FX

Mine Permit Transfer/Modification

Charah, Inc.

Sanford, North Carolina

November 2014

Mine Permit Transfer/Modification

Charah, Inc.

Sanford, NC

November 2014

HDR Engineering, Inc. of the Carolinas 440 South Church St, Suite 1000 Charlotte, NC 28202-2075 704.338.6700

NC License F0116

This page intentionally left blank.

GENERAL SHALE BRICK, INC. P.O. Box 3547 / 3015 Bristol Highway, Johnson City, TN 37602 Ph. (423) 282-4661 / FAX (423) 952-4160

Gregory A. Bowles Director of Real Estate, Environment, & Geology

November 14, 2014

VIA HAND DELIVERY

Mr. Tracy E. Davis, PE, CMP Director Division of Energy Mineral & Land Resources Land Quality Section NC Dept. of Environment and Natural Resources 1612 Mail Service Center Raleigh, NC 27699

Re: Colon (Sanford) Mine, Permit No. 53-05

Dear Mr. Davis:

In accordance with the General Statute §74-52 of the Mining Act of 1971, and the Land Quality Section's mining permit modification checklist, we are requesting the State to transfer the permit noted above be transferred to Green Meadow, LLC. As we required, we are enclosing one original and five (5) copies of (i) this letter describing the transfer and modification request, (ii) the first three pages of the application form relating to the Permit as transferred and modified, (iii) updated mine maps complying with the requirements of the Mining Act identifying the area to be covered by the Permit as transferred.

We appreciate your prompt attention to this request. We understand that no public notice is necessary as the total acreage covered by the permit will not change and the area permitted will be identical to the area covered by the Permit. Please let me know if you have any questions or require additional information.

Very truly yours, General Shale Brick, Inc.

Gregory A. Bowles Director of Real Estate, Environment & Geology

GENERAL SHALE BRICK, INC. P.O. Box 3547 / 3015 Bristol Highway, Johnson City, TN 37602 Ph. (423) 282-4661 / FAX (423) 952-4160

Gregory A. Bowles Director of Real Estate, Environment, & Geology

November 14, 2014

VIA HAND DELIVERY

Mr. Tracy E. Davis, PE, CMP Director Division of Energy Mineral & Land Resources Land Quality Section NC Dept. of Environment and Natural Resources 1612 Mail Service Center Raleigh, NC 27699

Re: Colon (Sanford) Mine, Permit 53-05

Dear Mr. Davis:

General Shale Brick, Inc. ("General Shale") is the current permittee under the referenced permit (the "Permit"). General Shale intends to transfer the Permit to Green Meadow, LLC ("Green Meadow"). In addition, Green Meadow intends to modify the Permit by changing the method for reclaiming the mine by developing a large structural fill using Coal Combustion Byproducts ("CCBs"). The modified mine reclamation method has been designed in accordance with the provisions of General Statutes §130A-309.216 contained in the Coal Ash Management Act of 2014 ("CAMA").

In accordance with the General Statute §74-52 of the Mining Act of 1971, and the Land Quality Section's mining permit modification checklist, we are enclosing one original and five (5) copies of (i) this letter describing the transfer and modification request, (ii) the first three pages of the application form relating to the Permit as transferred and modified, (iii) updated mine maps complying with the requirements of the Mining Act identifying the area to be covered by the Permit as transferred and modified for the new large structural fill.

We appreciate your prompt attention to this request. We understand that no public notice is necessary as the total acreage covered by the permit will not change and the area permitted will be identical to the area covered by the Permit. Please let me know if you have any questions or require additional information.

Very truly yours, General Shale Brick, Inc.

Gregory A. Bowles Director of Real Estate, Environment & Geology Green Meadow, LLC

Charles E. Price President & CEO

NORTH CAROLINA MINING PERMIT APPLICATION

State of North Carolina Department of Environment and Natural Resources Division of Land Resources Land Quality Section

1612 Mail Service Center Raleigh, North Carolina 27699-1612 (919) 707-9220

Revised: February 24, 2012

NOTE:

It is recommended that you contact the appropriate Regional Office (see Regional Office listing in the back of this booklet) or the Raleigh Central Office for a PRE-APPLICATION MEETING to discuss your intentions and address any questions.

MINING PERMIT APPLICATION REVIEW PROCESS FLOWCHART

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

LAND QUALITY SECTION

APPLICATION FOR A MINING PERMIT (TRANSFER)

(PLEASE PRINT OR TYPE)

Name of Mine Colon Mine	Co	unty	Lee
River Basin Cape Fear			
Latitude (decimal degrees to four places)	35.5348		
Longitude (decimal degrees to four places)	-79.1598		
Name of Applicant* General Shale Brick, I	inc.		
Permanent address for receipt of official mail**	*300 Brick Plant Re	oad, Mon	cure, North Carolina 27559
Telephone (919) 774-6533, ext. 243	³⁰⁰ Brick Plant Re	oad, Mon No. <u>(</u>)
Telephone (919) 774-6533, ext. 243 Mine Office Address same as above	*300 Brick Plant Re	oad, Mon)
Permanent address for receipt of official mail** Telephone (919) 774-6533, ext. 243 Mine Office Address same as above	<u>*300 Brick Plant Re</u> Alternate	oad, Mon No. <u>(</u>)

We hereby certify that all details contained in this Permit Application are true and correct to the best of our knowledge. We fully understand that any willful misrepresentation of facts will be cause for permit revocation.

***0.	1 AI	2,
****Signature	fing a li	hen

Date	11/14/14	
	/ •	

Print Name Gregory A. Bowles

Title Director of Real Estate, Environment & Geology

- * This will be the name that the mining permit will be issued to and the name that must be indicated on the reclamation bond (security) that corresponds to this site.
- ** The Land Quality Section must be notified of any changes in the permanent address or telephone number.

*** Signature of company officer required.

G.S. 74-51 provides that the Department shall grant or deny an application for a permit within 60 days of receipt of a <u>complete</u> application or, if a public hearing is held, within 30 days following the hearing and the filing of any supplemental information required by the Department. All questions must be addressed <u>and</u> all required maps provided before this application can be considered complete. Attach additional sheets as needed.

APPLICATION FOR A MINING PERMIT NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

LAND QUALITY SECTION

APPLICATION FOR A MINING PERMIT (MODIFICATION)

(PLEASE PRINT OR TYPE)

• 1	Name of Mine Colon Mine	County Lee
F	River Basin <u>Cape Fear</u>	
Ι	Latitude (decimal degrees to four places)35.5	348
I	Longitude (decimal degrees to four places) <u>-79.1</u>	598
1	Name of Applicant* <u>Green Meadow, Inc.</u>	
F	Permanent address for receipt of official mail**	12601 Plantside Drive, Louisville, KY 40299
Γ	Telephone (502) 245-1353	Alternate No
N	Mine Office Address <u>same as above</u>	
		Telephone () same as above
÷		

We hereby certify that all details contained in this Permit Application are true and correct to the best of our knowledge. We fully understand that any willful misrepresentation of facts will be cause for permit revocation.

***Signature	harle Price	
Print Name	Charles E. Price	
Title	Managing Member	

	11	- 1	11		11	1	
Date	11	-1	9	-	10	T	

- * This will be the name that the mining permit will be issued to and <u>the name that must be indicated on the</u> reclamation bond (security) that corresponds to this site.
- ** The Land Quality Section must be notified of any changes in the permanent address or telephone number.
- *** Signature of company officer required.

G.S. 74-51 provides that the Department shall grant or deny an application for a permit within 60 days of receipt of a <u>complete</u> application or, if a public hearing is held, within 30 days following the hearing and the filing of any supplemental information required by the Department. All questions must be addressed <u>and</u> all required maps provided before this application can be considered complete. Attach additional sheets as needed.

<u>NOTE:</u> All of the following questions must be thoroughly answered regarding your mining operation for the intended life of the mine. All responses <u>must</u> be clearly conveyed on a corresponding, detailed mine map.

A. GENERAL CHARACTERISTICS OF THE MINE

- 1. Answer <u>all</u> of the following that apply:
 - If this is an application for a <u>NEW</u> permit, indicate the total acreage at the site to be covered by the permit (this is the acreage that the "new permit" fee will be based upon):_____

Of this acreage, h	now much is owned and how much is leased?	Acres owned:
Acres leased:	Property owner if leased:	

- If this is an application for **<u>RENEWAL</u>** of a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit: Mining Permit No.: Total permitted acreage (this is the acreage that the "renewal" fee will be based upon):
- If this is an application for a <u>MODIFICATION</u> to a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit. Mining Permit No.: <u>53-05</u> Total permitted acreage: <u>351</u>

Does the modification involve acreage within the previously approved permitted boundary? Yes \square No \square . If yes, indicate the acreage to be covered by this modification (this is the acreage that the "major modification" fee will be based upon): 351

Does the modification involve acreage <u>outside</u> the previously approved permitted boundary? Yes \square No \boxtimes . If yes, indicate the additional acreage to be covered by this modification: ______. (NOTE: you must complete <u>all</u> of Section F. of this application form entitled Notification of Adjoining Landowners).

Of this acreage to be added to the permit, will any portion of this acreage be affected (i.e.: disturbed, ground cover removed) by the mining operation? Yes No (If no, a "minor modification" fee of \$100.00 is required, despite the "undisturbed" acreage to be added). If yes, indicate the acreage to be affected within the acreage to be added to the permit (the total acreage to be added to the permit is the acreage that the "major modification" fee will be based upon):

If this is an application for <u>**TRANSFER**</u> of a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit. Mining Permit No.: <u>53-05</u> Total permitted acreage: <u>411</u>

SEE THE FEE SCHEDULE AT THE END OF THIS FORM FOR THE PROPER FEE AMOUNT TO BE PAID FOR THE REQUESTED PERMIT ACTION(S) AND CORRESPONDING ACREAGE NOTED ABOVE

2. Na	ame of all materials mined	: <u>Clay</u>	
3. N	lining method: Hydraulic Dredge Dragline & Truck	Front-end Loader & Truck Self-loading Scraper	Shovel & Truck
О	ther (explain):		
4. a.	Expected maximum dept Depth is relative to what Natural ground eleva	h of mine (feet) <u>32</u> benchmark? (e.g., natural ground le tion	vel, mean sea level, road elevation, etc.)
b.	Expected average depth	of mine (feet) <u>10</u>	

- 3 -

5.	Has any area(s) at this site been mined in the past? Yes \square No \square
	If yes, when and by whom was this activity conducted?
	General Shale Brick Inc./Cherokee. Sanford has mined the site since 1972

6. Number of years for which the permit is requested (10 years maximum): 10

B. MAPS

1. Clearly mark and label the location of your mining operation on $\underline{six (6) copies}$ of a 7.5-minute quadrangle and a county highway map. These maps, in addition to $\underline{six (6) copies}$ of all mine maps and reclamation maps, must be submitted with each permit application.

7.5-minute quadrangles may be obtained from the N.C. Geological Survey:

Mailing Address: 1612 Mail Service Center OR Raleigh, North Carolina 27699-1612 (919) 733-2423 http://portal.ncdenr.org/web/lr/geological_home <u>Physical Address</u>: 512 North Salisbury Street, 5th Floor Raleigh, North Carolina 27604

County highway maps may be obtained from the N.C. Department of Transportation:

North Carolina Department of Transportation – Geographic Information Systems (GIS)

<u>Mailing Address</u>: NCDOT GIS Unit 1587 Mail Service Center Raleigh, North Carolina 27699-1587 Physical Address: NCDOT GIS Unit 3401 Carl Sandburg Court Raleigh, North Carolina 27610 (919) 212-6000 http://www.ncdot.org/it/gis/

- 2. Mine maps must be accurate and appropriately scaled drawings, aerial photographs or enlarged topographic maps of the entire mine site. All aspects of the mine site must be clearly labeled on the maps along with their corresponding (approximate) acreage. As a reminder, mining permits can only be issued for up to 10 years; thus, all mine and reclamation maps must only denote those activities that are intended to be conducted during the life of the mining permit. All maps must be of a scale sufficient (see minimum requirements listed below) to clearly illustrate the following, <u>at a minimum</u>:
 - a. Property lines of the tract or tracts of land on which the proposed mining activity is to be located including easements and rights-of-way.
 - b. Existing or proposed permit boundaries.
 - c. Initial and ultimate limits of clearing and grading.
 - d. Outline and width of all buffer zones (both undisturbed and unexcavated).
 - e. Outline and acreage of all pits/excavations.
 - f. Outline and acreage of all stockpile areas.
 - g. Outline and acreage of all temporary and/or permanent overburden disposal areas.
 - h. Location and acreage of all processing plants (processing plants may be described as to location and distance from mine if sufficiently far removed).
 - i. Locations and names of all streams, rivers and lakes.
 - j. Outline and acreage of all settling and/or processing wastewater ponds.
 - k. Location and acreage of all planned and existing access roads and on-site haul roads.
 - 1. Location of planned and existing on-site buildings.
 - m. Location and dimensions of all proposed sediment and erosion control measures.
 - n. Location of 100-year floodplain limits and wetland boundaries.
 - o. Names of owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary; if an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, names of owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary, must be provided on the mine map.

- p. Names of owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary which lie directly across and are contiguous to any highway, creek, stream, river, or other watercourse, railroad track, or utility or other public right-of-way. If an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, names of owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary, must be provided on the mine map(s). NOTE: "Highway" means a road that has four lanes of travel or less and is not designated as an Interstate Highway.
- q. Map legend:
 - 1. Name of applicant
 - 2. Name of mine
 - 3. North arrow
 - 4. County
 - 5. Scale
 - 6. Symbols used and corresponding names
 - 7. Date prepared and revised
 - 8. Name and title of person preparing map

Map scales should meet the following guidelines:

PERMITTED ACREAGE	MAP SCALE
0-49 Acres	1 inch = 50 feet
50-199 Acres	1 inch = 100 feet
200+ Acres	1 inch = 200 feet
(NOTE: Smaller scaled maps may	be acceptable if they clearly illustrate the above items)

A table/chart must be provided on the mine map that clearly lists the approximate acreage of tailings/sediment ponds, stockpiles, wastepiles, processing area/haul roads, mine excavation and any other major aspect of the mining operation that is proposed to be affected/disturbed during the life of the mining permit. A table/chart similar to the following will be acceptable:

CATEGORY	AFFECTED ACREAGE
Tailings/Sediment Ponds	13.24
Stockpiles	NA
Wastepiles	NA
Processing Area/Haul Roads	5.77
Mine Excavation	125.43
Other (Explain)	NA
Total Disturbed Acreage	144.44

NOTE:

IN ADDITION TO THE ABOVE, THE MAPS MUST ALSO INCLUDE ANY SITE-SPECIFIC INFORMATION THAT IS PROVIDED IN THE ANSWERS TO THE FOLLOWING QUESTIONS IN THIS APPLICATION FORM (PLEASE NOTE THE ITALICIZED QUESTIONS/STATEMENTS THROUGHOUT THE FORM). THIS APPLICATION WILL NOT BE CONSIDERED COMPLETE WITHOUT ALL RELEVANT ITEMS BEING ADEQUATELY ADDRESSED ON THE MINE MAPS.

C. PROTECTION OF NATURAL RESOURCES

1. Describe in detail the sequence of events for the development and operation of the mine and *reference the* sequence to the mine map(s). Attach additional sheets as needed.

Mine operations will continue in the Phase 1 area and expand to the Phase 2 area. The base of the excavation will be lined and contain a leachate collection system for the reclamation structural fill. The structural fill will be capped.

2. Describe specific erosion control measures to be installed prior to land disturbing activities and during mining to prevent offsite sedimentation (*include specific plans for sediment and erosion control for mine excavation(s), waste piles, access/mine roads and process areas*), and give a detailed sequence of installation and schedule for maintenance of the measures. *Locate and label all sediment and erosion control measures on the mine map(s) and provide typical cross-sections/construction details of each measure.* Engineering designs and calculations are required to justify the adequacy of any proposed measures.

Mining operations will continue in the area designated as Phase 1 (Cells 1 and 2). Continued mine development will progress into the Phase 2 (Cells 3-5) area. Basins will be constructed as needed to collect stormwater and prevent offsite sedimentation. Interim stockpiling may occur in the mine footprint or one of two designated stockpile areas. Erosion and sediment control will be designed and permitted for the stockpile areas prior to use. Stormwater benches, slope drains and diversion berms will direct stormwater from the closed structural fill to an existing sediment basin.

3. a. Will the operation involve washing the material mined, recycling process water, or other waste water handling? Yes ⊠ No □. If yes, briefly describe all such processes including any chemicals to be used.

Contact water from the coal combustion product structural fill will be collected and discharged to the local wastewater treatment plant. No chemicals will be used. Flocculants may be used to control TSS in stormwater prior to discharge as allowed in the existing permit.

b. Will the operation involve discharging fresh or waste water from the mine or plant as a point discharge to the waters of the State? Yes \Box No \boxtimes . If yes, briefly describe the nature of the discharge and locate all proposed discharge points (along with their method of stabilization) on your mine map(s).

- d. If you answered yes to any of the above questions, provide evidence that you have applied for or obtained the appropriate water quality permit(s) (i.e., non-discharge, NPDES, Stormwater, etc.) from the Division of Water Quality, Water Quality Section. In addition, the applicant is required to register water use with the Division of Water Resources if the operation withdraws more than 10,000 gallons per day and needs a capacity use permit from the Division of Water Resources if the operation of Water Resources if a capacity use area and withdraws more than 100,000 gallons per day.

The current mine NPDES permit is included under related documents.

- 4. a. Will the operation involve crushing or any other air contaminant emissions? Yes \Box No \boxtimes . If yes, indicate evidence that you have applied for or obtained an air quality permit issued by the Division of Air Quality or local governing body.
 - b. How will dust from stockpiles, haul roads, etc., be controlled?

Haul roads, stockpiles and structural fills will be wetted as necessary to control dust. Chemical dust suppressants may be utilized as needed to control dust from areas where construction activity may be extended for periods greater than 30 days.

5. a. A buffer will be required between any mining activity and any mining permit boundary or right-ofway. It may be an unexcavated buffer (no excavation, but roadways, berms and erosion & sedimentation control measures may be installed within it), an undisturbed buffer (no disturbance within the buffer whatsoever), or a combination of the two, depending upon the site conditions. Note that all buffers must be located <u>within</u> the mining permit boundaries.

How wide a buffer will be maintained between any mining activity and any mining permit boundary or right-of-way at this site? A minimum buffer of 25 feet is recommended, although a wider buffer may be needed depending on site conditions. Show all buffer locations and widths on the mine map(s).

A 50-foot undisturbed property line buffer is maintained. A 50-foot buffer to wetlands and stream is also maintained except where impacts are permitted through the USACE and NCDWQ. A 300-foot buffer is maintained to residences and private groundwater wells.

b. A minimum 50 foot wide undisturbed buffer will be required between any land disturbing activities within the mining permit boundaries and any natural watercourses and wetlands <u>unless</u> smaller undisturbed buffers can be justified. Depending on site conditions, a buffer wider than 50 feet may be needed.

How wide an undisturbed buffer will be maintained between any land disturbing activities within the mining permit boundaries and any natural watercourses and wetlands at this site? *Show all buffer locations and widths on the mine map(s)*.

50 feet

6. a. Describe methods to prevent landslide or slope instability adjacent to adjoining permit boundaries during mining. Minimum 2 horizontal to 1 vertical slopes or flatter for clayey material and minimum 3 horizontal to 1 vertical slopes or flatter for sandy material are generally required, unless technical justification can be provided to allow steeper slopes.

2H:1V slopes will be maintained in the excavation area. Final cut slopes are designed at 3H:1V. The structural fill is designed to have a 4H:1V side slope.

b. Provide a cross-section on the mine map(s) for all fill slopes (berms, wastepiles, overburden disposal areas, etc.), clearly indicating the intended side slope gradient, installation of any benches and/or slope drains (with supporting design information) if needed, and the method of final stabilization.

See Drawing 00C-05

c. In excavation(s) of unconsolidated (non-rock) materials, specify the angle of all cut slopes including specifications for benching and sloping. *Cross-sections for all cut slopes must be provided on the mine map(s)*.

No benching will be conducted in the excavation area. Cut slopes will maintain a 3H:1V slope.

d. In hardrock excavations, specify proposed bench widths and heights in feet. *Provide cross-sections* of the mine excavation clearly noting the angles of the cut slopes, widths of all safety benches and mine benches, and the expected maximum depth of the excavation.

N/A

7. Describe other methods to be taken during mining to prevent physical hazard to any neighboring dwelling house, public road, public, commercial or industrial building from any mine excavation. *Locate all such structures on the mine map if they are within 300 feet of any proposed excavation.*

N/A

8. Describe what kind of barricade will be used to prevent inadvertent public access along any high wall area and when it will be implemented. Vegetated earthen berms, appropriate fencing and adequate boulder barriers may be acceptable high wall barricades. *A construction detail/cross-section and location of each type of barricade to be used must be indicated on the mine map(s).*

Gates will be installed at the mine entrances to prevent unwanted access. Fencing may also be constructed as needed.

- 9. Are acid producing minerals or soils present? Yes No X. If yes, how will acid water pollution from the excavation, stockpiles and waste areas be controlled?
- 10. a. Describe specific plans (including a schedule of implementation) for screening the operation from public view such as maintaining or planting trees, bushes or other vegetation, building berms or other measures. Show the location of all visual screening on the mine map(s) and provide cross-sections through all proposed berms or proposed spacing, sizes and species for tree plantings.

The majority of the mine is screened by wooded areas. Berms may also be constructed for screening purposes.

b. Could the operation have a significantly adverse effect on the purposes of a publicly owned park, forest or recreation area? If so, how will such effects (i.e., noise, visibility, etc.) be mitigated?

11. Will explosives be used? Yes \Box No \boxtimes .

If yes, specify the types of explosive(s) and describe what precaution(s) will be used to prevent physical hazard to persons or neighboring property from flying rocks or excessive air blasts or ground vibrations. Depending on the mine's location to nearby structures, more detailed technical information may be required on the blasting program (such as a third-party blasting study). *Locate the nearest offsite occupied structure(s) to the proposed excavation(s) on the mine map and indicate its approximate distance to the proposed excavation*.

12. Will fuel tanks, solvents, or other chemical reagents be stored on-site? Yes No . . . *If yes, describe these materials, how they will be stored and method of containment in case of spill. Indicate the location(s) of all storage facilities on the mine map(s).*

Motor oil and other products required for equipment maintenance will be stored onsite. Above ground petroleum tanks will be used for equipment and will have secondary containment. The mine operator will work under a Spill Prevention, Control and Countermeasures (SPCC) Plan in compliance with USEPA standards providing training and monthly inspections as required.

D. RECLAMATION PLAN

1. Describe your intended plan for the final reclamation and subsequent use of all affected lands and indicate the sequence and general methods to be used in reclaiming this land. This must include the method of reclamation of settling ponds and/or sediment control basins and the method of restoration or establishment of any permanent drainage channels to a condition minimizing erosion, siltation and other pollution. *This information must be illustrated on a reclamation map and must correspond directly with the information provided on the mine map(s). In addition, design information, including typical cross-sections, of any permanent channels to be constructed as part of the reclamation plan and the location(s) of all permanent channels must be indicated on the reclamation map.*

The mine is intended to be reclaimed as an encapsulated beneficial coal combustion product structural fill. See the permit application for illustrations of the reclamation.

2. Is an excavated or impounded body of water to be left as a part of the reclamation? Yes No X. *If yes, illustrate the location of the body(s) of water on the reclamation map and provide a scaled cross-section(s) through the proposed body(s) of water.* The minimum water depth must be at least 4 feet, measured from the normal low water table elevation, unless information is provided to indicate that a more shallow water body will be productive and beneficial at this site.

Will the body(s) of water be stocked with fish?	Yes	No \square .
If yes, specify species.		

N/A

^{3.} Describe provisions for safety to persons and to adjoining property in all completed excavations in rock including what kind of permanent barricade will be left. Acceptable permanent barricades are appropriate fencing, large boulders placed end-to-end, etc. *Construction details and locations of all permanent barricades must be shown on the reclamation map.*

4. Indicate the method(s) of reclamation of overburden, refuse, spoil banks or other such on-site mine waste areas, including specifications for benching and sloping. *Final cross-sections and locations for such areas must be provided on the reclamation map.*

All overburden is intended to be used in the construction of the structural fill. In the event that stockpiling is required, a permit modification will be submitted.

5. a. Describe reclamation of processing facilities, stockpile areas, and on-site roadways.

Roadways will remain in place for site access. Leachate storage facilities will be removed after NCDENR has released the owner of any further post-closure care.

b. Will any on-site roadways be left as part of the reclamation? Yes No . . . *If yes, identify such roadways on the reclamation map and provide details on permanent road and ditch line stabilization.*

A perimeter roadway for the structural fill will be gravel and maintained for post-closure monitoring activities. All channels will be vegetated.

6. Describe the method of control of contaminants and disposal of scrap metal, junk machinery, cables, or other such waste products of mining. (Note definition of refuse in The Mining Act of 1971.)

No <u>off-site generated waste</u> shall be disposed of on the mine site without <u>prior</u> written approval from the NC Department of Environment and Natural Resources, Land Quality Section <u>and</u> either the Division of Waste Management (DWM) or local governing body. If a disposal permit has been issued by DWM for the site, a copy of said permit must be attached to this application. All temporary and permanent refuse disposal areas must be clearly delineated on the mine map(s) and reclamation map, along with a list of items to be disposed in said areas.

A permit for a large structural fill is being pursued through the Division of Waste Management with the submittal of this package. The new mining permit is anticipated to include the necessary permit allowing the large structural fill through the Division of Waste Management as specified in the Coal Ash Management Act of 2014.

- 7. Describe your plan for revegetation or other surface treatment of the affected areas. This plan must include recommendations for <u>year-round seeding</u>, including the time of seeding and the amount and type of seed, fertilizer, lime and mulch per acre. The recommendations must include general seeding instructions for both permanent and temporary revegetation. Revegetation utilizing only tree plantings is not acceptable. Recommendations can be sought from:
 - a. Authorized representatives of the local Soil and Water Conservation District;
 - b. Authorized representatives of the Division of Forest Resources, Department of Environment and Natural Resources;
 - c. Authorized county representatives of the North Carolina Cooperative Extension Service, specialists and research faculty with the Colleges of Agriculture and Life Sciences and Forest Resources at North Carolina State University;
 - d. North Carolina licensed landscape architects;
 - e. Private consulting foresters referred by the Division of Forest Resources, Department of Environment and Natural Resources;
 - f. N.C. Erosion and Sedimentation Control Planning and Design Manual;
 - g. N.C. Surface Mining Manual: A Guide for Permitting, Operation and Reclamation;
 - h. Others as may be approved by the Department.

LIME - RATE OF APPLICATION (tons/acre):

FERTILIZER - ANALYSIS AND RATE OF APPLICATION (pounds/acre):

SEED - TYPE(S) AND RATE(S) OF APPLICATION INCLUDING <u>YEAR-ROUND</u> SEEDING SCHEDULE (pounds/acre): [NOTE: Include Legumes]

Seed Types:

Seeding Dates:

Seeding Rates:

See previously approved plan (attached).

MULCH - TYPE AND RATE OF APPLICATION (pounds/acre) AND METHOD OF ANCHORING:

OTHER VEGETATIVE COVERS – TYPE (S) AND RATE (S) OF APPLICATION INCLUDING SEEDING SCHEDULE (pounds/acre, trees/acre, spacing of trees/shrubs, etc):

Revegetation and/or reforestation plan approved by:				
Signature	See attached	Date		
Print Name				
Title				
Agency				

E. DETERMINATION OF AFFECTED ACREAGE AND BOND

The following bond calculation worksheet is to be used to establish an appropriate bond (based upon a range of \$500 to \$5,000 per affected acre) for each permitted mine site based upon the acreage approved by the Department to be affected during the life of the mining permit. <u>Please insert the approximate acreage, for each aspect of the mining operation, that you intend to affect during the life of this mining permit (in addition, please insert the appropriate reclamation cost/acre for each category from the Schedule of Reclamation Costs provided with this application form) OR you can defer to the Department to calculate your bond for you based upon your maps and standard reclamation costs:</u>

CATEGORY	AFFECTED ACREAGE		RECLAMATION COST/ACRE*	R	RECLAMATION COST
Tailings/Sediment Ponds:	<u>13.24</u> Ac.	Х	\$/Ac.	=	\$ <u>33,100</u>
Stockpiles:	Ac.	Х	\$/Ac.	=	\$ <u></u>
Wastepiles:	Ac.	Х	\$/Ac.	=	\$ <u></u>
Processing Area/Haul Roads:	<u>5.77</u> Ac.	Х	\$/Ac.	=	\$ <u>28,850</u>
Mine Excavation:	<u>125.43</u> Ac.	Х	\$/Ac.	=	\$ <u>464,091</u>
Other:	Ac.	Х	\$/Ac.	=	\$ <u></u>
TOTAL AFFECTED AC.:	<u> 144.44 Ac.</u>				
(TOTAL PERMITTED AC.:	351 Ac.)				

Temporary & Permanent Sedimentation & Erosion Control Measures:

Divide the **TOTAL AFFECTED AC.** above into the following two categories: a) affected acres that drain into proposed/existing excavation and/or b) affected acres that will be graded for positive drainage where measures will be needed to prevent offsite sedimentation and sedimentation to onsite watercourses and wetlands.

Х

a) Internal Drainage _____ Ac.

b) Positive Drainage <u>144.44</u> Ac.

SUBTOTAL COST: \$742,701

Inflation Factor:

0.02 X SUBTOTAL COST: \$14,854.02 X Permit Life (1 to 10 years): 10 years

INFLATION COST:

\$ 148,540.20

1,500.00 = 216,660

TOTAL COST = SUBTOTAL COST + INFLATION COST = \$891,241.20

Total Reclamation Bond Cost: \$	891,200.00
_	(round down to the nearest \$100.00)

F. NOTIFICATION OF ADJOINING LANDOWNERS

The "Notice" form, or a facsimile thereof, attached to this application must be sent certified or registered mail, return receipt requested, to:

- (1) the chief administrative officer of each county and municipality in which any part of the permitted area is located as indicated on the mine map(s);
- (2) all owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary; if an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, all owners of record of tracts adjoining these tracts must be notified (that are within 1,000 feet of the mining permit boundary) as indicated on the mine map(s); and
- (3) all owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary which lie directly across and are contiguous to any highway, creek, stream, river, or other watercourse, railroad track, or utility or other public right-of-way. If an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, all owners of record of tracts adjoining these tracts must be notified (that are within 1,000 feet of the mining permit boundary) as indicated on the mine map(s). "Highway" means a road that has four lanes of travel or less and is not designated as an Interstate Highway.

The only exception to the above method of giving notice is if another means of notice is approved <u>in advance</u> by the Director, Division of Land Resources.

A copy of a tax map (or other alternative acceptable to the Department) must be mailed with the completed "Notice" form (the proposed overall permit boundaries and the names and locations of all owners of record of lands adjoining said boundaries must be clearly denoted on the tax map).

The "Affidavit of Notification" attached to this application must be completed, notarized and submitted to the Department, with the remainder of the completed application form, before the application will be considered complete.

NOTES:

THIS SECTION MUST BE COMPLETED FOR ALL APPLICATIONS FOR NEW MINING PERMITS <u>AND</u> ALL MODIFICATIONS OF A MINING PERMIT TO ADD LAND TO THE PERMITTED AREA, AS **REQUIRED** BY NCGS 74-50(b1).

SEE THE NEXT TWO PAGES FOR THE "NOTICE" FORM AND THE "AFFIDAVIT OF NOTIFICATION"

NOTICE

Pursuant to provisions G.S. 74-50(b1) of The Mining Act of 1971, Notice is hereby given that

of

	has appl	ied on
(Applicant Name)		(Date)
to the Land Quality Section, Division	n of Land Resources, North Carolina De	epartment of Environment
and Natural Resources, 1612 Mail Se	ervice Center, Raleigh, North Carolina	27699-1612, for (check one):
 a <u>new</u> surface mining perm a <u>modification</u> of an existin a <u>modification</u> of an existin in the area proposed. Please allow disturbance within 	nit, ng surface mining permit to add land to ag surface mining permit to add land to th se note that future modification(s) ma this area without re-notification of ac	the permitted area; or ne permitted area with no disturbance by be submitted by the applicant to ljoining landowners.
The applicant proposes to mine	(Mineral, Ore) on (Number	acres located(Miles)

(Direction) in County.

SEE ATTACHED MAP FOR PROPOSED PERMIT BOUNDARIES AND CORRESPONDING ADJOINING LANDOWNER NAMES AND LOCATIONS

(Nearest Town)

In accordance with G.S. 74-50(b1), the mine operator is required to make a reasonable effort, satisfactory to the Department, to notify all owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary; if an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, all owners of record of tracts adjoining these tracts must be notified (that are within 1,000 feet of the mining permit boundary). In addition, the mine operator must also notify the chief administrative officer of the county or municipality in which any part of the permitted area is located. Any person may file written comment(s) to the Department at the above address within thirty (30) days of the issuance of this Notice or the filing of the application for a permit, whichever is later. Should the Department determine that a significant public interest exists relative to G.S. 74-51, a public hearing will be held within 60 days of the end of the 30-day comment period specified above.

A copy of the permit application materials is on file and available for public review during normal business hours at the above listed address as well as at the appropriate regional office. For information regarding the specifics of the proposed mining activity, please contact the applicant at the following telephone number: For information on the mining permit application review process, please contact the Mining Program staff at (919) 707-9220. Please note that the Department will consider any relevant written comments/documentation within the provisions of the Mining Act of 1971 throughout the application review process until a final decision is made on the application.

(Addressee/Owner of Record's Name and Address)

(Name of Applicant: Include Contact Person & Company Name, if Applicable)

(Date of Issuance of this Notice/ Mailed to Addressee/Owner of Record) (Address of Applicant)

_____ off/near road ______

(Number/Name)

AFFIDAVIT OF NOTIFICATION

I, ______, an applicant, or an agent, or employee of an applicant, for a new Mining Permit, or a modification of an existing Mining Permit to add land to the permitted area, from the N.C. Department of Environment and Natural Resources, being first duly sworn, do hereby attest that the following are all known owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary (including, where an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, all owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary) and that notice of the pending application has been caused to be mailed, by certified or registered mail, return receipt requested, to said owners of record at their addresses shown below, such notice being given on a form provided by the Department:

(Adjoining Landowner Name)

(Address)

(Address)

(Attach additional list if necessary)

I do also attest that the following individual is the chief administrative officer of the county or municipality in which any part of the permitted area is located and that notice of the pending application has been caused to be mailed, by certified or registered mail, return receipt requested, to said office at the following address:

(Chief Administrative Officer Name) [i.e.: City Manager, County Manager, Mavor, etc.]

The above attestation was made by me while under oath to provide proof satisfactory to the Department that a reasonable effort has been made to notify all known owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary (including, where an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, all owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary) and the chief administrative officer of the county or municipality in which any part of the permitted area is located in compliance with N.C.G.S. 74-50(b1) and 15A NCAC 5B .0004(d). I understand that it is the responsibility of the applicant to retain the receipts of mailing showing that the above notices were caused to be mailed and to provide them to the Department upon request.

Signature of Applicant or Agent

Date

If person executing	Affidavit is an ag	gent or employe	e of an applicat	nt, provide the foll	lowing information:
Name of applicant:					

Title of person executing Affidavit

I, ______a Notary Public of the County of ______,

Witness my hand and notarial seal, this _____day of _____20___.

Notary:_____ my Commission expires: _____

G. LAND ENTRY AGREEMENT (TRANSFER)

We hereby grant to the Department or its appointed representatives the right of entry and travel upon our lands or operation during regular business hours for the purpose of making necessary field inspections or investigations as may be reasonably required in the administration of the Mining Act of 1971 pursuant to G.S. 74-56.

We further grant to the Department or its appointed representatives the right to make whatever entries on the land as may be reasonably necessary and to take whatever actions as may be reasonably necessary in order to carry out reclamation which the operator has failed to complete in the event a bond forfeiture is ordered pursuant to G.S. 74-59.

LANDOWNI	ER:	APPLICANT	ſ:
Signature:	100 A. B.L	Signature:*(Charle Prece
Print Name:	Gregory A. Bowles	Print Name: _	Charles E. Price
Company (If applicable)	General Shale Brick, Inc.	Title:	Managing Member
Address:	3015 Bristol Highway	Company:	Green Meadow, LLC
	Johnson City, TN. 37601	Mine Name: _	Colon Mine
Telephone:	(423) 282-4661	Telephone:	(502) 245-1353
Date Signed: _	11/14/14	Date Signed:	11-14-14

*Signature must be the same as the individual who signed Page 1 of this application.

<u>One original and five (5) copies of the completed application, six (6) copies of all location maps, mine maps</u> and reclamation maps, and the appropriate processing fee (see next page for fee schedule) in the form a check or money order payable to the North Carolina Department of Environment and Natural Resources must be sent to the <u>Land Quality Section Central Office</u> at the address listed on the front cover of this application form.

Inquiries regarding the status of the review of this application should be directed to the Mining Program staff at (919) 707-9220.

G. LAND ENTRY AGREEMENT (MODIFICATION)

We hereby grant to the Department or its appointed representatives the right of entry and travel upon our lands or operation during regular business hours for the purpose of making necessary field inspections or investigations as may be reasonably required in the administration of the Mining Act of 1971 pursuant to G.S. 74-56.

We further grant to the Department or its appointed representatives the right to make whatever entries on the land as may be reasonably necessary and to take whatever actions as may be reasonably necessary in order to carry out reclamation which the operator has failed to complete in the event a bond forfeiture is ordered pursuant to G.S. 74-59.

LANDOWNER:	APPLICANT:
Signature: Charles Pice	Signature:* Charle Price
Print Name: <u>Charles E. Price</u> (Title, if applicable)	Print Name: <u>Charles E. Price</u>
Company <u>Green Meadow, LLC</u> (If applicable)	Title: <u>Managing Member</u>
Address: <u>12601 Plantside Drive</u>	Company: <u>Green Meadow, LLC</u>
Louisville, KY 40299	Mine Name: <u>Colon Mine</u>
Telephone: (502) 245-1353	Telephone: (502) 245-1353
Date Signed:	Date Signed: 11-14-14

*Signature must be the same as the individual who signed Page 1 of this application.

<u>One original and five (5) copies of the completed application, six (6) copies of all location maps, mine maps</u> and reclamation maps, and the appropriate processing fee (see next page for fee schedule) in the form a check or money order payable to the North Carolina Department of Environment and Natural Resources must be sent to the <u>Land Quality Section Central Office</u> at the address listed on the front cover of this application form.

Inquiries regarding the status of the review of this application should be directed to the Mining Program staff at (919) 707-9220.

MINING FEE SCHEDULE

A nonrefundable permit application processing fee when filing for a new mining permit, a major permit modification or a renewal permit is required as follows:

	<u>0-25 acres</u>	<u>26+acres</u>
New Permit Applications	\$3,750.00	\$5,000.00
Permit Modifications	\$750.00	\$1,000.00
Permit Renewals	\$750.00	\$1,000.00
Transfers/Minor Modifications*	\$100.00	\$100.00

* A nonrefundable \$100.00 permit application processing fee is required for minor permit modifications. Minor permit modifications include ownership transfers, name changes, bond substitutions and permit renewals where the mine is inactive and fully stabilized. A minor permit modification also includes lands added to a permitted area, outside of the minimum permit buffer zone requirements, where no plans for mining related disturbance of the added lands have been approved. All other changes are considered major permit modifications.

Acres for new permits and renewal permits means the total acreage at the site. Acres for major modification of permits means that area of land affected by the modification within the permitted mine area, or any additional land that is to be disturbed and added to an existing permitted area, or both.

There are seven Land Quality Section (LQS) Regional Offices. Use the map below to locate the Regional Office serving your county.

Asheville Regional Office

- Counties: Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Graham, Haywood, Henderson, Jackson, Macon, Madison, McDowell, Mitchell, Polk, Rutherford, Swain, Transylvania, Yancey
- Address: 2090 U.S. Highway 70, Swannanoa, NC 28778
- Voice: 828.296.4500
- FAX: 828.299.7043

Fayetteville Regional Office

- Counties: Anson, Bladen, Cumberland, Harnett, Hoke, Montgomery, Moore, Richmond, Robeson, Sampson, Scotland
- Address: 225 Green Street, (Systel Building), Suite 714, Fayetteville, NC 28301-5094
- Voice: 910.433.3300
- FAX: 910.486.0707

Mooresville Regional Office

- Counties: Alexander, Cabarrus, Catawba, Cleveland, Gaston, Iredell, Lincoln, Mecklenburg, Rowan, Stanly, Union
- Address: 610 East Center Ave., Suite 301, Mooresville, NC 28115
- Voice: 704.663.1699
- FAX: 704.663.6040

Raleigh Regional Office

- Counties: Chatham, Durham, Edgecombe, Franklin, Granville, Halifax, Johnston, Lee, Nash, Northampton, Orange, Person, Vance, Wake, Warren, Wilson
- Address: 1628 Mail Service Center, Raleigh, NC 27699-1628 or 3800 Barrett Drive, Raleigh, NC 27609
- Voice: 919.791.4200
- FAX: 919.571.4718

Washington Regional Office

- Counties: Beaufort, Bertie, Camden, Chowan, Craven, Currituck, Dare, Gates, Greene, Hertford, Hyde, Jones, Lenoir, Martin, Pamlico, Pasquotank, Perquimans, Pitt, Tyrrell, Washington, Wayne
- Address: 943 Washington Square Mall, Washington, NC 27889
- Voice: 252.946.6481
- FAX: 252.975.3716

LAND QUALITY REGIONAL OFFICES (continued)

Wilmington Regional Office

- Counties: Brunswick, Carteret, Columbus, Duplin, New Hanover, Onslow, Pender
- Address: 127 Cardinal Drive Extension, Wilmington, NC 28405
- Voice: 910.796.7215
- FAX: 910.350.2018

Winston-Salem Regional Office

- Counties: Alamance, Alleghany, Ashe, Caswell, Davidson, Davie, Forsyth, Guilford, Rockingham, Randolph, Stokes, Surry, Watauga, Wilkes, Yadkin
- Address: 585 Waughtown Street, Winston-Salem, NC 27107
- Voice: 336.771.5000
- FAX: 336.771.4631

SCHEDULE OF RECLAMATION COSTS (Based upon range of \$500 - \$5,000 per affected acre)

COMMODITY CODES: SG = Sand and/or Gravel, <math>GS = Gemstone, Borrow = Borrow/fill dirt, <math>CS = Crushed Stone, DS = Dimension Stone, FS = Feldspar, MI = Mica, LI = Lithium, PF = Pyrophyllite, OL = Olivine, KY = Kyanite/Sillimanite/Andalusite, PH = Phosphate, CL = Clay/Shale, PE = Peat, AU = Gold, TI = Titanium, and OT = Other

Туре	T/S Ponds	S.piles	W.piles	P.area/H.R.	Mine Excav.
SG, GS,	\$500/ac.(L)	\$1800/ac.	\$2000/ac.	\$1800/ac.	\$500/ac.(L)
Borrow	1500(FI)				\$2000(PD)
CS, DS,	500(L)	1800	2000	2000	500(L)
FS, MI,	1500(FI)				2500(PD)
LI, PF, OL, KY					
PH	1000(L)	2500	5000	5000	2000(L)
	2500(FI)				5000(PD)
CL	1000(L)	2500	5000	5000	2000(L)
	2500(FI)				3700(PD)
PE, AU,	1000(L)	2500	3000	3500	2000(L)
TI, OT	2500(FI)				5000(PD)

(L) = reclamation to a lake and revegetating sideslopes

(FI) = reclamation by filling in and revegetating

(PD) = reclamation by grading for positive drainage & revegetating

AS PER NCAC 15A 5B.0003, IF YOU DISAGREE WITH THE BOND AMOUNT DETERMINED BY THE BOND CALCULATION WORKSHEET, YOU MAY SUBMIT AN ESTIMATE OF RECLAMATION COSTS FROM A <u>THIRD PARTY CONTRACTOR</u>. SAID ESTIMATE MUST BE PROVIDED <u>WITHIN 30 DAYS</u> TO THE FOLLOWING ADDRESS: Mining Program, Land Quality Section, 1612 Mail Service Center, Raleigh, North Carolina 27699-1612

ALL ESTIMATES MUST INCLUDE THE FOLLOWING, AS A MINIMUM:

- FINAL GRADING COSTS PER ACRE
- LIME AND FERTILIZER COSTS PER ACRE
- YEAR-ROUND SEEDING MIXTURE COSTS PER ACRE (FROM APPROVED REVEGETATION PLAN IN APPLICATION/PERMIT DOCUMENT)
- MULCH AND ANCHORING COSTS PER ACRE
- ANY OTHER RECLAMATION COSTS NECESSARY TO COMPLY WITH THE APPROVED RECLAMATION PLAN FOR THE SITE IN QUESTION

YOU WILL BE NOTIFIED AS SOON AS POSSIBLE OF THE DIRECTOR'S FINAL BOND DETERMINATION.
Vegetation Plan

- 1. Spread topsoil over disturbed areas and leave surface reasonably smooth and uniform.
- 2. Scarify surface to prepare a seedbed four to six inches deep. Use such equipment as tilling, disking, tracing, Or the teeth on a front end loader.
- 3. Mix lime and fertilizer with the soil during seedbed preparation.
- 4. Seed on freshly prepared seedbed following the application rates for the appropriate season.
- 3. Mulch all seeded areas immediately.
- 5. Tack mulch on slopes 3:1 (Horizontal: Vertical) or steeper by spraying with emulsified asphalt. Use an Anchoring tool such as a farming disc set in a vertical position on slopes less than 3:1. Mulch netting may Also be used on slopes.
- 4. Inspect seeded areas and make repairs within the planting season. If vegetation is over 60% damaged, Repeat steps 2 through 5.
- 8. Permanent revegetation shall be accomplished at the specified times of the year. Temporary vegetation shall be applied outside of the optimal times for establishment of permanent vegetation

9. Seeding Schedule. <u>TEMPORARY SEEDING SCHEDULE</u>

Seeding Date: August 15 to December 15

Seed Type	Rate
Rye (grain)	120 lbs. /acre
10-10-10 Fertilizer	1,000 lbs. /acre
Lime	2,000 lbs. /acre
Mulch	4,000 lbs. /acre

Seeding Date: January 1 to May 1

Rate
120 lbs. /acre
2,000 lbs. /acre
750 lbs. /acre
4,000 lbs. /acre

Seeding Date: May 1 to August 15

Seed Type German Millet 10-10-10 Fertilizer Lime . Mulch

Rate 40 lbs. /acre 750 lbs. /acre 2,000 lbs. /acre 4,000 lbs. /acre

Possible

PERMANENT SEEDING SCHEDULE

Seeding Date: Best Fall: August 25- September 15 August 20- October 25 Late Winter: February 15- March 21 February 1- April 15

Seed Type	Rate
Tall Fescue	100 lbs. /acre
Serica Lespedeza	30 lbs. /acre
Kobe Lespedeza	10 lbs. /acre
10-10-10 Fertilizer	1,000 lbs. /acre
Lime	3,000 lbs. /acre
Mulch	4,000 lbs. /acre

Note 1: Fertilizer and lime application rates may deviate from above if soils are analyzed for optimum rates.

Mulch shall be tacked with emulsified asphalt at rate of 14 to 28 gallons/1,000 sq. ft. on slopes of 3:1 Note 2: (H: V) or steeper.

After August 15, use Unscarified Sericea seed for permanent seeding period. Note 3:

Revegetation plan approved by:

ligte uli Signature:

Date: 03/25/14

Permanent and Temporary revegetation plan based on guidelines in Erosion and Sediment Control Note: Planning and Design Manual.

Correspondence

Colon Mine Site

Charah, Inc.

Sanford, NC

=

November 2014

Correspondence

Future correspondence regarding review and approval of this permit documentation will be placed in this section.

Calculations

Colon Mine Site

Charah, Inc.

Sanford, NC

November 2014

Table of Contents

- A. Stability
 - Slope Stability Analyses
- B. Stormwater

•

- Subcell Divider Berms
- Stormwater Pipe Perforations and Sizing
- Stormwater Management System
 - Time of Concentration
 - Perimeter Channels
 - Side Slope Swales
 - Slope Drains
 - Drop Inlets
 - Apron Outlets
 - Reference Material
 - Sediment Basins
 - Calculations
 - Rainfall Data and Curves
 - Outlet Protection
 - NRCS Soils Report
 - USGS Map

A Stability

Slope Stability Analysis

HDR Computation

Project:	Charah Colon Mine Structural Fill	Computed By:	TMY	Date:	10/27/2014
Subject:	Permit Application	Checked By:	КР	Date:	10/29/2014
Task:	Slope Stability Analyses	Sheet:		Of:	3

Objective:

Evaluate the slope stability of the proposed coal ash structural fill. Evaluate both global stability of the foundation soils, the stability of the structural fill ash slope, and the sliding block stability of the ash along the bottom liner system using PCSTABL 5M and the STEDwin editor (Ref. 3).

References:

1. Naval Facilities Engineering Command (1986). Design Manual 7.01 - Soil Mechanics.

2. Bowles, J.E. (1984). Physical and Geotechnical Properties of Soils. McGraw-Hill.

3. Van Aller, H.W. (1999 - 2013). STEDwin 2.88 (32 bit), The Smart Editor for PCSTABL 5M. Annapolis Engineering Software.

4. Naval Facitities Engineering Command (1982). Design Manual 7.02 - Foundations and Earth Structures.

5. Koerner, G.R. and D. Narejo (2005). Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces. GRI Report #30.

Steps:

1. Estimate subsurface conditions beneath the structural fill using soil boring logs provided by Buxton Environmental, Inc. (see Attachment A). Based on the boring logs, the typical soil profile for the site consists of approximately 5' soil horizon consisting of medium silty and clayey soils underlain by approximately 10' of stiff residuum. Hard partially weathered rock (PWR) underlies the residuum. For the purposes of global stability, it is assumed that failure surfaces will not penetrate the PWR. The estimated intervals of the soil horizon, residuum, and PWR are shown in Attachment A.

2. Estimate the coal ash parameters for input into PCSTABL 5M using physical characterization testing information provided by Charah for samples obtained at the Riverbend Steam Station. This testing information, performed by Geotrack Technologies, Inc., is provided in Attachment B. An estimate of the compacted unit weight (γ) of the ash was obtained based on the results of a standard Proctor test assuming the material would be placed at maximum dry density and optimum moisture content. Total and effective stress strength properties of the coal ash were obtained from the Triaxial Shear Test reports provided in Attachment B. The total stress parameters are applicable for undrained conditions when loading occurs over a relatively short time which leads to the development of excess pore water pressures within the ash. The effective stress parameters are applicable for drained conditions when loading occurs over a sufficient amount of time to allow excess pore water pressures to dissipate. Since typical hydraulic conductivity values for fly ash generally range between 1x10-4 to 1x10-5 cm/sec, it is not clear whether undrained or drained conditions will develop within the ash therefore both sets of parameters were analyzed. The assumed values for unit weight (γ), friction angle (ϕ), and cohesion (c) for the ash are provided below:

Compacted Ash (Total Stress): $\gamma = 83.8 \text{ pcf}$, $\phi = 8^{\circ}$, c = 4,300 psfCompacted Ash (Effective Stress): $\gamma = 83.8 \text{ pcf}$, $\phi = 22^{\circ}$, c = 2,600 psf

3. Estimate foundation soil parameters for input into PCSTABL 5M. Use Ref. 1 to correlate γ based with soil type (see Attachment C). From information provided in soil borings (Attachment A), which includes geotechnical laboratory classification data, use Attachments D and E to correlate total and effective stress parameters for the soil horizon and residuum, respectively (see Ref. 2). Note that in Attachment D, c = 1/2 q_u where q_u is the unconfined compressive strength of the soil. Since the PWR at the site is classified as "hard" with blowcounts generally in excess of 50/6in, it is assumed that failure surfaces will not enter the PWR and therefore parameters were not assigned to this layer. Since the foundation soils are generally fine grained at the site, it is not clear whether undrained or drained conditions will develop within the soils, therefore both sets of parameters were analyzed. The assumed values for unit weight (γ), friction angle (ϕ), and cohesion (c) for the foundation soils are provided below:

Soil Horizon (Total Stress): $\gamma = 120 \text{ pcf}$, $\phi = 0^\circ$, c = 470 psfSoil Horizon (Effective Stress): $\gamma = 120 \text{ pcf}$, $\phi = 31^\circ$, c = 0Residuum (Total Stress): $\gamma = 130 \text{ pcf}$, $\phi = 0^\circ$, c = 1,045 psfResiduum (Effective Stress): $\gamma = 130 \text{ pcf}$, $\phi = 32^\circ$, c = 0 psf

4. Estimate soil parameters for the compacted soil berm that will be constructed along the perimeter of the structural fill. Assume on site soils consisting of predominantly clayey and silt soils will be used. Use Attachment F (Ref. 1) to obtain obtain estimated strength parameters and Attachment C to estimate γ as shown below:

Compacted Clayey Fill: γ = 125 pcf, ϕ = 28°, c = 1,800 psf

HDR Computation

Project:	Charah Colon Mine Structural Fill	Computed By:	TMY	Date:	10/27/2014
Subject:	Permit Application	Checked By:	КР	Date:	10/29/2014
Task:	Slope Stability Analyses	Sheet:		Of:	3

5. Estimate soil parameters for the final cover soils. Since a variety of soils may be used for final cover and considering that a high degree of compaction of the final cover probably can not be achieved without the risk of damaging the underlying geomembrane, conservatively assume the following parameters:

Final Cover soils: $\gamma = 120 \text{ pcf}, \phi = 30^{\circ}$, c = 0 psf

6. Determine critical liner interface for sliding block analyses. A detail of the proposed liner system is provided below. Determine typical interface strength parameters for each interface based on Attachment G (Ref. 5) for each interface as shown below. Use peak parameters which are appropriate to use before failure initiates. Based on this information, the critical (i.e. lowest strength) interface is between the textured 60 mil HDPE geomembrane and the saturated cohesive soil. Therefore, use these parameters for the critical interface.

 $\begin{array}{l} \mbox{Geocomposite/Granular Soil Interface: $\phi = 33^\circ$, $c = 0$ \\ \mbox{Critical} \rightarrow \mbox{Geocomposite/Textured HDPE Interface: $\phi = 26^\circ$, $c = 0$ \\ \mbox{Textured HDPE/Saturated Reinforced GCL: $\phi = 23^\circ$, $c = 167$ psf} \\ \mbox{Saturated Reinforced GCL/Saturated Cohesive Soil: $\phi = 29^\circ$, $c = 0$ \\ \end{array}$

7. Determine most critical cross-section for stability analysis. Factors to consider include proposed ash height, liner slope, foundation conditions, perimeter berm height, and water table location. Using this criteria, a critical stability section was selected along the northern side of the structural fill. The location of this section is shown superimposed on the Basegrade Plan (Attachment H), the Proposed Final Closure Plan (Attachment I), and a groundwater contour map (Attachment J). This section (north slope) represents the greatest depth of waste that will be placed and therefore the greatest amount of driving forces leading to potential failure. The section also represents an area where the perimeter berm will be constructed above existing grade and therefore there will be less buttressing effect at the toe of the slope.

8. Determine the peak ground accelleration for the site for use in the seismic stability analyses. From Attachment K (Ref. 6), the estimated peak ground acceleration for the site with a 2% probability of exceedance in 50 years (equivalent to 10% probability of exceedance in 250 years) is 0.09g. This values was entered as a horizontal pseudo-static coefficient in the PCSTABL 5M seismic analyses.

9. Using the information developed in Steps 1 through 7, input the data into PCSTABL 5M using the STEDwin editor (Ref. 3). Evaluate the both the global stability of the foundation soils beneath the structural fill as well as the stability of the ash slope and sliding block failure along the bottom liner system.

Results/Conclusions

Plots showing the output results from the PCSTABL 5M analyses for the global, ash slope, and sliding block stability under both static and seismic conditions are attached to this calculation. The minimum factors of safety are summarized in the table below. The most critical analysis was for the sliding block failure along the bottom liner system under effective stress conditions with factors of safety of 4.33 and 3.03 for static and seismic conditions, respectively. The generally accepted minimum static and seismic factors of safety for landfill stability are 1.5 and 1.0, respectively. Since the calculated factors of safety exceed the minimum acceptable, the proposed structural fill is adequately stable.

Since the interface shear strength parameters for the liner system components can vary significantly based on soil and product properties, it is helpful to determine the minimum ϕ value required for the interfaces to achieve an adequate factor of safety. The last two plots show the minimum ϕ required to achieve factors of safety of 1.5 and 1.0 for static and seismic analyses, respectively. The plots show that along the critical cross section, very little friction is required along the bottom liner interfaces due to the buttressing effect of the perimeter berm. Due to variations of slope along the structural fill liner system and temporary loading conditions during filling, however, it is recommended that a minimum bottom liner interface ϕ of 26 be required. This requirement should be confirmed by project specific interface shear strength testing.

HDR Computation

Project:	Charah Colon Mine Structural Fill		Computed By: TMY	Date:	10/27/2014
Subject:	Permit Application		Checked By: KP	Date:	10/29/2014
Task:	Slope Stability Analyses	5	Sheet:	Of:	3
	Analysis	Static FS	Seismic FS		
	Global/Static/Total Stress	4.72	3.21		
	Global/Static/Effective Stress	4.95	3.49		
	Ash Slope/Static/Total Stress	4.50	3.08		
	Ash Slope/Static/Effective Stress	5.20	3.69		
	Sliding Block/Static/Total Stress	5.02	3.55		
	Sliding Block/Static/Effective Stress	4.33	3.03 ←Critical	Analysis	
	Minimum φ Required for Static FS = 1.5	0°			
	Minimum ϕ Required for Seismic FS = 1.0	0°			

Charah Colon Mine Structural Fill Global - Static (Total Stress)

Charah Colon Mine Structural Fill Sliding Block - Seismi (Effectiv Stress)

Sandord Mine Reclamation Site 300 20 (r) work comina Sandord, North Carolina Date Startic: 17/15/1 Deline Yame: North Carolina 17/15/1 Deline Yame: North Carolina Logard 5: 17/15/1 Press Company: North Carolina 12/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: Sandor 17/15/14 Deline Yame: North Carolina Logard 5: 17/15/14 Deline Yame: Sandor 17/15/16/16/16/16/16/16/16/16/16/16/16/16/16/	3	Cor Ch Ch Ph bu:	arlotte (704)	Services th Blvd., North C 344-1450 v@bellsc	Suite arolin Fax	nental, Inc. 101 a 28203 (704) 344-1451 at		Boring Lo	og, PZ-1	(Page 1 of 1)			
Image: Signal of the second secon		Sanf S	ord Mi 1303 Sanford	ine Recla Brickyard d, North	amatio d Roa Caroli	on Site d na	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/15/14 7/15/14 Red Dog Drilling Mark Seiler n: 2789A	Logged By: Drilling Metho Top-of-Casin Ground Surfa Natural, Cut,	: Ross Klingman, P.G. bd: : HSA; CME-45C g Elev.: : 269.36'(Lawrence Survey) ace Elev.: : 266.78'(Lawrence Survey) Fill Grade:: Fill (road bed)			
0 266.78 35 14 dry, very hard; red (2.5YR 4/6) with brown mottles; fine to carse sandy sitty clay with brick gravel fragments; cohesive, medium plasticity, clay with brick gravel fragments; cohesive, medium plasticity, charge static stringers; quart gravely sitty velay; high plasticity; cohesive; Fill 6 Casing (2" Dia. Sch. 40 PVC 10 256.78 7 55 16 moist; stiff, reddish yellow (5YR 6/6) with white and rust mottles and stringers; sitty clay; medium plasticity; cohesive; Fill Casing (2" Dia. Sch. 40 PVC 10 256.78 50 10 moist; very hard; yellowish red (5YR 4/6) with white and rust mottles and stringers; sitty clay; medium plasticity; cohesive; Fill Casing (2" Dia. Sch. 40 PVC 15 251.78 50/4* 55 10 moist; very fine mice sandy sitty clay with brack stringers; horizonial fissle; very fine mice sandy sitty clay with brack stringers; horizonial fissle; very fine mice sandy sitty clay with white gravel; gravel; to vplasticity; cohesive; Partially Weathered Rock; Lab Results; PZ-1 Bag (19-20); USCS-SC, Gravel-12, 1%; Sand-39, 5%; Sitt-22 7%; Clay=-6, 3%; Sitt-22 7%; Clay=-6, 3	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	16.17' bgs = 8.89' bgs Lithologic I	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well: TOC	: PZ-1 Elev.: 269.36			
5 261.78 8 16 moist; very stiff; reddish brown (2.5 YR 4/3) with orange and yallow mottles and black vertical stringers; quartz gravelly silty clay, high plasticity; cohesive; Fill Casing (2" Dia. Sch. 40 PVC 10 256.78 58 18 moist; stiff; reddish yellow (5YR 6/6) with white and rust mottles and stringers; and stringers; silty clay, medium plasticity; cohesive; Fill Casing (2" Dia. Sch. 40 PVC 15 251.78 50/4* SS 10 moist; very hard; yellowish red (5YR 4/6) with black stringers; horizontal fissle; very fine mics sandy silty clay with large quartz gravel; low plasticity; cohesive; Partially Weathered Rock. (Lab Results: P2-1 Bag (19-20); USC-55C; Caravel 21:14; Sand-58.94; Silt=22.7%; Clay=6.3%; Effective Porosity=26%; Atterberg Limits: P1-17, L1-29, P1=12) Bentonite Seal 25 241.78 50/4* SS, BAC 10 dry, very compact; reak red (2.5YR 4/6) with while mottles and specks; horizontal fissle; quartz gravely clayy silt; tow plasticity; cohesive; P1-17, L1-29, P1=12) W2 Silica Sand Pack 26 241.78 50/4* SS, BAC 10 dry, very compact; weak red (105 R4/4); weathered Rock; (Lab Results: P2-1 Bag (10-20); USC-55%; Caravel and Da Results: P1-17, L1-29, P1=12) W2 Silica Sand Pack 26 241.78 50/4* SS, BAC 10 dry, very compact; weak red (105 R4/4); weathered Rock; Lab Results: P1-21, P1-20; P1-13) Total Depth (bgs.) = 29.55* 30 236	0	- 266.78	4335	SS	14	dry; very hard; sandy silty clay plasticity; Fill	red (2.5YR 4/6) with I with brick gravel frag	brown mottles; fine to carse gments; cohesive; medium		6" Dia. Hollow-Stem Auger Boring			
10 256.76 Image: Simple Simpl	5-	- 261.78	50	SS	16	moist; very stif yellow mottles clay; high plas	f; reddish brown (2.5 ¹ and black vertical stri lcity; cohesive; Fill	YR 4/3) with orange and ngers; quartz gravelly silty					
15 251.78 50 ⁷ /4" SS 10 moist; very hard; yellowish red (5YR 4/6) with black stringers; horizontal fissle; very fine mice sandy silty clay with large quartz gravet; low plasticity; cohesive; Partially Weathered Rock Bentonite Seal 20 246.78 50 ⁷ /4" SS, BAG 8 dry; very compact; red (2.5YR 4/6); clayey silty medium sand; no plasticity or cohesion; Partially Weathered Rock; (Lab Results: PZ-1 Bag (19-20); USCS=SC, Gravel=12, 1%; Sand=58.9%; Silt=22.7%; Clay=2.7%; Clay=6.3%; Effective Porosity=26%; Atterberg Limits: PL=17, LL=29, Pl=12) #2 Silica Sand Pack 25 241.78 50 ⁷ /1" SS, BAG 10 dry; very compact; weak red (2.5YR 4/6) with while mottles and specks; horizontal fissle; quartz gravelly clayey silty or plasticity; cohesive; Partially Weathered Rock; (Lab Results: PZ-1 Bag (124-25); USCS=CL; Sand=38.9%; Silt=47.1%; Clay=14.0%; Effective Porosity=15%; Atterberg Limits: PL=17, LL=30, Pl=13) #2 Silica Sand Pack 30 236.78 50 ⁷ /4" SS a d wet; weak red (10R 4/4); weathered Rock Auger Refusal @ 30' 40 226.78	10-	- 256.78	13	758 13	758	758	SS	18	moist; stiff; red and stringers; a	ddish yellow (5YR 6/6) with white and rust mottles silty clay; medium plasticity; cohesive; Fill			Casing (2" Dia. Sch. 40 PVC;
20 246.78 s0/4* SS,BAG 8 dry; very compact; red (2.5YR 4/6); clayey silty medium sand; no plasticity or cohesion; Partially Weathered Rock; (Lab Results: P2-1 Bag (19-20); USCS=SC, Grave=12.1 %; Silt=22.7%; Clay=6.3%, Effective Porosity=26%; Atterberg Limits: P1=17, LL=29, P1=12) 25 241.78 50/1* SS, BAG 10 dry; very compact; weak red (2.5YR 4/6) with white motiles and specks; horizontal fissle; quartz gravelity clayey silt; low plasticity; cohesive; Partially Weathered Rock; (Lab Results: P2-1 Bag (124-25); USCS=CL, Sand=38.9%; Silt=47.1%; Clay=14.0%; Effective Porosity=15%; Atterberg Limits: P1=17, LL=30, P1=13) -#2 Silica Sand Pack 30 236.78 60/.5* SS 4 wet; weak red (10R 4/4); weathered Rock Auger Refusal @ 30' 40 226.78 231.78 231.78 Auger Refusal @ 30' -	15-	- 251.78	50/4"	SS	10	moist; very har horizontal fissle gravel; low plas	noist; very hard; yellowish red (5YR 4/6) with black stringers; orizontal fissle; very fine mica sandy silty clay with large quartz ravel; low plasticity; cohesive; Partially Weathered Rock						
25 241.78 50/1" SS, BAG 10 dry; very compact; weak red (2.5YR 4/6) with white mottles and specks; horizontal fissle; quartz gravelly clayey silt, low plasticity; cohesive; Partially Weathered Rock; (Lab Results; PZ-1 Bag (24-25); USCS=CL, Sand=38.9%; Silt=47.1%; Clay=14.0%; Effective Porosity=15%; Atterberg Limits: PL=17, LL=30, PI=13) 50/.5" SS 4 wet; weak red (10R 4/4); weathered mudstone with quartz and phyllite gravel; Partially Weathered Rock Auger Refusal @ 30' Total Depth (bgs.) = 29.55' Auger Refusal @ 30'	20	- 246.78	7 50/4"	SS,BAG	8	dry; very comp plasticity or cof PZ-1 Bag (19-2 Silt=22.7%; Cla	act; red (2.5YR 4/6); c lesion; Partially Weat 0'); <mark>USCS=SC;</mark> Grave ly=6.3%; Effective Po	clayey silty medium sand; no hered Rock; (Lab Results: el=12.1%; Sand=58.9%; rosity=26%; Atterberg Limits:					
30 - 236.78 50/.5" SS 4 wet; weak red (10R 4/4); weathered mudstone with quartz and phyllite gravel; Partially Weathered Rock Auger Refusal @ 30' 40 - 226.78	25	- 241.78	50/1"	SS, BAG	10	PL=17, LL=29, dry; very compa specks; horizor cohesive; Partii (24-25'); USCS	PI=12) act; weak red (2.5YR tal fissle; quartz grav ally Weathered Rock; =CL; Sand=38.9%; S	4/6) with white mottles and elly clayey silt, low plasticity; (Lab Results: PZ-1 Bag ilt=47.1%; Clay=14.0%;		-#2 Silica Sand Pack Screen (10' section of 2" Dia. Sch. 40 PVC)			
Auger Refusal @ 30' 35 - 231.78 40 - 226.78	30-	236.78	50/.5"	SS	4	wet; weak red (phyllite gravel;	10R 4/4); weathered i Partially Weathered R	mudstone with quartz and Rock		Total Depth (bgs.) = 29.55'			
40-226.78	35	231.78				Auger Refusal	@ 30'						
	40	226.78											

	C P b	harlott h (704 uxtone	e, North) 344-14 nv@bel	So F South	liaa 28203 ax (704) 344-1451 net		(Page 1 of 1)				
	Sar	ford M 1303 Sanfo	Aine Re Bricky rd, Nort	clama ard R h Car	ation Site oad rolina	Date Started: Date Completed Drilling Compan Drillers Name: NC Driller Certifi	7/15/14 Red Dog Drilling Mark Seiler cation: 2789A	Logged B Drilling M Top-of-Ca Ground S Natural, C	ty: Ross Klingman, P.G. lethod: HSA; CME-45C asing Elev.: 276.93/276.94' surface Elev.: 274.31' Cut, Fill Grade: Fill (road bed)		
Jepth (feet bgs.)	clevation (feet asl.)	slow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample		Well1: PZ-2s Well2: PZ-2 TOC Elev.:Cover			
0	- 274.31	18 24	SS	21	dry; compact; red clayey silt with gr cohesion; Fill	dish yellow (7.5 avel and brick fra	YR 6/8); horizontal fissle; agments; no plasticity or	jdł	6" Dia. Hollow-Stem Auger Boring Grout		
5-	- 269.31	14 8 18 3	SS	20	moist; very stiff; b mottles; quartz gr organic odor; low	rown (10YR 5/3) avelly fine sandy plasticity; cohes	with gray and white r clayey silt with roots and ive; Fill		Bentonite Seal		
10	- 264.31	446	SS,ST	20,24	moist; stiff; brown light orange mottl	ish yellow (10YF es; coarse quart e: Flood Plain: (R 6/6) with light gray and zsandy clayey silt; low ab Results: P2-2 UD (9-11'):	-	#2 Silica Sand Pack Screen (10' Section of 2" Di Sch. 40 PVC)		
15-	- 259.31	30 50/4"	SS	12	USCS=CH; Grave Clay=42.4%; Spe 6.23 x 10-5 cm/se Porosity=2%; Atte	el=2.1%; Sand= cific Gravity=2.6 c; Total Porosity erberg Limits: PL	15.3%; Silt= 40.2%; 6' Hydraulic Conductivity= =40.7%; Effective =25, LL=50; PI=25)		Casing (2" Dia. Sch. 40 PV(
					dry; very hard; ye horizontal planes plasticity; cohesiv	lowish red (5YR between fissle la e; Partially Weal	4/6) with black manganese ayers; clayey silt; low hered Rock		Bentonite Seal		
20	- 254.31	1220	SS	16	moist; hard; red (2 low plasticity; coh	2.5YR 5/6) with y esive <mark>: Residuum</mark>	ellow stringers; silty clay; ("L	71			
25	- 249.31	260	SS	18	moist; hard; reddi and black stringer low plasticity; coh	sh brown (2.5YR s; horizontal fiss esive; <mark>Residuum</mark>	5/4) with light green gray le; fine sandy clayey silt;		#2 Silica Sand Pack Screen (10' Section of 2" Dia Sch. 40 PVC)		
30-	244.31	17 50/2"	SS,BAG	14	wet; very hard; red cohesive; Partially (29-30.5'); USCS= Effective Porosity=	d (2.5YR 4/8); sil Weathered Roo CL; Sand=2.2% =4; Atterberg Lin	t <mark>y clay;</mark> low plasticity; k; (Lab Results: PZ-2 Bag ; Silt=70.7%; Clay=27.1%; hits= PL=22, LL=43, PI=21)		Total Depth (bgs.) = 30.10		
35	239.31				Auger Refusal @	30.5'					
40	234.31										
-											

Sanford Mine Reclamation Sile Sanford, North Carolina Logade 6y. Sanford, North Carolina Sanford, North Carolina Date Sintet: Sanford, North Carolina Use Sinter Carolina Use Sinter Carolina Use Sinter Carolina Use Sinter Carolina Colspan="2">Colspan="2">Logade 6y. Top-of-Casing But Carolina Sinter Carolina Use Sinter Carolina Colspan="2">Colspan="2" Sint Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th <="" colspan="2" th=""><th>2</th><th></th><th>Onsultin 101 Sc Charloth Ph (704 puxtone</th><th>g Services buth Blv te, North) 344-14 nv@bel</th><th>d., Sui n Caro 450 Fi Ilsouth</th><th>ite 101 Ilina 28203 ax (704) 344-1451 net</th><th></th><th>Boring Log</th><th>g, PZ-3s and 3 (Page 1 of 1)</th></th>	<th>2</th> <th></th> <th>Onsultin 101 Sc Charloth Ph (704 puxtone</th> <th>g Services buth Blv te, North) 344-14 nv@bel</th> <th>d., Sui n Caro 450 Fi Ilsouth</th> <th>ite 101 Ilina 28203 ax (704) 344-1451 net</th> <th></th> <th>Boring Log</th> <th>g, PZ-3s and 3 (Page 1 of 1)</th>		2		Onsultin 101 Sc Charloth Ph (704 puxtone	g Services buth Blv te, North) 344-14 nv@bel	d., Sui n Caro 450 Fi Ilsouth	ite 101 Ilina 28203 ax (704) 344-1451 net		Boring Log	g, PZ-3s and 3 (Page 1 of 1)
Image: Sector Construction Image: Sector Construction Sample Type Image: Sector Construction Image: Sector Construction Sector Construction Image: Sector Construction Image: Sector Construction Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Image: Sector Construction Sector Construction Sector Constructi		Sa	nford M 1303 Sanfo	Aine Re 3 Bricky rd, Nor	clama ard R th Car	ation Site oad rolina	Date Started: Date Completed Drilling Compar Drillers Name: NC Driller Certil	: 7/16/14 d: 7/18/14 iy; Red Dog Drilling Mark Seiler fication: : 2789A	Logged By: Ross Klingman, P Drilling Method: HSA; CME-45C Top-of-Casing Elev.: 299.12/299.29 Ground Surface Elev.: 296,20 Natural, Cut, Fill Grade:: slight cut		
B B B B B Child Construction 0 208 2 4 55.5T 16.24 moist:sitf; yellowish red (5YR 5/6) with light gray and orange yellow motiled; fine to coarse sandy gravely clayey sill; low 20; clayed 374; Specific Construction 20 20 20 21.2 4 55.5T 16.24 Specific Construction 20 20 21.2 4 55.5T 16.25 Specific Construction 20 20 21.2 4 55.5T 16.25 Specific Construction 20 20 20 20.25 26.2 17.85 14.15 21.27 1.24.48 PIPE30100 25.77 16.01 25.77 10.01 25.77 10.01 25.77 10.01 25.77 10.01 20.75 20 27.85 10.01 </td <td>th (feet bgs.)</td> <td colspan="4">th (feet bgs.) attion (feet ast.) attion (feet ast.) attion (feet ast.) A Count/6-inches attion (feet ast.) A Source (in.) A Source (i</td> <td>Water Levels</td> <td>y/36.11'bgs dry/<mark>30.91' bgs</mark></td> <td>Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample</td> <td>Well1: PZ-3s Well2: PZ-3 TOC Elev Cover</td>	th (feet bgs.)	th (feet bgs.) attion (feet ast.) attion (feet ast.) attion (feet ast.) A Count/6-inches attion (feet ast.) A Source (in.) A Source (i				Water Levels	y/36.11'bgs dry/ <mark>30.91' bgs</mark>	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well1: PZ-3s Well2: PZ-3 TOC Elev Cover		
0 298 2 Image: Start 16.24 moist: stiff: yellowish red (5YR 5/6) with light gray and orange yellow motiled; fine to coarse sandy gravelly calus; P2-3 UD (6-27); USCS-CL: Sand-6 7/%; Silt=22.8%; Clay=40.5%; Specific Image: Clay=200 - 276.2 Image: Clay=200 - 276.2<	Dept	Elev	Blow	Sam	Rec		Lithologic	Description			
5 291.2 A SS 14 Total Porosity=39.%; Effectuve Porosity=2%; Atterberg 10 286.2 Total Porosity=39.%; Effectuve Porosity=2%; Atterberg Main Pissibility; Cohesive, Residuum 10 286.2 SS 14 Total Porosity=39.%; Effectuve Porosity=2%; Atterberg 10 286.2 SS 14 Total Porosity=39.%; Effectuve Porosity=2%; Atterberg 10 286.2 SS 14 dry; hard; red(10R 5/6) with with eand brown pasticity; cohesive, Residuum 15 281.2 SS 14 moist; very hard; red (10R 5/6) with maroon mottles and vertical manganese fracture planes; clayey silt; no plasticity; cohesive, Partially Weathered Rock 20 276.2 Sole SS 14 20 276.2 Sole SS 14 30 25 271.2 Sole SS 9 30 266.2 Sole SS 9 dry; very compact; reddish brown (2.5YR 5/4) with with ead green specks; medium horizontal fissle; silty fine to coarse sand with gravet, no plasticity or cohesion, Partially Weathered Rock 30 266.2 Sole Sole Sole Sole Sole 30 266.2	0-	- 298.2 5H	Too H	SS,ST	16,24	moist; stiff; yellov yellow mottled; fi plasticity; cohesi USCS=CL; Sanc Gravity=2.67; Hy	wish red (5YR 5/ ne to coarse sar ve; Soil Horizon; I=6.7%; Silt=52.8 draulic Conducti	6" Dia. Hollow-Stem Aug Boring			
10 286.2 7 8 55 14 moist; very stiff; red (2.5YR 4/6) with while and brown gravelly stit; no M/4 10 286.2 7 8 55 14 dr; hard; reddish brown (2.5YR 5/4) with light orange and (**)/1 M/4 15 281.2 50/6* SS 16 moist; very hard; red (10R 5/6) with maroon motiles and vertical manganese ficature planes; clayey silt; no plasticity; cohesive; Residuum Easing (2* Dia. Sch. 40 PV 20 276.2 50/6* SS 7 dry, very hard; reddish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy silt with rook fragments; no plasticity; cohesive; Partially Weathered Rock Screen (10* Section of 2* D Sch. 40 PVC) 20 276.2 50/6* SS 7 dry, very hard; reddish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy silt with rook fragments; no plasticity; cohesive; Partially Weathered Rock Screen (10* Section of 2* D Sch. 40 PVC) 25 271.2 50/6* SS 9 dry, very compact; reddish brown (2.5YR 5/4) with white and green specks; fine to coarse sand with phylicaticity cohesive; Partially Weathered Rock 30 266.2 50/6* SS 9 dry, very hard; weak red (10R 5/3), highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially We	5-	- 291.2	8	SS	14	Total Porosity=3 Limits: PL=27, LI	9.3%; Effectuve L=48, PI=21)	Porosity=2%; Atterberg	Grout		
10 286.2 18/8 SS 14 dry, hard; reddish brown (2,5YR 5/4) with light orange and dry, hard; reddish brown (2,5YR 5/4) with light orange and dry, hard; reddish brown (2,5YR 5/4) with light orange and dry, hard; reddish brown (2,5YR 5/4) with oplasticity; cohesive; Residuum Bentonite Seal 15 281.2 10/5 SS 16 writcal manganese fracture planes; clayey silt; no plasticity; cohesive; Partially Weathered Rock #2 Silica Sand Pack 20 276.2 50/6" SS 2 dry, very hard; reddish brown (2,5YR 5/4) with olive green and white specks; fine to modum sandy silt with rock Screen (10' Section of 2" D Sch. 40 PVC) 20 276.2 50/6" SS 9 dry, very hard; reddish brown (2,5YR 5/4) with olive green and white specks; fine to modum sandy silt with rock Screen (10' Section of 2" D Sch. 40 PVC) 25 271.2 50/6" SS 9 dry, very compact; reddish brown (2,5YR 5/4) with white and green specks; medium horizontal fissle; silty fine to coarse lasand with gravel; no plasticity or cohesion; Partially Weathered Rock 30 266.2 50/5" SS 9 dry, very hard; weak red (10R 5/3); highly horizontal fissle; fine fine and sviit; no plasticity or cohesion; Partially Weathered Rock Screen (10' Section of 2" Di Sch. 40 PVC) 30 266.2 50/5" SS.BAC S			7			moist; very stiff; r specks; clayey fit plasticity; cohesit	red (2.5YR 4/6) v ne to coarse san ve; Residuum	vith white and brown dy and gravelly silt; no MA			
15 281.2 13/5 SS 16 moist; very hard; red (10R 5/6) with marcon mottles and vectorial manganese fracture planes; clayey sit; no plasticity; cohesive; Partially Weathered Rock 20 276.2 S0/6" SS 2 dry, very hard; red dish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy sill with rock (fragments; no plasticity; cohesive; Partially Weathered Rock Screen (10' Section of 2" D Sch. 40 PVC) 20 276.2 50/6" SS 9 dry, very compact; reddish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy sill with rock (fragments; no plasticity; cohesive; Partially Weathered Rock Total Depth (bgs.) = 23.45 25 271.2 50/6" SS 9 dry, very compact; reddish brown (2.5YR 5/4) with while and green specks; medium horizontal fissle; silly fine to coarse sand with gravel, no plasticity or cohesion; Partially Total Depth (bgs.) = 23.45 30 266.2 50/2" SS 5 dry, very hard; weak red (10R 5/3), highly horizontal fissle; fine mica sandy sill; no plasticity or cohesion; Partially Weathered Rock Screen (10' Section of 2" Di Sch. 40 PVC) 35 261.2 50/5" SS.BAG 8 moist, weak red (10R 4/3) with green, yellow and black specks and mottles; silghtly clayey silly fine to coarse sand with phylite gravel, no plasticity or ochesion; Partially Total Depth (bgs.) = 37.05 40 256	10-	- 286.2	18	SS	14	dry; hard; reddist	brown (2.5YR S	5/4) with light orange and /14)	Bentonite Seal		
15 281.2 15/33" SS 16 moist; very hard; red (10R 5/6) with marcon mottles and vertical manganese fracture planes; clayey silt; no plasticity; #2 Silica Sand Pack 20 276.2 50/6" SS Z dry; very hard; reddish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy silt with rock fragments; no plasticity; cohesive; Partially Weathered Rock Total Depth (bgs.) = 23.45 25 271.2 50/6" SS 9 dry; very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silt with rock fragments; no plasticity or cohesion; Partially Total Depth (bgs.) = 23.45 30 266.2 50/2" SS 5 dry; very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silt fine to coarse sand with gravel; no plasticity or cohesion; Partially Weathered Rock 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 315 261.2 50/5" SS BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; silghtly clayey silty fine to coarse sand with phylite gravel; no plasticity or cohesion; Partially #2 Silica Sand Pack 32 50/5" SS.BAG moist; weak red (10R 4/3) with green, yellow	1.1.1		pr	BL		unaroon motiles,	cidycy sin, no pi	asiloity, conesive, residuari	Casing (2" Dia. Sch. 40 F		
20 276.2 50/6" SS 2 dry: very hard; reddish brown (2.5YR 5/4) with olive green and white specks; fine to medium sandy silt with rock fragments; no plasticity; cohesive; Partially Weathered Rock Screen (10' Section of 2" D Sch. 40 PVC) 25 271.2 50/6" SS 9 dry: very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silty fine to coarse is and with green, yeard; no plasticity or cohesion; Partially Total Depth (bgs.) = 23.45 30 266.2 50/2" SS 5 dry: very hard; weak red (10R 5/3), highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially Weathered Rock 30 266.2 50/5" SS 5 dry: very hard; weak red (10R 5/3), highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially Weathered Rock 35 261.2 50/5" SS.BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; silghtly clayey silty fine to coarse sand with phyllite grave! no plasticity or cohesion; Partially Veathered Rock; (Lab Results; PZ-3 Bag (24-34 5/); PZ-5, %; Effective Porosity=30%) 40 256.2 Auger Refuel @ 38' Auger Refuel @ 38'	15-	- 281.2	15 44 50/3"	SS	18	moist; very hard; vertical mangane cohesive; Partial	red (10R 5/6) wi se fracture plan ly Weathered Ro	th maroon mottles and es; clayey silt; no plasticity; <mark>ck</mark>	#2 Silica Sand Pack		
20 276.2 50/6" SS 7 dry, very hard; reddish brown (2.5YR 5/4) with olive green and while specks; fine to medium sandy silt with rock 25 271.2 50/6" SS 9 dry; very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silty fine to coarse sand with gravel; no plasticity or cohesion; Partially Total Depth (bgs.) = 23.45 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 30 266.2 50/5" SS_BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silly fine to coarse sand with plasticity or cohesion; Partially #2 Silica Sand Pack 30 261.2 50/5" SS_BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silly fine to coarse sand with plasticity or cohesion; Partially #2 Silica Sand Pack 40 256.2 Auger Refuel @ 38' Total Depth (bgs.) = 37.05	-								Screen (10' Section of 2" Sch. 40 PVC)		
25 271.2 50/5" SS 9 dry; very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silly fine to coarse sand with gravel; no plasticity or cohesion; Partially Total Depth (bgs.) = 23.45 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 35 261.2 50/5" SS.BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silty fine to coarse sand with phyllite grave!: no plasticity or cohesion; Partially #2 Silica Sand Pack 36 261.2 50/5" SS.BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silty fine to coarse sand with phyllite grave!: no plasticity or cohesion; Partially #2 Silica Depth (bgs.) = 37.05 40 256.2 Auger Refual @ 38' 38'	20-	- 276.2	50/6"	SS	1	dry; very hard; re and white specks fragments; no pla	ddish brown (2.5 ; fine to medium asticity; cohesive	YR 5/4) with olive green sandy silt with rock Partially Weathered Rock			
25 271.2 50/5" SS 9 dry; very compact; reddish brown (2.5YR 5/4) with white and green specks; medium horizontal fissle; silty fine to coarse sand with gravel; no plasticity or cohesion; Partially Bentonite Seal 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 35 261.2 50/5" SS.BAC 6 moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silly fine to coarse sand with phyllite grave!; no plasticity or cohesion; Partially #2 Silica Sand Pack 35 261.2 50/5" SS.BAC 6 moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silly fine to coarse sand with phyllite grave!; no plasticity or cohesion; Partially Weathered Rock; (Lab Results: PZ-3 Bag (34-34.5"); USCS=SM; Grave!=12.8%; Sand=59.7%; Silt and Clay=27.5%; Effective Porosity=30%) Total Depth (bgs.) = 37.05 40 256.2 Auger Refual @ 38' Auger Refual @ 38' Silt and Clay=27.5%; Silt and Clay=27.5%									Total Depth (bgs.) = 23.4		
30 266.2 50/2" SS 5 dry; very hard; weak red (10R 5/3); highly horizontal fissle; fine mica sandy silt; no plasticity; cohesive; Partially #2 Silica Sand Pack 30 266.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 35 261.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 35 261.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 36 261.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 36 261.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 36 261.2 50/5" SS.BAG 6 moist; weak red (10R 4/3) with green, yellow and black 37 05 Screen (10" Section of 2" Di School (10" Section (10" Section (10" Section (10" Section (10" Section (10	25	- 271.2	50/5"	SS	9	dry; very compac green specks; me sand with gravel; Weathered Rock	t; reddish brown edium horizontal no plasticity or c	(2.5YR 5/4) with white and fissle; silty fine to coarse potentially consistent of the second	Bentonite Seal		
35 261.2 50/5" SS.BAG moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silty fine to coarse sand with phyllite gravel; no plasticity or cohesion; Partially Weathered Rock; (Lab Results: PZ-3 Bag (34-34.5'); USCS=SM; Gravel=12.8%; Sand=59.7%; Silt and Clay=27.5%; Effective Porosity=30%) Total Depth (bgs.) = 37.05 40 256.2 Auger Refual @ 38'	30-	- 266.2	50/2"	SS	5	dry; very hard; we fine mica sandy s Weathered Rock	eak red (10R 5/3 ilt; no plasticity;); highly horizontal fissle; cohesive; Partially	#2 Silica Sand Pack		
35 261.2 50/5" SS_BAC 6 moist; weak red (10R 4/3) with green, yellow and black specks and mottles; slightly clayey silty fine to coarse sand with phyllite gravel; no plasticity or cohesion; Partially Weathered Rock; (Lab Results: PZ-3 Bag (34-34.5'); USCS=SM; Gravel=12.8%; Sand=59.7%; Silt and Clay=27.5%; Effective Porosity=30%) Total Depth (bgs.) = 37.05 40 256.2 Auger Refual @ 38'	-								Screen (10' Section of 2" Sch. 40 PVC)		
40 - 256.2 Auger Refual @ 38'	35	- 261.2	50/5"	SS.BAG	6	moist; weak red (specks and mottle with phyllite grave Weathered Rock; USCS=SM; Grav Effective Porosity	10R 4/3) with grees; slightly clayes al; no plasticity of (Lab Results: P el=12.8%; Sand= =30%)	een, yellow and black y silty fine to coarse sand r cohesion; <mark>Partially</mark> Z-3 Bag (34-34.5'); =59.7%; Silt and Clay=27.5%;	Total Depth (bgs.) = 37.0		
	40-	256.2				Auger Refual @ 3	38'				

Y

Cr Cr C Depth (feet bgs.)	Sanfo S Elevation (feet asl.) 28.825 -	Blow Count/6-inches Blow Count/6-inches	Reclaurickyard	Kecovery (in.)	on Site d na Water Levels ♥ 1 Hour = c ♥ 24 Hours	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification: dry = 33.22' bgs	: 7/16/14 : 7/16/14 : Red Dog Drilling : Mark Seiler : 2789A Sample Type SS = Split Spoon ST = Shelby Tube	Logged By: Drilling Method: Top-of-Casing Elev.: Ground Surface Elev.: Natural, Cut, Fill Grade	: Ross Klingman, P.G. HSA; CME-45C 299 50'(Lawrence Survey) 296 82'(Lawrence Survey) 2: : slight cut
Gepth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	dry = 33.22' bgs	Sample Type SS = Split Spoon ST = Shelby Tube		
0	- 296.82	405 10	55	1		Lithologic D	RC = Rock Core BAG = Bag Sample Description	Well: PZ-4 TOC Elev.: 2 Cor	99.50 ver
5				14	moist; stiff; bro clayey silt with	wnish yellow (10YR 6/l gravel; <mark>low plasticit</mark> y; c	8); fine to coarse sandy cohesive; Soil Horizon		Dia. Hollow-Stem Auger ing
	- 291.82	400	SS,BAG	16	moist; stiff; bro clay; low plastic Bag (4-5.5'); U Effective Poros	wnish yellow (10YR 6/k city; cohesive; Soil Hor SCS=CH; Sand=3.0%; ity=2%; Atterberg Limi	8) with rust mottles; silty rizon; (Lab Results: PZ-4 ; Silt=50.9%; Clay=46.1%, C1) its: PL=27, LL=60, PI=33)	Cas	sing (2" Dia. Sch. 40 PVC)
10	286,82	99 12	SS	18	moist; very stiff and light purple Residuum	; red (2.5YR 4/8) with o mottled; gravely clay	olive green, rust, light gray ey silt; no plasticity; cohesive;	Gro	but
15	281.82	5 6 75"	SS	12	dry; very hard; medium horizo Weathered Roo	weak red (2.5YR 5/2) v ntal fissle; silt; no plast ck	with light green specks; ticity; cohesive; <mark>Partially</mark>		
20	276.82	50/3" .	SS	12	dry; very hard; vertical black m cohesive; Partia	weak red (2.5YR 5/2) v anganese fracture pla <mark>ally Weathered Roc</mark> k	with white stringers and nes; silt; no plasticity;		
25	- 271.82 50/4" SS, BAG 15 moist; very very slight Rock; (Lat Sand=21./ Atterberg	moist; very hard very slightly clar Rock; (Lab Res Sand=21.0%; S Atterberg Limits	d; red (2.5YR 4/6); high yey silt; no plasticity; cr ults: PZ-4 Bag (24-24, silt=61.6%; Clay=17.4% s: PL=16, LL=31, Pl=1{	hly horizontal fissle; ohesive; <mark>Partially Weathered</mark> 5'); USCS=CL; %; Effective Porosity=11%; 5)	Ben	tonite Seal			
30-	266.82	34 50/2"	SS	20	moist; very hard specks and strin no plasticity; col	l; weak red (10R 4/2) v ngers; medium horizon hesive; Partially Weath	with white, black and yellow ntal fissle; slightly clayey silt; hered Rock	-#2 S Scree	Silica Sand Pack een (10' section ‴ Dia. Sch. 40 PVC)
-		50/0"	SS	0	No Recovery			一丁間一	
40	261.82				Auger Refusal (@ 36.7 [.]		Tota	Il Depth (bgs.) = 36.70
20 25 30 36		276.82 - - - - - - - - - - - - -	$\begin{array}{c} 276.82 \\ 50/3^{\circ} \\ -271.82 \\ -5 \\ -266.82 \\ -5 \\ -261.82 \\ -256.82 \\ -1 \\ -1 \\ -256.82 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5 - 276.82 = 50^{-9} - 276.82 = 50^{-9} - 276.82 = 50^{-9} - 266.82 = 50^{-1} - 266.82 = 50^{-1} - 266.82 = 50^{-1} - 256.82 = 50^{-1} - 35 = 0$	276.82 276.82 50/3" SS 12 dry; very hard; vertical black m cohesive; Partia 5 271.82 50/4" SS, BAG 15 moist; very hard very slightly cla Rock; (Lab Res Sand=21.0%; S Atterberg Limits specks and stril no plasticity; co 50/0" SS 0 No Recovery Auger Refusal (276.82 50/3" SS 12 dry; very hard; weak red (2.5YR 5/2) ivertical black manganese fracture place cohesive; Partially Weathered Rock 5 271.82 50/4" SS, BAG 15 moist; very hard; red (2.5YR 4/6); high very slightly clayey silt; no plasticity; cohesive; Partially Weathered Rock 5 271.82 50/4" SS, BAG 15 moist; very hard; red (2.5YR 4/6); high very slightly clayey silt; no plasticity; cohesive; Partially Weathered Rock 5 271.82 50/4" SS, BAG 15 moist; very hard; red (2.5YR 4/6); high very slightly clayey silt; no plasticity; cohesilts; PZ-4 Bag (24; 24 Sand=21.0%; Silt=61.6%; Clay=17.4% Sand=21.0%; Sand=21.0	276.82 state SS 12 dry; very hard; weak red (2.5YR 5/2) with white stringers and vertical black manganese fracture planes; silt; no plasticity; cohesive; Partially Weathered Rock 5 271.82 state state state 5 271.82 state state state 6 state state state state 7 271.82 state state state 6 state state state state 7 271.82 state state state 8 271.82 state state state 9 266.82 state state<	1 276.82 503* SS 12 dry; very hard; weak red (2.5YR 5/2) with white stringers and vertical black manganese fracture planes; silt; no plasticity, cohesive; Partially Weathered Rock 5 271.82 50/4* SS. BAC 15 moist; very hard; red (2.5YR 4/6); highly horizontal fissle; very slightly clayey silt; no plasticity; cohesive; Partially Weathered Rock Ben Rock; (Lab Results: PZ-4 Bag (24-24-5); USCS=CL; Sand=21.0%; Silt=61.6%, Clay=17.4%; Effective Porosity=11%; Atterberg Limits: PL=16, LL=31, Pl=15) 1 266.82 50/2** SS 20 moist; very hard; weak red (10R 4/2) with white, black and yellow specks and stringers; medium horizontal fissle; slightly clayey silt; no plasticity; cohesive; Partially Weathered Rock 5 261.82 No Recovery Auger Refusal @ 36.7* Tota

3	Const 1101 Char Ph (7 buxt	Itting Ss South lotte, N 704) 34 onenv(Blvd., Blvd., North Ci 4-1450	Suite arolina Fax (uth.ne	101 a 28203 (704) 344-1451		Boring Lo	og, PZ-4D (Page 1 of 1)			
	Sanfor 1 Sa	rd Mine 303 Bi nford,	e Recla ickyard North (matic Road Caroli	on Site d na	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification:	7/16/14 7/16/14 Geologic Exploration Johnny Burr 3098A	Logged By: : Ross Klingman, P.G. Drilling Method: : HSA; Geoprobe 8040DT Top-of-Casing Elev. : 299.76'(Lawrence Survey) Ground Surface Elev. : 297.25'(Lawrence Survey) Natural, Cut, Fill Grade: : slight cut			
					Water Levels		Sample Type				
~	sl.)	ches			T Hour =	dry	SS = Split Spoon				
(feet bgs.	on (feet a	ount/6-in	er Type	ery (in.)	_ 24 Hours	= 35.00' bgs	ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: PZ-4D TOC Elev.: 299.76			
Depth (Elevati	Blow C	Sample	Recov		Lithologic D	ic Description				
0-	297.25	-		1	Advance 10" o	liameter Hollow-Stem	Augers from 0-35'	10" Dia. Hollow-Stem Auger Boring			
1					See Bering I o	a P7-4 for lithologic in	formation from 0-36.5				
5-	- 292.25				See builing Lo						
1					1 m			Casing (2 Dia. Sch. 40 PVC			
-	007.05										
10-	- 287.25										
3								Grout			
15-	- 282.25										
1											
20-	- 277.25							IAA			
- 3								IAA			
25-	- 272.25										
-	007.05										
30-	- 201.29										
. 3	Sec. 1							5/8" Dia Mud Patan Para			
35-	- 262.25				Auger Refusa	@ 35'					
1	1				Advance 5 5/8 (lavered rock a	" diameter mud-rotary and soil from 35-42': m	drilling from 35-45', oderately competent rock	Grout			
40-	- 257,25				from 42-45')	1997 F. C.					
1.1					61.2			3 5/8" Dia. HQ Rock Core			
45-	- 252.25		-	1							
3					Advance HQ r	ock core (3 5/8" outer	diameter) from 45-55	+#2 Silica Sand Pack			
50-	- 247.25				*1st Run from Quality=Poor	45-50' (23.5" Recover	y; RQD=39.2%; Rock Mass	S Screen (5' section of 2" Dia. Sch. 40 PVC)			
-	1.020				Lippor Off ages	/blocky mudetone with	healed 80 degree	Total Depth (bgs.) = 52.00'			
-	Sec. 2				fracture; gradi	ng downward to mudd	y coarse sandstone)				
55	- 242 25				Lower 14.5" c	ore (muddy sandy con	glomerate; consiting of				
55	- 242.25				horizontally or	iented rounded phyllite	e discs and rounded quartz				
55	- 242.25				gravel)						
55	- 242.25 - 237.25				gravel)	55') (45" Recovery: R(D=23.3%: Rock Mass				
55	- 242.25 - 237.25				gravel) *2nd Run (50- Quality=Very I	55') (45" Recovery; R(Poor)	QD=23.3%; Rock Mass				
55 60 65	- 242.25 - 237.25 - 232.25				gravel) *2nd Run (50- Quality=Very I Broken congle	55') (45" Recovery; RG Poor) omerate as above (4" t	QD=23.3%; Rock Mass otal length); grading				
55 60 65	- 242.25 - 237.25 - 232.25				gravel) *2nd Run (50- Quality=Very I Broken congle downward into 1,5 to 5" (37.5	55') (45" Recovery; RG Poor) omerate as above (4" t o blocky mudstone with " total length); grading	QD=23.3%; Rock Mass otal length); grading horizontal fractures every downward into muddy				

	5		uxton nsulting S 01 Sout arlotte, (704) 3	Envi ervices h Blvd., North C 44-1450	Suite Carolin O Fax	nental, Inc. 101 a 28203 (704) 344-1451		Boring	Log, PZ-5	(Page 1 of 1)		
		Sant Sant	ford Mir 1303 E Sanford	@bellso ne Recli Brickyan , North	amatic d Roa Caroli	et on Site d ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/17/14 7/17/14 Red Dog Drilling Mark Seller 1: 2789A	Logged By: Drilling Method: Top-of-Casing Ele Ground Surface E Natural, Cut, Fill C	Ross Klingman, P.G. HSA; CME-45C 291.66'(Lawrence Survey Rode: : 289.11'(Lawrence Survey Grade: : slight cut		
	pth (feet bgs.)	vation (feet asl.)	w Count/6-inches	npler Type	covery (in.)	Water Levels	33 10' bgs = 26,06' bgs	10' bgs Sample Type 10' bgs SS = Split Spoon 10' bgs SS = Split Spoon 10' bgs ST = Shelby Tube RC = Rock Core Well: PZ-5 BAG = Bag Sample TOC Elev.: 291.66				
	De	280 11	Blo	Sa	Re	l	Lithologic I	Description		6" Dia Hollow Stom Augos		
A.	0	- 200.11	0000	SS	16	moist; stiff; yell medium plastic	low (10YR 7/8) with lig city; cohesive; Soil Ho	ght orange mottles; <mark>silty cl</mark> p <mark>rizo</mark> n	ay; CL	Boring		
CL		511										
	5-	- 284.11	9455	SS	19	clay; low plasticity; cohesive; Soil Horizon		V OL	Casing (2" Dia Sch 40 DVC			
			Γ.	ST	24	moist; red (2.5 cohesive; Resi	YR 4/6); clayey silt an duum; (Lab Results: I	d silty clay; low plasticity; PZ-5 UD (6-8'); USCS=CL	146	Grout		
	10-	279 11	10	SS	15	Sand=2.2%; Si Hydraulic Cond	It=62.1%; Clay=35.79 Iuctivity=2.43 x 10-7 d	%; Specific Gravity=2.69; cm/sec; Total Porosity=30.	6%;			
		2/0.11	51			moist: very har	d; red (2.5YR 4/6); m	edium horizontal fissle: cla				
MIK						silt; low plastici	ty; cohesive; Residuu	m mp				
	15-	- 274.11	32	SS	18	moist; very hard silt; low plastici	d; red (2.5YR 4/6); me ty; cohesive; Residuu	yey				
	12											
nwn	20-	- 269.11	5075"	SS	14	moist; very hard blocky horizont Weathered Roo	d; weak red (10R 4/3) with dark gray mottles; al fissle; silty clay; no plasticity; cohesive; Partially ck					
	25-	- 264.11	50/6"	SS	14	moist; very hard	t; red (10R 4/6); high	ly horizontal fissle; slightly				
	1					ciayey siit; no p	lasticity; conesive; Pa	artially weathered Rock		#2 Cilico Cood Deal		
	1		50/2"							Screen (10' section		
	30-	- 259.11	5072		-3-	moist; very hard fissle; slightly cl Weathered Roc	t; red (10R 4/6) with g ayey silt; no plasticity ck	gray pods; highly horizonta ; cohesive; <mark>Partially</mark>		of 2" Dia. Sch. 40 PVC)		
	-								+	Total Depth (bos) = 33.80'		
	35 -	- 254.11	<u>- 50/6" </u>	SS, BAG	8	wet; very hard; fissle; slightly cl Weathered Roc Sand 13.7%; Si Atterberg Limits	red (10R 4/6) with gra ayey silt; no plasticity k; (Lab Results: PZ- II=73.6; Clay=12.7%; :: PL=20, LL=32, PI=1	ay pods; highly horizontal ; cohesive; Partially 5 Bag (34-34.5'); USCS=C Effective Porosity=8; (2)	SL;			
	40-	249.11										
	-											

	1	Ch Ph bu	arlotte (704)	th Blvd., North C 344-1450 v@bellsc	Suite Carolin Fax	101 a 28203 (704) 344-1451 at	Boring Log, PZ-6 (Page 1 of 1)					
		Sanford Mine Reclamation Site 1303 Brickyard Road Sanford, North Carolina					Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/17/14 7/17/14 Red Dog Drilling Mark Seller 2789A	Logged By: Drilling Method: Top-of-Casing Elev.: Ground Surface Elev.: Natural, Cut, Fill Grade		Ross Klingman, P.G. HSA; CME-45C 286.13'(Lawrence Survey) 283.48'(Lawrence Survey) s: slight cut	
	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	dry = 19.30' bgs Lithologic D	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample		Well: PZ-6 TOC Elev.: 286.13'		
4	0-	- 283.48	7115 2 7115 2	SS	10	moist; medium compact; yellow (10YR 7/6); horizontal fissle; silt; no plasticity or cohesion; Soil Horizon				6" Dia. Hollow-Stem Auger Boring		
	5-	- 278.48		SS	13	moist; medium clay with roots	; pale yellow (2.5 Y 7// low plasticity; cohesiv	4) with light rust mottles; silty re; Soil Horizon		Cas Gro	ising (2" Dia. Sch. 40 PVC out	
	10-	- 273.48		SS ST	20 7	moist; very stiff; dark reddish gray (2.5YR 4/1) with white and yellow mottles; silty clay; low plasticity; cohesive; Residuum						
	-15-	- 268.48	9 50/5"	SS	24	Residuum; (La Sand=11.3%, S Hydraulic Cond Effective Poros	d (10R 4/4); clayey sint b Results: PZ-6 UD (1 Silt=72.5%, Clay=16.2' Juctivity=6.01 x 10-6 ci sity=8%; Atterberg Lim	; no plasticity; conestve; 10.5-11'); USCS=CL; %; Specific Gravity=2.68; m/sec; Total Porosity=30.7%; its: PL=23, LL=37, PI=14)		2		
M.	20-	- 263.48	50/4"	SS.BAG	6	moist; very har with gravel and Weathered Ro dry: very hard:	d; red (2.5YR 4/6); fine I rock fragments; no pl ck dark reddish brown (2	a to coarse sandy clayey silt asticity; cohesive; Partially 5YR 4/1); silty medium to		Ben	tonite Seal	
			50/1"	22		coarse sand wi Partially Weath USCS=SC; Sa Porosity=16%;	th rounded phyllite gra ered Rock; (Lab Resund=59.9%; Silt=27.1% Atterberg Limits: PL=1	ivel; no plasticity; cohesive; lts: PZ-6 Bag (19-19.5'); ; Clay=13.0%; Effective 8, LL=33, PI=15)				
	25-	- 258.48				moist; very han weathered muc	d; reddish brown (2.5Y Iston <mark>e; Partially Weath</mark>	R 4/4); horizontal fissle; hered Rock		-#2 S	ilica Sand Pack	
	30-	253.48	50/.5"	SS	-	dry; very hard; mudstone; Part	weak red (2.5YR 5/2); ially Weathered Rock	horizontal fissle; sandy		Scre of 2	en (10' section " Dia. Sch. 40 PVC)	
	35-	248.48	50/.5"	SS	-	dry; very hard; conglomerate; l	weak red (2.5YR 5/2); Partially Weathered Ro	weathered silty ock		Tota	l Depth (bgs.) = 33.80'	
	40-	243.48										
	45-											
3	Ch Ser 110 Ch Ph bu	uxtor sulting S 01 Sout arlotte, (704) 3 ctoneny	h Envi h Blvd., North C 44-1450 @bellso	Suite arolin Fax	nental, Inc. 101 a 28203 (704) 344-1451 et		Boring I	Log, PZ-7 (Page 1 of 1)				
-------------------	------------------------------------	---	---	---------------------------	---	---	--	--				
	Sanfi S	ord Mir 1303 E anford	ne Recla Brickyard , North (amatic d Roa Caroli	on Site d na	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/17/14 7/17/14 Red Dog Drilling Mark Seiler : 2789A	Logged By: : Ross Klingman, P.G. Drilling Method: : HSA Top-of-Casing Elev. : 290.57'(Lawrence Survey) Ground Surface Elev.: : 287.92'(Lawrence Survey) Natural, Cut, Fill Grade: : slight cut				
Depth (feet bgs.)	Elevation (feet asl.)	Slow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels ▼ 1 Hour = 1 ∇ 24 Hours	17.20' bgs = <mark>6.69' bgs</mark> Lithologic E	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well: PZ-7 TOC Elev.: 290.57				
0-	- 287.93 2H	anno 1	SS	16	moist; medium sandy clayey s	; light yellowish brown i <mark>lt w</mark> ith roots; no plasti	(2.5Y 6/3); fine to coarse city; cohesive <mark>; Soil Horizon</mark>	6" Dia. Hollow-Stem Auger Boring				
5-	- 282.92	50012 2 U	SS	12	moist; very stiff blocky; fine to o	f; reddish brown (%YF coarse <mark>sandy silty cla</mark> y	8 5/4) with light gray mottles (low plasticity; cohesive;	CL Casing (2" Dia. Sch. 40 PVC				
1 - 1 - 1		11	ST	24	moist; reddish to coarse sand (Lab Results;	brown (5YR 5/4) with y silly clay; low plastic PZ-7 UD (6-8'); USCS	light gray mottles; blocky; fii ity; cohesive; Residuum; =CL: Sand=3.2%; Silt=67.5	ne LL				
10-	- 277.92	18	SS	20	Clay=29.3%; S 10-6 cm/sec; T Limits: PL=24,	pecific Gravity=2.74; I otal Porosity=30.1; Ef LL=40, PI=16)	Hydraulic Conductivity=1.76 fective Porosity=3; Atterber	5x g				
15-	- 272.92	50/6"	SS.BAG	15	moist/wet; very manganese pla moist/wet; very	stiff; reddish brown (5 anes; silty clay; low pla hard; red (2.5YR 5/8)	5YR 5/4) with vertical black asticity; cohesive; Residuun ; highly horizontal	#2 Silica Sand Pack Screen (10' section of 2" Dia. Sch. 40 PVC)				
1 1 1		50/1"	SS	3	fissle; clayey si Weathered Rod Sand=0.4%; Si Atterberg Limits	ilt; no plasticity; cohesi <mark>ck;</mark> (Lab Results: PZ-7 lit=76.8%; Clay=22.8% s: PL=22, LL=41, PI=1	ive; Partially / Bag (14-14.5); USCS=CL; &; Effective Porosity=4%; I9)	CL T				
20-	- 267.92	1			wet; very hard; weathered sand	reddish brown (5YR 5 dy mud stone; Partially	5/4); highly horizontal fissle; y Wea <mark>thered Rock</mark>	Total Depth (bgs.) = 20.00				
25-	262.92											
30-	257.92											
35	252.92											
40	247.92											
45-												

	5		uxto osulting 01 Sou tarlotte t (704)	n Envi Services uth Blvd., North C 344-145 w@bellso	Suite Carolin O Fax	nental, Inc. 101 a 28203 (704) 344-1451 et		Boring	Log, PZ-8	(Page 1 of 1)
		San	ford M 1303 Sanfor	ine Recl Brickyar d, North	amatio d Roa Carol	on Site Id ina	Date Started: Date Completed: Dritting Company: Dritters Name: NC Dritter Certificatio	7/21/14 7/21/14 Summit Engineering Robert Cassell In: 4143A	Logged By: Drilling Method: Top-of-Casing E Ground Surface Natural, Cut, Fill	: Ross Klingman, P.G. : HSA; CME-550x : 304.85'(Lawrence Survey) Elev.: : 302.56'(Lawrence Survey) Grade: : slight cut
	spth (feet bgs.)	evation (feet asl.)	ow Count/6-inches	mpler Type	scovery (in.)	Water Levels	dry = 41.38' bgs	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: P TOC El	Z-8 ev.: 304.85 — Cover
-	De	- 302.56		Sa	a a		Lithologic	Description		–
			10	SS	18	moist; stiff; stro medium plastic	city; cohesive; Residu	with white specks; silly clay	Ce /	Boring
	5-	297.56	340 10	SS	14	moist; stiff; red clay; low plasti	(2.5YR 4/6) with ligh city; cohesive; Resid	nt orange mottles; <mark>silty</mark> uum	ec /	Casing (2" Dia. Sch. 40 PVC)
CL	10-	292 56	400	SS	15	moist; stiff; red	(2.5YR 4/6); silty cla	y; low plasticity; cohesive;	Cr III	Grout
		202.00	15							
	15-	- 287.56	19 13 71	SS,BAG	6 16	moist; very stiff stringers; silty of Results: PZ-8 E Clay=28.8%; E LL=39, PI=16)	; red (2.5YR 4/6) with clay; low plasticity; co Bag (13.5-15'); USCS ffective Porosity=3%	h orange mottles and black besive; Residuum; (Lab S=CL; Sand=3.1%; Silt=68.1 ; Atterberg Limits: PL=23,	1%: <u>CL</u>	
·ML	20-	- 282.56	9 17 30	SS	14	moist; very stiff clayey quartz a Residuum	; red (10R 4/8) with lind phyllite gravelly si	ight gray and yellow mottles, ilt; no plasticity; cohesive;	m	
1. 0-	-	_	8	Bb		moist: year stiff	red (10R 4/6) with li	ight gray and vellow mottles		1
	25-	- 277.56	15		20	clayey quartz a Residuum	nd phyllite gravelly si	ilt; no plasticity; cohesive;		Bentonite Seal
-	30-	- 272.56	9 50/5"	SS	20	moist; very hard plasticity; cohes	d; red (10R 4/8) with sive; Residuum	maroon mottles; silty clay; lo	w	
ANR	1.1									
	35-	267.56	50/5"	SS	15	moist; very hard plasticity; cohes	l; red (10R 4/8) with ive; Residuum	maroon mottles; silty clay; lo	w	#2 Silica Sand Pack
	1 1		50/5"	SS	12	denuser				Screen (10' section of 2" Dia. Sch. 40 PVC)
	40-	262.56			-	sand; no plastic	ity or cohesion; Parti	ally Weathered Rock	×_/	
	-		50/5"	SS	10		1400 4/00 bits			-Total Depth (bgs.) = 41.90'
	45 -				1	low plasticity; co	hesive; Partially We	athered Rock		

	1		Buxton Buxton Buselon In 101 Sector In 101 S	on Er service outh Bly te, Nort 1) 344-1 env@be	vd., Su h Car 450 I	nmental, Inc. lite 101 olina 28203 ⁶ ax (704) 344-1451 h.net		Boring Log	PZ-9s	s and 9 (Page 1 of 1)
		Sa	nford I 130 Sanfo	Mine Ro 3 Bricky ord, Nor	eclam yard F rth Ca	ation Site Road Irolina	Date Started: Date Completed Drilling Company Drillers Name: NC Driller Certifi	: 7/21/14 : 7/21/14 y: Summit Engineering Robert Cassell cation: 4143A	Logge Drillin Top-c Groun Natur	ed By: Ross Klingman, P.G. ng Method: HSA; CME-550x of-Casing Elev.: 288.11'/288.11' nd Surface Elev.: 285.74' ral, Cut, Fill Grade: slight cut
	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	//dry dry/38.03' bgs Lithologic	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well Well TOC	11: PZ-9s 12: PZ-9 2: Elev. 288, 11': Cover
	0-	- 285.74	1 974 C	ss	16	moist; stiff; yellov clay; low plasticit	vish red (5YR 5/6 y; cohesive <mark>; Soil</mark>	i) with rust mottles; silty Horizon	70	6" Dia. Hollow-Stem Auger Boring
24	5-	280.74	12	SS	16	moist; stiff; light mottles; silty clay	ellow brown (2.5 ; low plasticity; co	Y 6/3) with light orange ohesive; Soil Horizon		Grout
	10-	- 275.74	341-1	¥ss	16	moist; stiff; light y maroon mottles; Horizon	rellowish brown (; silty clay; low pla	2.5Y 6/3) with rust and sticity; cohesive; Soil		Casing (2" Dia. Sch. 40 PVC
	-	- 15	hala	rade					Hillory .	Bentonite Seal
5C	15-	- 270.74	1252	SS,BA	G 22	dry; compact; we specks; silty fine plasticity or plasti (13.5-15'); USCS Clay=11.5%; Effe	ak red (10R 4/3) to coarse sand w city; Residuum; (=SC; Gravel=0.4 ective Porosity=1	with white and gray with phyllite gravel; no "Lab Results: PZ-9 Bag %; Sand=52.2; Silt=35.9; 7; Atterberg Limits: PL=20,		#2 Silica Sand Pack
WR	20-	- 265.74	50/5"	SS	8	dry; very hard; we fine sandy silt; no Rock	eak red (10R 4/3) plasticity; cohes	; highly horizontal fissle; ive; <mark>Partially Weathered</mark>		Screen (10' Section of 2" Di Sch. 40 PVC)
	25-	- 260.74	50/4"	SS	8	dry; very compact specks; silty fine plasticity or cohes	t; weak red (10R to coarse sand w sion; Partially We	4/3) with white and gray ith phyllite gravel; no eathered Rock		Total Depth (bgs.) = 25.00'
			50/5"	SS	6		1		- 189	Dentonite Geal
	30-	- 255.74				dry; very compact gray specks; silty no plasticity or co	; weak red (10R fine to coarse sa hesion; Partially	4/3) with white and ind with phyllite gravel; Weathered Rock		
	35-	- 250.74	50/5"	SS	4	dry; very compact specks; medium l phyllite gravel; no Rock	; weak red (10R norizontal fissle; s plasticity or cohe	4/3) with white and gray silty fine to coarse sand with asion; Partially Weathered		
	-		50/5"	SS	8	dry; very hard; red	dish brown (2.5)	(R 4/4); highly horizontal	_	Total Depth (bgs.) = 39.00'
	40	245.74				WSSIG, WEATHERED	muasione, Partia	ny vveanered Kock		

	5	Ca Ca Ch Ch Ph bu	arlotte (704)	Services ath Blvd., North C 344-1450 v@bellsc	Suite arolin Fax	101 na 28203 (704) 344-1451 et		Boring Lo	g, PZ-10	(Page 1 of 1)
		Sanf S	ord Mi 1303 anford	ine Recla Brickyard d, North (amatio d Roa Carol	on Site d ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification:	7/21/14 7/21/14 Summit Engineering Robert Cassell 4143A	Logged By: Drilling Method: Top-of-Casing E Ground Surface Natural, Cut, Fill	: Ross Klingman, P.G. : HSA; CME-550x Elev.: : 266.51'(Lawrence Survey) Elev.: : 263.48'(Lawrence Survey) I Grade: : slight cut
	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	^{dry} = dry Lithologic D	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well: P TOC El	Z-10 lev.: 266.51
	0	- 263 48 517	, donce	SS	24	moist; stiff; red mottles; silty cl	dish yellow (7.5YR 6/6 ay; no plasticity; cohes	i) with light gray and rust sive; Soil Horizon		6" Dia. Hollow-Stem Auger Boring
	5-	- 258.48	11	SS	14	dry; very stiff; r clayey fine san	ed (2.5YR 4/8) with ma dy silt; по plasticity; co	aroon and light gray mottles; bhesive; Residuum		Grout Casing (2" Dia. Sch. 40 PVC
P	10-	- 253.48	50/4"	SS	12	dry; very hard; silty clay; no pla	red (2.5YR 4/6) with b asticity; cohesive; Part	lack vertical planes; blocky; ially Weathered Rock		
	15	- 248.48	50/3"	SS	3	dry: very hard; horizontal fissle Partially Weath	red (2.5YR 4/6) with bl ; mica sandy silty clay ered Rock	lack vertical planes; highly r; low plasticity; cohesive;		Bentonite Seal
	20-	- 243.48	50/1"		_2_	dry; very compa with quartz and Weathered Roo	act; weak red (10R 5/3 phyllite gravel; no pla ck); silty fine to coarse sand sticity or cohesion; <mark>Partially</mark>		#2 Silica Sand Pack
	25	238.48	50/6"	SS	12	dry; very hard; i plasticity; cohes	red (10R 4/6); highly h sive; <mark>Partially Weather</mark>	orizontal fissle; silty clay; no ed Rock		Screen (10' section of 2" Dia. Sch. 40 PVC)
110	30	233.48	29 10 16	SS,BAG	18	moist; very hard horizontal fissle Results: PZ-10 Clay=20.3%; Ef LL=36; PI=18)	l; red (10R 4/6) with lig ; silty clay; no plasticity Bag (28.5-30'); USCS fective Porosity=5%; A	ght orange mottles; highly y; cohesive; Residuum; (Lab =CL; Sand=5.7%; Silt=74.0% Atterberg Limits: PL=18,	6;	Total Depth (bgs.) = 27.15
:	35-	228.48								
4	40	223.48								
4	45-									

	3	A B Can Can Ch Ch Ph bu:	arloite, (704)	h Envi Services th Blvd., North C 344-1456 w@bellso	Suite Carolin O Fax	nental, Inc. 101 a 28203 (704) 344-1451		Boring Lo	og, PZ-11	(Page 1 of 1)
		Sanf S	ord Mi 1303 E anford	ne Reck Brickyar I, North	amatio d Roa Carol	on Site d ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification:	: 7/22/14 7/22/14 Summit Engineering Robert Cassell. 4143A	Logged By: Drilling Method: Top-of-Casing Ele Ground Surface B Natural, Cut, Fill (: Ross Klingman, P.G. : HSA; CME-550x ev.: 262.30'(Lawrence Survey) Elev.: 259.56'(Lawrence Survey) Grade: : natural (drainage bottom)
257,58	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	dry = 19.59' bgs Lithologic D	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: PZ TOC Ele	-10 iv.: 266.51 - Cover
mH	0- 5-	263.48 254.5 258.48	T area T area	SS	20 517 17	moist; very stiff gray mottles; q plasticity; cohe moist; stiff; yell mica sandy cla	f; reddish yellow (7.5Y) uartz gravelly fine to c sive; Soil Horizon owish red (5YR 4/6) w yey sill; no plasticity; c	R 6/8) with rust and light oarse sandy clayey silt; no ith light gray mottles; fine cohesive; Soil Horizon	HIA HIA	8" Dia, Hollow-Stem Auger Boring Grout Casing (2" Dia, Sch. 40 PVC)
85m	10-	- 263.48 2 49.7	50/3"	SS	12	dry; red (2.5YR cohesive; Res Gravel=4.8%; 3 Gravity=2.71; H Porosity=19.79 dry; very hard; gravel; no plas	(4/6), mica and quartz iduum; (Lab Results: Sand=55.5%; Silt=22.6 lydraulic Conductivity= 6; Effective Porosity=2 weak red (10R 4/3); si ticity; cohesive; Partial	sandy silt; low plasticity; PZ-11 UD (6-6.5'); USCS=S 5%; Clay=7.1%; Specific =3.86 x 10-6 cm/sec; Total (5%) Ity fine to coarse sand with by Weathered Rock	im, im	Bentonite Seal
	15-	- 248.48	16 38 50/6" 15 50/4"	SS SS	15 20	moist; very han medium horizo Weathered Roo moist; very han highly horizonta	d; red (2.5YR 4/6) with ntal fissle; silty clay; no ck d; red (2.5YR 4/6) with al fissle; silty clay; no p	black and purple mottles; plasticity; cohesive; Partial black and purple mottles; lasticity; cohesive; Partially		#2 Silica Sand Pack
	25	- 238.48	20 10 8	SS,BAG	16	Weathered Roo wet; very stiff; n highly horizona plasticity; cohes	ck ed (2.5YR 4/6) with bla tl fissle; silty clay with sive; Residuum	ack and purple mottles; rock and gravel layers; no		of 2" Dià. Sch. 40 PVC) Total Depth (bgs.) = 24.75'
	30	233.48	ł							
	35	228.48								
	40	223.48								

	5	Cin Ch Ph but	uxtor isulting 01 Sou arlotte, (704) xtoneny	n Envir Services th Blvd., North C 344-1450 w@bellso	Suite arolin Fax	nental, Inc. 101 a 28203 (704) 344-1451		Boring Log	g, PZ-12	(Page 1 of 1)
		Sanf S	ord Mi 1303 f anford	ne Recla Brickyard I, North (amatik d Roa Caroli	on Site d na	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification:	: 7/22/14 : 7/22/14 : Summit Engineering : Robert Cassell : 4143A	Logged By: Drilling Method: Top-of-Casing Ele Ground Surface E Natural, Cut, Fill G	: Ross Klingman, P.G. : HSA; CME-550x v.: 287.15'(Lawrence Survey) lev.: 284.32'(Lawrence Survey) irade: . natural
	th (feet bgs.)	ation (feet asl.)	Count/6-inches	pler Type	overy (in.)	Water Levels	dry = dry	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: PZ- TOC Elev	12 1.: 287.15
	Dept	Elev	Blow	Sam	Reco		Lithologic D	escription	_ п	
	0-	- 284.32	NO4	ss	16	moist; medium clayey, quartz	; yellowish red (5YR 5/ gravelly silt and silty cl	8) with brown mottles; ay; low plasticity;		8" Dia. Hollow-Stem Auger Boring
			4		514	Cohesive; Soil	Horizon	with sust and light aray	=146	
	5-	279.32	13	SS	14	mottles; silty cl	ay; medium plasticity;	cohesive; Soil Horizon	-12	Casing (2" Dia, Sch. 40 PVC
									INA	Grout
	10-	- 274.32	347	SS	13	moist; stiff; red medium sandy	(2.5YR 4/6) with green clayey silt; low plastici	n and black specks; fine to ty; cohesive; Residuum	1+	
17			10						100	
n r			5	SS	15	moist; very har	d; red (2.5YR 4/6) with	green and black specks;	-1912	
	15-	- 269.32	50/4			cohesive; Parti	ally Weathered Rock	clayey sit, no plasticity,	-100	
			12			moist: you stiff	rod (2 5VD 4/6) with	ourole mottles: blocky: silty		Bentonite Seal
	20-	- 264.32	18	SS,BAG	21	clay; no plastic (18.5-20'); USC	ity; cohesive; Residuur S=CL; Sand=0.7%; S	n; (Lab Results: PZ-12 Bag lit=66.5%; Clay=32.8%;	/ E	
	1.4	171				Effective Poros	ity=2%; Atterberg Limi	ts: PL=20, LL=42, PI=22)		
	25-	- 259.32	50/3"	SS	8	dry; very hard; sandy mudston	red (2.5YR 5/6); horizo e; Partially Weathered	ntal fissle; weathered fine Rock		#2 Silica Sand Pack
	4									of 2" Dia. Sch. 40 PVC)
	-	054.00	50/3"	SS	10	dry; very hard; i	red (2.5YR 5/6); horizo	ntal fissle; weathered fine		
	30-	- 204.32				laandy mudaton	e, ranany veamored	TAOCK		Total Depth (bgs.) = 30.60'
	-									
	35-	- 249.32								
	-									
	40-	- 244.32								
	-	n 1								

	5	Con Con 110 Ch Ph bu:	uxtor sulting 5 01 Sout arlotte, (704) 1 stonen	h Envir Services th Blvd., North C 344-1450 w@bellso	Suite arolin Fax	nental, Inc. 101 a 28203 (704) 344-1451		Boring Log	g, PZ-13	(P	age 1 of 1)
		Sanf S	ord Mi 1303 E anford	ne Recla Brickyarc I, North (amatio d Roa Caroli	on Site d na	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/22/14 7/22/14 Summit Engineering Robert Cassell 4143A	Logged By: Drilling Metho Top-of-Casing Ground Surfa Natural, Cut, I	d: g Elev.; ce Elev : Fill Grade:	: Ross Klingman, P.G. : HSA; CME-550x : 296.59'(Lawrence Survey) : 293.48'(Lawrence Survey) : natural
	th (feet bgs.)	/ation (feet asl.)	v Count/6-inches	npler Type	overy (in.)	Water Levels	dry ≃ dry	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: TOC	PZ-12 Elev.: 29	16.59
	Dep	Elev	Blov	San	Rec		Lithologic D	Description			
Sican	0-	- 293.48 [Crate	SS,BAG	10	moist; medium specks; clayey Soil Horizon; (I Gravel=36.1%	compact; brownish ye silty quartz sandy gra Lab Results: PZ-13 B. ; Sand=37.2%; Silt=19	ellow (10YR 6/6) with white vel; no plasticity or cohesion; ag (0-1.5'); USCS=SC-SM; .4%; Clay=7.3%; Effective	78	8" D Bori	ia. Hollow-Stem Auger ng
mL	5-	- 288.48	12	SS	21	moist; stiff; red sitty clay layers	(2.5YR 4/6); fine to m ; low plasticity; cohesi	edium sandy silt and ve; Residuum		Cas	ing (2" Dia. Sch. 40 PVC)
-	10-	- 283.48	5075- 507	SS	6	moist; very har \gravel; no plas	d; red (2.5YR 4/6); silt ticity; cohesive; Resid	y clay with large quartz		Grou	ut
CL	15-	- 278.48	11 50/6" 502	SS	24	moist; very har medium horizo Residuum	d; weak red (10R 5/3) ntal fissle <mark>; silty clay;</mark> n	with light green mottles; o plasticity; cohesive;			
	20-	- 273.48	11 22 37	SS	20	moist; hard; pir degree planes; cohesive; Resir	kish gray (7.5YR 6/2) medium horizontal fis duum	with black vertical and 45 sle <mark>; silty clay; no</mark> plasticity;		Bent	onite Seal
	-										
owk	25-	268.48	50/6"	SS	18	moist; very hard clay; no plastici	d; gray (7.5YR 5/1); m ty; cohesive <mark>; Partially</mark>	edium horizontal fissle; silty Weathered Rock		-#2 S	ilica Sand Pack
	30-	263.48	11 50/5"	SS	22	moist; very hard fissle; silty clay;	d; gray (7.5YR 5/1); mo no plasticity; cohesive	edium horizontal a; Residuum		Scre of 2	en (10' section ' Dia. Sch. 40 PVC)
	35	258.48	50/1"	SS	3	dry; very hard; o weathered mud	dark blueish gray (Gle stone; P <mark>artially Weat</mark> h	y 2 4/1); hered Rock		Tota	l Depth (bgs.) = 33.65'
						Auger Refusal (@ 35'				
	40	253.48									
	45-										

	5		uxton nsulting 01 Sou harlotte, (704) ixtonen	h Envi Services th Blvd., North 0 344-145 v@bells	Suite Carolin O Fax outh.n	nental, Inc. 101 a 28203 (704) 344-1451 et		Boring L	og, PZ-14	(Page 1 of 1)
		San (ford Mi 1303 I Sanford	ne Recl Brickyar I, North	amatio d Roa Carol	on Site d ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certificatio	7/23/14 7/23/14 Summit Engineering Robert Cassell on: 4143A	Logged By: Drilling Method: Top-of-Casing E Ground Surface Natural, Cut, Fill	: Ross Klingman, P.G. : HSA; CME-550x lev.: 322.15'(Lawrence Survey) Elev.: 319.44'(Lawrence Survey) Grade: : natural
	epth (feet bgs.)	levation (feet asl.)	low Count/6-inches	ampler Type	tecovery (in.)	Water Levels	dry = dry Lithologic	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well: P2 TOC Ele	Z-14 av.: 322.15
	0-	31914	1 3007	SS	18	moist; stiff; red mottles; gravel	dish yellow (7.5YR 6 ly silty clay; low plast	/8) with rust and light gray ticity; cohesive; Soil Horizon	a pp	8" Dia. Hollow-Stem Auger Boring
CL	5-	314.44	4000	SS	18	moist; stiff; red mottles; gravel	dish yellow (7.5YR 6 ly silty clay; low plast	i/8) with rust and light gray ticity; cohesive; Soil Horizon	CL	
C14		X	n	ST	12	moist; reddish large quartz gra	yellow (7. <mark>5YR 6/</mark> 8) w avell <mark>y silty</mark> clay; low p	ilh rust and light gray mottles plasticity; cohesive; Soil		Casing (2" Dia. Sch. 40 PVC)
-	10-	309.44	5000	SS	15	Horizon; (Lab F Sand=18.4%; S Hydraulic Conc Effective Poros	Results: PZ-14 UD (Silt=37.7; Clay=42.19 Juctivity=1.35 x 10-7 sity=2%; Atterburg Lin	6-7'); USCS=CH; Gravel=1.8 %; Specific Gravity=2.67; cm/sec; Total Porosity=38.69 mits: PI=28, LL=55, PI=27)	% <mark>()}</mark>	Grout
mil			6			moist; stiff; red gravelly fine to Residuum	(10R 4/6) with white coarse sandy silt; no	specks; clayey quartz plasticity, cohesive;		
-	15-	- 304.44	10 15	55	18	moist; very stiff gravelly fine to Residuum	; red (10R 4/6) with v coarse sandy silt; no	white specks; clayey quartz plasticity; cohesive;		
-	20-	- 299.44	6 11 14	SS	20	moist; very stiff cohesive; Resid	; red (10R 4/8); silty (duum	clay; low plasticity;		
CL	1.1		18		40	moist: very barr	weak red (10R 5/3) with white and aray		Bentonite Seal
	25-	- 294.44	43 104	- 33	10	specks; fine to r cohesive; Resid	medium sandy silty o duum	lay; low plasticity;		
pwp	30-	- 289.44	50/5"	SS	_10_	dry; very hard; r fine to medium Weathered Roc	red (10R 4/6); mediu sandy silt; no plastic k	m horizontal fissle; clayey ity; cohesive; <mark>Partially</mark>		#2 Silica Sand Pack Screen (10' section of 2" Dia. Sch. 40 PVC)
	35	284.44	50/1"	SS	6	moist; very hard weathered mud	l; weak red (10R 4/6) stone; <mark>Partially Wea</mark>); highly horizontal fissle; thered Rock		Total Depth (bgs.) = 35.00'
	40	279.44	50/0"	SS	1	moist; very hard weathered mud	; weak red (10R 4/3) stone; Partially Weat), highly horizontal fissle; thered Rock		
						Auger Refusal (D 39'			
	45-									

	2	×	Consultion 1101 S Charlow Ph (704 buxton	outh Bly tte, Nort 4) 344-1 env@be	s rd., Su h Carc 450 F Ilsout	ite 101 blina 28203 (ax (704) 344-1451 5.net		Boring Log,	PZ-17s a	IND 17 (Page 1 of 1)
		Sa	nford 130 Sanfo	Mine Re 3 Bricky ord, Nor	ard R th Ca	ation Site load rolina	Date Started: Date Completed Drilling Company Drillers Name: NC Driller Certific	7/23/14 7/23/14 2. Summit Engineering Robert Cassell cation: 4143A	Logged E Drilling M Top-of-C Ground S Natural, (By: : Ross Klingman, P.G. Method: : HSA; CME-550x asing Elev.: : 306.621/306.56' Surface Elev : : 304.00' Cut, Fill Grade: : natural
	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	//27.44" dry <mark>/27.46" bgs</mark> Lithologic I	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description		PZ-17s PZ-17 ^{ev. :} Cover
	0-	- 304	7	SS	24	moist; stiff; reddi medium plasticity	sh brown (5YR 4/ y; cohesive <mark>; Res</mark> i	(4); <mark>silty clay;</mark> duum	788	8" Dia. Hollow-Stem Auger Boring
L	5-	- 299	2	SS	16	moist; stiff; reddi mudstone rock fr Residuum	sh brown (5YR 4/ agments; mediur	4); silty clay with C L n plasticity; cohesive;		Grout
wp	10-	- 294	50/4" 75	SS (J	14	dry; very hard; re horizontal fissle; Weathered Rock	ddish brown (2.5 weathered muds	YR 5/4); highly tone; Partially		Casing (2" Dia. Sch. 40 PVC
	15-	- 289	50/6'	- 55	8	ddry; very hard; r horizontal fissle; v Rock	eddish brown (2. weathered mudst	5YR 5/4); highly lone; Partially Weathered		
R	20-	- 284	56/2-	SS	12	dry; very hard; red horizontal fissle; v Weathered Rock	ddish brown (2.5' weathered mudst	YR 5/4); highly one; <mark>Partially</mark>		#2 Silica Sand Pack Screen (10' Section of 2" Di Sch. 40 PVC)
	25-	- 279	1847	SS	18	dry; very hard; we fissle; weathered	eak red (2.5YR 4/ mudstone; Resid	2); medium horizontal luum		Total Depth (bgs.) = 25.00'
4	30-	- 274	56/3"	SS	12	dry; very hard; we fissle; weathered Weathered Rock	ak red (2.5YR 4/ mica sandy mud	2); medium horizontal stone; Partially		Bentonite Seal
1	35	269	50/3"	SS	8	dry; very hard; we fissle; weathered Weathered Rock	ak red (2.5YR 4/ mica sandy mud	2); medium horizontal stone; <mark>Partiall</mark> y		
4	40	264	50/4"	SS	<u> </u>	very moist; very h sandy clayey silt; Weathered Rock	ard; weak red (2 no plasticity; coho	5YR 4/2); bl <mark>ocky; fine</mark> esive; <mark>Partially</mark>]	#2 Silica Sand Pack Screen (10' Section of 2" Dia Sch. 40 PVC)
4	45	259	<u>-50/3"</u>	SS,BAG	14	wet; very hard; rec fissle; weathered Results: PZ-17 Ba Silt=48.9%, Clay=	ddish brown (2.5' mudstone; Partia ag (43.5-44.5'); U 10.9%; Effective	YR 4/4); medium horizontal Ily Weathered Rock; (Lab SCS=CL; Sand=40.2%; Porosity=16%; Atterberg		Total Depth (bgs.) = 44.70'

	2	Con	uxtor nsulting S 01 Sout arlotte, (704) xtoneny	h Envi Services th Blvd., North C 344-1450 w@bellsc	Suite Carolin Fax	nental, Inc. 101 a 28203 (704) 344-1451 et		Boring L	.og, PZ-18	(Page 1 of 1)
		Sanf S	ord Mii 1303 E Sanford	ne Recla Brickyard I, North	amati d Roa Carol	on Site Id ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certification	7/23/14 7/23/14 Summit Engineering Robert Cassell n: 4143A	Logged By: Drilling Method: Top-of-Casing El- Ground Surface E Natural, Cut, Fill (: Ross Klingman, P.G. : HSA; CME-550x ev.: : 294.72'(Lawrence Survey, Elev.: : 292.27'(Lawrence Survey, Grade: : natural
	Depth (feet bgs.)	Elevation (feet asl.)	Blow Count/6-inches	Sampler Type	Recovery (in.)	Water Levels	dry = dry Lithologic I	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample Description	Well: PZ TOC Ele	-18 bv.: 294.72 - Cover
m it	0-	- 292.27	1	SS	22	moist; medium	n, brownish yellow (10 ohesive: Soil Horizon	R 6/6); slightly clayey silt;	No 10	8" Dia. Hollow-Stem Auger Boring
-	5-	5H -287.27	440	SS	16	moist; stiff; red silty clay; medi	ldish yellow (7.5YR 6/ ium plasticity; cohesiv	(8) with tan and rust mottles re <mark>; Soil Horizon (</mark>		Casing (2" Dia. Sch. 40 PVC
	10-	- 282.27	57 12 19	SS	15	moist; very stif silty clay; low p	f; red (10R 4/8) with li plasticity; cohesive; Re	ight green gray mottles; esiduum		Grout
nit	15-	- 277.27	2124	SS	18	moist; hard; re horizontal fissi cohesive; Resi	d (10R 4/8) with light e; very fine sandy clay duum	green gray mottles; highly <mark>yey silt;</mark> no plasticity; س	11	
mp	20-	- 272.27	50/3"	SS,BAG	12	moist; very har horizontal fission cohesive; Parti (18.5-19.5'); US Effective Poros	d; red (10R 4/8) with e; very fine sandy clay ally Weathered Rock; SCS=CL; Sand=24.4 sity=8%; Atterberg Lin	light green gray mottles; hig yey silt; no plasticity; ; (Lab Results: PZ-18 Bag %; Silt=55.7%; Clay=19.9%; nits: PL=17. LL=32. PI=15)	hly	
	25-	- 267.27	5073"	SS	10	moist; very har blocky and med cohesive; Parti	d; red (10R 4/8) with I dium horizontal fissle; ally Weathered Rock	black horizontal planes; silty clay; no plasticity;		
	30-	- 262.27	50/6"	ŚŚ	6	moist; very hard mudstone; Parl	d; red (10R 4/8); high ially <mark>.W</mark> eathered Rock	ly horizontal fissle; weathere	ed	Bentonite Seal
	35-	- 257.27	50/3"	<u>\$</u> \$	6	dry; very hard; fine mica sandy Weathered Roo	weak red (10R 4/3); h / silt; no plasticity; coł ck	ighly horizontal fissle; hesive; Partially		
	40	252.27	50/3"	SS	5	moist; very haro mudstone; Part	d; red (10R 4/8); highl ially Weathered Rock	y horizontal fissle; weathere	ad	#2 Silica Sand Pack Screen (10' section of 2" Dia. Sch. 40 PVC)
	45		50/3"	SS	4	moist; very hard	t; red (10R 4/8) with p	burple mottles; blocky;		Total Depth (bgs.) = 43.5'

	~	Con Ch Ph bu	arlotte, (704) 3	Envi ervices h Blvd., North C 44-1450 @bellso	Suite Sarolin Fax South.n	mental, Inc. 101 a 28203 (704) 344-1451 et		Boring Log	, PZ-19	(Page 1 of 1)
		Sanf S	ord Mir 1303 E anford	ne Reck Brickyar North	amati d Roa Carol	on Site Id ina	Date Started: Date Completed: Drilling Company: Drillers Name: NC Driller Certificatio	 B/29/14 B/29/14 Environmental Drilling & Probing Tommy Bolyard a307 	Logged By: Drilling Method Top-of-Casing Ground Surface Natural, Cut, Fi	Elev.: 265.99'(Lawrence Survey) (Il Grade: slight cut
	teet bgs.)	on (feet asl.)	ount/6-inches	er Type	ery (in.)	Water Levels	11.00' bgs = 5.75' bgs	Sample Type SS = Split Spoon ST = Shelby Tube RC = Rock Core BAG = Bag Sample	Well: F TOC E	⊃Z-19 Elev.:
	Depth	Elevati	Blow C	Sample	Recove		Lithologic	Description		Cover
	0-	- 265.99	- Survey	SS	24	wet; medium; l mottles; silty cl	ight brownish gray (1 ay; medium plasticity	0YR 6/2) with light orange ; cohesive; Soil Horizon		6" Dia. Hollow-Stem Auger Boring
cu	5-	260.99	31	SS	18	wet; soft; light mottles; silty cl	brownish gray (10YR ay; medium plasticity	6/2) with light orange cohesive; Soil Horizon		Grout
M17	10-	- 255.99	15 27 47	SS	17	moist; hard; ye fissle <mark>; clayey</mark> si	llowish brown (10YR <mark>lt; no</mark> plasticity; cohe:	5/4); medium horizontal sive; Residuum		Casing (2" Dia. Sch. 40 PVC Bentonite Seal
_	15-	- 250.99	6 18 50/4"	SS	24	moist; very han manganese pla plasticity; cohe	d; yellowish brown (1 anes; medium horizon sive; Residuum	0YR 5/4) with black ntal fissle <mark>; clayey silt</mark> ; no he lナ		
pwr	20-	- 245.99	50/3"	SS	10	dry; very hard; \fissle; weathere	brown (10YR 5/3); hi ad mudstone; Partiall	ghly horizontal y Weathered Rock		#2 Silica Sand Pack
	25-	- 240.99	14 .50/3"	SS	12	wet; very hard; fissle; weathere	reddish brown (5YR d mudstone; Partiall	4/3); medium horizontal y Weathered Rock		Total Depth (bgs.) = 24.70
	30	- 235.99								
	35-	- 230.99								
	40-	- 225 99								
	45-									

3620 Pelham Road, PMB #292 Phone: 864-329-0013 Gesenville, SC 29615-5044 FAX: 864-329-0014

June 30, 2014

Charah, Inc 12601 Plantside Drive Louisville, KY 40299

Attention: Mr. Norman E. Divers, III

Re; Physical Characterization Testing of Coal Combustion By-products Riverbend Steam Station Mount Holly, NC GeoTrack Project No. 14-3425-N

Ladies and Gentlemen:

GeoTrack Technologies, Inc. has completed characterization testing of a sample from the referenced plant, and we present the results herein. The work was performed as a preliminary evaluation of whether the material is satisfactory for use as structural fill at the Charlotte-Douglas Airport, Area C. This letter presents a brief summary of the procedures and presents the testing results.

Project Description: The material in question includes coal combustion by-products that might include a mixture of fly ash and bottom ash that are collected and discharged to holding ponds on the power plant property. The combined combustion by-products (hereinafter referred to as CCB's) are proposed for use in an engineered fill. The engineered fill will be constructed by excavating native soils, constructing a composite (membrane) liner, placing the CCB as compacted fill, and covering the fill with a combination of a membrane cap and compacted soil. Subsequent uses of the completed fill have not been finalized; we anticipate that the property could be developed as part of nearby airport expansion, for commercial purposes (retail development, light industrial, etc), or to reclaim land that was previously excavated for other purposes.

<u>Sampling Procedures</u>: GeoTrack visited the power plant on May 15, 2014 and collected CCB samples. Grab samples were collected from the pond nearest the plant site (a wet pond). The sample locations included the northern corner, at the primary effluent structure, and the diagonally opposite corner, near the primary influent. Those locations were selected because they provided access to the CCB. Most areas of the exposed CCB were saturated and soft to both vehicular and pedestrian traffic.

Sampling was performed using procedures in general conformance with ASTM C 311 (ASTM D 75) for physical testing. The physical test sample was split in accordance with ASTM procedures

and subjected to various laboratory tests. The physical (engineering) tests included classification tests, strength tests, and consolidation tests.

Portions of the samples were also placed in laboratory-prepared containers in accordance with applicable EPA SW846 procedures for the chemical analyses. The chemical analyses are reported separately.

Physical (Engineering) Testing: Table 1 presents the physical (engineering) tests performed, the applicable test methods, and the results. Where applicable, individual test reports are attached. Detailed evaluation of the engineering characteristics is beyond the scope of this report, and the suitability of the various properties is dependent upon final site geometry and fill usage; however, a few comments are offered based upon our preliminary review of the test results.

The grain size characteristics and specific gravity are within expected ranges based on general experience with similar CCB's. The material consists predominantly of silt-sized particles that are essentially cohesionless in nature. Atterberg limits tests indicate the material to be non-plastic despite the fine grained size characteristics. The sand content of the sample might be influenced by the bottom ash content of this CCB.

The Standard Proctor Maximum Dry Density achieved for this sample (56.6 pounds per cubic foot (pcf) at an optimum moisture content of 48 percent) was low relative to the range typically achieved for similar products. The Proctor curve is relatively flat, indicating the material is not sensitive to moisture content. The compaction curve indicates that 95 percent compaction can be theoretically achieved with the standard Proctor compactive effort over a range of moisture contents spanning greater than 10 percent. Our experience indicates considerable variability in densities, moisture contents, etc. might be expected, and these properties are most likely influenced by long-term variations in plant procedures and the flow/sedimentation processes within the pond.

Three separate specimens were collected from the bulk sample and tested for field moisture content. They were selected based on their proximity to the prevailing water level within the pond at the time of sampling (collected from above and below the water surface). They ranged from 50.0 to 92.2 percent by dry weight. The average of the three moisture contents was 73.3 percent. While this average moisture content is well above the optimum moisture content, the wide variation in collected samples indicates that significant reductions in moisture content can occur simply by passively draining the materials. Also, more active moisture adjustment should require minor effort within temporary stockpiles and in the fill lifts.

Despite the low compacted dry density, the strength properties of this sample are favorable for most routine engineering applications. Three sets of strength properties were derived from two separate strength tests. The tests simulate both drained (effective or long-term) and undrained (total or short-term loading) conditions that might be experienced in service. The undrained strength test results indicate short-term strengths that varied, but are characteristic of fine grained materials. The undrained strength tests exhibited strength envelops that are combinations of cohesion and internal friction. They exhibited undrained cohesion ranging from moderate to high (C = 1,900 to 4,300 pounds per square foot; psf), with corresponding angles of internal friction

ranging from low to moderate ($\emptyset = 8$ to 27°). In combination, the two sets of computed undrained strength parameters represent moderately high overall strength characteristics.

The effective (drained) strength properties reported by the laboratory (C = 2,600 psf and \emptyset = 22°) based on a "best-fit" strength envelope were uncharacteristic of cohesionless materials. That result is assessed to be the result of scatter in the laboratory results, which is common with earthen materials. Often CCB materials and similar fine-grained, non-plastic materials exhibit low to non-existent cohesion, and the strength is derived almost entirely from internal friction. The reported drained parameters are more characteristic of undrained behavior; however, review of the graphical results indicates the drained test is subject to interpretation. A strength envelope drawn through the graphical origin (C = 0) and tangent to the lowest failure circle indicates a relatively high angle of internal friction (\emptyset = 39°), with little deviation from the other failure circles. That adjusted strength envelop is both characteristic of non-plastic, cohesionless materials, and relatively high internal strength. The adjusted test results are similar to drained strengths of CCB materials sampled from other plants. The laboratory interpretation and adjusted strength parameters are shown in attachments.

Similarly, the consolidation test results indicate settlement characteristics of the CCB's will be favorable. With total strain of less than 3 percent and 4 percent at applied pressures of 8 and 16 kips per square foot (psf), respectively, the material has characteristics of low compressibility. Our experience indicates that the settlement characteristics will be comparable, or more favorable (less compressible) than, typical area soils.

<u>Closing</u>: GeoTrack is pleased to be of service to you on this project. Please call if you have any questions concerning this letter or if we may provide additional assistance.

Respectfully submitted, GeoTrack Technologies, Inc.

David D. Wilson, P.E. Senior Engineer NC Registration No. 17088

TABLE 1 – PHYSICAL/ENGINEERING CHARACTERISTICS RIVERBEND STEAM STATION GEOTRACK PROJECT NO. 14-3425-N

Physical/Engineering Characteristic	Test Method	Test Result/ Applicable Parameters	Remarks
Grain Size Distribution	ASTM 422	22 Percent Sand 72 Percent Silt 6 Percent Clay Grain Size Distribution Attached	Sieve and Hydrometer
Specific Gravity	ASTM 854	Specific Gravity: $G_s = 2.13$	
Water Content	ASTM D 2216	Field Moisture Content: $w = 73.3\%$	Moisture Content at Time of Sampling – Note 5
Compaction	ASTM D 698	Maximum Dry Density: Y _{d max} = 56.6 pcf Optimum Moisture Cont.: w _{opt} = 48.0 % Moisture Density Relationship Attached	Standard Proctor Compaction Test
Strength:			
Shear Strength	ASTM 4767	Total Cohesion: $C = 4.3$ ksf	Consolidated Undrained Triaxial
		Total Angle of Int. Friction: $= 8^{\circ}$	Shear Test with Pore Pressure Measurements
		Eff. Cohesion: $C' = 2.6$ ksf	
		Eff. Angle of Int. Friction: $0^{\circ} = 22^{\circ}$	Note 3 Note 4
		Triaxial Shear Test Report Attached	
Compressive Strength	ASTM 2850	Total Cohesion: $C = 1.9$ ksf Total Angle of Int. Friction: $Ø = 27^{\circ}$	Unconsolidated Undrained Triaxial Shear Test. Unconfined
			Compressive Sucraga not Meaningful for Ash Samples
		Triaxial Shear Test Report Attached	Note 3
Compressibility	ASTM D 2435	Consolidation Test Report Attached	Note 3

See notes on next page

- Notes: 1. Sample collected May 15, 2014
 2. The referenced ASTM procedures are as suggested in ASTM E 2277, and common geotechnical practice.
 3. Tests performed on specimens remolded in the laboratory to approx. 95% of the Standard Proctor Maximum Dry Density at approximately the Optimum Moisture Content.
- An alternative strength envelope derived from the test data is shown graphically in the attachments.
 The reported field moisture content is the average of three separate specimens with moisture contents ranging from 50.0 to 92.2%.

Form No. TR-D698-2 Revision No. : 0 Revision Date: 11/21/07

Moisture - Density Report

Ouality Assurance

	S&ME, Inc Gre	enville 281 Fair	forest Way Green	nville, SC 29607	
S&ME Project #:	1263-10-195			Report Date:	6/02/14
Project Name:	Geotrack Technolo	gies, Inc 14-3425	5-N	Test Date:	5/30/14
Client Name:	3620 Pelham Road	, PMB #292 Green	wille, SC 29615		
Client Address:	336 Longview Driv	ve Piedmont, South	n Carolina 29673		
Boring #:	N/A	Log #:	44g	Sample Date:	5/15/14
Location:	Riverbend Pond	Type:	Bulk	Depth:	N/A
Sample Description	on: Coal Ash				

Maximum Dry Density 56.6 PCF.

Optimum Moisture Content 48.0%

 Moisture-Density Curve Displayed:
 Fine Fraction
 Image: Corrected for Oversize Fraction (ASTM D 4718)

 Sieve Size used to separate the Oversize Fraction:
 #4 Sieve Image: 3/8 inch Sieve Image: 3/4 inch

ASTM D 2216: Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass ASTM D 698: Laboratory Compaction Characteristics of Soil Using Standard Effort

Dun Vougher	Location Coordinator	6/02/14
Signature	Position	Date
	Duan Voughon- Signature	Signature Location Coordinator Position

S&ME, Inc. - Corporate

3201 Spring Forest Road Raleigh, NC. 27616 Proctor #44g (Riverbend Pond) 6-02-14.xls Page 1 of 1 Form No. TR-D422-3 Revision No. 0 Revision Date: 02/20/08

Particle Size Analysis of Soils

ASTM D 422

TRIAXIAL SHEAR TEST REPORT

(ASTM D 2850)

Unconsolidated Undrained

REV4,1/13/04

TRIAXIAL SHEAR TEST REPORT

Project Name:		Geotra	ack Te	chnolo	dies l	nc 14	4-3425	-N		102.94, 1713/0	· L		-
Project No.:		1263-	10-195	i	9100, 11	10. 1	1 OILO		Report Date:		06/1	0/14	
Client Name:		Geotra	ack Te	chnolo	gies, I	nc.			Test Date:	- 1	6/02 - 6	5/10/14	
Client Address:		3620	Pelhan	Road	, PMB	#292	Green	ville, S	C 29615		-		
Boring No. :		N/A	100	Depth	/ Elev	1. :	N	I/A	Sample No . :	44g	Type:	B	ulk
Sample Location	:	Rivert	end P	ond									
Sample Description	on :	Coal A	Ash			1		-	and the second second second	1			
_L, % :				PI,%	+		_	NP	Percent Passing #200 :	77.5	G _s :	2.1	30
	SP	ECIME	EN PR	OPER	TIES		_		TEST PARAMETERS, TE	ST TYP	E :	CU/P	Р
in the second of the	1		INITIAL		AFTE	R CON	SOLID	ATION	SPECIMEN NO.	10.2	1	2	3
SPECIMEN NO.		1	2	3	0.000	1	2	3	B Value	1.1.1.1.1	0.95	0.95	0.9
DIAMETER , INCHES	Do	2.82	2.82	2.82	Dc	2.81	2.79	2.79	BACK PRESSURE, ksf	U.	7.2	7.2	7.
EIGHT, INCHES	H,	6.03	6.01	6.01	Hc	6.00	5.96	5.95	CONFINING PRESSURE , ksf	σ3	1.0	3.0	5.
VATER CONTENT. %	W	48.0	48.0	48.0	W.	67.6	65.8	65.0	MAX. DEVIATOR STRESS ,ksf	01-03	10.3	11.0	11
RY DENSITY, PCF	Vdam	53.8	53.9	54.0	Ydays	54.5	55.4	55.8	ULT. DEVIATOR STRESS . ksf	01-02	8.5	9.0	9
ATURATION %	S	69.4	69.7	70.0	S.	100.0	100.0	100.0	Specimen Shape @	1-1-01	P	P	F
	0	1 472	1 469	1 461	0	1 120	1 401	1 384	Failure	Sheared			E
ONTROLLED	Strain	1.412	0.02	% no	r minu	1.435	1.401	1.504	T50 Minutes =	18.0	0	0	-
POCTOR TYPE .	Stands	und	MAYIM			ITV P	CE .	56.6	OPTIMUM MOISTURE CONTEN	IT %			45
EMOLDED -	Sneci	mons u	Nere re	molder	t to	95	% of	maxim	um dry density at about	00	% wet	ofor	n.c.
SHEAR	opeen	meno i	rere re	TO	TAI	00	10 01	maxim	EFFF	CTIVE	70 1101	0. 0	
TRENGTH	COHE	SION		10	C	(ksf)	•	43	APPARENT COHESION	OTTL	(ksf)		2
ADAMETEDS	ANGL	E OF	TED I	DICTI		DECP	EEG 1	8	ANGLE OF INTER EDICTION	M M'(D	FGREE	. (2	- 2
ESS, KSF		4	1	Ì	1	1	WOHR .	10-0		TOTAL EFFEC p'-q STF	STRESSE TIVE STR RESS PAT	ES ESSES THS	
SHEAR STRESS, KSF	1	1		1	1		HR IIIII			TOTAL EFFEC: - p'-q STH	STRESSE TIVE STR RESS PAT	es esses THS	
SHEAR STRESS, KSF	1	3	4	1.1.5	6	7 E PRIN	9 CIPAL	10 STRES	DIAGRED M 11 12 13 14 15 , KSF	TOTAL EFFEC: - p'-q STH	STRESSE TIVE STR RESS PAT	ES ESSES THS	

TRIAXIAL SHEAR TEST REPORT

						Ê.,				REV4,1/13/	04	ANSINO	Rin
Project Name:		Geotra	ack Te	chnolo	gies, li	nc 14	1-3425	-N			-		
Project No.:		1263-	10-195	i					Report Date:		06/1	0/14	
Client Name:		Geotra	ack Te	chnolo	gies, li	nc.			Test Date:		6/02 - 6	6/10/14	1
Client Address:		3620	Pelhan	n Road	, PMB	#292	Green	ville, S	C 29615		1.1		
Boring No. :		N/A	1.5.1	Depth	/ Elev	1. :	N	/A	Sample No . :	44g	Type:	Bu	ulk
Sample Location	2 1	Rivert	pend P	ond						100	100		
Sample Descripti	on :	Coal A	Ash		1								
LL, % :				PI,%	:			NP	Percent Passing #200 :	77.5	G _s :	2.1	130
	SPI	ECIME	EN PR	OPERT	TIES				TEST PARAMETERS, TE	ST TYP	E :	CU/P	P
	1	1.11	INITIAL	1	AFTE	RCON	SOLID	ATION	SPECIMEN NO.		1	2	3
SPECIMEN NO.		1	2	3	102.00	1	2	3	B Value		0.95	0.95	0.95
DIAMETER , INCHES	D	2.82	2.82	2.82	D,	2.81	2.79	2.79	BACK PRESSURE, ksf	U.	7.2	7.2	7.2
HEIGHT INCHES	H	6.03	6.01	6.01	H	6.00	5.06	5.95	CONFINING PRESSURE kef		10	30	50
NATER CONTENT W	NA/	10.00	48.0	48.0	W	67.6	65.0	65.0	MAX DEVIATOR STRESS kat	03	10.0	11.0	44.7
WATER CONTENT, %		40.0	40.0	40.0	WV _C	07.0	00.0	65.0	MAA. DEVIATOR STRESS, KST	01-03	10.3	11.0	11.1
DRY DENSITY, PCF	Ydryo	53.8	53.9	54.0	Ydryc	54.5	55.4	55.8	ULT. DEVIATOR STRESS , ksf	$\sigma_1 - \sigma_3$	8.5	9.0	9.4
SATURATION ,%	S.	69.4	69.7	70.0	Sc	100.0	100.0	100.0	Specimen Shape @	Sheared	M	M	
OID RATIO	eo	1.472	1.468	1.461	ec	1.439	1.401	1.384	Failure		\cup	\cup	L
CONTROLLED :	Strain	@	0.02	% pe	r minu	te	-		T50, Minutes =	18.0	1000		
PROCTOR TYPE :	Standa	rd,	MAXIM	UM DR	Y DENS	ITY, P	CF :	56.6	,OPTIMUM MOISTURE CONTEN	NT, %			48.0
REMOLDED :	Specin	mens v	vere re	molded	to	95	% of	maxim	um dry density at about	0.0	% wet	of o.n	n.c.
SHEAR				TO	TAL				EFFECTIVE (ALT. FAILU	JRE IN	TERPR	ETATI	ON)
STRENGTH	COHE	SION,		_	С	(ksf)		4.3	APPARENT COHESION ,		(ksf)	:	0
SHEAR STRESS , K	2	3	4	1.1.5	6	7 8	9	10		15 10	1 5 17	18	
14			())			FININ		511125				1 1 1	-
DEVIATOR STRESS, KSF	2				6 5	RESS	STRA	IN CU			SPEC	SIMEN 3	20
Brian V	aughar	n, P.E			BA	ia. Vo	myhow	-	Location Coordinator		06/10)/14	

ATTACHMENT C

11

Approx. Range (as) (as) Particion (as) Range (as) Void Bartio Prosetty (2) v_{12} v_{12} Prosetty (2) v_{12} v_{12} v_{12} Prosetty (2) v_{12}		Pa	article S	Ize and Gr	adation Approx.		Vo	(1) ids					H I	nit Weight	nit Weight ⁽²⁾ (1b	nit Weight(2) (1b./cu.ft	nit Weight(2) (lb./cu.ft.)
Image:		Appr Size ((Range	Approx. D10	Range Uniform Coefficient C.	Vo	ld Ratio		Porosi	ty (2)	60 ·	Keig	c —		DI WEL WE	nt wet Weight	ht Wet Weight
GRMIIJAR MATTERIJAS CGAMILIAR		Dmax	Data	1	7	emax Loose	ecr.	emin dense	nnax Ioose	Tmín dense	Min Loose	100% Mod.		Max dense	Max Min dense loose	Max Min Max dense loose dense	Max Min Max Min dense loose dense loose
form Materials i ·	GRANULAR MATERIALS					1							12 Carrier	1			
Appendication (theoretical values) -	form Materials														_	_	
Cutany, inorganic - - - - - 1.2 1.2 0.200 0.400 50 29 83 115 Uniform, inorganic 0.05 0.005 0.012 1.2 to 2.00 1.1 - 0.40 59 83 115 - - 1 I-graded Materials 2.0 0.005 0.02 5 to 10 0.90 - 0.30 47 23 87 122 1 S11ty SMD 2.0 0.005 0.02 5 to 100 0.90 4 to 6 0.35 - 0.30 47 23 87 122 1 S11ty SMD 5 GAWEL 100 0.001 0.003 10.63 1.25 0.30 40 17 83 122 1 122 1 122 1 122 122 1 122 122 122 122 122 122 122 122 122 122 122 122 122	Equal spheres (theoretical values) Standard Ottawa SAND	0.84	- 0.59	0.67	1.0	0.92 0.80	- 0.75	0.35	47.6	33 EF	- 92	1.1		1 9	93		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(fine or medium)	1	•	•	1.2 to 2.0	1.0	0.80	0.40	20	62	83	211	-	18	18 84	18 84 136	18 84 136 52
I-graded Materials 2.0 0.005 0.02 5 to 10 0.90 - 0.30 47 23 87 122 1 Silty SMD 2.0 0.005 0.02 5 to 10 0.90 - 0.30 47 23 87 122 1 SMD Cleant, filme to coarse 2.0 0.005 0.002 15 to 300 0.85 - 0.30 47 53 29 76 - 1	SILT	0.05	0.005	0.012	1.2 to 2.0	1.1	1	0.40	52	52	8	(-	18	18 81	18 81 136	18 81 136 51
Silty SMD 2:0 0.005 0.02 5 to 10 0.30 47 23 87 122 1 Silty SMD 2.0 0.005 0.005 0.005 0.005 0.005 1.2 5 to 10 0.30 47 23 87 122 1 SMD Micaceous SAD - 0.005 0.005 0.005 15 to 300 0.85 - 0.16 46 17 85 132 1 Micaceous SAD - 0.005 0.005 0.005 15 to 300 0.85 - 0.16 46 17 85 122 1 Micaceous SAD - 0.01 0.003 10 to 30 1.8 - 0.16 46 12 89 - 1 Micaceous SAD - 0.01 0.003 10 to 30 1.8 - 0.16 12 87 12 1 Micaceous SAD - 0.001 0.003 10 to 30 1.8 -	I-graded Materials																
SAMD Micaceous SAND 2.0 0.05 0.09 4 to 6 0.95 0.70 0.20 49 17 85 132 1 Micaceous SAND - - - - - - - 1	Silty SAND Clean, fine to coarse	2.0	0.005	0.02	5 to 10	06*0)	0*30	47	23	87	122	н	17	27 88	27 88 142	27 88 142 54
Silty SAND 6 GRAVEL 100 0.005 0.02 15 to 300 0.85 - 0.16 46 12 89 - 14 MYXED SOILS MYXED SOILS 2.0 0.001 0.003 10 to 30 1.8 - 0.25 64 20 60 130 13 Pergaded Silty CLAY 2.0 0.001 0.003 10 to 30 1.8 - 0.25 64 20 60 130 13 Pergaded Silty CLAY 2.0 0.001 - - 1.0 - 0.25 64 20 60 130 13 Pergaded Silty CLAY 250 0.001 - - 1.0 - 0.25 64 20 60 130 14 ILF 6 CLAY mitture 250 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 140 14 ILF 6 CLAY mitture 250 0.05 0.05 0.13 41 11	SAND Micaceous SAND	2.0	0.05	60.0	4 to 6	0.95	0.70	0.20	65	12	85	132	35	00 0	88 86	8 86 148	8 86 148 53
MIXED SOILS MIXED SOULS	Silty SAND & GRAVEL	100	0.005	0.02	15 to 300	0.85	ł,	0.14	46	12	8	5	14	10	6(3) 90	6(3) 90 155(3)	63 90 155(3) 56
dy or S11ty CLW 2.0 0.001 0.003 10 to 30 1.8 - 0.25 64 20 60 130 135 Peraded S11ty CLM 250 0.001 - - 1.0 50 17 84 - 140 Ith stones or tk figure 250 0.001 - - 1.0 50 17 84 - 140 It stones or tk figure 250 0.001 - - 1.0 50 17 84 - 140 146 It stones or tk figure 250 0.001 - - 1.0 50 140 146	MIXED SOILS										1	-		-			
it stones or it figures 250 0.001 1.0 - 0.20 50 17 84 - 140 1-graded GAVEL, SAND, 250 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 140 148 ILT 6 CLAV mitture 250 0.05 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 140 148 CLAV SOILS 0.05 0.54 0.001 - 2.4 - 0.50 71 33 50 105 112 Iddal CLAV 0.001 10Å 12 - 12 - 0.60 92 37 13 90 106	dy or Silty CLAY	2.0	0.001	0.003	10 to 30	1.8	•	0.25	3	20	99	130	135	-	100	100 147	100 147 38
I-graded GAVEL, SAND, 250 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 148 ILT 6 CLAY mixture 250 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 148 CLAY mixture 250 0.001 0.002 25 to 1000 0.70 - 0.13 41 11 100 148 CLAY solls 1 2 0.15 - 2.4 - 0.50 71 33 50 105 112 10404 LGAY 0.01 10Å - 2.4 - 0.50 71 33 50 105 112 10402 mm: 5023 0.01 10Å - 12 - 0.600 92 37 13 90 106	ith stones or rk fguts	: 250	0.001	1	ł	1.0	i.	0.20	20	Ц	\$	4	140	-	115	115 151	115 151 53
CLAY SOIIS CLAY SOIIS O.05 0.5 µ 0.001 - 2.4 - 0.50 71 33 50 103 112 104041 CLAY 0.01 10 Å - 2.4 - 0.50 71 33 50 103 112 -0.002 mm: 502) 0.01 10 Å - 12 - 0.60 92 37 13 90 106	l-graded CRAVEL, SAND, ILT & CLAY mixture	250	0.001	0.002	25 to 1000	0.70	•	0.13	41	Π	100	140	148		4) 125	4) 125 156(4)	4) 125 156(4) 62
Y (30%-50% clay sizes) 0.05 0.5µ 0.001 - 2.4 - 0.50 71 33 50 105 112 Ioidal CLAY -0.002 mm: 50%) 0.01 10Å 12 - 0.60 92 37 13 90 106	CLAY SOILS												1	-			
-0.002 mm: 502) 0.01 10Å 12 - 0.60 92 37 13 90 106	Y (30%-50% clay sizes) loidal CLAY	0.05	0.5µ	100'0	•	2.4	i.	0.50	11	33	22	105	112	104	\$	94 133	94 133 31
	-0.002 mm: 50%)	10-0	10 %	÷	i	12	1	0.60	32	37	13	8	106		11	71 128	71 128 8
	ante SILT ante CLAY)-	ì		i	3.0		0.55	75	35	40	1	110		87	87 131	87 131 25
ande SILF 3.0 - 0.55 75 35 40 - 110	30% - 50% clav cizac)					į								-			

TABLE 6 Typical Values of Soil Index Properties

See BER 1

a height of 760 mm (30 in).

ig of the falling weight onto the ding to the ground surface, the *test.* The free fall and height of of drill rigs use a rope wrapped the rope which then tightens on rope until the weight is visually ne the rope is released with the gestion around the power pulley count will be obtained. Several nechanical hoist-trip device. This factors such as pushing a rock, pressures also contribute error ducible in situ).

ow count $N \ge 100$. The log may indicating 70 blows for 150 mm ration. Large blow counts both ause rapid equipment wear and refusal" by ASTM at 100 assists 3 firm to better identify drilling

tigate the status of cohesionless ly used in both cohesionless and types of foundations. In loose available to aid in retaining the ithout falling out of the sampler

the string of rods, the sampler lay (see Fig. 6-3a) the recovered usually immediately tested for (Fig. 6-3a) or a portable field ually stored in small glass jars imple depth, and blow count N. as necessary for sieve analyses, irg limits. The boxes of samples iboratory for a stated period of

properties have been proposed. than guesses. For example, in nost meaningless. The estimate

Table 6-1 Standard penetration test (SPT) correlations

Strength correlations will be given in later chapters as needed. Values shown are primarily for "order of magnitude."

		Cohesi	onless Soil		
N Unit weight y, kN/m ³	0-10 12-16	11-30 14-18 28-26	31-50 16-20 20,40	> 50 18-23	
Angle of friction ϕ State	Loose	Medium	Dense	Very dense	1hn/m3 = 6,36pc
Relative density D,	see Eq. (6-3)	and Eq. (6-4	since depend Cohesive Si	$\begin{array}{l} \text{is on } p_0 = \gamma y\\ \text{oil} \end{array}$	
N Unit weight† γ, kN/m ³ q _u , kPa† Consistency	<4 14-18 <25 Very so	4-6 16-1 20-5 oft Soft	6-15 8 16-18 0 30-60 Mediur	n Stiff	>25 >20 >100 Hard

+ Values heavily dependent on water content.

TOPTEON RESIDUN

for angle of internal friction ϕ is generally conservative, and (as noted in Chap. 13) it is common to estimate ϕ as 30 to 32° for many projects.

The relative density D_r is often related to N but is often a very poor correlation. This results from N being somewhat project- and site-dependent and from D_r being rather tenuous to define (or reliably compute). As a consequence of this and some recent work which seems promising, it was decided not to include D_r in Table 6-1, but rather provide the current "best estimate" equations.

According to Marcusson and Bieganousky (1977)

 $D_r = 0.086 + 0.0083(2311 + 222N - 711(OCR) - C_1 \sigma_{\nu}')^{1/2}$ (6-3)

and according to Fardis and Veneziano (1981), who applied much of the data used to develop Eq. (6-3), the relationship is

$$\ln N = C_2 + 2.06 \ln D_r + C_3 \ln \sigma'_v \tag{6-4}$$

where $C_1 = 7.7$ for σ'_v in kPa; 53 for psi units

Spe Ref. 7

 C_2 = depth function which should be determined at a site by measuring N and D_r^{\dagger}

 $C_3 = 0.222$ for σ'_v in kPa; 0.442 for psi units

OCR = overconsolidation ratio defined by Eq. (11-2)

Both of these equations are based on regression analyses. Equation (6-3) is based on four dissimilar soils and a large number of tests and claims a 78 percent reliability with a ± 0.075 standard deviation.

Example 6-2 Given: the SPT blow count at a depth of 4 m is 12. The soil is very sandy with traces of gravel and has an estimated unit weight $\gamma = 17.9$ kN/m³. The soil is damp but above the water table.

 \dagger If no correlation is made for C_2 , use the value of $C_2=2.67$ obtained from the data base used for the equation.

456 PHYSICAL AND GEOTECHNICAL PROPERTIES OF SOILS

as glacial till clays and those found in the B horizon of residual deposits, are of medium sensitivity. A few glacial clays and most fresh-water deposits are very sensitive. A few of the fresh-water and marine deposits are quick. The sensitivity of the large majority of cohesive deposits will range from 2 to 8. Sensitivities greater or less than this are much less commonly encountered. Most quick clays seem to be found (or at least reported) in Canada and Scandinavia.

13-10 EMPIRICAL METHODS FOR SHEAR STRENGTH

Numerous correlations for shear strength or shear strength parameters have been proposed in the literature. Several will be presented here to illustrate some of those available.

One of the earliest correlations is that between the SPT (Sec. 6-9) and the unconfined compression strength, as was illustrated in Table 6-1.

Correlations between ϕ and plasticity index I_P are shown in Fig. 13-20. A relationship between ϕ and percent clay fraction (Skempton, 1964) is shown in Fig. 13-21. Both of these curves should be used cautiously, as there are several major exceptions which can be found in the literature as well as substantial scatter in the data points used to establish the curves. For routine soil work, however, particularly in regions where w_L is on the order of 20 to 45 and I_P on the order of 15 to 30, these curves will be reasonably reliable.

See Ref.7

16 Avg. Resideren

ATTACHMENT E

Figure 13-22 illustrates 1 shear strength of soft to very be made for statistical detern test pits.

Figure 13-23 (also Fig. 6 can be used in test pits or where a person can be lowe works well in any fine-graine free location, pushes the pis

Figure 13-22 The torvane.

TABLE 1 Typical Properties of Compacted Soils

Characterization Control	Î				Typica	l Value of ression	Typic	cal Strength	Characterist	fcs			
0 will graded class graved. 13 - 113 14 - 11 0.3 medic. 3.0.3 3	Group Symbol	Soll Type	Range of Haxiaum Dry Unit Weight, pcf	Range of Optimum Molsture, Percent	At 1.4 tsf (20 pst) Petcent	At 3.6 tef (50 pet) of Original	Cohesion (as com- pacted) psf	Cohesion (saturated) paf	f (Effective Stress Envelope Degrees)	Tan 9	Typical Coefficient of Permea- bility fr./ain.	Range of CBR Values	Range of Subgrade Modulus Hacky In. PSi/In
Image: consists provide and without and structure. Image: consists provide	8	Well graded clean gravels,	125 - 135	11 - 8	0.3	1gnc 0.6	0	0	318	50.70	5 ~ 10-2	00 07	
0 1	į.	gravel-aand mixtures.						,	Pro			10 - 01	200 - 200
0 0 0.05 0.05 1 </td <td>5</td> <td>Poorly graded clean gravels, gravel-sand mix</td> <td>115 - 125</td> <td>14 - 11</td> <td>4.0</td> <td>6.0</td> <td>0</td> <td>0</td> <td>184</td> <td>>0.74</td> <td>10-1</td> <td>30 - 60</td> <td>250 - 400</td>	5	Poorly graded clean gravels, gravel-sand mix	115 - 125	14 - 11	4.0	6.0	0	0	184	>0.74	10-1	30 - 60	250 - 400
0. 0.01 11-10 11-10 11-10 11-10 11-10 11-10 10-100 10-10 10	8	Silty gravels, poorly graded gravel-sand-silt.	120 - 135	12 - 8	0.5	11	-	1	hEC	>0.67	9-01<	20 - 60	100 - 400
9 9 9 9 10	8	Clayey gravels, poorly graded gravel-sand-clay.	115 - 130	14 - 9	0.7	1.6			IEC	>0.60	2-014	20 - 40	100 - 300
0 0 1 0 0 1 0 0 1 0	NS	Well graded clean sands, gravelly sands.	0E1 - 011	16 - 9	9.6	1.2	0	0	38	0.79	>10-3	20 - 40	200 - 300
Staticy name, poorly graded $10 - 123$ $16 - 11$ 0.6 12×10^{-5} 0.6 5×10^{-5} $0 - 40$ $10 - 30$ SHest statication. $110 - 130$ $15 - 11$ 0.6 15×10^{-5} $5 - 30$ $100 - 300$ SHest statigntly plattic fine $110 - 130$ $15 - 112$ 0.6 1×10^{-5} $5 - 30$ $100 - 300$ State state state $110 - 130$ $15 - 12$ $19 - 11$ 11 2.2 130 200	8	Poorly graded clean sands, sand-gravel mix.	100 - 120	21 - 12	9.0	1.4	0	0	37	0.74	£-01<	10 - 40	200 - 300
SPCC Stand-rik cly mark with lite - 130 IS - 11 0.8 1 0.66 2 × 310 ⁻⁷ 5 - 30 100 - 300 SC Relation y plater fram. 105 - 123 19 - 11 1.1 2.2 1350 20 2	R	Silty sands, poorly graded sand-sllt aix.	110 - 125	16 - 11	0.8	1.6	1050	420	34	0.67	5 x 210-5	10 - 40	100 - 300
SC Claypy sands, poorly. integrate surverly-mix. IOS - 123 IO - 13 <	SH-SC	Sand-silt clay mix with slightly plastic fines.	110 - 130	11 - 21	8,0	1.4	1050.	DOE	ŧ	0.66	2 x >10-6	9 - 30	00E - 001
M_{-CL} Inorgants sits and clayer $55 - 120$ $24 - 12$ 0.9 1.7 1400 190 32 0.62 37×310^{-7} 15 or tess $100 - 200$ M_{-CL} Maxture of integratic sits $100 - 120$ $22 - 12$ 1.0 2.2 1300 460 32 0.62 3×310^{-7} $100 - 200$ M_{-CL} Maxture of integratic sits $100 - 120$ $24 - 12$ 1.0 2.2 1300 400 32 0.62 3×310^{-7} $100 - 200$ M_{-CL} Maxture of integratic sits $95 - 120$ $24 - 12$ 1.3 2.2 1300 200 20 20 20^{-7} 15 or tess $50 - 100$ M_{-CL} Maxture site $26 - 100$ $31 - 210$ 1.0 2.0 120 2.0 $13 - 10^{-7}$ 1.0^{-7} 15 or tess $50 - 100$ M_{-D} Integratic site $26 - 20$ 2.0 300 2.0 2.0^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-7} 10^{-2} 10^{-2} 10^{-	SC	Clayey sands, poorly graded sand-clay-mix.	105 - 125	11 - 61	1.1	2.2	1550	062	31	0,60	5 x >10-7	5 - 20	100 - 300
Mulc. Mixture of inorganic uit 100 - 120 22 - 12 1,0 2.2 1350 460 32 0.62 5 × 30 ⁻⁷ $a a d c lay,$ $a a d c lay$ $a a d c lay$ $a a d c lay$ $a c la$	보	Inorganic silts and clayey silts.	95 - 120	24 - 12	6.0	1.7	1400	190	32	0.62	510-5	15 of less	100 - 200
Cl. Torgants clays at law to section plasticity. 95 - 120 24 - 12 1.3 2.5 1800 200 <td>HL-CL</td> <td>Mixture of inorganic silt and clay.</td> <td>100 - 120</td> <td>22 - 12</td> <td>1.0</td> <td>2.2</td> <td>1350</td> <td>460</td> <td>32</td> <td>0.62</td> <td>5 x >10-7</td> <td></td> <td></td>	HL-CL	Mixture of inorganic silt and clay.	100 - 120	22 - 12	1.0	2.2	1350	460	32	0.62	5 x >10-7		
01 $0rgantc site and sitt-clays, low plasticity.80 - 10033 - 215 or less50 - 10010clays, low plasticity.70 - 9540 - 242.03.81500420250.475 x >10^7710 or less50 - 10010feisatic clays silts.70 - 9540 - 242.03.9230420250.475 x >10^7715 or less50 - 10010finorgantc clays of high75 - 10536 - 192.63.92150230190.35>10^7715 or less50 - 10010figantc clays of high75 - 10045 - 21190.35>10^7715 or less50 - 10008Organtc clays and stity65 - 10045 - 21190.35>10^7715 or less25 - 10008Organtc clays and stity65 - 10045 - 215 or less25 - 10009Organtc clays and stity65 - 10045 - 21190.3525 - 10001Organtc clays and stity65 - 10045 - 211920 - 15001InstructureInstructureInstructure5 or less25 - 10001InstructureInstructure$	В	Inorganic clays of low to medium plasticity.	95 - 120	24 - 12	1.3	2.5	1800	270	82	0.54	7-014	15 or less	50 - 200
MB Inorgantc clayer silts, elastic silts. 70 - 95 40 - 24 2.0 3.8 1500 420 25 0.47 5 x > 10^-7 10 or less 50 - 100 CM Inorgantc clays of high 75 - 105 36 - 19 2.6 3.9 2150 230 19 0.35 >10^-7 15 or less 50 - 100 CM Inorgantc clays of high 75 - 105 36 - 19 2.6 3.9 2150 230 19 0.35 >10^-7 15 or less 50 - 150 OM Organtc clays and stity 65 - 100 45 - 21 5 or less 50 - 150 OM Organtc clays and stity 65 - 100 45 - 21 5 or less 25 - 100 Mores: 5 or less 25 - 100 Mores: 5 or less 25 - 100 Mores: 5 or less 25 - 100 <td>OL</td> <td>Organic silts and silt- clays, low plasticity.</td> <td>80 - 100</td> <td>12 - 21</td> <td>I</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td>5 or less</td> <td>50 - 100</td>	OL	Organic silts and silt- clays, low plasticity.	80 - 100	12 - 21	I	1	1	-				5 or less	50 - 100
CM Inorgant clays of high 75 - 105 36 - 19 2.6 3.9 2150 230 19 0.35 700-7 15 or less 50 - 150 0H Organic clays and stity 65 - 100 45 - 21 50 1658 25 - 100 Notes: Notes: 5 or less 25 - 100 Active clays 65 - 100 45 - 21 5 or less 25 - 100 Notes: 5 or less 25 - 100 1. All properties are for condition of "Standard Proctor" maxieua 3. Compression values are for vertical loading with complete for less of k and CBR which are for "modified 5 or less 25 - 100 1. All properties are for condition of "Standard Proctor" maxieua 3. Compression values are for vertical loading with complete for less of k and CBR which are for "modified 5 or less 25 - 100 2. Typical stength characteristics are for reflective arrengch	Ŧ	Inorganic clayey silits, elastic silits,	20 - 95	40 - 24	2.0	3.8	1500	420	25	0.47	5 x >10 ⁻⁷	10 or less	50 - 100
0H Organic clays and silty 65 - 100 45 - 21 5 or less 25 - 100 Notes: Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 Notes: 5 or less 25 - 100 5 or less 25 - 100 5 or less 25 - 100 5 or less	5	Inorganic clays of high placticity	75 - 105	36 - 19	2.6	3.9	2150	230	61	0.35	10-7	15 or lese	50 - 150
Notes: 1. All properties are for condition of "Standard Proctor" maxiaum density, except values of k and CBR which are for "modified Proctor" moximum density. 2. Typical stength characteristics are for effective strengch shoun.	HO	Organic clays and silty clays	65 - 100	45 - 21	-			1		-		5 or less	25 - 100
 All properties are for condition of "Standard Proctor" maximum Compression values are for vertical loading with complete density, except values of k and CBR which are for "modified Proctor" moximum density. Typical stength characteristics are for effective strengch All procession values are for effective strengch 		Notes:											
 Typical stength characteristics are for effective strengch shown. 		 All properties are for density, except values Proctor moximum densi 	condition o of k and CBI ty.	f "Standard & which are	I Proctor" r	axíaua Ted	3. Compre latero	ission values il confinemen	are for ver L.	cical loa	ding with com	plete	
Deuts and ave Abriland Fair 1920 Late		2. Typical stength charact	eristics and	e for effec	ctive streng	gch.	4. (>) IG	dicates that	typical pro	perty is	greater than	the value	

7.2-39

1

ATTACHMIENT F

ATTACHMENT G

Appendix Figure 8a - Peak Shear Strength; NW-NP Geotextile against Granular Soil.

Appendix Figure 8b - Residual Shear Strength; NW-NP Geotextile against Granular Soil.

See Ref. 5

Appendix Figure 2i – Peak Shear Strength; Textured HDPE against NW-NP Geotextile on a Drainage Geocomposite.

Appendix Figure 2j – Residual Shear Strength; Textured HDPE against NW-NP Geotextile on a Drainage Geocomposite.

a series and

Appendix Figure 11a - Peak Shear Strength; Textured HDPE against NW-NP Side of Fabric-Reinforced GCL.

Appendix Figure 11b - Residual Shear Strength; Textured HDPE against NW-NP Side of Fabric-Reinforced GCL.

1

÷.

1

ATTACHMENT J

Earthquake Hazards Program

US Seismic Hazard 2008

.

Share this page: Facebook Twitter Google Email

B

Stormwater

Subcell Divider Berms Stormwater Pipe Perforations and Sizing Stormwater Management System Sediment Basins

Project	Charah Colon Mine Site	Computed	MDP	Date	10/7/2014
Subject	Permit Application	Checked	EAW	Date	11/6/2014
Task	Subcell Divider Berms	Sheet		Of	

Objective: Determine Available Volume given subcell berm height

*Assumes a pyramid shape

	V	$=$ $\frac{1}{3}$	– hwl			
	Where:	V =	Volume of pyr	ramid (ft ³)		
		h =	Height of the	pyramid (f	t)	2
		wl =	width times le	ength to ge	et the Area o	f the bottom of the pyramid (ft ²)
Subcel	l 1A	Be	erm Height =	4	ft	
		Elevation	Area	Area	Volume	
		(ft)	(ac)	(ft ²)	(ft ³)	
ba	ase	0	0.0	0		
to	ор	4	2.19	95,360	127,146	
		Total A	vailable Volum	e for 1A =	127,146	
Subcel	l 1B	Be	erm Height =	3	ft	
		Elevation	Area	Area	Volume	
		(ft)	(ac)	(ft^2)	(ft ³)	
ba	ase	0	0.0	0		
to	эр	3	6.63	288,595	288,595	
		Total A	vailable Volum	e for 1B =	288,595	
Subcel	2	Be	erm Height =	5	ft	
		Elevation	Area	Area	Volume	
		(ft)	(ac)	(ft^2)	(ft ³)	
ba	ase	0	0.0	0	(/	
to	эр	5	6.41	279,164	465,273	
		Total	Available Volu	me for 2 =	465,273	

No.

Project	Chara	ah Colon Mi	ne Site			Computed	MDP	Date	10/7/2014
Subject	Permi	t Application				Checked	EAW	Date	11/6/2014
Task	Subce	ll Divider Berm	15			Sheet		Of	
Subcell	3A	Ber	m Height =	7.5 1	ft				
		Elevation	Area	Area	Volume				
ha	se	(ft) 0	(ac) 0 0	(ft ²)	(ft ³)				
to	p	7.5 Total Ava	3.83 ailable Volun	166,645 ne for 3A =	416,613 416,613				
Subcell	3B	Ber	m Height =	6 1	ft				
		Elevation	Area	Area	Volume				
ha	se	(ft) 0	(ac)	(ft^2)	(ft ³)				
to	p	6 Total Av	0.87 ailable Volun	37,946 ne for 3B =	75,891 75,891				
Subcell	4A	Ber	m Height =	6 f	ît				
		Elevation	Area	Area	Volume				
ba	se	(ft) 0	(ac) 0.0	(ft ²)	(ft ³)				
to	p	6 Total Ava	1.77 ailable Volum	77,041 ne for 4A =	154,083 154,083				
Subcell	4B	Ber	m Height =	6 1	ft				
		Elevation (ft)	Area (ac)	Area (ft ²)	Volume (ft ³)				
ba: to	se p	0 6 Total Av	0.0 2.04 ailable Volun	0 88,871 ne for 4B =	177,742 177,742				
Subcell	4C	Ber	m Height =	4 1	ft				
ha	50	Elevation (ft)	Area (ac)	Area (ft²)	Volume (ft ³)				
to	p	4 Total Av	3.89 ailable Volun	169,256 ne for 4C =	225,675 225,675				

No.

Project Charah Colon Mine Site					Computed	MDP	Date	10/7/2014
Subject Perm	it Application				Checked	EAW	Date	11/6/2014
Task Subce	ell Divider Bern	15			Sheet		Of	
Subcell 4D	Ber	m Height =	6	ft				
	Elevation	Area	Area	Volume				
	(ft)	(ac)	(ft ²)	(ft ³)				
base	0	0.0	0					
top	6	1.49	64,806	129,611				
·	Total Ava	ailable Volum	ne for 4D =	129,611				
Subcell 5A	Ber	m Height =	6	ft				
	Elevation	Area	Area	Volume				
	(ft)	(ac)	(ft^2)	(ft ³)				
base	0	0.0	Û Û	<i>、,</i>				
top	6	2.14	93.244	186.488				
	Total Ava	ailable Volun	the for $5A =$	186,488				
Subcell 5B	Ber	m Height =	8	ft				
	Elevation	Area	Area	Volume				
	(ft)	(ac)	(ft^2)	(ft ³)				
base	0	0.0	Û Û					
top	8	3.43	149,544	398,783				
·	Total Av	ailable Volun	ne for 5B =	398,783				
Subcell 5C	Ber	m Height =	8	ft				
	Elevation	Area	Area	Volume				
	(ft)	(ac)	(ft^2)	(ft ³)				
base	0	0.0	ό	x - /				
top	8	1.66	72.321	192.855				
- P	Total Av	ailable Volun	ne for $5C =$	192.855				

HDR Computation		Job Number	453925-235691	-018	No.	
Project	Charah Colon Mine Site		Computed	MDP	Date	11/5/2014
Subjec	Permit Application		Checked E	EAW	Date	11/6/2014
Task	Stormwater Pipe Perforation & Size Calcs		Sheet		Of	

<u>Objective</u>: Determine if the leachate pipes and perforations are large enough to handle the 10 year 24 hour storm event.

References:

- 1. Malcom, H. Rooney (1989). Elements of Urban Stormwater Design . Raleigh: NC State Univ.
- 2. Sharma, H. D., & Lewis, S. P. (1994). Waste Containment Systems, Waste Stabilization, and Landfills: Design and Evaluation . New York: John Wiley & Sons, Inc.

Calculations:

Ea		1
EY	•	т

 $Q = C_d A \sqrt{2gh}$

Reference 1

Where: Q = C _d = A = g = h =	Flow Rate (cfs Coefficient of Cross-section gravity (ft/s ²) head (ft)	;) Discharge (dimensio al Area of Orifice	onless)
7.48 60 60	gal/cf s/min min/hr	12 43,560	in/ft sf/acre
e the actual Flow Rate per / Intensity _{10yr,24hr} = Maximum Subcell Size = Storm Event Q _{cfs} =	Acre based on 1 5.62 14.8 301,929	HELP model runs inches acres cf/acre/day	
Q _{gpm} =	1568.46	gal/acre/min	

Determine

Required Drainage per foot of pipe =	34.207 gpm (actual flow rate per acre for the drainage area of the pipe)
Area of Drainage per foot of pipe =	0.022 ac
Area of Drainage per foot of pipe =	950 sf
Maximum Drainage distance =	950 feet
6 7	

HDR Computation		Job Number	453925-235691	-018	No.	
Project	Charah Colon Mine Site		Computed	MDP	Date	11/5/2014
Subject	Permit Application		Checked E	AW	Date	11/6/2014
Task	Stormwater Pipe Perforation & Size Calcs		Sheet		Of	

Determine the maximum allowable flow in the pipe based on the perforations into the pipe and a maximum head

Diameter of perforation	, $d_{perforation} =$	0.375 in
	$d_{perforation} =$	0.03125 ft
Eq. 2	$A = \pi \left(\frac{d}{2}\right)^2$	
	A _{perforation} =	0.00077 ft ²

Using Equation 1, determine the flow in the pipe

0.6 typical default value (Ref. 1) $C_d =$ 0.00077 ft² $A_{perforation} =$ 32.2 ft/s² g = The pipe is 8 inches in diameter. The head was h = 8 in assumed to be from the center of the pipe to h = 0.67 ft 12 inches above the liner. 0.003 cfs Q_{perforation} = Q_{perforation} = 1.35 gpm per perforation Number of Perforations per foot of pipe = 30 perforations per foot of pipe Q_{per foot of pipe} = 40.60 gpm **Required Flow Rate Allowable Flow Rate** gpm gpm 40.60 34.207

Conclusion:

The allowable flow rate is greater than the required flow rate. Therefore the allowable flow rate based on pipe perforations will be sufficient to meet the actual expected flow rate. Sufficient volume can get into the pipe through the orifices.

HDR Computation		Job Number	453925-235691-018		No.	
Project	Charah Colon Mine Site		Computed	MDP	Date	11/5/2014
Subject	Permit Application		Checked	EAW	Date	11/6/2014
Task	Task Stormwater Pipe Perforation & Size Calcs		Sheet		Of	

Determine the maximum allowable flow in the pipe based on the pipe size and flowing full

Eq. 3
$$Q = \left(\frac{D}{16}\right)^{\frac{8}{3}} \frac{\sqrt{s}}{n}$$
 Reference 1

Where:

Q = Flow Rate (cfs) D = Theoretical Pipe Diameter (in) for just-full flow

n = Manning roughness coefficient (dimensionless)

s = Longitudinal slope (ft/ft)

D =	8 in
n =	0.009 Reference 2, page 472

	Allowable	Allowable	
Slope	Q (cfs)	Q (gpm)	Check
0.10%	0.55	248	Allowable Q is greater than Required Q
0.25%	0.87	393	Allowable Q is greater than Required Q
0.50%	1.24	555	Allowable Q is greater than Required Q
0.75%	1.52	680	Allowable Q is greater than Required Q
1.00%	1.75	785	Allowable Q is greater than Required Q
1.25%	1.96	878	Allowable Q is greater than Required Q
1.50%	2.14	962	Allowable Q is greater than Required Q
1.75%	2.31	1,039	Allowable Q is greater than Required Q
2.00%	2.47	1,111	Allowable Q is greater than Required Q
2.25%	2.62	1,178	Allowable Q is greater than Required Q
2.50%	2.77	1,242	Allowable Q is greater than Required Q
2.75%	2.90	1,302	Allowable Q is greater than Required Q
3.00%	3.03	1,360	Allowable Q is greater than Required Q
3.25%	3.15	1,416	Allowable Q is greater than Required Q
3.50%	3.27	1,469	Allowable Q is greater than Required Q
3.75%	3.39	1,521	Allowable Q is greater than Required Q

Conclusion:

The allowable flow rate is greater than the required flow rate for slopes 0.1% and above. Smaller pipe slopes were not run, but it is assumed that the bottom slope will not be smaller than 2% accounting for settlement. Therefore the allowable flow based on pipe size will be sufficient to meet the actual expected flow rate.

Project:	Sanford Mine		Computed PAW	Date	11/3/14
Subject:	Permit Application	Checked Edu	Date	11/6/14	
Task:	Drainage - Time of Concentration		Sheet	Of	
<u>Objective</u>	Determine the Time of Concentration based on the p	proposed top of fi	ll grades.		
<u>References</u>	1. "Elements of Urban Stormwater Design" by H. Re	ooney Malcom, F	P.E.		
<u>Equations</u>	Time of Concentration, (t _c) is the longest time of flo outlet of the watershed. $t_{c} = \frac{[L^{3} / H]^{0.385}}{128}$	ow from points on	the watershed ridge	to the	
	Time of Concentration, $(min) = t_c$ Hydraulic length of watershed, $(ft) = L$ Elevation change along length, $(ft) = H$				
Cells 2-5 Flow Path 1	Hydraulic length of watershed L (ft) = Peak Elevation of watershed (ft) = Low Elevation of watershed (ft) = Elevation change along length H (ft) = t _c (min) =	1,371 330 260 70 6.4			
Flow Path 2	Hydraulic length of watershed L (ft) = Peak Elevation of watershed (ft) = Low Elevation of watershed (ft) = Elevation change along length H (ft) = t_c (min) =	3,449 328 268 60 19.7			
Flow Path 3	Hydraulic length of watershed L (ft) = Peak Elevation of watershed (ft) = Low Elevation of watershed (ft) = Elevation change along length H (ft) = t_c (min) =	2,657 330 245 85 12.7			
Cell 1 Flow Path 1	Hydraulic length of watershed L (ft) = Peak Elevation of watershed (ft) = Low Elevation of watershed (ft) = Elevation change along length H (ft) = t _c (min) =	1,660 322 270 52 8.9			

CONCLUSION

Most of the drainage ara is within the Flow Path 1 and 3 areas. Use a Time of Concentration of 10-Minutes

I Job No. 453925-235691-018

Project:	Sanford Mine	Computed PAW	Date 11/03/14
Subject:	Permit Application	Checked Feller	Date 1/6/14
Task:	Drainage - Perimeter Channels	Sheet	Of

Objective Design the stormwater channels around the perimeter of the structural fill for the 25-yr storm.

Assume sideslope swales and/or sloe drains are installed as fill progresses. This will minimize the drainage area.

References

- 1. NC Erosion and Sediment Control Planning and Design Manual.
- 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.
- 3. NCDOT Standard Specifications for Roads and Structures
- 4. North American Green Product Brochure version 4.11
- 5. East Coast Erosion Blankets (ECS-1)
- 6. Maccaferri
- 7. Green Armor Systems

8. NOAA Atlas 14, Volume 2, Version 3 (Sanford, NC)

<u>Equations</u>

Normal Depth Procedure (Manning's Eqn)

Ref 2

Depuir roccure (maining 5 Equ)		Ref Z
$Z_{av} = AR^{2/3}$	Area (A) = $bd + z d^2$	
$Z_{req} = Q n / 1.49 s^{0.5}$	$R = Area / (b+2d(z^2+1)^{0.5})$	
$AR^{2/3} = Q n / 1.49s^{0.5}$	Avg Shear Stress $(T) = d*s*unit$ weight	of water
Q(cfs) = CIA	$Z_{av} = Z_{req}$	

Channel Design

Min Channel Freeboard =	0.2	ft	
Inside Channel Side Slope =	2	(enter X for X:1)	
Outside Channel Side Slope =	2	(enter X for X:1)	
Bottom Width, $b =$	4	ft	
Runoff Coeff (initial)=	0.60	Ag land, smooth	Ref 1
Runoff Coeff (permanent)=	0.25	Pasture, Sandy	Ref 1
I (in/hr) =	6.76	25-yr, 10-min Design Storm (Sanford, NC)	Ref 8

Various Lining Types	*Depth of Flow is not specified for Manning's' n	Mann	ing's n		Allowable	
Lining		depths of	depths of		Shear Stress	i
Туре	Lining Description	0-0.5 ft	0.5-2.0 ft	Vp (ft/sec)	(psf)	5
A	Jute Net (HEC-15)		0.015	2.0	0.45	
В	Erosion Control Blanket Single Net (Curlex 1)		0.034	5.0	1.55	
С	Erosion Control Blanket, Straw w/ Single Net (Ref 4)*		0.025	6.7	1.50	
D	Erosion Control Blanket Double Net (Curlex HV)		0.026	10.0	1.65	
E	Ordinary Firm Loam (Ref 2)	0.023	0.020	3.5	2.0	
F	Grass Lined (Ref 1)*		0.030	5.0	2.0	
G	6" Rip Rap (Ref 2, Ref 1)		0.069	9.0	2.0	
Н	GreenArmor 7010 (vegetated)		0.034	16.0	8.0	
Ι	Unvegetated Turf Reinforcement Mat (TRM) (NAG C350)		0.025	9.5	2.25	
J	Class D Phase 2 (Partially vegetated) TRM (NAG C350)		0.048	14.0	3.34	
K	12" Rip Rap (Ref 2, Ref 1)		0.078	12.5	4.0	
L	Class B Phase 3 (Fully vegetated) TRM (NAG C350)		0.048	18.0	5.7	
М	Reno Mattress (6-inch, unvegetated) Ref 6		0.0277	13.8	4.3	
N	Reno Mattress (6-inch, vegetated) Ref 6		0.050	13.8	8.35	
0	Smart Ditch (Pre-formed HDPE channel)		0.022		1.8	
Р	Concrete (HEC-15, EPA 832-F-99-002)		0.013	25.0	10.0	

Drainage Area is measured in plan view and does not account slope. Refer to sheet "Channels" for drainage areas. Select Lining System for each channel slope that will handle the design flow when vegetated and when initially placed

I Job No. 453925-235691-018 I

Project:	Sanford Mine	Computed PAW	Date 11/03/14
Subject:	Permit Application	Checked Ear	Date 11/6/14
Task:	Drainage - Perimeter Channels	Sheet	Of

							Channel	Side Slope	•		
		Drainage							Bottom		
		Area				Channel	Inside	Outside	Width, b		
_	Node	(acres)	elev 2	elev 1 1	ength (ft)	Slope	(X:1)	(X:1)	(ft)		
	DI #1	0.00	224	20.4	520	5 70/	2	2	4		
	DI #1	0.96	324	294	529 822	5./% 1.10/	2	2	4		
	DI #2	2.9	288	279	823	1.1%	2	2	4		
	DI #3 W	3.2	280	209	1,100	1.070	2	2	4		
	DI #5E	2.5	270	209	550	0.270	2	2	4		
	DI #5 W	3.2	280	259	614	3.370 2.70/	2	2	4		
	DI #55	2.0 2.1	202	239	600	5.770 1.50/	2	2	4		
	DI #0 IN	5.1 0 0	297	200	1 024	1.370	2	2	4		
]	D1 # 0 W a	0.2	32Z 204	290	1,034	2.370	2	2	4		
l	DI #0 W D	12.4	294	200	550	0.970	2	2	4		
	DI #7E	5.5 20 C	290	284	338 706	1.1%	2	2	4		
	DI #7W	38.0	278	272	/00	0.8%	2	2	4		
	DI # / W	4.1	2/0	2/1	434	1.270	Z	Z	4		
					Flow	Cross				Avg Shear	r
	Channel	Flow Q	Lining		Depth	Sectional			Velocity	Stress	
	Location	(cfs)	Туре	Zrea	d (ft)	Area (sf)	R	Zav	(ft/sec)	(lb/sf)	Comment
Initial Lining	2			icq							
	DI #1	3.9	E	0.22	0.17	0.75	0.16	0.22	5.2	0.6	Need Liner
	DI #2	11.8	Е	1.51	0.53	2.69	0.42	1.51	4.4	0.4	Need Liner
	DI #3W	21.1	Е	2.83	0.75	4.15	0.56	2.83	5.1	0.5	Need Liner
	DI #3E	9.3	Е	2.88	0.76	4.20	0.57	2.88	2.2	0.1	OK
	DI #5W	13.0	Е	0.96	0.41	1.98	0.34	0.96	6.6	0.8	Need Liner
	DI #5S	15.4	E	1.07	0.44	2.13	0.36	1.07	7.3	1.0	Need Liner
	DI #6 N	12.6	Е	1.38	0.50	2.53	0.40	1.38	5.0	0.5	Need Liner
	DI #6 W a	33.3	Е	2.82	0.75	4.14	0.56	2.82	8.0	1.2	Need Liner
]	DI #6 W b	50.3	E	7.17	1.24	8.04	0.84	7.17	6.3	0.7	Need Liner
	Cell 1 N	21.5	Е	2.78	0.75	4.10	0.56	2.78	5.2	0.5	Need Liner
	DI #7E	156.6	Е	22.80	2.22	18.72	1.34	22.80	8.4	1.2	Need Liner
	DI #7W	16.6	Е	2.08	0.64	3.35	0.49	2.08	5.0	0.5	Need Liner
Temp Lining	5	• •	~			0.07	0.40				
	DI #1	3.9	C	0.27	0.20	0.86	0.18	0.27	4.5	0.7	OK
	DI #2	11.8	C	1.89	0.60	3.14	0.47	1.89	3.8	0.4	OK
	DI #3W	21.1	C	3.54	0.85	4.86	0.62	3.54	4.3	0.5	OK
	DI #3E	9.3	C	3.60	0.86	4.92	0.63	3.60	1.9	0.1	OK
	DI #5W	13.0	C	1.21	0.47	2.31	0.38	1.21	5.6	1.0	OK
	DI #5S	15.4	C	1.34	0.50	2.48	0.40	1.34	6.2	1.2	OK
	DI #6 N	12.6	C	1.72	0.57	2.94	0.45	1.72	4.3	0.5	OK
	DI #6 W a	33.3	C	3.52	0.85	4.84	0.62	3.52	6.9	1.3	Need Diff Liner
1	DI #6 W b	50.3	C	8.96	1.38	9.37	0.92	8.86	5.4	0.8	OK
	Cell 1 N	21.5	C	3.48	0.84	4.80	0.62	3.48	4.5	0.6	OK
	DI #7E	156.6	C	28.49	2.47	22.07	1.47	28.49	7.1	1.3	Need Liner
	DI #7W	16.6	С	2.60	0.72	3.91	0.54	2.60	4.3	0.5	OK

I Job No. 453925-235691-018 |

Project:	Sanford Mir	ne							Computed	PAW	Date 11/03/14
Subject:	Permit Appl	ication							Checked	Ear	Date 11/4/14
Task:	Drainage - P	erimeter C	hannels						Sheet		Of
	Channel Location	Flow Q (cfs)	Lining Type	Z _{req}	Flow Depth d (ft)	Cross Sectional Area (sf)	R	Z _{av}	Velocity (ft/sec)	Avg Shear Stress (lb/sf)	Comment
Permanent	Lining										
	DI #1	1.6	F	0.14	0.13	0.57	0.12	0.14	2.9	0.5	OK
	DI #2	4.9	F	0.94	0.41	1.95	0.34	0.94	2.5	0.3	OK
	DI #3W	8.8	F	1.77	0.58	3.00	0.45	1.77	2.9	0.4	OK
	DI #3E	3.9	F	1.80	0.59	3.03	0.46	1.80	1.3	0.1	OK
	DI #5W	5.4	F	0.60	0.31	1.44	0.27	0.60	3.7	0.6	OK
	DI #5S	6.4	F	0.67	0.33	1.55	0.28	0.67	4.1	0.8	OK
	DI #6 N	5.2	F	0.86	0.38	1.84	0.32	0.86	2.9	0.4	OK
	DI #6 W a	13.9	F	1.76	0.58	2.98	0.45	1.76	4.6	0.9	OK
	DI #6 W b	21.0	F	4.48	0.97	5.74	0.69	4.48	3.7	0.5	ОК
	Cell 1 N	9.0	F	1.74	0.57	2.96	0.45	1.74	3.0	0.4	OK
	DI #7E	65.2	F	14.25	1.76	13.25	1.12	14.25	4.9	0.9	ОК
	DI #7W	6.9	F	1.30	0.49	2.43	0.39	1.30	2.9	0.4	OK
Select an a	ppropriate tei	mp liner fo	r DI 6W a	and DI #	7E						
					Flow	Cross				Avg Shear	r
Channel		Channel	Lining		Depth	Sectional			Velocity	Stress	
Location		Slope	Туре	Z_{req}	d (ft)	Area (sf)	R	Z _{av}	(ft/sec)	(lb/sf)	Comment
DI #6 W a	l	2.5%	Н	4.72	0.99	5.96	0.71	4.72	0.7	1.6	OK
DI #7E		0.8%	Н	12.27	1.63	11.88	1.05	12.27	0.5	0.9	OK

CONCLUSION

	Inside	Outside	Bottom		Min		Тор		
	Channel	Channel	Width,	Slope	Depth	Build	Width		
Channel	(X:1)	(X:1)	b (ft)	(%)	(ft)	Depth (ft)	(ft)	Temporary Lining	Permanent Lining
DI #1	2	2	4	5.7%	1.2	2	12	Straw w/ Single Net	Grass Lined
DI #2	2	2	4	1.1%	0.8	2	12	Straw w/ Single Net	Grass Lined
DI #3W	2	2	4	1.0%	1.1	2	12	Straw w/ Single Net	Grass Lined
DI #3E	2	2	4	0.2%	1.1	2	12	Straw w/ Single Net	Grass Lined
DI #5W	2	2	4	3.3%	0.7	2	12	Straw w/ Single Net	Grass Lined
DI #5S	2	2	4	3.7%	0.7	2	12	Straw w/ Single Net	Grass Lined
DI #6 N	2	2	4	1.5%	0.8	2	12	Straw w/ Single Net	Grass Lined
DI #6 W a	2	2	4	2.5%	1.2	2	12	GreenArmor 7010	Grass Lined
DI #6 W b	2	2	4	0.9%	1.6	2	12	Straw w/ Single Net	Grass Lined
Cell 1 N	2	2	4	1.1%	1.0	2	12	Straw w/ Single Net	Grass Lined
DI #7E	2	2	4	0.8%	2.7	3	16	GreenArmor 7010	Grass Lined
DI #7W	2	2	4	1.2%	0.9	2	12	Straw w/ Single Net	Grass Lined

Though Channel DI #6Wa & DI #7E requires a heavier temporary liner than the other channels, the permanent liner for all channels is grass. Therefore, using the Straw w/ Single Net could be used but additional maintenance of the channel may be necessary until grass is established.

Project:	Sanford Mine	Computed PAW	Date 11/03/14
Subject:	Permit Application	Checked Saw	Date 11/4/14
Task:	Drainage - Sideslope Swales	Sheet	Of

Objective Design the sideslope channels on the structural fill for the 25-yr storm.

<u>References</u>

- 1. NC Erosion and Sediment Control Planning and Design Manual.
- 2. "Elements of Urban Stormwater Design" by H. Rooney Malcom, P.E.

 $Z_{av} = Z_{req}$

- 3. NCDOT Standard Specifications for Roads and Structures
- 4. North American Green Product Brochure version 4.11
- 5. East Coast Erosion Blankets (ECS-1)
- 6. Maccaferri
- 7. Green Armor Systems
- 8. NOAA Atlas 14, Volume 2, Version 3 (Sanford, NC)

Equations

Normal Depth Procedure (Manning's Eqn)

al Depth Procedure (Manning's	Eqn)	Ref 2
$Z_{av} = AR^{2/3}$	Area (A) = $bd + z d^2$	
$Z_{req} = Q n / 1.49 s^{0.5}$	$R = Area / (b+2d(z^2+1)^{0.5})$	
$AR^{2/3} = Q n/ 1.49s^{0.5}$	Avg Shear Stress (T) = d*s*unit weigh	t of water
Q(cfs) = CL	Ą	

Channel Design

Min Channel Freeboard =	0.2	ft	
Inside Channel Side Slope =	Varies	(enter X for X:1)	
Outside Channel Side Slope =	Varies	(enter X for X:1)	
Bottom Width, b =	Varies	ft	
Runoff Coeff (initial)=	0.60	Ag land, smooth	Ref 1
Runoff Coeff (permanent)=	0.25	Pasture, Sandy	Ref 1
I(in/hr) =	6.76	25-yr, 10-min Design Storm (Sanford, NC)	Ref 8

Various Lining T

ining Typ Lining	es	Mann depths of	ning's n depths of		Allowable Shear Stress
Туре	Lining Description	0-0.5 ft	0.5-2.0 ft	Vp (ft/sec)	(psf)
A	Jute Net (HEC-15)		0.015	2.0	0.45
В	Erosion Control Blanket Single Net (Curlex 1)		0.034	5.0	1.55
С	Erosion Control Blanket, Straw w/ Single Net (Ref 4)*		0.025	6.7	1.50
D	Erosion Control Blanket Double Net (Curlex HV)		0.026	10.0	1.65
Е	Ordinary Firm Loam (Ref 2)	0.023	0.020	3.5	2.0
F	Grass Lined (Ref 1)*		0.030	5.0	2.0
G	6" Rip Rap (Ref 2, Ref 1)		0.069	9.0	2.0
Η	GreenArmor 7010 (unvegetated)		0.034	12.0	3.3
Ι	Unvegetated Turf Reinforcement Mat (TRM) (NAG C350)		0.025	9.5	2.25
J	Class D Phase 2 (Partially vegetated) TRM (NAG C350)		0.048	14.0	3.34
Κ	12" Rip Rap (Ref 2, Ref 1)		0.078	12.5	4.0
L	Class B Phase 3 (Fully vegetated) TRM (NAG C350)		0.048	18.0	5.7
Μ	Reno Mattress (6-inch, unvegetated) Ref 6		0.0277	13.8	4.3
Ν	Reno Mattress (6-inch, vegetated) Ref 6		0.050	13.8	8.35
0	Smart Ditch (Pre-formed HDPE channel)		0.022	-	
Р	Concrete (HEC-15, EPA 832-F-99-002)		0.013	25.0	10.0
	*Depth of Flow is not specified for Manning's' n				

I Job No. 453925-235691-018 |

Project:	Sanford Mine	Computed PAW	Date 11/03/14
Subject:	Permit Application	Checked Serv	Date 11/6/14
Task:	Drainage - Sideslope Swales	Sheet	Of

Drainage Area is measured in plan view and does not account slope.

Select Lining System for each channel slope that will handle the design flow when vegetated and when initially placed

			Channel	Side Slope						
	Drainage				Bottom					
Channel	Area	Channel	Inside	Outside	Width, b					
Location	(acres)	Slope	(X:1)	(X:1)	(ft)	i a				
Sideslope	13.3	2.0%	4	4	0	Largest	Drainage Are	ea (DI #5 on th	ne Slope Drai	n Areas)
Diversion Berm	7.5	0.25%	2	2	0	Largest	Drainage Are	ea (DI #3)		
				Flow	Cross				Avg Shear	e .
Channel	Flow Q	Lining		Depth	Sectional			Velocity	Stress	
Location	(cfs)	Туре	Zrea	d (ft)	Area (sf)	R	Zav	(ft/sec)	(lb/sf)	Comment
	Initial Lin	ing								
Sideslope	53.9	E	5.12	1.31	6.91	0.64	5.12	7.8	1.6	Need Liner
Diversion Berm	30.4	Е	8.17	2.07	8.59	0.93	8.17	3.5	0.3	Need Liner
	Temp Lini	ing								
Sideslope	53.9	C	6.40	1.43	8.17	0.69	6.40	6.6	1.8	Needs Liner
Diversion Berm	30.4	С	10.21	2.25	10.16	1.01	10.21	3.0	0.4	OK
				Flow	Cross				Avg Shear	ſ
Channel	Flow O	Lining		Depth	Sectional			Velocity	Stress	
Location	(cfs)	Туре	Z _{req}	d (ft)	Area (sf)	R	Z _{av}	(ft/sec)	(lb/sf)	Comment
	Permanen	t Lining								
Sideslope	22.5	F	3.20	1.10	4.86	0.53	3.20	4.6	1.4	OK
Diversion Berm	12.7	F	5.10	1.74	6.04	0.78	5.10	2.1	0.3	ОК

CONCLUSION

	Side	Slope		Min to Construct			
	Inside Outside		Bottom	_	Тор		
	Channel	Channel	Width, b	Slope	Depth	Width	
	(X:1)	(X:1)	(ft)	(%)	(ft)	(ft)	
Sideslope	4	4	0	2.0%	1.1	8.8	
Diversion Berm	2	2	0	0.25%	1.7	6.9	

Though the Straw w/ Single Net temporary liner for the sideslope is greater than the allowable shear stress, since it a tmeporary condtion and the permanent liner is grass, the Straw w/ Single Net will work but the channel will need to be monitored and maintained until vegetation is extablished.

Channels to have a temporary liner (Straw w/ Single Net) Permanent liner is grass.

I Job No. 453925-235691-018

Project:	Sanford Mine	Computed PAW Date 11/03/14
Subject:	Permit Application	Checked: Eer Date: 11/6/14
Task:	Drainage - Slope Drains	Sheet: Of:

Objective: Size the slope drains for the 25-year storm,

Equations:

Q (cfs) = CIA Runoff Coeff (initial)= 0.60 Ag land, smooth Runoff Coeff (permanent)= 0.25 Pasture, Sandy I (in/hr) = 6.76 25-yr, 10-min Design Storm (Sanford, NC) Drainage Area (acres) = Use largest drainage area

Drainage area to pipe is in "post" condition

$$D_{REQD} = 16 \left[\frac{Qn}{\sqrt{s}} \right]^{\frac{3}{8}}$$

Theoretical Size for pipe flowing full

D = Pipe diameter (inches)

Q = Peak Flow (cfs)

0.012 = n, Manning's Roughness Coefficient for ADS CPP

s = Pipe Slope (ft fall / ft run)

Orifice $Q = C_d * A * (2gh)^{0.5}$

Q (cfs) = Discharge

 $0.60 = C_d$ Coefficient of Discharge (dimensionless)

A (sf) = Cross Sectional Area of Flow at the orifice entrance

 $32.2 = \text{Acceleration of Gravity g (ft/sec}^2)$

h (ft) = driving head measured from centroid of the orifice (pipe) to the water surface

"Driving Headwater Rqd for Total Flow" is the depth of water above the centerline of the pipe required to achieve the flow. "Driving Head Available" is the depth of the channel from the center of the pipe to the top of the channel.

Allov	vable head	2.5	feet (dej	oth of channe	el)		Driving			
Scenario	Pipe Slope (ft fall / ft run)	Drainage Area (acres)	Flow Q (cfs)	Theoretical Size for pipe (in)	Pipe Dia Selected (in)	Cross Sectional Area of orifice (sf)	Headwater Rqd for Total Flow (ft)	Driving Head Available (ft)	Manning's Possible Discharge Q (cfs)	Comments
Sideslope	25%	13.3	22.5	12.7	18	1.8	7.0	1.8	57.0	This assumes entire area trying to get into the pipe though some is already in the pipe due to sideslope swales.
Sideslope	25%	7	11.8	10.0	18	1.8	1.9	1.8	57.0	This is drainage from only the sideslope swale.
Diversion Berm	1.0%	2	3.4	11.4	12	0.8	0.8	2.0	3.9	
Diversion Berm	1.0%	7.5	12.7	18.7	18	1.8	2.2	1.8	11.4	

Conclusion:

Use 18" corrugated plastic pipe (smooth wall)

Project:	Sanford Mine	Computed:	PAW	Date 11/03,	14	
Subject:	Permit Application	Checked	Sal	Date 11/	611	9
Task:	Drainage - Drop Inlets	Sheet		Of 🖊		

Objective: Size the drop inlet outlet pipe and grates for the 25-year storm.

References:

1. Elements of Urban Stormwater Design, H. Rooney Malcom, P.E.

Equations:

 $Q = C_d * A (2 * g * h)^{0.5}$ Orifice Equation

Q = cfs, discharge (based on permanent condition) $C_{d} = 0.59$ coefficient of discharge Ref 1, p III-11 ft/sec², gravity g = 32.2 h = ft, driving head measured from the center of the pipe A = sf, cross sectional open area Open area (A) Grate Manufacturer

	Open area (A)	Grate	Manufacturer
А	3.6	V-3610-7	East Jordan Iron Works
В	4.8	R-1792-KG	Neenah
C	6.0	R-3531-A	Neenah
Allowable head Max Flow from Slope Drains	2.0 22.5	feet (depth o cfs	of channel)

Check for inlet control

	Perimeter C	hannel							
Channel			Slope Drain	Total Flow			Open	Required	
Location	Side 1	Side 2	Flow (cfs)	(cfs)		Grate	Area (sf)	head(ft)	
DI #1	1.6		22.5	24.1	С	R-3531-A	6.0	0.7	Ok
DI #2	4.9		22.5	27.4	С	R-3531-A	6.0	0.9	Ok
DI #3	8.8	3.9	22.5	35.2	С	R-3531-A	6.0	1.5	Ok
DI #4	Mininimal Flow								
DI #5	5.4	6.4	22.5	34.3	С	R-3531-A	6.0	1.5	Ok
DI #6	5.2	21.0	22.5	48.7	С	R-3531-A	6.0	2.9	Problem
DI #7	65.2	6.9	22.5	94.6	С	R-3531-A	6.0	11.1	Problem
Cut the flow	in half then determ	ine the req	uired grate inle	et area					
DI #6	24.3		0.59	С		R-3531-A	6.0	0.7	Ok
DI #7	47.3		0.59	С		R-3531-A	6.0	2.8	Problem
DI #7	65.2		0.59	2 large grate	s wil	l be necessary	9.8	2.0	Ok

Project:	Sanford Mine	Computed: PAW	Date 11/03/14
Subject:	Permit Application	Checked Sow	Date 11/6/14
Task:	Drainage - Drop Inlets	Sheet	Of

Size the Outlet culvert

D=16*(Qn/s^{0.5})^{3/8}

^{3/8} Theoretical Pipe Size (in) for pipe flowing full

D = Pipe diameter (inches)

Q = Peak Flow (cfs)

n = 0.013 Manning's Roughness Coefficient for RCP

s = Pipe Slope (ft fall / ft run)

Check pipe size based on Gra	vity Flow							
I	DI #1		DI #3 DI #4		DI #5	DI #6	DI #7	
Q(cfs) =	24.1	27.4	35.2	10.0	34.3	48.7	94.6	
Number of pipes	1	1	1	1	1	1	2	
Slope (%) =	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Theoretical Diameter (in) =	24.6	25.8	28.3	17.7	28.0	32.0	31.6	
Culvert Diameter (in) =	30	30	30	18	30	36	36	

Conclusion:

For DI #1, #2, #3, #4, and #5 use a grate with 6 sf open area and a 30" RCP Outlet

For DI #6 use a two grates each with 6 sf open area and a 36" RCP Outlet

For DI #7, use two grates with 12 sf open area and 2- 36" RCP Outlet

1	Sanford Mine					Computed:	$\mathcal{P}\mathcal{A}\mathcal{W}$	Date 1	1/03/17
Subject:	Permit Applica	ition				Checked	Greek	Date	116/14
Task:	Drainage - Dro	p Inlet acro	oss Power	·Line Right-	of-Way	Sheet		Of	777.
Objective:	Design the grat	te, drop inl	et and cul	vert for the j	oower line righ	t-of-way crossin	ng for the 25-y	ear storn	n.
<u>References:</u>		1. Elemen	its of Urba	an Stormwat	er Design, H. F	Rooney Malcorr	n, P.E.		
Equations:	0.4	-f-) CIA							
	Q (G Runoff Coef	$c_{IS} = CIA$	0.60	Ag land, sm	nooth				
R	unoff Coeff (pe	rmanent)=	0.25	Pasture, Sa	ndy				
		I (in/hr) =	6.76	25-yr, 10-m	nin Design Stor	m (Sanford, NC	C)		
	A	(acres) =	27.6						
	Q inii	tial (cfs) =	111.95						
	Q perman	ent(cis) -	40.04						
Orifice Equa	tion	0.5							
	$Q = C_d * A (2)$	* g * h)***							
	Q= C-=	coefficient	t of discha	u on perman				Ref 1	n III-11
	C _d	22.2	ft/ran2 or	rovitu	0.37			Ref 1,	5 III-1 I
	g – h =	ft driving	head mea	sured from t	he center of the	e nine			
	A =	sf, cross se	ectional of	pen area		o prive			
			Onen	Derimeter o	£				
				E E C I I I E E C I C					
		Type	area (A)	grate	Grate	Manufactu	rer		
	3	Туре А	area (A) 3.6	grate 10.4	Grate V-3610-7	Manufactu East Jordan In	rer on Works		
	-	Type A B	area (A) 3.6 4.8	grate 10.4 12.1	Grate V-3610-7 R-1792-KG	Manufactur East Jordan Ir Neenah	rer on Works		
	19	Type A B C	area (A) 3.6 4.8 6.0	10.4 12.1 13	Grate V-3610-7 R-1792-KG R-3531-A	Manufactur East Jordan Ir Neenah Neenah	rer on Works		
Weir Equation	n	Type A B C	area (A) 3.6 4.8 6.0	10.4 12.1 13	Grate V-3610-7 R-1792-KG R-3531-A	Manufactur East Jordan Ir Neenah Neenah	rer on Works		
Weir Equatio	$On = C_{w} * L * H$	Type A B C	area (A) 3.6 4.8 6.0	10.4 12.1 13	Grate V-3610-7 R-1792-KG R-3531-A	Manufactu East Jordan Ir Neenah Neenah	rer on Works		
Weir Equatio	$Q = C_w * L * F$ $Q (cfs) =$	Type A B C I ^{1.5} Discharge	area (A) 3.6 4.8 6.0	10.4 12.1 13	Grate V-3610-7 R-1792-KG R-3531-A	Manufactu East Jordan In Neenah Neenah	rer on Works		
Weir Equatio	$Q = C_w * L * H$ $Q (cfs) = 3.2$	Type A B C I ^{1.5} Discharge = Cw Weir	area (A) 3.6 4.8 6.0 Coefficien	reinication grate 10.4 12.1 13 t (dimension)	Grate V-3610-7 R-1792-KG R-3531-A	Manufactur East Jordan Ir Neenah Neenah	rer ron Works		
Weir Equatio	$Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies	$\frac{\text{Type}}{\text{A}}$ $\frac{\text{B}}{\text{C}}$ $\frac{1.5}{\text{Discharge}}$ $= Cw \text{Weir}$ $= L (ft) Let$	area (A) 3.6 4.8 6.0 Coefficien ength of w	t (dimension)	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest	Manufactu East Jordan Ir Neenah Neenah	rer on Works		
Weir Equatio	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) =	Type A B C Jischarge = Cw Weir = L (ft) Le driving her	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of	t (dimension) t (dimension) t (dimension)	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest o the water surf	Manufactu East Jordan In Neenah Neenah	rer on Works		
Weir Equatio	$Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies $H (ft) =$	$\frac{\text{Type}}{\text{A}}$ $\frac{\text{B}}{\text{C}}$ $\frac{1.5}{\text{Discharge}} = Cw \text{Weir}$ $= L (ft) Le$ driving here	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of	t (dimension) t (dimension) t (dimension) t eir measure	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest o the water surf	Manufactu East Jordan Ir Neenah Neenah	rer on Works		
Weir Equatio	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head	$\frac{\text{Type}}{\text{A}}$ $\frac{\text{B}}{\text{C}}$ $\frac{1.5}{\text{Discharge}}$ $= Cw \text{Weir}$ $= L (ft) \text{Le}$ driving here 2.0	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (dept	t (dimension) t (dimension) t (dimension) t measure of the weir to	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest o the water surf	Manufactur East Jordan Ir Neenah Neenah	rer on Works		
Weir Equatio	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head blet control	Type A B C Jischarge = Cw Weir = L (ft) Le driving het 2.0	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (dept	t (dimension) t (dimension) t (dimension) t measure of the weir to	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest o the water surf l)	Manufactu East Jordan In Neenah Neenah	rer on Works		
Weir Equatio	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head blet control Q (cfs)	$\frac{\text{Type}}{\text{A}}$ $\frac{\text{B}}{\text{C}}$ $\frac{1.5}{\text{Discharge}}$ $= Cw \text{Weir}$ $= L (ft) \text{Le}$ driving here 2.0 $C_{d} \text{ or } C_{m}$	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (dept	reinities of grate 10.4 12.1 13 t (dimension) reir measure of the weir to th of channe Grate	Grate V-3610-7 R-1792-KG R-3531-A d along crest o the water surf l) Open Area (sf)	Manufactur East Jordan Ir Neenah Neenah	rer on Works d(ft)		
Weir Equation	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head <u>Dete control</u> <u>Q (cfs)</u> <u>111.95</u>	Type A B C Discharge = Cw Weir = L (ft) Le driving her 2.0 C_{d} or C_{w} 0.59	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (depthere)	reinities of grate 10.4 12.1 13 t (dimension) reir measured of the weir to th of channe <u>Grate</u> R-3531-A	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest b the water surf l) Open Area (sf) 6.0	Manufactur East Jordan In Neenah Neenah	rer on Works d(ft) Problem	1 Remove	grate, Assume weir
Weir Equation	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head <u>olet control</u> <u>Q (cfs)</u> 111.95 111.95	$\frac{\text{Type}}{\text{A}}$ $\frac{\text{B}}{\text{C}}$ $\text{Discharge} = Cw \text{Weir} = L (ft) \text{Le}$ driving he: 2.0 $\frac{\text{C}_{d} \text{ or } C_{w}}{0.59}$ 3.2	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (dept	t (dimension) t (dimension) eir measure of the weir to th of channe <u>Grate</u> R-3531-A R-3531-A	Grate V-3610-7 R-1792-KG R-3531-A ess) d along crest o the water surf I) Open Area (sf) 6.0 13.0	Manufactur East Jordan In Neenah Neenah Sace) Required hea 15.5 1.9	rer ron Works d(ft) Problem Ok	1 Remove	grate, Assume weir
Weir Equation	on $Q = C_w * L * H$ $Q (cfs) =$ 3.2 varies H (ft) = Allowable head <u>equal control</u> Q (cfs) 111.95 111.95 46.6	Type A B C $I^{1.5}$ Discharge = Cw Weir = L (ft) Le driving her 2.0 C_d or C_w 0.59 3.2 0.59	area (A) 3.6 4.8 6.0 Coefficien ength of w ad (crest of feet (dept	reinited of grate 10.4 12.1 13 t (dimension) eir measure of the weir to th of channe <u>Grate</u> R-3531-A R-3531-A R-3531-A	Grate V-3610-7 R-1792-KG R-3531-A dalong crest b the water surf l) Open Area (sf) 6.0 13.0 6.0	Manufactur East Jordan In Neenah Neenah àace) Required hea 15.5 1.9 2.7	rer ron Works d(ft) Problem Ok Problem	a Remove a Divide th	grate, Assume weir, te flow

Project:	Sanford Mine	Computed:	PAW	Date 1.	1/03/	14	
Subject:	Permit Application	Checked	Gen	Date	111	61	14
Task:	Drainage - Drop Inlet across Power Line Right-of-Way	Sheet		Of		1	e

Size the Outlet culvert

 $D=16*(Qn/s^{0.5})^{3/8}$ Theoretical Pipe Size (in) for pipe flowing full

- D = Pipe diameter (inches)
- Q = Peak Flow (cfs)
- n = 0.013 Mannings Roughness Coefficient for RCP
- s = Pipe Slope (ft fall / ft run)

288
3
285
285
282
206
1.5%

Check pipe size based on Gravity Flow

	Initial	Half of	Permanent	Half of Permanent
	Flow	Initial Flow	Flow	Flow
Q(cfs) =	111.95	55.97	46.6	23.32
Theoretical Diameter (in) =	40.7	31.4	29.3	22.6
Culvert Diameter (in) =	42	30	30	24

Conclusion:

Use a grate with a minimum inlet area of 6 sf.

Use 2 24" RCP culverts out of the drop inlets at 1.5% slope.

Project:	Sanford Mine				Computed	PAW	Date 11/03/14		
Subject:	Permit App	lication			Checked:	Eur	Date:	14/6/14	
Task:	Drainage -	Apron O	utlets		Sheet	Of			
Objective:	Design the	Design the apron outlets for the drop inlets for the 25-year storm.							
<u>References:</u>	1. "Elemen 2. North C	ts of Urb arolina E	an Stormwater De rosion and Sedim	esign" by H. Rooney ent Control Planning	Malcom, P. g and Design	E. Manual			
<u>Equations:</u>	Determine Use Norma	Tailwate l Depth l	r conditions to siz Procedure (Manni	e apron ng's Eqn.)			Ref 1, I	11-7	
	$7 = A R^{2/3}$		Ar	$ea(A) = bd + z d^2$					
	$Z_{av} = \Omega n / I$	$1.49s^{0.5}$	R =	= Area / $(b+2d(z^2+1))$	$)^{0.5})$				
	$AR^{2/3} = Or$	1.193	5 Av	rg Shear Stress (T) =	d*s*unit we	ight of water			
			$Z_{av} = Z_{req}$		a s unit i e				
	n =	0.104	6-Inch Rip Rap I	Lined Channel (for d	lepths of 0 to	0.5 ft)	Ref 2		
	n =	0.069	6-Inch Rip Rap I	Lined Channel (for d	lepths of 0.5	to 2 ft)	Ref 2		
	Vp (ft/sec) =	9	Permissible Velo	ocity for lining			Ref 2		
Sid	le Slope (z) = (z)	6	enter X for X:1 ((assumed)					
	s (ft/ft) =	1.0%	Outlet Slope (ass	sumed)					
D	iameter (in) =	varies	Drop Inlet Culve	ert					
Bottom	Width(ft) =	10	Assumed						

Flows (Q) based on the "Manning's Possible Discharge Q (cfs)" from the pipe calcualation. For the Perm Rd North, the flow is doubles since there are 2 pipes.

0.5^* Barrel Diameter (ft) = 1.25	Ref 2, 8.06.1
0.5^* Barrel Diameter (ft) = 1.50	
Minimum Tailwater Conditions: Flow Depth (d) < 0.5*Diameter of Culvert	Ref 2 8.06a
Maximum Tailwater Conditions: Flow Depth (d) > 0.5 *Diameter of Culvert	Ref 2 8.06b

				Cross				
			Flow Depth,	Sectional			Velocity	
Diameter (in)	Q (cfs)	Z _{req}	d (ft)	Area (sf)	R (ft)	Z_{av}	(ft/sec)	Tailwater
30	35.2	16.28	1.13	18.9	0.80	16.28	1.9	Min
36	48.7	22.54	1.33	23.9	0.91	22.54	2.0	Min

Size the aprons for each pipe using Ref 2:

The discharge on Figure 8.06a do not intersect the pipe size. Use the minimum length.

Conclusion:

				Median Rip	Selected
Culvert			Outlet	Rap Size	Rip Rap
Diameter	Entrance	Length	Width	(ft)	Size
(ft)	(ft)	(ft)	(ft)	d ₅₀	(in)
2.5	7.5	16	19	0.5	Class B
3	9	20	23	0.5	Class B

~

~

~

NOAA Atlas 14, Volume 2, Version 3 Location name: Sanford, North Carolina, US* Latitude: 35.5361°, Longitude: -79.1459° Elevation: 297ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	age recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	5.10 (4.66-5.62)	6.04 (5.51-6.64)	7.00 (6.38-7.70)	7.69 (7.00-8.45)	8.48 (7.68-9.31)	9.01 (8.14-9.89)	9.52 (8.53-10.4)	9.95 (8.88-10.9)	10.4 (9.23-11.4)	10.8 (9.48–11.8)
10-min	4.08	4.82	5.60	6.15	(6.76	7.18	7.56	7.88	8.26	8.50
	(3.72-4.48)	(4.40-5.31)	(5.11-6.17)	(5.60-6.76)	(6.12-7.42)	(6.48-7.87)	(6.78-8.28)	(7.03-8.64)	(7.30-9.05)	(7.46-9.33)
15-min	3.40	4.04	4.72	5.19	5.71	6.06	6.37	6.63	6.92	7.11
	(3.10-3.74)	(3.69-4.45)	(4.31-5.20)	(4.72-5.70)	(5.17-6.27)	(5.47-6.64)	(5.72-6.98)	(5.92-7.27)	(6.13-7.59)	(6.24–7.81)
30-min	2.33 (2.13-2.56)	2.79 (2.55-3.07)	3.36 (3.06-3.69)	3.76 (3.42-4.13)	4.23 (3.83-4.64)	4.56 (4.12-5.00)	4.88 (4.38–5.34)	5.16 (4.61–5.66)	5.51 (4.87-6.04)	5.76 (5.06-6.32)
60-min	1.45	1.75	2.15	2.45	2.82	3.09	3.36	3.62	3.95	4.20
	(1.33-1.60)	(1.60-1.93)	(1.96-2.37)	(2.23-2.69)	(2.55–3.09)	(2.79–3.39)	(3.01–3.68)	(3.23-3.97)	(3.50-4.33)	(3.69-4.61)
2-hr	0.856 (0.776-0.951)	1.04 (0.940-1.15)	1.29 (1.17–1.43)	1.48 (1.34–1.64)	1.73 (1.55–1.91)	1.92 (1.71-2.12)	2.10 (1.87-2.33)	2.29 (2.02-2.53)	2.53 (2.21–2.80)	2.72 (2.35-3.01)
3-hr	0.605	0.733	0.915	1.06	1.25	1.40	1.55	1.70	1.91	2.08
	(0.550-0.672)	(0.666-0.814)	(0.831–1.02)	(0.957–1.17)	(1.12–1.38)	(1.25–1.54)	(1.37-1.71)	(1.50–1.88)	(1.66–2.11)	(1.79–2.30)
6-hr	0.363	0.439	0.549	0.636	0.753	0.846	0.942	1.04	1.18	1.29
	(0.331-0.401)	(0.401-0.484)	(0.500-0.606)	(0.577-0.700)	(0.679-0.827)	(0.758-0.928)	(0.837-1.03)	(0.915-1.14)	(1.02–1.29)	(1.10-1.41)
12-hr	0.214	0.258	0.325	0.378	0.452	0.511	0.573	0.638	0.730	0.804
	(0.195-0.236)	(0.236-0.286)	(0.296-0.359)	(0.342-0.417)	(0.406-0.496)	(0.456-0.560)	(0.506-0.627)	(0.558-0.698)	(0.627-0.799)	(0.681-0.880)
24-hr	0.125	0.151	0.190	0.220	0.262	0.295	0.328	0.364	0.412	0.449
	(0.116-0.134)	(0.141-0.162)	(0.177–0.204)	(0.205-0.236)	(0.242-0.281)	(0.273-0.316)	(0.303-0.353)	(0.334-0.390)	(0.377-0.442)	(0.410-0.483)
2-day	0.073	0.088	0.109	0.126	0.150	0.168	0.187	0.206	0.233	0.254
	(0.068-0.078)	(0.082-0.094)	(0.102-0.117)	(0.117-0.136)	(0.138-0.161)	(0.155-0.180)	(0.172-0.201)	(0.189-0.222)	(0.213-0.251)	(0.231-0.274)
3-day	0.051	0.062	0.077	0.088	0.104	0.117	0.130	0.144	0.162	0.177
	(0.048-0.055)	(0.058-0.066)	(0.071-0.082)	(0.082-0.095)	(0.097-0.112)	(0.108-0.126)	(0.120-0.140)	(0.132-0.154)	(0.148-0.174)	(0.161-0.190)
4-day	0.041	0.049	0.060	0.069	0.082	0.092	0.102	0.112	0.127	0.138
	(0.038-0.044)	(0.046-0.052)	(0.056-0.065)	(0.065-0.074)	(0.076-0.088)	(0.085-0.098)	(0.094-0.109)	(0.103-0.120)	(0.116-0.136)	(0.125-0.148)
7-day	0.027	0.032	0.039	0.044	0.052	0.058	0.064	0.071	0.080	0.087
	(0.025-0.029)	(0.030-0.034)	(0.036-0.042)	(0.041-0.048)	(0.048-0.056)	(0.054-0.062)	(0.060-0.069)	(0.065-0.076)	(0.073-0.085)	(0.079-0.093)
10-day	0.021	0.025	0.031	0.035	0.040	0.044	0.049	0.053	0.059	0.064
	(0.020-0.023)	(0.024-0.027)	(0.029-0.033)	(0.032-0.037)	(0.037-0.043)	(0.041-0.047)	(0.045-0.052)	(0.049-0.057)	(0.055-0.063)	(0.059-0.068)
20-day	0.014	0.017	0.020	0.022	0.026	0.028	0.031	0.034	0.037	0.040
	(0.014-0.015)	(0.016-0.018)	(0.019-0.021)	(0.021-0.024)	(0.024-0.027)	(0.026-0.030)	(0.029-0.033)	(0.031-0.036)	(0.034-0.039)	(0.037-0.042)
30-day	0.012	0.014	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030
	(0.011-0.013)	(0.013-0.015)	(0.015-0.017)	(0.017-0.019)	(0.019-0.022)	(0.021-0.024)	(0.022-0.025)	(0.024-0.027)	(0.026-0.030)	(0.028-0.032)
45-day	0.010	0.012	0.014	0.015	0.017	0.018	0.019	0.020	0.022	0.023
	(0.010-0.011)	(0.011-0.013)	(0.013-0.014)	(0.014-0.016)	(0.016–0.017)	(0.017-0.019)	(0.018-0.020)	(0.019-0.022)	(0.021-0.023)	(0.022-0.025)
60-day	0.009	0.011 (0.010-0.011)	0.012 (0.011-0.013)	0.013	0.014 (0.014-0.015)	0.015 (0.015-0.016)	0.016 (0.016-0.017)	0.017 (0.016-0.018)	0.019	0.020

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Figure 8.03d Rainfall intensity duration curves-Greensboro.

8

Figure 8.03e Rainfall intensity duration curves-Raleigh.
Table 8.03b	Land Use	С	Land Use	С			
Value of Runoff Coefficient	Business:		Lawns:				
(C) for Rational Formula	Downtown areas	0.70-0.95	Sandy soil. flat. 2%	0.05-0.10			
	Neighborhood areas	0.50-0.70	Sandy soil, ave.,	0.10-0.15			
			2-7%	0.15-0.20			
	Residential:		Sandy soil, steep,	0.13-0.17			
	Single-family areas	0.30-0.50	7%	0.18-0.22			
	Multi units, detached	0.40-0.60	Heavy soil, flat, 2%	0.25-0.35			
	Multi units, Attached	0.60-0.75	Heavy soil, ave.,				
	Suburban	0.25-0.40	2-7%				
	Industrial:		Heavy soil, steep,	0 30 0 60			
	Light areas	0.50-0.80	7%	0.30-0.00			
	Heavy areas	0.60-0.90	Agricultural land:	0.20-0.30			
			Bare nacked soil	0.30-0.60			
	Parks, cemeteries	0.10-0.25	Smooth	0.20-0.50			
	Playarounds	0 20-0 35	Rough	0.20-0.40			
	T laygrounds	0.20-0.33	Cultivated rows	0.10-0.25			
	Railroad yard areas	0.20-0.40	Heavy soil no crop				
			Heavy soil with	0.15-0.45			
	Unimproved areas	0.10-0.30	crop	0.05-0.25			
	Streets:		Sandy soil no crop	0.05-0.25			
	Asphalt	0 70-0 95	Sandy soil with				
	Concrete	0.80-0.95	crop	0.10-0.25			
	Brick	0.70-0.85	Pasture				
			Heavy soil	0.15-0.45			
	Drives and walks	0.75-0.85	Sandy soll	0.05-0.25			
	Roofs	0 75-0 85	vvoodiands	0.05-0.25			
		0.70 0.00					
	NOTE: The designer m	nust use jud	gement to select the ap	propriate C			
	value within the range f	or the appro	opriate land use. Gene	rally, larger			
	areas with permeable soils, flat slopes, and dense vegetation						
	nave lowest C values. Smaller areas with slowly permeable soils, s						
	slopes, and sparse vegetation should be assigned highest C values.						
	Source: American Socie	ety of Civil E	ngineers				

Curves may not be extrapolated.

Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter).

SEDIMENT BASIN CALCULATIONS								
CHARAH -	SANFOR)						
HDR PROJECT NO.: 23	35691			I	Basin #1	(Ph-1)		
DATE: 09.30.14	BY:	RMB		Phase	e 2 controls B	Basin #1 Des	ign	
REVISED: 11.05.14	RVW:	PW					-	
FAIRCLOTH SKIMMER TY	PE BASIN	I DESIGN WITH R	RISER		NCDENR?	1		IF Yes, Type: 1
DRAINAGE AF	REAS/REQ'D	STORAGE		ES	STIMATED BA	SIN SIZE (R	ECTANG	ULAR)
Total drainage area (TDA)		5.4	ac		Length(ft)	Width(ft)		<u> </u>
Disturbed area(DA)		5.4	ac	Bottom	151	67		
Rqd sediment storage (1	800xDA)	9756	cf	Тор	169	85		
BASIN CONFIG	GURATION			PLANNED	BASIN SIZE	(REFER	TO EROSIO	N CONTROL PLAN)
Proposed sediment depth		3	ft	Elev.	Area (SF)	Cumulat	ive Volun	ne (CF)
Depth of flow over spillway		1	ft	283	13792		0	
Bottom elevation of basin		283	msl	284	15414		14603	
Seament Storage elevation		286	msi	285	1/133		308//	
Spillway crest		286	msi	286	18947		48917	
Top of Berm		289	msl	287	21463		69122	
Emergency Spillway Elevation		287	msi	288	23/31		91/19	
DESIGN FLOW (SEE HYDRO)	GRAPHS)	00.00	ofo	289	20305	,	110/3/	
10yr Computed flow from site,	'Q' =	32.80	CIS	X	X	#	FVALUE!	
				X	X	#	EVALUE!	
FAIRCLOTH	SKIMMER	JESIGN TABLE		X	X	#	FVALUE!	
4 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIEN	CY	
0.333 Head on Skimm	ner (feet)		(Inches)	Sediment s	torage requir	red:	9756	cf
2 Orifice Size (1/2	4 inch increm	ents)	1.5	Sediment s	torage provid	ded:	48917	cf OKAY
1.83 Dewatering Tim	ne (days)		2	Surface are	a required:		14294.1	sf
Suggest about	3 days		2.5	Surface are	a provided:		<u>189</u> 47	sf OKAY
			3 4 5 6 8					
SPILLWAY DESIGN	BILL 11/11/2			EMERGEN	CY SPILLWAY	Y SIZE (L=	Q/(C*h^1.	5))
RISER S	PILLWAYDE	SIGN		100yr Flow	trom site, Q1	00 =	53.13	
Crifice Flow: 22.00 of	ie i	Flow Depth:	Orifice	C	riow throug - י	jii Barrei =	1/	
<u>Weir Flow:</u> 58.40 cf	s	Controlling>Q10?	OKAY	h	0.5	L=	10	
Barrel diameter		30	in					
Barrel slope (ft/ft)		0.01	ft/ft	Flow throug	gh barrel	36 c	fs	
Barrel length(ft)		50	ft	(Note: Flow det	ermined using ou	tlet control and p	oipe 80% full)
Barrel invert in		283				OKAN		
Darrer mvert out		282.5		DAKKEL F		UNAT		
		<u></u>		D \$17E				
Longth of expected outlet mine				1 JIZE	Safaty facto	~	10	
Length of exposed outlet pipe Buovancy –		10	lbs		Anchor wid	th I	1.2	ft
Required Volume of Anchor –			cf		Anchor I en	ath	5.5	ft
Actual Volume of Anchor=		45.375	cf		Anchor Thi	ckness	1.5	ft
		ΟΚΑΥ	I					

		1					
SEDIMENT BASIN CALCUL	.ATIONS						
CHARAH - SANFOR	D						
HDR PROJECT NO.: 235691				Basin #1	(Ph-2)		
DATE: 09.30.14 BY:	RMB		Phase	e 2 controls E	Basin #1 Design		
REVISED: 11.05.14 RVW:	PW				-		
FAIRCLOTH SKIMMER TYPE BASI	N DESIGN WITH F	RISER		NCDENR?	1 IF Yes, Type: 1		
DRAINAGE AREAS/REQ'	D STORAGE		ES	STIMATED BA	SIN SIZE (RECTANGULAR)		
Total drainage area (TDA)	9.3	ас	Length(ft) Width(ft)				
Disturbed area(DA)	9.3	ac	Bottom	176	79		
Rqd sediment storage (1800xDA)	16794	cf	Тор	194	97		
BASIN CONFIGURATION			PLANNED	BASIN SIZE	(REFER TO EROSION CONTROL PLAN)		
Proposea sealment aeptn	3	ft (Elev.	Area (SF)			
Depth of flow over spillway	1 292	ft mol	283	13/92	U 14602		
Bottom elevation of pasm	203	msi	285	10414	20877		
Sediment Storage elevation	286	mel	286	18947			
Top of Borm	289	mel	287	21463	60122		
Emergency Spillway Elevation	287	msl	288	23731	91719		
DESIGN FLOW (SEE HYDROGRAPHS)			289	26305	116737		
10vr Computed flow from site, 'Q' =	43.09	cfs	X	X	#VALUE!		
		010	X	X	#VALUE!		
FAIRCLOTH SKIMMER	DESIGN TABLE		X	X	#VALUE!		
• • • • • • • • • • • • •							
4 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIENCY		
0.333 Head on Skimmer (feet)		(Inches)	Sediment s	torage requir	red: 16794 cf		
2 Orifice Size (1/4 inch incren	nents)	1.5	Sediment storage provided: 48917 cf OKAY				
3.15 Dewatering Time (days)		2	Surface area required: 18744.15 sf				
Suggest about 3 days		2.5	Surface are	a provided:	18947 sf OKAY		
		3 4 5 6 8					
SPILLWAY DESIGN	ESICN		EMERGEN	CY SPILLWA	$\frac{Y SIZE}{Z0.07}$ (L=Q/(C*h^1.5))		
RISER SPILLWAY D	ESIGN Elevi Denth	4 44		Flow throws	00 = 70.07		
Riser diameter: 48 In Orifice Flow: 42.00 cfs	Flow Depth:	1 II	Q100 Flow	- Flow throug	In Barrei = 20		
	• • • • • • • • • • • • • • • • • • • •	Ullince			L= 13		
Weir Flow; 77.87 cfs	Controlling>Q10?	ΟΚΑΥ	ĥ	0.5			
Weir Flow: 77.87 cfs	Controlling>Q10?	ΟΚΑΥ	h	0.5			
Weir Flow: 77.87 cfs Barrel diameter	Controlling>Q10?	OKAY	h	0.5			
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft)	Controlling>Q10?	OKAY in ft/ft	Flow throu	0.5	50 cfs		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel length(ft)	Controlling>Q10? 36 0.01 50	OKAY in ft/ft ft	Flow throu (Note: Flow def	0.5	50 cfs tlet control and pipe 80% full)		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Darrel invert in Darrel invert in	Controlling>Q10? 36 0.01 50 283 282 5	OKAY in ft/ft ft	Flow throu (Note: Flow del BARREL Fl	0.5 gh barrel termined using ou LOW>Q10?	50 cfs tlet control and pipe 80% full) OKAY		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out	Controlling>Q10? 36 0.01 50 283 282.5	OKAY in ft/ft ft	Flow throu, (Note: Flow del BARREL Fi Velocity=	0.5 gh barrel termined using ou LOW>Q10? 7.04	50 cfs tlet control and pipe 80% full) OKAY fps		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out	Controlling>Q10? Controlling>Q10? 36 0.01 50 283 282.5 CON	OKAY	h Flow throu (Note: Flow del BARREL Fl Velocity=	0.5 gh barrel termined using ou LOW>Q10? 7.04	50 cfs tlet control and pipe 80% full) OKAY fps		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out	Controlling>Q10? Controlling>Q10? 36 0.01 50 283 282.5 CON 10	OKAY in ft/ft ft ICRETE ANCHOR ft	Flow throu (Note: Flow del BARREL Fl Velocity=	0.5 gh barrel termined using ou LOW>Q10? 7.04	50 cfs tlet control and pipe 80% full) OKAY fps		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out Length of exposed outlet pipe Buovancy =	Controlling>Q10? Controlling>Q10? 36 0.01 50 283 282.5 CON 10 6763	OKAY	Flow throu (Note: Flow def BARREL Flow Velocity=	0.5 gh barrel termined using ou LOW>Q10? 7.04 Safety facto Anchor wid	50 cfs tlet control and pipe 80% full) OKAY fps		
Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out Length of exposed outlet pipe Buoyancy = Required Volume of Anchor =	Controlling>Q10? Controlling>Q10? 36 0.01 50 283 282.5 CON 10 6763 46.6	OKAY	Flow throug (Note: Flow def BARREL Fi Velocity= 2 SIZE	0.5 gh barrel termined using ou LOW>Q10? 7.04 Safety facto Anchor wid Anchor Len	50 cfs tlet control and pipe 80% full) OKAY fps tr 1.2 th 6 ft ath 6 ft ath 6		
Weir Flow: 77.87 cfs Weir Flow: 77.87 cfs Barrel diameter Barrel slope (ft/ft) Barrel invert in Barrel invert out Length of exposed outlet pipe Buoyancy = Required Volume of Anchor = Actual Volume of Anchor=	Controlling>Q10? Controlling>Q10? 36 0.01 50 283 282.5 CON 10 6763 46.6 63	OKAY	Flow throu (Note: Flow def BARREL Flow Velocity=	0.5 gh barrel termined using ou LOW>Q10? 7.04 Safety facto Anchor wid Anchor Len Anchor Thio	50 cfs tlet control and pipe 80% full) OKAY fps or 1.2 th 6 gth 6 ckness 1.75		

SEDIMENT BASIN CALCUL	ATIONS						
CHARAH - SANFOR	D						
HDR PROJECT NO.: 235691				Basin #2	(Ph-1)		
DATE: 00.20.14 BV:	DMD		Phas	o 1 controlo E	Vacin #2 Dr	cian	
DATE. 09.30.14 BT. DEVISED: 11.05.14 DV/W:			Flids		Dasin #2 De	sign	
REVISED. 11.03.14 RVVV.	PVV						
FAIRCLOTH SKIMMER TYPE BASI	N DESIGN WITH R	RISER		NCDENR?	1	الله الله الله الله الله الله الله الله	Yes, Type: 1
DRAINAGE AREAS/REQ'L) STORAGE		E	STIMATED BA	SIN SIZE (RECTANGULA	AR)
Total drainage area (TDA)	17.6	ac		Length(ft)	Width(ft)		
Disturbed area(DA)	17.6	ac	Bottom	279	130		
Rqd sediment storage (1800xDA)	31680	cf	Тор	297	148		
			D	<u></u>			
BASIN CONFIGURATION			PLANNED	BASIN SIZE	(REFE	R TO EROSION CO	ONTROL PLAN)
Proposed sediment depth	3	ft fi	Elev.	Area (SF)	Cumui	ative volume (CF)
Depth of flow over spillway	1	ft mol	259	37790		0	
Sediment Storage elevation	209	msl	200	40921		81871	
Spillway crest	262	msl	262	47355		127603	
Top of Berm	265	msl	263	50658		176609	
Emergency Spillway Elevation	263	msl	264	54018		228947	
DESIGN FLOW (SEE HYDROGRAPHS)			265	57435		284674	
10yr Computed flow from site, 'Q' =	101.32	cfs	X	X		#VALUE!	
1/2 10yr Computed flow from site, 'Q' =	50.66	cfs	X	X		#VALUE!	
			X	X		#VALUE!	
FAIRCLOTH SKIMMER	DESIGN TABLE		<u>,</u>				
4 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIE	NCY	
0.333 Head on Skimmer (feet)		(Inches)	Sediment	storage requir	red:	31680 cf	
2 Orifice Size (1/4 inch increm	ents)	1.5 Sediment storage provided: 127603 cf OKAY					ΟΚΑΥ
2.97 Dewatering Time (days)		2	Surface are	ea required:		44074.2 sf	
Suggest about 3 days		2.5	Surface are	ea provided:		47355 <mark>sf</mark>	ΟΚΑΥ
Note: Divided Sediment Storage by 2 (one ski	mmer/riser)	3 4 5 6 8					
SPILLWAY DESIGN (Note: Need 2 risers; ti	herefore split flow)		EMERGEN	CY SPILLWAY	Y SIZE (L	=Q/(C*h^1.5))	
RISER SPILLWAY D	ESIGN		100yr Flow	from site, Q1	100 =	164.22	
Riser diameter: 60 in	Flow Depth:	1	ft Q100 Flow	- Flow throug	gh Barrel =	15	
Orifice Flow: 53.00 cfs	Controlling:	Orifice	C	3	L=	14	
Weir Flow: 97.34 cfs	Controlling>Q10?	UKAY	n	0.5			
Barrel diameter	48	in					
Barrel slope (ft/ft)	0.01	ft/ft	Flow throu	ah barrel	75	cfs	
Barrel length(ft)	50	ft	(Note: Flow de	termined using ou	itlet control and	d pipe 80% full)	
Barrel invert in	259		BARREL F	LOW>Q10?	ΟΚΑΥ		
Barrel invert out	258.5		Velocity=	5.94	fps		
	CON	CRETE ANCHO	DR SIZE				
Length of exposed outlet pipe	10	tt lba		Safety facto	or kh	1.2	
Buoyancy = Required Volume of Anchor -	70 4	rus cf		Anchor Via	ui ath	/ IT 7 #	
Actual Volume of Anchor=	98	cf		Anchor Thi	ckness	2 ft	

SEDIME	NT BAS	IN CALCUL	ATIONS							
C	HARAH	- SANFOR	D							
HDR PROJE	CT NO.:	235691	-				Basin #2	(Ph-2)		
	00 20 14	BV	DMR			Dhae	o 1 controle l	Racin #2 Dr	seian	
	11 05 14					Filas		Jasiii #2 De	saigii	
REVISED.	11.03.14	RVVV.	FW							
FAIRCLOTH SKI	MMER 1	TYPE BASIN	N DESIGN WITH P	RISER			NCDENR?	1]≁	IF Yes, Type: 1
DR	AINAGE	AREAS/REQ'L	STORAGE]	ES	STIMATED BA	ASIN SIZE (RECTANG	ULAR)
Total drainage area	(TDA)		14.8	ac	1		Length(ft)	Width(ft)		
Disturbed area(DA)			14.8	ас		Bottom	275	129		
Rqd sediment stora	ge	(1800xDA)	26676	cf		Тор	293	147		
					ᆔ			(5555		
BA Dropood oodimon	SIN CONF	IGURATION	2	£4	1	PLANNED	BASIN SIZE	(REFEI	R TO EROSIO	N CONTROL PLAN)
Proposed seament			3	11		Elev.	Area (SF)	Cumu		ne (CF)
Bottom clovation o	spillway f basin		250	mel		259	37790		20256	
Sediment Storage e	levation		209	msl		200	40921		81871	
Spillway crest	evalion		262	msl		262	47355		127603	
Top of Berm			265	msl		263	50658		176600	
Emergency Spillway	v Elevatio	n	263	msl		264	54018		228947	
DESIGN FLOW (S		OGRAPHS)	200		1	265	57435		284674	
10vr Computed flow	v from site	a. 'Q' =	98.71	cfs	i	X	X		#VALUE!	
1/2 10vr Computed	flow from	site '0' -	49 355	cfs	1	X	X		#VALUE!	
1/2 royr compated		5/10, Q =	40.000	013	1	X	X		#VALUE!	
F			DESIGN TABLE		1		~			
4 Ski	A Skimmer Size (inches)			Skimmer Size			BAS	IN EFFICIE	NCY	
0.333 Hea	ad on Skim	nmer (feet)		(Inches)		Sediment s	torage regui	red:	26676	cf
2 Orif	fice Size (1	1/4 inch increm	ents)	1.5	1.5 Sediment storage provided: 127603 cf OKAY					
2.50 Dev	vatering T	ime (davs)		2		Surface are	a required:		42938.85	sf
Suc	ngest abou	it 3 days		25		Surface are	a provided:		47355	sf OKAY
045	99000 0.000	it o dayo		3						
Note: Divided Sedime	ent Storage	e bv 2 (one ski	mmer/riser)	4						
		, - (5						
				6						
				8						
	(Noto: N	and 2 risors 4	horoforo split flow)		-	EMERGEN		V SIZE //	-0//C*b^4	5))
ST ILLINA I DESIGN	RISER	SPILLWAY D	ESIGN			100vr Flow	from site. 0	100 =	128.64	
Riser diameter:	60	in	Flow Depth:	1	ft	Q100 Flow	- Flow throu	ah Barrel =	-21	
Orifice Flow:	53.00	cfs	Controlling:	Orifice		C=3.0	h = 1	L=	-7	
Weir Flow:	97.34	cfs	Controlling>Q10?	ΟΚΑΥ		Note: Q25	handled by R	iser/Barrel		
Downol alla (la la	1					
Barrel clameter			48	10 ft/ft	ł	Flow throw	ah harral	75	ofe	(Each)
Barrel length(ft)			0.01	ft		(Noto: Flow do	yn banen Iorminod using o	10	d nino 90% full	(Lacii)
Barrel invert in 250					(NOLE. FIOW DE	termined using of	met control an)	
Barrel invert out			258.5			BARREL F	LOW>Q10?	ΟΚΑΥ		
					и <u> </u>					
			CON	CRETE ANCH	OR S	SIZE				
Length of exposed	outlet pip	е	10	ft			Safety facto	or	1.2	
Buoyancy =			11517	lbs	<u> </u>		Anchor wid	lth	7	ft
Required Volume of	f Anchor =	=	79.4	cf	 		Anchor Ler	gth	7	ft
Actual Volume of A	nchor=		98	cf	1		Anchor Thi	ckness	2	ft

SEDIMENT BASIN (CALCULATI	ONS					
CHARAH - S	ANFORD						
HDR PROJECT NO.: 2356	91				Basin #3	(Ph-1)	
DATE: 09.30.14	BY:	RMB					
REVISED: 11.05.14	RVW:	PW					
FAIRCLOTH SKIMMER TYP	E BASIN DI	ESIGN WITH F	RISER		NCDENR?	1 IF Yes, Type: 1	
DRAINAGE ARE	AS/REQ'D ST	ORAGE		E	STIMATED BA	SIN SIZE (RECTANGULAR)	
Total drainage area (TDA)		3.1	ac	D . //	Length(ft)	Width(ft)	
Disturbed area(DA)		3.1	ac	Bottom	116	49	
Rqd sediment storage (180		5502	CI	төр	134	87	
BASIN CONFIGU	RATION]	PLANNED	BASIN SIZE	(REFER TO EROSION CONTROL PLAN	
Proposed sediment depth		3	ft	Elev.	Area (SF)	Cumulative Volume (CF)	
Depth of flow over spillway		1	ft	244	4877	0	
Bottom elevation of basin		244	msl	245	6254	5566	
Sediment Storage elevation		247	msl	246	7709	12547	
Spillway crest		247	msl	247	9244	21024	
Top of Berm		250	msl	248	10857	31074	
Emergency Spillway Elevation		248	msl	249	12549	42777	
DESIGN FLOW (SEE HYDROGR	APHS)			250	14321	56212	
10yr Computed flow from site, 'Q	'=	20.51	cfs	X	X	#VALUE!	
				X	X	#VALUE!	
FAIRCLOTH S	KIMMER DES	IGN TABLE		X	X	#VALUE!	
3 Skimmer Size (inc	hes)		Skimmer Size		BASI		
0.25 Head on Skimmer	(feet)		(Inches)	Sediment	torage require	ed: 5562 cf	
1 25 Orifice Size (1/4 ir	ch increments)	1.5	Sediment	torage provid	ed: 21024 cf OKAY	
3.08 Dewatering Time	(davs)	/	2	Surface ar	a required	8921 85 sf	
Suggest about 3 c	lavs		2.5	Surface an	a nrovided:	9244 sf OKAY	
			2.0 3 4 5 6 8	<u>Eurrace ar</u>	<u>a promudu.</u>		
SPILLWAY DESIGN				EMERGEN	CY SPILLWAY	'SIZE (L=Q/(C*h^1.5))	
RISER SPIL	LWAY DESIG	<u>SN</u>		100yr Flow	from site, Q1	00 = 31.93	
Riser diameter: 30 in	Flov	w Depth:	1 /	t Q100 Flow	- Flow throug	h Barrel = 9	
Weir Flow: 26.00 cfs	Cor	ntrolling>Q10?	OKAY	C h	3 0.5	L= 9	
Barrel diameter		24	in				
Barrel slope (ft/ft)		0.01	ft/ft	Flow throu	gh barrel	23 cfs	
Barrel length(ft)	el length(ft) 50 ft			(Note: Flow determined using outlet control and pipe 80% full)			
Barrel invert in		244		BARREL F	LUW>Q10?		
Barrei invert out		243.5		velocity=	7.25 1	ps	

CONCRETE ANCHOR SIZE										
Length of exposed outlet pipe	10 ft	Safety factor	1.2							
Buoyancy =	2879 lbs	Anchor width	4.5 ft							
Required Volume of Anchor =	19.9 cf	Anchor Length	4.5 ft							
Actual Volume of Anchor=	30.375 cf	Anchor Thickness	1.5 ft							
	ΟΚΑΥ									

I

SEDIMENT BASIN CA					
CHARAH - SA	NFORD	_∥			
HDR PROJECT NO.: 235691				Basin #4	(Ph-1)
DATE: 09.30.14	BY: RMB	1			
REVISED: 11.05.14	RVW: PW				
FAIRCLOTH SKIMMER TYPE	BASIN DESIGN WITH	<u>RISER</u>		NCDENR?	IF Yes, Type: 1
DRAINAGE AREAS	/REQ'D STORAGE			ESTIMATED E	BASIN SIZE (RECTANGULAR)
Total drainage area (TDA)	12.7	ac 🛛		Length(ft)	Width(ft)
Disturbed area(DA)	12.7	ac 🛛	Bottom	242	112
Rqd sediment storage (1800x	DA) 2286) cf	Тор	260	130
BASIN CONFIGUR	ATION		PLANNED	BASIN SIZE	(REFER TO EROSION CONTROL PLAN)
Proposed sediment depth	3	ft	Elev.	Area (SF)	Cumulative Volume (CF)
Depth of flow over spillway	1	ft	261	26486	0
Bottom elevation of basin	261	msi	262	29254	27870
Sediment Storage elevation	204	i mal	203	32100	
Spillway crest	204	F IIISI 7. mad	204	33040	92120
Emorgoney Spillway Elevation	20/	msi msi	200	38057	128080
DESIGN ELOW (SEE HYDROGRA	200	11131	200	4/12/	210964
10vr Computed flow from site '0'-	77.7	L ofe	207	44230 V	#\\ALLIEL
1/2 10vr Computed flow from site, 4	יייי <u>ר</u> 17.75 – 12	cis cfs	×	×	#VALUE!
1/2 Toyl Computed now from site, C	* - 30.07	C13	×	×	#VALUE!
EAIRCI OTH SKI	MMER DESIGN TABLE			~	#VALUE:
3 Skimmer Size (inche	s)	Skimmer Size		BAS	IN EFFICIENCY
0.25 Head on Skimmer (fr	eet)	(Inches)	Sediment	storage requi	red: 22860 cf
1 75 Orifice Size (1/4 inch	increments)	1.5	Sediment	storage provi	ded: 92128 cf OKAY
3 23 Dewatering Time (da	avs)	2	Surface ar	ea required:	33816.9 sf
Suggest about 3 day	/S	2.5	Surface ar	ea provided:	35046 sf OKAY
Note: Divided Sediment Storage by 2	(one skimmer/riser)	3 4 5			

SPILLWAY DESIGI	N (Note: Need 2 rise	ers; therefore split flow)		EMERGENCY SPILLWAY SIZE (L=Q/(C*h^1.5))						
	RISER SPILLW/	AY DESIGN			100yr Flow from site, Q100 = 122.75					
Riser diameter:	48 in	Flow Depth:		1 ft	Q100 Flow - Flow through Barrel = 23					
Orifice Flow:	42.00 cfs	Controlling:	Orifice		C 3	L= 22				
Weir Flow:	77.87 cfs	Controlling>Q10?	ΟΚΑΥ		h 0.5					
Barrel diameter		36	in							
Barrel slope (ft/ft) 0.01 ft/ft					Flow through barrel 50 cfs					
Barrel length(ft) 50 ft					(Note: Flow determined using outlet control	ol and pipe 80% ful)			
Barrel invert in		261			BARREL FLOW>Q10? OKAY					
Barrel invert out		260.5			Velocity= 7.04 fps					
		CO	NCRETE AN	ICHOR	SIZE					
Length of exposed	outlet pipe	10	ft		Safety factor	1.2				
Buoyancy =		6763	lbs		Anchor width	6	ft			
Required Volume of	of Anchor =	46.6	cf		Anchor Length	6	ft			
Actual Volume of A	Anchor=	63	cf		Anchor Thickness	1.75	ft			
		ΟΚΑΥ								

SEDIMENT BAS	IN CALCULA	TIONS						
CHARAH	- SANFORD							
HDR PROJECT NO.: 2	235691				Basin #5	(Ph-1)		
DATE: 09.30.14	BY:	RMB		Phas	e 1 controls B	asin #5 De	esian	
REVISED: 11.05.14	RVW:	PW					5	
FAIRCLOTH SKIMMER 1	YPE BASIN	DESIGN WITH R	RISER		NCDENR?	1	•	IF Yes, Type: 1
DRAINAGE A	AREAS/REQ'D	STORAGE	1	E	STIMATED BA	SIN SIZE (RECTANG	ULAR)
Total drainage area (TDA)		49.4	ac		Length(ft)	Width(ft)		
Disturbed area(DA)		49.4	ac	Bottom	494	238		
Rqd sediment storage	(1800xDA)	88992	cf	Тор	512	256		
BASIN CONF	GURATION			PLANNED	BASIN SIZE	(REFE	R TO EROSIO	N CONTROL PLAN)
Proposed sediment depth		3	ft	Elev.	Area (SF)	Cumul	ative Volur	ne (CF)
Depth of flow over spillway		2	ft	255	118763		0	
Bottom elevation of basin		255	msl	256	124341		121552	
Sediment Storage elevation		258	msi	257	129979		248712	
Spillway crest		258	msi	258	135678		381541	
Top of Berm	-	262	msi	259	141437		520098	
Emergency Spinway Elevation		200	msi	200	147200		004445	
DESIGN FLOW (SEE HTDR	UGRAPHS)	201 70	afa.	201	153130		014041 #\/ALLEL	
10yr Computed flow from site	$e_{i}, Q =$	301.78	cfs	202	X		#VALUE!	
1/2 Toyr Computed flow from	site, 'Q' =	150.89	crs	×	X		#VALUE!	
EAIDCLOT					^		#VALUE!	
A Skimmor Sizo		LOIGN TABLE	Skimmor Sizo	1	BAS		NCV	
	mor (foot)			Sodimont	storago roquir		88002	cf
3 25 Orifice Size (1	// inch increme	nte)		1.5 Sediment storage provided: 381541 cf OKAY				
3.16 Dowatoring Ti	imo (dave)	113)	1.0	2 Surface area required: 131274.3 sf				ef
Suggest about	ine (days)		25	Surface and	ea required.		135678	sf OKAV
Suggest abou	it 5 days		2.0	Surface and	ea provideu.		133070	31 01041
Note: Divided Sediment Storage	e by 2 (one skim	mer/riser)	4 5 6 8					
SPILLWAY DESIGN (Note: Ne	ed 2 risers; the	refore split flow)		EMERGEN	CY SPILLWAY	SIZE (L	.=Q/(C*h^1	.5))
RISER	SPILLWAY DES	SIGN		100yr Flow	r from site, Q1	00 =	476.49	
Riser diameter: 72	in F	low Depth:	2 ft	Q100 Flow	- Flow throug	h Barrel =	157	
Orifice Flow: 187.00	cfs C	ontrolling:	Orifice	C	3	L=	52	
Weir Flow: 330.38	cts C	ontrolling>Q10?	UKAY	n	1			
Barrel diameter		60	in					
Barrel slope (ft/ft)		0.025	ft/ft	Flow throu	ah barrel	160	cfs	
Barrel length(ft)		50	ft	(Note: Flow de	termined using out	tlet control and	d pipe 80% ful	1)
Barrel invert in		255		BARREL F	LOW>Q10?	ΟΚΑΥ		·
Barrel invert out		253.75		Velocity=	8.13	fps		
		CON	CRETE ANCHOR	RSIZE				
Length of exposed outlet pipe	e	10	ft		Safety facto	r	1.2	
Buoyancy =		17545	IDS of		Anchor wide	in aith	8	TT
Actual Volume of Anchor=	-	121.0	cf		Anchor Len	kness	25	n ft

Б

SEDIMENT BASIN CALCULATIONS									
CHARAF	I - SANFORD								
HDR PROJECT NO .:	235691				Basin #5	(Ph-2)			
DATE: 09.30.14	BY:	RMB		Phas	e 1 controls E	asin #5 De	sian		
REVISED: 11.05.14	RVW:	PW					- 5		
FAIRCLOTH SKIMMER	TYPE BASIN L	DESIGN WITH R	RISER		NCDENR?	1	4	IF Yes, Type: 1	
DRAINAGE	AREAS/REQ'D S	TORAGE		E	ESTIMATED B	ASIN SIZE	(RECTANC	GULAR)	
Total drainage area (TDA)		42.1	ас		Length(ft)	Width(ft)	•		
Disturbed area(DA)		42.1	ac	Bottom	451	216			
Rqd sediment storage	(1800xDA)	75708	cf	Тор	469	234			
DASIN CON			i			(555			
BASIN CON	FIGURATION	2	4	PLANNED	BASIN SIZE	(REF	ER TO EROS	(CE)	
Proposed sealment depth		3	ft (Elev.	Area (SF)	Cumula	ative volun	ne (CF)	
Depth of flow over spillway		2	ft mol	255	118/63		0		
Sediment Storage elevation		200	msl	257	124341		2/8712		
Spillway crest		250	mel	258	125575		240712		
Top of Porm		250	mol	250	141427		520000		
Emergency Spillway Elevation	n	202	msl	259	147256		664445		
DESIGN FLOW (SEE HYDR	OGRAPHS)	200	mar	261	153136		814641		
10vr Computed flow from sit	00//A/ //0/	252 52	cfs	262	100100 Y		#\/ALLIE!		
1/2 10vr Computed flow from	site '0' -	126.26	cfs	 	X		#VALUE!		
1/2 reyr compared new rom	5h0, u =	120.20	013	X	X		#VALUE!		
EAIRCLO	TH SKIMMER DE	SIGN TABLE			~				
4 Skimmer Size	(inches)		Skimmer Size		BAS	IN FFFICIE	NCY		
0.333 Head on Skin	nmer (feet)		(Inches)	Sediment	storage requir	ed:	75708	cf	
3 25 Orifice Size (1/4 inch incremen	its)	1.5	Sediment	storage provid	led:	381541	cf OKAY	
2 69 Dewatering T	ime (davs)		2	2 Surface area required: 109846.2 sf					
Suggest abo	it 3 days		2.5	Surface an	ea provided:		135678	sf OKAY	
Ouggest abou			3	Ourrace ar	cu providcu.		100010	31 01011	
Note: Divided Sediment Storag	e by 2 (one skimr	ner/riser)	4 5 6 8						
SPILLWAY DESIGN (Note: No	eed 2 risers; the	refore split flow)		EMERGEN	CY SPILLWA	YSIZE (L	=Q/(C*h^1.	.5))	
RISER	SPILLWAY DES	IGN		100yr Flow	from site, Q1	00 =	402.08		
Riser diameter: 72	in Fl	ow Depth:	2 ft	Q100 Flow	- Flow throug	h Barrel =	83		
Weir Flow: 330.38	cfs Co	ontrolling: ontrolling>Q10?	OKAY	C h	3 1	L=	28		
	0.0 0.	ona oning 2 4 rot	0.011		•				
Barrel diameter		60	in						
Barrel slope (ft/ft)		0.025	ft/ft	Flow throu	ıgh barrel	160	cfs		
Barrel length(ft)		50	ft	(Note: Flow de	termined using ou	tlet control and	d pipe 80% full	I)	
Barrel invert in		255		BARREL F	LOW>Q10?	ΟΚΑΥ			
Barrel invert out		253.75		Velocity=	8.13	fps			
		COI	NCREIE ANCHO	R SIZE					
Length of exposed outlet pip	e	10	tt		Safety facto	1 4	1.2	5 4	
Buoyancy = Boguirod Volumo of Anchor	-	1/545	of		Anchor Wid	ath	8	11. #	
Actual Volume of Anchor=	-	160	cf		Anchor Thi	ckness	2.5	ft	
		.00	-					1	

SEDIMENT BASIN CAL							
CHARAH - SAN	FORD						
HDR PROJECT NO.: 235691			I	Basin #6	(Ph-1)		
DATE: 09.30.14	BY: RMB						
REVISED: 11.05.14	RVW: PW						
FAIRCLOTH SKIMMER TYPE B	ASIN DESIGN WITH F	<u>RISER</u>		NCDENR?	1	•	- IF Yes, Type: 1
DRAINAGE AREAS/	REQ'D STORAGE		ES	TIMATED BA	SIN SIZE (I	RECTANG	ULAR)
Total drainage area (TDA)	15.3	ac		Length(ft)	Width(ft)		•
Disturbed area(DA)	15.3	ac	Bottom	267	125		
Rqd sediment storage (1800xD	A) 27522	cf	Тор	285	143		
			-				
BASIN CONFIGURA	ΓΙΟΝ		PLANNED	BASIN SIZE	(REFER	TO EROSIC	N CONTROL PLAN)
Proposed sediment depth	3	ft	Elev.	Area (SF)	Cumula	ntive Volui	me (CF)
Depth of flow over spillway	2	ft	249	30723		0	
Bottom elevation of basin	249	msl	250	34084		32404	
Sediment Storage elevation	252	msl	251	37519		68205	
Spillway crest	252	msl	252	41027		107478	
Top of Berm	256	msl	253	44808		150396	
Emergency Spillway Elevation	254	msl	254	48997		197298	
DESIGN FLOW (SEE HYDROGRAP	HS)		255	52981		248287	
10yr Computed flow from site, 'Q' =	93.6	cfs	256	X		#VALUE!	
			X	X		#VALUE!	
FAIRCLOTH SKIM	MER DESIGN TABLE		X	X		#VALUE!	
4 Skimmer Size (inches) 0.333 Head on Skimmer (fec 2.5 Orifice Size (1/4 inch i 3.30 Dewatering Time (day Suggest about 3 days	Skimmer Size (Inches) 1.5 2 2.5 3	Sediment s Sediment s Surface are Surface are	BAS torage requin torage provid a required: a provided:	IN EFFICIEI 'ed: ded:	VCY 27522 107478 40716 41027	cf cf OKAY sf sf OKAY	
ISPILLWAY DESIGN		4 5 6 8		CY SPILLWA	Y SIZE (L:	=Q/(C*h^1	.5))
RISER SPILLW	AY DESIGN		100yr Flow	from site, Q1	00 =	147.78	
Riser diameter: 60 in	Flow Depth:	2 1	ft Q100 Flow	- Flow throug	gh Barrel =	49	
Orifice Flow: 156.00 cfs Weir Flow: 275.32 cfs	Controlling: Controlling>Q102	Orifice OKAY	C=3.0	h = 1	L=	16	i
			I				
Barrel diameter	48	in					
Barrel slope (ft/ft)	0.01	ft/ft	Flow throu	gh barrel	99	cfs	
Barrel length(ft)	50	ft	(Note: Flow det	- ermined using ou	tlet control and	pipe 80% fu	II)
Barrel invert in	249	249 BARREL FLOW>Q10? OKAY					
Barrel invert out	248.5		Velocity=	7.90	fps		
	CON	CRETE ANCHO	R SIZE				
Length of exposed outlet pipe	10	ft		Safety facto	or	1.2	·
Buoyancy =	11517	lbs		Anchor wid	th	7	ft
Required Volume of Anchor =	79.4	CT of		Anchor Len	gth	7	TL 44
Actual volume of Anchor=	98	Cľ		Anchor Thi	ckness	2	π

ΟΚΑΥ

SEDIMENT BASIN CALC	JLATIONS									
CHARAH - SANFO										
HDR PROJECT NO.: 235691			Basin #7 (Ph-1)							
DATE: 09 30 14 B	X· RMR	Phase 2 controls Rasin #7 Design								
DATE. 00.00.14 D			1 1140	5 2 0010 010 1	303111 #1 63	551911				
REVISED. 11.00.14	V. / W	<u> </u>								
FAIRCLOTH SKIMMER TYPE BAS	<u>SIN DESIGN WITH F</u>	RISER		NCDENR?	1]•	· IF Yes, Type: 1			
DRAINAGE AREAS/RE	Q'D STORAGE		ES	STIMATED BA	ASIN SIZE (RECTANG	ULAR)			
Total drainage area (TDA)	16.4	ас		Length(ft)	Width(ft)					
Disturbed area(DA)	12.5	ac	Bottom	255	118					
Rqd sediment storage (1800xDA)	29466	cf	Тор	273	136					
	N	<u> </u>		BASIN SIZE	(DEEE					
BASIN CONFIGURATIO	2	#	FLANNED	Aroa (SE)	Cumul	R TO EROSIO	N CONTROL PLAN)			
Proposed sediment depth		<i>n</i>	220	Area (3r)	Cumu					
Bottom elevation of basin	238	msl	230	49034 52537		50786				
Sediment Storage elevation	241	msl	240	56098		105103				
Spillway crest	241	msl	241	59717	<u> </u>	163011				
Top of Berm	245	msl	242	63393		224566				
Emergency Spillway Elevation	243	msl	243	67128		289826				
DESIGN FLOW (SEE HYDROGRAPHS)		244	70920		358850				
10vr Computed flow from site, 'Q' =	85.59	cfs	245	X		#VALUE!				
			X	X		#VALUE!				
FAIRCLOTH SKIMME	R DESIGN TABLE		X	X		#VALUE!				
		ų	<u> </u>	*-						
4 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIE	NCY				
0.333 Head on Skimmer (feet)		(Inches)	Sediment s	Sediment storage required: 29466 cf						
2.75 Orifice Size (1/4 inch incr	ements)	1.5	Sediment s	torage provi	ded:	163011	cf OKAY			
2.92 Dewatering Time (days)		2	Surface area required: 37231.65 sf							
Suggest about 3 days		2.5	Surface are	a provided:		59717	sf OKAY			
		3 4 5 6 8								
SPILLWAY DESIGN			EMERGEN	CY SPILLWA	Y SIZE (L	_=Q/(C*h^1	.5))			
RISER SPILLWAY	DESIGN		100yr Flow	from site, Q	100 =	144.24				
Riser diameter: 60 in	Flow Depth:	2 1	ft Q100 Flow	- Flow throug	gh Barrel =	: 45				
Orifice Flow: 156.00 cfs	Controlling:	Orifice	C=3.0	h = 1	L=	15				
Weir Flow: 275.32 CTS	Controlling>Q10?	UKAY	<u>l</u>							
Barrel diameter	48	in								
Barrel slope (ft/ft)	0.01	ft/ft	Flow throu	gh barrel	99	cfs				
Barrel length(ft) 50 ft			(Note: Flow def	termined using ou	utlet control an	d pipe 80% ful	l)			
Barrel invert in	238		BARREL F	LOW>Q10?	ΟΚΑΥ					
Barrel invert out	237.5		Velocity=	7.90	fps					
		COSTE ANOUG								
Learnth - Learne	CON	CRETE ANCHO	OR SIZE	0-1-1-1-1						
Length of exposed outlet pipe	10	ft lb a		Safety facto)r 	1.2	54			
Budyancy = Required Volume of Anchor -	70 /	of		Anchor Lor	ath	7.5	11. ff			
Actual Volume of Anchor=	112.5	cf		Anchor Thi	ckness	7.5	ft			

ļ

٦

SEDIMENT BASIN CALCUL							
CHARAH - SANFOR							
HDR PROJECT NO.: 235691		Basin #7 (Ph-2)					
DATE: 09 20 14 BV:	DMR		Phae	o 2 controls B	acin #7 Dr	eian	
DATE. 09.30.14 DT.			Flids			sign	
REVISED. 11.03.14 RVW.	FW						
FAIRCLOTH SKIMMER TYPE BASII	N DESIGN WITH R	<u>RISER</u>		NCDENR?	1	←───	IF Yes, Type: 1
DRAINAGE AREAS/REQ'I	D STORAGE		E	STIMATED BA	SIN SIZE (RECTANG	ULAR)
Total drainage area (TDA)	33.1	ас		Length(ft)	Width(ft)		
Disturbed area(DA)	29.3	ac	Bottom	324	153		
Rqd sediment storage (1800xDA)	59598	cf	Тор	342	171		
BASIN CONFIGURATION			PLANNED	BASIN SIZE	(REFE	R TO EROSIO	N CONTROL PLAN)
Proposed sediment depth	3	ft	Elev.	Area (SF)	Cumul	ative Volun	ne (CF)
Depth of flow over spillway	2	ft	238	49034		0	
Bottom elevation of basin	238	msi	239	52537		50786	
Sediment Storage elevation	241	msi	240	50717		162011	
Splilway crest	241	mal	241	59717		224566	
Emergency Spillway Elevation	243	msl	242	67128		224000	
DESIGN FLOW (SEE HYDROGRAPHS)	240	mar	240	70920		358850	
10vr Computed flow from site 'Q' -	134 71	cfs	245	¥		#VΔI 11F1	
1/2 10yr Computed flow from site $O' =$	67 355	cfs	240 X	× ×		#VALUE	
1/2 Toyl Computed now Hom site, & =	07.335	013	X	X		#VALUE:	
EAIRCLOTH SKIMMER	DESIGN TABLE			~		#VALUE:	
4 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIE	NCY	
0.333 Head on Skimmer (feet)		(Inches)	Sediment storage required: 59598 cf				
2.75 Orifice Size (1/4 inch increm	ients)	1.5 Sediment storage provided: 163011 cf OKAY				cf OKAY	
2.96 Dewatering Time (days)	/	2	Surface ar	ea required:		58598.85	sf
Suggest about 3 days		2.5	Surface ar	ea provided:		59717	sf OKAY
		3					
Note: Divided Sediment Storage by 2 (one ski	mmer/riser)	4					
	,	5					
		6					
		8					
SDILL WAY DESIGN (Note: Need 2 ricere)	harafara anlit flaw)		EMERCEN		/ 617E //	0//C*hA4	EW
BISER SPILLWAY DESIGN (Note: Need 2 risers; th	FSIGN		$= \frac{\text{EMERGENCY SPILLWAY SIZE} (L=Q/(C^{+}A^{+}.5))}{100 \text{ yr Elow from site } Q100 - 230.4}$				ວງງ
Riser diameter: 54 in	Flow Denth:	2 f	$\frac{2}{100} \frac{ft}{1000} = \frac{1000}{1000} 10$				
Orifice Flow: 140.00 cfs	Controllina:	Orifice	c	3	L=	24	
Weir Flow: 247.79 cfs	Controlling>Q10?	OKAY	h	1	_		
Barrel diameter	42	in					
Barrel slope (ft/ft)	0.01	ft/ft	Flow throu	ıgh barrel	80	cfs	
Barrel length(ft)	ft (Note: Flow determined using outlet control and pipe 80% full)						
Barrel invert in Barrel invert out	238		BARREL F	LOW>Q107 8 31	UNA Y fns		
	237.5		velocity=	0.37	143		
	CON	CRETE ANCHO	R SIZE				
Length of exposed outlet pipe	10	ft III		Safety facto	r	12	
Buovancy =	8981	lbs		Anchor wid	th	7	ft
Required Volume of Anchor =	61.9	cf		Anchor Len	gth	7	ft
Actual Volume of Anchor=	85.75	cf		Anchor Thic	ckness	1.75	ft

SEDIMENT BASIN CAL								
CHARAH - SAN	FORD							
HDR PROJECT NO.: 235691				Basin #8	(Ph-1)			
DATE: 09.30.14	BY: RMB	1						
REVISED: 11.05.14	RVW: PW							
FAIRCLOTH SKIMMER TYPE E	BASIN DESIGN WITH F	RISER		NCDENR?	1	IF \	′es, Type: 1	
DRAINAGE AREAS/	REQ'D STORAGE		E	STIMATED BA	SIN SIZE (R	ECTANGULA	R)	
Total drainage area (TDA)	11.8	ас						
Disturbed area(DA)	11.8	ac	Bottom	231	106			
Rqd sediment storage (1800xD	DA) 21150	cf	Тор	249	124			
BASIN CONFIGURA	TION		PLANNED	BASIN SIZE	(REFER]	O EROSION CO	NTROL PLAN)	
Proposed sediment depth	3	ft	Elev.	Area (SF)	Cumulat	ive Volume (CF)	
Depth of flow over spillway	1	ft	273	5639		0	- /	
Bottom elevation of basin	273	msl	274	18291		11965		
Sediment Storage elevation	276	msl	275	28277		35249		
Spillway crest	276	msl	276	38333		68554		
Top of Berm	279	msl	277	47710		111576		
Emergency Spillway Elevation	277	msl	278	59010		164936		
DESIGN FLOW (SEE HYDROGRAP	HS)		279	69292		229087		
10yr Computed flow from site, 'Q' =	71.25	cfs	X	X	#	VALUE!		
		X	X	#	VALUE!			
FAIRCLOTH SKIM	IMER DESIGN TABLE		X	X	ŧ.	VALUE!		
3 Skimmer Size (inches)	Skimmer Size		BAS	IN EFFICIEN	CY		
0.25 Head on Skimmer (fe	et)	(Inches)	Sediments	Sediment storage required: 21150 cf				
2.5 Orifice Size (1/4 inch	increments)	1.5	Sediment storage provided: 68554 cf OKAY					
2.93 Dewatering Time (day	(5)	2	Surface an	ea required:		80993.75 sf		
Suggest about 3 days	-)	2.5	Surface ar	ea provided:		38333 sf	ΟΚΑΥ	
		3 4 5 6 8						
SPILLWAY DESIGN			EMERGEN	CY SPILLWAY	Y SIZE (L=	2/(C*h^1.5))		
Riser diameteri	Elow Donth	A 2		Flow throws	UU =	115.17		
Orifice Flow: 53.00 cfs	Controlling:	Orifice	C-30	- Flow throug	jii barrei =	27		
Weir Flow: 97.34 cfs	Controlling>Q10?	ΟΚΑΥ	0-0.0			J		
Barrel diameter	48	in						
Barrel slope (ft/ft)	0.02	ft/ft	Flow throu	gh barrel	88 c	fs		
Barrel length(ft)	ft	(Note: Flow determined using outlet control and pipe 80% full)						
Barrel invert in		BARREL F	LOW>Q10?	OKAY				
Barrei Invert out	212		velocity=	6.99	τ ps			
Longth of owned and and a start	CON		T JIZE	Colot: for to		4.2		
Length of exposed outlet pipe	10			Safety facto	07 46	7.5 4		
Bequired Volume of Anchor –	/101/ 70 A	rus cf		Anchor Lon	ath	7.5 10		
Actual Volume of Anchor=	112.5	cf		Anchor Thi	ckness	2 ft		
	. 12:0							

ΟΚΑΥ

SEDIMENT BASIN CALCULATIONS							
CHARAH - SANFOR							
HDR PROJECT NO 235691		Basin #9 (Ph-1)					
	21/2				(
DATE: 09.30.14 BY:	RMB		Phas	e 2 controls E	asın #9 De	esign	
REVISED: 11.05.14 RVW:	PW						
FAIRCLOTH SKIMMER TYPE BASI	N DESIGN WITH R	RISER		NCDENR?	1	←───	IF Yes, Type: 1
DRAINAGE AREAS/REQ'L	O STORAGE		E	STIMATED BA	SIN SIZE (RECTANG	ULAR)
Total drainage area (TDA)	62.8	ac		Length(ft)	Width(ft)		
Disturbed area(DA)	46.7	ac	Bottom	338	160		
Rqd sediment storage (1800xDA)	112950	cf	Тор	356	178		
		1	0.000	<u></u>			
BASIN CONFIGURATION			PLANNED	BASIN SIZE	(REFE	R TO EROSIO	N CONTROL PLAN)
Proposed sediment depth	3	ft	Elev.	Area (SF)	Cumul	ative Volun	ne (CF)
Depth of flow over spillway	2	ft	262	88670		0	
Sediment Storage elevation	202	msl	203	92409		184857	
Spillway crest	265	msl	265	100091		283016	
Top of Berm	260	msl	266	103992		385057	
Emergency Spillway Elevation	267	msl	267	107938		491022	
DESIGN FLOW (SEE HYDROGRAPHS)			268	111933		600958	
10yr Computed flow from site, 'Q' =	145.7	cfs	X	X		#VALUE!	
1/2 10yr Computed flow from site, 'Q' =	72.85	cfs	X	X		#VALUE!	
			X	X		#VALUE!	
FAIRCLOTH SKIMMER		<u>.</u>					
5 Skimmer Size (inches)		Skimmer Size		BAS	IN EFFICIE	NCY	
0.333 Head on Skimmer (feet)		(Inches)	nches) Sediment storage required: 112950 cf				
4.25 Orifice Size (1/4 inch increm	ients)	1.5	1.5 Sediment storage provided: 283016 cf OKAY				cf OKAY
2.35 Dewatering Time (days)		2	Surface are	ea required:		63379.5	sf
Suggest about 3 days		2.5	Surface are	ea provided:		100091	sf OKAY
Note: Divided Sediment Storage by 2 (one ski	mmer/riser)	3 4 5 6 8					
SPILLWAY DESIGN (Note: Need 2 risers; ti	herefore split flow)		EMERGEN	CY SPILLWAY	YSIZE (L	.=Q/(C*h^1.	.5))
RISER SPILLWAY D	ESIGN		100yr Flow from site, Q100 = 280.49				
Riser diameter: 54 in	Flow Depth:	2 ft	Q100 Flow	- Flow throug	h Barrel =	131	
Orifice Flow: 140.00 CTS Weir Flow: 247.79 cfs	Controlling:	OKAY	C=3.0	n = 1	L=	44	
Ven 110W. 241.13 Cl3	Controlling>Q101	UNAT					
Barrel diameter	42	in					
Barrel slope (ft/ft)	0.0125	ft/ft	Flow throu	ıgh barrel	75	cfs	
Barrel length(ft)	ft	(Note: Flow de	termined using ou	tlet control and	d pipe 80% full)	
Barrel invert in	262		BARREL F	LOW>Q10?	ΟΚΑΥ		
Barrel invert out	260.75		Velocity=	7.75	fps		
			0.75				
	CON	CREIE ANCHOR	SIZE	0-1-1			
Length of exposed outlet pipe	10			Satety facto	r th	1.2	£4
Required Volume of Anchor –	6981	cf		Anchor I en	ath	7.5	ft
Actual Volume of Anchor=	84.375	cf		Anchor Thi	ckness	1.5	ft

Ī

SEDIMENT BASIN CALCUL								
CHARAH - SANFOR								
HDR PROJECT NO.: 235691		Basin #9 (Ph-2)						
	DMD		Phoe	o 2 controlo E	Vacin #0 Dr	cian		
DATE. 09.30.14 DT.			Filds		basin #9 De	sign		
REVISED. 11.03.14 RVW.	FW							
FAIRCLOTH SKIMMER TYPE BASII	N DESIGN WITH F	RISER		NCDENR?	1	←	IF Yes, Type: 1	
DRAINAGE AREAS/REQ'I	O STORAGE		E	STIMATED BA	SIN SIZE (RECTANGL	ILAR)	
Total drainage area (TDA)	85.9	ac		Length(ft)	Width(ft)			
Disturbed area(DA)	65.9	ac	Bottom	399	190			
Rqd sediment storage (1800xDA)	154656	cf	Тор	417	208			
					(0.5.5.5.			
BASIN CONFIGURATION	2	£4	PLANNED	BASIN SIZE	(REFE	R TO EROSION		
Proposed seament depth	3	11 44	Elev.	Area (SF)	Cumur		ie (CF)	
Bottom elevation of basin	262	nt msl	202	00070		00540		
Sediment Storage elevation	265	msl	264	96226		184857		
Spillway crest	265	msl	265	100091		283016		
Top of Berm	269	msl	266	103992		385057		
Emergency Spillway Elevation	267	msl	267	107938		491022		
DESIGN FLOW (SEE HYDROGRAPHS)			268	111933		600958		
10yr Computed flow from site, 'Q' =	199.5	cfs	X	X		#VALUE!		
1/2 10yr Computed flow from site, 'Q' =	99.75	cfs	X	X		#VALUE!		
			X	X		#VALUE!		
FAIRCLOTH SKIMMER	DESIGN TABLE		<u></u>					
5 Skimmer Size (inches)		Skimmer Size	BASIN EFFICIENCY					
0.333 Head on Skimmer (feet)		(Inches)	es) Sediment storage required: 154656 cf					
4.25 Orifice Size (1/4 inch increm	ients)	1.5	1.5 Sediment storage provided: 283016 cf OKAY				cf OKAY	
3.21 Dewatering Time (days)		2	2 Surface area required: 86782.5 sf				sf	
Suggest about 3 days		2.5	Surface ar	ea provided:		100091	sf OKAY	
		3	-					
Note: Divided Sediment Storage by 2 (one ski	mmer/riser)	4						
		5						
		6						
		8						
SPILLWAY DESIGN (Note: Need 2 risers; to	herefore split flow)		EMERGEN	CY SPILLWA	Y SIZE (L	=Q/(C*h^1.	5))	
RISER SPILLWAY D	ESIGN		100yr Flow	100yr Flow from site, Q100 = 384.06				
Riser diameter: 72 in	Flow Depth:	2 f	t Q100 Flow	- Flow throug	gh Barrel =	150		
Orifice Flow: 187.00 cfs	Controlling:	Orifice	C=3.0	h = 1	L=	50		
Weir Flow: 330.38 cfs	Controlling>Q10?	ΟΚΑΥ						
Parrol diamotor	54	in						
Barrel slope (ff/ft)	0.0125	ft/ft	Flow throu	iah harrel	117	cfs		
Barrel length(ft)	ft	(Note: Flow de	termined using ou	itlet control and	d pipe 80% full)			
Barrel invert in	262		BARREL F	LOW>Q10?	ΟΚΑΥ			
Barrel invert out	260.75		Velocity=	7.37	fps			
	CON	CRETE ANCHO	R SIZE					
Length of exposed outlet pipe	10	ft		Safety facto	or	1.2		
Buoyancy =	15217	lbs		Anchor wid	th	8	ft	
Required Volume of Anchor =	104.9	ct		Anchor Len	gth	8	tt 4	
Actual volume of Anchor=	128	CT		Anchor Thi	ckness	2	π	

Ī

NOAA Atlas 14, Volume 2, Version 3 Location name: Sanford, North Carolina, US* Latitude: 35.5361°, Longitude: -79.1459° Elevation: 297 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.425 (0.388-0.468)	0.503 (0.459-0.553)	0.583 (0.532-0.642)	0.641 (0.583-0.704)	0.707 (0.640-0.776)	0.751 (0.678–0.824)	0.793 (0.711-0.869)	0.829 (0.740-0.909)	0.870 (0.769–0.953)	0.900 (0.790-0.987)
10-min	0.680 (0.620-0.747)	0.804 (0.733–0.885)	0.934 (0.852-1.03)	1.03 (0.933–1.13)	1.13 (1.02–1.24)	1.20 (1.08–1.31)	1.26 (1.13–1.38)	1.31 (1.17–1.44)	1.38 (1.22–1.51)	1.42 (1.24–1.56)
15-min	0.849 (0.775–0.934)	1.01 (0.922–1.11)	1.18 (1.08–1.30)	1.30 (1.18-1.42)	1.43 (1.29–1.57)	1.52 (1.37–1.66)	1.59 (1.43–1.75)	1.66 (1.48–1.82)	1.73 (1.53-1.90)	1.78 (1.56–1.95)
30-min	1.17 (1.06-1.28)	1.40 (1.27-1.54)	1.68 (1.53–1.85)	1.88 (1.71–2.06)	2.12 (1.91–2.32)	2.28 (2.06-2.50)	2.44 (2.19–2.67)	2.58 (2.30-2.83)	2.76 (2.44-3.02)	2.88 (2.53-3.16)
60-min	1.45 (1.33–1.60)	1.75 (1.60-1.93)	2.15 (1.96-2.37)	2.45 (2.23–2.69)	2.82 (2.55-3.09)	3.09 (2.79–3.39)	3.36 (3.01–3.68)	3.62 (3.23–3.97)	3.95 (3.50-4.33)	4.20 (3.69–4.61)
2-hr	1.71 (1.55–1.90)	2.07 (1.88–2.30)	2.58 (2.34–2.87)	2.96 (2.67-3.28)	3.45 (3.10-3.82)	3.83 (3.42-4.24)	4.20 (3.73-4.65)	4.58 (4.03–5.06)	5.06 (4.42-5.60)	5.44 (4.71–6.02)
3-hr	1.82 (1.65-2.02)	2.20 (2.00-2.45)	2.75 (2.50-3.05)	3.18 (2.87–3.52)	3.74 (3.36–4.14)	4.19 (3.74–4.63)	4.64 (4.11-5.13)	5.11 (4.49–5.64)	5.74 (4.99–6.35)	6.24 (5.36-6.90)
6-hr	2.17 (1.99–2.40)	2.63 (2.40-2.90)	3.29 (3.00-3.63)	3.81 (3.46-4.19)	4.51 (4.07–4.95)	5.07 (4.54-5.56)	5.64 (5.01-6.18)	6.23 (5.48-6.83)	7.05 (6.12-7.72)	7.70 (6.60-8.44)
12-hr	2.57 (2.35–2.84)	3.11 (2.84–3.44)	3.91 (3.56-4.32)	4.56 (4.13-5.02)	5.44 (4.89–5.98)	6.16 (5.49–6.75)	6.90 (6.10-7.56)	7.69 (6.72-8.41)	8.80 (7.56-9.62)	9.69 (8.21-10.6)
24-hr	3.00 (2.80-3.22)	3.62 (3.38–3.89)	4.55 (4.24–4.89)	5.28 (4.91–5.67)	6.28 (5.82–6.75)	7.07 (6.54-7.59)	7.88 (7.27-8.46)	8.72 (8.03–9.37)	9.88 (9.05–10.6)	10.8 (9.85–11.6)
2-day	3.49 (3.25-3.75)	4.20 (3.92–4.52)	5.25 (4.88–5.64)	6.07 (5.64–6.52)	7.18 (6.65–7.71)	8.06 (7.45-8.66)	8.97 (8.26-9.63)	9.90 (9.09–10.6)	11.2 (10.2–12.0)	12.2 (11.1–13.1)
3-day	3.70 (3.44–3.96)	4.45 (4.15–4.77)	5.52 (5.14–5.92)	6.36 (5.91–6.82)	7.52 (6.96-8.06)	8.44 (7.78–9.04)	9.37 (8.63–10.0)	10.3 (9.49–11.1)	11.7 (10.7–12.5)	12.7 (11.6–13.7)
4-day	3.90 (3.64-4.18)	4.69 (4.37–5.02)	5.79 (5.39–6.19)	6.66 (6.19–7.12)	7.86 (7.27-8.41)	8.81 (8.12–9.42)	9.78 (8.99–10.5)	10.8 (9.89–11.6)	12.2 (11.1–13.0)	13.2 (12.0-14.2)
7-day	4.49 (4.20-4.80)	5.36 (5.02–5.74)	6.54 (6.11–6.99)	7.47 (6.97–7.99)	8.76 (8.15–9.35)	9.78 (9.07–10.4)	10.8 (10.0–11.6)	11.9 (11.0–12.7)	13.4 (12.3–14.3)	14.5 (13.3–15.6)
10-day	5.12 (4.82–5.46)	6.10 (5.73–6.50)	7.34 (6.89–7.81)	8.31 (7.79–8.85)	9.62 (8.99–10.2)	10.6 (9.92–11.3)	11.7 (10.9–12.4)	12.7 (11.8–13.6)	14.2 (13.1–15.1)	15.3 (14.1–16.3)
20-day	6.89 (6.49–7.33)	8.14 (7.66-8.64)	9.62 (9.04–10.2)	10.8 (10.1–11.4)	12.4 (11.6–13.1)	13.6 (12.7–14.4)	14.8 (13.8–15.8)	16.1 (14.9–17.1)	17.8 (16.5–19.0)	19.1 (17.6–20.4)
30-day	8.57 (8.09–9.09)	10.1 (9.50–10.7)	11.7 (11.1–12.5)	13.0 (12.2–13.8)	14.7 (13.8–15.6)	16.0 (15.0–17.0)	17.3 (16.2–18.4)	18.5 (17.3–19.7)	20.3 (18.8–21.6)	21.6 (20.0-23.0)
45-day	10.9 (10.4–11.5)	12.8 (12.1–13.5)	14.6 (13.9–15.4)	16.0 (15.2–16.9)	17.9 (16.9–18.9)	19.3 (18.2–20.3)	20.6 (19.4–21.8)	22.0 (20.6–23.2)	23.7 (22.2–25.1)	25.1 (23.4–26.5)
60-day	13.0 (12.4–13.7)	15.2 (14.5–16.0)	17.2 (16.3–18.1)	18.8 (17.8–19.8)	20.8 (19.7–21.9)	22.3 (21.1-23.5)	23.7 (22.4–25.0)	25.1 (23.7–26.5)	26.9 (25.3–28.5)	28.3 (26.6–30.0)

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Large scale terrain

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service Office of Hydrologic Development 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Table 2-2a

Runoff curve numbers for urban areas 1/

		Curve numbers for					
Cover description			-hydrologic	soil group			
	Average percent						
Cover type and hydrologic condition	impervious area 2/	A	В	С	D		
Fully developed urban areas (vegetation established)							
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :							
Poor condition (grass cover < 50%)	•••••	68	79	86	89		
Fair condition (grass cover 50% to 75%)	•••••	49	69	79	84		
Good condition (grass cover > 75%)	•••••	39	61	74	80		
Impervious areas:							
Paved parking lots, roofs, driveways, etc.							
(excluding right-of-way)		98	98	98	98		
Streets and roads:							
Paved: curbs and storm sewers (excluding							
right-of-way)		98	98	98	98		
Paved: open ditches (including right-of-way)		83	89	92	93		
Gravel (including right-of-way)		76	85	89	91		
Dirt (including right-of-way)		72	82	87	89		
Western desert urban areas:							
Natural desert landscaping (pervious areas only) 4/		63	77	85	88		
Artificial desert landscaping (impervious weed barrier,							
desert shrub with 1- to 2-inch sand or gravel mulch							
and basin borders)		96	96	96	96		
Urban districts:							
Commercial and business		89	92	94	95		
Industrial		81	88	91	93		
Residential districts by average lot size:							
1/8 acre or less (town houses)		77	85	90	92		
1/4 acre		61	75	83	87		
1/3 acre		57	72	81	86		
1/2 acre		54	70	80	85		
1 acre		51	68	79	84		
2 acres	12	46	65	77	82		
Developing unbox areas							
Developing urban areas							
Newly graded areas							
(pervious areas only, no vegetation) 5/		77	86	91	94		
Idle lands (CN's are determined using cover types							
similar to those in table 2-2c).							

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

 $^3\,$ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Figure 4.5-2 Design of Riprap Apron under Minimum Tailwater Conditions (Source: USDA, SCS, 1975)

NOTE: CALC IS FOR EACH OF TWO OUTLETS. TOTAL DIMENSIONS ARE: La=26', W=38', Outlet end=20'

Figure 4.5-2 Design of Riprap Apron under Minimum Tailwater Conditions (Source: USDA, SCS, 1975)

Figure 4.5-2 Design of Riprap Apron under Minimum Tailwater Conditions (Source: USDA, SCS, 1975)

NOTE: CALC IS FOR EACH OF TWO OUTLETS. TOTAL DIMENSIONS ARE: La=20', W=29', Outlet end=15'

Figure 4.5-2 Design of Riprap Apron under Minimum Tailwater Conditions (Source: USDA, SCS, 1975)

NOTE: CALC IS FOR EACH OF TWO OUTLETS. TOTAL DIMENSIONS ARE: La=38', W=53', Outlet end=25'

Curves may not be extrapolated.

Figure 4.5-2 Design of Riprap Apron under Minimum Tailwater Conditions (Source: USDA, SCS, 1975)

NOTE: CALC IS FOR EACH OF TWO OUTLETS. TOTAL DIMENSIONS ARE: La=24', W=35', Outlet end=18'

NOTE: CALC IS FOR EACH OF TWO OUTLETS. TOTAL DIMENSIONS ARE: La=26', W=38', Outlet end=20'

This page intentionally left blank.

USDA United States Department of Agriculture

Natural Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lee County, **North Carolina**

Sanford

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	7
Soil Map	8
Legend	9
Map Unit Legend	10
Map Unit Descriptions	10
Lee County, North Carolina	13
Ch—Chewacla silt loam, 0 to 2 percent slopes, frequently flooded	13
CrB—Creedmoor fine sandy loam, 2 to 8 percent slopes	14
CrD—Creedmoor fine sandy loam, 8 to 15 percent slopes	15
MfB—Mayodan fine sandy loam, 2 to 8 percent slopes	16
MfD—Mayodan fine sandy loam, 8 to 15 percent slopes	17
MfE—Mayodan fine sandy loam, 15 to 25 percent slopes	18
PfB—Pinkston silt loam, 2 to 8 percent slopes	19
PfD—Pinkston silt loam, 8 to 15 percent slopes	20
PfF—Pinkston silt loam, 15 to 40 percent slopes	21
ToB—Tillery fine sandy loam, 1 to 4 percent slopes, rarely flooded	22
Ud—Udorthents, loamy	23
W—Water	24
References	25

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.
Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

Γ

MAP LEGEND MAP INFORMATION	Interest (AOI) Spoil Area The soil surveys that comprise your AOI were mappe Area of Interest (AOI) 	Warning: Soil Map may not be valid at this scale.	Soli Map Unit Polygons Vet Spot	Soli Map Unit Clifes Colimore to the detail of mapping and accuration of the detail of mapping and accuration of the detail of mapping and accuration of the maps of the maps of the maps of the small areas of	Soli Map Unit Points Special Line Features Special Line Features	Blowout Water Features	Borrow Pit Streams and Canals Please rely on the bar scale on each map sheet for m measurements.	Clay Spot Rais	Closed Depression Closed Depressica Closed Depressica Closed Depressica Closed Depre	Gravel Pit US Routes US Routes US Routes	Gravelly Spot Major Roads Major Roads Maps from the Web Soil Survey are based on the We	Landfill Local Roads Local Roads	Lava Flow Background Albers equal-area conic projection, should be used if m	Marsh or swamp Aerial Photography calculations of distance or area are required.	Mine or Quarry This product is generated from the USDA-NRCS certifi	Miscellaneous Water the version date(s) listed below.) Perennial Water Soil Survey Area: Lee County, North Carolina	 Rock Outcrop Rock Outcrop Survey Area Data: Version 11, Dec 16, 2013 	- Saline Spot Soil man units are labeled (as snare allows) for man so	Sandy Spot	Severely Eroded Spot	Date(s) aerial images were photographed: Feb 11, 2011) Slide or Slip	
MAP L	of Interest (AOI) Area of Interest (AOI)		Soil Map Unit Polygons	Soil Map Unit Lines		Blowout	Borrow Pit	Clay Spot	Closed Depression	🖌 Gravel Pit	Gravelly Spot	🔉 Landfill	👗 Lava Flow	📗 Marsh or swamp	限 Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot

Map Unit Legend

Lee County, North Carolina (NC105)									
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
Ch	Chewacla silt loam, 0 to 2 percent slopes, frequently flooded	144.6	13.2%						
CrB	Creedmoor fine sandy loam, 2 to 8 percent slopes	101.3	9.3%						
CrD	Creedmoor fine sandy loam, 8 to 15 percent slopes	24.5	2.2%						
MfB	Mayodan fine sandy loam, 2 to 8 percent slopes	344.6	31.6%						
MfD	Mayodan fine sandy loam, 8 to 15 percent slopes	205.8	18.9%						
MfE	Mayodan fine sandy loam, 15 to 25 percent slopes	50.6	4.6%						
PfB	Pinkston silt loam, 2 to 8 percent slopes	17.6	1.6%						
PfD	Pinkston silt loam, 8 to 15 percent slopes	76.9	7.0%						
PfF	Pinkston silt loam, 15 to 40 percent slopes	104.9	9.6%						
ТоВ	Tillery fine sandy loam, 1 to 4 percent slopes, rarely flooded	14.5	1.3%						
Ud	Udorthents, loamy	4.4	0.4%						
W	Water	1.9	0.2%						
Totals for Area of Interest		1,091.4	100.0%						

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be

made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lee County, North Carolina

Ch—Chewacla silt loam, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2mz3q Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season

Map Unit Composition

Chewacla and similar soils: 87 percent *Minor components:* 13 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Chewacla

Setting

Landform: Flood plains Down-slope shape: Concave Across-slope shape: Linear Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 4 inches: silt loam Bw1 - 4 to 26 inches: silty clay loam Bw2 - 26 to 38 inches: loam Bw3 - 38 to 60 inches: clay loam C - 60 to 80 inches: loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 6 to 24 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D

Minor Components

Congaree

Percent of map unit: 8 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear

Wehadkee, undrained

Percent of map unit: 5 percent Landform: Depressions on flood plains Down-slope shape: Concave Across-slope shape: Linear

CrB—Creedmoor fine sandy loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 3t5w Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Creedmoor and similar soils: 90 percent Minor components: 8 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Creedmoor

Setting

Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from shale and siltstone and/or mudstone and/or sandstone

Typical profile

Ap - 0 to 14 inches: fine sandy loam Bt1 - 14 to 29 inches: silty clay loam Bt2 - 29 to 56 inches: silty clay BCg - 56 to 72 inches: loam Cr - 72 to 96 inches: weathered bedrock

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: 72 to 100 inches to paralithic bedrock
Natural drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None

Sodium adsorption ratio, maximum in profile: 13.0 Available water storage in profile: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D

Minor Components

Mayodan

Percent of map unit: 8 percent Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex

CrD—Creedmoor fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3t5x Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Creedmoor and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Creedmoor

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from shale and siltstone and/or mudstone and/or sandstone

Typical profile

Ap - 0 to 14 inches: fine sandy loam Bt1 - 14 to 29 inches: silty clay loam Bt2 - 29 to 56 inches: silty clay BCg - 56 to 72 inches: loam Cr - 72 to 96 inches: weathered bedrock R - 96 to 100 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 72 to 100 inches to paralithic bedrock
Natural drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Sodium adsorption ratio, maximum in profile: 13.0
Available water storage in profile: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D

MfB—Mayodan fine sandy loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 3t64 Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Mayodan and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mayodan

Setting

Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

Ap - 0 to 6 inches: fine sandy loam BE - 6 to 9 inches: sandy clay loam Bt - 9 to 33 inches: clay BC - 33 to 40 inches: sandy clay loam C - 40 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 8 percent

Custom Soil Resource Report

Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Sodium adsorption ratio, maximum in profile: 7.0 Available water storage in profile: High (about 9.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B

MfD—Mayodan fine sandy loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3t65 Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Mayodan and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mayodan

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

Ap - 0 to 6 inches: fine sandy loam BE - 6 to 9 inches: sandy clay loam Bt - 9 to 33 inches: clay BC - 33 to 40 inches: sandy clay loam C - 40 to 80 inches: sandy clay loam

Properties and qualities

Slope: 8 to 15 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Sodium adsorption ratio, maximum in profile: 7.0 Available water storage in profile: High (about 9.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B

MfE—Mayodan fine sandy loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 3t66 Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Mayodan and similar soils: 80 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mayodan

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

Ap - 0 to 6 inches:fine sandy loamBE - 6 to 9 inches:sandy clay loamBt - 9 to 33 inches:clayBC - 33 to 40 inches:sandy clay loamC - 40 to 80 inches:sandy clay loam

Properties and qualities

Slope: 15 to 25 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: High Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Sodium adsorption ratio, maximum in profile: 7.0
Available water storage in profile: High (about 9.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B

PfB—Pinkston silt loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 3t6c Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Pinkston and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pinkston

Setting

Landform: Interfluves Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

A - 0 to 6 inches: silt loam

Bw - 6 to 16 inches: silt loam

C - 16 to 38 inches: silt loam

R - 38 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches

Frequency of flooding: None *Frequency of ponding:* None *Sodium adsorption ratio, maximum in profile:* 13.0 *Available water storage in profile:* Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C

PfD—Pinkston silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3t6d Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Pinkston and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pinkston

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

A - 0 to 6 inches: silt loam Bw - 6 to 16 inches: silt loam C - 16 to 38 inches: silt loam R - 38 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Sodium adsorption ratio, maximum in profile: 13.0

Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C

PfF—Pinkston silt loam, 15 to 40 percent slopes

Map Unit Setting

National map unit symbol: 3t6f Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Pinkston and similar soils: 80 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pinkston

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from mudstone and/or shale and siltstone and/or sandstone

Typical profile

A - 0 to 6 inches: silt loam
Bw - 6 to 16 inches: silt loam
C - 16 to 38 inches: silt loam
R - 38 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 40 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Sodium adsorption ratio, maximum in profile: 13.0
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e Hydrologic Soil Group: C

ToB—Tillery fine sandy loam, 1 to 4 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2ml49 Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F Frost-free period: 200 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Tillery and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tillery

Setting

Landform: Stream terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

Ap - 0 to 7 inches: fine sandy loam *Bt - 7 to 48 inches:* silty clay loam *Cg - 48 to 80 inches:* silt loam

Properties and qualities

Slope: 1 to 4 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water storage in profile: Moderate (about 8.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C

Ud-Udorthents, loamy

Map Unit Setting

National map unit symbol: 3t6p Elevation: 200 to 1,400 feet Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 50 to 66 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents, loamy, and similar soils: 85 percent *Minor components:* 8 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Udorthents, Loamy

Setting

Landform: Hillslopes on ridges Landform position (two-dimensional): Shoulder, summit, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Loamy and clayey human transported material derived from igneous, metamorphic and sedimentary rock

Typical profile

C - 0 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 25 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 8.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C

Minor Components

Urban land

Percent of map unit: 8 percent Landform: Hillslopes on ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex

W-Water

Map Unit Composition

Water: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

This page intentionally left blank.

Related Documents

Colon Mine Site

Charah, Inc.

Sanford, NC

November 2014

Wetlands Determination, August 2014 SWPPP, April 2014 Application for Mining Permit, March 2014 Colon Mine Drawings, February 2014 NPDES Permit NCG020854, November 2013 NCDENR Mine Permit 53-05, April 2005 This page intentionally left blank.

ClearWater Environmental Consultants, Inc. www.cwenv.com

August 8, 2014

Mr. Norman Divers Charah, Inc. P.O. Box 287 Belmont, NC 28012

RE: Jurisdictional Determination Colon Mine (+/- 408 AC) Lee County, North Carolina

Dear Mr. Divers,

ClearWater Environmental Consultants, Inc. (CEC) is pleased to provide the following discussion of jurisdictional waters and wetlands at the Colon Mine in Lee County, North Carolina. The subject property totals approximately 408 acres and is accessed from Brickyard Road. A site vicinity map and USGS topographic map have been attached for review (Figures 1 and 2). CEC made field visits on July 21-24 and 30-31, 2014 to examine potential jurisdictional waters and wetlands within the delineation boundary. The locations of waters and wetlands have been flagged and approximate locations of jurisdictional areas are shown on the attached delineation map (Figure 3). Jurisdictional waters and wetlands identified on this map have been located within sub-meter accuracy utilizing a Trimble mapping grade Global Positioning System (GPS) and the subsequent differential correction of that data. GPS points may demonstrate uncorrectable errors due to topography, vegetative cover, and/or multipath signal error.

Jurisdictional Features

Open Water

The Colon Mine property contains many open water features. It is the opinion of CEC that these features are a result of past mining activity or installation of stormwater controls.

As stated in the "preamble" for 33 CFR, Sections 320-330, "waterfilled depressions created in dry land incidental to construction activity and pits excavated in dry land for the purpose of obtaining fill, sand, or gravel unless and until the construction or excavation operation is abandoned and the resulting body of water meets the definition of waters of the United States" are not jurisdictional. However, the Corps reserves the right on a case-by-case basis to determine that a particular waterbody in the above category is jurisdictional. Additionally, excavation of land through a jurisdictional water body, such as a stream, does not negate

Mr. Norman Divers 08/08/14 Page 2

jurisdiction of the resultant feature (i.e. an excavated stream channel and resulting impoundment may both be jurisdictional). The permit applicant would need to provide substantive evidence that excavation originally occurred in high ground (outside of all jurisdictional waters) and that the subject mine is still active.

The "preamble" also states that "waste treatment systems" and "artificial lakes or ponds created by excavating and/or diking dry land to collect and retain water and which are used exclusively for such purposed as...settling basins" are not jurisdictional. The permit applicant would need to provide copies of approved Stormwater Management Plans to validate the presence of basins as stormwater controls.

Although CEC is confident in our assessment of open waters at the site, the US Army Corps of Engineers (Corps) is the only agency that can make final decisions regarding jurisdictional wetland and waters of the US delineations. Therefore, all preliminary determinations are subject to change until written verification is obtained. CEC strongly recommends that written verification be obtained from the Corps prior to closing on the property, beginning any site work, or making any legal reliance on this determination. The delineation map provided (Figure 3) is for informational purposes only and should not be used to determine precise boundaries, roadways, property boundary lines, nor legal descriptions. The map shall not be construed to be an official survey of any data depicted.

Streams

The Colon Mine property contains perennial and intermittent streams throughout the tract (Figure 3). One named stream, Roberts Creek, is identified as a "blue-line" stream on the USGS topographic map (Figure 2). Other tributaries on site (some also identified as "blue-line" streams) are unnamed tributaries to Roberts Creek. Some of these tributaries are also identified on the most recent published Soil Survey of Lee County, North Carolina (September 1989) (Attached soils maps Figures 4a and 4b).

Channel determinations are based primarily on the definition of "waters of the US" found in 33 CFR, Section 328. The jurisdictional extent is considered the upper limits of the ordinary high water mark as identified in the field. The Corps District Office has provided additional regional guidance for jurisdictional designations on drainage features. Only those channels with adequate groundwater discharge to maintain intermittent or perennial flow are found to be jurisdictional.

Unnamed tributaries on site hold the same stream classification as the named tributary into which they flow. Roberts Creek and unnamed tributaries on site are classified as class "C" and "WS-IV" waters by the NC Division of Water Resources (DWR).

• Class "C" Waters are those waters protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture and other uses suitable for class "C". Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. There are no restrictions on watershed development or types of discharges.

Class "WS-IV" Waters are those waters protected as water supplies for drinking, . culinary, or food-processing purposes which are generally in moderately to highly developed watersheds or protected areas and meet average watershed development density levels specified by the DWR. Nonpoint source and stormwater pollution that would adversely impact the waters for use as water supply or any other designated use will not be permissible. A stormwater management plan will be required for all drainage areas within projects that have, or are anticipated to have, impervious surface cover of equal to or greater than 24%. At a minimum, the stormwater management plan should remove 85% Total Suspended Solids (TSS) and be designed in accordance with the most recent published version of the NC Division of Water Quality's Stormwater Best Management Practices (BMP) Manual. In watersheds that are classified as "WS" by the DWR, 30% Total Phosphorus and 30% Total Nitrogen removal will be required. BMPs must also remove fecal coliform and heavy metals. In watersheds that are classified as "WS-IV", stormwater requirements are determined by the density option chosen by the applicant: high or low. A project is considered low density if the built upon area is 24% or less; or the applicant proposes one, single family residential dwelling on lots greater than or equal to 1/2 acre. Development areas that are outside of "critical areas" and absent a curb and gutter street system will be allowed 36% built upon area or three, single family residential dwellings per acre. In general, stormwater management plans will be approved for the low density option provided stormwater runoff is transported primarily by vegetated conveyances and a 30-foot wide vegetated buffer is established along stream segments. For high density developments, the DWR will require that control systems be designed to control runoff from all surfaces generated by one inch of rainfall. High density developments will not exceed 70% built upon area and a 100-foot wide vegetated buffer must be maintained adjacent to all perennial waters.

Wetlands

Potential wetland areas within the project boundary are evaluated for the presence or absence of three wetland criteria outlined in the *Corps of Engineers Wetlands Delineation Manual* (1987 Manual). All of following criteria must be met for a subject area to be considered a jurisdictional wetland: presence of hydric soil and hydrophytic vegetation; and evidence of wetland hydrology and connectivity. Indicators of hydrology include, but are not limited to, saturation in the upper 12 inches of the soil profile, drift lines, water marks, and sediment deposits. Findings of a hydrological connection can be supported through the existence of soils defined as hydric. Hydric soils are defined by the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (July 2010). Vegetation holding a "FAC", "FACW", or "OBL" designation are considered to be hydrophytic. Plant communities in subject areas must include dominant hydrophytic vegetation at a proportion of at least 50 percent to meet the hydrophytic vegetation criteria.

Waters of the US in the form of wetlands were observed throughout the site (Figure 3).

Mr. Norman Divers 08/08/14 Page 4

Summary

Jurisdictional waters and wetlands were identified on the site. The Corps should be contacted for a site visit and verification of jurisdictional areas. Although CEC is confident in our assessment of the site, the Corps is the only entity that can make a final decision regarding the presences or absence of jurisdictional waters and wetlands on a site. CEC strongly recommends that written verification be obtained from the Corps prior to closing on the property, beginning any site work, or making any legal reliance on this determination. CEC will arrange a site visit with the Corps for verification of the delineation if requested. The Raleigh Regulatory Field Office of the Corps of Engineers Wilmington District verifies wetland and stream delineations in central North Carolina.

We appreciate the opportunity to provide this information to you. If you have any questions or comments concerning this letter please do not hesitate to contact me at 828-698-9800.

Sincerely,

Renewlan

Rebekah L. Newton Project Biologist

R. Clement Riddle, P.W.S Principal

Colon Mine (+/-408 AC)

Colon Mine (+/-408 AC)

Colon Mine (+/- 408 AC)

Colon Mine (+/-408 AC)

Colon Mine (+/-408 AC)

This page intentionally left blank.

GENERAL SHALE SANFORD, NC

COLON MINE

STORMWATER PERMIT NO. NCG020854

STORM WATER POLLUTION PREVENTION PLAN

DECEMBER 2013 UPDATED APRIL 2014

Table of Contents

Introduction	1
Approval and Certification	1
Site Plan (Description of Activities and Potential Pollutant Sources)	1
Spills	2
Evaluation of Outfalls for Presence of Non-Stormwater	2
Erosion and Sedimentation Control	2
Stormwater Management Plan	3
Management of Runoff	3
• BMP Inspections	3
Secondary Containment	3
Spill Prevention and Response	3
Preventive Maintenance	3
Good Housekeeping	3
Employee Training	4
Pollution Prevention Team	4
Plan Amendment	4
Recordkeeping and Internal Reporting	4
Analytical Monitoring Requirements	4
Appendix A	6
Location Map	
Site Map	
Appendix B	9
Significant Spills and Leaks	
Appendix C 1	0
Annual Evaluation of the Outfalls and the SWPPP	
Appendix D 1	2
BMP Inspection Checklist	
Appendix E 1	4
Storage Tanks and Secondary Containment	
Appendix F 1	5
Storm Water Pollution Prevention Team	
Introduction

The purpose of this Storm Water Pollution Prevention Plan is to prevent storm water runoff from polluting the area lakes and streams. This plan is designed to fulfill the requirements of OUR NPDES General Permit for active and inactive mining sites (NCG020854).

Approval and Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Plan prepared by: Steve W. Wyse, Environmental Engineer, General Shale Brick, Inc.

Date:

Plan reviewed by: Gregory Bowles, Director of Environment, General Shale Brick, Inc.

Date:

Plan approved by: Kevin Ham, Vice President, General Shale Brick, Inc.

Date:

Site Plan (Description of Activities and Potential Pollutant Sources)

Colon Mine is a former shale mining operation owned and operated by General Shale Brick, Inc. This mine supplied General Shale's brick manufacturing plant in Sanford, NC. This mine is currently in the process of being reclaimed. This includes relocating the stockpile to a General Shale brick plant in Moncure, NC.

The location map in Appendix A shows the facility and the surrounding features. A site map indicating the drainage area, locations of potential pollution sources, flow directions, and the outfall locations is also available in Appendix A.

The activities which may be potential sources of significant amounts of pollutants to storm water, the exposed materials associated with these activities, and their pollutants of concern are listed below.

- 1) Areas of Excavation outdoor processing activities (mine is currently in reclamation)
 - Location Northeast portion of mine.
 - Exposed Materials Shale and clay
 - Management Practices Proper contouring of excavated areas to drain stormwater into BMPs and sediment control basins.
 - Risk to Stormwater Suspended Solids
 - Pollutant Control Measures BMPs including check dams, revegetation of drainage areas, and berms to control erosion.
 - Storm Water Treatment Sediment control basins
- 2) Stock Pile (loading and outdoor storage)
 - Location Center portion of mine area.
 - Exposed Materials Shale and clay
 - Management Practices Placement of stockpile to reduce erosion. Compaction of crown and cutting of wingwalls
 - Risk to Stormwater Suspended Solids
 - Pollutant Control Measures Placement of stockpile where drainage flows to sediment control basin(s).
 - Storm Water Treatment Sediment control basins

3) Fuel Tanks

- Location <u>There are currently no fuel tanks at this location</u>.
- Exposed Materials Diesel fuel and oil.
- Management Practices lock tanks to prevent vandalism, place tanks in secondary containment dikes
- Risk to Stormwater oil/fuel
- Pollutant Control Measures Secondary containment dike and SPCC plan
- Storm Water Treatment none

Spills

Appendix B is a list of significant spills that have occurred in the past three years

Evaluation of Outfalls for Presence of Non-Stormwater

An evaluation of the outfalls shall be completed once a year to look for the presence of non-stormwater discharges. An annual certification statement on the inspection form (Appendix C) is to be signed by the inspector. The inspector has authorization to certify the outfalls by the approval of this plan.

Erosion and Sedimentation Control

Vegetation is the primary tool for controlling erosion at this site. BMPs such as check dams and containment berms are also used to reduce runoff velocity and prevent stormwater from running on to disturbed areas.

Erosion and sediment controls shall be visually inspected for compliance with the mining permit. Structural storm water management measures, erosion control measures, and other structural pollution prevention measures identified in this plan shall be observed to ensure that they are operating correctly. A visual inspection of equipment needed to implement this plan, such as spill response equipment, will be made. The reports summarizing these evaluations are attached in Appendix D.

Stormwater Management Plan

- Management of Runoff Runoff is directed into sediment control basins using berms, ditches, and sediment fences.
- BMP Inspections Inspections will be completed weekly by the Mine Supervisor. Basically the inspections will cover 1) the integrity of the storm water sediment and erosion controls, 2) the status of the sediment control basins and the need to clean them out, 3) the best management practices associated with the stockpile area, 4) the condition of any fuel tanks, and 5) observations of visible sedimentation leaving the property. Appendix D is the inspection form.
- Secondary Containment A table listing storage tanks at the mine and their associated secondary containment is located in Appendix E. The aboveground tanks are placed in dikes to contain spills.

Spill Prevention and Response

This site does not use fuel, oil, or hazardous substances in bulk storage. Fuels used for reclamation equipment are not stored on site and are brought to the mine by a fuel truck. Spill prevention and response for these fuels are explained in the preventive maintenance and housekeeping sections.

Preventive Maintenance

Inspect heavy equipment for hose or line leaks and replace as needed. By doing preventive maintenance, spills and leaks from these sources can be reduced. Preventive maintenance is also used on the swales, ditches, and containment basins, to ensure proper drainage and settling capabilities.

Good Housekeeping

Keeping the site neat and orderly is the responsibility of every employee and proper disposal of trash is required. All used oil is collected and recycled. Sediment basins are to be cleaned out when the Sediment load is at 50% capacity. The water truck is used to suppress dust as needed. Significant spills are recovered with the contaminated dirt and contained for disposal or placed in the covered stockpile at the plant.

Employee Training

Storm water management training will be required yearly for all employees that have an impact on the storm water and will include: spill response, good housekeeping, the best management practices needed to control runoff, mining and reclamation plans, monitoring requirements, the preventative maintenance of equipment required to prevent discharges to storm water, and the annual site compliance evaluation.

Pollution Prevention Team

The storm water pollution prevention team is responsible for the implementation, maintenance, and revision of this plan. Appendix F is a list of the team members and their responsibilities under this plan.

Plan Amendment

This plan shall be amended when there is a change in the design, construction, operation, or maintenance that has a significant effect on the potential for discharge of pollutants to surface water. This plan is to be reviewed as part of the annual evaluation of the site.

Recordkeeping and Internal Reporting

Records of spills, inspections, maintenance activities, and corrected BMPs will be kept as part of this plan. This data will be kept for five (5) years after the report or data are generated and will include:

- Storm Water Pollution Prevention Plan
- Permit
- Site Inspections
- Preventative Maintenance Records
- Notice of Intent
- Sampling data
- Training Records
- Spill Reports

Analytical Monitoring Requirements

The storm water monitoring required for this plant is summarized as follows:

Pollutants of Concern	Units	Benchmark Value	Frequency	Sample Type
Setteable Solids	ml/l	0.1 ml/l	Semi-Annual	Grab
Total Suspended Solids	mg/l	100 mg/l	Semi-Annual	Grab
Turbidity	NTU	N/A	Semi-Annual	Grab
Total Rainfall*	inches		Semi-Annual	Measure
Event Duration	minutes		Semi-Annual	Estimate
Total Flow	MG		Semi-Annual	Estimate

* On-site rain gauge or local rain gauge

The following information will be recorded at the sample time: date, place sampled, and person sampling. The analytical results shall be submitted to the Division Central office no later than **March 1** of the following permit year. The general permit provides the specific requirements for collecting and analyzing the sample, reporting the results, and when sampling waivers are applicable. All sampling results are to be kept with this plan.

Appendix A Location Map Site Map

LOCATION MAP: General Shale, Colon Mine, Lee County

Appendix B Significant Spills and Leaks

Date	Location/Source	Material Spilled	Amount Spilled	Reason

Appendix C Annual Evaluation of the Outfalls and the SWPPP

Colon Mine

Annual Evaluation of the Outfalls and The SWPPP

- \Box The stormwater outfall has been evaluated for the presence of non-stormwater
 - □ Outfall functioning properly
 - □ Non-stormwater found

□ Significant spills last year (list)

□ No spills occurred

 \square BMPs effective

□ BMPs require repair

□ SWPPP requires updating

Date: _____

Inspector:

Appendix D BMP Inspection Checklist

BMP and Controls Inspection

General Shale Brick, Inc. Colon Mine NCG020854

Date: _____

□ If examination cannot be completed due to adverse weather (flood, tornado, severe storm) or lack of runoff (drought, frozen conditions) Check here and note in comments below.

Inspected by:

Inspection

<u>BMPs:</u> \Box check dams OK, \Box vegetation maintained, \Box silt fences/berms maintained

Sediment basins:

 \square sediment less than 50% capacity, \square no oil sheen, \square spillway in good condition, \square discharge is clear,

Stockpile & Equipment: \Box runoff flows to a sediment basin, \Box equipment maintained

Visible Sedimentation:

□ Sediment leaving the property

Comments: _____

Appendix E Storage Tanks and Secondary Containment

Tank Number	Tank Contents	Tank Construction	Dike Construction
None			

Appendix F Storm Water Pollution Prevention Team Colon Mine

Title	Responsibility	Name and Phone
Plant Manager	 Team Leader Employee Training Plan Implementation Ensure that reports and monitoring efforts are completed 	Larry Cockerill
Assistant Plant Manager	 Recognize non-compliance situations Assist in employee training Preventative maintenance Maintain settling basins and BMPs 	Jeff Magee
Environmental Engineer	 Site Inspection Stormwater Sampling Report to State Assist in the annual compliance evaluation Plan development, implementation, and revision 	Warren Paschal Steve Wyse

This page intentionally left blank.

APPLICATION FOR A MINING PERMIT NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

LAND QUALITY SECTION APPLICATION FOR A MINING PERMIT

(PLEASE PRINT OR TYPE)

•	Name of Mine Colon Mine	County Lee
	River Basin Cape Fear	
	Latitude (decimal degrees to four places) 35.5348	
	Longitude (decimal degrees to four places)	
2.	Name of Applicant* <u>General Shale Brick, Inc.</u>	
3. Permanent address for receipt of official mail** <u>300 Brick Plant Rd., Moncure, 1</u>		
	Telephone (919)774-6533 ext. 221 Alte	ernate No. N/A
4.	Mine Office AddressN/A	
4.	Mine Office Address <u>N/A</u> Tele	ephone ()

We hereby certify that all details contained in this Permit Application are true and correct to the best of our knowledge. We fully understand that any willful misrepresentation of facts will be cause for permit revocation.

***Signature	Warn Paschal	
Print Name	Warren Paschal	
Title	Environmental Compliance Manager	

- * This will be the name that the mining permit will be issued to and the name that must be indicated on the reclamation bond (security) that corresponds to this site.
- ** The Land Quality Section must be notified of any changes in the permanent address or telephone number.
- *** Signature of company officer required.

G.S. 74-51 provides that the Department shall grant or deny an application for a permit within 60 days of receipt of a <u>complete</u> application or, if a public hearing is held, within 30 days following the hearing and the filing of any supplemental information required by the Department. All questions must be addressed <u>and</u> all required maps provided before this application can be considered complete. Attach additional sheets as needed.

<u>NOTE:</u> All of the following questions must be thoroughly answered regarding your mining operation for the intended life of the mine. All responses <u>must</u> be clearly conveyed on a corresponding, detailed mine map.

A. GENERAL CHARACTERISTICS OF THE MINE

- 1. Answer all of the following that apply:
 - If this is an application for a <u>NEW</u> permit, indicate the total acreage at the site to be covered by the permit (this is the acreage that the "new permit" fee will be based upon):_____

If this is an application for **<u>RENEWAL</u>** of a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit: Mining Permit No.: 53-05 Total permitted acreage (this is the acreage that the "renewal" fee will be based upon): 371

If this is an application for a <u>MODIFICATION</u> to a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit. Mining Permit No.:______ Total permitted acreage:______

Does the modification involve acreage <u>within</u> the previously approved permitted boundary? Yes No . If yes, indicate the acreage to be covered by this modification (this is the acreage that the "major modification" fee will be based upon):

Does the modification involve acreage <u>outside</u> the previously approved permitted boundary? Yes No . If yes, indicate the additional acreage to be covered by this modification: . . (NOTE: you must complete <u>all</u> of Section F. of this application form entitled Notification of Adjoining Landowners).

Of this acreage to be added to the permit, will any portion of this acreage be affected (i.e.: disturbed, ground cover removed) by the mining operation? Yes No (If no, a "minor modification" fee of \$100.00 is required, despite the "undisturbed" acreage to be added). If yes, indicate the acreage to be affected within the acreage to be added to the permit (the total acreage to be added to the permit is the acreage that the "major modification" fee will be based upon):

1

 \boxtimes

If this is an application for **TRANSFER** of a mining permit, indicate the mining permit number and the total (overall) acreage covered by the existing permit. Mining Permit No.:______ Total permitted acreage:______

SEE THE FEE SCHEDULE AT THE END OF THIS FORM FOR THE PROPER FEE AMOUNT TO BE PAID FOR THE REQUESTED PERMIT ACTION(S) AND CORRESPONDING ACREAGE NOTED ABOVE

2. N	ame of all materials mined	Brick Clay	
3. N	Mining method: Hydraulic Dredge Dragline & Truck	Front-end Loader & Truck Self-loading Scraper	x Shovel & Truck
(Other (explain):		
4. a.	Expected maximum dept	h of mine (feet)	50'
-	Depth is relative to what Natural groun	benchmark? (e.g., natural groun d level	nd level, mean sea level, road elevation, etc.)
b.	Expected average depth of	of mine (feet)	30'

5. Has any area(s) at this site been mined in the past? Yes \bowtie

No General Shale Brick Inc./Cherokee Sanford has If yes, when and by whom was this activity conducted? mined the site since 1972

6. Number of years for which the permit is requested (10 years maximum): 10

B. MAPS

1. Clearly mark and label the location of your mining operation on six (6) copies of a 7.5-minute quadrangle and a county highway map. These maps, in addition to six (6) copies of all mine maps and reclamation maps, must be submitted with each permit application.

7.5-minute quadrangles may be obtained from the N.C. Geological Survey:

Mailing Address: 1612 Mail Service Center OR Raleigh, North Carolina 27699-1612 (919) 733-2423 http://portal.ncdenr.org/web/lr/geological home

Physical Address: 512 North Salisbury Street, 5th Floor Raleigh, North Carolina 27604

County highway maps may be obtained from the N.C. Department of Transportation:

North Carolina Department of Transportation - Geographic Information Systems (GIS)

Mailing Address: NCDOT GIS Unit 1587 Mail Service Center Raleigh, North Carolina 27699-1587

Physical Address: NCDOT GIS Unit 3401 Carl Sandburg Court Raleigh, North Carolina 27610 (919) 212-6000 http://www.ncdot.org/it/gis/

- Mine maps must be accurate and appropriately scaled drawings, aerial photographs or enlarged 2 topographic maps of the entire mine site. All aspects of the mine site must be clearly labeled on the maps along with their corresponding (approximate) acreage. As a reminder, mining permits can only be issued for up to 10 years; thus, all mine and reclamation maps must only denote those activities that are intended to be conducted during the life of the mining permit. All maps must be of a scale sufficient (see minimum requirements listed below) to clearly illustrate the following, at a minimum:
 - a. Property lines of the tract or tracts of land on which the proposed mining activity is to be located including easements and rights-of-way.
 - b. Existing or proposed permit boundaries.
 - Initial and ultimate limits of clearing and grading. C.
 - Outline and width of all buffer zones (both undisturbed and unexcavated). d.
 - Outline and acreage of all pits/excavations. e.
 - f. Outline and acreage of all stockpile areas.
 - Outline and acreage of all temporary and/or permanent overburden disposal areas.
 - ĥ Location and acreage of all processing plants (processing plants may be described as to location and distance from mine if sufficiently far removed).
 - Locations and names of all streams, rivers and lakes. i.
 - Outline and acreage of all settling and/or processing wastewater ponds. j.
 - k. Location and acreage of all planned and existing access roads and on-site haul roads.
 - Location of planned and existing on-site buildings. 1.
 - m. Location and dimensions of all proposed sediment and erosion control measures.
 - Location of 100-year floodplain limits and wetland boundaries. n.
 - Names of owners of record, both public and private, of all tracts of land that are adjoining the 0. mining permit boundary; if an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, names of owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary, must be provided on the mine map.

- p. Names of owners of record, both public and private, of all tracts of land that are adjoining the mining permit boundary which lie directly across and are contiguous to any highway, creek, stream, river, or other watercourse, railroad track, or utility or other public right-of-way. If an adjoining tract is owned or leased by the applicant or is owned by the lessor of the mine tract, names of owners of record of tracts adjoining these tracts, that are within 1,000 feet of the mining permit boundary, must be provided on the mine map(s). NOTE: "Highway" means a road that has four lanes of travel or less and is not designated as an Interstate Highway.
- q. Map legend:
 - 1. Name of applicant
 - 2. Name of mine
 - 3. North arrow
 - 4. County
 - 5. Scale
 - 6. Symbols used and corresponding names
 - 7. Date prepared and revised
 - 8. Name and title of person preparing map

Map scales should meet the following guidelines.

PERMITTED ACREAGE	MAP SCALE
0-49 Acres	1 inch = 50 feet
50-199 Acres	1 inch = 100 feet
200+ Acres	1 inch = 200 feet
(NOTE: Smaller scaled maps	may be acceptable if they clearly illustrate the above items

A table/chart must be provided on the mine map that clearly lists the approximate acreage of tailings/sediment ponds, stockpiles, wastepiles, processing area/haul roads, mine excavation and any other major aspect of the mining operation that is proposed to be affected/disturbed during the life of the mining permit. A table/chart similar to the following will be acceptable:

CATEGORY	AFFECTED ACREAGE
Tailings/Sediment Ponds	28.5
Stockpiles	7.4
Wastepiles	5.0
Processing Area/Haul Roads	17.5
Mine Excavation	290.6
Other (Explain)	0
Total Disturbed Acreage	349.0

NOTE:

IN ADDITION TO THE ABOVE, THE MAPS MUST ALSO INCLUDE ANY SITE-SPECIFIC INFORMATION THAT IS PROVIDED IN THE ANSWERS TO THE FOLLOWING QUESTIONS IN THIS APPLICATION FORM (*PLEASE NOTE THE ITALICIZED QUESTIONS/STATEMENTS THROUGHOUT THE FORM*). THIS APPLICATION WILL NOT BE CONSIDERED COMPLETE WITHOUT ALL RELEVANT ITEMS BEING ADEQUATELY ADDRESSED ON THE MINE MAPS.

C. PROTECTION OF NATURAL RESOURCES

1. Describe in detail the sequence of events for the development and operation of the mine and reference the sequence to the mine map(s). Attach additional sheets as needed.

Mining will continue as permitted. Basins 17 through 21 have not yet been installed. These basins will be installed before mining is conducted in the area of these basins. These basins were originally designed to discharge at brick bat outlet sections, but have been redesigned as wet retention basins. The proposed riser design will dewater slowly from the two (2) 2" holes provided at the permanent pool depth.

2. Describe specific erosion control measures to be installed prior to land disturbing activities and during mining to prevent offsite sedimentation (include specific plans for sediment and erosion control for mine excavation(s), waste piles, access/mine roads and process areas), and give a detailed sequence of installation and schedule for maintenance of the measures. Locate and label all sediment and erosion control measures on the mine map(s) and provide typical cross-sections/construction details of each measure. Engineering designs and calculations are required to justify the adequacy of any proposed measures.

Erosion control is provided by the large bodies of water that were created by the excavation activities. Some areas require diversion berms and brickbat outlet sections to ensure storm-water runoff are directed to the sediment basins. The basins are designed to contain the runoff from the 10-year rain event. The basin outlets consisting of brickbat are designed to pass the 25-year rain event. Many of the mine excavation will extend below the outlet and pumping is required. The water is discharged to an adjacent mine excavation/sediment basin. The discharge pump has a maximum flow rate of 1500 gpm.

- 3. a. Will the operation involve washing the material mined, recycling process water, or other waste water handling? Yes No . If yes, briefly describe all such processes including any chemicals to be used.
 - b. Will the operation involve discharging fresh or waste water from the mine or plant as a point discharge to the waters of the State? Yes No . If yes, briefly describe the nature of the discharge and locate all proposed discharge points (along with their method of stabilization) on your mine map(s).

Discharges by gravity through sediment basins occur for storm-water runoff from the mine.

c. Will any part of the proposed mine excavation(s) extend below the water table? Yes No . If yes, do you intend to dewater the excavation(s)? Yes No . No . If yes, what impact, if any, will mine dewatering have on neighboring wells? Estimated withdrawal rate in gallons per day: 5,000 . Locate all existing wells on the mine map(s) that lie within 500 feet of the proposed excavation area. Provide data to support any conclusions or statements made, including any monitoring well data, well construction data and current water withdrawal rates. Indicate whether the proposed mine locale is served by a public water system or private wells.

No water supply wells are within 500-ft of the mine. Groundwater removal is minimal and less than 5,000 gallons/day. The majority of water removed is surface water accumulation in the mine excavation.

d. If you answered yes to any of the above questions, provide evidence that you have applied for or obtained the appropriate water quality permit(s) (i.e., non-discharge, NPDES, Stormwater, etc.) from the Division of Water Quality, Water Quality Section. In addition, the applicant is required to register water use with the Division of Water Resources if the operation withdraws more than 10,000 gallons per day and needs a capacity use permit from the Division of Water Resources if the operation of Water Resources in a capacity use area and withdraws more than 100,000 gallons per day.

General Shale Brick Inc. has a stormwater permit that covers these discharges. (Permit No. NCG 070154)

- 4. a. Will the operation involve crushing or any other air contaminant emissions? Yes No X. If yes, indicate evidence that you have applied for or obtained an air quality permit issued by the Division of Air Quality or local governing body.
 - b. How will dust from stockpiles, haul roads, etc., be controlled?

The natural moisture of the materials stockpiled will prevent dusting from stockpiles. Haul roads are wetted as needed to prevent dusting.

5. a. A buffer will be required between any mining activity and any mining permit boundary or right-ofway. It may be an unexcavated buffer (no excavation, but roadways, berms and erosion & sedimentation control measures may be installed within it), an undisturbed buffer (no disturbance within the buffer whatsoever), or a combination of the two, depending upon the site conditions. Note that all buffers must be located within the mining permit boundaries.

How wide a buffer will be maintained between any mining activity and any mining permit boundary or right-of-way at this site? A minimum buffer of 25 feet is recommended, although a wider buffer may be needed depending on site conditions. Show all buffer locations and widths on the mine map(s).

Buffers are at least 50ft from property lines, permit limits, and right-of-ways. The majority of the buffers are undisturbed. Along a portion of Colon Road, at least a 50-ft unexcavated buffer will be provided. A berm for visual screening will be installed.

b. A minimum 50 foot wide undisturbed buffer will be required between any land disturbing activities within the mining permit boundaries and any natural watercourses and wetlands <u>unless</u> smaller undisturbed buffers can be justified. Depending on site conditions, a buffer wider than 50 feet may be needed.

How wide an undisturbed buffer will be maintained between any land disturbing activities within the mining permit boundaries and any natural watercourses and wetlands at this site? Show all buffer locations and widths on the mine map(s).

At least a 50-ft undisturbed buffer is provided between the mine and wetlands, streams, and other natural bodies of water. However, along a portion of Roberts Creek, the buffer is at least 100-ft. Except at a 0.25 ac. area where the excavation is conducted to remove a peak formed by mining.

 a. Describe methods to prevent landslide or slope instability adjacent to adjoining permit boundaries during mining. Minimum 2 horizontal to 1 vertical slopes or flatter for clayey material and minimum 3 horizontal to 1 vertical slopes or flatter for sandy material are generally required, unless technical justification can be provided to allow steeper slopes.

A 2:1 (H:V) slope is maintained along exterior slopes.

- b. Provide a cross-section on the mine map(s) for all fill slopes (berms, wastepiles, overburden disposal areas, etc.), clearly indicating the intended side slope gradient, installation of any benches and/or slope drains (with supporting design information) if needed, and the method of final stabilization.
- c. In excavation(s) of unconsolidated (non-rock) materials, specify the angle of all cut slopes including specifications for benching and sloping. Cross-sections for all cut slopes must be provided on the mine map(s).

No benching will be conducted. Cut slopes will be 2:1 (H:V) along the exterior of the mine.

d. In hardrock excavations, specify proposed bench widths and heights in feet. Provide cross-sections of the mine excavation clearly noting the angles of the cut slopes, widths of all safety benches and mine benches, and the expected maximum depth of the excavation.

N/A

7. Describe other methods to be taken during mining to prevent physical hazard to any neighboring dwelling house, public road, public, commercial or industrial building from any mine excavation. Locate all such structures on the mine map if they are within 300 feet of any proposed excavation.

N/A

8. Describe what kind of barricade will be used to prevent inadvertent public access along any high wall area and when it will be implemented. Vegetated earthen berms, appropriate fencing and adequate boulder barriers may be acceptable high wall barricades. A construction detail/cross-section and location of each type of barricade to be used must be indicated on the mine map(s).

N/A

- 9. Are acid producing minerals or soils present? Yes No X. If yes, how will acid water pollution from the excavation, stockpiles and waste areas be controlled?
- 10. a. Describe specific plans (including a schedule of implementation) for screening the operation from public view such as maintaining or planting trees, bushes or other vegetation, building berms or other measures. Show the location of all visual screening on the mine map(s) and provide cross-sections through all proposed berms or proposed spacing, sizes and species for tree plantings.

The majority of the mine is screened by the wooded areas. For a portion of Colon Road, a berm will be constructed for screening purposes. A culvert will need to be added to pass stormwater through the berm.

b. Could the operation have a significantly adverse effect on the purposes of a publicly owned park, forest or recreation area? If so, how will such effects (i.e., noise, visibility, etc.) be mitigated?

No

11. Will explosives be used? Yes No X. If yes, specify the types of explosive(s) and describe what precaution(s) will be used to prevent physical hazard to persons or neighboring property from flying rocks or excessive air blasts or ground vibrations. Depending on the mine's location to nearby structures, more detailed technical information may be required on the blasting program (such as a third-party blasting study). Locate the nearest offsite occupied structure(s) to the proposed excavation(s) on the mine map and indicate its approximate distance to the proposed excavation.

Motor oil and other products required for equipment maintenance are stored in two of the on-site facility storage buildings. Above ground petroleum tanks have secondary containment systems.

D. RECLAMATION PLAN

1. Describe your intended plan for the final reclamation and subsequent use of all affected lands and indicate the sequence and general methods to be used in reclaiming this land. This must include the method of reclamation of settling ponds and/or sediment control basins and the method of restoration or establishment of any permanent drainage channels to a condition minimizing erosion, siltation and other pollution. This information must be illustrated on a reclamation map and must correspond directly with the information provided on the mine map(s). In addition, design information, including typical cross-sections, of any permanent channels to be constructed as part of the reclamation plan and the location(s) of all permanent channels must be indicated on the reclamation map.

The land will be revegetated in grass. The majority of the areas mined will be under water upon completion of mining. Land above the water will be sloped to drain by gravity to the water bodies formed by the excavation.

Will the body(s) of water be stocked with fish? Yes \square No \square . If yes, specify species.

The lakes will be stockpiled with bass, bream, and other species of fish native to the area.

3. Describe provisions for safety to persons and to adjoining property in all completed excavations in rock including what kind of permanent barricade will be left. Acceptable permanent barricades are appropriate fencing, large boulders placed end-to-end, etc. Construction details and locations of all permanent barricades must be shown on the reclamation map.

NA

4. Indicate the method(s) of reclamation of overburden, refuse, spoil banks or other such on-site mine waste areas, including specifications for benching and sloping. *Final cross-sections and locations for such areas must be provided on the reclamation map.*

Overburden, refuse, and spoil banks are minimal for a clay mine. Such stockpiles will be spread on the ground to allow positive drainage and revegetated.

5. a. Describe reclamation of processing facilities, stockpile areas, and on-site roadways.

Associated ditches and storm drains are stable within the plant area. The stockpile areas will be graded for positive drainage before revegetation. The haul roads in the mine will remain in place. These roadways are flush with the ground or are located on embankment fill.

- b. Will any on-site roadways be left as part of the reclamation? Yes No . If yes, identify such roadways on the reclamation map and provide details on permanent road and ditch line stabilization.
- 6. Describe the method of control of contaminants and disposal of scrap metal, junk machinery, cables, or other such waste products of mining. (Note definition of refuse in The Mining Act of 1971.)

No <u>off-site generated waste</u> shall be disposed of on the mine site without <u>prior</u> written approval from the NC Department of Environment and Natural Resources, Land Quality Section <u>and</u> either the Division of Waste Management (DWM) or local governing body. If a disposal permit has been issued by DWM for the site, a copy of said permit must be attached to this application. All temporary and permanent refuse disposal areas must be clearly delineated on the mine map(s) and reclamation map, along with a list of items to be disposed in said areas.

No scrap metal or other debris will be left on-site.

- 7. Describe your plan for revegetation or other surface treatment of the affected areas. This plan must include recommendations for <u>year-round seeding</u>, including the time of seeding and the amount and type of seed, fertilizer, lime and mulch per acre. The recommendations must include general seeding instructions for both permanent and temporary revegetation. Revegetation utilizing only tree plantings is not acceptable. Recommendations can be sought from:
 - a. Authorized representatives of the local Soil and Water Conservation District;
 - b. Authorized representatives of the Division of Forest Resources, Department of Environment and Natural Resources;
 - c. Authorized county representatives of the North Carolina Cooperative Extension Service, specialists and research faculty with the Colleges of Agriculture and Life Sciences and Forest Resources at North Carolina State University;
 - d. North Carolina licensed landscape architects;
 - e. Private consulting foresters referred by the Division of Forest Resources, Department of Environment and Natural Resources;
 - f. N.C. Erosion and Sedimentation Control Planning and Design Manual;
 - g. N.C. Surface Mining Manual: A Guide for Permitting, Operation and Reclamation;
 - h. Others as may be approved by the Department.

LIME - RATE OF APPLICATION (tons/acre):

FERTILIZER - ANALYSIS AND RATE OF APPLICATION (pounds/acre):

SEED - TYPE(S) AND RATE(S) OF APPLICATION INCLUDING <u>YEAR-ROUND</u> SEEDING SCHEDULE (pounds/acre): [NOTE: Include Legumes]

Seed Types:

Seeding Dates:

Seeding Rates:

SEE MINE MAPS Ser following two puges

MULCH - TYPE AND RATE OF APPLICATION (pounds/acre) AND METHOD OF ANCHORING:

OTHER VEGETATIVE COVERS – TYPE (S) AND RATE (S) OF APPLICATION INCLUDING SEEDING SCHEDULE (pounds/acre, trees/acre, spacing of trees/shrubs, etc):

Revegetation a	nd/or reforestation plan approved by:
Signature	1 1Putre Sligton Date 03/25/14
Print Name	T. Patrick Shillington, P.E.
Title	President
Agency	Engineering & Environmental Science Co.

Vegetation Plan

- 1. Spread topsoil over disturbed areas and leave surface reasonably smooth and uniform.
- 2. Scarify surface to prepare a seedbed four to six inches deep. Use such equipment as tilling, disking, tracing, Or the teeth on a front end loader.
- 3. Mix lime and fertilizer with the soil during seedbed preparation.
- 4. Seed on freshly prepared seedbed following the application rates for the appropriate season.
- 3. Mulch all seeded areas immediately.
- 5. Tack mulch on slopes 3:1 (Horizontal: Vertical) or steeper by spraying with emulsified asphalt. Use an Anchoring tool such as a farming disc set in a vertical position on slopes less than 3:1. Mulch netting may Also be used on slopes.
- 4. Inspect seeded areas and make repairs within the planting season. If vegetation is over 60% damaged, Repeat steps 2 through 5.
- 8. Permanent revegetation shall be accomplished at the specified times of the year. Temporary vegetation shall be applied outside of the optimal times for establishment of permanent vegetation

9. Seeding Schedule. <u>TEMPORARY SEEDING SCHEDULE</u>

Seeding Date: August 15 to December 15

Seed Type	Rate
Rye (grain)	120 lbs. /acre
10-10-10 Fertilizer	1,000 lbs. /acre
Lime	2,000 lbs. /acre
Mulch	4,000 lbs. /acre

Seeding Date: January 1 to May 1

Rate
120 lbs. /acre
2,000 lbs. /acre
750 lbs. /acre
4,000 lbs. /acre

Seeding Date: May 1 to August 15

Seed Type German Millet 10-10-10 Fertilizer Lime . Mulch

Rate 40 lbs. /acre 750 lbs. /acre 2,000 lbs. /acre 4,000 lbs. /acre

Possible

PERMANENT SEEDING SCHEDULE

Seeding Date: Best Fall: August 25- September 15 August 20- October 25 Late Winter: February 15- March 21 February 1- April 15

Seed Type	Rate
Tall Fescue	100 lbs. /acre
Serica Lespedeza	30 lbs. /acre
Kobe Lespedeza	10 lbs. /acre
10-10-10 Fertilizer	1,000 lbs. /acre
Lime	3,000 lbs. /acre
Mulch	4,000 lbs. /acre

Note 1: Fertilizer and lime application rates may deviate from above if soils are analyzed for optimum rates.

Mulch shall be tacked with emulsified asphalt at rate of 14 to 28 gallons/1,000 sq. ft. on slopes of 3:1 Note 2: (H: V) or steeper.

After August 15, use Unscarified Sericea seed for permanent seeding period. Note 3:

Revegetation plan approved by:

ligte uli Signature:

Date: 03/25/14

Permanent and Temporary revegetation plan based on guidelines in Erosion and Sediment Control Note: Planning and Design Manual.

E. DETERMINATION OF AFFECTED ACREAGE AND BOND

The following bond calculation worksheet is to be used to establish an appropriate bond (based upon a range of \$500 to \$5,000 per affected acre) for each permitted mine site based upon the acreage approved by the Department to be affected during the life of the mining permit. Please insert the approximate acreage, for each aspect of the mining operation, that you intend to affect during the life of this mining permit (in addition, please insert the appropriate reclamation cost/acre for each category from the Schedule of Reclamation Costs provided with this application form) OR you can defer to the Department to calculate your bond for you based upon your maps and standard reclamation costs:

CATEGORY	AFFECTED ACREAGE		RECLAMATION COST/ACRE*		RECLAMATION COST	
Tailings/Sediment Ponds:	<u>28.5</u> Ac.	Х	\$ <u>1000</u> /Ac.	=	\$_28,500	
Stockpiles:	<u>7.4</u> Ac.	Х	\$ <u>2500</u> /Ac.	=	\$_18,500	
Wastepiles:	<u>5.0</u> Ac.	Х	\$5000 /Ac.	=	\$_25,000	
Processing Area/Haul Roads:	17.5 Ac.	Х	\$5000_/Ac.	=	\$_87,500	
Mine Excavation:	<u>290.6</u> Ac.	Х	\$ <u>2000</u> /Ac.	=	\$ 581,200	
Other:	Ac.	Х	\$/Ac.	=	\$	
TOTAL AFFECTED AC.:	<u>349.0</u> Ac.					
(TOTAL PERMITTED AC.;	371.0 Ac.)					

Temporary & Permanent Sedimentation & Erosion Control Measures:

Divide the **TOTAL AFFECTED AC.** above into the following two categories: a) affected acres that drain into proposed/existing excavation and/or b) affected acres that will be graded for positive drainage where measures will be needed to prevent offsite sedimentation and sedimentation to onsite watercourses and wetlands.

a) Internal Drainage	Ac.

b) Positive Drainage <u>349</u> Ac. X \$1,500.00 = \$525,500.00

Inflation Factor:

0.02 X SUBTOTAL COST: \$1,266,200.00 X Permit Life (1 to 10 years)

INFLATION COST:	\$	253,240.00	
------------------------	----	------------	--

SUBTOTAL COST: \$

1,266,200.00

TOTAL COST = SUBTOTAL COST + INFLATION COST = \$_____1,519,440.00

Total Reclamation Bond Cost: \$_	1,519,400.00
	(round down to the nearest \$100.00)

G. LAND ENTRY AGREEMENT

We hereby grant to the Department or its appointed representatives the right of entry and travel upon our lands or operation during regular business hours for the purpose of making necessary field inspections or investigations as may be reasonably required in the administration of the Mining Act of 1971 pursuant to G.S. 74-56.

We further grant to the Department or its appointed representatives the right to make whatever entries on the land as may be reasonably necessary and to take whatever actions as may be reasonably necessary in order to carry out reclamation which the operator has failed to complete in the event a bond forfeiture is ordered pursuant to G.S. 74-59.

LANDOWNER:	APPLICANT:
Signature Warun Paschul	Signature:* Warren Paschal
Print Name: <u>General Shale Brick Inc.</u> (Title, if applicable)	Print Name: <u>Warren Pashcal</u>
Company General Shale Brick Inc.	Title: Environmental Compliance Manager
(If applicable)	
Address:	Company: General Shale Brick Inc.
	Mine Name: Colon Mine
Telephone: (919) 774-6533(zzi)	Telephone: (919) 774-6533(221)
Date Signed: 3/21/14	Date Signed: 3/21/14

*Signature must be the same as the individual who signed Page 1 of this application.

<u>One original and five (5) copies of the completed application, six (6) copies of all location maps, mine maps and reclamation maps, and the appropriate processing fee (see next page for fee schedule) in the form a check or money order payable to the North Carolina Department of Environment and Natural Resources must be sent to the Land Quality Section Central Office at the address listed on the front cover of this application form.</u>

Inquiries regarding the status of the review of this application should be directed to the Mining Program staff at (919) 707-9220.

MINING FEE SCHEDULE

A nonrefundable permit application processing fee when filing for a new mining permit, a major permit modification or a renewal permit is required as follows:

	0-25 acres	26+acres
New Permit Applications	\$3,750.00	\$5,000.00
Permit Modifications	\$750.00	\$1,000.00
Permit Renewals	\$750.00	\$1,000.00
Transfers/Minor Modifications*	\$100.00	\$100.00

* A nonrefundable \$100.00 permit application processing fee is required for minor permit modifications. Minor permit modifications include ownership transfers, name changes, bond substitutions and permit renewals where the mine is inactive and fully stabilized. A minor permit modification also includes lands added to a permitted area, outside of the minimum permit buffer zone requirements, where no plans for mining related disturbance of the added lands have been approved. All other changes are considered major permit modifications.

Acres for new permits and renewal permits means the total acreage at the site. Acres for major modification of permits means that area of land affected by the modification within the permitted mine area, or both.

<u>SCHEDULE OF RECLAMATION COSTS</u> (Based upon range of \$500 - \$5,000 per affected acre)

COMMODITY CODES: SG = Sand and/or Gravel, GS = Gemstone, Borrow = Borrow/fill dirt, CS = Crushed Stone, DS = Dimension Stone, FS = Feldspar, MI = Mica, LI = Lithium, PF = Pyrophyllite, OL = Olivine, KY = Kyanite/Sillimanite/Andalusite, PH = Phosphate, CL = Clay/Shale, PE = Peat, AU = Gold, TI = Titanium, and OT = Other

Туре	T/S Ponds	S.piles	W.niles	Parea/H R	Mine Frees
SG, GS, Borrow	\$500/ac.(L) 1500(FI)	\$1800/ac.	\$2000/ac.	\$1800/ac.	\$500/ac.(L) \$2000(PD)
CS, DS, FS, MI, LI, PF, OL, KY	500(L) 1500(FI)	1800	2000	2000	500(L) 2500(PD)
РН	1000(L) 2500(FI)	2500	5000	5000	2000(L) 5000(PD)
CL	1000(L) 2500(FI)	2500	5000	5000	2000(L) 3700(PD)
PE, AU, TI, OT	1000(L) 2500(FI)	2500	3000	3500	2000(L) 5000(PD)

(L) = reclamation to a lake and revegetating sideslopes

(FI) = reclamation by filling in and revegetating

(PD) = reclamation by grading for positive drainage & revegetating

North Carolina Department of Environment and Natural Resources Division of Energy, Mineral, and Land Resources Land Quality Section

Tracy E. Davis, PE, CPM Director

Pat McCrory, Governor John E. Skvarla, III, Secretary

November 21, 2013

Mr. Gregory Bowles General Shale, Inc. P. O. Box 3547 Johnson City, TN 37602

> Subject: General Permit No. NCG020000 Colon Mine COC NCG020854 Lee County

Dear Mr. Bowles:

In accordance with your application for a discharge permit received on October 3, 2013, we are forwarding herewith the subject certificate of coverage to discharge under the subject state – NPDES general permit. This permit is issued pursuant to the requirements of North Carolina General Statute 143-215.1 and the Memorandum of Agreement between North Carolina and the US Environmental Protection Agency dated October 15, 2007 (or as subsequently amended).

This certificate of coverage is not transferable. If the facility changes ownership or is closed, the Division of Energy Mineral & Land Resources may require modification, revocation or reissuance of the certificate of coverage.

This permit does not affect the legal obligation to obtain other permits which may be required by the Division of Energy, Mining, and Land Resources, or any other federal, state, or local authorities.

If you have any questions concerning this permit, please contact Larry Wade PE at telephone number (919) 807-6375.

Sincerely, Ken Pickle

for Tracy E. Davis, P.E.

cc: Raleigh Regional Office Central Files Stormwater Permitting Program Files

1612 Mail Service Center, Raleigh, North Carolina 27699-1612 • Telephone 919-707-9220 / FAX: 919-733-2876 512 North Salisbury Street, Raleigh, North Carolina 27604 • Internet: <u>http://portal.ncdenr.org/web/lr/land-quality</u> An Equal Opportunity \ Affirmative Action Employer – 50% Recycled \ 10% Post Consumer Paper

STATE OF NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES DIVISION OF ENERGY, MINERAL, AND LAND RESOURCES

GENERAL PERMIT NO. NCG020000 CERTIFICATE OF COVERAGE No. NCG020854

STORMWATER DISCHARGES

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provision of North Carolina General Statute 143-215.1, other lawful standards and regulations promulgated and adopted by the North Carolina Environmental Management Commission, and the Federal Water Pollution Control Act, as amended,

General Shale, Inc.

is hereby authorized to discharge stormwater from a facility located at

Colon Mine 1604 Colon Rd. Sanford Lee County

to receiving waters designated as Roberts Creek, a class WS-IV water in the Cape Fear River Basin, in accordance with the effluent limitations, monitoring requirements, and other conditions set forth in Parts I, II, III, IV, V, and VI of General Permit No. NCG020000 as attached.

This certificate of coverage shall become effective November 21, 2013.

This Certificate of Coverage shall remain in effect for the duration of the General Permit.

Signed this day November 21, 2013.

Ken Pieble

for Tracy E. Davis, P.E., Director Division of Energy, Mineral, and Land Resources By the Authority of the Environmental Management Commission

LOCATION MAP:

This page intentionally left blank.

North Carolina Department of Environment and Natural Resources **Division of Land Resources** Land Quality Section

James D. Simons, PG, PE **Director and State Geologist**

April 6, 2005

Michael F. Easley, Governor William G. Ross Jr., Secretary

Mr. Warren Paschal General Shale Brick, Inc. 1600 Colon Road Sanford, North Carolina 27330

RE: Permit No. 53-05 Colon Mine Lee County Cape Fear River Basin

Dear Mr. Paschal:

Your recent request to have the above referenced mining permit modified has been approved. The modification is to change the corporate name from Cherokee Sanford Group LLC to General Shale Brick, Inc. I have enclosed a revised permit cover page.

Please attach this approval letter and permit cover page to your existing mining permit for future reference. The expiration date, mine name and permit number on the permit document shall remain the same as before this modification.

The issuance of a mining permit and/or any modification to it does not supersede local zoning regulations. The responsibility of compliance with any applicable zoning regulations lies with you.

As a reminder, your permitted acreage at this site is 1088.17 acres and the amount of land you are approved to disturb is 551.97 acres.

Please advise this office at (919) 733-4574 should you have any questions concerning this matter.

Sincerely,

loyd Rhitle

Floyd R. Williams, PG, CPG, CPESC State Mining Specialist Land Quality Section

FRW/jw

Mr. John Holley, PE CC: Ms. Shannon Deaton-WRC Mr. Bradley Bennett-DWQ

1612 Mail Service Center, Raleigh, North Carolina 27699-1612 • 919-733-4574 / FAX: 919-733-2876 512 North Salisbury Street, Raleigh, North Carolina, 27604

DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

DIVISION OF LAND RESOURCES

LAND QUALITY SECTION

PERMIT

For the operation of a mining activity

In accordance with the provisions of G.S. 74-46 through 68, "The Mining Act of 1971," Mining Permit Rule 15A NCAC 5 B, and other applicable laws, rules and regulations

Permission is hereby granted to:

General Shale Brick, Inc.

Colon Mine

Lee County – Permit No. 53-05

for the operation of a

Clay Mine

Which shall provide that the usefulness, productivity, and scenic values of all lands and waters affected by this mining operation will receive the greatest practical degree of protection and restoration.

MINING PERMIT EXPIRATION DATE: March 22, 2014

North Carolina Department of Environment and Natural Resources

Division of Land Resources

James D. Simons, P.G., P.E. Director and State Geologist Land Quality Section March 22, 2004 Michael F. Easley, Governor William G. Ross Jr., Secretary

Mr. Warren Paschal Cherokee Sanford Group, LLC 1600 Colon Road Sanford, North Carolina 27330

RE: Permit No. 53-05 Colon Mine Lee County Cape Fear River Basin

Dear Mr. Paschal:

Your application for renewal of the above referenced mining permit has been approved. A copy of the renewed permit is enclosed. The new expiration date is March 22, 2014.

The conditions in the permit renewal were based primarily upon the initial application. Modifications were made as indicated by the renewal request and as required to insure compliance with The Mining Act of 1971. I would like to draw your particular attention to the following conditions where minor additions or changes were made: Operating Condition Nos. 3C and 4D and Reclamation Condition Nos. 2G and 3.

As a reminder, your permitted acreage at this site is 1088.17 acres and the amount of land you are approved to disturb is 551.97 acres.

Please review the renewed permit and contact Ms. Judy Wehner, Assistant State Mining Specialist, at (919) 733-4574 should you have any questions concerning this matter.

Sincerely,

Hoyd Rwett

Floyd R. Williams, PG, CPG, CPESC State Mining Specialist Land Quality Section

FRW/jw

Enclosures

cc: Mr. John Holley, PE

Ms. Shannon Deaton-WRC, w/enclosures

Mr. Bradley Bennett-DWQ, w/enclosures

Mr. William Gerringer-DOL, Mine and Quarry Bureau, w/o enclosures

1612 Mail Service Center, Raleigh, North Carolina 27699-1612 • 919-733-4574 / FAX: 919-733-2876 512 North Salisbury Street, Raleigh, North Carolina, 27604

DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

DIVISION OF LAND RESOURCES

LAND QUALITY SECTION

PERMIT

For the operation of a mining activity

In accordance with the provisions of G.S. 74-46 through 68, "The Mining Act of 1971," Mining Permit Rule 15A NCAC 5 B, and other applicable laws, rules and regulations

Permission is hereby granted to:

Cherokee Sanford Group, LLC

Colon Mine

Lee County – Permit No. 53-05

for the operation of a

Clay Mine

Which shall provide that the usefulness, productivity, and scenic values of all lands and waters affected by this mining operation will receive the greatest practical degree of protection and restoration.

MINING PERMIT EXPIRATION DATE: March 22, 2014

In accordance with the application for this mining permit, which is hereby approved by the Department of Environment and Natural Resources, hereinafter referred to as the Department, and in conformity with the approved Reclamation Plan attached to and incorporated as part of this permit, provisions must be made for the protection of the surrounding environment and for reclamation of the land and water affected by the permitted mining operation. This permit is expressly conditioned upon compliance with all the requirements of the approved Reclamation Plan. However, completed performance of the approved Reclamation Plan is a separable obligation, secured by the bond or other security on file with the Department, and may survive the expiration, revocation, or suspension of this permit.

This permit is not transferable by the permittee with the following exception: If another operator succeeds to the interest of the permittee in the permitted mining operation, by virtue of a sale, imposed upon him by the conditions of his permit and by the Mining act with reference to the permitted operation, and transfer the permit to the successor operator, provided that both operators have complied with the requirements of the Mining Act and that the successor operator agrees to assume the duties of the permittee with reference to reclamation of the affected land and posts a suitable bond or other security.

In the event that the Department determines that the permittee or permittee's successor is not complying with the Reclamation Plan or other terms and conditions of this permit, or is failing to achieve the purposes and requirements of the Mining Act, the Department may give the operator written notice of its intent to modify, revoke or suspend the permit, or its intent to modify the Reclamation Plan as incorporated in the permit. The operator shall have right to a hearing at the designated time and place on any proposed modification, revocation or suspension by the Department. Alternatively and in addition to the above, the Department may institute other enforcement procedures authorized by law.

Definitions

Whenever used or referred to in this permit, unless the context clearly indicates otherwise, terms shall have the same meaning as supplied by the Mining Act, N.C.G.S. 74-49.

Modifications

<u>November 4, 1988:</u> This permit has been modified to change the company name from Sanford Brick and Tile Corporation to Cherokee Sanford Group.

<u>April 10, 1992:</u> This permit has been modified to allow mining on 52 acres and on-site disposal of petroleum contaminated soils as per the Mine expansion Map Erosion and Sediment Control Plan dated November 18, 1991.

<u>July 21, 1992</u>: This permit has been modified to allow crushed brick to be substituted for #57 washed stone on the upstream faces of all rock check dams.

<u>February 13, 1995:</u> This permit modified to increase the permitted acreage to 1093.18 acres and the affected acreage to 340 acres as indicated on the mine modification maps, sheets 1-4 dated May 25, 1994 and sealed September 12, 1994.

<u>August 2, 1996</u>: This permit has been modified to change the corporate name from Cherokee Sanford Group, Inc. to Cherokee Sanford Group, LLC.

<u>October 24, 1997:</u> This permit has been modified to revise the sediment and erosion control plan as indicated on the Site Layout Mine Map dated September 22, 1997 and supplemental information dated September 17, 1997 to more accurately reflect the field conditions, increase the maximum depth of the mine to 50 feet, allow the dewatering of the pit and allow two lake areas to be left at the time of final reclamation.

<u>September 22, 1999:</u> This permit has been modified to add approximately 211.37 acres of mine area that increases the affected acreage from 340.6 acres to 551.97 acres. This modification includes expanding the mine area in three areas and the associated sediment and erosion control measures as indicated on the General Mine Information Map dated June 21, 1999 and the Mine Modification Details Map last revised September 10, 1999, including the supplemental information dated June 21, 1999 and August 25, 1999.

<u>April 25, 2000:</u> A partial release has been granted, reducing the permitted acreage at this site by 5.01 undisturbed acres to 1088.17 acres.

Expiration Date

This permit shall be effective from the date of its issuance until March 22, 2014.

Conditions

This permit shall be subject to the provisions of the Mining Act, N.C.G.S. 74-46, et. seq., and to the following conditions and limitations:

OPERATING CONDITIONS:

- 1. A. Any wastewater processing or mine dewatering shall be in accordance with the permitting requirements and rules promulgated by the N.C. Environmental Management Commission.
 - B. Any stormwater runoff from the affected areas at the site shall be in accordance with any applicable permit requirements and regulations promulgated by the Environmental Management Commission. It shall be the permittee's responsibility to contact the Water Quality Section, Division of Water Quality, to secure any necessary stormwater permits or other approval documents.
- 2. A. Any mining process producing air contamination emissions shall be subject to the permitting requirements and rules promulgated by the N.C. Environmental Management Commission and enforced by the Division of Air Quality.
 - B. During mining operations, water trucks or other means that may be necessary shall be utilized to prevent dust from leaving the permitted area.

- A. Sufficient buffer (minimum 50 foot undisturbed except as noted below in Operating Condition No. 3C) shall be maintained between any affected land and any adjoining waterway or wetland to prevent sedimentation of that waterway or wetland from erosion of the affected land and to preserve the integrity of the natural watercourse or wetland.
 - B. Any mining activity affecting waters of the State, water of the U. S., or wetlands shall be in accordance with the requirements and regulations promulgated and enforced by the N. C. Environmental Management Commission.
 - C. Mining activities shall be allowed within 15 feet of Roberts Creek as indicated on the mine maps, sheets 1 through 4, dated November 13, 2003 with the stipulation that mining activities be conducted in such a manner as to ensure that all runoff drains into the pit area. Immediately upon removal of material along the creek, a 100 foot buffer shall be established with hardwoods and shrubs.
 - A. Adequate mechanical barriers including but not limited to diversions, earthen dikes, silt check dams, silt retarding structures, rip rap pits, or ditches shall be provided in the initial stages of any land disturbance and maintained to prevent sediment from discharging onto adjacent surface areas or into any lake, wetland or natural watercourse in proximity to the affected land.
 - B. The upstream face of all check dams shall be lined with ¼ inch to ¾ inch crushed brick with minimal fines.
 - C. Whenever possible, all drainage from the affected areas around the mine excavations shall be diverted internal to said excavations.
 - D. Mining activities, including the installation and maintenance of the approved sediment basins and associated diversion berms, shall be conducted as indicated on the mine maps, Sheets 1 through 4, dated November 13, 2003 with the following stipulation: immediately upon removal of the last mound of material along the creek, a 100 foot buffer shall be established with hardwoods and shrubs.
 - E. Should the designed brick bat dams fail or stability problems develop in the structure itself or at its abutments, said dams shall be redesigned and reconstructed or replaced by other measures approved by the Department.
- 5. All affected acreage boundaries (551.97 acres) shall be permanently marked at the site on 100-foot intervals unless the line of sight allows for larger spacing intervals.
- 6. The angle for graded slopes and fills shall be no greater than the angle which can be retained by vegetative cover or other adequate erosion control measure, structure, or device. In any event, exposed slopes or any excavated channels, the erosion of which may cause off-site damage because of siltation, shall be planted or otherwise provided with ground cover, devices or structures sufficient to restrain such erosion.

3.

4.

- 7. The affected land shall be graded so as to prevent collection of pools of water that are, or likely to become, noxious or foul. Necessary structures such as drainage ditches or conduits shall be constructed or installed when required to prevent such conditions.
- 8. Existing vegetation or vegetated earthen berms shall be maintained between the mine and public thoroughfares whenever practical to screen the operation from the public.
- 9. Sufficient buffer (minimum 50 foot undisturbed) shall be maintained between any excavation and any mining permit boundary or right-of-way to protect adjacent property.
- 10. A physical barrier consisting of a fence or earthen berm, etc., shall be maintained around the perimeter of any highwall.
- 11. A. No on-site disposal of refuse or other solid waste that is generated outside of the mining permit area shall be allowed within the boundaries of the mining permit area <u>unless</u> authorization to conduct said disposal has first been obtained from both the Division of Waste Management and the Land Quality Section, Department of Environment and Natural Resources. The method of disposal shall be consistent with the approved reclamation plan.
 - B. Mining refuse defined by G.S. 74-49 (14) of The Mining Act of 1971 generated on-site and directly associated with the mining activity may be disposed of in a designated refuse area. All other waste products must be disposed of in a disposal facility approved by the Division of Waste Management. No petroleum products, acids, solvents or their storage containers or any other material that may be considered hazardous shall be disposed of within the permitted area.
 - C. For the purposes of this permit, the Division of Land Resources considers the following materials to be "mining refuse" (in addition to those specifically listed under G.S. 74-49 (14) of the N.C. Mining Act of 1971):
 - 1. on-site generated land clearing debris
 - 2. conveyor belts
 - 3. wire cables
 - 4. v-belts
 - 5. steel reinforced air hoses
 - 6. drill steel
 - D. If mining refuse is to be permanently disposed within the mining boundary, the following information must be provided to and approved by the Division of Land Resources prior to commencement of such disposal:
 - 1. the approximate boundaries and size of the refuse disposal area;
 - 2. a list of refuse items to be disposed;
 - verification that a minimum of 4 feet of cover will be provided over the refuse;

- 4. verification that the refuse will be disposed at least 4 feet above the seasonally high water table; and
- 5. verification that a permanent vegetative groundcover will be established.
- 12. An annual Reclamation Report shall be submitted on a form supplied by the Department by February 1 of each year until reclamation is completed and approved.
- 13. The operator shall notify the Department in writing of the desire to delete, modify or otherwise change any part of the mining, reclamation, or erosion/sediment control plan contained in the approved application for a mining permit and any approved revisions to it. Approval to implement such changes must be obtained from the Department prior to on-site implementation of the revisions.
- 14. The security, which was posted pursuant to N.C.G.S. 74-54 in the form of a \$500,000.00 blanket bond, is sufficient to cover the operation as indicated in the approved application. This security must remain in force for this permit to be valid. The total affected land shall not exceed the bonded acreage.
- 15. A. Authorized representatives of the Division of Archives and History shall be granted access to the site to determine the presence of significant archaeological resources.
 - B. Pursuant to N. C. G. S. 70 Article 3, "The Unmarked Human Burial and Human Skeletal Remains Protection Act, " should the operator or any person in his employ encounter human skeletal remains, immediate notification shall be provided to the county medical examiner and the chief archaeologist, North Carolina Division of Archives and History.

APPROVED RECLAMATION PLAN

The Mining Permit incorporates this Reclamation Plan, the performance of which is a condition on the continuing validity of that Mining Permit. Additionally, the Reclamation Plan is a separable obligation of the permittee, which continues beyond the terms of the Mining Permit.

The approved plan provides:

Minimum Standards As Provided By G.S. 74-53

- 1. The final slopes in all excavations in soil, sand, gravel and other unconsolidated materials shall be at such an angle as to minimize the possibility of slides and be consistent with the future use of the land.
- 2. Provisions for safety to persons and to adjoining property must be provided in all excavations in rock.
- 3. All overburden and spoil shall be left in a configuration which is in accordance with accepted conservation practices and which is suitable for the proposed subsequent use of the land.
- 4. No small pools of water shall be allowed to collect or remain on the mined area that are, or likely to become noxious, odious or foul.
- 5. The revegetation plan shall conform to accepted and recommended agronomic and reforestation practices as established by the North Carolina Agricultural Experiment Station and the North Carolina Forest Service.
- 6. Permittee shall conduct reclamation activities pursuant to the Reclamation Plan herein incorporated. These activities shall be conducted according to the time schedule included in the plan, which shall to the extent feasible provide reclamation simultaneous with mining operations and in any event, provide reclamation at the earliest practicable time after completion or termination of mining on any segment of the permit area and shall be completed within two years after completion or termination of mining.

RECLAMATION CONDITIONS:

- 1. Provided further, and subject to the Reclamation schedule, the planned reclamation shall be to restore portions of the mine excavations to lake areas and to grade and satisfactorily revegetate any other disturbed areas.
- 2. The specifications for surface gradient restoration to a surface suitable for planned future use are as follows:

- A. The lake area shall be excavated to maintain a minimum water depth of four feet measured from the low water table elevation.
- B. The side slopes to the lake excavation shall be graded to a 3 horizontal to 1 vertical or flatter slope.
- C. All remaining sideslopes shall be graded to a 2 horizontal to 1 vertical or flatter slope.
- D. Any settling ponds or sediment basins shall be backfilled and stabilized.
- E. The processing, stockpile, and other disturbed areas neighboring the mine excavation shall be leveled and smoothed.
- F. Compacted surfaces shall be disced, subsoiled or otherwise prepared before revegetation.
- G. No contaminants shall be permanently disposed of at the mine site. On-site disposal of waste shall be in accordance with Operating Condition 11.A through D.
- H. The affected land shall be graded to prevent the collection of noxious or foul water.

3-6: <u>Revegetation Plan:</u>

After site preparation, all disturbed land areas shall be revegetated as per the revegetation plan approved by T. Patrick Shillington, P.E. on June 16, 2004 or by the following specifications:

Permanent Seeding Specifications

Dates	<u>Species</u>	Rate, Lbs/Acre
February 15 – April 1	Kobe Lespedeza Bahiagrass Redtop Winter rye (grain)	10 50 1 15
April 1 – July 31	Common Bermuda	50
August 1 – October 25	Lespedeza (unscarified) German millet	30 40
October 25 – February 15	Rye (grain – temporary)	120

Soil Amendments

Lime-	2000 lbs/acre or follow recommendations from a soil test.
Fertilizer-	1000 lbs/acre 8-8-8 or 10-10-10, or follow recommendations from a soil test.
Mulch-	All seeded areas shall be mulched using small grain straw at a rate of 2000 lbs/acre and anchored appropriately.

Whenever possible, disturbed areas should be vegetated with native warm season grasses such as switch grass, Indian grass, bluestem and gamma grass.

In addition, the permittee shall consult with a professional wildlife biologist with the N.C. Wildlife Resources Commission to enhance post-project wildlife habitat at the site.

4.7. <u>Reclamation Plan:</u>

Reclamation shall be conducted simultaneously with mining to the extent feasible. In any event, reclamation shall be initiated as soon as feasible after completion or termination of mining of any mine segment under permit. Final reclamation, including revegetation, shall be completed within two years of completion or termination of mining.

This permit, issued to Sanford Brick and Tile Company October 3, 1972, renewed October 12, 1982, transferred to Cherokee Sanford Group, Inc. November 4, 1988, modified April 10, 1992 and July 21, 1992, renewed March 18, 1994, and modified February 13, 1995, August 2, 1996, October 24, 1997, and September 22, 1999, is hereby renewed this 22nd day of March, 2004 pursuant to GS 74-52.

By: Tuanis M. Neurlo h

James D. Simons, Director Division of Land Resources By Authority of the Secretary Of the Department of Environment and Natural Resources