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1. Executive Summary 

The goal of this project was to establish scientifically defensible chlorophyll a (Chla) and turbidity 
thresholds that are protective of submerged aquatic vegetation (SAV) for high- and low-salinity zones of 
the Albemarle-Pamlico Estuarine System (APES). SAV are critical habitats that provide a host of services 
including nursery and feeding areas for important fisheries resources, sediment stabilization, and carbon 
sequestration (Harborne et al. 2006; Unsworth et al. 2010). SAV are also useful and sensitive indicators 
of water quality, particularly water clarity changes related to eutrophication (Dennison et al. 1993). 
Protection of SAV within North Carolina’s estuarine waters is an important goal of the Albemarle-
Pamlico National Estuary Partnership (APNEP) and the North Carolina Department of Environmental 
Quality (NCDEQ) including its Division of Marine Fisheries (NCDMF) and Division of Water Resources 
(NCDWR). Establishing Chla and turbidity thresholds for SAV protection will play an important role in 
the process of numeric nutrient criteria development for North Carolina estuarine waters as part of the NC 
Nutrient Criteria Development Plan (NCDP) and will provide information for conservation and 
management of SAV habitats under APNEP’s Comprehensive Conservation and Management Plan and 
NCDEQ’s 2021 amendment to the NC Coastal Habitat Protection Plan (CHPP). 

Availability of photosynthetically active radiation (PAR) is a primary determinant of the health and long-
term survival of SAV habitats (Kemp et al. 2004). Photosynthetically active radiation declines 
exponentially with depth and the rate of decline is expressed as the diffuse attenuation coefficient for 
PAR (KdPAR). KdPAR is a function of PAR absorbance by phytoplankton biomass (measured as Chla), but 
also absorption and scattering by non-algal particulate matter, absorbance by colored dissolved organic 
matter (CDOM) and absorbance and scattering by water itself. The primary objective of this project was 
to use an existing bio-optical model (Biber et al. 2008) to account for the PAR attenuation by the 
combination of CDOM and water, and then calculate the maximum Chla concentration and turbidity 
thresholds that provide sufficient PAR transmission to the plants (i.e., sufficiently low KdPAR) to maintain 
healthy low-salinity and high-salinity SAV habitats in APES. Target PAR levels for maintaining healthy 
SAV habitats were adopted from a compilation of SAV PAR requirements for growth (Kemp et al. 2004) 
and empirical observations on SAV depth distribution within APES (Biber et al. 2008; Speight 2020). 
These adopted clarity targets provide the transmission of 22 and 13% of incident solar radiation to depths 
of 1.7 and 1.5 m for high- and low-salinity SAV and correspond to KdPAR values of 0.89 m-1 and 1.36 m-1, 
respectively.  

The bio-optical model was originally calibrated for the North River, a high-salinity estuary that has a 
weak hydrologic connection to the large water bodies of the APES, Pamlico and Albemarle Sounds, and 
their tributaries, (Giese et al. 1979). Therefore, before the model could be used across APES, this project 
first tested the ability of the bio-optical model to accurately predict KdPAR for different high- and low-
salinity waters of the APES. The bio-optical model estimates KdPAR based on concentrations of three 
optically active water quality constituents: non-algal particulates measured as turbidity (nephelometric 
turbidity units or NTU), colored dissolved organic matter (CDOM) measured as absorbance at 440 nm 
(m-1), and Chla (µg L-1). Validating the model’s ability to accurately calculate KdPAR and estimate the 
effect of changing Chla and turbidity levels on KdPAR, requires these three water quality data inputs and a 
corresponding dataset of directly measured KdPAR values from the same water samples. Unfortunately, 
within the APES, there was only one dataset, other than the North River dataset used to originally 
calibrate the bio-optical model, that had all four parameters measured simultaneously, the Neuse River 
Estuary dataset collected by the Neuse River Modeling and Monitoring Program (ModMon). Turbidity 
and Chla data were readily available for many areas throughout APES. However, direct measurements of 
CDOM and KdPAR were scarce. To overcome the lack of CDOM and KdPAR data, CDOM and KdPAR data 
were estimated using empirical models related to salinity and water clarity measured as Secchi disk depth 
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(SD), respectively, and developed using available datasets from the APES including the ModMon dataset 
from the Neuse River and Pamlico Sound and the U.S. Environmental Protection Agency’s (USEPA) 
National Coastal Condition Assessment (NCCA) dataset from Albemarle and Pamlico Sounds. 

Secchi disk depth data are the primary data available for water clarity in the APES. Several empirical 
models have been developed to relate SD to KdPAR but model coefficients are system specific and related 
to the scattering/absorbing characteristics of dissolved and particulate substances in the water, including 
phytoplankton (Gallegos et al. 2011). For this project, five empirical models were developed and tested to 
determine the most useful models for relating SD to KdPAR for different regions of APES. The best models 
for predicting KdPAR were a power function of SD that included model terms for salinity and seasonality. 
The models captured 78 and 72 percent of the variation of KdPAR for the measurements made in the lower 
Neuse River and southern Pamlico Sound and the Albemarle Sound and northern Pamlico Sound, 
respectively and had minimal bias. Conversion of SD to KdPAR by the selected models provided a large 
KdPAR data set for assessing the performance of the Biber et al. (2008) bio-optical model for calculating 
the influence of Chla concentration on KdPAR. Additionally, it provided a large dataset for assessing the 
current water clarity of APES in relation to the SAV water clarity targets for high- and low-salinity SAV.  

The largely freshwater source and low reactivity of CDOM in estuarine waters provides the potential for 
estimating CDOM based on measurements of salinity (Bowers and Brett 2008). Six empirical models 
were developed and tested to find models that could accurately predict CDOM for different regions of 
APES. The candidate models were developed using CDOM and salinity data from the ModMon dataset 
from the Neuse River estuary and the Biber et al. (2008) dataset from the North River estuary. For both 
systems, the selected models for predicting CDOM were a power function of salinity with a term that 
captured seasonality. The models explained 66 and 82 percent of the variance of measured CDOM in the 
Neuse and North River estuaries, respectively and had minimal bias across the range of measured CDOM. 
This indicated good predictive capability for CDOM for these estuaries. However, substantial differences 
in the model coefficients between the two estuaries indicated that CDOM relationships can exhibit 
significant cross-system variability. Thus, it is unclear how well the empirical models were capable of 
estimating CDOM for other regions of APES, and this remains a potentially significant source of model 
error and/or bias for calculated Chla thresholds.  

Validation of the bio-optical model was accomplished by comparing modeled KdPAR with direct 
measurements of KdPAR or estimates of KdPAR derived from SD from two high-salinity estuaries, Bogue 
Sound and Pamlico Sound, and three low-salinity estuaries, the Neuse River, Pamlico River, and 
Albemarle Sound. Estimates of CDOM derived from empirical models were used as model input for 
waters where CDOM measurements were not available. The model moderately underestimated KdPAR for 
the high-salinity estuaries, Bogue and Pamlico Sound, with mean bias ratios (observed: modeled KdPAR) 
of 1.40. Underestimation of KdPAR for the low-salinity estuaries, Albemarle Sound, Pamlico River, and 
Neuse River, was more severe with bias ratios ranging from 1.50 to 1.58. The more severe 
underprediction of KdPAR in the low-salinity estuaries and an increasingly severe underprediction bias of 
KdPAR along the salinity gradient from Pamlico Sound to the upper Neuse River estuary is an indication 
that the model is incorrectly parameterized for some aspect(s) of the absorption and/or scattering 
properties of optically active constituents associated with freshwater inputs to the APES. Reducing the 
bias will require recalibrating the bio-optical model for low-salinity waters that appear optically distinct 
from the North River. Resulting improvements in KdPAR estimates will greatly increase confidence in the 
model’s ability to accurately determine Chla thresholds for meeting the low-salinity water clarity target. 
Despite the severe bias for the freshwater estuaries, there was still a tight linear relationship (just far from 
the 1:1 line) between observed and modeled KdPAR in low-salinity waters. This tight linear relationship 
suggests that the model has a high likelihood of providing accurate and precise KdPAR estimates once it 
has been properly recalibrated. 
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The model was used to calculate threshold levels for Chla and turbidity that will maintain KdPAR at or 
below (note clarity decreases as KdPAR increases) water clarity targets for high- and low-salinity SAV 
habitats described above. In the upper parts of the Neuse River, Pamlico River, Albemarle Sound and its 
tributaries, PAR attenuation by turbidity and CDOM was so high that water clarity targets for low-salinity 
SAV would not be met if Chla was reduced to zero. Chla and turbidity targets for the lower parts of the 
Neuse and Pamlico Rivers and eastern parts of Albemarle Sound were severely overestimated due to the 
model bias in low-salinity waters. Meaningful Chla and turbidity targets will be achieved for these low-
salinity areas after the model is recalibrated. For high-salinity SAV habitats including Core Sound, the 
lower North River, Pamlico Sound, and Bogue Sound, the model indicated that threshold annual median 
values for Chla of 15 µg L-1 and turbidity of 5 NTU would generally provide sufficient water clarity.  

The current numeric North Carolina water quality standards for Chla and turbidity are 40 µg L-1 and 25 
NTU, respectively, and are currently assessed as do-not-exceed values with an allowance for 10% of 
samples to exceed the standard due to natural causes. A water body is considered impaired when there is 
90% statistical confidence that the 90% quantile exceeds the numeric standard. A statistical analysis 
accounted for the observed probability distribution of Chla and turbidity in North Carolina estuaries and 
showed that threshold values of 15 µg L-1 Chla and 5 NTU turbidity would require numeric standards of 
30 µg L-1 Chla and 10 NTU turbidity given the current assessment methodology. Thus, North Carolina’s 
current Chla and turbidity standards, as they are being currently assessed, are not protective for North 
Carolina’s high-salinity SAV habitats.  

Median KdPAR values from direct measurements, estimates based on SD, and bio-optical model outputs 
were compared against the water clarity targets for high- and low-salinity SAV habitats at sites 
throughout APES. For most of the low-salinity SAV habitats including Albemarle Sound, Currituck 
Sound, and the upper parts of the Neuse and Pamlico Rivers, light availability was less than 50% of the 
SAV light requirement. Clarity was better and low-salinity SAV light requirements were generally met in 
the lower parts of the Neuse and Pamlico Rivers. For high-salinity SAV habitats in Pamlico Sound, light 
availability was generally adequate south of Hatteras but moderately inadequate from Hatteras to Bodie 
Island. Core Sound and Back Sound to Beaufort Inlet generally had adequate clarity while clarity in 
Bogue Sound was moderately less than target levels.  

Through this project, four data gaps were identified as significant impediments to further development 
and refinement of SAV related water clarity thresholds for APES. 1) Despite its general importance to 
water clarity in APES, CDOM data is largely unavailable for most areas of APES. 2) Few data exist for 
any of the optical indicators (turbidity, Chla, CDOM) from the high-salinity SAV habitats that fringe the 
Outer Banks from Core Banks to Bodie Island. 3) For most of APES, few direct measurements of KdPAR 
are available for validating the bio-optical model or developing improved, region-specific empirical 
models that could relate extensive SD records to KdPAR. 4) Measurements of the scattering and absorption 
spectra, and scaling coefficients for low-salinity waters are needed to recalibrate the Biber et al. (2008) 
bio-optical model for development of accurate Chla and turbidity thresholds for low-salinity SAV 
habitats.   
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2. Background 

SAV are critical habitats that provide a host of services including nursery and feeding areas for important 
fisheries resources, sediment stabilization, and carbon sequestration (Harborne et al. 2006; Unsworth et 
al. 2010). SAV are also useful and sensitive indicators of water quality, particularly water clarity changes 
related to eutrophication (Dennison et al. 1993). North Carolina’s estuaries host the largest area of SAV 
on the U.S. East Coast, and the expansive SAV habitats play a critical role in supporting North Carolina’s 
economically-important commercial and recreational fisheries. North Carolina’s SAV habitats can be 
categorized functionally and by species assemblage into high- and low-salinity SAV habitats. High-
salinity SAV habitats are composed of three meadow forming species, eel grass (Zostera marina), shoal 
grass (Halodule wrightii) and widgeon grass (Ruppia maritima), that occur in waters with salinity greater 
than 10. Low-salinity SAV habitats are composed of a larger variety of species that typically grow higher 
into the water column and form a canopy at the water’s surface. Low-salinity SAV habitats occur at 
salinities less than 10, and some of the species also occur in freshwater.  

Like all plants, SAV require sunlight for growth and survival. SAV light requirements are generally much 
higher than microalgae and macroalgae. Consequently, under nutrient rich conditions that foster rapid 
algal growth, algae typically outcompete SAV. SAV can handle short periods of poor light availability 
but chronic deficits of light availability cause SAV loss. The loss manifests as a shallowing of the 
maximum depth of SAV colonization and consequent reduction of SAV acreage as SAV are restricted to 
shallower depths under increasingly eutrophic conditions. This linkage between SAV and eutrophication 
makes SAV a sensitive indicator of the trophic status of estuaries (Dennison et al. 1993) and makes 
nutrient management of critical importance for maintaining healthy SAV habitats.  

Like estuaries worldwide, North Carolina’s estuaries have experienced large increases in nutrient 
(nitrogen and phosphorus) and sediment loading due to the activities of a rapidly growing human 
population in the watershed including residential development, and the expansion of agriculture, 
silviculture, and other industries (Mallin et al. 2000). The increased nutrient load has fueled microalgal 
productivity with consequent increases in concentrations of suspended phytoplankton and organic detritus 
in the water. The combination of high phytoplankton biomass and with elevated sediment concentrations 
have led to declines in water clarity that impact SAV.  

In the 1980’s, recurrent algal blooms within the Neuse, Tar/Pamlico, and Chowan Rivers drew attention 
to the issue of eutrophication within North Carolina’s estuaries and nutrient load reductions were 
implemented in the form of a ban on phosphorus-containing detergents in the late 1980s and by 
improving wastewater treatment through the 1990s (Paerl et al. 2004). Since that time, an increase in non-
point sources has largely erased the early gains made in nutrient load reductions (Lebo et al. 2012) and 
there are signs of increasing phytoplankton production in many areas of the Albemarle-Pamlico Estuarine 
System (APES) (NCDEQ 2021a). Since 2015, the Chowan River and western Albemarle Sound has 
experienced a resurgence of summer-time cyanobacteria blooms (NCDEQ 2021a). These blooms are 
symptomatic of a general increase in the trophic state of Albemarle Sound where Chla has nearly doubled 
in the past 20 years and appears linked to a corresponding doubling of total nitrogen (NCDEQ 2021a). 
Increasing trends for Chla have also been identified in the Neuse River (Van Dam and Wang 2019), 
though the magnitude was less severe than for Albemarle Sound.  

Trends in the acreage of low- and high-salinity SAV habitats also appear to be declining. A recent 
hydroacoustic survey conducted throughout APES from 2014 to 2017 estimated a loss of one third of the 
low-salinity SAV habitat compared to the historic extent (APNEP 2020). High-salinity SAV acreage, 
principally along the landward side of the Outer Banks also appears to be in decline and the magnitude of 
decline varied significantly across regions of APES. Aerial surveys conducted in 2006-2007 and 2013 
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documented a 6% decline in SAV area over the seven-year period in the northern region from Roanoke 
Island to Hatteras Inlet, a nearly 3% decline in the central region from Hatteras Inlet to Ophelia Inlet, and 
an 11% decline in the southern region from Barden’s Inlet to Bogue Inlet (Field et al. 2021).  

These worrisome trends of eutrophication and SAV loss are made more urgent by the threats imposed by 
a changing climate. An increasing frequency of high intensity precipitation events is likely increasing the 
delivery of sediments and nutrients to APES (Paerl et al. 2019) which can cause further reductions in light 
availability for SAV. Additionally, warming of APES waters may have detrimental impacts on its SAV.  
Warmer waters lead to higher rates of respiration of organic matter within the plants and causes death if 
the enhanced loss of organic matter is not compensated by higher rates of photosynthesis. Consequently, 
the negative health impacts of decreasing light availability for photosynthesis are exacerbated as waters 
become warmer (Zimmerman 2006). Warming may also greatly impact the species composition and 
seasonal distribution of the two dominant high-salinity SAV within APES, Zostera marina and Halodule 
wrightii. North Carolina is a biogeographic break point for these species, being the southern limit of the 
temperate species Z. marina and northern limit of the tropical species H. wrightii. Summertime water 
temperatures in APES are already well above the temperature optima for Z. marina and continued 
warming may lead to large losses of Z. marina acreage as is happening currently in Chesapeake Bay 
(Wilson and Lotze 2019; Lefcheck et al. 2017). With the impending threats of warming, maintaining 
adequate water clarity for sufficient photosynthesis will be critical for maintaining SAV health throughout 
APES. 

Protection of SAV within North Carolina’s estuarine waters is an important goal of the Albemarle-
Pamlico National Estuary Partnership (APNEP) and the North Carolina Department of Environmental 
Quality (NCDEQ) including its Division of Marine Fisheries (NCDMF) and Division of Water Resources 
(NCDWR). As a significant step toward improved management of SAV in APES, the APNEP SAV Team 
and NCDEQ’s CHPP Team have collaboratively developed water clarity targets designed to ensure 
sufficient availability of PAR to protect both high- and low-salinity SAV. Target PAR levels for 
maintaining healthy SAV habitats were adopted from a compilation of SAV PAR requirements for 
growth of both high- and low-salinity SAV species (Kemp et al. 2004). From this compilation, targets of 
22% and 13% of incident PAR were adopted for high- and low-salinity SAV habitats, respectively. To 
relate these PAR targets to a desirable water clarity requires establishing a target depth to which SAV 
growth is desired. Target depths were determined as a committee consensus of the two teams based on 
empirical observations of SAV depth distribution within APES. For high-salinity SAV zones, a depth 
target of 1.7 m was adopted based on the average deep edge depth of 1.7 m observed by Biber et al. 
(2008) in the North River. For low-salinity SAV zones, a target depth of 1.5 m was adopted based on 
observed SAV depth distributions of low-salinity waters in Albemarle Sound (Speight 2020). The 
combination of targets for incident PAR at 22 and 13% and SAV depth targets set at 1.7 m and 1.5 m 
provides the information necessary to calculate water clarity targets expressed as diffuse attenuation 
coefficients for downwelling PAR (KdPAR) which are 0.89 and 1.36 m-1 for high- and low-salinity SAV 
zones, respectively.  

To determine what management actions might be necessary to achieve these targeted levels of PAR 
attenuation requires knowledge of the relationships between concentrations of optically active 
constituents (OACs) (phytoplankton, non-algal particulates, and CDOM) and their effects on PAR 
attenuation in the water column. Non-algal particulates include suspended mineral sediments and organic 
detritus. Two different methods have been used widely to estimate the contribution of OACs to PAR 
attenuation. The simplest approach is to use regression analyses to empirically estimate partial attenuation 
coefficients for each OAC, and then assuming that the effects of each constituent are linear and the effects 
of the OACs together are additive, calculate the total attenuation as the sum of the constituents. This 
approach has been used with some success (Fernandes et al. 2018; Petus et al. 2018; Gallegos 2001) but is 
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error prone and can lead to biased estimates of OACs needed to achieve a targeted KdPAR (Gallegos 2001). 
A significant problem with this approach is that the effects of the individual OACs do not vary linearly 
with concentration and the combined effects of the OACs are not additive (Gallegos 2001). This arises 
due to the non-linear interactions between absorption by all three OACs as well as pure water and 
scattering by non-algal particulates and phytoplankton (Kirk 1994). Additionally, covariation between 
OACs can create negative slopes or intercepts that have no physical meaning (Fernandes et al. 2018; 
Petus et al. 2018).  

A second approach to decomposing the effects of OACs on PAR attenuation is to directly measure the 
absorption and scattering of OACs across PAR wavelengths, and then use a bio-optical model to combine 
the contributions of the OACs non-linearly to account for the increased pathlengths and changes in angle 
of light due to scattering by non-algal particulates and phytoplankton. This mechanistic modeling 
approach was used in this study and has been successfully used to design targets for phytoplankton 
biomass and non-algal particulates to protect and restore SAV in Chesapeake Bay and many other coastal 
waters (Biber et al. 2008; Gallegos 2001, 2005). One of these water bodies, the North River, is part of the 
APES. The bio-optical model was calibrated for the North River (Biber et al. 2008) based on absorption 
spectra of water plus CDOM, phytoplankton, and non-algal particulates, and scattering spectra of 
phytoplankton and non-algal particulates from North River water samples. Local calibration of the model 
was conducted so that the model could serve as an accurate, system-specific tool for establishing 
management targets for phytoplankton biomass and suspended sediments that are protective of SAV 
throughout the APES (Biber et al. 2008).  

This project sought to answer several critical management-related questions to better understand the links 
between eutrophication, PAR attenuation, and SAV health across the APES.  

• What threshold levels of phytoplankton biomass measured as Chla and non-algal particulates 
measured as turbidity are compatible with maintaining sufficient light availability for high- and 
low-salinity SAV growth in APES?  

• How do those SAV related Chla and turbidity thresholds compare to the current water quality 
standard for North Carolina’s estuarine waters, and to the current Chla and turbidity 
concentrations observed in APES waters?  

• How does current water clarity compare to clarity targets for SAV expressed as a PAR 
attenuation coefficient across different high- and low-salinity regions of APES?  

Answers to these questions will help establish scientifically defensible Chla and turbidity thresholds that 
are protective of SAV for high- and low-salinity zones of APES. This information is needed for the 
process of numeric nutrient criteria development for North Carolina estuarine waters as part of the NC 
Nutrient Criteria Development Plan (NCDP) and will provide information for conservation and 
management of SAV habitats under APNEP’s Comprehensive Conservation and Management Plan and 
NCDEQ’s 2021 amendment to the NC Coastal Habitat Protection Plan (CHPP).  
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3. Project Goals and Objectives 

The primary goals of this project were to:  

1. Use an existing bio-optical model (Biber et al. 2008) to calculate the maximum Chla and turbidity 
thresholds that are protective of SAV water clarity targets for high- and low-salinity SAV 
habitats,  

2. Compare Chla and turbidity thresholds against the current North Carolina Chla and turbidity 
standards for estuarine waters to evaluate whether current standards protect SAV in APES, and 

3. Compare water clarity targets and thresholds for Chla and turbidity against current conditions in 
APES to determine whether SAV light requirements are being met and how much Chla and/or 
turbidity may need to be reduced to meet SAV needs. 

Objective 1. Develop empirical models to estimate KdPAR. Measurements of KdPAR were needed to 
validate the bio-optical model used for accomplishing Goal 1, and for comparing against SAV water 
clarity targets to accomplish Goal 3. As with CDOM, KdPAR data were available only for a few locations 
within APES and scarcity of these critical data necessitated development of empirical models that could 
estimate KdPAR from the wealth of SD data that has been measured throughout APES.  

Objective 2. Develop empirical models to estimate CDOM concentration. CDOM is an important 
contributor to PAR attenuation, particularly in low-salinity waters of APES, and is a required input to the 
bio-optical model needed to accomplish Goal 1. Scarcity of CDOM data necessitated the ability to 
estimate its concentration using empirical models based on salinity. CDOM was additionally measured 
directly for a small set of samples collected from Pamlico Sound.  

Objective 3. Validate the bio-optical model for use in high-salinity and low-salinity waters 
throughout APES. The bio-optical model was originally calibrated for the North River, a high-salinity 
estuary that has a weak hydrologic connection to the large water bodies, Pamlico and Albemarle Sounds 
and their tributaries, of the APES. Therefore, before the model could be used to accomplish Goal 1, it was 
critical to test the model’s ability to accurately predict KdPAR at sites throughout the APES.  

Objective 4. Use the validated bio-optical model to calculate Chla and turbidity thresholds that 
protect water clarity for SAV habitats in APES.  

Objective 5. Compare Chla and turbidity thresholds derived by the bio-optical model against the 
North Carolina water quality standards for Chla and turbidity in estuarine surface waters.  

Objective 6. Compare current water clarity conditions throughout APES against water clarity 
targets for high- and low-salinity SAV habitats. 

Objective 7. Identify data gaps that impede progress toward assessment of water clarity and 
establishment of SAV water clarity thresholds for waters of APES.  
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4. Methods 

4.1. Development of an empirical relationship between SD and PAR attenuation (Objective 1) 

Simultaneously measured SD and KdPAR were gathered from three datasets (Table 1). The first dataset 
from the ModMon program consisted of more than 20 years of simultaneously collected SD and KdPAR 
data for 11 stations along the Neuse River and nine stations in southwestern Pamlico Sound. The second 
dataset was the 2012-2014 U.S. Geological Survey (USGS) study (Moorman et al. 2017) within the 
greater Albemarle Sound region. The third dataset consisted of measurements made within the Albemarle 
Sound, Currituck Sound, Croatan Sound, and Pamlico Sound in 2010 and 2015 by the U.S. 
Environmental Protection Agency’s (USEPA) National Coastal Condition Assessment (NCCA). Data 
from the USGS and NCCA collected in Pamlico Sound north of 35.5 °N were combined into a single 
dataset representing Albemarle/NE Pamlico Sound, while ModMon data and NCCA data from Pamlico 
Sound south of 35.5 °N were grouped into a Neuse River/SW Pamlico Sound dataset. For each of the two 
final datasets, empirical model development and selection were conducted on a randomly selected half of 
the data, while the other half was held out for validating the final selected model. The NCCA dataset also 
included a small set of data from the Pamlico and Pungo Rivers (N=9). This dataset was deemed too 
small for developing a reliable empirical model. Instead, the KdPAR estimates were produced for the 
Pamlico and Pungo Rivers using the empirical model developed from the Neuse/SW Pamlico Sound 
dataset and the measured KdPAR data from the Pamlico and Pungo Rivers were used to validate the 
empirical model derived from the Neuse/SW Pamlico Sound dataset. Similarly, unpublished SD and 
salinity data from Biber et al.’s (2008) study from the North River were used as input to the empirical 
model developed from the Neuse/SW Pamlico Sound dataset, and KdPAR estimates were compared to 
measured KdPAR to determine whether the empirical model had sufficient accuracy to be applied in other 
high-salinity estuarine zones. 

Least squares curve fitting was used to estimate the proportionality constant κ for an inverse function, and 
the coefficients κ and b for a power function (Table 2); two common empirical models that relate SD to 
KdPAR (Martin and McCutcheon 1999). The proportionality constant κ is positively related to the ratio of 
absorbance to scattering in a waterbody (Gallegos et al. 2011) which varies significantly along the 
estuarine salinity gradient of the APES (Woodruff et al. 1999). Consequently, for another set of candidate 
models (Table 2), κ was modeled as a linear function of freshwater fraction (F) calculated as  

F = (Ssw-S)/Ssw  

where S is salinity and Ssw = 36 is an assumed constant seawater salinity (Peierls et al. 2012). Seasonality 
of CDOM (Hounshell et al. 2019), algal blooms (Pinckney et al. 1998), and sediment resuspension (RTI 
2013) may also create seasonality in κ (Gallegos et al. 2011). In another candidate model, a seasonality 
term was added as a sine function of the fraction of the year (fraction = 0 on 1 January and fraction = 1 on 
31 December) of the sampling date (t) with a fitted amplitude (d) and phase (e) (Table 2). Models were 
tested that included the salinity effect, the seasonal term, and both the salinity and seasonal term together 
(Table 2). Akaike Information Criteria corrected for sample number (AICc) were calculated for the fits of 
the five different possible models shown in Table 2. Confidence intervals on model parameters were 
estimated by standard bootstrapping (Hall et al. 2004) with 1000 resampled data sets each of the same 
size as the original.  The upper and lower bounds for the 95% confidence interval were then defined as the 
26th and 975th rankings of each parameter estimate (Hall et al. 2004). Precision of model estimates 
provided additional information useful for deciding and justifying the selection of simple versus more 
complex models. Model residuals were also examined to determine if there were any underlying patterns 
in the error that might be explained by adding additional terms, or that may affect interpretation of KdPAR 
estimates derived from the model. 
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Table 1. Summary of optical water quality datasets used in the study. 
Purpose of 
Use 

Program/ Study Location Site 
num. 

Date range Optical 
Indicators 

Light 
measures 

estCDOM 
estKdPAR 
avgKdPAR 
Chlthresh 

Biber et al.  
(2008) 

North River 9 2002-2004 CDOM 
Turbidity 
Chla 

KdPAR 
Secchi 

estCDOM 
estKdPAR 
Validate 
avgKdPAR  
Chlthresh 

ModMon Neuse River 11 1994-pres. CDOM 
Turbidity 
Chla 

KdPAR 
Secchi 

estKdPAR 
Validate 
avgKdPAR 
Chlthresh 

ModMon Pamlico Sound 9 1999-pres. CDOM1  
Turbidity 
Chla 

KdPAR 
Secchi 

Validate 
avgKdPAR 
Chlthresh 

Bogue Watch Bogue Sound 1 2007-pres. Turbidity 
Chla 

KdPAR 
 

avgKdPAR 
Chlthresh 

National Estuarine 
Research Reserve 
System 

Middle Marsh 
Shackleford Banks 

1 
1 

2008-pres. Turbidity 
Chla 

Secchi 
 

avgKdPAR 
Chlthresh 

Cape Hatteras Nat. 
Seashore (SE Coast 
Network) 

Pamlico Sound at 
Ocracoke 

1 2007-2020 Turbidity 
Chla 

Secchi 

avgKdPAR 
Chlthresh 

Cape Hatteras Nat. 
Seashore (Wright 
2016) 

Sound side Outer 
Banks, Bodie Island to 
Shackleford Banks 

30 July 2015 Turbidity 
Chla 

Secchi 

estKdPAR 
avgKdPAR 

USGS  
(Moorman et al. 2017) 

Albemarle/ Currituck 
Sounds/ tributaries 

37 2012-2014 TSS2 
Chla 

KdPAR 
Secchi 

estKdPAR 
avgKdPAR 
 

NCCA NC Estuarine Waters 29  
 
37 

2010  
 
2015 

Chla 
 
 

KdPAR 
Secchi 

avgKdPAR 
 

U.S. Army Corps of 
Engineers Duck Field 
Research Facility  

Currituck Sound 5 
 
2 

2016-2018 
 
2018-2019 

CDOM3 
Turbidity 
Chla3 

KdPAR 

avgKdPAR 
 

NCDWR 
AMS 

Neuse River 
Pamlico River 
Pungo River 
Albemarle Sound/ 
tributaries 

9 
9 
3 
16 

1970s-pres. Turbidity 
Chla 

Secchi 

avgKdPAR 
 

NCDMF  
P120 trawl & P915 
gillnet surveys 

NC Estuarine Waters 417 2008-
present 

 Secchi 

avgKdPAR 
 

ECU Coastal Studies 
Institute 

Albemarle/ Currituck 
Sounds 

96 2001-2014  Secchi 

For purpose of use, “estCDOM” = parameterize empirical models that estimate CDOM. “est KdPAR 
“ = 

parameterize empirical models that estimate KdPAR. “Validate” = validate the bio-optical model. “Chlthresh“ = 
determine threshold Chla concentrations for SAV protection. “avgKdPAR 

“ = establish average KdPAR for a 
waterbody. 1Measured CDOM data for Pamlico Sound consists of 45 samples as part of the current study. 
2The majority (55%) of the TSS data were left censored with a high (15-75 mg/L) method detection limit. 
3CDOM and Chla were measured as in situ fluorescence. 
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Table 2. Comparison of empirical models used to estimate KdPAR from Secchi disk depth. 

Model description 
 

Model 
Best fit parameters (95% C.I.) 

RMSE 
(m-1) R2

adj AICc ∆ ω 
 

Neuse River Estuary and Southwest Pamlico Sound 
 
Model 1. Power function with κ 
as a linear function of freshwater 
fraction (F) and a seasonal term 
based on fraction of year (t) 

KdPAR= (aF + c)SDb + dsin(2π(t-e)) 
a = 1.62 (1.56 – 1.67) 
c = 0.39 (0.35 – 0.43) 
b = -0.60 (-0.63 – -0.57) 
d = 0.07 (0.06 – 0.08) 
e = 0.55 (0.51 – 0.58) 

0.34 0.79 3422 0 1 

Model 2. Power function with κ 
as a linear function of freshwater 
fraction (F). κ= aF + c  

KdPAR = (aF + c)SDb 

a = 1.58 (1.53 – 1.64) 
c =0.42  (0.38  – 0.46) 
b =-0.60 (-0.63 – -0.57) 

0.34 0.78 3538 115 0 

Model 3. Power function with a 
seasonal term based on fraction of 
year (t) 

KdPAR = κSDb + dsin(2π(t-e)) 
κ = 1.64 (1.63 – 1.65) 
b = -0.84 (-0.87 – -0.81) 
d =0.06 (-0.8 – 0.07) 
e =0.74 (0.26 – 0.75) 

0.44 0.65 6170 2748 0 

Model 4. Power function 
 

KdPAR = κSDb  
κ = 1.86 (1.84 – 1.88) 
b = -0.64 (-0.68 – -0.60) 

0.44 0.64 6219 2797 0 

Model 5. Inverse function 
 

KdPAR= κ/ SD  
κ = 1.65 (1.62 –1.67) 

0.46 0.62 6610 3188 0 

 
Albemarle Sound, Currituck Sound and northern Pamlico Sound 

 
Model 1. Power function with κ 
as a linear function of freshwater 
fraction (F) and a seasonal term 
based on fraction of year (t) 

KdPAR= (aF + c)SDb + dsin(2π(t-e)) 
a = 0.35 (0.18 – 0.88) 
c = 1.34 (0.94 – 1.95) 
b = -0.74 (-0.82 – -0.37) 
d = 0.52 (-0.87– 0.74) 
e = 0.54 (-0.04 – 0.94) 

0.70 0.72 200 0 0.98 

Model 2. Power function with κ 
as a linear function of freshwater 
fraction (F). κ= aF + c  

KdPAR = (aF + c)SDb 

a = 0.47 (-0.04 – 0.99) 
c = 1.06 (0.69 – 1.47) 
b = -0.81 (-0.89 – 0.50) 

0.76 0.68 208 8 0.02 

Model 3. Power function with a 
seasonal term based on fraction of 
year (t) 

KdPAR = κSDb + dsin(2π(t-e)) 
κ = 1.62 (1.43 – 2.10) 
b = -0.75 (-.083 – -0.37) 
d = 0.55 (0.32 – 0.92) 
e = 0.97 (-0.11 – 0.04) 

0.71 0.70 212 12 0.00 

Model 4. Power function 
 

KdPAR = κSDb  
κ = 1.40 (1.26 – 1.65) 
b = -0.85 (-0.91 – -0.53) 

0.78 0.64 223 23 0.00 

Model 5. Inverse function 
 

KdPAR= κ/ SD  
κ = 1.18 (1.09 – 1.32) 

0.83 0.60 231 31 0.00 
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4.2. Development of an empirical model to estimate CDOM (Objective 2) 

Most CDOM inputs to estuaries come from terrestrial forests and wetland habitats and are delivered via 
freshwater inputs to estuaries (Spencer et al. 2013). The organic acids that comprise CDOM are slowly 
degraded and CDOM exhibits a nearly conservative behavior as it is advected downstream and mixed 
with low CDOM-containing ocean water in estuaries. Within an estuary, the near conservative behavior 
can produce strong inverse relationships between salinity and CDOM concentration in estuaries that can 
be useful for predicting either quantity if the other is known (Bowers and Brett 2008). Data on CDOM 
concentrations in North Carolina estuaries are sparse, and yet CDOM is known to be an important 
contributor to attenuation of PAR, particularly for low-salinity waters (Vahätalo et al. 2005; Woodruff et 
al. 1999). Empirical relationships between CDOM and salinity were developed for the existing datasets 
where both were measured. These datasets included the ModMon dataset for the Neuse River and the 
North River (Biber et al. 2008). Empirical relationships developed from these datasets were then used to 
estimate CDOM concentrations for areas where salinity but not CDOM was measured (Table 3). 

Table 3. Comparison of empirical models used to estimate CDOM from salinity. 
Model 
description 

Models for the Neuse River Estuary 
Best fit parameters (95% C.I.) R2adj AICc ∆ ω 

Power/ non-zero 
intercept for 
salinity with flow 
and season terms 

CDOM =  c + aSb + dQ + esin(2π(T – f )) 
c = 0.55 (0.13 – 0.93) 
a = 6.4 (6.0 – 6.8) 
b = 4.7 (4.0 – 5.4) 
d = 0.19 (0.00 – 0.38) 
e = 0.74 (-0.76 – 9.2) 
f = 0.44 (-0.05 – 0.92) 

0.66 2344 0 0.65 

Power/ non-zero 
intercept for 
salinity with 
season term 

CDOM =  c + aSb + esin(2π(T – f )) 
c = 0.72 (0.36 – 1.1) 
a = 6.4 (6.0 – 6.8) 
b = 4.6 (4.0 – 5.4) 
e = 0.79 (0.57 – 0.97) 
f = 0.44 (0.38 – 0.48) 

0.66 2345 1.2 0.35 

Power/ non-zero 
intercept for 
salinity with flow 
term 

CDOM =  c + aSb + dQ 
c = 0.74 (0.34 – 1.11) 
a = 5.9 (5.6 – 6.2) 
b = 5.2 (4.3 – 6.2) 
d = 0.44 (0.24 – 0.64) 

0.62 2404 60 0 

Power/ non-zero 
intercept 

CDOM =  c + aSb 

c = 1.2 (0.9 – 1.5) 
a = 5.8 (5.5 – 6.1) 
b = 5.0 (4.2 – 5.9) 

0.61 2420 76 0 

Power/ 
zero intercept 
 

CDOM =  aSb 

a = 6.9 (6.7 – 7.2) 
b = 3.3 (3.1 – 3.6) 

0.60 2430 87 0 

Linear CDOM =  c + aS 
c = -6.2 (-7.0 – -5.5) 
a = 12.8 (11.9 – 13.7)  

0.55 2509 166 0 
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Table 3. Comparison of empirical models used to estimate CDOM from salinity (continued). 
Model 
description 

Models for the North River Estuary 
Best fit parameters (95% C.I.) R2adj AICc ∆ ω 

Power/ non-zero 
intercept for 
salinity with flow 
and season terms 

CDOM =  c + aSb + dQ + esin(2π(T – f)) 
c = 0.42 (0.03 – 0.75) 
a = 12.2 (7.28 – 22.7) 
b = 1.84 (1.26 – 2.71) 
d = -0.012 (-0.057 – 0.037) 
e = 0.25 (0.13 – 0.55) 
f = 0.87 (0.16 – 0.98) 

0.82 97.0 2.2 0.22 

Power/ non-zero 
intercept for 
salinity with 
season term 

CDOM =  c + aSb + esin(2π(T – f)) 
c =  0.33 (0.15 – 0.99) 
a =  12.4 (-170 – 20.1) 
b =  1.9 (1.3 – 35.2) 
e  =  0.26 (0.11– 0.64) 
f =  0.3 (0.22 – 0.87) 

0.82 94.8 0 0.63 

Power/ non-zero 
intercept for 
salinity with flow 
term 

CDOM =  c + aSb + dQ 
c =  0.32 (0.13 – 1.2) 
a =  12.4 (-28.1 – 21.4) 
b =  1.82 (1.27 – 51.0) 
d =  -0.22 (-0.96 – 0.16) 

0.81 99.6 4.8 0.06 

Power/ non-zero 
intercept 

CDOM =       c + aSb 

c = 0.25 (0.10 – 0.41) 
a = 12.8 (7.5 – 26.5) 
b = 1.9 (1.4 – 2.7) 

0.81 98.9 4.0 0.08 

Power/ 
zero intercept 
 

CDOM = aSb 

a = 10.7 (5.9 – 15.4) 
b = 1.5 (1.1 – 1.8) 

0.79 103 8.5 0.01 

Linear CDOM =  c + aS 
c = -0.30 (-0.52 – -0.04) 
a = 7.2 (5.1 – 8.7)  

0.74 124 29 0 

 
CDOM absorbance is not regularly monitored by the ModMon program. However, UV-vis (200-800 nm) 
CDOM absorbance spectra were measured as components of a Neuse River research project during a 
dozen sampling trips in 2007 and 2008 and on nearly all sampling trips from 2013 to 2016. In total, 640 
CDOM spectra with simultaneous salinity measurements were available from 88 sampling dates across 
eleven stations that spanned from the freshwater head of the estuary to mesohaline conditions at the 
mouth where it empties to Pamlico Sound. Salinity was measured using a YSI 6600 (Yellow Springs, Inc. 
Yellow Springs, OH) multiparameter instrument. The absorption spectra were produced from GF/F 
filtered sample water on a Shimadzu UV-1700 Pharma-Spec spectrophotometer with a 0.01 m pathlength. 
Spectra were blank corrected using an 18 MΩ deionized water blank, and CDOM attenuation in units m-1 

was calculated by multiplying by 2.303 and dividing by the pathlength. In keeping with the bio-optical 
model (Biber et al. 2008), CDOM absorption at 440 nm (CDOM a440) was used as a metric of CDOM 
concentration.  

Three empirical model formulations were initially tested for estimating CDOM from salinity: a linear 
regression, a power function, and a power function with a positive intercept (Table 3). Estimation of 
model parameters and their confidence intervals and model selection was conducted in the same manner 
as for the empirical models relating SD and KdPAR. From these base models, additional potential 
explanatory variables were added. This process of developing more complicated models with greater 
predictive skill is described in the results. 
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4.3. Description of the bio-optical model (Objectives 3 & 4) 

The bio-optical model (Biber et al. 2008) estimates PAR attenuation due to the absorption and scattering 
of water, CDOM, suspended non-algal particulates, and phytoplankton. PAR absorption by phytoplankton 
(aΦ(λ)) is related to the concentration of the pigment Chla in units µg m-3 through Equation 1 (Table 4) 
where Φ*(675) is the Chla specific absorption coefficient at a wavelength (λ) of 675 nm, and Φ(λ) is the 
normalized (to the absorption at 675 nm) Chla absorption spectra across the PAR band (400 to 700 nm) 
characteristic of the water body. PAR absorption by CDOM (aCDOM) is related to CDOM absorbance at 
440 nm aCDOM(440) through Equation 2 (Table 4) where -SCDOM is the constant that describes the 
exponential decrease of aCDOM from 400 to 700 nm. PAR absorption by non-algal particulates (aNAP) is 
given by Equation 3 (Table 4) as a function of nephelometric turbidity units (NTU) where a*NAP(440) is a 
constant scale factor and -SNAP is the constant that describes the exponential decrease of aNAP from 400 to 
700 nm. As shown in Equation 4 (Table 4), particulate scattering is also modeled as a function of NTU 
where bp*(555) is a scaling constant that relates NTU to scattering at a reference wavelength of 555 nm and 
η is a constant that describes the spectral shape. Total absorption is calculated as the sum of absorption by 
phytoplankton, non-algal particulates, CDOM, and pure water (Equation 5) and total scattering is the sum 
of particulate scattering and scattering by pure water (Equation 6) (Table 4). The backscattering spectrum 
(Equation 7, Table 4) is calculated as half the scattering by pure water plus the product of total scattering 
and particulate scattering scaled by the backscattering to scattering ratio (bbp:bp). The PAR attenuation 
spectra (Equation 8, Table 4) is calculated using an empirical model of total absorption, backscatter and 
the solar zenith angle (θo) according to Lee et al. (2005). Transmittance of incident PAR (PAR0( λ)) to 
water depth (z)  (PARz (λ)) was integrated across the 400 to 700 nm spectrum to obtain total PAR 
transmittance (Equation 9, Table 4), and then KdPAR was calculated from PAR transmittance and depth 
using Beer-Lambert’s law (Equation 10, Table 4). Scale factors {Φ*(675), a*NAP(440), bp*(555), bbp:bp } and 
parameters that describe the shape of the absorption and scattering spectra { Φ(λ), SCDOM, SNAP, η}  for the 
optically active constituents were developed through the model calibration exercise conducted by Biber et 
al. (2008) and are provided in Table 5. 

Table 4. Equations describing the bio-optical model utilized in this study. 

Equation 1. aΦ(λ) = Φ*(675)[Chla]Φ(λ)  

Equation 2. aCDOM(λ) = aCDOM(440)exp[-SCDOM( λ-440)] 

Equation 3. aNAP(λ) = a*NAP(440)[NTU]exp[-SNAP( λ-440)] 

Equation 4. bp(λ) = bp*(555)[NTU] [(555/ λ)η] 

Equation 5. atotal (λ) = aΦ + aCDOM + aNAP + aw  

Equation 6. btotal (λ) = bp + bw  

Equation 7. bbp (λ) = bw/2 + btotal bp(λ)[ bbp:bp] 

Equation 8. K(λ) = [1 + 0.005θo] atotal + 4.18[1 – 0.52exp{-10.8atotal}] bbp 

Equation 9. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃0( λ)𝑒𝑒𝑒𝑒𝑒𝑒(𝐾𝐾( λ)𝑧𝑧)700
400   𝑑𝑑λ 

Equation 10. KdPAR = ln(PAR0/PARz)/z 
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The original Biber et al. (2008) bio-optical model was coded as a spreadsheet model in Excel. While the 
model worked flawlessly, processing was very slow. For greater computational efficiency and ease of 
analysis and visualization of model outputs, the model was re-coded in MATLAB (v2017b). Outputs of 
the rewritten model were identical to the original Excel spreadsheet model which verified the model had 
been re-coded correctly (Figure 1). 

Table 5. Scale factors and model parameters used in the bio-optical model from the model calibration in 
the North River by Biber et al. (2008). 

Parameter Description Units Value 

Φ*(675) Chlorophyll a specific absorbance at 675 nm m2 (mg Chla)-1 0.0136 

SCDOM Spectral slope of CDOM nm-1 0.0144 

SNAP Spectral slope of non-algal particulates nm-1 0.0093 

bp*(555) Turbidity specific backscattering coefficient at 555 nm m-1 NTU-1 0.702 

s Ratio of backscattering to scattering  dimensionless 0.018 
a*NTU(440) Turbidity specific absorption coefficient at 440 nm m-1 NTU-1 0.0384 

η Exponent tuning spectral shape of particulate scattering dimensionless 0.49 

 
Figure 1. Demonstration of correct translation of the bio-optical model from Excel to MATLAB.  

4.4. Data selection for validation of the bio-optical model (Objective 3) 

Validation of the bio-optical model was accomplished by comparing modeled KdPAR with direct 
measurements of KdPAR or estimates of KdPAR derived from SD from North Carolina estuarine waters. 
Consequently, the validation data sets required measurements or model derived estimates of the three 
optically active constituents used to calculate KdPAR (CDOM, Chla, and turbidity) as well as measured or 
estimated KdPAR data. Other than the Biber et al. (2008) dataset from the North River where the model was 
originally calibrated in North Carolina, the only other water body where all four parameters were directly 
measured was the Neuse River Estuary as part of the ModMon program from 2007-2008 and again from 
2013-2016 (Table 1). The ModMon program sampling in southwestern Pamlico Sound and the Bogue 
Watch monitoring program on Bogue Sound lacked CDOM measurements, so model validation was 
accomplished using CDOM estimates derived from empirical models (see Section 3.2). Dr. Mike 
Piehler’s laboratory at the University of North Carolina at Chapel Hill’s Institute of Marine Sciences 
(UNC-IMS) conducts the Bogue Watch monitoring program which is a long-term (2007 – present) 
approximately weekly monitoring program at one station in Bogue Sound, the UNC-IMS dock. As part of 

 

 



20 
 

this project, direct measures of CDOM were additionally conducted on five dates in 2020 (18 June, 14 
July, 24 September, 20 October and 3 December) for the nine ModMon stations of Pamlico Sound 
providing a small validation dataset from Pamlico Sound with all four parameters directly measured. 
NCDWR Ambient Monitoring System (AMS) data collected from 2006 to 2019 were additionally used 
for model validation for a dataset containing four stations on the Pamlico River (stations O787000, 
O982500, O7650000, O8650000) and another containing six stations in Albemarle Sound (stations 
M390000, M610000, M7175000, D8950000, D9490000, D9995000). NCDWR’s AMS conducts monthly 
monitoring of water quality at approximately 300 stations along NC’s rivers and estuaries. For the AMS 
dataset, CDOM was estimated based on the empirical model related to salinity derived from the Neuse 
River ModMon dataset (see Section 3.2) and KdPAR was estimated based on an empirical model related to 
SD (see Section 3.1). 

Three other datasets contained direct measures of KdPAR (Table 1). The USGS monitoring efforts 
conducted from 2012-2014 in Albemarle Sound measured KdPAR and Chla, but measured particulates as 
total suspended solids (TSS in mg/L) rather than turbidity (NTU). Relationships required for the bio-
optical model between turbidity (NTU) and TSS (mg/L) were explored for samples collected in the 
greater Albemarle Sound region using NCDWR’s AMS data set (Figure 2). The relationships were 
modestly strong for stations in Albemarle Sound (R2 = 0.41-0.46) and Alligator River (R2 = 0.44) but 
were poor for western Albemarle Sound (station D9995000, R2 = 0.21) and two Chowan River stations 
with R2 = 0.06 and R2 = 0.11 (Figure 2).  None of these relationships are strong enough for confident 
prediction of turbidity based on the USGS’s TSS measurements (Prairie 1996). Additionally, most (55%) 
of the TSS data collected during the USGS study were determined as below the method detection limit 
which ranged from 15- 75 mg/L. Given the weak relationship between TSS and turbidity, and the 
uncertainty that the censored TSS data would introduce to any estimate of turbidity derived from TSS, the 
USGS dataset was rejected for validating the bio-optical model.  
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Figure 2. Linear regressions of turbidity on total suspended solids from the Chowan River (stations 
D895000, D949000), Albemarle Sound (D9995000, M610000, M390000) and Alligator River 
(M7175000) from data collected by NCDWR’s Ambient Monitoring System from 1997-2019.  

The U.S. Army Corps of Engineers (USACE) datasets from Currituck Sound were also rejected for 
validating the bio-optical model because the Chla and CDOM data were in raw fluorescence units and 
would require post-calibration to units of Chla (µg/L) and CDOM (a440) for use in this project. 
Monitoring data provided by the NCCA included Chla and KdPAR but could not be used for validation due 
to not having measurements of either turbidity or CDOM.  

4.5. Establishing Chla and turbidity thresholds for high- and low-salinity SAV zones (Objective 4)  

In a forward prediction mode, the bio-optical model takes inputs of the three optical water quality 
indicators (Chla, turbidity, and CDOM) and outputs an estimate of KdPAR. However, if a target value for 
KdPAR is known, and the concentrations of two of the optical indicators can be established, a powerful 
utility of the model is the ability to invert the model to determine the quantity of the unknown indicator 
that will achieve the KdPAR target. For several high-salinity and low-salinity estuarine SAV habitats, the 
bio-optical model was inverted to calculate Chla and turbidity thresholds that correspond to the highest 
possible Chla or turbidity concentration that still meets the water clarity target of 22% of incident PAR 
transmittance to a depth of 1.7 m (KdPAR = 0.89 m-1) for high-salinity zones and 13% of incident PAR 
transmittance to a depth of 1.5 m (KdPAR = 1.36 m-1) for low-salinity zones. Background attenuation due to 
CDOM and turbidity for calculating Chla thresholds or CDOM and Chla for calculating turbidity 
thresholds were input to the model as median values. Thus, Chla, turbidity, and CDOM data were 
required for estimating both Chla and turbidity thresholds. Except for the North River and the small 
amount of data collected from Pamlico Sound as part of this study, CDOM was estimated based on 
empirical relationships with salinity.  
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The bio-optical model was inverted by finding the Chla or turbidity value that minimized the absolute 
difference between modeled KdPAR and the water clarity target of 0.89 m-1 using the bounded 
minimization (‘fminbnd’) function in MATLAB. The lower bound for the Chla or turbidity thresholds 
were set at 0 to prevent meaningless negative solutions and the upper bound was set at 1000 so that it 
would be irrelevant. In addition to concentrations of optically active constituents, PAR attenuation also 
depends on the solar zenith angle. For calculating Chla and turbidity thresholds, the solar zenith angle 
was chosen to represent noon time sun at the spring equinox. This angle was chosen as a moderate zenith 
angle between the low angle of winter sun and near vertical angles of summer and provides a reasonable 
approximation of the solar zenith angle for a year-round SAV growing season resulting from the co-
occurrence of temperate and tropical SAV species in North Carolina (Gallegos, C. pers. comm.). 

Nine data sets representing different high-salinity estuarine locations were assessed (see map in Figure 15 
in results section). Two of the nine datasets were comprised of data from the lower (stations 1-5) and 
upper (stations 6-9) North River Estuary during the Biber et al. (2008) study which were treated 
separately due to the near absence of SAV in the upper estuary. The Bogue Watch program (directed by 
Dr. Michael Piehler) monitored a Bogue Sound station (UNC-IMS pier) approximately weekly for 
turbidity and salinity. Middle Marsh and Shackleford Banks near Beaufort Inlet and Pamlico Sound north 
of Ocracoke Village were monitored through cooperative partnerships with the Cape Hatteras/Cape 
Lookout National Seashore and the National Estuarine Research Reserve System (NERRS) as part of the 
National Park Service’s Southeast Coast Inventory and Monitoring Network (SECN). Turbidity and 
salinity at these three sites were autonomously monitored every 15 minutes using either a YSI6600 or 
newer Xylem EXO multiparameter water quality instruments and Chla was measured approximately 
monthly. Data were marked with quality control codes according to SECN protocols. Data coded as 
“unusable”, “poor quality”, or “undefined” were removed from the datasets. The YSI 6600 instruments 
reported turbidity data as NTU while the Xylem EXO reported turbidity in formazine nephelometric units 
(FNU). Because both instruments used an identical technology (YSI Technical Instructions 2019) 
compliant with the European turbidity standard (ISO7027) and were calibrated using identical formazine 
standard, the FNU and NTU units were assumed equivalent and reported as NTU. Turbidity data were 
smoothed by calculating a daily arithmetic mean. CDOM was estimated for these stations using 
instantaneous salinity values as input to empirical models, and the estimated CDOM values were 
subsequently smoothed by taking a daily mean. For turbidity and CDOM, median values of the daily 
means were used as measures of average conditions to calculate Chla thresholds using the bio-optical 
model.  

Cape Hatteras/Cape Lookout National Seashore staff conducted a synoptic sampling event as part of the 
SECN in July 2015 that covered 30 sites from Bodie Island in the northeast of Pamlico Sound to Beaufort 
Inlet in the southwest (Wright 2016). Sites north and east of Cedar Island, sites 1-18 in Wright (2016), 
were grouped to represent Pamlico Sound on the sound side of the Outer Banks (see map in Figure 15 in 
the results section). For these sites and the other Pamlico Sound sites described below, CDOM was 
estimated based on the empirical model developed from the Neuse River. Sites 19-30 in Wright (2016) 
were grouped to represent Core and Back Sounds along the sound side of Core and Shackleford Banks 
(see map in Figure 15). For these sites, CDOM was estimated based on the empirical model developed 
from the North River. ModMon’s Pamlico Sound dataset represented the southwest portion of Pamlico 
Sound from the mouth of the Neuse River to Ocracoke Inlet.  

Chla and turbidity thresholds for eight low-salinity estuarine zones were estimated by the bio-optical 
model using a combination of data collected by AMS and ModMon. Western Albemarle Sound was 
represented by AMS stations D9995000 and N9700000 while eastern Albemarle Sound was represented 
by stations M610000 and M390000. The Chowan River was represented by stations D8356200, D895000 
and D949000. Other tributaries to Albemarle Sound were grouped and included Alligator River 
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(M7175000), Pasquotank River (M2750000), Perquimans River (M500000), Scuppernong River 
(M6980000) and Little River (M350000).  The Neuse River was divided into two sections: the upper river 
comprised by ModMon stations 0, 20, 30, 50, 60 and 70, the lower Neuse River represented by stations 
100, 120, 140 160 and 180. The upper Pamlico River was represented by AMS stations O765000, 
O7680000, O7710000, and O787000 and the lower Pamlico River was represented by AMS stations 
O8498000, O8650000, O9059000, and O982500. Only data collected within the past 20 years were used 
for estimating Chla and turbidity thresholds for either low-salinity or high-salinity SAV areas.  

A main source of uncertainty for Chla thresholds was the error associated with median values of turbidity, 
and CDOM which can be substantial, particularly for small datasets such as those for high-salinity waters. 
For both high- and low-salinity areas, bootstrapping was used to characterize the uncertainty in Chla 
thresholds associated with estimating the average background levels of turbidity and CDOM. Chla 
thresholds were estimated 1000 times based on median values of resampled turbidity and CDOM datasets 
with replacement. The 95 percent confidence interval was then determined as the 26th and 975th ranks of 
the calculated Chla threshold values (Hall et al. 2004). The same procedure was used to estimate 
uncertainty of turbidity thresholds based on error associated with median values of Chla and CDOM. 

4.6. Comparing Chla and turbidity thresholds from the bio-optical model to the current North 
Carolina standard for Chla and turbidity in estuarine waters (Objective 5) 

The Chla thresholds calculated by the bio-optical model should be interpreted as median values since they 
were calculated based on median turbidity and CDOM levels. Similarly, turbidity thresholds were 
calculated based on median Chla and CDOM. The current state standard for Chla in estuarine waters is 40 
µg L-1 and for turbidity is 25 NTU. For both parameters, an allowance is made for the natural occurrence 
of a small, 10% frequency of exceedances. Another way of stating this standard is that the 90% quantile 
of the Chla and turbidity distribution for a water body cannot exceed 40 µg L-1 and 25 NTU, respectively. 
Additionally, the current assessment approach requires 90% confidence that the 90% quantile exceeds 40 
exceed 40 µg L-1 or 25 NTU before a water body is determined to be impaired and placed on the USEPA 
303d list of impaired waters (NCDEQ 2021b). This creates a problem for assessing whether the current 
standard is sufficiently protective to meet the newly derived thresholds for SAV habitats because the 
thresholds and current standards are expressed for different quantiles of the Chla and turbidity 
distributions.  

The number of exceedances required to achieve a 90% statistical confidence changes based on the 
number of measurements made within each water body during an assessment period. For example, with a 
sample size of 100, 14 samples that exceed the standard would achieve a 90% statistical confidence but a 
sample size of 20 would require 4 exceedances, or a critical quantile of 20%, to achieve 90% confidence 
that the water body was impaired. Assessments of North Carolina surface water data for 303d listing are 
conducted on available data over a period of two years with the last year ending two years prior to the 
date of the assessment. For example, the 2022 assessment will be based on data collected during 2019 and 
2020. Given the predominance of a monthly sampling interval for water quality monitoring, for many 
estuarine sites only about 24 samples are expected to be collected during an assessment period (Figure 3), 
and the critical quantile (i.e., value which would be considered impaired considering the uncertainty 
related to sample size) required for listing a water body as impaired is significantly higher than 10%. 
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Figure 3. Histogram of sample number for Chla and turbidity measurements for monitoring stations in 
North Carolina estuarine waters during 2-year assessment periods for determining whether a water body 
is impaired and should be added to the USEPA 303(d) list.  

An empirical approach was taken to understand the relationship between the median Chla and turbidity 
versus Chla and turbidity values at the critical quantiles for sites throughout North Carolina estuarine 
waters. Chla and turbidity data sets used for these analyses included data from 52 stations within the 
following datasets: 1) NCDWR’s AMS at 9 stations spanning the Albemarle Sound and its tributaries, 
and the Pamlico River (D8950000, D9490000, D9995000C,  M610000C, M390000C, M7175000, 
O787000, O8650000, O982500), 2) 11 stations from the ModMon dataset for the Neuse River and 9 
ModMon stations in Pamlico Sound, 3) the high-salinity datasets used to establish the Chla threshold less 
the synoptic survey of eastern Pamlico Sound from Wright et al. (2016), and 4) a 10-year (2007-2016) 
dataset from 8 stations in the New River Estuary collected as part of the Defense Coastal/Estuarine 
Research Program (description in Hall et al. 2013). Data from each of the 52 sites were divided into nine, 
two-year non-overlapping assessment periods: 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-
2010, 2011-2012, 2013-2014, 2015-2016, and 2017-2018. Treating each site and assessment period as a 
separate unique dataset resulted in a total of 345 datasets for the following analyses.   

For each dataset, the median value of Chla (or turbidity) was plotted against the Chla (or turbidity) value 
at both the 90% quantile and the critical quantile given the sample size. Comparison against the 90% 
quantile simulates the best-case scenario that occurs with very high sample numbers and negligible 
statistical uncertainty. Critical quantiles were determined in the same manner as used by NCDEQ (2021b) 
by calculating the minimum exceedance percentage with a cumulative probability greater than 0.9 for a 
given sample size using the binomial cumulative distribution function. Comparison against the critical 
quantiles represents the real-world scenario where small sample sizes can significantly reduce statistical 
confidence with an exceedance percent much higher than 10% required to declare a waterbody as 
impaired. A linear regression model was used to estimate the Chla and turbidity values at the 90th quantile 
and critical quantiles that correspond to Chla and turbidity thresholds calculated using the bio-optical 
model. Using the regression to translate the median thresholds defined by the bio-optical model into the 
90th and critical quantiles for assessment of impairment provides a useful comparison to determine 
whether the current standards for Chla and turbidity are protective of SAV light requirements. 
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4.7. Comparing current water clarity with SAV water clarity targets throughout North Carolina 
estuarine waters (Objective 6) 

Best available estimates of KdPAR were used to compare current water-clarity conditions to the water-
clarity thresholds for high- and low-salinity SAV zones throughout North Carolina estuarine waters. 
Direct KdPAR values were used for sites where direct measurements were routinely made. For low-salinity 
sites, estimates of KdPAR derived from empirical models based on SD were used. For high-salinity waters, 
where SD often exceeded water depth and the bio-optical model more accurately predicted KdPAR, KdPAR 
was calculated using the bio-optical model. The central tendency of recent water-clarity conditions was 
calculated as the median percent of incident PAR transmitted to 1.5 m and 1.7 m within low- and high-
salinity SAV zones, respectively. For each station, the median percent PAR transmittance was expressed 
as the fraction of the low- and high-salinity SAV requirement, 13% and 22% incident light, so that values 
greater than 1 indicate clarity that meets the thresholds, and values less than 1 indicate clarity insufficient 
to permit SAV colonization to the target depths. 

The dividing lines for delineating low-salinity zones in the tributary estuaries were established through 
consensus between the APNEP SAV Team and the NCDEQ CHPP Team charged with development of 
an SAV issue paper for the 2021 CHPP amendment. Low-salinity zones were defined based on absence 
of high-salinity SAV species and had average salinity less than 10.  The dividing line between the low-
salinity Neuse River Estuary and high-salinity Pamlico Sound was drawn from Point of Marsh on the 
south side (35.075°N, -76.470°W) to Maw Point on the north side (35.1508°N, -76.537°W), and the 
dividing line between Bay River and Pamlico Sound extended from Maw Point northward to Bay Point 
(35.185°N, -76.527°W). The dividing line between the low-salinity waters of Pamlico River and Pamlico 
Sound extended from Pamlico Point on the south (35.185°N, -76.527°W) to a point south of Spencer Bay 
(35.372°N, -76.471°W) on the north side. Croatan Sound was considered low salinity with a dividing line 
at the southern end of Roanoke Island at 35.824°N latitude. Roanoke Sound north and south of the 
highway U.S. 264 bridge was considered low and high salinity, respectively.  
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5. Results and Discussion 

5.1. Empirical models of PAR attenuation based on Secchi disk depth (Objective 1)  

For both the Neuse/SW Pamlico Sound and Albemarle/NE Pamlico Sound datasets, all five candidate 
models explained more than 60% of the variability in KdPAR from SD (Figures 4 and 5, Table 2). The 
power function model (Model 4, Table 2) with an exponent of -0.64 for the Neuse River/SW Pamlico 
Sound and -0.85 for Albemarle/NE Pamlico Sound datasets provided modest improvements compared to 
the simpler inverse model (Model 5, Table 2). Examination of the residuals showed the improved fit 
largely resulted from correcting the inverse function’s underprediction of KdPAR at the deepest SD (Figure 
5). Compared to the inverse model (model 5), modeling κ as a linear function of freshwater fraction 
(Model 2) increased the model R2

adj from 0.60 and 0.62 to 0.68 and 0.78, respectively, for the 
Albemarle/NE Pamlico Sound and Neuse/SW Pamlico Sound datasets (Table 2).  

 
Figure 4. Comparison of empirical models and examination of residuals for empirical models used to 
estimate KdPAR from SD for the waters of the Neuse River and southwest Pamlico Sound.  
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Figure 5. Comparison of empirical models and examination of residuals for empirical models used to 
estimate KdPAR from SD for the waters of Albemarle Sound, Currituck Sound, and northern Pamlico 
Sound.  

For the Neuse/SW Pamlico Sound dataset, residuals plotted against salinity as freshwater fraction clearly 
showed that the models that did not include salinity significantly overestimated KdPAR at lower freshwater 
fraction (higher salinity) and underestimated KdPAR at higher freshwater fraction (lower salinity). Addition 
of a seasonal term to the model that included salinity (Model 1, Table 2) provided some additional 
improvement in model predictions. AICc scores showed that the power function models that accounted 
for both salinity and seasonality were superior to models that included only one of these parameters. The 
models that included season but did not include the salinity effect (Model 3, Table 2), only slightly 
outperformed the power function model without either salinity or seasonal effects (Model 2, Table 2).  

 



28 
 

For the Neuse/SW Pamlico Sound dataset, the coefficient estimates for the empirical model that contained 
both salinity and seasonal effects (Model 1) showed a high degree of precision with 95 % confidence 
intervals that generally spanned < 10% of the values (Table 2). The coefficients for this model were also 
similar to the coefficients for the simpler models that were combined to produce it, another indication of 
model robustness (Models 2-5, Table 2). Model coefficients for the Albemarle/NE Pamlico Sound dataset 
were less precise than for the Neuse/SW Pamlico Sound dataset, likely a result of smaller sample size and 
poorer overall model fit (Table 2, Figure 5). Nevertheless, the model coefficients between the Neuse/SW 
Pamlico Sound and Albemarle/NE Pamlico Sound derived models that contained both season and salinity 
(Model 1, Table 2) generally agree well and indicate similar drivers of the relationship between KdPAR and 
SD across the two estuarine regions. Due to their superior performance, the models that included both the 
salinity and seasonal effects (Model 1, Table 2) were selected for estimating KdPAR from SD. The model 
developed from the Albemarle/NE Pamlico Sound data were used in conjunction with AMS SD data to 
estimate the recent average KdPAR for stations in the Albemarle Sound region, and the model developed 
from the Neuse/SW Pamlico Sound dataset, that was validated using the small dataset from the 
Pamlico/Pungo Rivers, was used to estimate KdPAR for stations on the Pamlico River. 

The tendency for a higher KdPAR for a given SD in low-salinity samples was captured within both the 
Neuse/SW Pamlico Sound and Albemarle/NE Pamlico Sound derived model by the highly significant 
slopes (1.58 and 0.35, respectively) for freshwater fraction (a) in the linear function used to describe κ 
(Table 2, Models 1 and 2). κ is positively related to the ratio of absorption to scattering of PAR and is a 
useful indicator to determine whether relationships between SD and KdPAR are similar between water 
bodies (Gallegos et al. 2011). The finding that κ was higher for the low-salinity samples is consistent with 
previous findings that the relative importance of PAR absorption increases as absorption by CDOM and 
Chla increase upstream along the Neuse River/Pamlico Sound estuarine gradient (Woodruff et al. 1999). 
At low salinities, models for both regions approach κ values near 2 but the Neuse/SW Pamlico Sound 
model achieves this with a higher slope (a) and lower intercept (c) than the model for the Albemarle/NE 
Pamlico Sound dataset. The seasonal term within the best-fit models predicts elevated KdPAR during late 
summer and was stronger for the Albemarle/NE Pamlico Sound dataset than for the Neuse/SW Pamlico 
Sound dataset. This seasonality likely reflects the timing of the annual maximum of CDOM 
concentrations in freshwater inputs to the Neuse River/Pamlico Sound system (Hounshell et al. 2019, and 
Section 3.2).  

Differences in the scattering-to-absorption ratio within the low-salinity samples could also explain the 
higher degree of model error in the low-salinity samples that had shallow SD. At the head of the Neuse 
River Estuary and Albemarle Sound, the Neuse River and Roanoke Rivers are hybrids of piedmont brown 
water rivers with moderate suspended sediment concentrations, and coastal plain blackwater rivers with 
high CDOM concentrations. The upper parts of these estuaries also commonly experience phytoplankton 
blooms (Peierls et al. 2012). The optical characteristics of the upper estuarine regions are dependent on 
hydrological conditions that modulate blooms through nutrient loading but also flushing (Peierls et al. 
2012). The amount of flow and the relative proportions of flow coming from highly scattering, sediment-
rich but CDOM-poor piedmont waters versus strongly absorbing CDOM-rich but sediment-poor coastal 
plain waters also play a large role in the relative importance of absorption versus scattering in North 
Carolina estuaries (Vahätalo et al. 2005). Thus, a wide range of backscattering-to-absorption 
characteristics occur in the low-salinity waters, and it should be expected that relationships between KdPAR 

and SD might be weaker in the low-salinity waters.  

The best-fit power function models that included a linear dependence on salinity and a seasonal 
term were validated against the hold-out datasets (see Section 2.1 for details). For the Neuse/SW 
Pamlico Sound model, model fit to the validation dataset was nearly identical to the calibration 
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dataset with the model predictions explaining 79% of observed variation in KdPAR and even 
having a slightly lower (0.32 vs 0.34 m-1) root mean squared error (Figure 6, Table 2). Mean 
absolute error near zero (0.004 m-1) and a mean bias ratio (predicted/observed KdPAR) near one 
indicated that the model bias was negligible (Figure 6). For the Albemarle/NE Pamlico Sound 
model, the fit of the validation model was significantly weaker than the fit for calibration with an 
increase in root mean squared error (RMSE) from 0.70 to 0.77 m-1 and a decrease in the adjusted 
R2 from 0.7 to 0.38 (Figure 6). A decrease in fit between calibration and validation is expected 
and the more severe decrease with the smaller Albemarle/NE Pamlico Sound dataset is also 
expected because with smaller datasets a few outlier values can exert more significant influence 
on estimation of the model parameters. Despite the poorer model fit, plots of observed versus 
predicted KdPAR fall along the 1:1 line throughout the range of KdPAR values (Figure 6). Also, the 
mean absolute error was low (0.08 m-1) and the bias ratio was near one (1.11) (Figure 6). 

 
Figure 6. Validation of an empirical model developed to estimate KdPAR based on SD, salinity, and time 
of year for datasets from ModMon and NCCA in the Neuse River and southwestern Pamlico Sound (left 
panels) and from the NCCA and USGS in Albemarle Sound and northeastern Pamlico Sound (right 
panels). Bottom panels show residuals versus observed KdPAR and provide root mean squared error 
(RMSE), mean error calculated as predicted minus observed values (ME), and mean bias ratio (MBR) 
calculated as predicted divided by observed values.  
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Estimates of KdPAR for the Pamlico River and Pungo River predicted using the model developed 
from the Neuse River/SW Pamlico Sound dataset were also reasonably accurate and precise. 
Observed and predicted values clustered near the 1:1 reference line, error was moderate with a 
RMSE of 0.53 m-1, and with a mean absolute error (-0.04 m-1) near zero (-0.04 m-1) and low 
mean bias ratio (1.04), there was no indication of significant bias (Figure 7). The ability of the 
empirical model developed from Neuse/SW Pamlico Sound to reasonably predict Pamlico and 
Pungo River KdPAR is consistent with similar patterns of scattering versus absorption along the 
salinity gradient of these estuaries (Woodruff et al. 1999). Surprisingly, the model developed 
from the Neuse River/SW Pamlico Sound dataset also reasonably predicted KdPAR from SD for 
the North River (Biber et al. 2008) dataset though with a slight, 7% on average, underprediction 
as shown by the mean bias ratio (Figure 7). 

 
Figure 7. Test of the ability of the empirical model developed from the Neuse/southwest Pamlico Sound 
to predict KdPAR based on SD, salinity, and time of year for the Pamlico and Pungo Rivers (left panels) 
and the North River (right panels). Bottom panels show residuals versus observed KdPAR and provide root 
mean squared error (RMSE), mean error calculated as predicted minus observed values (ME), and mean 
bias ratio (MBR) calculated as predicted divided by observed values.  

 



31 
 

 

Collectively, the comparisons of measured vs estimated KdPAR indicate that the empirical models based on 
SD and salinity produce reasonably accurate, though not especially precise KdPAR estimates. Given their 
low degree of bias, the estimates should be suitable for validating the bio-optical model and for 
establishing the long-term average light conditions for SAV habitats where KdPAR measurements are 
scarce or non-existent. 

5.2. Empirical models of CDOM based on salinity (Objective 2) 

The linear regression model of CDOM on salinity explained 55% and 74 % of the variability in CDOM 
for the Neuse River and North River estuaries, respectively (Table 3). For both estuaries, however, the 
linear model consistently underestimated CDOM at high salinities (low freshwater fraction), and 
overestimated CDOM at low salinities (high freshwater fraction) (Figure 8). At the highest salinities, the 
linear model predicted negative CDOM values for both estuaries. A model that predicts negative CDOM 
values would not be useful for deriving CDOM input to the bio-optical model. Alternatively, the zero-
intercept power function model asymptotes to zero and therefore cannot predict negative CDOM values. 
For both estuaries, this model performed better than the linear model, explaining 60% and 79 % of 
CDOM variation for the Neuse and North Rivers, respectively (Table 3). Although it gave much better 
estimates of CDOM at high salinity than the linear model, it tended to produce slight underestimates at 
high salinities (Figure 8).  

For the non-zero intercept power function, the best-fit intercept was positive, and its inclusion eliminated 
the tendency toward underestimation at higher salinities while also ensuring against negative CDOM 
estimates (Figure 8). The power function with a positive intercept explained 1% and 2% more of the 
variability in CDOM than the zero-intercept model for the Neuse and North Rivers, respectively, and the 
AICc scores indicated that it was superior among the three models (Table 3).  

The positive intercept power function model is not only the best-fitting model, but also consistent with 
our understanding of the behavior of CDOM in estuaries and in the Neuse/Pamlico Sound in particular. 
Although CDOM can be degraded by sunlight and bacteria in estuaries, the degradation rates are 
generally slow enough that CDOM can be effectively considered a conservative property (Bowers and 
Brett 2008). Under ideal conditions of constant freshwater and seawater CDOM concentration and 
negligible degradation or production in the estuary, CDOM would exhibit a perfectly linear mixing curve 
when plotted against salinity (Loder et al. 1982). There could be several interacting processes that drive 
the observed concave-negative relationship between CDOM and salinity in the Neuse River Estuary 
(Figure 8). First, it is obvious from the high degree of scatter at low-salinity values that the freshwater 
CDOM concentration is not constant. When the time scales of variability in freshwater CDOM 
approximate the flushing time of an estuary, non-linear relationships between a conservative tracer and 
salinity can be produced (Loder and Reichard 1981); Bowers and Brett 2008). This seems likely to occur 
in the Neuse River estuary where both flushing time and CDOM concentration are tightly linked to river 
discharge (Hounshell et al. 2019). Second, the degree to which CDOM degradation influences CDOM 
concentration in an estuary is dependent on how much time CDOM spends in an estuary which is 
determined by the estuary’s flushing time. The Neuse River Estuary has a flushing time that averages two 
months (Peierls et al. 2012). With such a long residence time, detecting the concave signature of CDOM 
degradation is more likely than in estuaries that are more rapidly flushed (Bowers and Brett 2008).  
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Figure 8. Empirical relationships between salinity (expressed as freshwater fraction) and CDOM in the 
Neuse River (ModMon data) and North River (Biber et al. 2008) using a linear regression model (left 
panels), a zero-intercept power function (middle panels) and a non-zero intercept power function (right 
panels). Solid lines in top panels are the best fit model. Solid black lines in the bottom panels indicate the 
zero line for comparison against model residuals (Observed-Predicted).  

Generally, CDOM concentrations of seawater are considered negligible (Bowers and Brett 2008), but the 
best fit model for the Neuse River Estuary specified a moderate CDOM concentration at seawater salinity. 
Enclosed bays like North Carolina’s sounds may have unusually high CDOM concentrations at near full 
seawater salinity (Bowers and Brett 2008). Due to the large surface area and shallow depths of North 
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Carolina’s sounds, evaporation is an important component of their water budget accounting for about 
20% of water losses from Pamlico Sound (Giese et al. 1979). Since evaporation increases the 
concentrations of dissolved substances, it could lead to measurable CDOM at a seawater salinity in 
Pamlico Sound even if seawater outside Pamlico Sound has negligible CDOM levels.  

Despite being the superior model, the predictive capability of the model declined as the average CDOM 
concentration increased in fresher waters (Figure 8). Thus, our ability to estimate CDOM with the best-fit, 
positive-intercept power function model declines substantially for areas of the estuary where absorption 
by CDOM is most important in determining PAR attenuation. A high degree of error in the 
salinity/CDOM relationship at low salinities is consistent with the substantial variability of the CDOM 
concentration of incoming freshwater to the Neuse River Estuary created by different flow paths to the 
river (Hounshell et al. 2019). Under low, base-flow conditions river flow is dominated by low CDOM 
containing ground water, while under high flow conditions, overland runoff and flooding of wetlands 
contributes to higher CDOM (Hounshell et al. 2019). Since the positive-intercept power function model 
based on freshwater fraction explained a large amount of the variation in CDOM for both the Neuse River 
and North River estuaries, was relatively unbiased throughout the observed salinity ranges of the 
estuaries, and is consistent with our understanding of the fate and transport of CDOM in estuaries, this 
model was selected as a base model upon which the effects of other explanatory variables were tested in 
an effort to further improve the accuracy of CDOM estimates.  

A fourth empirical model was developed that built on the positive-intercept power function model to 
include a term that captures the effect of variability in freshwater inputs on CDOM (Table 3). 
Accumulated antecedent rainfall for Hyde County prior to sample collection was chosen as a proxy of 
freshwater input. This decision to use Hyde County rainfall rather than gaged inputs was made based on 
several considerations. Flow to most estuarine waters in North Carolina is not gaged. Flow that is gaged is 
generally the portion above the fall line where wetlands that contribute substantial CDOM loads are 
inconsequential. Therefore, it is unlikely that gaged flows would be a strong predictor of CDOM loading. 
Precipitation should be a strong predictor of those coastal plain flows (Qi et al. 2009). Hyde County is 
central to the APES region and fortuitously has three rain gage sites that have been in operation for more 
than 20 years: site USC00312940 Fairfield, site USC00316349 Ocracoke, and site USC00318450 at the 
Swanquarter ferry landing.  

Daily rainfall totals for the three stations were averaged to determine a daily average for the region and 
regional antecedent rainfall totals were calculated for each CDOM sample collection date. The 
appropriate antecedent rainfall accumulation period was chosen based on testing different accumulation 
periods from one day to half year for the Neuse River dataset where the variability in the freshwater end 
member was greatest, and thus the greatest need for correction existed. The model fit improved linearly 
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from a 1- to ~30-day accumulation period beyond which it slowly decreased (Figure 9). Consequently, a 
30-day accumulated rainfall was chosen to represent recent freshwater inputs to the estuaries. 

 
Figure 9. Adjusted R2 values for the fit of CDOM by an empirical model with a power function of 
salinity (freshwater fraction) and a linear term for antecedent rainfall across different accumulation 
periods (see model in Table 3). 

For the Neuse River, residuals from the positive-intercept power function model based on freshwater 
fraction also indicated that there was a modest degree of seasonality with a tendency toward higher 
CDOM concentrations during the warmest months of summer and early fall and lower CDOM during the 
coldest months of winter and early spring (Figure 10). Data from the North River were also consistent 
with this seasonality but there were no data collected during the summer and early fall (Figure 11) when 
CDOM reached its peak in the Neuse River. This seasonality with peak CDOM during summer is 
consistent with enhanced CDOM production by degradation of terrestrial plant matter in forest and 
wetland soils under warmer soil conditions (Wen et al. 2020) and seems likely to contribute seasonality to 
CDOM across North Carolina estuaries. Seasonality was added to a fifth candidate empirical model and 
was described as a sine function of the fraction of the year (fraction = 0 on 1 January and fraction = 1 on 
31 December) of the sampling date (Table 3). As a final, sixth candidate empirical model, both rainfall 
and seasonality terms were added to the positive-intercept power function model. 

Adding antecedent rainfall as a predictor did not improve model fit for the North River (Table 3). For the 
Neuse River, the AICc score showed that the model containing rainfall was superior to the base model but 
adding antecedent rainfall only explained an additional 1% of the CDOM variance (Table 3). Adding a 
seasonality term significantly improved the model, increasing the adjusted R2 from 0.61 to 0.66 for the 
Neuse River (Table 3) and weakly improved model accuracy for the North River increasing the adjusted 
R2 from 0.81 to 0.82 (Table 3). For both the Neuse and North Rivers, AICc scores indicated that models 
including seasonality were superior to models with no seasonal term. For the Neuse River, the best model 
included both seasonality and rainfall, while for the North River the best model included seasonality but 
not rainfall. For both rivers, the weights associated with the AICc scores indicated that there was no clear 
superiority of models that contained only a seasonal term versus models that contained both rainfall and 
seasonality. Without strong evidence for including antecedent rainfall, and with an aim of keeping the 
model as simple as possible, the final models selected for both the Neuse River and North River were the 
positive-intercept power function models based on freshwater fraction with a seasonal term.  
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Figure 10. Model residuals versus freshwater fraction, monthly rain totals, and seasonality for the Neuse 
River dataset. Residuals were calculated as observed CDOM minus predicted CDOM for models (labeled 
above each column of panels) that included combinations of freshwater fraction, antecedent monthly 
rainfall totals, and seasonality. 
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Figure 11. Model residuals versus freshwater fraction, monthly rain totals, and seasonality for the North 
River dataset. Residuals were calculated as observed CDOM minus predicted CDOM for models (labeled 
above each column of panels) that included combinations of freshwater fraction, antecedent monthly 
rainfall totals, and seasonality. 

Both the empirical model of CDOM developed for the Neuse and North Rivers were compared 
against direct measurements of CDOM from Pamlico Sound that were made during this study 
(Figure 12). The empirical model of CDOM derived from the North River overestimated 
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Pamlico Sound CDOM by a factor of ~6 at the lowest observed concentrations and ~2 at the 
highest concentrations. The model derived from the Neuse River dataset provided much more 
accurate estimates, with the highest observed values underpredicted by ~20% and the lowest 
observed values overestimated by about a factor of 2. These results indicate that the salinity and 
seasonal influences on CDOM concentration are system specific, and likely linked to differences 
in freshwater CDOM loading that arise from land use, particularly percent wetland cover, within 
different watersheds (Spencer et al. 2013). The ability of the Neuse River empirical model to 
more accurately estimate southwestern Pamlico Sound CDOM likely results from the Neuse 
River being the major source of freshwater (Jia and Li 2012), and also likely CDOM, to 
southwestern Pamlico Sound. 

 
Figure 12. Comparison of directly measured Pamlico Sound CDOM concentration versus estimated 
CDOM derived from empirical relationships with salinity and season observed in the Neuse River and 
North River estuaries. 

As a hybrid piedmont/coastal plain river, the Neuse River is more like the large low-salinity SAV zones 
in Albemarle Sound and Pamlico River than is the North River. For this reason, CDOM estimates of the 
low-salinity SAV zones were made using the empirical models derived from the Neuse River dataset. 
Such use of an empirical CDOM model to estimate CDOM for waters that are not directly connected to 
where the model was developed may produce unquantified error and/or bias in the CDOM estimates that 
will impact the ability to accurately estimate KdPAR using the bio-optical model. For high-salinity waters 
where CDOM plays a less important role in PAR attenuation, the CDOM model used (either Neuse River 
or North River model) was chosen based on the degree of hydrological connectivity between that water 
body and either the Neuse River or North River. The model derived from the North River dataset was 
used to estimate CDOM for Core, Back, and Bogue Sounds while the Neuse River model was used to 
estimate CDOM for Pamlico Sound.  

5.3. Bio-optical model validation (Objective 3) 

Linear regression models were used to characterize the model fit between observed and predicted KdPAR 
values (Figure 13). These regression models, being empirically based, only provide a convenient way for 
expressing the predictive capability and biases of the model and provide no information on the 
mechanisms behind the optical model’s performance. As expected, the bio-optical model accurately 
predicted the observed KdPAR for the North River dataset upon which the model was calibrated (Figure 
13). A regression of predicted versus observed KdPAR had a slope near unity (0.97), an intercept near zero 
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(0.08 m-1) and a modestly strong R2 value (R2 = 0.67) (Figure 13). Consistent with the slope and intercept, 
the model had minimal bias with mean and median underestimation of KdPAR of less than 0.05 m-1 (Table 
6). Although this result was expected, it is included here for comparison against the validation results 
from other water bodies and because it was not included in the original paper (Biber et al. 2008). 

Table 6. Bio-optical model validation by comparison of observed KdPAR with KdPAR calculated via the bio-
optical model for North Carolina estuaries. 

Water Body Sample 
number 

Mean 
(Median) 

Obs 
KdPAR  
(m-1) 

Mean 
(Median) 

Pred. 
KdPAR  
(m-1) 

RMSE 
(m-1) 

Mean  
(Median)  

Bias  
(Obs-Pred)  

(m-1) 

Mean 
(Median) 
Bias Ratio 
(Obs/Pred) 

North River 85 1.12 
(1.01) 

1.07 
(1.01) 

0.27 0.05  
(0.04) 

1.05  
(1.04) 

Bogue Sound 297 1.27 
(1.12) 

0.94 
(0.87) 

0.56 0.34  
(0.27) 

1.40  
(1.35) 

Pamlico Sound (2000-2020) 
(CDOM  estimated) 

1009 0.99 
(0.91) 

0.73 
(0.68) 

0.35 0.27  
(0.25) 

1.40 
(1.36) 

Pamlico Sound 2020  
(CDOM measured) 

45 1.18 
(1.24) 

0.71 
(0.69) 

0.50 0.47  
(0.48) 

1.66  
(1.70) 

Pamlico Sound 2020  
(CDOM estimated) 

45 1.18 
(1.24) 

0.76 
(0.78) 

0.46 0.41  
(0.43) 

1.55 
(1.57) 

Neuse River 503 1.99 
(1.98) 

1.31 
(1.31) 

0.81 0.68  
(0.65) 

1.53  
(1.52) 

Neuse River (salinity<1) 244 2.42 
(2.32) 

1.53 
(1.48) 

0.97 0.89 
(0.80) 

1.58 
(1.54) 

Neuse River (salinity 1-5) 138 2.19 
(2.09) 

1.44 
(1.35) 

0.87 0.75 
(0.73) 

1.55 
(1.55) 

Neuse River (salinity >5) 121 1.69 
(1.59) 

1.18 
(1.11) 

0.63 0.51 
(0.54) 

1.50 
(1.49) 

Albemarle Sound 436 2.06 
(1.96) 

1.36 
(1.30) 

0.82 0.70  
(0.67) 

1.53  
(1.53) 

Pamlico River 572 1.91 
(1.92) 

1.26 
(1.31) 

0.69 0.62  
(0.60) 

1.52  
(1.52) 
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Figure 13. Comparison of observed KdPAR to predictions of KdPAR from the bio-optical model for high- 
and low-salinity waters throughout APES. Blue dots represent individual observations and predictions. 
Black solid lines represent a linear regression model of observed on predicted values with equation and 
correlation coefficient provided. Dotted black lines represent the 95% confidence interval on the 
regression and the solid red line indicates the reference (1:1) line. 

For Bogue Sound, the model did not perform as well as for the North River. The regression of predicted 
versus observed KdPAR had a slope slightly higher than unity (1.11) and a positive intercept (0.24) that 
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combined to produce a modest underestimation of the actual observed KdPAR (Figure 13) with mean and 
median biases of 0.34 and 0.27 m-1 (Table 6). The strength of the relationship (R2 = 0.43) was also 
significantly weaker than for the North River. For the Neuse River, the relationship between observed and 
predicted KdPAR was modestly strong (R2 = 0.62) but with a slope of 1.29 and intercept of 0.30, the model 
underestimated KdPAR by about 50% (Figure 13, Table 6). With a slope of about 1.2 and an intercept of 
0.36, the model fit to KdPAR estimates for Pamlico River was similar to the fit for the Neuse River. RMSE 
error, mean absolute error, mean bias ratio (Table 6) and the R2 value (R2 = 0.81) from the regression of 
predicted vs. observed values all indicated that the bio-optical model predictions for Pamlico River fit 
observations slightly better than for the Neuse River. This was surprising since errors in estimating KdPAR 

from SD for the Pamlico River dataset should add significantly to the error in the bio-optical model 
validation.  

For Albemarle Sound and its tributaries, the bio-optical model significantly underpredicted KdPAR across 
the range of KdPAR values as shown by the slope near one but a large (0.69) intercept for the regression of 
predicted on observed KdPAR values. Compared to the Pamlico River and Neuse River, there was a larger 
scatter in the relationship between bio-optical model predictions and observed KdPAR that may stem from a 
combination of a poorer ability to estimate KdPAR from SD (Table 2) or CDOM from salinity, or from a 
greater diversity of optical characteristics within the particulate fraction across such a large system that 
receives water from diverse watershed types.     

For Pamlico Sound, when CDOM was estimated based on the empirical model derived from the Neuse 
River, both the slope (1.11) and intercept (0.18) of the relationship of observed versus predicted KdPAR 
indicated a closer model fit to observations compared to the results from the Neuse River, Pamlico River 
or Albemarle Sound (Figure 13). On average the model underestimated KdPAR in southwest Pamlico 
Sound by approximately 40% (Table 3). Using direct measurements of CDOM collected from June to 
December 2020 to estimate KdPAR for Pamlico Sound did not improve the model fit. In fact, the bias 
worsened, and the model underestimated KdPAR by ~70%. Incorrect estimation of CDOM is clearly not the 
main source of the model bias for Pamlico Sound or for the Neuse River where CDOM was directly 
measured for all samples. The bias in KdPAR estimates for the Neuse River was explored further by 
breaking the samples into groups by salinity. Both the absolute and relative model biases were most 
severe in freshwater samples (salinity < 1) and progressively lessened in groupings of oligohaline 
(salinity 1-5) and mesohaline waters (salinity 5-23) (Figure 14, Table 6).  

 
Figure 14. Comparison of observed KdPAR to predictions of KdPAR from the bio-optical model along the 
salinity gradient in the Neuse River Estuary. Blue dots represent individual observations and predictions. 
Black solid lines represent a linear regression model of observed on predicted values with equation and 
correlation coefficient provided. Dotted black lines represent the 95% confidence interval on the 
regression and the solid red line indicates the reference (1:1) line. 
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Although there was hope that the Biber et al. (2008) bio-optical model would serve equally-well across 
the APES, these validation results indicate that the model performs best for high-salinity waters near the 
North River where it was originally calibrated. The underprediction of KdPAR in Albemarle Sound, 
Pamlico River, and Neuse River along with the increasingly severe underprediction bias of KdPAR along 
the salinity gradient from Pamlico Sound to the upper Neuse River estuary is an indication that the model 
is incorrectly parameterized for some aspect(s) of the absorption and/or scattering properties of optically 
active constituents associated with freshwater inputs to the APES. Reducing the bias will require 
recalibrating the bio-optical model for low-salinity waters that appear optically distinct from the North 
River. Resulting improvements in KdPAR estimates will greatly increase confidence in the model’s ability 
to accurately determine Chla thresholds for meeting the low-salinity water clarity target. Despite the 
severe bias, there was still a tight linear relationship (just far from the 1:1 line) between observed and 
modeled KdPAR in low-salinity waters. This tight linear relationship suggests that the model has a high 
likelihood of providing accurate and precise KdPAR estimates once it has been properly recalibrated.  

5.4. Chla thresholds for high and low-salinity SAV zones (Objective 4)  

Across the nine datasets from high-salinity waterbodies (see Figure 15 for locations), Chla thresholds that 
maintained KdPAR at or below 0.89 m-1 ranged from 0-36 µg L-1- and averaged 15 µg L-1 (Figure 16, Table 
7). The analyses also revealed important roles for CDOM and turbidity in PAR attenuation of the high-
salinity SAV zones. In these plots, the line of constant attenuation equal to the water clarity target is 
expressed as a function of Chla and turbidity, water quality properties that are manageable through 
watershed nutrient and sediment load reductions (Gallegos et al. 2001). Although CDOM does not appear 
on the axes of these plots, its influence can be clearly seen in the line of constant PAR attenuation as 
differences in distance from the origin. For example, the x-intercept, where KdPAR is controlled only by 
CDOM and Chla varied from 42 µg L-1 in the relatively CDOM-rich southwestern part of Pamlico Sound 
to 76 µg L-1 in the CDOM-poor waters at Shackleford Banks (Figure 16). The influence of turbidity 
combined with CDOM on PAR attenuation was especially strong in the upper North River and caused 
KdPAR to exceed 0.89 m-1 even in the complete absence of Chla. For many of the areas (Lower North 
River, Bogue Sound, Core Sound, Pamlico Sound at Ocracoke and Pamlico Sound near the Outer Banks) 
turbidity was the primary contributor of PAR attenuation, and median turbidity levels placed the average 
KdPAR close to the water clarity target even in the absence of Chla (Figure 16). 
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Figure 15. Map of the stations contained within the datasets used to establish high- and low-salinity Chla 
thresholds using the bio-optical model. Waters upstream of dark lines including Albemarle and Currituck 
Sounds, and the Pamlico, Neuse and Bay Rivers were considered low-salinity estuaries. Further 
clarification of characterization of high- and low-salinity zones can be found in Table 7.  
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Figure 16. Light threshold model applied to data from high-salinity waters within APES. Solid line 
indicates the line of constant attenuation (KdPAR = 0.89 m-1) at the high-salinity PAR attenuation target. 
Solid black dots represent measured turbidity and Chla values from each waterbody, and large yellow 
dots indicate median turbidity and Chla values. Dashed green lines link median turbidity to the maximum 
Chla threshold above which the PAR attenuation target is exceeded. Dashed red lines link median Chla to 
the maximum turbidity threshold above which the PAR attenuation target is exceeded. See Figure 15 for 
locations of the water bodies and sampling stations. 

The Chla threshold for Shackleford Banks (33 µg L-1) was greater than for all other sites and was the only 
site that had a threshold Chla greater than 30 µg L-1 (Figure 16, Table 7). At a Chla level of 23 µg L-1 

Middle Marsh had the third highest Chla threshold. Both Shackleford Banks and Middle Marsh are close 
to Beaufort Inlet, and therefore are more strongly influenced by dilution of optical constituents with high 
clarity ocean waters. For the other high-salinity areas, the North River, Bogue Sound, Pamlico Sound, and 
Core Sound, high levels of background turbidity, and to a lesser extent CDOM, led to much lower Chla 
thresholds ranging from 0 to 26 µg L-1, and an average threshold of 12 µg L-1. The threshold for 
southwest Pamlico Sound, 26 µg L-1, was the highest of the seven areas that were not immediately inside 
Beaufort Inlet (i.e., stations other than Middle Marsh and Shackleford Banks).  
The higher Chla threshold for southwest Pamlico Sound was due to median turbidity levels that were less 
than half that of the other areas, including the nearshore SAV habitats of Pamlico Sound on the back 
barrier shelf behind the Outer Banks (Figure 16, Table 7), and also partly due to the underestimation bias 
that became more severe in these relatively lower-salinity waters (Table 7). Lower turbidity in the deeper 
waters of Pamlico Sound may result from reduced susceptibility of resuspension from waves and currents 
and dilution of resuspended sediments in the larger volume associated with deeper waters. Alternatively, 
lower turbidity measured in the deeper portions of Pamlico Sound may be due to a bias toward sampling 
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the open waters of Pamlico Sound on less-windy, calmer days when sediment resuspension is lessened. 
Higher turbidity at the two shallow-water datasets from behind the Outer Banks in Pamlico Sound (the 
routine monitoring at Ocracoke and a synoptic survey during July 2015 from Bodie Island to Shackleford 
Banks both conducted by the Cape Hatteras National Seashore - see Table 1) led to lower Chla thresholds 
of 10 µg L-1at Ocracoke and 3 µg L-1 from Bodie Island to Shackleford Banks The lower Chla thresholds 
indicated by data collected in the shallower, nearshore areas are therefore most appropriate for evaluating 
the current North Carolina standard and establishing new statewide or regional Chla standards for 
protecting SAV habitats. This finding also suggests that use of deep-water monitoring locations for 
establishing shallow-water optical conditions may underestimate PAR attenuation within shallow water 
SAV habitats, particularly where turbidity is a major component of PAR attenuation.  

Turbidity thresholds identified by the inverted bio-optical model for high-salinity waters ranged from 4 to 
9 NTU. Across the nine high-salinity datasets, higher CDOM and moderate Chla levels resulted in the 
lowest turbidity thresholds, 4-6 NTU all occurring in Pamlico Sound. A threshold turbidity value of 5 
NTU is appropriate to meet the light requirements of Pamlico Sound which represents the majority of 
NC’s high salinity SAV habitat area.  

Table 7. Modeled Chla thresholds for protection of SAV and median values of optical indicators in high- 
and low-salinity regions of APES. 

 

A threshold of approximately 15 µg L-1 Chla appears appropriate to meet the light requirements for high-
salinity SAV habitats of Core and Bogue Sounds. This value, 15 µg L-1 Chla, is the same Chla threshold 
established for polyhaline regions of Chesapeake Bay based on the presence/absence of SAV beds 
(Dennison et al. 1993). The thresholds from the two datasets available for the SAV area in Pamlico Sound 
along the Outer Banks provided Chla thresholds of 10 µg L-1 for the time series at Ocracoke and 3 µg L-1 
for the SECN synoptic survey. These thresholds are lower than for the other high-salinity areas and 
suggest that perhaps the threshold for these areas may need to be lower. However, these thresholds were 

Salinity 
Zone 

Location Median 
CDOM 
a440 (1/m) 

Median 
Chl a  
(µg/L) 

Chl a  
Threshold 
(µg/L) 
(95% C.I.) 

Median 
Turbidity 
(NTU) 

Turbidity 
Threshold 
(NTU) 
(95% C.I.) 

High Upper North River 1.01 3.4 20 9.4 5.9 (5.0-6.9) 
High Lower North River 0.34 3.1 17 (8-22) 6.7 8.3 (7.8-8.7) 
High Middle Marsh 10.59 1.8 23 (14-28) 4.9 7.6 (7.5-7.7) 
High Shackleford Banks 10.31 2.5 33 (24-37) 4.8 8.5 (8.2-8.9) 
High Bogue Sound 10.39 3.4 12 (7-19) 7.1 8.1 (8.1-8.3) 
High Core Sound near Outer Banks 10.65 2.5 15 (3-22) 5.7 7.2 (5.7-7.5) 
High Pamlico Sound at Ocracoke 10.79 4.5 10 (4-19) 5.7 6.3 (5.6-6.9) 
High Southwestern Pamlico Sound 11.33 7.5 26 (25-28) 2.1 4.4 (4.3-4.8) 
High Pamlico S. near Outer Banks 11.19 3.9 3 (0-16) 5.3 5.3 (5.1-5.6) 
Low Western Albemarle Sound 16.69 7.6 20 6.1 1.7 (1.7-2.1) 
Low Eastern Albemarle Sound 14.72 12.0 7 (6-12) 5.3 4.6 (4.4-5.3) 
Low Chowan River 16.80 5.5 20 5.6 1.8 (1.6-2.4) 
Low Albemarle Tributaries  16.04 7.7 20 5.7 2.8 (2.7-3.5) 
Low Upper Pamlico River 15.23 23.0 20 7.6 2.1 (1.4-2.7) 
Low Lower Pamlico River 11.76 14.0 76 (72-77) 3.5 10.6 (10.3-10.8) 
Low Upper Neuse River 6.25 10.4 20 5.8 2.1 (2.0-2.4) 
Low Lower Neuse River 2.08 17.1 77 (76-78) 2.5 9.5 (9.3-9.6) 
1CDOM values were estimated by empirical relations with salinity and season described in section 3.2.  
2Median turbidity and CDOM caused KdPAR to exceed the Chla threshold even if Chla was zero.  
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calculated based on a very small amount of data which leads to high uncertainty. It seems particularly 
likely that the small snapshot of conditions captured by the SECN synoptic survey failed to adequately 
define the average turbidity and CDOM concentrations of this large area and there is low confidence in 
the very low 3 µg L-1 threshold calculated for this region. The 95% confidence intervals for the Chla 
thresholds from both datasets overlapped a Chla value of 15 ug L-1 which is consistent with 15 ug L-1 

being a threshold broadly protective of high-salinity SAV zones in North Carolina. 

Chla and turbidity thresholds were calculated for eight low-salinity regions within the APES. Of these 
regions, only the lower segment of the Neuse and Pamlico Rivers and eastern Albemarle Sound had a 
Chla threshold greater than zero (Figure 17, Table 7). For all other regions, the combination of CDOM 
and turbidity produced PAR attenuation that exceeded the low-salinity water clarity target even in the 
absence of Chla. For eastern Albemarle Sound, the model calculated a low Chla threshold of 7 µg L-1, 
and at 12 µg L-1, median Chla was nearly twice this threshold. In contrast, Chla thresholds for the lower 
Neuse and Pamlico Rivers were 77 and 76 µg L-1, respectively, and median Chla values were much lower 
than the thresholds at 14 and 17 µg L-1, respectively. Median turbidity for the lower regions of the Neuse 
and Pamlico Rivers was very low (< 3 NTU) and CDOM a440 was moderate at ~ 2 m-1 (Table 7). 

 
Figure 17. Light threshold model applied to data from low-salinity waters within APES. Solid line 
indicates the line of constant attenuation (KdPAR = 1.36 m-1) at the low-salinity PAR attenuation target. 
Solid black dots represent measured turbidity and Chla values from each waterbody, and large yellow 
dots indicate median turbidity and Chla values. Dashed green lines link median turbidity to the maximum 
Chla threshold above which the PAR attenuation target is exceeded. Dashed red lines link median Chla to 
the maximum turbidity threshold above which the PAR attenuation target is exceeded. See Figure 15 for 
locations of the water bodies and sampling stations. 
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Similarly, the combination of high CDOM and Chla generally led to much lower turbidity thresholds 
compared to the turbidity thresholds of the high-salinity estuarine waters (Figure 17, Table 7). The 
tributaries and western part of Albemarle Sound and the upper parts of the Neuse and Pamlico Rivers had 
low turbidity thresholds within the narrow range of 2-3 NTU. The turbidity threshold in eastern 
Albemarle Sound was slightly higher at 5 NTU. Within all of these regions, median turbidity was much 
higher than the turbidity threshold. In contrast, the lower CDOM and Chla levels of the lower Neuse and 
Pamlico Rivers produced relatively high turbidity thresholds of ~10 NTU, and in these areas median 
turbidity is significantly less than the turbidity threshold for low-salinity SAV.   

Although it appears that the Chla and turbidity thresholds for the lower parts of the Neuse and Pamlico 
Rivers are much higher than the current levels of Chla and turbidity, the estimates of PAR attenuation for 
all of these low-salinity estuarine zones are underestimates. Therefore, all of the low-salinity thresholds 
should be considered overestimates and the true low-salinity zone Chla and turbidity thresholds are likely 
lower by an amount approximated by the underestimation of KdPAR, ~50% for the Neuse and Pamlico 
Rivers (Table 7). Determining scientifically defensible Chla and turbidity thresholds for low-salinity 
waters will require recalibrating the bio-optical model to account for the optical differences of the 
suspended particulate material of the different low-salinity waterbodies.  
5.5. Comparison of Chla and turbidity thresholds for SAV to water quality standards (Objective 5) 

Based on the underlying distributions of Chla within North Carolina estuarine waters, a scatter plot of 
median vs. 90th quantiles for Chla (Figure 18) showed that a median value of 15 µg L-1 corresponds 
closely to a 90th quantile of 40 µg L-1. Therefore, in the absence of statistical uncertainty, the current Chla 
standard of 40 µg L-1 set at the 90th quantile and the 15 µg L-1 threshold calculated for high-salinity 
regions of Core Sound south and west through Bogue Sound are basically equivalent, and the standard as 
it is currently written would be protective for these high-salinity SAV habitats as long as a high enough 
number of samples is collected to make uncertainty negligible. In practice, smaller sample size generated 
considerable uncertainty. A scatter plot of median Chla versus Chla at the critical quantile for a 
declaration of impairment (i.e., listing on the US EPA’s 303d list of impaired waters) (Figure 18) showed 
that the  median threshold value of 15 µg L-1 determined by the bio-optical model as protective for high-
salinity regions of Core Sound south and west through Bogue Sound corresponds to a critical value of 
Chla of about 30 µg L-1, approximately 25% lower than the current Chla standard of 40 µg L-1 set at the 
90th quantile. The analysis was also applied to determine what Chla standard assessed using the current 
methodology and sampling frequency would be required if a lower threshold of 10 µg L-1 was deemed 
necessary for the protection of Pamlico Sound’s SAV beds along the Outer Banks. Results indicated that 
a standard of about 20 µg L-1 Chla would be protective of a 10 µg L-1 median Chla threshold using 
current sampling frequency and statistical assessment methodology.  

The median turbidity threshold value of 5 NTU determined by the bio-optical model as protective for 
high-salinity SAV zones corresponds to a 90th quantile of 12 NTU, less than half the current standard of 
25 NTU. When statistical uncertainty is considered, a median turbidity threshold of 5 NTU corresponded 
to a critical value of turbidity of about 10 NTU. So, with current assessment methods, the current 
turbidity standard of 25 NTU would need to be reduced to 10 NTU to protect a median turbidity of 5 
NTU or less.  

Clearly, the current Chla and turbidity standards combined with the current assessment methodology and 
uncertainty related to sample size result in impairment assessments that do not provide an adequate 
degree of protection of water clarity for high-salinity SAV. For Chla, assessments based on larger sample 
sizes could reduce statistical uncertainty and result in an assessment approach that is protective of high-
salinity SAV without changing the current numeric standard. For turbidity, however, the current 25 NTU 
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standard is at least a factor of 2 too high, and the numeric standard will need to be lowered significantly to 
protect high salinity SAV.   

5.6. Comparison of current water clarity to SAV-related water clarity targets (Objective 6) 
Direct measurements, model predictions from the bio-optical model, and estimates of KdPAR based on SD 
measurements were compared for high- and low-salinity waters throughout APES against the high- and 
low-salinity SAV zone targets for PAR transmission, 22 and 13 % of incident PAR to 1.7 and 1.5 m 
depth, respectively. Recall that these water clarity targets were derived based on a compilation of SAV 
light requirements for growth and empirical observations about the colonization depths of SAV for high- 
and low-salinity regions of North Carolina’s estuarine waters.  

In general, water clarity in Albemarle Sound and its tributaries does not meet low-salinity SAV light 
requirements. The western most areas of the Albemarle Sound system, including the Chowan River and 
near the mouth of the Roanoke River had the greatest water clarity with many sites having PAR 
availability greater than half the target (Figure 19). Eastward, water clarity of Albemarle Sound and its 
tributaries including the Scuppernong, Alligator, Perquimans, Little, Pasquotank and North Rivers was 
poorer, with most sites achieving less than 25% of the targeted PAR availability. Water clarity met the 
target at five sites in Albemarle Sound. At these sites, KdPAR was directly measured as part of the NCCA 
and the validity of the data is not questioned. However, only one or at most two measurements were made 
at each site, and it appears likely that the measurements were made during a period of unusually good 
water clarity not representative of the average condition. This trend of spatially coherent patterns of water 
clarity with a few outliers represented by stations with low sample number was common throughout the 
APES. Water clarity in Currituck Sound increased from north to south with PAR attenuation in the 
northern part north of the Narrows generally achieving less than 25% of the PAR target, and water clarity 
south of the Narrows achieving 25-50% of the target. 
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Figure 18. Scatter plot of median Chla (left panels) and turbidity (right panels) versus values at the 90th 
quantiles (top panels) and at the critical quantiles for a 303d listing as an impaired water (bottom panels) 
for monitoring locations throughout North Carolina estuarine waters. Red dashed lines link Chla and 
turbidity thresholds identified by the bio-optical model for high-salinity SAV waters to the equivalent 
Chla and turbidity values at critical quantiles used for assessing impairment. Red solid lines link median 
Chla and turbidity to the current NC numeric standards for Chla and turbidity as they are assessed using 
current sampling frequency and statistical methodologies.  
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Figure 19. Map of Albemarle and Currituck Sounds showing light availability for SAV. Symbol colors 
indicate PAR availability expressed as the fraction of the low-salinity SAV PAR target (13% incident 
PAR to 1.5 m depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi 
disk measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by solid black lines. 

Water clarity in the high-salinity waters of Pamlico Sound also exhibited coherent patterns with strong 
east to west and north to south gradients (Figure 20). Along the western side of Pamlico Sound, PAR 
availability was almost always less than 50% of the high-salinity target. Clarity at sites on the western 
shore of Pamlico Sound from Wysocking Bay north generally had clarity that provided less than 25% of 
the PAR target while clarity in western shore areas south and west of Wysocking Bay typically provided 
25-50% of the target. At most Pamlico Sound stations between Pamlico River and Bay River, PAR 
availability was fair, achieving 50-100% of the target. The open waters of southwestern Pamlico Sound 
that were largely assessed by direct measurements made at nine stations by the ModMon program had 
water clarity that was slightly less than the target with all the ModMon stations except one having clarity 
50-100% of the target. The other ModMon station north of Cedar Island met the target and three sites 
directly measured by the NCCA program showed a range of values from meeting the target to less than 
25% of SAV PAR target. Along the shallow eastern side of Pamlico Sound where most of North 
Carolina’s SAV occurs, water clarity was very near the target with most sites achieving 50-200% of the 
clarity target. The area north of Oregon Inlet was an exception where PAR availability at most stations 
was less than 50% of the target.  
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Figure 20. Map of Pamlico Sound showing light availability for SAV. Symbol colors indicate PAR 
availability expressed as the fraction of the high salinity SAV PAR target (22% incident PAR to 1.7 m 
depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi disc 
measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by solid black lines. 

Low-salinity waters of Pamlico and Pungo Rivers and their tributaries generally had clarity that did not 
meet the low-salinity PAR availability target (Figure 21). A downstream gradient of improving clarity 
was apparent within the Pamlico River where waters upstream of the Aurora ferry crossing (dashed line in 
Figure 21) generally had clarity that provided less than 50% of the PAR target while waters downstream 
including the Pungo River provided PAR closer (50-100%) to the target. Most open water stations of the 
downstream Pamlico River and stations near creek mouths had sufficient clarity to meet the PAR target. 
Clarity within some of the tributary creeks such as South Creek and Goose Creek exhibit downstream 
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gradients similar to the main stem Pamlico River with poorer clarity upstream. 

 
Figure 21. Map of the Pamlico and Pungo Rivers showing light availability for SAV. Symbol colors 
indicate PAR availability expressed as the fraction of the low-salinity SAV PAR target (13% incident 
PAR to 1.5 m depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi 
disk measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by the solid black line. Dashed line 
represents the Aurora ferry crossing.  

A similar downstream gradient was observed in the Neuse River (Figure 22). Stations upstream of 
Fairfield harbor where the estuary widens generally provided less than 50% of the PAR target. Stations 
from Fairfield to Cherry Branch where the estuary bends toward the northeast, generally achieved 50-
100% of the target, and from there downstream, the open waters of the Neuse River met the water clarity 
target. Tributary creeks generally had lower clarity and generally achieved less than 50% of the PAR 
target.  Most stations on the Bay River achieved 50-100% of the low-salinity PAR target with a few 
stations achieving less but no stations meeting the clarity target (Figure 22).  
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Figure 22. Map of the Neuse and Bay Rivers showing light availability for SAV. Symbol colors indicate 
PAR availability expressed as the fraction of the low-salinity SAV PAR target (13% incident PAR to 1.5 
m depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi disk 
measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by solid black lines.   

Of all the waters within APES, Core Sound has the best water clarity (Figure 23). Nearly half of the sites 
within Core Sound met the high-salinity PAR attenuation target, and five stations achieved twice the 
targeted PAR availability. Water clarity in tributary creeks along the western margin of Core Sound was 
highly variable achieving from less than half to more than 100% of the PAR target (Figure 23). Within 
Back Sound and North River, sites near Beaufort Inlet are generally meeting the high-salinity water-
clarity target while stations further inland generally achieve 50-100% of the PAR target (Figure 23). 
Some of the tributary creeks of the North River and the upper Newport River have poorer clarity that 
provide only 25-50% of the PAR target. The large dataset of direct KdPAR measurements made by UNC-
IMS off its dock indicate that the clarity target is not being met at this site (64% of the target). PAR 
attenuation estimates derived from SD generally indicate that water-clarity targets are met in Bogue 
Sound (100-200% of the target) (Figure 24) but most of these sites are in tributary creeks that empty to 
Bogue Sound and may not represent clarity in the main body of Bogue Sound. Median clarity at the single 
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station in the main body of western Bogue Sound was 98% of the PAR target.

 
Figure 23. Map of Core Sound showing light availability for SAV. Symbol colors indicate PAR 
availability expressed as the fraction of the high-salinity SAV PAR target (22% incident PAR to 1.7 m 
depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi disk 
measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by solid black lines.   

Between aerial surveys of SAV coverage conducted by APNEP in 2006-2007 and 2013, the area between 
Barden’s Inlet and Bogue Inlet experienced an 11% decline in SAV coverage. The decline in this 
southern region of APES was greater than declines observed for northern and central regions of the APES 
and has been putatively linked to the relatively higher and growing population density of the area, 
particularly for western Bogue Sound where SAV declines were highest (Field et al. 2021). However, the 
analysis of water clarity presented here shows that, on average, PAR attenuation of western Bogue Sound 
should be favorable for the persistence of SAV. It is important to remember that KdPAR conditions shown 
here are median values over the past 20 years. Examining the time course of KdPAR estimates for the two 
longest records from western Bogue Sound revealed that KdPAR increased (water clarity declined) from 
below the PAR attenuation target to above the target at about the time of the 2013 survey, and then 
decreased again (improved water clarity) to below the target in 2019. In eastern Bogue Sound, KdPAR 
exhibited a slight decline over the same period (Figure 25). Whether the increase in KdPAR in western 
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Bogue Sound was the cause of the observed decline in SAV coverage is unclear but it does highlight the 
possibility that substantial changes in water clarity may have occurred during the 20-year averaging 
period used in this study, and that the average PAR attenuation may not accurately reflect current 
conditions. An examination of variation in trends over time in KdPAR throughout APES was outside the 
scope of this project but would significantly improve our understanding of the status and trajectory of 
changing light conditions for SAV within the APES.  

  
Figure 24. Map of Bogue Sound showing light availability for SAV. Symbol colors indicate PAR 
availability expressed as the fraction of the high-salinity SAV PAR target (22% incident PAR to 1.7 m 
depth). Symbol shapes represent whether KdPAR at the station were estimated from Secchi disk 
measurements, directly measured using a PAR sensor, or modeled via the bio-optical model. Small 
numbers beside each symbol indicate the number of KdPAR values from each station. Percentage cut offs 
for each category include the lower end and exclude the upper end of the range. Inset histogram shows the 
distribution of clarity levels within the area of interest delineated by solid black lines. 
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Figure 25. Time series of KdPAR estimates derived from Secchi disk depth data collected by NCDMF at 
two stations in western Bogue Sound and direct KdPAR measurements by UNC-IMS at the UNC-IMS dock 
in eastern Bogue Sound (yellow square with sample number equal to 297 in Figure 24). The NCDMF 
stations correspond to the green circles with sample numbers equal to 22 shown in Figure 24. CC21 is to 
the northeast of CC21A. The dashed red line indicates the high-salinity KdPAR target for high-salinity 
waters, 0.89/m.  
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6. Data Gaps (Objective 7) 

6.1. CDOM data 

CDOM is an important component of light absorption throughout North Carolina estuarine waters and 
can be the dominant component in low-salinity zones (Woodruff et al. 1999; Corbett et al. 2020). It is also 
the least routinely measured of the three optically active constituents required to model PAR attenuation 
and accurately determine impacts of additional attenuation due to changes in Chla. The only CDOM 
datasets currently available are from the Neuse River and North River estuaries. However, there are 
opportunities to expand the availability of CDOM data without significant expense. A plan is currently 
being developed to collect CDOM for the Albemarle Sound and Pamlico Rivers in conjunction with 
NCDWR’s AMS monitoring. This will produce the coincident turbidity, Chla, and CDOM data necessary 
to predict KdPAR from the bio-optical model. There are also remote sensing techniques developed for use 
across several platforms (e.g., Landsat, ETM+, OLCI, etc.) that could be exploited to hind cast CDOM 
concentrations based on nearly three decades of satellite imagery (Griffin et al. 2018). Additionally, the 
USACE has collected a valuable, high temporal resolution (15-minute), long-term (three-year) CDOM 
dataset for two sites in Currituck Sound. This dataset is currently expressed as arbitrary fluorescence units 
and would require post-calibration by paired measurements of Currituck water samples using the CDOM 
fluorescence instrument and a spectrophotometer to measure absorbance at 440 nm. This post-calibration 
exercise should receive high priority, as it would produce an extensive optical dataset for assessing SAV 
habitat conditions and the factors that control the dynamics of water clarity in Currituck Sound, 
historically the largest low-salinity SAV habitat in North Carolina (NCDEQ 2021a). 

6.2. Direct measurements of KdPAR 
Like CDOM, direct measurements of KdPAR are scarce for APES. Long-term records are restricted to the 
Neuse River, southwest Pamlico Sound, and the dock at UNC-IMS on Bogue Sound. Although, as 
demonstrated in this project, SD can be used to estimate KdPAR, there is always an increased level of 
uncertainty in the estimates, particularly when the estimates are made for regions hydrologically distinct 
from the waters where the empirical models used to relate SD and KdPAR were developed. Adding direct 
measures of KdPAR to current monitoring programs such as the AMS, or the Cape Hatteras/Cape Lookout 
National Seashore’s monitoring programs that already measure SD could provide valuable KdPAR data that 
could be used directly to understand water clarity in important SAV zones but could also be used to 
develop improved region-specific empirical models to relate SD to KdPAR.  

6.3. Measurements of optically active water quality constituents from SAV habitats along 
the Outer Banks 
The water-clarity information for Pamlico Sound and Core Sounds along the Outer Banks primarily 
consists of SD collected by NCDMF. Data on turbidity, Chla, and CDOM to determine the drivers of 
PAR attenuation for this important high-salinity SAV habitat are available only from one long-term 
monitoring station at Ocracoke, sampling of a few stations once every five years as part of the NCCA, 
and a single synoptic survey of 18 stations conducted by Cape Hatteras/Cape Lookout National 
Seashore’s monitoring program as part of the SECN. The concentrations of optically active constituents 
in the nearshore, shallow SAV beds differ substantially from the deeper areas of Pamlico Sound 
monitored by ModMon. So, determining the drivers of water clarity for North Carolina’s most expansive 
SAV habitats would be greatly improved by more data collected from within waters over the SAV beds. 
Establishing routine monitoring of optical properties at several sentinel sites along the Outer Banks 
should be a priority and would improve confidence in Chla threshold concentrations for the expansive 
SAV habitats on the back barrier shelves behind the Outer Banks. Monitoring of optical constituents is 
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more frequent along the southern Outer Banks, particularly near Beaufort Inlet where the NERRS in 
collaboration with Cape Hatteras/Cape Lookout National Seashore maintains two continuous monitoring 
stations at Middle Marsh and Shackleford Banks, and UNC-IMS conducts the Bogue Watch program in 
eastern Bogue Sound. These monitoring programs should be supported to ensure continued data 
availability for this area where human population and coastal development pressures are high, and the 
decline in high-salinity SAV acreage is steepest among APNEP’s survey regions (Field et al. 2021). 

6.4. Measurements of the scattering and absorption spectra and scaling coefficients for low-
salinity SAV zones 
The bio-optical model clearly performed better for high-salinity waters than for low-salinity waters where 
it consistently underpredicted observed KdPAR. Each of the model coefficients shown in Table 5 as well as 
the spectral absorption shape function for phytoplankton were determined based on measurements of 
scattering and absorption of water samples collected along the estuarine gradient of the North River, a 
high-salinity, coastal plain estuary. Some of the model parameters, particularly the ratio of backscattering-
to-scattering and turbidity-specific backscattering coefficient are extremely sensitive to the composition 
of suspended particulates in the water, and dominant particulate type can vary substantially between high- 
and low-salinity waters (Woodruff et al. 1999). Even the spectrum of CDOM changes as it is 
photodegraded during downstream transport in estuaries, resulting in an increase in spectral slope and 
changes in the ability to estimate CDOM absorption across the PAR wavelengths (400-700 nm) from 
CDOM measurements made at 440 nm (Gallegos et al. 2005). Accurately portraying the optical 
characteristics of CDOM, non-algal particulates, and phytoplankton within the low-salinity waters of 
APES will require recalibrating the bio-optical model for those waters. As mentioned previously, 
although the current model underestimates KdPAR, there was still a strong relationship between model 
predictions and observed KdPAR values. The strength of the relationships provide confidence that the 
model will be able to estimate KdPAR with an acceptable degree of accuracy and precision once it is 
calibrated for the distinct scattering and absorbing properties of the optically active constituents of the 
low-salinity estuarine zones.  

 
 



58 
 

7. Acknowledgements 

This work was greatly facilitated by helpful discussions with Dr. Charles Gallegos, Dr. Jud Kenworthy, 
and Dr. Tim Ellis, and by help accessing data from Dr. Mike Piehler, Suzanne Thompson, Dr. Michelle 
Moorman, Dr. Brandon Puckett, Dr. Hans Paerl, Dr. Reid Corbett, Nora Deamer, Jim Hawhee, Tammy 
Hill, Anne Deaton, Casey Knight, Patrick Dickhudt, and Dr. Jud Kenworthy. Dr. Tim Ellis and Dr. Jud 
Kenworthy greatly improved the report through several rounds of editing.  



59 
 

8. References 

 

APNEP (Albemarle-Pamlico National Estuary Partnership). 2020. Clean Waters and SAV: Making the 
Connection Technical Workshop summary report. APNEP, 1601 Mail Service Center, Raleigh, NC 
https://apnep.nc.gov/our-work/monitoring/submerged-aquatic-vegetation-monitoring/clean-waters-
and-sav-making-connection 

Biber, P.D., Gallegos, C.L., Kenworthy, W.J. 2008. Calibration of a bio-optical model in the North River, 
North Carolina (Albemarle-Pamlico Sound): A tool to evaluate water quality impacts on seagrasses. 
Estuaries and Coasts 31: 177-191. 

Bowers, D.G., Brett, H.L. 2008. Relationship between CDOM and salinity in estuaries: An analytical and 
graphical solution. Journal of Marine Systems 73: 1-7. 

Corbett, D.R., Biarrieta, N., Dickhudt, P., Fonseca, M., Hodel, E., Mason, E., Paris, P., Wadman, H., 
Walsh, J.P. 2020. Final Report. SAVE Currituck Sound: Submerged aquatic vegetation evaluation in 
Currituck Sound, NC. NCDOT Project 2018-05.  

Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V., Kollar, S., Bergstrom, P.W., 
Batiuk, R.A. 1993. Assessing water quality with submerged aquatic vegetation. Bioscience 43: 86-94. 

Fernandes, M.B., Daly, R., Van Gils, J., Kildea, T., Caires, S., Erftemeijer, P.L.A. 2018. Parameterization 
of an optical model to refine seagrass habitat requirements in an urbanized coastline. Estuarine, 
Coastal and Shelf Science 207: 471-482.  

Field, D., Kenworthy, J., Carpenter, D. 2021. Extent of submerged aquatic vegetation: High salinity 
waters. Metric report. (REVISED). Albemarle-Pamlico National Estuary Partnership. Raleigh, NC. 
19 pp. https://apnep.nc.gov/documents/files/metric-report-extent-submerged-aquatic-vegetation-high-
salinity-estuarine-waters 

Gallegos, C.L. 2001. Calculating optical water quality targets to restore and protect submerged aquatic 
vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for 
photosynthetically active radiation. Estuaries 24: 381-397.  

Gallegos, C.L. 2005. Optical water quality of a blackwater river estuary: the Lower St. Johns River 
Florida, USA. Estuarine, Coastal, and Shelf Science 63: 57-72.  

Gallegos, C.L., Werdell, P.J., McClain, C.R. 2011. Long-term changes in light scattering in Chesapeake 
Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of 
Geophysical Research-Oceans 116: C00H08 

Giese, G.L., Wilder, H.B., Parker, G.G. Jr . 1979. Hydro1ogy of major estuaries and sounds of North 
Carolina. U.S. Geological Survey Water Resources Investigation 79-46: 1-175. 

Griffin, C.G., McClelland, J.W., Frey, K.E., Fiske, G., Holmes, R.M. 2018. Quantifying CDOM and 
DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote 
Sensing of Environment 209: 395-409. 

Hall, M.J., Van den Boogaard, H.F.P., Fernando, R.C., Mynett, A.E., 2004. The construction of 
confidence intervals for frequency analysis using resampling techniques. Hydrology and Earth 
System Sciences 8, 235-246. 

https://apnep.nc.gov/our-work/monitoring/submerged-aquatic-vegetation-monitoring/clean-waters-and-sav-making-connection
https://apnep.nc.gov/our-work/monitoring/submerged-aquatic-vegetation-monitoring/clean-waters-and-sav-making-connection
https://apnep.nc.gov/documents/files/metric-report-extent-submerged-aquatic-vegetation-high-salinity-estuarine-waters
https://apnep.nc.gov/documents/files/metric-report-extent-submerged-aquatic-vegetation-high-salinity-estuarine-waters


60 
 

Hall, N.S., Paerl, H.W., Peierls, B.L., Whipple, A.C., Rossignol, K.L. 2013. Effects of climatic variability 
on phytoplankton biomass and community structure in the eutrophic, microtidal, New River Estuary, 
North Carolina, USA. Estuarine and Coastal Shelf Science 117: 70-82.  

Harborne, A.R., Mumby, P.J., Fiorenza, M., Perry, C.T., Dahlgreen, C.P., Holmes, K.E., Brumbaugh, 
D.R. 2006. The functional value of Caribbean coral reef, seagrass and mangrove habitats to 
ecosystem processes. Advances in Marine Biology 50: 57-189.  

Hounshell, A.G., Rudolph, J.C., Van Dam, B.R., Hall, N.S., Osburn, C.L., Paerl, H.W. 2019. Extreme 
weather events modulate processing and export of dissolved organic carbon in the Neuse River 
Estuary, NC. Estuarine, Coastal and Shelf Science 219: 189-200.  

Jia, P., Li, M. 2012. Dynamics of wind-driven circulation in a shallow lagoon with strong horizontal 
density gradient. Journal of Geophysical Research 117; C05013, doi:10.1029/2011JC007475. 

Kemp, W.M., Batiuk, R., Bartleson, R., Bergstrom, P., Carter, V., Gallegos, C.L., Hunley, W. Karrh, L,. 
Koch, E.W., Landwehr, J.M., Moore, K.A., Murray, L., Naylor, M., Rybicki, N.B., Stevenson, J.C., 
Wilcox, D.J. 2004. Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water 
quality, light regime, and physical-chemical factors. Estuaries 27: 363-377.  

Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, 
Cambridge.  

Lebo, M.E., Paerl, H.W., Peierls, B.L. 2012. Evaluation of progress in achieving TMDL mandated 
nitrogen reductions in the Neuse River Basin, North Carolina. Environmental Management 49: 253-
266.  

Lee, Z., Du, K., Arnone, R. 2005. A model for the diffuse attenuation coefficient of downwelling 
irradiance. Journal of Geophysical Research 110: C02016, doi: 10. 1029/2004JC002275, 2005. 

Lefcheck, J.S., Wilcox, D.J., Murphy, R.R., Marion, S.R, Orth, R.J. 2017. Multiple stressors threaten the 
imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Global 
Change Biology 23: 3474-3483. 

Loder, T.C., Reichard, R.P. 1981. The dynamics of conservative mixing in estuaries. Estuaries 4: 64-69.  

Mallin, M.A., Burkholder, J.M., Cahoon, L.B., Posey, M.H. 2000. North and South Carolina Coasts. 
Marine Pollution Bulletin 41: 56-75.   

Martin, J. L., McCutcheon, S.C. 1999. Hydrodynamics and transport for water quality modelling. Lewis 
Publishers, Washington, D.C., USA. 

Moorman, M.C., S.A. Fitzgerald, L. N. Gurley, A. Rhoni-Aref, and K.A. Loftin. 2017. Water quality and 
bed sediment quality in the Albemarle Sound, North Carolina, 2012–14: U.S. Geological Survey 
Open-File Report 2016 –1171, 46 p., https://doi.org/10.3133/ofr20161171. 

NCDEQ. 2021a. North Carolina Department of Environmental Quality. Pasquotank River Basin Water 
Resources Plan Draft. https://deq.nc.gov/about/divisions/water-resources/water-planning/basin-
planning/water-resource-plans/pasquotank/draft 

NCDEQ. 2021b. North Carolina Department of Environmental Quality. 2022 303d Listing and Delisting 
Methodology. May 2021, Raleigh, NC. 

Paerl, H.W., Hall, N.S., Hounshell, A.G., Luettich, R.A. Jr., Osburn, C.L. 2019. Recent increase in 
catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations 
suggest a regime shift. Nature Scientific Reports 9: Article number: 10620 (2019) 

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=AdvancedSearch&qid=6&SID=7C8YGqrbiAfdB4UsLp7&page=2&doc=17
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=AdvancedSearch&qid=6&SID=7C8YGqrbiAfdB4UsLp7&page=2&doc=17
https://doi.org/10.3133/ofr20161171.
https://deq.nc.gov/about/divisions/water-resources/water-planning/basin-planning/water-resource-plans/pasquotank/draft
https://deq.nc.gov/about/divisions/water-resources/water-planning/basin-planning/water-resource-plans/pasquotank/draft


61 
 

Paerl, H.W., Valdez, L.M., Joyner, A.R., Piehler, M.F., Lebo, M.E2004. Solving problems resulting from 
solutions: Evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, 
North Carolina. Environmental Science & Technology 38: 3068-3073.  

Peierls, B.L., Hall, N.S., Paerl, H.W. 2012. Non-monotonic responses of phytoplankton biomass 
accumulation to hydrologic variability: A comparison of two coastal plain North Carolina estuaries. 
Estuaries and Coasts 35:1376–1392.  

Petus, C., Devlin, M., Teixera da Silva, E., Lewis, S., Waterhouse, J., Wenger, A., Bainbridge, Z., Tracey, 
D. 2018. Defining wet season water quality target concentrations for ecosystem conservation using 
empirical light attenuation models: A case study in the Great Barrier Reef (Australia). Journal of 
Environmental Management 213: 451-466. 

Pinckney, J.L., Paerl, H.W., Harrington, M.B., Howe, K.E. 1998.  Annual cycles of phytoplankton 
community-structure and bloom dynamics in the Neuse River Estuary North Carolina.  Marine 
Biology 131: 371-381. 

Prairie, Y.T. 1996. Evaluating the predictive power of regression models. Canadian Journal of Fisheries 
and Aquatic Sciences 53: 490-492.  

Qi, S., Sun, G., Wang, Y., McNulty, S.G., Myers, J.A.M. 2009. Streamflow response to climate and 
landuse changes in a coastal watershed in North Carolina. Transactions of the American Society of 
Agricultural and Biological Engineers 52: 739-749.  

RTI. 2013. Final Monitoring Report. Defense/Coastal/Estuarine Research Program (DCERP1). SERDP 
Project RC-1413. 

Speight, H. 2020. Submerged aquatic vegetation in a low-visibility, low-salinity estuary in North 
Carolina: Identifying temporal and spatial distributions by sonar and local ecological knowledge. 
Ph.D. Dissertation. East Carolina University, Greenville, North Carolina. May 2020.  

Spencer, R.G.M., Aiken, G.R., Dornblaser, M.M., Butler, K.D., Holmes, R.M., Fiske, G., Mann, P.J., 
Stubbins, A., 2013. Chromophoric dissolved organic matter export from U.S. Rivers. Geophysical 
Research Letters 40: 1575–1579. https://doi.org/10.1002/grl.50357. 

Unsworth, R.F.K., Cullen, L.C., Pretty, J.N., Smith, D.J., Bell J.J. 2010. Economic and subsistence values 
of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area 
management. Ocean & Coastal Management 53: 218-224. 

Vahätalo, A. Wetzel, R.G., Paerl, H.W. 2005. Light absorption by phytoplankton and chromophoric 
dissolved organic matter in the drainage basin and estuary of the Neuse River, North Carolina 
(U.S.A.). Freshwater Biology 50: 477-493. 

Van Dam, B.R., Wang, H. 2019. Decadal-scale acidification trends in adjacent North Carolina estuaries: 
Competing role of anthropogenic CO2 and riverine alkalinity loads. Fronteirs in Marine Science doi: 
10.3389/fmars.2019.00136 

Wen, H. Perdrial, J., Abbott, B.W., Bernal, S., Dupass, R., Godsey, S.E., Harpold, A., Rizzo, D., 
Underwood, K., Adlerz, T., Sterle, G., Li, L. 2020. Temperature controls production but hydrology 
regulates export of dissolved organic carbon at the catchment scale. Hydrology and Earth System 
Science 24: 945-966. https://doi.org/10.5194/hess-24-945-2020. 

Wilson, K.L., Lotze, H.K. 2019. Climate change projections reveal range shifts of eelgrass Zostera marina 
in the Northwest Atlantic. Marine Ecology Progress Series 620: 47-62.  

https://doi.org/10.1002/grl.50357
https://doi.org/10.5194/hess-24-945-2020


62 
 

Woodruff, D.L. Stumpf, R.P., Scope, J.A., Paerl, H.W. 1999. Remote estimation of water clarity in 
optically complex estuarine waters. Remote Sensing of the Environment 68:41-52. 

Wright, W. 2016. Assessment of estuarine water quality at Cape Hatteras and Cape Lookout National 
Seashores, 2015 Data Summary. Natural Resource Data Series NPS/SECN/NRDS-2016/1056. 
National Park Service, Fort Collins, Colorado. 

YSI. Technical Instructions. T627-01. Turbidity units and calibration solutions. YSI Turbidity Sensors. 
Xylem Inc. 2019.  

Zimmerman, R.C. 2006. Light and photosynthesis in seagrass meadows. In: Seagrasses: Biology, 
Ecology, and Conservation (eds Larkum AWD, Orth RJ, Duarte CM), pp.303–321. Springer, 
Dordrecht,. The Netherlands. 


	List of Acronyms
	1. Executive Summary
	2. Background
	3. Project Goals and Objectives
	4. Methods
	4.1. Development of an empirical relationship between SD and PAR attenuation (Objective 1)
	4.2. Development of an empirical model to estimate CDOM (Objective 2)
	4.3. Description of the bio-optical model (Objectives 3 & 4)
	4.4. Data selection for validation of the bio-optical model (Objective 3)
	4.5. Establishing Chla and turbidity thresholds for high- and low-salinity SAV zones (Objective 4)
	4.6. Comparing Chla and turbidity thresholds from the bio-optical model to the current North Carolina standard for Chla and turbidity in estuarine waters (Objective 5)
	4.7. Comparing current water clarity with SAV water clarity targets throughout North Carolina estuarine waters (Objective 6)

	5. Results and Discussion
	5.1. Empirical models of PAR attenuation based on Secchi disk depth (Objective 1)
	For both the Neuse/SW Pamlico Sound and Albemarle/NE Pamlico Sound datasets, all five candidate models explained more than 60% of the variability in KdPAR from SD (Figures 4 and 5, Table 2). The power function model (Model 4, Table 2) with an exponent...
	5.2. Empirical models of CDOM based on salinity (Objective 2)
	5.3. Bio-optical model validation (Objective 3)
	5.4. Chla thresholds for high and low-salinity SAV zones (Objective 4)
	5.5. Comparison of Chla and turbidity thresholds for SAV to water quality standards (Objective 5)
	5.6. Comparison of current water clarity to SAV-related water clarity targets (Objective 6)

	6. Data Gaps (Objective 7)
	6.1. CDOM data
	6.2. Direct measurements of KdPAR
	6.3. Measurements of optically active water quality constituents from SAV habitats along the Outer Banks
	6.4. Measurements of the scattering and absorption spectra and scaling coefficients for low-salinity SAV zones

	7. Acknowledgements
	8. References

