




### **A**TLANTA

### September 2009

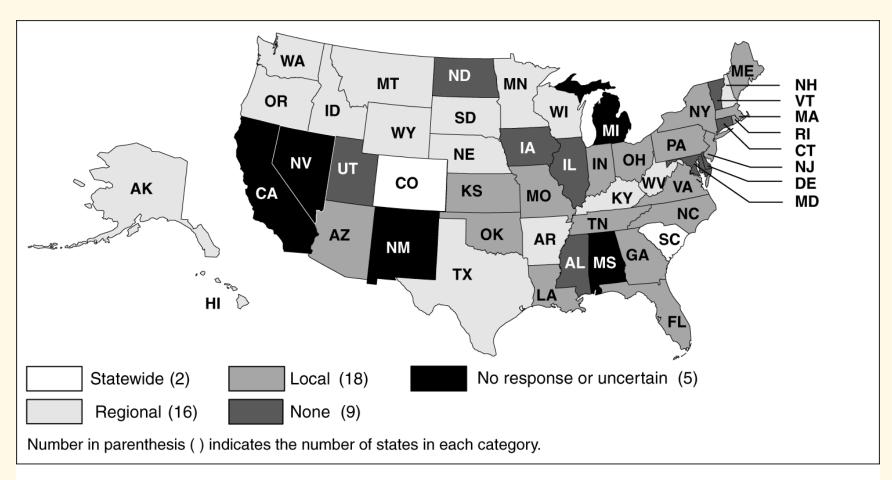















Oconee River, GA

Photo credit: Steve Dorsch, Ben Emanuel

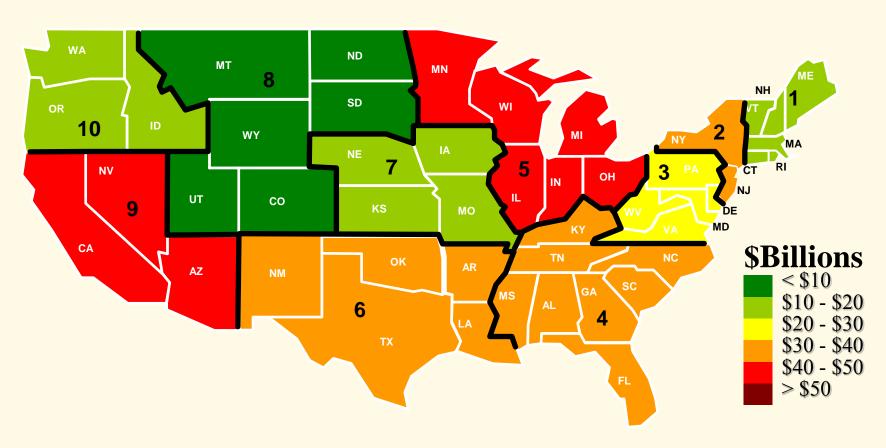




Source: GAO analysis of state water managers' responses to GAO survey.














# WATER INFRASTRUCTURE IS EXPENSIVE



20 Year Drinking Water and Clean Water Infrastructure Needs by EPA Region

# HOW DOES EFFICIENCY MEASURE UP?

|                                                 |                                        | Assess                          | ing Southe                         | rn Califoi                   | rnia Water        | Strategies |                                      |                                      |                                  |
|-------------------------------------------------|----------------------------------------|---------------------------------|------------------------------------|------------------------------|-------------------|------------|--------------------------------------|--------------------------------------|----------------------------------|
| Strategy                                        | 2025<br>Regional<br>Potential<br>(TAF) | Typical Project Characteristics |                                    |                              |                   |            |                                      |                                      |                                  |
|                                                 |                                        | Timeframe<br>(years)            | Drought-<br>Proof<br>(Reliability) | Risk<br>(Project<br>Aborted) | Enviro<br>Opinion | GHG        | Initial Cap.<br>Cost<br>(\$millions) | Annual<br>Oper. Cost<br>(\$millions) | 30-yr cost<br>Treated<br>(\$/AF) |
| Strategies to Replace or Augment Imported Water |                                        |                                 |                                    |                              |                   |            |                                      |                                      |                                  |
| Urban Water Conservation                        | 1,100+                                 | 0-2                             | •                                  | •                            | •                 | •          | \$0                                  | \$0.5                                | \$210                            |
| Local Stormwater Capture                        | 150+                                   | 3-5                             | •                                  | •                            | •                 | •          | \$40-\$63                            | \$1-\$3.5                            | \$350+                           |
| Recycling                                       | 450+                                   | 6-10                            | •                                  |                              | •                 |            | \$480                                | \$30                                 | \$1,000                          |
| Ocean Desalination                              | 150+                                   | 6-10                            | •                                  |                              | •                 | •          | \$300                                | \$37                                 | \$1,000+                         |
| Groundwater Desalination                        | TBD                                    | 6-10                            | •                                  |                              |                   |            | \$24                                 | \$0.7                                | \$750-\$1,200                    |
|                                                 |                                        |                                 | Strategies t                       | o Increase 1                 | mported Wat       | er         |                                      |                                      |                                  |
| Transfers-Ag to Urban                           | 200+                                   | 1-5                             |                                    | •                            |                   | •          | n/a                                  | n/a                                  | \$700+                           |
|                                                 |                                        |                                 | Strategie                          | es to Increas                | se Reliability    |            |                                      |                                      |                                  |
| Inter-agency Cooperation                        | **                                     | 0-5                             | •                                  |                              | •                 | •          | low                                  | low                                  | n/a                              |
| Groundwater Storage                             | 1,500+                                 | 3-5                             |                                    |                              | •                 |            | \$68-\$135                           | \$13                                 | \$580                            |
| Surface Storage                                 | 0                                      | 10+                             | •                                  | •                            | •                 |            | \$2,500+                             | \$7.5-\$15.5                         | \$760-\$1,400                    |



### EPA R4 Guidelines on Water Efficiency Measures for Water Supply Projects in the Southeast

 Guidance informs local governments and water utilities of the water efficiency actions required in order to "eliminate or minimize the need for additional capacity before consideration of a water supply reservoir project on a stream or river"

 Guidance ensures utilities use consistent and rigorous water efficiency approaches as they determine the projected demand based on future needs.



## EPA R4 Guidelines on Water Efficiency Measures for Water Supply Projects in the Southeast

- 1. Effective Management
  - plan for efficiency
- 2. Pricing for Efficiency
- 3. Efficient Water Use
  - -stop leaks
  - -meter users
  - -retrofit fixtures
  - -landscape to minimize waste
- 4. Watershed Approaches



### **Problem:** Water waste incentives

- Decreasing block rates
- Dependence on volumetric pricing

### Success: Greensboro, NC:

Two part fee system

- Flat cost of service fee
- Tiered volumetric fee

Potential Savings: up to 22%

**Lancaster County:** Decreasing block rates incentivize water waste

**Union County:** Increasing block rates and drought pricing – residential only





#### **Problem:**

- 6 billion gallons/day lost
- 14% total water use

#### **Solution:**

- Conduct the IWA-AWWA water audit
- Reduce leaks as close to zero as possible


### **Potential Savings:**

Example: Clayton County, GA

- Discovered 504 significant leaks
- Non-revenue water down from 20%-12.5
- Saved \$4,252,136.78 in production costs Example: Raleigh 4.5%; 3MGD secured

### **Lancaster and Union Counties:**

Potential for significant ongoing water and cost savings





# STANDARD WATER BALANCE

|                         | Billed<br>Authorized   | Billed Metered Consumption                                   | Revenue<br>Water        |  |
|-------------------------|------------------------|--------------------------------------------------------------|-------------------------|--|
| Authorized  Consumption | Consumption            | Billed Unmetered Consumption                                 |                         |  |
|                         | Unbilled<br>Authorized | Unbilled Metered Consumption                                 | Non<br>Revenue<br>Water |  |
|                         | Consumption            | Unbilled Unmetered Consumption                               |                         |  |
| Water<br>Losses         | Apparent               | Unauthorized Consumption                                     |                         |  |
|                         | Losses                 | Customer Meter Inaccuracies                                  |                         |  |
|                         |                        | Leakage on Transmission and Distribution Mains               |                         |  |
|                         | Real<br>Losses         | Leakage and Overflows at Storage<br>Tanks                    |                         |  |
|                         |                        | Leakage on Service Connections up to point of Customer Meter |                         |  |



# METER ALL WATER USERS

Problem: Most multi-family, commercial include water costs in monthly rent/fees eliminating market signals

**Solution:** require sub-metering

### Success:

Lenox Woods Apartments, Atlanta, GA Cut water use in half by both retrofitting and sub-metering. \$60,000/year savings.

### **Lancaster and Union Counties:**

Potential Savings: 15%







**Problem:** Outdated fixtures and appliances waste water

### **Solution:**

- Voluntary incentive programs
- Required retrofit on resale/reconnect

### **Success:**

- DeKalb County, GA Retrofit on Reconnect; 9MGD
- Orme, TN; quadrupled water supply through efficiency



Potential Savings: 35% on household water use





# LANDSCAPE TO MINIMIZE WASTE

**Problem:** U.S. homes use 30% drinking water on landscape; 50% is wasted

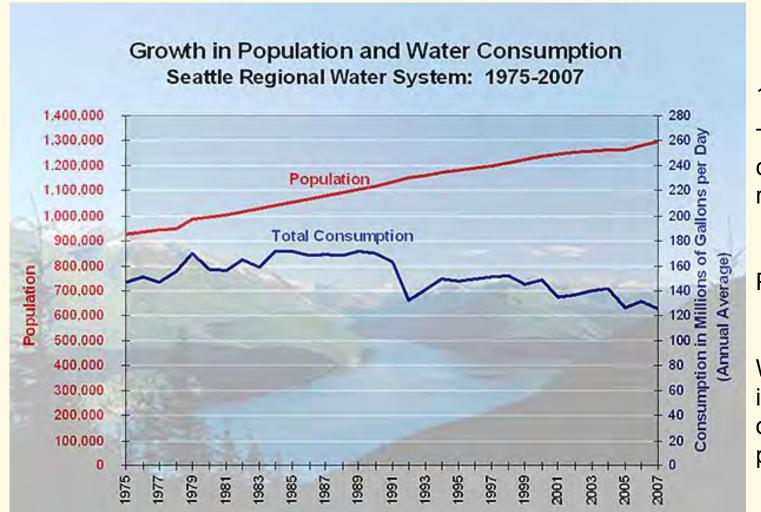
### **Solution:**

- Meter large users of irrigation water and price for efficiency
- Require moisture or rain sensors for all irrigation systems
- Promote low water landscape design

**Potential Savings: 25%** 

Success: Cary, NC - 15%

 Rain Sensor and water waste ordinances; WaterWise landscape program; Turf buy-back program


**Lancaster County:** With restrictions - 35-40% reduction in peak

**Union County:** With restrictions- up to 50% reduction in peak



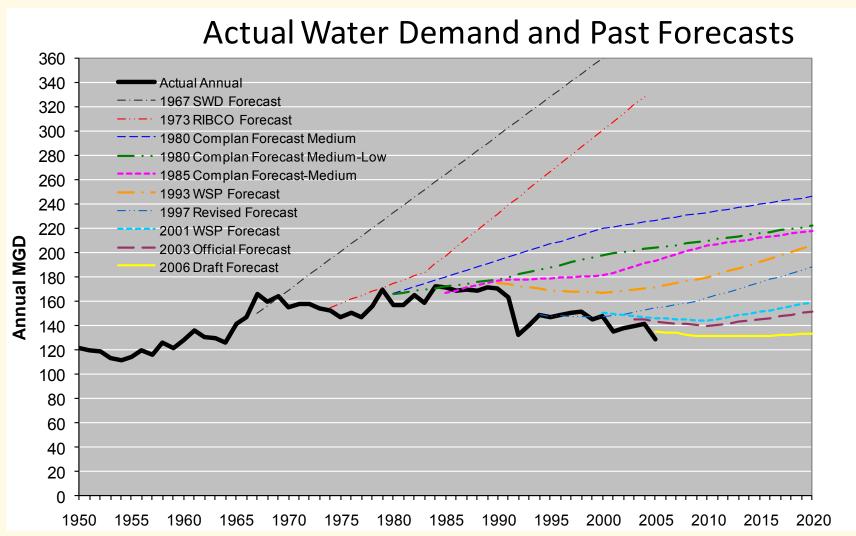


# POPULATION & SUPPLY



1990-2009

**Total Water** consumption reduced by 26%


Per capita by 33%

While population increased by 16% over the same period.

Source: Seattle Public Utilities



### **DEMAND FORECASTING**



Source: Seattle Public Utilities



# **ASSESSING WATER EFFICIENCY POTENTIAL**

- Involve stakeholders in planning process
- Conduct AWWA water balance assessment
- Develop plans for cost-effective water efficiency and conservation at each utility
- Top 5 policies
  - Stop leaks
  - Price for efficiency
  - Meter all users
  - Retrofit fixtures
  - Landscape to minimize waste



# DEMAND PROJECTIONS SHOULD...

- Include natural conservation and water efficiency/conservation in demand projections
- Include accurate population data that accounts for a range of scenarios (high, medium, low growth)



For more information, please contact:

Jenny Hoffner Water Supply Director 404.373.3602

JHoffner@americanrivers.org

<u>www.AmericanRivers.org/WaterEfficiencyReport</u> <u>www.AmericanRivers.org/WaterSupply</u>