC	ARSENIC	Y	Y			4.00E-06	2.80E-08	8.40E-06	a lucable age	(WWW)	(loivyt)	1000
С	BERYLLIUM	Y	Y			3.00E-06	2.10E-08	6.30E-06	2.02E-04	7.36E-02	3.68E-05	7
	CADMIUM	Y	Y			3.00E-06	2.10E-08	6.30E-06	1.51E-04	5.52E-02	2.76E-05	7
ICR6	CHROMIUM	Y	Y			3.00E-06	2.10E-08		1.51E-04	5.52E-02	2.76E-05	7
3C	LEAD		Y			9.00E-06	6.30E-08	6.30E-08	1.51E-04	5.52E-02	2.76E-05	7.10
NC	MANGANESE	Y	Y	-	-+	6.00E-06		1.89E-05	4.54E-04	1.66E-01	8.28E-05	7
3C	MERCURY	Y	Y		-	3.00E-06	4.20E-08	1.26E-05	3.02E-04	1.10E-01	5.52E-05	7
40-02-0	NICKEL	Y	Y	-	-		2.10E-08	6.30E-06	1.51E-04	5.52E-02	2.76E-05	7
	SELENIUM	-	Y		-	3.00E-06	2.10E-08	6.30E-06	1.51E-04	5.52E-02	2.76E-05	7
C												
c	GEELINOW	-				1.50E-05	1.05E-07 Total HAP	3.15E-05 8.24E-03	7.56E-04	2.76E-01	1.38E-04	7

 Interface
 <thInterface</th>
 Interface
 <thInterface</th>
 Interface
 Interface

Emission factor from NSP's III; 989, 112(a);
 US EPA AP-42 Table 3.4-1 (10/96)
 US EPA AP-42 Table 1.3-10 (5/10);
 US EPA AP-42 AP-42, Table 3.3-1 (10/96)
 US EPA AP-42 AP-42, Table 3.3-2 (10/98)


10. Chromium VI equivalents estimated based on Chromium emitted as Chromic Acid (see 1999 NCDENR memo from Lori Cherry RE: Updated Guidelines for Implementing Acceptable Ambient Levels (AALs) for Chromium (VI) Compounds,

Emissions Estimate: Haul Roads - Loaded

Source ID: ES-21 Emission Point ID: EP-21

Ash is delivered to the process via trucks. Particulate emissions are generated from the haul roads from the force of the wheels on the road surface. This force causes pulverization of the surface material. The particles are lifted and dropped from the rolling wheels and the road surface is exposed to strong air currents, which generate airborne particulate emissions.

The methodology presented below is taken from Section 13.2.2 (Unpaved Roads) of the U.S. EPA's AP-42 document and is based on the vehicle miles traveled (VMT) at the site.

E is the size-specific emission factor (lb/VMT) s is the surface material silt content (%) W is the mean vehicle weight (tons) k, a, and b are empirical constants

Equation 1a of AP-42 Section 13.2.2 for vehicles traveling on unpaved surfaces at industrial sites

Constant	Industrial Roads			
Constant	PM _{2.5}	PM ₁₀	PM	
k	0.15	1.5	4.9	
a	0.9	0.9	0.7	
b	0.45	0.45	0.45	

5.1%, Average Silt Content of Plant Roads at a Coal Mining Site (Table 13.2.2-1) 50 tons, Mean Vehicle Loaded Weight (Fleet Average)

0.25 Ib/VMT, Calculated PM2.5 Emission Factor (Road Silt Portion)

Where:

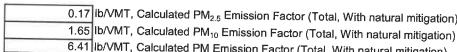
2.46 Ib/VMT, Calculated PMto Emission Factor (Road Silt Portion)

9.55 Ib/VMT, Calculated PM Emission Factor (Road Silt Portion)

Emissions associated with the exhaust, brake wear, and tire wear must be added to the values calculated above. The values shown below were taken from Table 13.2.2-4.

Particle Size	PM _{2.5}	PM ₁₀	PM
lb/VMT "adder"	0.00036	0.00047	0.00047

0.25 lb/VMT, Calculated PM2.5 Emission Factor (Total, No natural mitigation) 2.46 Ib/VMT, Calculated PM10 Emission Factor (Total, No natural mitigation)


9.55 Ib/VMT, Calculated PM Emission Factor (Total, No natural mitigation)

All roads are subject to natural mitigation because of rainfall and other precipitation. The following equation accounts for reductions in the emission factor due to natural mitigation.

$E_{FYT} = E$	(365 - P)
$\boldsymbol{L}_{EXT} - \boldsymbol{L}$	365

Where: $\mathsf{E}_{\mathsf{EXT}}$ is the adjusted emission factor accounting for natural mitigation E is emission factor from Equation 1a P is the number of days per year with at least 0.01 inches of precipitation

120 days, Precipitation Greater than 0.01 inches at Plant Location (Figure 13.2.2-1)

0.17 Ib/VMT, Calculated PM2.5 Emission Factor (Total, With natural mitigation)

6.41 lb/VMT, Calculated PM Emission Factor (Total, With natural mitigation)

In addition to natural mitigation, the following mitigation will be implemented at the site. Control efficiencies taken from the WRAP Fugitive Dust Handbook, September 7, 2006.

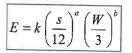
57% Limit on-site vehicle speeds (on unpaved roads) to 15 mph. 84% Application of Gravel on Dirt Surfaces
90% Implement watering for industrial unpaved road.

0.04 lb/VMT, Calculated PM Emission Factor (Total, With natural mitigation, and water sprays) 0.01 lb/VMT, Calculated PM₁₀ Emission Factor (Total, With natural mitigation, and water sprays) 0.001 lb/VMT, Calculated PM_{2.5} Emission Factor (Total, With natural mitigation, and water sprays)

23,400 miles/year, "Loaded Truck VMT" 2000 lb/ton, Conversion Factor

5.16E-01	tpy, PM Emissions
1.33E-01	tpy, PM ₁₀ Emissions
1.33E-02	tpy, PM _{2.5} Emissions

1.18E-01	lb/hr, PM Emissions
3.04E-02	lb/hr, PM ₁₀ Emissions
3.04E-03	lb/hr, PM _{2.5} Emissions


2.83E+00 lb/day, PM Emissions 7.29E-01 lb/day, PM₁₀ Emissions 7.30E-02 lb/day, PM_{2.5} Emissions

Emissions Estimate: Haul Roads - Unloaded

Source ID: ES-21 Emission Point ID: EP-21

Ash is delivered to the process via trucks. Particulate emissions are generated from the haul roads from the force of the wheels on the road surface. This force causes pulverization of the surface material. The particles are lifted and dropped from the rolling wheels and the road surface is exposed to strong air currents, which generate airborne particulate emissions.

The methodology presented below is taken from Section 13.2.2 (Unpaved Roads) of the U.S. EPA's AP-42 document and is based on the vehicle miles traveled (VMT) at the site.

Where:

E is the size-specific emission factor (lb/VMT) s is the surface material silt content (%) W is the mean vehicle weight (tons) k, a, and b are empirical constants

Equation 1a of AP-42 Section 13.2.2 for vehicles traveling on unpaved surfaces at industrial sites

Constant	Industrial Roads			
Constant	PM _{2.5}	PM ₁₀	PM	
k	0.15	1.5	4.9	
а	0.9	0.9	0.7	
b	0.45	0.45	0.45	

5.1 %, Average Silt Content of Plant Roads at a Coal Mining Site (Table 13.2.2-1) 25 tons, Mean Vehicle Empty Weight (Fleet Average)

0.18 lb/VMT, Calculated PM2.5 Emission Factor (Road Silt Portion) 1.80 Ib/VMT, Calculated PM10 Emission Factor (Road Silt Portion)

6.99 lb/VMT, Calculated PM Emission Factor (Road Silt Portion)

Emissions associated with the exhaust, brake wear, and tire wear must be added to the values calculated above. The values shown below were taken from Table 13.2.2-4.

Particle Size	PM _{2.5}	PM ₁₀	PM
lb/VMT "adder"	0.00036	0.00047	0.00047

0.18 lb/VMT, Calculated PM2.5 Emission Factor (Total, No natural mitigation) 1.80 Ib/VMT, Calculated PM₁₀ Emission Factor (Total, No natural mitigation)

6.99 lb/VMT, Calculated PM Emission Factor (Total, No natural mitigation)

All roads are subject to natural mitigation because of rainfall and other precipitation. The following equation accounts for reductions in the emission factor due to natural mitigation.

$E_{EXT} = E$	(365 - P)	
$L_{EXT} - L$	365	

Where: E_{EXT} is the adjusted emission factor accounting for natural mitigation E is emission factor from Equation 1a

P is the number of days per year with at least 0.01 inches of precipitation

120 days, Precipitation Greater than 0.01 inches at Plant Location (Figure 13.2.2-1)

0.12 lb/VMT, Calculated PM2.5 Emission Factor (Total, With natural mitigation)

1.21 lb/VMT, Calculated PM₁₀ Emission Factor (Total, With natural mitigation)

4.69 lb/VMT, Calculated PM Emission Factor (Total, With natural mitigation)

In addition to natural mitigation, the following mitigation will be implemented at the site. Control efficiencies taken from the WRAP Fugitive Dust Handbook, September 7, 2006.

57% Limit on-site vehicle speeds (on unpaved roads) to 15 mph. 84% Application of Gravel on Dirt Surfaces
90% Implement watering for industrial unpaved road.

 0.03
 Ib/VMT, Calculated PM Emission Factor (Total, With natural mitigation, and water sprays)

 0.008
 Ib/VMT, Calculated PM₁₀ Emission Factor (Total, With natural mitigation, and water sprays)

 0.0008
 Ib/VMT, Calculated PM_{2.5} Emission Factor (Total, With natural mitigation, and water sprays)

23,400 miles/day, One-way Vehicle Distance from Source to Offsite 2000 lb/ton, Conversion Factor

3.78E-01	tpy, PM Emissions
9.74E-02	tpy, PM ₁₀ Emissions
	tpy, PM _{2.5} Emissions

8.62E-02	lb/hr, PM Emissions
2.22E-02	lb/hr, PM ₁₀ Emissions
2.23E-03	lb/hr, PM _{2.5} Emissions

2.07E+00 lb/day, PM Emissions 5.34E-01 lb/day, PM₁₀ Emissions 5.35E-02 lb/day, PM_{2.5} Emissions

Emissions Estimate: Haul Roads - Vehicle Miles Traveled

	Ash Trucked (ton/yr)	Truck Capacity (ton/truck)	Truck Loads/Year	Route Distance ¹ (miles)	Total Miles Traveled VMT/vr	Total VMT/yr
Empty Trucks to Loading Area	100.000			1.36	23,400	
Loaded Trucks to Process	429,000	25.00	17,160			46,800
Pouto distance based and and and				1.36	23,400	,

1 - Route distance based on longest potential haul route (7,200 ft).

Emissions Estimate: Feed Silo

Source ID: ES-4 Emission Point ID: EP-4

The emissions from the bagfilter are estimated based on an outlet grain loading of 0.005 grains of PM per standard cubic feet of exhaust.

A sample calculation for the bagfilter is provided below:

grains PM	* scf	* <i>lb</i>	_lb PM
scf	hour	7000 grains	hour

0.005 gr/scf, Manufacturer's Guaranteed Emission Rate 6,600 scfm, Maximum Air Flow Through Bagfilter

7000 gr/lb, Conversion Factor

*Actual bin vent filter expected outlet loading is 0.001 gr/dscf. A conservative value of 0.005 gr/scf is used to estimate potential emissions.

2.83E-01 lb PM/hr, Calculated Emission Factor for Bagfilter 2,478 lb PM/yr, Calculated Emission Factor for Bagfilter

Ash Trace Element		Emissions					
Analysis	Average Ash Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year		
PM	1.00	2.83E-01	6.79E+00	2.48E+03	1.24E+00		
PM10	0.92	2.60E-01	6.25E+00	2.28E+03	1.14E+00		
PM2.5	0.53	1.50E-01	3.60E+00	1.31E+03	6.57E-01		
Antimony	7.80	2.21E-06	5.30E-05	1.93E-02	9.66E-06		
Arsenic	59.71	1.69E-05	4.05E-04	1.48E-01	7.40E-05		
Beryllium	3.11	8.80E-07	2.11E-05	7.71E-03	3.85E-06		
Cadmium	0.48	1.36E-07	3.26E-06	1.19E-03	5.95E-07		
Chromium	18.95	5.36E-06	1.29E-04	4.70E-02	2.35E-05		
Chromium VI	0.99	2.80E-07	6.72E-06	2.45E-03	1.23E-06		
Cobalt	10.77	3.05E-06	7.31E-05	2.67E-02	1.33E-05		
Lead	16.01	4.53E-06	1.09E-04	3.97E-02	1.98E-05		
Manganese	77.99	2.21E-05	5.29E-04	1.93E-01	9.66E-05		
Mercury	0.25	7.07E-08	1.70E-06	6.19E-04			
Nickel	21.36	6.04E-06	1.45E-04	5.29E-02	3.10E-07		
Selenium	14.07	3.98E-06	9.55E-05	3.49E-02	2.65E-05 1.74E-05		

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Emissions Estimate: STAR® Propane Start-Up Burner

Source ID: ES-5 Emission Point ID: EP-5

Emission Factor Conversions (for emission factors published in only one set of units) All HAP & TAP emission factors based on equivalent natural gas firing.

$EF \frac{lb}{lb} = E$	Elb	1000 gal
$\frac{DT}{MMBtu} = E$	1000 gal ^ M	MBtu (Propane)
$EF \frac{lb}{lb} = EF \frac{lb}{lb}$	lb	MMSCF (Nat Gas)
MMBtu MMBtu	ISCF (Nat Gas)	MMBtu (Nat Gas)

Emissions Calculations

$$Emissions \frac{lb}{hr} = EF \frac{lb}{MMBtu} \times \frac{MMBtu}{hr} \qquad Emissions \frac{lb}{day} = Emissions \frac{lh}{hr} \times \frac{24 hr}{day}$$

$$Emissions \frac{lb}{year} = Emissions \frac{lb}{hr} \times \frac{0 perating hr}{year} \qquad Emissions \frac{ton}{year} = Emissions \frac{lb}{year} \times \frac{1 ton}{2000 lb}$$

Fuel:	Propane	
Unit Rating:	60.0	MMBtu/hr
	1020	MMBtu/MMSCF (Nat Gas)
	90,5	MMBtu/10 ³ gal (Propane)
	663	gal/hr (Propane)
Sulfur Content:	0.10	gr/100 ft ³ gas
Operating Hours:	8,760	
Number of Units in Operation:	1	
Annual Fuel Consumption:	5,807,735	
Controls:	LNB	No control efficiency claimed

CAS #	Compound	Propane	ctors (Ib/MMBtu) Fired Boiler	Hourly	Daily	Annual Emissiona		Emission
Contractor		Emission Factor (Ib/MMBtu)	Emission Factor	Emissions	Emissions			Factor Reference
	Ges Pollutants CARBON DIOXIDE	(lb/MMBtu)	(lb/10 ³ gal)	(lb/hr)	(lb/day)	(lb/yr)	(ton/yr)	
		1.39E+02	1.25E+04	8.32E+03	2.00E+05	7.29E+07	3.64E+04	1
	METHANE	6.61E-03	5.99E-01	3.97E-01	9.52E+00	3,48E+03	1.74E+00	2
	NITROUS OXIDE	1.32E-03	1.20E-01	7.94E-02	1.90E+00	6.95E+02	3.48E-01	2
	GREENHOUSE GAS	1.39E+02	1.26E+04	8.35E+03		7.31E+07	3.66E+04	
	llutants	(lb/MMBtu)	(lb/10 ³ gal)	(lb/hr)	(lb/day)	(lb/yr)	(ton/yr)	3
	CARBON MONOXIDE (CO) NITROGEN OXIDES (NO ₂)	8.29E-02	7.50E+00	4.97E+00	1,19E+02	4,36E+04	2.18E+01	4
	PARTICULATE MATTER (PM)	1.44E-01	1.30E+01	8.62E+00	2.07E+02	7.55E+04	3.78E+01	4
PM ₁₀	PARTICULATE MATTER<10 MICRONS (PM10)	7.73E-03	7.00E-01	4.64E-01	1.11E+01	4.07E+03	2.03E+00	4
PM _{2.5}	PARTICULATE MATTER<2.5 MICRONS (PM ₁₀)	7.73E-03	7.00E-01	4.64E-01	1.11E+01	4.07E+03	2.03E+00	4
	SULFUR DIOXIDE (SO ₂)	7.73E-03	7.00E-01	4.64E-01	1.11E+01	4.07E+03	2.03E+00	4
	VOLATILE ORGANIC COMPOUNDS (VOC)	1.10E-04	1.00E-02	6.63E-03	1.59E-01	5.81E+01	2.90E-02	4
1. Emission fac	tor derived form Table C-1 to 40 CFR Part 98, Subpart C, converted to Ib/mmbtu	8.84E-03	8.00E-01	5.30E-01	1.27E+01	4.65E+03	2.32E+00	4

CFR Part 98, Subpart C, converted to lb/mmbtu basis using 2.20462 pounds per kilogram.

2. Emission factor derived form Table C-2 to 40 CFR Part 98, Subpart C, converted to lb/mmbtu basis using 2.20462 pounds per kilogram. 3. GWP values from Table A-1 to 40 CFR Part 98, Subpart A

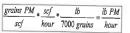
4. US EPA AP-42, Table 1.5-1 (07/08)

Emissions Estimate: STAR® Reactor (exhaust stack) Emissions from Ash Beneficiation

Source ID: ES-5 Emission Point ID: EP-5

Total Potential Operating Hours:	8,760
Maximum Capacity (MMBtu/hr):	140
Loss on Ignition (% LOI):	3.76% min value for conservative overestimate of emissions.
Heating Value of Carbon (Btu/lb):	14,500
Feed Ash Sulfur Content (%)	0.10% average (0.05%) multiplied by a safety factor of 2.
Inlet Air Flow Rate (acfm):	75,000
Emission Loading Rate (gr/scf):	0.025
Conversion Factor (gr/lb):	7,000
SO ₂ Control Efficiency (%):	95%

Example Calculation for SO2 and CO2 Emission Factor


$SO_2 EF \frac{lb}{hr} = \frac{140 MMBtu}{hr} \times \frac{10^6 Btu}{MMBtu} \times \frac{1 lb Carbon}{14,500 Btu} \times \frac{100 lb Ash}{9.15 lb Carbon} \times \frac{0.05 lb S}{100 lb Ash} \times \frac{64 lb SO_2}{32 lb S} \times (1 - SO_2 CE)$
$CO_2 EF \frac{lb}{MMBtu} = \left(\frac{1 \ lb \ Carbon}{14,500 \ Btu} \times \frac{10^6 \ Btu}{MMBtu} - \frac{16 \ lb \ CO}{MMBtu} \times \frac{12 \ lb \ Carbon}{28 \ lb \ CO}\right)$

Estimated Emissions

				Ел	nissions	Reference	
Compounds	Emission Factor	Units	lbs/hr	lb/day	Ibs/year	ton/year	
SO2	25.68	lb/hr	25.68	616	224,945	112.5	See Example
NOx	3.40E-01	ib/MMBtu	47.6	1,142	416,976	208.5	Emission Factor based on information provided by the SEFA Group
VOC	1.60E-02	lb/MMBtu	2.24	53.76	19,622	9.81	Emission Factor based on information provided by the SEFA Group
со	1.60E-01	lb/MMBtu	22.4	538	196,224	98.1	Emission Factor based on information provided by the SEFA Group
H2SO4	1.00E-01	lb/hr	0.10	2	876	0.4	Emission Factor based on information provided by the SEFA Group
CO2	2.53E+02	lb/MMBtu	35,367	848,810	309,815,786	154,908	See Example

1 - Based on SEFA stack test performed September 2016. Sulfuric acid mist was 0.05 lb/hr, doubled for contingency.

A sample calculation for the bagfilter is provided below:

0.025 gr/acf, Manufacturer's Guaranteed Emission Rate 75,000 acfm, inlet air flow rate 7000 gr/lb, Conversion Factor

> 16.07 lb PM/hr, Calculated Emission Factor for Bagfilter 140,786 lb PM/yr, Calculated Emission Factor for Bagfilter

Estimated Emissions

			Emis	isions	
Expected By-Product Composition	Average By- Product Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year
PM	1.00	1.61E+01	3.86E+02	1.41E+05	7.04E+01
PM10	0.92	1.48E+01	3.55E+02	1.30E+05	6.48E+01
PM2.5	0.53	8.52E+00	2.04E+02	7.46E+04	3.73E+01
Antimony	3.40E-02	5.46E-07	1.31E-05	4.79E-03	2.39E-06
Arsenic	1.90E-01	3.05E-06	7.33E-05	2.67E-02	1.34E-05
Beryllium	2.70E-02	4.34E-07	1.04E-05	3.80E-03	1.90E-06
Cadmium	4.10E-02	6.59E-07	1.58E-05	5.77E-03	2.89E-06
Chromium	7.60E-01	1.22E-05	2.93E-04	1.07E-01	5.35E-05
Cobalt	2.00E-01	3.21E-06	7.71E-05	2.82E-02	1.41E-05
Lead	1.20E-01	1.93E-06	4.63E-05	1.69E-02	8.45E-06
Manganese	5.30E+00	8.52E-05	2.04E-03	7.46E-01	3.73E-04
Mercury	1.00E-03	1.61E-08	3.86E-07	1.41E-04	7.04E-08
Nickel	4.80E-01	7.71E-06	1.85E-04	6.76E-02	3.38E-05
Selenium	1.30E-01	2.09E-06	5.01E-05	1.83E-02	9.15E-06

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98) Byproduct composition based on 10% inerts from fresh lime,

Cape Fear STAR® Project

Emissions Estimate: FGD Byproduct Silo

Source ID: ES-6 Emission Point ID: EP-6

A sample calculation for the bin vent is provided below:

grains PM	scf	* lb	lb PM
scf	hour	7000 grains	hour

0.005 gr/scf, Manufacturer's Guaranteed Emission Rate
 1,050 acfm, gas flow rate (assumes difference between actual and standard conditions is negligible)
 7000 gr/lb, Conversion Factor

4.50E-02 lb PM/hr, Calculated Emission Factor for Bagfilter 394 lb PM/yr, Calculated Emission Factor for Bagfilter

			Emissi	ons	
Expected By-Product Composition	Average By- Product Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year
PM	1.00	4.50E-02	1.08E+00	3.94E+02	1.97E-01
PM10	0.92	4.14E-02	9.94E-01	3.63E+02	1.81E-01
PM2.5	0.53	2.39E-02	5.72E-01	2.09E+02	1.04E-01
Antimony	3.40E-02	1.53E-09	3.67E-08	1.34E-05	6.70E-09
Arsenic	1.90E-01	8.55E-09	2.05E-07	7.49E-05	3.74E-08
Beryllium	2.70E-02	1.22E-09	2.92E-08	1.06E-05	5.32E-09
Cadmium	4.10E-02	1.85E-09	4.43E-08	1.62E-05	8.08E-09
Chromium	7.60E-01	3.42E-08	8.21E-07	3.00E-04	1.50E-07
Cobalt	2.00E-01	9.00E-09	2.16E-07	7.88E-05	3.94E-08
Lead	1.20E-01	5.40E-09	1.30E-07	4.73E-05	2.37E-08
Manganese	5.30	2.39E-07	5.72E-06	2.09E-03	1.04E-06
Mercury	1.00E-03	4.50E-11	1.08E-09	3.94E-07	1.97E-10
Nickel	4.80E-01	2.16E-08	5.18E-07	1.89E-04	9.46E-08
Selenium	1.30E-01	5.85E-09	1.40E-07	5.12E-05	2.56E-08

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98) Byproduct composition based on 10% inerts from fresh lime.

Emissions Estimate: FGD Hydrated Lime Silo

Source ID: ES-7 Emission Point ID: EP-7

A sample calculation for the bin vent is provided below:

grains PM *	scf *	lb	lb PM
scf	hour	7000 grains	hour

0.005 gr/scf, Manufacturer's Guaranteed Emission Rate 1,050 acfm, gas flow rate (assumes difference between actual and standard conditions is negligible) 7000 gr/lb, Conversion Factor

4.50E-02 lb PM/hr, Calculated Emission Factor for Bagfilter 394 Ib PM/yr, Calculated Emission Factor for Bagfilter

imeTrace Element	Average Lime		Emissi	ons	
Analysis	Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year
PM	1.00	4.50E-02	1.08E+00	3.94E+02	1.000
PM10	0.92	4.14E-02	9.94E-01		1.97E-01
PM2.5	0.53	2.39E-02		3.63E+02	1.81E-01
Antimony	3.40E-01		5.72E-01	2.09E+02	1.04E-01
Arsenic	1.90	1.53E-08	3.67E-07	1.34E-04	6.70E-08
Beryllium		8.55E-08	2.05E-06	7.49E-04	3.74E-07
Cadmium	2.70E-01	1.22E-08	2.92E-07	1.06E-04	5.32E-08
	4.10E-01	1.85E-08	4.43E-07	1.62E-04	8.08E-08
Chromium	7.60	3.42E-07	8.21E-06	3.00E-03	
Cobalt	2.00	9.00E-08	2.16E-06		1.50E-06
Lead	1.20	5.40E-08		7.88E-04	3.94E-07
Manganese	53.0	2.39E-06	1.30E-06	4.73E-04	2.37E-07
Mercury	1.00E-02		5.72E-05	2.09E-02	1.04E-05
Nickel	4.80	4.50E-10	1.08E-08	3.94E-06	1.97E-09
Selenium		2.16E-07	5.18E-06	1.89E-03	9.46E-07
	1.30	5.85E-08	1.40E-06	5.12E-04	2.56E-07

mulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Lime composition from EPRI PISCES Database (February, 2003) Composition of Lime, Median Value

Cape Fear STAR® Project

Emissions Estimate: EHE A External Heat Exchanger A

Source ID: ES-8 Emission Point ID: EP-8

grains PM *	scf ,	lb	lb PM
scf	hour	7000 grains	hour

0.025 gr/scf, Manufacturer's Guaranteed Emission Rate 32,000 scfm, inlet air flow rate 7000 gr/lb, Conversion Factor

6.86 lb PM/hr, Calculated Emission Factor for Bagfilter 60,069 lb PM/yr, Calculated Emission Factor for Bagfilter

Ash Trace Element			Emissie	ons	
Analysis	Average Ash Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year
PM	1.00	6.86E+00	1.65E+02	6.01E+04	3.00E+01
PM10	0.92	6.31E+00	1.51E+02	5.53E+04	2.76E+01
PM2.5	0.53	3.63E+00	8.72E+01	3.18E+04	1.59E+01
Antimony	7.80	5.35E-05	1.28E-03	4.69E-01	2.34E-04
Arsenic	59.71	4.09E-04	9.83E-03	3.59E+00	1.79E-03
Beryllium	3.11	2.13E-05	5.12E-04	1.87E-01	9.34E-05
Cadmium	0.48	3.29E-06	7.90E-05	2.88E-02	1.44E-05
Chromium	18.95	1.30E-04	3.12E-03	1.14E+00	5.69E-04
Chromium VI	0.99	6.79E-06	1.63E-04	5.95E-02	2.97E-05
Cobalt	10.77	7.39E-05	1.77E-03	6.47E-01	3.23E-04
Lead	16.01	1.10E-04	2.63E-03	9.62E-01	4.81E-04
Manganese	77.99	5.35E-04	1.28E-02	4.68E+00	2.34E-03
Mercury	0.25	1.71E-06	4.11E-05	1.50E-02	7.51E-06
Nickel	21.36	1.46E-04	3.52E-03	1.28E+00	6.42E-04
Selenium	14.07	9.65E-05	2.32E-03	8.45E-01	4.23E-04

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Cape Fear STAR® Project

Emissions Estimate: EHE B External Heat Exchanger B

Source ID: ES-9 Emission Point ID: EP-9

A sample calculation for the bagfilter is provided below:

grains PM	*_scf *	lb	lb PM
scf	hour	7000 grains	hour

0.025 gr/scf, Manufacturer's Guaranteed Emission Rate 32,000 scfm, inlet air flow rate 7000 gr/lb, Conversion Factor

> 6.86 lb PM/hr, Calculated Emission Factor for Bagfilter 60,069 lb PM/yr, Calculated Emission Factor for Bagfilter

sh Trace Element	Average Ash		Emissi	ons	
Analysis	Concentration* (ppm)	lbs/hr	lbs/day	lbs/year	tons/year
PM	1.00	6.86E+00	1.65E+02	6.01E+04	2.005.04
PM10	0.92	6.31E+00	1.51E+02	5.53E+04	3.00E+01
PM2.5	0.53	3.63E+00	8.72E+01	3.18E+04	2.76E+01
Antimony	7.80	5.35E-05	1.28E-03	4.69E-01	1.59E+01
Arsenic	59.71	4.09E-04	9.83E-03	3.59E+00	2.34E-04
Beryllium	3.11	2.13E-05	5.12E-04	1.87E-01	1.79E-03
Cadmium	0.48	3.29E-06	7.90E-05		9.34E-05
Chromium	18.95	1.30E-04	3.12E-03	2.88E-02	1.44E-05
Chromium VI	0.99	6.79E-06	1.63E-04	1.14E+00	5.69E-04
Cobalt	10.77	7.39E-05	1.77E-03	5.95E-02	2.97E-05
Lead	16.01	1.10E-04	2.63E-03	6.47E-01	3.23E-04
Manganese	77.99	5.35E-04		9.62E-01	4.81E-04
Mercury	0.25		1.28E-02	4.68E+00	2.34E-03
Nickel	21,36	1.71E-06	4.11E-05	1.50E-02	7.51E-06
Selenium		1.46E-04	3.52E-03	1.28E+00	6.42E-04
	14.07	9.65E-05	2.32E-03	8.45E-01	4.23E-04

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Cape Fear STAR® Project

Emissions Estimate: EHE Silo

Source ID: ES-10 Emission Point ID: EP-10

A sample calculation for the bagfilter is provided below:

grains PM	*_scf	lb	lb PM
scf	hour	7000 grains	hour

0.025 gr/scf, Manufacturer's Guaranteed Emission Rate 5,200 scfm, inlet air flow rate 7000 gr/lb, Conversion Factor

1.11E+00 lb PM/hr, Calculated Emission Factor for Bagfilter 9,761 lb PM/yr, Calculated Emission Factor for Bagfilter

Ash Trace Element Analysis	Average Ash	Emissions				
	Concentration*	lbs/hr	lbs/day	lbs/year	tons/year	
PM	1.00	1.11E+00	2.67E+01	0.705.00		
PM10	0.92	1.03E+00		9.76E+03	4.88E+00	
PM2.5	0.53		2.46E+01	8.98E+03	4.49E+00	
Antimony		5.91E-01	1.42E+01	5.17E+03	2.59E+00	
Arsenic	7.80	8.69E-06	2.09E-04	7.61E-02	3.81E-05	
	59.71	6.65E-05	1.60E-03	5.83E-01	2.91E-04	
Beryllium	3.11	3.47E-06	8.32E-05	3.04E-02		
Cadmium	0.48	5.35E-07	1.28E-05		1.52E-05	
Chromium	18.95	2.11E-05		4.69E-03	2.34E-06	
Chromium VI	0.99	1.10E-06	5.07E-04	1.85E-01	9.25E-05	
Cobalt	10.77		2.65E-05	9.66E-03	4.83E-06	
Lead	16.01	1.20E-05	2.88E-04	1.05E-01	5.26E-05	
Manganese		1.78E-05	4.28E-04	1.56E-01	7.81E-05	
	77.99	8.69E-05	2.09E-03	7.61E-01	3.81E-04	
Mercury	0.25	2.79E-07	6.69E-06	2.44E-03		
Nickel	21.36	2.38E-05	5.71E-04		1.22E-06	
Selenium	14.07	1.57E-05	3.76E-04	2.08E-01 1.37E-01	1.04E-04	

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Emissions Estimate: Product Storage Dome

Source ID: ES-11 Emission Point ID: EP-11

Once the ash leaves the reactor, it is collected in the product recovery baghouse and pneumatically transferred to either the storage dome or the loadout silo, each equipped with a bin vent. Emissions from the storage dome are calculated using the manufacturer's guaranteed emission rate for the

A sample calculation for the bagfilter is provided below:

grains PM	*_scf	*lb	lb PM
scf	hour	7000 grains	hour

0.005 gr/scf, Manufacturer's Guaranteed Emission Rate 6,000 scfm, inlet air flow rate 7000 gr/lb, Conversion Factor *Actual bin vent filter expected outlet loading is 0.001 gr/dscf. A conservative value of 0.005 gr/scf is used to estimate potential emissions.

2.57E-01 lb	PM/hr, Calculated	Emission Factor for Bagfilter
2,253 lb	PM/yr, Calculated	Emission Factor for Bagfilter

Ash Trace Element Analysis	Average Ash Concentration*		Emis	sions		
	(ppm)	lbs/hr	lbs/day	lbs/year	tons/year	
PM	1.00	2.57E-01	6.17E+00			
PM10	0.92	2.37E-01		2.25E+03	1.13E+00	
PM2.5	0.53	1.36E-01	5.68E+00	2.07E+03	1.04E+00	
Antimony	7.80	2.01E-06	3.27E+00	1.19E+03	5.97E-01	
Arsenic	59.71		4.81E-05	1.76E-02	8.79E-06	
Beryllium	3.11	1.54E-05	3.68E-04	1.35E-01	6.73E-05	
Cadmium		8.00E-07	1.92E-05	7.01E-03	3.50E-06	
Chromium	0.48	1.23E-07	2.96E-06	1.08E-03	5.41E-07	
	18.95	4.87E-06	1.17E-04	4.27E-02	2.13E-05	
Chromium VI	0.99	2.55E-07	6.11E-06	2.23E-03	1.12E-06	
Cobalt	10.77	2.77E-06	6.65E-05	2.43E-02		
Lead	16.01	4.12E-06	9.88E-05	3.61E-02	1.21E-05	
Manganese	77.99	2.01E-05	4.81E-04		1.80E-05	
Mercury	0.25	6.43E-08	1.54E-06	1.76E-01	8.78E-05	
Nickel	21.36	5.49E-06		5.63E-04	2.82E-07	
Selenium	14.07	3.62E-06	1.32E-04	4.81E-02	2.41E-05	
mulative PM moon fre	ctions from AD 42 Tak	0.0212-00	8.68E-05	3.17E-02	1.58E-05	

Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Emissions Estimate: Product Loadout Silo

Source ID: ES-12 Emission Point ID: EP-12 (Bin Vent) & EP-13, 14 (Loadout Spouts)

Once the ash leaves the reactor, it is collected in the product recovery baghouse and pneumatically transferred to either the storage dome or the loadout silo, each equipped with a bin vent. The truck loadout station uses telescoping spouts and a negative pressure ventilation system to reduce fugitive emissions. Emissions from the Loadout Silo are calculated using the manufacturer's guaranteed emission rate for the bin vent filter. Emissions from the telescoping spouts are estimated using US EPA AP-42 calculations.

Bin Vent Filter Emissions Estimate

A sample calculation for the bin vent filter is provided below:

grains PM	*_scf_	*lb	lb PM
scf	hour	7000 grains	hour

0.005 gr/scf, Manufacturer's Guaranteed Emission Rate*
 6,000 scfm, inlet air flow rate
7000 gr/lb. Commencia E

7000 gr/lb, Conversion Factor

*Actual bin vent filter expected outlet loading is 0.001 gr/dscf. A conservative value of 0.005 gr/scf is used to estimate potential emissions.

	0.26]lb	PM/hr.	Calculated	Emission	Eastar	f	him		eu.	
_	0.050	1			E111331011	actor	IO	DIN	vent	filter	
	2.253	IIh	PMAr	Calculated	Emination	Et al. a de la constante de la				_	

2,200 10 1	ivi/yi,	Calculated	Emission	Factor	for bi	in vent filter	

Ash Trace Element Analysis	Average Ash Concentration*	Emissions				
Analysis	(ppm)	lbs/hr	lbs/day	lbs/year	tons/year	
PM	1.00	2.57E-01	6.17E+00	2.25E+03		
PM10	0.92	2.37E-01	5.68E+00	2.23E+03 2.07E+03	1.13E+00	
PM2.5	0.53	1.36E-01	3.27E+00		1.04E+00	
Antimony	7.80	2.01E-06	4.81E-05	1.19E+03	5.97E-01	
Arsenic	59.71	1.54E-05	3.68E-04	1.76E-02	8.79E-06	
Beryllium	3.11	8.00E-07		1.35E-01	6.73E-05	
Cadmium	0.48	1.23E-07	1.92E-05	7.01E-03	3.50E-06	
Chromium	18.95	4.87E-06	2.96E-06	1.08E-03	5.41E-07	
Chromium VI	0.99	2.55E-07	1.17E-04	4.27E-02	2.13E-05	
Cobalt	10.77	2.77E-06	6.11E-06	2.23E-03	1.12E-06	
Lead	16.01		6.65E-05	2.43E-02	1.21E-05	
Manganese	77.99	4.12E-06	9.88E-05	3.61E-02	1.80E-05	
Mercury	0.25	2.01E-05	4.81E-04	1.76E-01	8.78E-05	
Nickel		6.43E-08	1.54E-06	5.63E-04	2.82E-07	
	21.36	5.49E-06	1.32E-04	4.81E-02	2.41E-05	
Selenium	14.07	3.62E-06	8.68E-05	3.17E-02	1.58E-05	

Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Emissions Estimate: Product Loadout Silo

Source ID: ES-12 Emission Point ID: EP-12 (Bin Vent) & EP-13, 14 (Loadout Spouts)

Once the ash leaves the reactor, it is collected in the product recovery baghouse and pneumatically transferred to either the storage dome or the loadout silo, each equipped with a bin vent. The truck loadout station uses telescoping spouts and a negative pressure ventilation system to reduce fugitive emissions. Emissions from the Loadout Silo are calculated using the manufacturer's guaranteed emission rate for the bin vent filter. Emissions from the telescoping spouts are estimated using US EPA AP-42 calculations.

Loadout Spout Emissions Estimate

75	ton/hr throughput
400,000	ton/year throughput
4.88E-05	Ib PM/ton, see "Loadout Chute Emission Factors"
2.31E-05	Ib PM10/ton, see "Loadout Chute Emission Factors"
2.31E-05	Ib PM2.5/ton, see "Loadout Chute Emission Factors"

Ash Trace Element Analysis	Average Ash Concentration	Emissions				
	(ppm)	lbs/hr	lbs/day	lbs/year	tons/year	
PM	here a	3.66E-03	8.79E-02	19.5		
PM10		1.73E-03	4.16E-02	9.24	9.76E-0	
PM2.5		1.73E-03	4.16E-02		4.62E-0	
Antimony	7.80	2.01E-06	4.81E-02	9.24	4.62E-0	
Arsenic	59.71	1.54E-05		1.76E-02	8.79E-0	
Beryllium	3.11		3.68E-04	1.35E-01	6.73E-0	
Cadmium		8.00E-07	1.92E-05	7.01E-03	3.50E-0	
Chromium	0.48	1.23E-07	2.96E-06	1.08E-03	5.41E-0	
	18.95	4.87E-06	1.17E-04	4.27E-02	2.13E-0	
Chromium VI	0.99	2.55E-07	6.11E-06	2.23E-03	1.12E-0	
Cobalt	10.77	2.77E-06	6.65E-05	2.43E-02	1.21E-05	
Lead	16.01	4.12E-06	9.88E-05	3.61E-02	the second s	
Manganese	77.99	2.01E-05	4.81E-04		1.80E-05	
Mercury	0.25	6.43E-08		1.76E-01	8.78E-05	
Nickel	21.36	5.49E-06	1.54E-06	5.63E-04	2.82E-07	
Selenium	14.07		1.32E-04	4.81E-02	2.41E-05	
umulative PM mass fra	14.07	3.62E-06	8.68E-05	3.17E-02	1.58E-05	

*Cumulative PM mass fractions from AP-42, Table 1.1-6 (09/98)

Emissions Estimate: Loadout Spout Emission Factors

Source ID: ES-12 Emission Point ID: EP-13 & EP-14 (Loadout Spouts)

Section 13.2.4 (Aggregate Handling and Storage Piles) is used to estimate emissions from the handling of material at an industrial site. The "Drop Equation" is shown below:

$$E = k \left(0.0032 \right) \frac{\left(U_{5}^{\prime} \right)^{1.3}}{\left(M_{2}^{\prime} \right)^{1.4}}$$

Where:

E is the emission factor in [lb/ton] K is the particle size multiplier [dimensionless] U is the average wind speed [mph] M is the average moisture content [%]

PM	PM10	PM2.5	Constant
0.74	0.35	0.053	k
	0.35	0.053	

13.5	mph, Average Wind Speed
	%, Moisture
99%	Control from Bin vent

PM Component	Annual Emission Factor
	(lb/ton)
PM	4.88E-05
PM10	2.31E-05
PM2.5	2.31E-05

Appendix C

Toxics Modeling Checklist

AECOM

July 2018

A.1 North Carolina Modeling Protocol Checklist

The North Carolina Modeling Protocol Checklist may be used in lieu of developing the traditional written modeling plan for North Carolina toxics and criteria pollutant modeling. The protocol checklist is designed to provide the same level of information as requested in a modeling protocol as discussed in Chapter 2 of the *Guideline for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina*. The modeling protocol checklist is submitted with the modeling analysis.

Although most of the information requested in the modeling protocol checklist is self explanatory, additional comments are provided, where applicable, and are discussed in greater detail in the toxics modeling guidelines referenced above. References to sections, tables, figures, appendices, etc., in the protocol checklist are found in the toxics modeling guidelines.

INSTRUCTIONS: The modeling report supporting the compliance demonstration should include most of the information listed below. As appropriate, answer the following questions or indicate by check mark the information provided or action taken is reflected in your report.

FACILI	ITY INFORMATION
Name: Duke Energy Progress, LLC	Consultant (if applicable):
Cape Fear STAR [®] Ash Beneficiation Process	AECOM
Facility ID: NA – New Facility	1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560
Address:	
500 CP and L Rd	
Moncure, NC 27559	
Contact Name: Ms. Ann Quillian	Contact Name:
	Mr. Mark Yoder
Phone Number: (919) 546-6610	Phone Number: (919) 461-1441
Email: Ann.Quillian@duke-energy.com	Email: Mark.Yoder@aecom.com

GENERAL

-1	
•	
\checkmark	
	-
1	
4	
1	
	4
\checkmark	
N/A	-
	✓ ✓ ✓ ✓ ✓ ✓

February 2014

Background Concentrations (criteria pollutant analyses only): Background concentrations must be determined for each pollutant for each averaging period evaluated. The averaged background value used (e.g., high, high-second- high, high-third-high, etc.) is based on the pollutant and averaging period evaluated. The background concentrations are added to the modeled concentrations, which are then compared to the applicable air quality standard to determine compliance. Offsite Source Inventories (criteria pollutant analyses only): Offsite source inventories must be developed and modeled for all pollutants for which onsite sources emissions are modeled in space.	N/A
modeled for all pollutants (criteria pollutant analyses only): Offsite source inventories must be developed and significant impact levels (SILs) as defined in the PSD New Source Review Workshop Manual. The DAQ AQAB must approve the inventories. An initial working inventory can be requested from the AQAB.	N/A

SCREEN LEVEL MODELING

Model: The latest version of the type and	
Model: The latest version of the AERSCREEN model must be used. The use of other screening models should be approved by NCDAQ prior to submitting the modeling report. Source / Source emission parameters: Provide a table listing the sources modeled and the applicable source Magnetic Science Appendix A.	N/A
Hergeu Sources: Identify merged sources and I	N/A
GEP Analysis: See Section 3.2 and NC Form 1 – Appendix A	N/A
Terrain: Indicate the terrain modeled: simple (Section 4.4), and complex (Section 4.5 and NC Form 4 – Appendix A). If complex terrain is within 5 kilometers of the facility, complex terrain must be evaluated. Simple terrain must include terrain elevations if any terrain is greater than the stack base of any source modeled.	N/A
Simple: Complex:	
Receptors: AERSCREEN – use shortest distance to property boundary for each source modeled and use sufficient range to find maximum (See Section 4.1 (i) and (j)). Terrain above stack have much be surplused and use sufficient	N/A
Touching Results. For each officiated 11	N/A
Averaging period (See Table 3), and presented in tabular format indicating compliance status with the applicable AAL, SIL, or NAAQS. See NC Form S5 – Appendix A. Modeling Files: Either electronic or hard copies of AERSCREEN output must be submitted.	N/A
These Entire electronic or hard copies of AERSCREEN output must be achieved	

REFINED LEVEL MODELING

Model: The latest version of AERMOD should be used and	
http://www.epa.gov/scram001/dispersion_prefrec.htm. The use of other refined models must be approved by	1
Source / Source emission parameters: Provide a table listing the sources modeled and the applicable source emission parameters. See NC Form 3 - Appendix A. GEP Analysis: Use BPIP-Prime with AERMOD.	~
Cavity Impact Analysis: No separate and 1 is in	~
rerrain: Use digital elevation data from the NO CO or	N/A
Coordinate System: Specify the set I	1
Coordinate System: Specify the coordinate system used (e.g., NAD27, NAD83, etc.) to identify the source, puilding, and receptor locations. Note: Be sure to specify in the AERMAP input file the correct base datum nodeling report which datum was used. Receptors: The receptor grid should be of sufficient size and resolution to identify the maximum pollutant impact.	NAD 83
ee Section 5.3.	

Appendix D

Facility-Wide Toxic Pollutant Emission Rate (TPER) Analysis and Modeling Evaluation Results

July 2018

Cape Fear STAR Project

Toxic Pollutant Emission Rate (TPER) Analysis (In Accordance with 15A NCAC 02Q.0711)

CAS #	Compound		Toxic Pol Emission Rate	lutant es (TPER)										
		Carcinogens	Chronic Toxicants	Acute System Toxicants	Acute		TT	Chronic	Cape Fea					
Inorganic, Non-m	tetal Compounds	(lb/yr)	(lb/day)	(lb/hr)	Irritants	Carcinogens	Exceed	Toxicants	Exceed	Acute Systemic Toxicants		Acute		
7664-93-9				(10/11/)	(lb/hr)	(lb/yr)	TPER	(lb/day)	TPER	(lb/hr)	Exceed			
	Sulfuric acid		2.50E-01	1							TPER	(lb/hr)	TPER	
Organic Compou			2.50E-01	2.50E-02				2.40	Yes					
106-99-0	1,3-Butadiene	11					-	2.40	res	1.00E-01	Yes			
75-07-0	Acetaldehyde					9.37E-01	No I		-					
107-02-8	Acrolein				6.80								T	
1-43-2	Benzene	0.40			2.00E-02						-	2.10E-03	No	
60-00-0	Formaldehyde	8,10				22.37	Vac					2.53E-04		
10-54-3	N-Hexane				4.00E-02	24.31	res					2.002-04	NU	
08-88-3	Toluene		23									3.23E-03	No	
330-20-7	Xylene		98		14.4			0.00				0.202-03	NO	
0-32-8	Benzo(a)Pyrene		57		16.4			2.69E-02				1 105 00		
letal Compounds	(c). Jiene	2.20				4.545.44		1.87E-02	No			1.12E-03		
SC	Arsenic and Inorganic Arsenic Compounds					4.51E-03	No		_			7.80E-04	NO	
140-41-7	Beryllium	5.30E-02				ter en	-		T		-			
40-43-9	Cadmium	2.80E-01				8.8								
		3.70E-01				5.26E-01								
DICR6	Soluble Chromate Compounds, as Chromium (VI) Equivalent					1.47E-01	No							
NC	Manganese and Compounds		1.30E-02											
39-97-6	Mercury, Vapor		6.30E-01					5.90E-04 N	lo		1			
40-02-0	Nickel Metal		1.30E-02					3.34E-02 N						
tes: Per NCDAO a	uidance in an email dated June 6, 2005, of coal), the following is the preferred we		1.30E-01					2.97E-04 N	0					

(including combustion of coal), the following is the preferred way to code metals:

Arsenic - ASC-Other as a component of ASC Chro Beryllium - Beryllium metal as a component of BEC Man

Chromium - Chromic Acid (VI) as a component of SolCR6, as Chromium VI equivalents Manganese - MNC-Other as a component of MNC

Cadmium - Cadmium metal as a component of CDC

Mercury - Mercury, Vapor as a component of HGC

Nickel - Nickel metal as a component of NIC

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (Ib/yr)

Toxic Air Pollutant	Ash Basin	Unloading Pile	Screener	Screener Diesel Engine	Crusher	Crusher Diesel Engine	Ash Handling	Wet Ash Receiving	Feed Sild	
	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr				
Inorganic, Non-metal Comp						loiyi	lb/yr	lb/yr	lb/yr	
H2SO4	Junas	-			-	1				
Organic Compounds				1		1				
1,3-Butadiene	-									
Acetaldehyde				2.18E-01						
Acrolein				4.28E+00		7.19E-01			[
Benzene				5.16E-01		1.41E+01				
Formaldehyde	-			5.21E+00		1.70E+00				
N-Hexane				6.58E+00		1.72E+01				
Foluene				0.36E+00		2.17E+01				
				2.005.00						
(ylene (Mixed Isomers)				2.28E+00		7.52E+00				
Benzo(a)Pyrene				1.59E+00		5.24E+00				
letal Compounds				1.05E-03		3.46E-03				
rsenic							and the second second			
eryllium	2.50E-02	8.77E-05	1.90E-01	2.23E-02	1.04E-01			Г		
admium	1.30E-03	4.57E-06	9.89E-03	1.67E-02		7.36E-02	1.04E-02	4.86E-03	1.48E-01	
admininini	2.01E-04	7.05E-07	1.53E-03	1.67E-02	5.39E-03	5.52E-02	5.42E-04	2.53E-04	7.71E-03	
hromium VI				1.07 2-02	8.33E-04	5.52E-02	8.37E-05	3.90E-05	1.19E-03	
anganese	4.15E-04	1.45E-06	3.15E-03	1.67E-02	1 705 00				1.195-03	
ercury	3.27E-02	1.15E-04	2.48E-01	3.35E-02	1.72E-03	5.52E-02	1.73E-04	8.05E-05	2.45E-03	
ckel	1.05E-04	3.67E-07	7.95E-04	1.67E-02	1.35E-01	1.10E-01	1.000	6.34E-03	1.93E-03	
	8.95E-03	3.14E-05	6.79E-02	1.67E-02	4.34E-04	5.52E-02	1.000	2.03E-05	6.19E-04	
				1.07E-02	3.70E-02	5.52E-02	0.707	1.74E-03	5.29E-02	

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (Ib/yr)

Toxic Air Pollutant	STAR® Ash Firing	FGD Byproduct Silo	FGD Hydrated Lime Silo	EHE A - External Heat Exchanger A	EHE B - External Heat Exchanger B	EHE Silo	Product Storage Dome	Loadout Silo Bin Vent	Loadout Sild
	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/yr		-pouts
Inorganic, Non-metal Comp						·····y:	io/yr	lb/yr	lb/yr
H2SO4	1					I			
	8.76E+02								
Organic Compounds									
1,3-Butadiene			T T				A COLUMN TO A COLUMN	1	
Acetaldehyde	-						1		
Acrolein		-							
Benzene									
Formaldehyde									
N-Hexane									
Toluene									
(ylene (Mixed Isomers)									
Benzo(a)Pyrene	1								
letal Compounds									
Arsenic	2.67E-02	1	1	T					
eryllium	3.80E-03	7.49E-05	7.49E-04	3.59E+00	3.59E+00	5.83E-01			
admium		1.06E-05	1.06E-04	1.87E-01	1.87E-01	3.04E-02	1.35E-01	1.35E-01	1.35E-01
	5.77E-03	1.62E-05	1.62E-04	2.88E-02	2.88E-02		7.01E-03	7.01E-03	7.01E-03
hromium VI					2.002-02	4.69E-03	1.08E-03	1.08E-03	1.08E-03
anganese	7.46E-01	2.005.00		5.95E-02	5.95E-02	9.66E-03	2.23E-03		
ercury	1.41E-04	2.09E-03		4.68E+00	4.68E+00	7.61E-01		2.23E-03	2.23E-03
ckeł	6.76E-02	3.94E-07	3.94E-06	1.50E-02	1.50E-02	2.44E-03	1.76E-01	1.76E-01	1.76E-01
	0.70E-02	1.89E-04	1.89E-03	1.28E+00	1.28E+00	2.08E-01	5.63E-04	5.63E-04	5.63E-04
			-			2.08E-01	4.81E-02	4.81E-02	4.81E-02

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (lb/day)

Toxic Air Pollutant	Ash Basin	Unloading Pile	Screener	Screener Diesel Engine	Crusher	Crusher Diesel Engine	Ash Handling	Wet Ash Receiving	Feed Sild	
	lb/day	lb/day	lb/day	lb/day	ib/day	lb/day	lb/day	lb/day	16.7.1	
Inorganic, Non-metal Compo	share							lorady	lb/day	
H2SO4						1.		-		
Organic Compounds							1		-	
1,3-Butadiene	1									
Acetaldehyde				5.98E-04		1.97E-03				
Acrolein				1.17E-02		3.87E-02				
Benzene				1.41E-03		4.66E-03				
Formaldehyde				1.43E-02		4.70E-02				
N-Hexane				1.80E-02		5.95E-02				
Foluene										
(ylene (Mixed Isomers)				6.25E-03		2.06E-02				
Benzo(a)Pyrene				4.36E-03		1.44E-02				
fetal Compounds				2.87E-06		9.48E-06		_		
vrsenic	6.85E-05	2.40E-07	5.20E-04	6.12E-05	2.846.04			1		
eryllium admium	3.57E-06	1.25E-08	2.71E-05	4.59E-05	2.84E-04	2.02E-04	2.85E-05	2.04E-05	4.05E-04	
admium	5.51E-07	1.93E-09	4.18E-06	4.59E-05	1.48E-05	1.51E-04	1.49E-06	1.06E-06	2.11E-05	
hromium VI					2.28E-06	1.51E-04	2.29E-07	1.64E-07	3.26E-06	
anganese	1.14E-06	3.99E-09	8.62E-06	4.59E-05	4.70E-06	1515.04				
ercury	8.95E-05	3.14E-07	6.79E-04	9.17E-05	3.71E-04	1.51E-04	4.73E-07	3.38E-07	6.72E-06	
ickel	2.87E-07	1.01E-09	2.18E-06	4.59E-05	1.19E-06	3.02E-04	3.73E-05	2.66E-05	5.29E-04	
UNGI	2.45E-05	8.60E-08	1.86E-04	4.59E-05	1.02E-04	1.51E-04	1.19E-07	8.54E-08	1.70E-06	
					1.020-04	1.51E-04	1.02E-05	7.30E-06	1.45E-04	

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (Ib/day)

Toxic Air Pollutant	STAR® Ash Firing	FGD Byproduct Silo	FGD Hydrated Lime Silo	EHE A - External Heat Exchanger A	EHE B - External Heat Exchanger B	EHE Silo	Product Storage Dome	Loadout Silo Bin Vent	Loadout Sild Spouts
	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day
Inorganic, Non-metal C	Ompounde								
H2SO4	2.40E+00		1	-					
Organic Compounds									n
1,3-Butadiene			1						
Acetaldehyde									
Acrolein									
Benzene									
Formaldehyde		_							
N-Hexane									
Toluene									
Xylene (Mixed Isomers)									
Benzo(a)Pyrene									
Metal Compounds									
Arsenic	7.33E-05	2.05E-07	2.05E-06	9.83E-03					
Beryllium	1.04E-05	2.92E-08	2.92E-07	9.83E-03 5.12E-04	9.83E-03	1.60E-03	3.68E-04	3.68E-04	3.68E-04
Cadmium	1.58E-05	4.43E-08	4.43E-07		5.12E-04	8.32E-05	1.92E-05	1.92E-05	1.92E-05
			4.402-07	7.90E-05	7.90E-05	1.28E-05	2.96E-06	2.96E-06	2.96E-06
Chromium VI				1.63E-04	1.63E-04	0.055.04			
langanese	2.04E-03	5.72E-06	5.72E-05	1.28E-02	1.03E-04	2.65E-05	6.11E-06	6.11E-06	6.11E-06
lercury	3.86E-07	1.08E-09	1.08E-08	4.11E-05	4.11E-05	2.09E-03	4.81E-04	4.81E-04	4.81E-04
lickel	1.85E-04	5.18E-07	5.18E-06	3.52E-03	4.11E-05 3.52E-03	6.69E-06	1.54E-06	1.54E-06	1.54E-06
				0.022-00	3.52E-U3	5.71E-04	1.32E-04	1.32E-04	1.32E-04

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (Ib/hr)

Toxic Air Pollutant	Ash Basin	Unloading Pile	Screener	Screener Diesel Engine	Crusher	Crusher Diesel Engine	Ash Handling	Wet Ash Receiving	Feed Silo	
	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	
Inorganic, Non-metal Comp	ounds									
H2SO4	1			1						
Organic Compounds										
1,3-Butadiene	1			-						
Acetaldehyde				2.49E-05		8.21E-05				
Acrolein				4.89E-04		1.61E-03				
Benzene				5.89E-05		1.94E-04				
Formaldehyde				5.94E-04		1.96E-03				
N-Hexane				7.52E-04		2.48E-03				
Toluene										
Xylene (Mixed Isomers)				2.61E-04		8.59E-04				
Benzo(a)Pyrene				1.82E-04		5.99E-04				
Metal Compounds				1.20E-07		3.95E-07			_	
Arsenic										
Beryllium	2.86E-06	1.00E-08	2.17E-05	2.55E-06	1.18E-05	8.40E-06	1.19E-06	8.50E-07	4.005.05	
Cadmium	1.49E-07	5.22E-10	1.13E-06	1.91E-06	6.16E-07	6.30E-06	6.19E-08	4.43E-08	1.69E-05	
Jadimum	2.30E-08	8.05E-11	1.74E-07	1.91E-06	9.50E-08	6.30E-06	9.56E-09	6.83E-09	8.80E-07	
Chromium VI	4.74E-08	1.66E-10	3.59E-07	1.91E-06	1007.07			0.000-09	1.36E-07	
langanese	3.73E-06	1.31E-08	2.83E-05		1.96E-07	6.30E-06	1.97E-08	1.41E-08	2.80E-07	
fercury	1.20E-08	4.19E-11	9.08E-08	3.82E-06	1.54E-05	1.26E-05	1.55E-06	1.11E-06	2.21E-05	
lickel	1.02E-06	3.58E-09		1.91E-06	4.95E-08	6.30E-06	4.98E-09	3.56E-09	7.07E-08	
	1	0.000-09	7.75E-06	1.91E-06	4.23E-06	6.30E-06	4.25E-07	3.04E-07	6.04E-06	

Summary of Facility-Wide Toxic Air Pollutant Potential Emissions (lb/hr)

Toxic Air Pollutant	STAR® Ash Firing	FGD Byproduct Silo	FGD Hydrated Lime Silo	EHE A - External Heat Exchanger A	EHE B - External Heat Exchanger B	EHE Silo	Product Storage Dome	Loadout Silo Bin Vent	Loadout Silo Spouts
	lb/hr	ib/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Inorganic, Non-metal C	ompounds								
H2SO4	1.00E-01		1						
Organic Compounds	1.002-01								
1,3-Butadiene									1
Acetaldehyde									
Acrolein									
Benzene		_							
Formaldehyde									
N-Hexane									
Toluene									
Xylene (Mixed Isomers)									
Benzo(a)Pyrene								1	
Metal Compounds							_		
Arsenic	3.05E-06	8.55E-09	8.55E-08	4.09E-04	4.005.04				
Beryllium	4.34E-07	1.22E-09	1.22E-08	2.13E-05	4.09E-04 2.13E-05	6.65E-05	1.54E-05	1.54E-05	1.54E-05
Cadmium	6.59E-07	1.85E-09	1.85E-08	3.29E-06		3.47E-06	8.00E-07	8.00E-07	8.00E-07
				0.201-00	3.29E-06	5.35E-07	1.23E-07	1.23E-07	1.23E-07
Chromium VI				6.79E-06	6.79E-06	1,10E-06	0.555.05		
langanese	8.52E-05	2.39E-07	2.39E-06	5.35E-04	5.35E-04	8.69E-05	2.55E-07	2.55E-07	2.55E-07
lercury	1.61E-08	4.50E-11	4.50E-10	1.71E-06	1.71E-06	8.69E-05 2.79E-07	2.01E-05	2.01E-05	2.01E-05
lickel	7.71E-06	2.16E-08	2.16E-07	1.46E-04	1.46E-04	2.79E-07 2.38E-05	6.43E-08	6.43E-08	6.43E-08
						2.002-00	5.49E-06	5.49E-06	5.49E-06

Source Parameters - Potential Duke Energy Progress, LLC Cape Fear STAR® Project

Emission Point ID	0			Point Sour	ces							
	Source Description	Easting (X)	Northing (Y)	Base Elevation		Tomoret	1	Stack				
EP-4	Food Olls Dr. M.	(m)	(m)	(m)		Temperature	Exit Velocity	Diameter	H ₂ SO ₄	Benzene	Arsenic	
EP-5	Feed Silo Bin Vent	678183.1	3939922.9		(m)	(K)	(m/s)	(m)	Intel		Arsenic	Beryillur
EP-6	STAR® Reactor Exhaust	678227.9	3939937.9	58.8	37.2	366.5	7.62E-01	2.55	(g/s)	(g/s)	(g/s)	(g/s)
EP-7	FGD Byproduct Silo Bin Vent	678235.4	3939924.8	58.8	42.7	367.6	12.95	1.68			2.13E-06	1.11E-07
EP-8	FGD Hydrated Lime Silo Bin Vent	678229.1		58.8	22.7	360.9	6.86		1.26E-02		3.85E-07	5.47E-08
	EHE A (Dust Collector)	678193.4	3939914.0	58.8	23.7	0.0	6.86	0.55			1.08E-09	1.53E-10
EP-9	EHE B (Dust Collector)	the second se	3939961.5	58.8	24.7	394,3		0.55			1.08E-08	
EP-10	EHE Silo Bin Vent	678181.4	3939961.5	58.8	24.7	394.3	16.80	1.22			5.16E-05	1.53E-09
EP-11	Product Storage Dome Bin Vent	678181.4	3939947.5	58.8	25.6		16.80	1.22			5.16E-05	2.69E-06
EP-12	Loadout Silo Bin Vent	678207.9	3939831.2	58.8	37.5	366.5	7.62E-01	2.26				2.69E-06
EP-13, EP-14	Loadout Silo Spouts	678245.1	3939832.9	58.8		441.5	7.62E-01	2.67			8.38E-06	4.37E-07
EP-22		678245.1	3939832.9	58.8	27.4	441.5	7.62E-01	2.67			1.93E-06	1.01E-07
EP-23	Screener Diesel Engine	677243.0	3940492.0		27.4	441.5	7.62E-01	2.67			1.93E-06	1.01E-07
	Crusher Diesel Engine	677236.0	3940496.0	51.8	1.22	699.82	41.40	0.08			1.93E-06	1.01E-07
			0040490.0	51.8	2.29	699.82	41.52	0.15		7.49E-05	3.21E-07	2.41E-07
							TIGE	0.10		2.47E-04	1.06E-06	7.94E-07

Source ID			Volu	me Sources			_				
	Source Description	Easting (X)	Northing (Y)	Base Elevation	Release Height	Init. Horizontal Dimension		H ₂ SO ₄		1	1
EP-16	Ash (In the second	(m)	(m)	1001		onnension	Dimension	112004	Benzene	Arsenic	Beryllium
EP-17	Ash Handling - Windrows	677281.0	3940481.0	(m)	(m)	(m)	(m)	(g/s)	Intel		
EP-18	Ash Handling - Screener/Crusher Drop	677251.0	3940487.0	51.8	1.52	0.71	1.43	19:07	(g/s)	(g/s)	(g/s)
EP-1, EP-2	Ash Handling - Screener/Crusher Stock Pile	677261.0		51.8	1.52	0.71	1.43			4.99E-08	2.60E-09
	Wet Ash Receiving	678204.0	3940478.0	51.8	1.52	0.71	1.43			4.99E-08	2.60E-09
EP-19	Screener		3940046.2	58.8	1.52	0.71				4.99E-08	2.60E-09
EP-20	Crusher	677243.0	3940492.0	51.8	1.52	0.71	1.43			1.07E-07	5.58E-09
	ereener	677236.0	3940496.0	51.8	1.52		1.43			2.73E-06	
				a no	1.52	0.71	1.43				1.42E-07
										1.49E-06	7.76E-08

Source ID	Source Description								
		Base Elevation	Release Height	Number of Vertices	H ₂ SO ₄	Benzene		T	
EP-15	Ark D. J.	(m)	(m)	vertices			Arsenic	Beryllium	
EP-3	Ash Basin	51.8	2.04	22	(g/s)	(g/s)	(g/s)	(g/s)	
	Unloading Pile	58.8	1.22	5			3.60E-07	1.87E-08	
				5			1.26E-09	6.57E-11	

Summary of Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

г

Compound Arsenic	Year	Averaging Period	Maximum Concentration (ug/m ³)	AAL (ug/m ³)	Percent of AAL (%)	Opt Factor
Arsenic	2013	Annual	1.34E-04	2.10E-03	6.37%	15.4
Benzene	2016	Annual	1.69E-03	0.12	1.41%	69.5
Beryllium	2013	Annual	8.26E-06	4.10E-03	0.201%	486
Sulfuric Acid	2017 2015	1 - Hour 24 - Hour	7.34E-02 3.35E-02	100 12	0.073% 0.279%	1,334 351

Summary of Arsenic Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

Г

Year	Averaging Period	Maximum Concentration (ug/m³)	UTM Coordinates Easting (m) Northing (m)		AAL (ug/m ³)	Percent of AAL (%)
2013	Annual	1.34E-04	678329.80	3940034.00	2.10E-03	6.37%
2014	Annual	1.02E-04	678450.00	3939900.00	2.10E-03	4.86%
2015	Annual	1.31E-04	678329.80	3940034.00	2.10E-03	6.22%
2016	Annual	1.08E-04	678450.00	3939900.00	2.10E-03	5.15%
2017	Annual	1.18E-04	678450.00	3939900.00	2.10E-03	5.62%

Summary of Benzene Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

Year	Averaging Period	Maximum Concentration (ug/m³)	UTM Co Easting (m)	ordinates Northing (m)	AAL (ug/m³)	Percent of AAL (%)
2013	Annual	1.30E-03	677805.70	3940636.00	0.12	1.08%
2014	Annual	1.48E-03	677805.70	3940636.00	0.12	1.23%
2015	Annual	1.43E-03	677805.70	3940636.00	0.12	1.19%
2016	Annual	1.69E-03	677805.70	3940636.00	0.12	1.41%
2017	Annual	1.63E-03	677805.60	3940611.30	0.12	1.36%

Summary of Beryllium Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

н

Year	Averaging Period	Maximum Concentration (ug/m³)	UTM Co Easting (m)	ordinates Northing (m)	AAL (ug/m³)	Percent of AAL (%)
2013	Annual	8.26E-06	678329.80	3940034.00	4.10E-03	0.20%
2014	Annual	7.45E-06	677805.60	3940586.70	4.10E-03	0.18%
2015	Annual	7.98E-06	678329.80	3940034.00	4.10E-03	0.19%
2016	Annual	8.08E-06	677805.60	3940611.30	4.10E-03	0.20%
2017	Annual	8.09E-06	677805.60	3940586.70	4.10E-03	0.20%

Summary of H2SO4 1-Hour Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

Year	Averaging Period	Maximum Concentration (ug/m³)	UTM Co Easting (m)	ordinates Northing (m)	AAL (ug/m³)	Percent of AAL (%)
2013	1-hour	7.26E-02	678400.00	3939950.00	100	0.07%
2014	1-hour	5.48E-02	678200.00	3940150.00	100	0.05%
2015	1-hour	7.20E-02	678400.00	3940050.00	100	0.07%
2016	1-hour	5.53E-02	678450.00	3939950.00	100	0.06%
2017	1-hour	7.34E-02	678400.00	3940050.00	100	0.07%

Summary of H2SO4 24-Hour Modeling Analysis - Baseline Duke Energy Progress, LLC Cape Fear STAR® Project

Year	Averaging Period	Maximum Concentration (ug/m³)	UTM Co Easting (m)	ordinates Northing (m)	AAL (ug/m³)	Percent of AAL (%)
2013	24-hour	2.35E-02	678150.00	3940350.00	12	0.20%
2014	24-hour	1.96E-02	678800.00	3939800.00	12	0.16%
2015 2016	24-hour	3.35E-02	677954.60	3939400.70	12	0.28%
2016	24-hour	1.82E-02	678100.00	3939500.00	12	0.15%
2017	24-hour	1.92E-02	678450.00	3940100.00	12	0.16%

Source Parameters - Optimized Duke Energy Progress, LLC Cape Fear STAR® Project

Source (D	Source Description			Poin	t Sources								
	Course Description	Easting (X)	Northing (Y)			Trees	1	Stack					_
EP-4	For LOW FI	(m)	(m)			Temperature	Exit Velocity		1-hr	24-hr			-
EP-5	Feed Silo Bin Vent	678183.1	3939922.9	(m)	(m)	(K)	(m/s)	Diameter	H ₂ SO ₄	H ₂ SO ₄	Benzene	Arsenic	Berylliu
EP-6	STAR® Reactor Exhaust	678227.9		58.8	37.2	366.5	7.62E-01	(m)	(g/s)	(g/s)	(g/s)	1-12	
EP-7	FGD Byproduct Silo Bin Vent	678235.4	3939937.9	58.8	42.7	367.6		2.55			(80)	(g/s)	(g/s)
EP-8	FGD Hydrated Lime Silo Bin Vent	678229.1	3939924.8	58.8	22.7	360,9	12.95	1.68	1.68E+01	4,42E+00		3.27E-05	5.39E-0
EP-9	EHE A (Dust Collector)	678193.4	3939914.0	58.8	23.7	0.0	6.86	0.55				5.92E-06	2.66E-0
EP-10	EHE B (Dust Collector)		3939961.5	58.8	24.7	394.3	6.86	0.65				1.66E-08	7.45E-0
	EHE Silo Bin Vent	678181.4	3939961.5	58,8	24.7		16.80	1.22				1.66E-07	7.45E-0
EP-11	Product Storage Dome Bin Vent	678181.4	3939947.5	58.8	25.6	394.3	16,80	1.22		-		7.93E-04	1.31E-03
EP-12	Loadout Silo Bin Vent	678207.9	3939831.2	58.8	37.5	366.5	7.62E-01	2.26				7.93E-04	1.31E-03
EP-13, EP-14	Loadout Silo Spouts	678245.1	3939832.9	58.8		441.5	7.62E-01	2.67			100 C	1.29E-04	2.12E-04
EP-22	Screener Diesel Engine	678245.1	3939832.9	58.8	27.4	441.5	7.62E-01	2.67				2.98E-05	4.90E-05
EP-23	Crusher Diesel Engine	677243.0	3940492.0	51.8	27.4	441.5	7.62E-01	2.67				2.98E-05	4.90E-05
	Cristian Dissai Crigine	677236.0	3940496.0		1.22	699.82	41.40	0.08				2.98E-05	4.90E-05
				51.8	2.29	699.82	41.52	0.15			5.21E-03	4.94E-06	
							41.02	0.15			1.72E-02	1.63E-05	1.17E-04
											THE OF	1.03E-05	3.86E-04
Source ID		1		Volume Sour	ces								
oodida ID	Source Description	Easting (X)			T						_		
		Lasung (X)	Northing (Y)	Base Elevation	Release	nit. Horizontal	Initial Vert.	1-hr					
EP-16		(m)			Height	Dimension	Dimension	H2SO4	24-hr	Benzene			
EP-17	Ash Handling - Windrows	677281.0	(m)	(m)	(m)	(m)			H ₂ SO ₄	Dolizaria	Arsenic	Beryllium	
EP-18	Ash Handling - Screener/Crusher Dres		3940481.0	51.8	1.52	0.71	(m)	(g/s)	(g/s)	(g/s)	1.1.		
EP-1, EP-2	Ash Handling - Screener/Crusher Stock Pile	677251.0	3940487.0	51,8	1.52		1.43			(8/0)	(g/s)	(g/s)	
	Wet Ash Receiving	677261.0	3940478.0	51.8	1.52	0.71	1.43	-			7.68E-07	1.27E-06	
EP-19	Screener	678204.0	3940046.2	58.8	1.52	0.71	1.43				7.68E-07	1.27E-06	
EP-20	Crusher	677243.0	3940492.0	51.8		0.71	1.43				7.68E-07	1.27E-06	
	Crusher	677236.0	3940496.0	51.8	1.52	0.71	1.43				1.65E-06	2.71E-06	

0.71

1.43

4.20E-05 2.29E-05

6.92E-05 3.77E-05

		Base Elevation	Release Height	Number of	1-hr	24-hr	1		
EP-15	Ash Basin	(m)	(m)	Vertices	H ₂ SO ₄	H ₂ SO ₄	Benzene	Arsenic	Beryllium
EP-3	Unloading Pile	51.8	2.04	23	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)
		58.8	1.22	5			1	5.53E-06	9.12E-06

Summary of Optimized Toxic Air Pollutant Modeling Results Duke Energy Progress LLC Cape Fear STAR® Project

ТАР	Averaging Period	Maximum Concentration (mg/m3)	Year	AAL (mg/m2)	Percent of AAL
Arsenic	Annual	0.007	. our	(mg/m3)	(%)
Poppar	, unidal	2.06E-03	2013	2.10E-03	98%
Benzene	Annual	0.118	2016	0.12	000/
Beryllium	Annual	4.02E-03		0.12	98%
	4	4.022-03	2017	4.10E-03	98%
Sulfuric Acid	1 - Hour 24 - Hour	98.0 11.7	2017 2015	100	98%
			2015	12	98%

Appendix E

Emissions Calculations Support Documentation

Screener & Crusher Engine Example Specifications

Note: Engines have not been procured – provided specifications are for example only and subject to change.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF TRANSPORTATION AND AIR QUALITY WASHINGTON, DC 20460

CERTIFICATE OF CONFORMITY 2011 MODEL YEAR

NOx: N/A

Manufacturer: Engine Family: Certificate Number: Intended Service Class: Fuel Type: FELs: N/A Effective Date: Date Issued: YANMAR CO.,LTD. BYDXL3.32M4T YDX-NRCI-11-33 NR 4 (37-75) DIESEL NMHC + NOx: N/A 9/8/2010 9/8/2010

PM: N/A

Karl J. Simon, Director Compliance and Innovative Strategies Division Office of Transportation and Air Quality

Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60 and Part 89, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following stationary and nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and 89, and produced in the stated model year.

This certificate of conformity covers only those new stationary and nonroad compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and 89 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60 and 89.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 89.129-96 and 89.506-96 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to a revocation or suspension of this certificate for reasons specified in 40 CFR Part 89. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Part 89.

This certificate does not cover stationary and nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

	California Environmental Protection Agency	YANMAR CO., LTD.	EXECUTIVE ORDER U-R-028-0636 New Off-Road Compression-Ignition Engines
--	--	------------------	--

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment under the flexibility program provisions. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	FLEXIBILITY PROGRAM ENGINE FAMILY NAME(s)
2014	See Attachment

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2423, subpart (d).

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

BE IT FURTHER RESOLVED: Engines certified under this Executive Order shall not be introduced into commerce before January 2, 2014.

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this

day of November 2013.

Mobile Source Operations Division

ATTACHMENT

11011-1102	c Certification En	gine information	Flex Engine	Information	
Model Year	Executive Order	Engine Family	Flex Model Year	Power Category (kW)	
2007		7YDXL3.32J4N	2014	19≤kW<56	
2007		7YDXL3.32J4T	2014	19≤kW<56	
2009	and the second sec	9YDXL0 22D1N	2014	k11/<19	
		BYDXL3.32M4T	2014	56≤kW<130	
	U-R-028-0587	CYDXL0.44E4N	2014	KVV~10	
the second se	U-R-028-0556	CYDXL0.44F1N		kW<19	
		CYDXL0.57V2N	2014	kW<19	
	U-R-028-0544	CYDXL0.57W2N	2014	kW<19	
	U-R-028-0557-1	CYDXL0.78V3N	2014	kW<19	
	U-R-028-0558-1	CYDXL0.78Y3N	2014	kW<19	
	U-R-028-0559	CYDXL0.85U3N	2014	kW<19	
	U-R-028-0560	CYDXL0.85V3N	2014	kW<19	
the second se	U-R-028-0562	CYDXL0.90U3N	2014	kW<19	
	U-R-028-0561	CYDXL0.90V3N	2014	kW<19	
and the second se	U-R-028-0564	CYDXL1.11U3N	2014	kW<19	
	U-R-028-0565	CYDXL1.11V3N	2014	kW<19	
	U-R-028-0571	CYDXL1.11X3N	2014	19≤kW<56	
and the second se	U-R-028-0572	CYDXL1.11Y3N	2014	19≤kW<56	
	U-R-028-0566	CYDXL1.33J3N	2014	kW<19	
	U-R-028-0569	CYDXL1.33K3N	2014	kW<19	
	U-R-028-0577	CYDXL1.33M3N	2014	19≤kW<56	
	U-R-028-0567	CYDXL1.50H3T	2014	kW<19	
and the second se	U-R-028-0573	CYDXL1.50K3H	2014	19≤kW<56	
	U-R-028-0574	CYDXL1.50K3T	2014	19≤kW<56	
	U-R-028-0568	CYDXL1.64J3N	2014	kW<19	
and the second se	U-R-028-0580-1	CYDXL1.64M3N	2014	19≤kW<56	
	U-R-028-0575	CYDXL2.00J4T	2014	19≤kW<56	
	U-R-028-0576	CYDXL2.00K4T	2014	19≤kW<56	
	U-R-028-0582	CYDXL2.00N4T	2014	19≤kW<56	
	U-R-028-0548	CYDXL2.09K4N	2014	19≤kW<56	
	U-R-028-0579	CYDXL2.19J4N	2014	19≤kW<56	
	U-R-028-0581-1	CYDXL2.19K4N	2014	19≤kW<56	
	U-R-028-0578-1	CYDXL3.05K4N	2014	19≤kW<56	
	U-R-028-0583	CYDXL3.32C4N	2014	19≤kW<56	
	U-R-028-0584	CYDXL3.32C4T	2014	19≤kW<56	
	U-R-028-0563	CYDXL3.32F4T	2014	19≤kW<56	
	U-R-028-0585	CYDXL3.32M4N	2014	19≤kW<56	
2012	U-R-028-0555	CYDXL0.57U2N	2014	kW<19	
2012	U-R-028-0546	CYDXL1.11W3N	2014	kW<19	

Performance Number: DM8117

SALES MODEL: BRAND: ENGINE POWER (BHP): PEAK TORQUE (FT-LB): COMPRESSION RATIO: RATING LEVEL: PUMP QUANTITY: FUEL TYPE: MANIFOLD TYPE: GOVERNOR TYPE: IGNITION TYPE: ISJECTOR TYPE: PEE EYU STACK DIAMETER (M).	C9 CAT 300 987.3 16.1 INDUSTRIAL B 1 DIESEL DRY ELEC STANDARD CI EUI	COMBUSTION: ENGINE SPEED (RPM): PEAK TORQUE SPEED (RPM): TORQUE RISE (%): ASPIRATION: AFTERCOOLER TYPE: INLET MANIFOLD AIR TEMP (F): JACKET WATER TEMP (F): TURBO CONFIGURATION: TURBO QUANTITY: TURBOCHARGER MODEL: CERTIFICATION YEAR:	DI 2,200 1,400 37 TA ATAAC JW+OC, ATAAC 120 192.2 SINGLE 1 S310G-1.10 2005
REF EXH STACK DIAMETER (IN):	4	CERTIFICATION YEAR:	2005
MAX OPERATING ALTITUDE (FT):	8,501	PISTON SPD @ RATED ENG SPD (FT/MIN):	2,150.9

INDUSTRY	SUBINDUSTRY	APPLICATION
INDUSTRIAL	MINING	INDUSTRIAL
INDUSTRIAL	GENERAL INDUSTRIAL	INDUSTRIAL
INDUSTRIAL	CONSTRUCTION	INDUSTRIAL
OIL AND GAS	LAND PRODUCTION	INDUSTRIAL
INDUSTRIAL	MATERIAL HANDLING	INDUSTRIAL
INDUSTRIAL	FORESTRY	INDUSTRIAL
 OIL AND GAS	WELL SERVICING	INDUSTRIAL
INDUSTRIAL	AGRICULTURE	INDUSTRIAL

General Performance Data

ENGINE SPEED	ENGINE POWER	ENGINE TORQUE	BRAKE MEAN EFF PRES (BMEP)	BRAKE SPEC FUEL CONSUMPTN (BSFC)	VOL FUEL CONSUMPTN (VFC)	INLET MFLD PRES	INLET MFLD TEMP	EXH MFLD TEMP	EXH MFLD PRES	ENGINE OUTLET TEMP
RPM	BHP	LB-FT	PSI	LB/BHP-HR	GAL/HR	IN-HG	DEG F	DEG F	IN-HG	DEG F
2,200	300	717	201	0.368	15.8	46.0	118.6	1,086.8	44.5	862,6
2,100	300	751	211	0.364	15.6	46.2	116.3	1,093.2	42.5	871.8
2,000	300	789	221	0.359	15.4	46.6	115.3	1,106.3	40,5	888.0
1,900	300	830	233	0.355	15.2	47.2	115.5	1,126.5	38,3	911,0
1,800	300	876	246	0.352	15.1	47.8	114.4	1,148.2	36.3	935.3
1,700	293	907	254	0.352	14.8	47.6	111.8	1,166.0	33.8	955.6
1,600	284	933	262	0.353	14.3	46.9	109.3	1,189.3	31.2	981.6
1,500	274	959	269	0.354	13.9	45.8	107.2	1,220,1	28.4	1,015,2
1,400	264	989	277	0,356	13.4	44.7	105.6	1.260.4	25,6	1,058.2
1,300	244	988	277	0.361	12.6	41.1	102.4	1,302.4	22.0	1,111.8
1,200	226	988	277	0.366	11.8	36.7	98,9	1,354.3	18.3	1.177.9
1,100	207	988	277	0.373	11.0	31.6	95.2	1.415.6	14.5	1,177.0

ENGINE SPEED	POWER	COMPRESSOR OUTLET PRES	COMPRESSOR OUTLET TEMP	WET INLET AIR VOL FLOW RATE	ENGINE OUTLET WET EXH GAS VOL FLOW RATE	WET INLET AIR MASS FLOW RATE	WET EXH GAS MASS FLOW RATE	WET EXH VOL FLOW RATE (32 DEG F AND 29.98 IN HG)	DRY EXH VOL FLOW RATE (32 DEG F AND 29.98 IN HG)
RPM	BHP	IN-HG	DEG F	CFM	CFM	LB/HR	LB/HR	FT3/MIN	FT3/MIN
2,200	300	48	329.7	734.7	1,887,9	3,224.6	3,335,2	702.0	645.4
2,100	300	48	327.2	710.2	1,835.8	3,112.8	3,222.1	677.9	622.3
2,000	300	48	326.0	683.7	1,788.9	2.993.4	3,101.4	652.7	598.0
1,900	300	49	326.4	656,5	1,748.0	2,871,5	2,979,6	627,0	573.2
1,800	300	49	327.5	630.7	1,708.4	2,755.3	2,861.1	602.2	549.1
1,700	293	49	326.6	600.6	1,646.1	2,615.5	2,718.6	571.9	520.5
1,600	284	48	325,3	567.2	1,577.8	2,461,7	2,561,9	538,2	488.8
1,500	274	47	323,4	530.2	1,506,6	2,294,5	2,391,5	502.3	454.6
1,400	264	46	320.7	490.0	1,436,0	2,115.7	2,209.7	465.2	419.2
1,300	244	42	308.9	439.1	1,323,3	1,889.5	1,977.8	414.0	371.0
,200	226	37	294.8	384.8	1,204,9	1,649,1	1,731.8	361.8	321.9
,100	207	32	278.2	326.9	1,080.0	1,393.9	1,471.0	309,5	273.1

Change Level: 03

Heat Rejection Data

ENGINE SPEED	ENGINE	REJECTION TO JACKET WATER	REJECTION TO ATMOSPHERE	REJECTION TO EXH	EXHUAST RECOVERY TO 350F	FROM OIL COOLER	FROM AFTERCOOLER	WORK	LOW HEAT VALUE ENERGY	HIGH HEAT VALUE ENERGY
RPM	BHP	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN
2,200	300	5,271	2,154	13,255	7,215	1,807	2,725	12,739	33,930	36,144
2,100	300	5,220	2,120	12,990	7,105	1,785	2,629	12,739	33,511	35,698
2,000	300	5,177	2,023	12,789	7,066	1,763	2,525	12,739	33,092	35,251
1,900	300	5,102	1,915	12,658	7,097	1,742	2,426	12,739	32,705	34.839
1,800	300	5,056	1,825	12,543	7,130	1,726	2,352	12,739	32,399	34.514
1,700	293	5,171	1,625	12,235	7,028	1,686	2,250	12,443	31.657	33.723
1,600	284	5,131	1,526	11,900	6,929	1.637	2,129	12.056	30,737	32,743
1,500	274	4,905	1,621	11,555	6,838	1,584	1,986	11,618	29,745	31,686
1,400	264	4,663	1,786	11,212	6.761	1,533	1,822	11.175	28,780	30,658
1,300	244	4,454	1,784	10,633	6,550	1,440		10.367	27,036	28.801
,200	226	4,350	1,783	9,985	6,282	1,349		9.571	25,330	26,983
1,100	207	4,401	1,775	9,206	5,900	1,259		8,775	23,636	25,178

Emissions Data

RATED SPEED POTENTIAL SITE VARIATION: 2200 RPM

ENGINE POWER		BHP	300	225	150	75.1	30,0
PERCENT LOAD		%	100	75	50	25	10
TOTAL NOX (AS NO2)		G/HR	907	512	305	192	135
TOTAL CO		G/HR	828	903	263	393	381
TOTAL HC		G/HR	93	127	139	193	192
PART MATTER		G/HR	30.7	34.9	47.3	49.0	40.3
TOTAL NOX (AS NO2)	(CORR 5% O2)	MG/NM3	1,339.3	933.2	753.5	823.0	977.4
TOTAL CO	(CORR 5% O2)	MG/NM3	1,223,0	1,648.0	657,8	1,691,4	2,759.6
TOTAL HC	(CORR 5% O2)	MG/NM3	119.4	201.7	299.0	718,9	1,205.0
PART MATTER	(CORR 5% O2)	MG/NM3	38.4	54.8	102.4	188.5	268.2
TOTAL NOX (AS NO2)	(CORR 5% O2)	PPM	652	455	367	401	476
TOTAL CO	(CORR 5% O2)	PPM	978	1,318	526	1,353	2.208
TOTAL HC	(CORR 5% O2)	PPM	223	376	558	1,342	2,249
TOTAL NOX (AS NO2)		G/HP-HR	3.05	2.29	2,05	2,56	4,52
TOTAL CO		G/HP-HR	2.78	4,04	1.77	5,26	12.74
TOTAL HC		G/HP-HR	0.31	0.57	0.93	2.58	6.44
PART MATTER		G/HP-HR	0.10	0,16	0.32	0,66	1,35
FOTAL NOX (AS NO2)		LB/HR	2,00	1,13	0.67	0.42	0.30
FOTAL CO		LB/HR	1.83	1.99	0.58	0.87	0.84
TOTAL HC		LB/HR	0.21	0.28	0.31	0.42	0.42
PART MATTER		LB/HR	0.07	0.08	0.10	0.11	0.09

RATED SPEED NOMINAL DATA: 2200 RPM

ENGINE POWER		BHP	300	225	150	75.1	30.0
PERCENT LOAD		%	100	75	50	25	10
TOTAL NOX (AS NO2)		G/HR	840	474	282	177	125
TOTAL CO		G/HR	443	483	141	210	204
TOTAL HC		G/HR	49	67	74	102	102
TOTAL CO2		KG/HR	152	123	92	54	31
PART MATTER		G/HR	15.8	17,9	24.3	25.1	20.7
TOTAL NOX (AS NO2)	(CORR 5% O2)	MG/NM3	1,240.1	864.1	697.7	762.1	905.0
TOTAL CO	(CORR 5% O2)	MG/NM3	654.0	881.3	351.8	904.5	1,475,7
TOTAL HC	(CORR 5% O2)	MG/NM3	63,2	106,7	158.2	380,4	637,5
PART MATTER	(CORR 5% O2)	MG/NM3	19.7	28.1	52.5	96.7	137.5
TOTAL NOX (AS NO2)	(CORR 5% O2)	PPM	604	421	340	371	441
TOTAL CO	(CORR 5% O2)	PPM	523	705	281	724	1,181
TOTAL HC	(CORR 5% O2)	PPM	118	199	295	710	1,190
OTAL NOX (AS NO2)		G/HP-HR	2.82	2.12	1.89	2.37	4.19
TOTAL CO		G/HP-HR	1.49	2.16	0.94	2.81	6,81
TOTAL HC		G/HP-HR	0.17	0.30	0,49	1.36	3.41
PART MATTER		G/HP-HR	0.05	0.08	0.16	0.34	0.69
TOTAL NOX (AS NO2)		LB/HR	1,85	1.05	0.62	0,39	0,28

Page 2 of 7

-
6
Ĩ
2
•
E.
1
5
ш
$\overline{\mathbf{O}}$
\simeq
4
<
5
0
Ĩ.
2
Ш
<u> </u>
α.

TOTAL CO.	LB/HR	0.98	1.06	0.31	0.46	0.45
TOTAL HC	LB/HR	0.11	0.15	0.16	0.22	0.22
TOTAL CO2	LB/HR	336	272	203	118	69
PART MATTER	LB/HR	0.03	0.04	0.05	0.06	0.05
OXYGEN IN EXH	%	11.0	12.2	125	15.3	17.0
DRY SMOKE OPACITY	%	0.5	06	01	0.0 6	0.1
BOSCH SMOKE NUMBER		0.37	0.54	0.93	1.15	1.00

February 20, 2017

Regulatory Information

CHINA STAGE II		20	10			
THIS ENGINE HAS BEEN T LIMITS OF CO, HC, NOX, A	ESTED IN ACCORDANCE WITH TI ND PM FOR STAGE II	HE PROVISIONS OF THE PEOPLE'S REP	UBLIC OF CHINA NATIONAL STANDA	RD #GB 20891-2007, AND COMPLIES WITH THE STATE		
Locality	Agency	Regulation	Tier/Stage	Max Limits - G/BKW - HR		
CHINA	CHINA	CHINA NON-ROAD STAGE II CO: 3.5 NOX: 6.0 HC: 1.0 I				
EPA TIER 3	S MILLING STREET	20	05 - 2010			
CO, PM, AND NOX. THE "M	TA MEASUREMENTS PROVIDED T AX LIMITS" SHOWN BELOW ARE	O THE EPA ARE CONSISTENT WITH TH WEIGHTED CYCLE AVERAGES AND ARE	OSE DESCRIBED IN EPA 40 CFR PAR	RT 89 SUBPART D AND ISO 8178 FOR MEASURING HC. DAD REGULATIONS.		
Locality	Agency	Regulation	Tier/Stage	Max Limits - G/BKW - HR		
U.S. (INCL CALIF)	EPA	NON-ROAD	TIER 3	CO: 3,5 NOx + HC: 4.0 PM: 0.20		
EU STAGE IIIA		20	06 - 2010			
GASEOUS EMISSION DATA GASEOUS EMISSION VALU	A MEASUREMENTS ARE CONSIST JES ARE WEIGHTED CYCLE AVER	ENT WITH THOSE DESCRIBED IN EU 97 AGES AND ARE IN COMPLIANCE WITH	/68/EC, ECE REGULATION NO. 96 AN THE NON-ROAD REGULATIONS.	ID ISO 8178 FOR MEASURING HC, CO, PM, AND NCX.		
Locality	Agency	Regulation	Tier/Stage	Max Limits - G/BKW - HR		
EUROPE	EU	NON-ROAD	STAGE IIIA	CO: 3.5 NOx + HC: 4.0 PM: 0.20		
IMO II			11	CHARLES AND		
GASEOUS EMISSIONS DAT	A MEASUREMENTS ARE CONSIS	TENT WITH THOSE DESCRIBED IN REG	ULATION 13 OF REVISED ANNEX VI	OF MARPOL 73/78 AND ISO 8178 FOR MEASURING H		
CO, PM, AND NOX. THIS EN	GINE CONFORMS TO INTERNAT	IONAL MARINE ORGANIZATION'S (IMO)	MARINE COMPRESSION IGNITION E	OF MARFUL 13/10 AND 13U 0178 FOR MEASURING F		

Altitude Derate Data

ALTITUDE CORRECTED POWER CAPABILITY (BHP)

AMBIENT OPERATING TEMP (F)	30	40	50	60	70	80	90	100	110	120	130	140	NORMAL
ALTITUDE (FT)							_						
0	300	300	300	300	300	300	300	300	300	300	300	300	300
1,000	300	300	300	300	300	300	300	300	300	300	300	300	300
2,000	300	300	300	300	300	300	300	300	300	300	300	300	300
3,000	300	300	300	300	300	300	300	300	300	300	300	300	300
4,000	300	300	300	300	300	300	300	300	300	300	300	300	300
5,000	300	300	300	300	300	300	300	300	300	300	300	300	300
6,000	300	300	300	300	300	300	300	300	300	300	300	297	300
7,000	300	300	300	300	300	300	300	300	300	295	290	285	300
8,000	300	300	300	300	300	300	299	294	288	283	279	274	300
9,000	300	300	300	300	298	292	287	282	277	272	268	263	300
10,000	300	300	297	291	286	281	276	271	266	261	257	253	300
11,000	297	291	285	280	274	269	264	260	255	251	246	242	291
12,000	285	279	274	268	263	258	254	249	245	241	236	233	281
13,000	273	268	262	257	252	248	243	239	235	231	227	223	272
14,000	262	256	251	247	242	237	233	229	225	221	217	214	262
15,000	251	246	241	236	232	227	223	219	215	212	208	205	253

Cross Reference

Test Spec	Setting	Engine Arrangement	Engineering Model	Engineering Model Version	Start Effective Serial Number	End Effective Serial Number
0K4893	PP5337	2446783	E705	-	JSC00001	
0K4893	PP5337	2524430	E705	-	JSC00001	
0K4894	PP5372	2524430	E705	-	MBD00001	
0K4893	PP5337	3271007	E705	-	JSC00001	
0K4893	PP5337	3930595	E705	-	JSC00001	
0K4893	PP5337	3964949	E705	-	JSC00001	

Performance Parameter Reference

Parameters Reference:DM9600-08	
PERFORMANCE DEFINITIONS	

PERFORMANCE DEFINITIONS DM9600

APPLICATION:

Engine performance tolerance values below are representative of a typical production engine tested in a calibrated dynamometer test cell at SAE J1995 standard reference conditions. Caterpillar maintains ISO9901:2000 certified quality management systems for engine test Facilities to assure accurate calibration of test equipment. Engine test data is corrected in accordance with SAE J1995. Additional reference material SAE J1228, J1349, ISO 8665, 3046-1:2002E, 3046-3:1989. IS85, 2634, 2288, and 9249 may apply in part or are similar to SAE J1995. Special engine rating request (SERR) test data shall be noted.

PERFORMANCE PARAMETER TOLERANCE FACTORS:

+/- 3%
+/- 3%
+/- 8%
+/- 5%
+/- 10%
+/- 6%
+/- 3%
+/- 5%
+/- 3%
+/- 5%
+/- 5%
+/- 10%
+/- 10%

Heat Rejection values based on using treated water.

Torque is included for truck and industrial applications, do not use for Gen Set or steady state applications.

On C7 - C18 engines, at speeds of 1100 RPM and under these values are provided for reference only, and may not meet the tolerance sted.

These values do not apply to C280/3600. For these models, see the tolerances listed below.

 C280/3600 HEAT REJECTION TOLERANCE FACTORS:

 Heat rejection
 +/- 10%

 Heat rejection to Atmosphere
 +/- 50%

 Heat rejection to Athercooler
 +/- 5%

TEST CELL TRANSDUCER TOLERANCE FACTORS:

Torque	+/- 0.5%
Speed	+/- 0.2%
Fuel flow	+/- 1.0%
Temperature	+/- 2.0 C degrees
Intake manifold pressure	+/- 0,1 kPa

OBSERVED ENGINE PERFORMANCE IS CORRECTED TO SAE J1995 REFERENCE AIR AND FUEL CONDITIONS.

REFERENCE ATMOSPHERIC INLET AIR FOR 3500 ENGINES AND SMALLER SAE J1228 AUG2002 for marine engines, and J1995 JAN2014 for other engines, reference atmospheric pressure is 100 KPA (29.61 in hg), and standard temperature is 25deg C (77 deg F) at 30% relative humidity at the stated aftercooler water temp, or inlet manifold temp.

FOR 3600 ENGINES

Engine rating obtained and presented in accordance with ISO 3046/1 nd SAE J1995 JANJAN2014 reference atmospheric pressure is 100 PA (29.61 in hg), and standard temperature is 25deg C (77 deg F) at 30% relative humidity and 150M altitude at the stated aftercooler water temperature.

AEASUREMENT LOCATION FOR INLET AIR TEMPERATURE Location for air temperature measurement air cleaner inlet at stabilized operating conditions.

REFERENCE EXHAUST STACK DIAMETER The Reference Exhaust Stack Diameter published with this dataset is only used for the calculation of Smoke Opacity values displayed in this dataset. This value does not necessarily represent the actual stack diameter of the engine due to the variety of exhaust stack adapter options available. Consult the price list, engine order or general dimension drawings for the actual stack diameter size ordered or options available.

REFERENCE FUEL

DIESEL

Reference fuel is #2 distillate diesel with a 35API gravity; A lower heating value is 42,780 KJ/KG (18,390 BTU/LB) when used at 29 (84.2), where the density is 838.9 G/Liter (7.001 Lbs/Gal).

GAS

Reference natural gas fuel has a lower heating value of 33,74 KJ/L (905 BTU/CU Ft). Low BTU ratings are based on 18.64 KJ/L (500 BTU/CU FT) lower heating value gas. Propane ratings are based on 87.56 KJ/L (2350 BTU/CU Ft) lower heating value gas.

ENGINE POWER (NET) IS THE CORRECTED FLYWHEEL POWER (GROSS) LESS EXTERNAL AUXILIARY LOAD Engine corrected gross output includes the power required to drive standard equipment; lube oil, scavenge lube oil, fuel transfer, common rail fuel, separate circuit aftercooler and jacket water pumps. Engine net power available for the external (flywheel) load is calculated by subtracting the sum of auxiliary load from the corrected gross flywheel out put power. Typical auxiliary loads are radiator cooling fans, hydraulic pumps, air compressors ind battery charging alternators. For Tier 4 ratings additional Parasitic losses would also include Intake, and Exhaust Restrictions.

ALTITUDE CAPABILITY

Altitude capability is the maximum altitude above sea level at standard temperature and standard pressure at which the engine could develop full rated output power on the current performance data set.

Standard temperature values versus altitude could be seen on TM2001.

When viewing the altitude capability chart the ambient temperature is the inlet air temp at the compressor inlet.

Engines with ADEM MEUI and HEUI fuel systems operating at conditions above the defined altitude capability derate for atmospheric pressure and temperature conditions outside the values defined, see TM2001.

Mechanical governor controlled unit injector engines require a setting change for operation at conditions above the altitude defined on the engine performance sheet. See your Caterpillar technical representative for non standard ratings.

REGULATIONS AND PRODUCT COMPLIANCE TMI Emissions information is presented at 'nominal' and Potential Site Variation' values for standard ratings. No tolerances are applied to the emissions data. These values are subject to change at any time. The controlling federal and local emission requirements need to be verified by your Caterpillar technical presentative.

Customer's may have special emission site requirements that need to be verified by the Caterpillar Product Group engineer.

EMISSIONS DEFINITIONS: Emissions : DM1176

HEAT REJECTION DEFINITIONS: Diesel Circuit Type and HHV Balance : DM9500

HIGH DISPLACEMENT (HD) DEFINITIONS: 3500; EM1500

RATING DEFINITIONS: Agriculture : TM6008

Fire Pump : TM6009

Generator Set : TM6035

Generator (Gas) : TM6041

Industrial Diesel : TM6010

Industrial (Gas) : TM6040

Irrigation : TM5749

Locomotive : TM6037

Marine Auxiliary : TM6036

Marine Prop (Except 3600) : TM5747

Marine Prop (3600 only) : TM5748

MSHA : TM6042

Dil Field (Petroleum) : TM6011

Off-Highway Truck : TM6039

On-Highway Truck : TM6038

SOUND DEFINITIONS: Sound Power : DM8702

Sound Pressure : TM7080

Date Released : 7/7/15

CATERPILLAR

Engine Emissions Data				
For Emissions / Certification feedback and questions, Request Portal	please submit a ticket via our ERC			
This emission data is Caterpillar's best estimate for the required then an emission test needs to be run on you	his rating. If actual emissions are ir engine.			
Serial Number (Machine)				
Serial Number (Engine)	REH07281			
Sales Model	C9			
Sales Model	C9			
Regulatory Build Date 12/09/2015				
Interlock Code Progression	No Interlock Code Progression			
As Shipped Data				
Engine Arrangement Number	3930595			
Certification Arrangement 3611891				
Test Spec Number 4150183				
Regulatory Status EPA / ARB Flex (Part 1039)				
Regulatory Status IMO Compliant				
EPA Family Code	ACPXL18.1ESK			
EPA Emissions Level	Tier 3			
Flash File	3790977			
Flash File Progression	5285550			
CORR FL Power at RPM	300 HP (224.0 KW) at 2200 RPM			
Advertised Power	300 HP 2,200RPM			
Total Displacement 8.8				
This is not an official emission certificate. This is for emission data information only.				
Need emission replacement label? Click here!				
Caterpillar Confidential: Green Content Owner: Commercial Processes Division				
Web Master(s): <u>PSG Web Based Systems Support</u>				
Current Date: 02/20/2017 8:06:37 AM				
© Caterpillar Inc. 2017 All Rights Reserved.				
Data Privacy Statement.				

California Environmental Protection Agency		EXECUTIVE ORDER U-R-001-0507
OD Air Resources Board	CATERPILLAR INC.	New Off-Road
var rui moavuresa pudru		Compression-Ignition Engines

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-14-012;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment under the flexibility program provisions. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	FLEXIBILITY PROGRAM ENGINE FAMILY NAME(s)
2015	Please see attachments

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2423, subpart (d).

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

BE IT FURTHER RESOLVED: Engines certified under this Executive Order shall not be introduced into commerce before January 2, 2015.

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

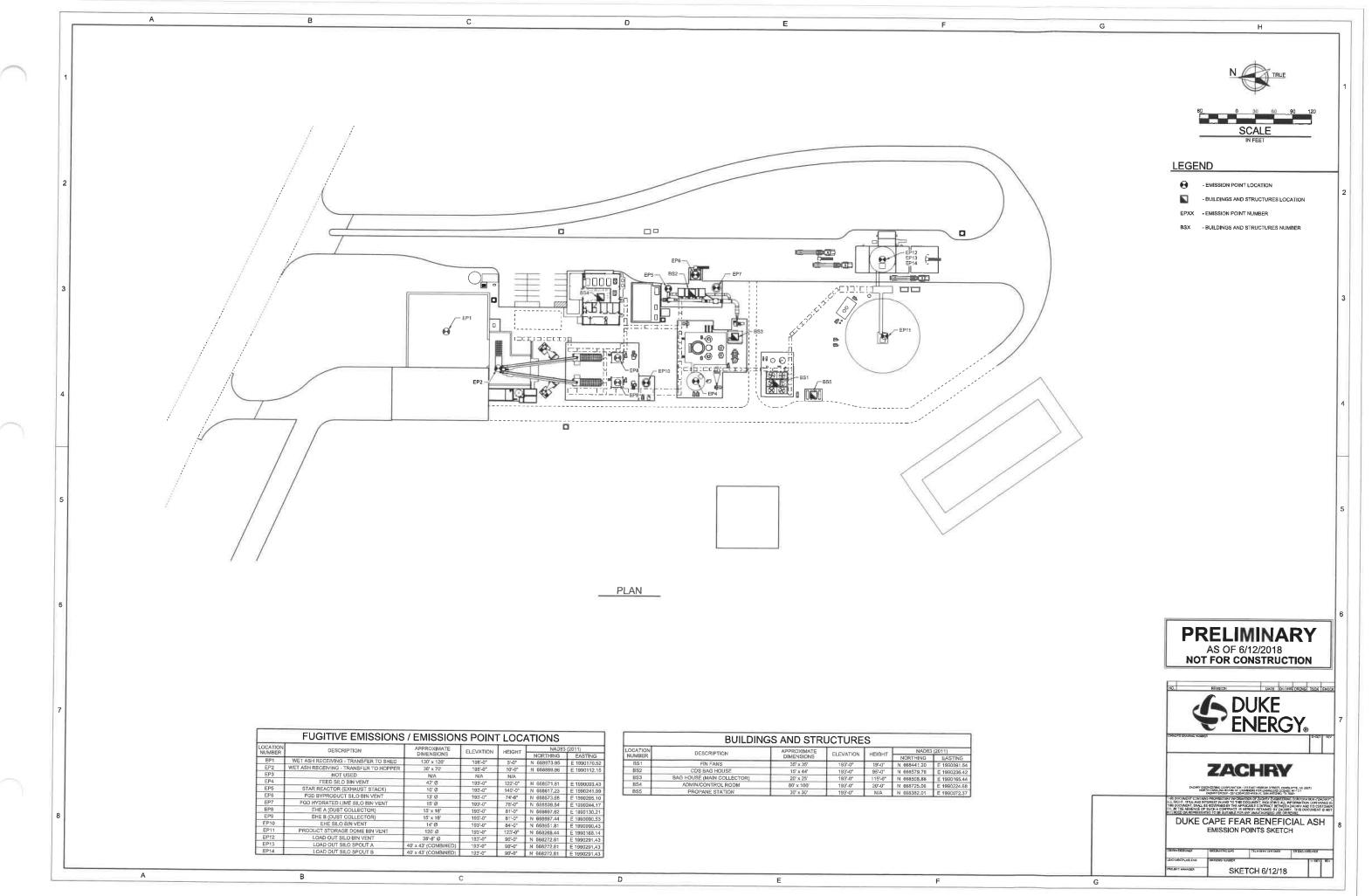
Executed at El Monte, California on this 17 The day of December 2014.

Annette Hebert, Chief Emissions Compliance, Automotive Regulations and Science Division

U-R-001-0507

Running Change

Attachment 1 of 1 1/27/2015


Flex Engine for 2015 Model/ Calendar Year

Executive Order	Engine Family
U-R-001-0391	ACPXL18.1ESK
U-R-001-0377	ACPXL07.2ESL
U-R-001-0373	ACPXL08.8ESX
U-R-001-0399	ACPXLOB.8ESK
U-R-001-0378	ACPXL11.1ESK
U-R-001-0395	ACPXL12.5ESX
U-R-001-0390	ACPXL12.5ESK
U-R-001-0374	ACPXL14.6ESK
U-R-001-0394	ACPXL15.2ESW
U-R-001-0375	ACPXL15.2ESX
U-R-001-0408	ACPXL15.2NZV
U-R-001-0382	ACPXL27.0ESK
U-R-001-0452	DCPXL09.3HPA
U-R-001-0453	DCPXL09.3HPB
U-R-001-0454	DCPXL12.5HPA
U-R-001-0455	DCPXL12.5HPB
U-R-001-0458	DCPXL15.2HPA
U-R-001-0460	DCPXL18.1HPA
U-R-001-0469	DCPXL07.2ESJ
U-R-001-0470	DCPXL08.8ESJ
U-R-001-0471	DCPXL11.1ESJ
U-R-001-0472	DCPXL12.5ESJ
U-R-001-0478	DCPXL18.1ESJ
U-R-001-0387	ACPXL106.T2E
U-R-001-0379	ACPXL15.2ELW
U-R-001-0380	ACPXL18.1ESW
U-R-001-0381	ACPXL27.0ESX
U-R-001-0396	ACPXL27.0ESW
U-R-001-0383	ACPXL32.0ESP
U-R-001-0385	ACPXL32.0ESW
U-R-001-0384	ACPXL32.0ESX
U-R-001-0386	ACPXL34.5T2C
U-R-001-0388	ACPXL34.5T2E
U-R-001-0404	ACPXL58.6T2E
U-R-001-0397	ACPXL58.6T2X
U-R-001-0402	ACPXL58.6T2Y
U-R-001-0403	ACPXL78.1E2W
U-R-001-0398	ACPXL78.1T2E
U-R-001-0401	ACPXL78.1T2X
U-R-001-0389	ACPXL78.1T2Y
U-R-001-0376	ACPXL106.T2M
U-R-001-0487	ECPXL15.2HZA
U-R-001-0489	ECPXL18.1HZA
U-R-001-0488	ECPXL27.0HZA
U-R-001-0486	ECPXL27.0HYA
U-R-001-0408	ACPXL15.2NZV
U-R-001-0409	ACPXL15.2NZV
U-R-001-0490	ECPXL32.0HZA *

* Add new engine family.

Appendix F

Drawings

Duke Energy Carolinas, LLC Cape Fear STAR Project

Emissions Estimate: Haul Roads - Vehicle Miles Traveled

- Overrid Currently Being E inactive Overnide 1 Lay of Land Area CCP Site Con Unknown, Eng. Wetlands, Landfill, Other NC CCR Boundaries <aii other value

 \frown

<all other values Duke Service Area Active Basin Currently Being Excavated Piedmont Natural Gas Inactive Lay of Land Area

1:9,028 0.2 0.35 €: 0.175 G 2016 Microsoft Corporation @ 2018 DigitalGlobe @CNES (2018) Ostribution Autous DS © 2018 HERE

Guke Energy Copyright 2015

GIS Mapping Operations

Appendix G

Applicability Determination No. 2501

July 2018

North Carolina Department of Environment and Natural Resources

Pat McCrory Governor

Donald R. van der Vaart Secretary

June 10, 2015

Mr. Jim Clayton The SEFA Group 217 Cedar Road Lexington, SC 29073

SUBJECT: Applicability Determination No. 2501 The SEFA Group Lexington, SC

Dear Mr. Clayton:

The North Carolina Division of Air Quality (DAQ) received your letter dated September 5, 2014, requesting the DAQ's concurrence with its determination of regulatory status of certain coal combustion residues, when used in its Staged Turbulent Air Reactor (STAR Reactor), in accordance with 40 CFR 241 "Solid Wastes Used As Fuels or Ingredients in Combustion Units" ("Solid Waste Definition Rule" or "Rule" hereinafter).

Specifically, SEFA Group (SEFA) requests the confirmation that coal ash obtained from the following specific sources meets the requirements in §241: flyash received directly from coal-fired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse), and processed flyash received from landfills and ash ponds.

Unless exempt, combustion of "non-hazardous secondary material (NHSM), as defined in §241.2 would subject the emissions unit (such as STAR reactor) to requirements in 40 CFR 60 Subpart CCCC "Standards of Performance for Commercial and Industrial Solid Waste Incineration Units" or, Subpart DDDD "Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units". These regulations are commonly known as CISWI ("Commercial and Industrial Solid Waste Incineration").

The DAQ has determined that the coal ash received directly from the coal-fired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse) is a NHSM and an "ingredient", as defined in §241.2. DAQ has further determined that this flyash meets the legitimacy criteria included in §241.3(d)(2) and thus, concludes that it is not a solid waste. Therefore, the STAR Reactor is not subject to the requirements in CISWI.

Moreover, the processed flyash received from landfills or ash ponds is a NHSM and an ingredient, and DAQ has determined that this flyash also meets the legitimacy criteria included in \$241.3(d)(2), and thus, concludes that it is not a solid waste. Therefore, the STAR Reactor is not subject to the requirements in CISWI.

1641 Mail Service Center, Raleigh, North Carolina 27699-1641 Phone: 919-707-8400 / Internet: www.ncdenr.gov

An Equal Opportunity \ Affirmative Action Employer - Made in part with Recycled Paper

The following includes discussion on STAR Reactor, and technical and regulatory analysis supporting these conclusions for each of the above types of flyash:

STAR Reactor

The STAR Reactor is a patented technology developed by SEFA for thermal beneficiation / processing of either a low or high-Btu value fine particulate matter, such as the above described flyash [hereinafter "feedstock"], along with other ingredient materials (gas, solids, and liquids) into a variety of commercial products. These products are used not only for application as a partial cement replacement but for many other commercial and industrial applications. There are several products which SEFA is currently capable of producing because of the flexibility embodied in this reactor. For example, STAR[®] RP, Ultrix[®], Spherix[®], Fortimix[®], and PermanixTM.

The STAR Reactor process is inherently flexible in that operating parameters can be varied and different ingredients can be added to produce a desired product. The primary component of the STAR Reactor is a cylindrical refractory-lined vessel in which the majority of the process reactions take place. These reactions can include a range of both chemical and physical reactions. Air is required for pneumatic uplift of the solids and for the process reactions enters through the floor of the STAR Reactor as well as through the walls at multiple locations. The raw feedstock and any other ingredients are introduced through the walls of the STAR Reactor. All of the solids and gases exit together at the top of the reactor. The gas/solids mixture enters a hot cyclone where the majority of solids are separated from the gas and recycled back to the STAR Reactor. The very high rate of hot recycle solids increases the operating flexibility of the process. The process reactions can occur through this reactor/hot cyclone loop. Due to the high gas velocity, the multiple injection points, and the recycle solids, there is a significant amount of turbulence created which enhances the mixing of the ingredients and optimizes the reactions. The gas and remaining solids not collected by the hot cyclone are passed over a heat exchanger which can be designed to preheat the process air, used in heat recovery, or to simply cool the gas/solids mixture. Once cooled, the solids are separated from the gas in a fabric filter recovery device. Solids can also exit the STAR Reactor at the bottom or from the recycle loop. These solids can be combined with the solids/gas stream before the heat recovery equipment or, since they have different characteristics as compared to the solids exiting the hot cyclone, they can be processed separately for a particular application. By design the STAR Reactor operates under a wide range of process parameters.

Technical and Regulatory Analysis

Flyash Received Directly from Coal-fired Power Plant's Particulate Collection Infrastructure (i.e., Electrostatic precipitator or Baghouse)

As described above, the STAR Reactor is capable of utilizing flyash, received directly from coal-fired power plant's particulate emissions controls, as its primary ingredient along with other select ingredients in order to produce a variety of products for markets.

§241.2(b)(3) of the rule defines NHSM as "a secondary material that, when discarded, would not be identified as a hazardous waste under Part 261 of this chapter". Further the same section defines secondary material as "any material that is not the primary product of a manufacturing or commercial process, and can include post-consumer material, off-specification commercial chemical products or manufacturing chemical intermediates, post-industrial material, and scrap."

It is indisputable that flyash generated from combustion of coal is not a "primary product of a manufacturing" facility (such as electric generating facility) and this product can be deemed as "post-industrial material". Moreover, coal flyash is not regulated as a hazardous waste as per Part 261 of 40 CFR "Identification and Listing of Hazardous Waste". In fact, EPA has promulgated a rule on April 17, 2015 (80 FR 21302) to regulate disposal of coal combustion residues (fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers) [CCR] as solid waste under Subtitle D "State or Regional Solid Waste Plans" of the Resource Conservation Act (RCRA) [administrative regulations included in 40 CFR 257) and not under the Subtitle C of the RCRA "Hazardous Waste Management" [administrative regulations included in 40 CFR 261]. In addition, the beneficial uses (e.g., use of flyash in concrete manufacturing replacing traditional product cement) of CCR is exempt from this regulation.

Based, on the above discussion, it is concluded that the flyash generated from the coal combustion and received directly from coal-fired power plant's particulate emissions control devices, is a NHSM.

§241.3(b)(3) of the Solid Waste Definition Rule provides that NHSMs are not solid waste when "used as an ingredient in a combustion unit that meet the legitimacy criteria specified in paragraph (d)(2) of this section." §241.2 of the Solid Waste Definition Rule defines "ingredient" as "a non-hazardous secondary material that is a component in a compound, process or product." The feedstock is merely one component among a number of variables which are introduced to the STAR Reactor to produce many different products. Therefore, feedstock processed in the STAR Reactor is an ingredient under the Solid Waste Definition Rule.

Legitimacy Criteria

For a non-hazardous secondary material used as an ingredient to be excluded from the definition of solid waste under 241.3 of the Solid Waste Definition Rule, the material must satisfy the following legitimacy criteria under Subsection (d)(2):

- (i) The non-hazardous secondary material must be managed as a valuable commodity;
- (ii) The non-hazardous secondary material must provide a useful contribution to the production or manufacturing process.
- (iii) The non-hazardous secondary material must be used to produce a valuable product or intermediate.

(iv) The non-hazardous secondary material must result in products that contain contaminants at levels that are comparable in concentration to or lower than those found in traditional products that are manufactured without the non-hazardous secondary material.

Managed as a Valuable Commodity - \$241.3(d)(2)(i)

SEFA stores its feedstock in silos and or covered shelters prior to using it as an ingredient in the STAR Reactor and conveys the material to the process equipment pneumatically. As per (241.3(d)(2)(i)), the Solid Waste Definition Rule identifies the following three factors to be considered in determining whether a material is managed as a valuable commodity:

- (A) The storage of the non-hazardous secondary material prior to use must not exceed reasonable time frames;
- (B) Where there is an analogous ingredient, the non-hazardous secondary material must be managed in a manner consistent with the analogous ingredient or otherwise be adequately contained to prevent releases to the environment;
- (C) If there is no analogous ingredient, the non-hazardous secondary material must be adequately contained to prevent releases to the environment;

As per SEFA, in a previously permitted design, the storage capacity of the silos and partially enclosed storage bins for incoming feedstock ranges from 800-2000 tons and could accommodate approximately three to ten days of production when the STAR Reactor is operating on SEFA's normal production schedule. As such, under normal operations, the incoming feedstock is typically stored no more than three days prior to introduction into the STAR Reactor process. However, during shutdown of the STAR Reactor or when off-specification feedstock is received from a supplier, the feedstock may be stored for longer periods of time, but usually no more than sixty days. In the past, as per SEFA, shutdown of the STAR Reactor has generally not exceeded twenty days. With respect to the management of off-specification feedstock, SEFA has indicated that if this off-specification material can be blended with other feedstock at ratios which ensure that processing in the STAR Reactor produces an end product which meets SEFA's quality control standards, it will attempt to do so. Depending on the nature and amount of the material's deviation from SEFA's feedstock specifications, if it cannot be blended, the offspecification feedstock will have to be rejected and returned to the supplier. If it is capable of being blended, the blending process may require storage of the off-specification feedstock for as long as 60 days depending upon the quantity involved. Accordingly, even outside of the normal three-day processing scheduling for incoming feedstock, SEFA's storage of incoming feedstock does not exceed a reasonable time frame.

Additionally, SEFA manages the incoming feedstock as a valuable commodity and takes measures to prevent loss of material during off-loading and storage. In the preamble to the rule, EPA explains that "If on the other hand, a company does not manage the non-hazardous secondary material as it would traditional ingredients, that behavior may indicate that the non-

hazardous secondary material is being discarded." Refer to 76 FR 15543. The material must be "stored in a manner that both adequately prevents releases or other hazards to human health and the environment, considering the nature and toxicity of the non-hazardous secondary material." *Id.* In most cases, this requirement is satisfied if the material is in some manner "contained." *Id.* As noted, SEFA stores its feedstock in enclosed silos or covered and partially enclosed storage bins and therefore meets this criterion. Additionally, at all times prior to processing, SEFA handles the material in a manner consistent with this criterion. Feedstock is transferred from its suppliers (typically, coal-fired power plants) to SEFA either (i) directly by pneumatic conveyor into the silos or (ii) by truck to the SEFA facility. All bin vents within the pneumatic conveyer system are equipped with fabric filter recovery devices to minimize loss of this valuable material. Thus, SEFA believes that it unquestionably manages its feedstock as a valuable commodity.

Useful Contribution to the Production or Manufacturing Process - §241.3(d)(2)(ii)

SEFA believes that there is no question that the feedstock processed in the STAR Reactor provides a useful contribution to its production of the various end products marketed by SEFA. In the preamble to the Solid Waste Definition Rule, at 76 FR 15543, EPA explains the rationale behind this criterion for legitimacy:

A non-hazardous secondary material used as an ingredient in combustion systems provides a useful contribution if it contributes valuable ingredients to the production/manufacturing process or to the product or intermediate of the production/manufacturing process. This criterion is an essential component in the determination of legitimacy because legitimate use is not occurring if the nonhazardous secondary material doesn't add anything to the process, such that the non-hazardous secondary material is basically being disposed of or discarded. This criterion is intended to prevent the practice of "sham" recycling by adding non-hazardous secondary materials to a manufacturing operation simply as a means of disposing of them.

SEFA states that the feedstock processed in the STAR Reactor is clearly not added to dispose of that material and the processing of the feedstock in the STAR Reactor can in no manner be characterized as "sham" recycling. Additionally, the fact that some of the constituents of the feedstock are not needed or desirable for the STAR Process does not affect the status of the "useful contribution" of the feedstock:

For purposes of satisfying this criterion, not every constituent or component of the non-hazardous secondary material has to make a contribution to the production/manufacturing activity. For example, non-hazardous secondary materials used as ingredients may contain some constituents that are needed in the manufacturing process, such as, for example, zinc in non-hazardous secondary materials that are used to produce zinc-containing micronutrient fertilizers, while other constituents in the non-hazardous secondary material, such as lead, do not provide a useful contribution. Provided the zinc is at levels that provides a useful contribution, we believe the non-hazardous

secondary material would satisfy this criterion, although we would note that the constituents not directly contributing to the manufacturing process could still result in the non-hazardous secondary material not meeting the contaminant part of the legitimacy criteria. The Agency is not quantitatively defining how much of the non-hazardous secondary material needs to provide a useful contribution for this criterion to be met, since we believe that defining such a level would be difficult and is likely to be different, depending on the non-hazardous secondary material. The Agency recognizes that this could be an issue if persons argue that a non-hazardous secondary material is being legitimately used as an ingredient, but in fact, only a small amount or percentage of the non-hazardous secondary material is used.

76 FR 15543-44 (emphasis added).

The fact that reactions in the STAR Reactor eliminate certain undesirable constituents of the feedstock material does not preclude a determination that the feedstock meets the legitimacy criteria as an ingredient. As described above, the STAR Reactor has the capability to control the chemical and physical reactions in the process to produce marketable materials with a broad range of characteristics. The constituents and characteristics of each STAR Reactor product are tailored to the intended market and vary depending on the needs of that market. The elimination of certain constituents does not affect the determination that the feedstock is an ingredient which makes a useful contribution to the products produced in the STAR Reactor.

Produces a Valuable Product or Intermediate - §241.3(d)(2)(iii)

As per SEFA, it is undisputed that feedstock material is used in the STAR Reactor to make valuable products. "The product or intermediate is valuable if it is (i) sold to a third party or (ii) used as an effective substitute for a commercial product or as an ingredient or intermediate in an industrial process." Refer to 76 FR 15544. Also, as discussed above, the STAR Reactor has the capability to process its fly ash and other materials to produce a broad range of products. All of the products currently produced in the STAR Reactor are sold to third parties. Additionally, the various products produced in the STAR Reactor have application as both substitutes for commercial products and as ingredients in an industrial process. Ultrix[®] and STAR RP[®] are sold for use as partial replacement for Portland cement. Fortimix[®] is sold for use as an additive for rubber compounds. PermanixTM is designed for use as a broad-spectrum UV blocker. Accordingly, in all respects, SEFA's feedstock processed in the STAR Reactor satisfies this criterion for legitimacy as an ingredient.

Comparable Contaminants Concentration of End Product - § 241.3(d)(2)(iv)

Again, as discussed above, the STAR Reactor has the capability to process its feedstock to reduce or eliminate some undesirable constituents and to alter the chemical and physical characteristics of others in its various end products. The Solid Waste Definition Rules provides as follows: The non-hazardous secondary material must result in products that contain contaminants at levels that are comparable in concentration to or lower than those found in traditional products that are manufactured without the non-hazardous secondary material.

Refer to §241.3(d)(2)(iv).

The preamble to the Rule includes the following:

The assessment of whether the products produced from the use of nonhazardous secondary materials that have contaminants that are comparable to (or lower) in concentration can be made by a comparison of contaminant levels in the ingredients themselves to the traditional ingredients they are replacing, or by comparing the contaminant levels in the product itself with and without the use of the nonhazardous secondary material.

Refer to 76 FR 15544.

As applied to the use of the feedstock as an ingredient in the STAR Reactor, the relevant comparison is a comparison of the various STAR Reactor end products to comparable products in the industries in which each is used. For example, Ultrix[®] and STAR RP[®] are both used as supplementary cementitious materials in concrete, but, due to the unique processing regime of the STAR Reactor, neither has varying quantities of adsorptive unburned carbon, which characterize by-product fly ashes typically used in the marketplace. In fact, the air-entraining characteristics of Ultrix[®] and STAR RP[®] are tailored by STAR Reactor to exactly match the air-entraining characteristics of plain cement concrete.

The preamble to the proposed rule for the Solid Waste Definition Rule explains the rationale for and purpose of the comparison of contaminants in the legitimacy criteria for use of a non-hazardous secondary material as an ingredient:

The Agency recognizes that there may be instances where the contaminant levels in the products manufactured from non-hazardous secondary material ingredients may be somewhat higher than found in the traditional products that are manufactured without the non-hazardous secondary material, but the resulting concentrations would not be an indication of discard and would not pose a risk to human health and the environment.

Refer to 75 FR 31844, 31885 (Jun. 4, 2010).

In addition, EPA has recognized that contaminant levels in the products made from NHSM can have contaminant levels within a "small acceptable range" at 76 FR 15523 (March 21, 2011).

The above discussion clearly provides that it may be allowable under (241.3(d)(2)(iv)) for certain contaminants in the end product made with non-hazardous secondary materials ingredients to be "somewhat higher" or within a "small acceptable range" than those in traditional products. Thus, SEFA's fly ash feedstock satisfies the legitimacy criterion in (2)(iv) despite the slightly higher concentrations of arsenic and beryllium in the STAR RP[®] as compared to Portland Cement, as included in Attachment A to the SEFA's September 2014 letter. Also, using additional analytical data received from SEFA¹, it can be said that the contaminant levels in the SEFA product are within the range of contaminants levels or within a "small acceptable range" for Portland Cement (traditional product).

Additionally, as stated in the preamble to the proposed rule above, the purpose of the contaminant comparison criterion is to demonstrate that the use of the non-hazardous secondary material ingredient is not indicative of discard and does not pose a risk to human health and the environment. Expanding of the "indication of discard" aspect of this component of the legitimacy criteria, EPA further explains:

Based on our assessment of all of the comments, we believe it appropriate to include contaminant levels as a legitimacy criterion. Thus, we do not agree with those commenters that assert that contaminant comparisons are not appropriate to require as part of the legitimacy criteria. The Agency believes the criterion is necessary because non-hazardous secondary materials that contain contaminants that are not comparable in concentration to those contained in traditional fuel products or ingredients would suggest that these contaminants are being combusted as a means of discarding them, and thus the non-hazardous secondary material should be classified as a solid waste. In some cases, this can also be an indicator of sham recycling.

Refer to 75 FR 31871-72 (emphasis added).

As such, the primary purpose of the comparison on contaminants in an end product using the non-hazardous secondary material ingredient to that of traditional products made without the non-hazardous secondary material ingredient is to demonstrate that such use is not a means of discarding the non-hazardous secondary material or indicative of sham recycling.

With respect to the additional industrial uses for products produced by using fly ash feedstock as an ingredient in the STAR Reactor, a direct comparison of SEFA's end product to a traditional product which is manufactured without fly ash feedstock is not feasible for many of the end products produced in the STAR Reactor. However, based on the detailed comparison of the STAR[®] RP to Portland Cement and the various markets for SEFA's other STAR Reactor products as included in the above referenced submittal, it is clear that SEFA is not processing the fly ash feedstock as a means of discarding the fly ash or any of its constituents.

¹ Email dated 5/12/2015 from Thomas Pritcher, Environmental Consulting & Technology, Inc., to Rahul Thaker, NCDAQ.

To the extent that the purpose of the contaminant comparison is to demonstrate that these products do not pose a risk to human health and the environment, SEFA has provided additional information as well as copies of the material safety data sheets for these products to demonstrate that no such risk is posed in the various industrial uses of STAR Reactor end products. For example, the material safety data sheets for Spherix[®] and Fortimix[®] included in Attachment B to the SEFA's September 2014 letter. As per SEFA, in many cases, the STAR[®] Reactor end products provide a safe alternative to traditional products which may pose a potential risk to human health and the environment.

Flyash Received from Landfill or Ash Pond

\$241.3(b)(4) of the rule provides that NHSMs are not solid waste when "fuel or ingredient products that are used in a combustion unit, and that are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria specified in paragraph (d)(1) of this section, with respect to fuels, and paragraph (d)(2) of this section, with respect to ingredients."

As discussed above, the coal flyash disposed off in a landfill or an ash pond can be deemed as a NHSM. Prior to being used as an acceptable ingredient (feedstock) in the STAR Reactor, any flyash received from landfills or ash ponds must be "processed," as that term is defined in the rule. As discussed below, any commercial agreement between a supplier and SEFA will specify the acceptable criteria (i.e., specifications) for a feedstock that can be used in the STAR Reactor as a condition for supplying processed flyash to SEFA.

Pursuant to §241.2, "processing" means any operations that transform discarded nonhazardous secondary material into a non-waste fuel or non-waste ingredient product. Processing includes, but is not limited to, operations necessary to: remove or destroy contaminants; significantly improve fuel characteristics of the material, *e.g.* sizing or drying the material in combination with other operations; or chemically improve the as-fired energy content. Minimal operations that result only in modifying the size of the material by shredding do not constitute processing for purposes of this definition. Under the same section of the Rule, "Secondary material" is defined as any material that is not the primary product of a manufacturing or commercial process, and can include post-consumer material, off-specification commercial chemical products or manufacturing chemical intermediates, post-industrial material, and scrap.

While it is recognized that coal flyash which was initially placed into a landfill may be considered to have been "previously discarded" by custom and practice, coal-fired utilities also collect this coal ash in permitted wastewater treatment ponds. This coal ash has not historically been considered "discarded" as it was merely solids settling within a permitted wastewater unit. SEFA believes that the processing of these materials as required to satisfy SEFA's specifications for its feedstock would meet the requirements for processing of "previously discarded" materials under the Solid Waste Definition Rule as applied to CISWI. As such, the requisite processing of materials to be used as feedstock in the STAR Reactor would be sufficient to transform them to an ingredient.

The Solid Waste Definition Rule provides that a previously discarded material may be processed to transform the waste to a non-waste ingredient. Specifically, §241.3(b)(4) of the Solid Waste Definition Rule provides as follows:

Fuel or ingredient products that are used in a combustion unit, and are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria specified in paragraph (d)(1) of this section, with respect to fuels, and paragraph (d)(2) of this section, with respect to ingredients. The legitimacy criteria apply after the non-hazardous secondary material is processed to produce a fuel or ingredient product. Until the discarded nonhazardous secondary material is processed to produce a non-waste fuel or ingredient, the discarded non-hazardous secondary material is considered a solid waste and would be subject to all appropriate federal, state, and local requirements.

As per SEFA, any processing of materials from landfills or from ash ponds to meet SEFA's feedstock specifications will be undertaken under the control of the supplier prior to being received by SEFA for use an ingredient in its STAR Reactor. Accordingly, this feedstock when received by SEFA or used in the STAR Reactor would meet the legitimacy criteria for direct use as an ingredient and therefore would not be a solid waste under the Solid Waste Definition Rule. All feedstock shipped to SEFA for use as an ingredient in the STAR Reactor will first be required to undergo processing by the supplier to be:

- A. Free of all, but minimal contaminants (e.g., organic debris, slag);
- B. Finely-divided and free-flowing,
- C. Have consistent moisture content of $\leq 25\%$; and
- D. Have a consistent chemical composition, including organic content as measured by loss on ignition.

The above are SEFA specifications for acceptance of any coal flyash (discarded in landfills or ash ponds).

As per SEFA, the specific processing steps that may be needed to meet the SEFA specifications (as described above) and produce a suitable feedstock for the STAR Reactor will vary depend upon the specific characteristics of each source of coal flyash. Generally speaking, one or more of the following four processing steps will be necessary to produce a suitable feedstock for the STAR Reactor:

- 1) Dewatering,
- 2) Screening/Separation,
- 3) Milling, and
- 4) Blending.

For use as a feedstock in the STAR Reactor, coal ash from an ash pond having higher moisture content will likely need to be processed using most, if not all, of these steps. Coal ash

from a landfill may not require every step. For example, it may be unnecessary to dewater coal ash from landfills if the material has consistent and acceptable moisture content.

Depending on the source of the ash, the general steps described above can require sub processes. For example, feedstock appropriate for the STAR Reactor, it may be necessary to remove larger particles or other materials found with the ash. In addition, to meet SEFA's specifications, some coal ash may require further processing through a separate loop that includes equipment (e.g., roll crusher) needed to produce a more finely-divided, free-flowing feedstock. For others, it may be necessary to utilize a magnetic separator to remove metal constituents. Also, materials such as coal, pyrites, or other more coarse materials may need to be screened. The Screening/Separation step will occur routinely to produce a free-flowing, finelydivided feedstock suitable for the STAR Reactor. Depending on the source of coal ash, milling may not be necessary to achieve a finely-divided and free-flowing material.

As emphasized by SEFA, the specific processing steps and the specific processing equipment cited above are typical examples for how these materials might be processed to produce a suitable feedstock. Those performing the actual work (i.e., suppliers) will elect to use different techniques and/or equipment. SEFA states that as long as the processed coal ash conforms to SEFA's general specifications outlined above, the coal flyash received from landfills or ash ponds will have been sufficiently "processed" and will be a suitable feedstock as an ingredient in the STAR Reactor.

It needs to be noted here that the EPA has recognized similar processing steps (similar to SEFA suggested processing steps as above to meet the SEFA specifications) are "likely to meet our definition of processing, as it appears that these processes in fact remove contaminants and improve the ingredient characteristics of these recovered CCRs (i.e., ash from ponds and landfills)". Refer to 76 FR 15518, March 21, 2011 (emphasis added).

With respect to the requirement for meeting the legitimacy criteria in $\S241.3(d)(2)$, pursuant to \$241.3(b)(4), for flyash received from landfill or ash pond, SEFA emphasizes that after completion of "processing", it will become similar to the flyash received directly from coal-fired plant's particulate collection infrastructure (i.e., Electrostatic precipitator or Baghouse), and thus, will meet all legitimacy criteria as discussed above for it.

Finally, with respect to the particular criterion for comparable contaminants concentration of end product (traditional products) in §241.3(d)(2)(iv), SEFA analyzed each of these materials for semi-volatile organic compounds, organo-chlorine pesticides, PCBs, chlorides, metals and sulfur content, during engineering studies to assess the suitability of coal ash previously placed in water treatment ponds (pond ash) or previously placed in landfills (landfill ash). A comparison of the constituents in dry source feedstock, pond ash and landfill ash from SCE&G's² Wateree facility is provided in Attachment C to the SEFA's September 2014 submittal. In comparison to the dry collection feedstock, the landfill ash is comparable with slightly higher results for a few constituents. The sampling results on pond ash indicate that all constituents detected were lower

² www.sceg.com

than those for the dry collection feedstock and the landfill ash. Despite certain variables in the manner in which coal ash were previously placed in ponds or landfills, as per SEFA, these sampling results are sufficient to demonstrate that contaminants in coal flyash previously placed in ponds and landfills are comparable to or lower than those in dry collection coal flyash processed as feedstock (that is, flyash received directly from the coal-fired power plant's particulate emissions control) for the STAR Reactor. Furthermore, the metals and sulfur levels of the landfill ash are comparable to those of the dry collection feedstock, and the metals and sulfur levels of the pond ash are significantly lower than those of the dry collection feedstock. Finally, more recent sampling data (March-April 2015) for dry ash and pond ash, provided by SEFA, indicates that the contaminants in pond ash as are lower than the dry ash received directly from electric utility plant.³ Therefore, SEFA concludes that there will be no increase in emissions as a result of the use of pond ash and landfill ash as a feedstock for the STAR Reactor.

Conclusions

In summary, the DAQ has determined that the fly ash received directly from the coalfired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse) is a NHSM and an "ingredient", as defined in §241.2. DAQ has further determined that this flyash meets the legitimacy criteria included in §241.3(d)(2). Thus, it concludes that it is not a solid waste and therefore, STAR Reactor is not subject to the requirements in CISWI.

Moreover, the processed flyash received from ash landfills or ash ponds meets the definition of "processing" in §241.2, and is also a NHSM and an ingredient. DAQ has further determined that this flyash also meets the legitimacy criteria included in $\S241.3(d)(2)$. Thus, it concludes that it is not a solid waste and therefore, STAR Reactor is not subject to the requirements in CISWI.

It needs to be emphasized here that this letter includes only the "non-waste" determination, which is specific to the materials discussed herein. Further, the determination does not give any permission to SEFA to burn or process flyash in the STAR Reactor. SEFA will need to evaluate and submit a permit application for an air permit, as needed, for burning / processing flyash, as discussed herein, in the STAR Reactor at any location in NC.

If you have any questions regarding this determination, please contact Rahul P. Thaker, P.E., QEP, at (919) 707-8470.

³ Email dated 5/12/2015 from Thomas Pritcher, Environmental Consulting & Technology, Inc., to Rahul Thaker, NCDAQ.

Sincerely,

With With _

William D. Willets, P.E., Chief, Permitting Section Division of Air Quality, NCDENR

c: Central Files

Appendix H

Zoning Consistency Determination

AECOM

July 2018

Malling Address PO Box 1551 Raleigh, NC 27602-1551

July 20, 2018

Mr. Jason Sullivan, Director Chatham County Planning Department P.O. Box 54 Pittsboro, NC 27312

Subject: Zoning Consistency Determination Duke Energy Progress, LLC Cape Fear STAR® Ash Beneficiation Process Moncure, Chatham County, North Carolina

Dear Mr. Sullivan:

On behalf of Duke Energy Progress, LLC, I am writing to inform you that we are submitting an *air* permit application to construct and operate a Cape Fear STAR® Ash Beneficiation Process at 500 CP and L Road in Moncure, Chatham County. I hereby certify that to the best of my knowledge, Chatham County is the only local government having jurisdiction over any part of the land on which the facility and its appurtenances are to be located.

In accordance with § 143-215.108(f) of the North Carolina General Statutes, we hereby request that you issue a determination as to whether your municipality has in effect a zoning or subdivision ordinance that is applicable to the proposed facility. Additionally, please issue a determination as to whether the proposed use would be consistent with applicable zoning or subdivision ordinances. For your convenience, I have included a form with which you may remit your determination and a copy of the air permit application. As a means of demonstrating proof of transmittal, please sign, title, stamp, and date the enclosed form and mail to the checked air quality offices at your earliest convenience. In addition, please mail (to the address in the letterhead) or email me a copy for our files.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at 919-546-6610 or <u>ann.quillian@duke-energy.com</u>.

Sincerely,

Ann Quillian, PE

Lead Environmental Specialist

Enclosures Zoning Consistency Determination Form Draft Air Permit Application

Zoning Consistency Determination

Facility Name	Duke Energy Progress, LLC – Cape Fear STAR®	
Facility Street Address	500 CP and L Road	
Facility City	Moncure	
Description of Process	Coal Ash Beneficiation @ Retired Cape Fear Steam Electric Plant	
SIC/NAICS Code	4911 / 221112	
Facility Contact	Ann Quillian	
Phone Number	919-546-6610	
Mailing Address	410 S. Wilmington St.	
Mailing City, State Zip	Raleigh, NC 27601	
Based on the information giv	en above:	
☐ I have received a copy o	f the air permit application (draft or final) AND	
 There are no applicable zoning ordinances for this facility at this time The proposed operation IS consistent with applicable zoning ordinances The proposed operation IS NOT consistent with applicable zoning ordinances (please include a copy of the rules in the package sent to the air quality office) The determination is pending further information and can not be made at this time 		
	mig ter the mornation and can not be made at this time	
Agency Name of Designated Official Title of Designated Official		
Signature		
Date		
Please forward to the facility r at the appropriate address as c	nailing address listed above and the air quality office hecked on the back of this form.	

Courtesy of the Small Business Environmental Assistance Program <u>sb.ncdenr.gov</u> 877-623-6748

All PSD and Title V Applications

Attn: William Willets, PE DAQ – Permitting Section 1641 Mail Service Center Raleigh, NC 27699-1641

Local Programs

- Attn: David Brigman
 Western NC Regional Air Quality Agency
 49 Mount Carmel Road
 Asheville, NC 28806
 (828) 250-6777
- Attn: Leslie Rhodes Mecklenburg County Air Quality 700 N. Tryon Street, Suite 205 Charlotte, NC 28202-2236 (704) 336-5430

Division of Air Quality Regional Offices

- Attn: Brendan Davey Asheville Regional Office 2090 U.S. Highway 70 Swannanoa, NC 28778 (828) 296-4500
- Attn: Steven Vozzo
 Fayetteville Regional Office
 225 Green Street, Suite 714
 Fayetteville, NC 28301
 (910) 433-3300
- Attn: Bruce Ingle Mooresville Regional Office
 610 East Center Avenue, Suite 301 Mooresville, NC 28115
 (704) 663-1699
- Attn: T. Ray Stewart, Jr., PE, CPM Raleigh Regional Office 1628 Mail Service Center Raleigh, NC 27699-1628 (919) 791-4200

 Attn: William Minor Barnette
 Forsyth County Office of Environmental Assistance and Protection
 201 N. Chestnut Street
 Winston-Salem, NC 27101-4120
 (336) 703-2440

- Attn: Robert Fisher
 Washington Regional Office
 943 Washington Square Mall
 Washington, NC 27889
 (252) 946-6481
- Attn: Brad Newland
 Wilmington Regional Office
 127 Cardinal Drive Extension
 Wilmington, NC 28405
 (910) 796-7215
- Attn: Lisa Edwards, PE Winston-Salem Regional Office 450 West Hanes Mill Road, Suite 300 Winston-Salem, NC 27105 (336) 776-9800

Courtesy of the Small Business Environmental Assistance Program sb.ncdenr.gov 877-623-6748