

 AECOM
 919.461.1100

 5438 Wade Park Boulevard
 919.461.1415

 Suite 200
 Raleigh, North Carolina 27607

tel

fax

www.aecom.com

August 26, 2024

North Carolina Department of Environmental Quality Division of Waste Management – DSCA Program 1646 Mail Services Center Raleigh, NC 27699-1646

Attn: Mr. Scott Stupak DSCA Project Manager

Re: **Risk Management Plan** Former Village Cleaners, DSCA Site ID DC670005 175 Freedom Way Jacksonville, Onslow County, North Carolina

Dear Mr. Stupak:

AECOM is pleased to provide the attached Risk Management Plan (RMP) for the Former Village Cleaners site located at 175 Freedom Way, Jacksonville, Onslow County, North Carolina. A risk assessment conducted for the site indicates that contaminant concentrations at the site do not pose an unacceptable risk. The primary purpose of this RMP is to ensure that the assumptions made in the risk assessment remain valid in the future. Based on the documentation outlined in this report, AECOM recommends issuance of a No Further Action letter for the site.

If you have any questions or require additional information, please do not hesitate to contact either Rob MacWilliams at 704-553-6150 or Nick Shore at 919-461-1485.

Sincerely,

AECOM TECHNICAL SERVICES OF NORTH CAROLINA, INC.

Nick Shore, PG Project Manager

Robert H. MacWilliams, PG Program Manager

Risk Management Plan Former Village Cleaners - DSCA Site ID DC670005 175 Freedom Way, Jacksonville Onslow County, North Carolina 28544

Submitted To: NC Department of Environmental Quality Division of Waste Management – DSCA Program 1646 Mail Services Center Raleigh, NC 27699-1646

Nick Shore, PG Project Manager AECOM

AECOM Technical Services of North Carolina, Inc. 5438 Wade Park Boulevard, Suite 200 Raleigh, North Carolina 27607

TABLE OF CONTENTS

SECTIO	<u>N</u> <u>I</u>	PAGE
1.0	INTRODUCTION	1
2.0	OBJECTIVES OF RISK MANAGEMENT PLAN	1
3.0	SUMMARY OF RISK ASSESSMENT REPORT	2
4.0	REMEDIAL ACTION PLAN	5
	SESSMENT ACTIVITIES AND INTERIM ACTIONS MEDIAL ACTION	
5.0	DATA COLLECTED DURING RMP IMPLEMENTATION	10
6.0	LAND-USE CONTROLS	10
7.0	LONG-TERM STEWARDSHIP PLAN	11
8.0	RMP IMPLEMENTATION SCHEDULE	11
9.0	CRITERIA FOR DEMONSTRATING RMP SUCCESS	12
10.0	CONTINGENCY PLAN IF RMP FAILS	12
11.0	CONCLUSIONS AND RECOMMENDATIONS	12

FIGURES

Figure 1	Site Location Map
Figure 2	Exposure Unit Location Map
Figure 3	Groundwater Quality Summary Map
Figure 4	Soil Quality Summary Map
Figure 5	Vapor Summary Map
Figure 6	Land Use Restriction Map

APPENDICES

- Appendix A Plume Stability Demonstration
- Appendix B Level 1 Ecological Risk Assessment Checklists
- Appendix C Notice of Dry-Cleaning Solvent Remediation (NDCSR)
 Appendix C-1: NDCSR for the Source Property (*Piney Green FL, LLC, PIN* 530510363620)
- Appendix D Example Annual Certification of Land-Use Restrictions
- Appendix E Example Documents Announcing Public Comment Period

1.0 INTRODUCTION

AECOM Technical Services of North Carolina, Inc. (includes legacy URS and herein referred to as AECOM) has prepared this Risk Management Plan (RMP) to address dry-cleaning solvent contamination associated with the former Village Cleaners (DSCA Site ID DC670005) on behalf of the North Carolina Department of Environmental Quality (NCDEQ) Dry-Cleaning Solvent Cleanup Act (DSCA) Program. The former Village Cleaners facility was located at 175 Freedom Way, Jacksonville, Onslow County, North Carolina as shown on the attached **Figure 1**. The former Village Cleaners facility was reportedly in operation from 1984 to 2002. The tenant space which housed the former Village Cleaners is currently occupied by Dark Artisan Tattoo.

The former Village Cleaners site (herein referred to as the "site") is limited to the source property (where the dry-cleaning facility source was located). The site property is as follows:

Source property – Piney Green FL, LLC, 175 Freedom Way (NC-24), PIN 530510363620, which encompasses the former Village Cleaners dry-cleaning facility including the Piney Green Shopping Center and paved surface parking area.

This RMP is intended to comply with the requirements of the DSCA (N.C.G.S. 143-215.104A et seqs) and promulgated rules and follows the outline provided in the DSCA Program's risk-based corrective action (RBCA) guidance.

2.0 OBJECTIVES OF RISK MANAGEMENT PLAN

AECOM has completed assessment activities at the site which identified the following:

- The presence of tetrachloroethylene (also referred to herein as tetrachloroethene, or PCE) in groundwater beneath the source property at concentrations exceeding the Title 15A NCAC 2L .0202 Groundwater Standards (2L Standards);
- The presence of PCE in soil beneath the source property at concentrations above the Division of Waste Management (DWM) health based and/or protection of groundwater Preliminary Soil Remediation Goals (PSRGs); and,
- The presence of site contaminants as identified in the Risk Assessment dated, November 7, 2019, in soil gas beneath the source property exceed applicable residential hazard index for current use conditions.

AECOM completed a risk assessment for the site in accordance with the DSCA Program's risk assessment procedures in November 2019, and a Risk Assessment Update in March 2024. The results of the risk assessment and risk assessment update indicated that there are potential future risks that exceed applicable target levels on the source property. These risks will be managed using site-specific land-use conditions that have been selected as part of the risk assessment evaluation and which require a RMP. Thus, the objective of the RMP is to ensure that those site-specific land-use conditions remain valid in the future.

3.0 SUMMARY OF RISK ASSESSMENT REPORT

AECOM performed a risk assessment to address the applicable exposure pathways based on the identified impacts summarized in **Section 2.0**. Comprehensive results of the risk assessment, which are summarized herein, are documented in the *Risk Assessment Report*, dated November 7, 2019. The *Risk Assessment Report* was approved by DSCA on December 2, 2019. Following the approval of the November 2019 *Risk Assessment*, and submittal of a draft *Risk Management Plan* in December 2020, additional assessment activities were completed in June and December 2023 to further refine the extent of groundwater and vapor impacts requiring land-use restrictions ensuring protection of human health and the environment. The findings of the June and December 2023 assessment activities did not change the findings of the November 2019 *Risk Assessment* with the exception of modifying the area where institutional controls/land-use restrictions will be required. A *Risk Assessment Addendum* was submitted to DSCA on March 12, 2024.

The site is currently zoned as commercial; however, to be protective of unknown zoning and mixed-use development in the future, both residential and commercial (non-residential) scenarios were considered as part of the risk assessment.

The risk assessment process utilized as part of developing the November 2019 *Risk Assessment* and the March 2024 *Risk Assessment Addendum*, consisted of evaluating exposure pathways for the exposure unit shown on **Figure 2**. A summary of the groundwater quality data used in the risk assessment is included on **Figure 3**. A summary of the soil quality data used in the risk assessment is included on **Figure 4**. A summary of the vapor quality data used in the risk assessment is included on **Figure 5**. The exposure model evaluation indicated the following exposure pathways for the Exposure Unit:

Exposure Unit #1

Exposure Unit #1 (EU#1) encompasses a portion of the source property on which the Village Cleaners was located. The Village Cleaners facility was reportedly in operation from 1984 to 2002. The tenant space which housed the former Village Cleaners was formerly occupied by Purple Heart Tattoo which is now closed.

- Soil Combined Pathways For the soil combined pathways evaluation (combined • pathways including ingestion, dermal contact, and outdoor inhalation of volatile COC's and particulates), soil quality data (regardless of depth) was used to evaluate current and future risk. The maximum soil contaminant concentrations detected within EU#1 were conservatively used as exposure point concentrations (EPC's) for contaminants of concern (COC's). Soil combined pathway exposure and associated risk was evaluated using the July 2023 DEQ Risk Calculator for current conditions (non-residential) and future conditions (residential and non-residential). Calculated soil combined pathway risk did not exceed acceptable levels for current non-residential land-use conditions or future residential, non-residential land-use conditions; however, soil contamination exceeds NCDEQ Preliminary Soil Remediation Goals (PSRGs) in Area C of EU#1, as designated on the source property survey plat attached as "Exhibit A" of the Notice of Drycleaning Solvent Remediation (NDCSR) in Appendix C. Therefore, it is recommended that soil in Area C not be removed or disturbed unless approved in writing in advance by NCDEQ or its successor in function.
- Vapor Intrusion Pathway For the vapor intrusion exposure pathway, indoor air (IA) data was used to evaluate current risk and sub-slab vapor (SSV) and soil gas (SG) data was used to evaluate future risk. The maximum indoor air and soil gas COC concentrations detected within EU#1 were conservatively used as EPC's to evaluate the vapor intrusion pathway using the July 2023 DEQ Risk Calculator for current conditions (non-residential), and future conditions (residential and non-residential). The results of the risk assessment were within acceptable risk levels for current residential and current and future non-residential worker conditions. The results of the risk assessment were not within acceptable risk levels for future residential conditions due to sub-slab(SSV) concentrations of PCE and TCE exceeding applicable risk levels for residential exposure. The unacceptable risk associated with the future indoor air inhalation exposure pathway in **Area B** of EU#1, as designated on **Figure 6**, and in the source property survey plat

attached as "Exhibit A" of the NDCSR in **Appendix C**, can be addressed through the imposition of land-use controls..

Contaminant Migration Pathways Evaluation

Site specific Domenico groundwater modeling results did indicate an exceedance of the calculated Site-Specific Target Levels (SSTLs) for source soil and groundwater to be protective of nearest uncontrolled point of exposure (POE) which is the Piney Green, LLC property (PIN 5305-1036-9640) located 470 feet from the former dry cleaners building. However, an evaluation of site groundwater quality data indicates that the plume has not migrated as far as the site-specific Domenico groundwater modeling projects and has not affected groundwater quality at the property boundary located 470 feet from the former dry cleaners building. The difference between the projected model results and the actual site groundwater quality data is that the Domenico groundwater model utilized as part of this evaluation does not account for physical and/or biological mediated contaminant degradation that may be occurring naturally in the subsurface as the contaminant(s) migrate between the source area and the point of exposure (considered to be the Piney Green, LLC property). Additionally, the rate of infiltration is a significant variable in the leaching of contaminants from contaminated soil to groundwater and a building currently covers the entirety of the identified soil contamination. Specifically, the concentration of dissolved phase contaminants in the groundwater beneath the site is proportional to the degree of partitioning of contaminants from affected source soils as rain infiltration occurs and leaches those contaminants to groundwater. As the rate of infiltration is a significant variable in the leaching of contaminants from contaminated soil to groundwater it is reasonable to assume that groundwater contaminant concentrations and possible plume expansion would occur if infiltration rates increased in the area of source soil contamination. In general, increased contaminant partitioning from soil to leachate and then to groundwater may result in a greater groundwater contaminant mass and ultimately a larger contaminant plume. As such, it is recommended that land use controls be utilized to maintain infiltration conditions in areas where structures and/or paved surfaces may currently limit infiltration rates above areas where soil contaminant concentrations exceed the calculated SSTLs as indicated in Area C of EU#1, as designated on the source property survey plat attached as "Exhibit A" of the NDCSR in Appendix C.

Site specific Domenico groundwater modeling results did indicate an exceedance of the calculated SSTLs for **source soil and groundwater** to be protective of the nearest surface water body which is considered to be the stormwater retention pond located approximately 620 feet from the former dry cleaners building. As previously documented, site groundwater quality data

indicates that the plume <u>has not</u> migrated as far as the site-specific Domenico groundwater modeling projects and has not affected groundwater quality at the property boundary located 470 feet from the former dry cleaners building which is closer than the stormwater retention pond.

4.0 **REMEDIAL ACTION PLAN**

4.1 Assessment Activities and Interim Actions

Dry-cleaning operations were conducted at the site from 1984 until 2002. Initial site assessment work was completed in 1997 and documented in the *Phase II Environmental Site Assessment*, dated September 1997, and the *Preliminary Subsurface Investigation Results* report, dated December 1997. During the Phase II site assessment, four soil borings (B-1, B-2, H-1, and H-2) were advanced and a total of six soil samples were collected. PCE concentrations ranged from 8 micrograms per kilogram ($\mu g/kg$) to 110 $\mu g/kg$. Additionally, one grab groundwater sample was collected from boring B-1, which indicated toluene at a concentration of 5 micrograms per liter ($\mu g/L$). Further site assessment was completed in the fall of 1997 where the initial monitoring well network (MW-1 through MW-11, and DMW-1) was installed to assess the extent of groundwater contamination. The groundwater sample collected from the monitoring well MW-1 indicated a PCE concentration of 15,000 $\mu g/L$.

Five additional monitoring wells (MW-12, MM-12D, MW-13, MW-14, and MW-15) were installed as part of the *Comprehensive Site Assessment* (CSA), dated June 1999. The CSA concluded that the contaminant plume was not a threat to any nearby receptors. In the *Corrective Action Plan* (CAP), dated March 2000, Law Engineering and Environmental Services, Inc. recommended the combination of semiannual aggressive fluid vapor recovery (AFVR) events and monitoring along with natural attenuation as the remedy for the site. Two AFVR events were completed in December 1999 and May 2002 removing approximately 2,230 gallons of impacted groundwater from the site.

The Village Cleaners site was certified into the DSCA Program in September 2002. A *Prioritization Assessment Report* (PAR), dated July 2003, was prepared by MACTEC Engineering and Consulting, Inc. and documented that soil and groundwater contamination had been delineated and was remediated under the CAP. According to the PAR, fourteen private water supply wells and one production well (at Camp Lejeune) were identified within 2,500 feet of the source area.

Groundwater quality was periodically monitored from 2006 through 2019 with the most recent groundwater monitoring event being documented in the *Soil Gas and Groundwater Sampling Report*, dated May 1, 2019. Additional monitoring wells (MW-16 and MW-17) were installed in July 2007 and (MW-18 and MW-19) in June 2016. Documentation specific to the installation of these monitoring wells is provided in the following reports: *Groundwater Monitoring Report: June 2007 Sampling Event and Monitoring Well Installations*, dated September 2007 and *Groundwater Monitoring Report*, dated July 2016.

In August 2017, a limited groundwater sampling event was completed to determine if the contaminant plume had migrated into monitoring wells MW-18 and MW-19, which had been installed in June 2016. Additionally, five soil samples (SB-11 through SB-15) were advanced to refine the extent of soil contamination at the site. Results of the August 2017 sampling are documented in the *Groundwater Monitoring Report*, dated September 25, 2017. A final comprehensive groundwater sampling event was completed in May 2018 to obtain a sitewide "snapshot" of groundwater conditions prior to the completion of a site Risk Assessment. The results of the May 2018 groundwater sampling event are summarized in the *Groundwater Monitoring Report*, dated June 2018.

Sub-slab soil vapor (SSV-1), indoor air (IA-1), and soil gas (SV-1 through SV-5) assessment was completed in February 2011 and the results documented in *Results of Sub-slab Vapor, Indoor Air, and Soil Vapor Analysis*, dated April 2011. Chlorinated Volatile Organic Compounds (CVOCs) were detected in soil gas samples SV-1 and SV-3 at concentrations below respective Inactive Hazardous Sites Branch (IHSB) screening levels. Six CVOCs exceeded IHSB screening levels for sub-slab soil vapor sample SSV-1, and two CVOCs exceeded the IHSB screening levels in indoor air sample IA-1.

Two indoor air samples (IA-R1 and IA-R2) were collected in May 2011. Sample IA-R1 was collected in the former dry-cleaning tenant space and IA-R2 was collected in adjacent tenant space. Samples indicated low concentrations of PCE; however, concentrations indicated acceptable risk when entered into the DSCA Risk Calculator. Results of the May 2011 sampling event are documented in the *Results of Indoor Air Analysis* report, dated August 2011.

Two additional indoor air samples (IA-2 and IA-3 Ultra) and one additional sub-slab soil vapor (SSV-2) were collected in October 2011. Low concentrations of PCE were detected in both indoor air samples, and naphthalene was detected in sample IA-3 Ultra; however, concentrations for both samples indicated acceptable risk when entered into the DSCA Risk Calculator. The

results of sub-slab soil vapor sample SSV-2 indicated concentrations of PCE (2,900 μ g/m3), TCE (48 μ g/m3), and cis-1,2-dichloroethene (32 μ g/m3). Results of the October 2011 sampling event are documented in the *Results of Indoor Air and Sub-slab Vapor Analysis* report, dated November 2011.

Based on a review of the assessment data in respect to evaluating future risk (which is necessary as part of completing a risk assessment for the site), it was apparent that supplemental groundwater and soil gas data was necessary in the area of monitoring well MW-12. Specifically, groundwater contaminant concentrations of PCE and TCE exceeded calculated risk levels for non-residential exposure using the DSCA groundwater to indoor air risk calculator. Subsequent soil gas data collected at soil gas sample point SV-5, located in close proximity of monitoring well MW-12, did not indicate the presence of PCE or TCE above laboratory method detection limits (MDL); however, the MDLs were raised as part of sample dilution due to elevated concentrations of n-heptane and n-hexane, which are not associated with the dry cleaning solvent release. Due to the elevated MDLs, it is possible that concentrations of PCE and/or TCE may exist in the soil gas at levels that could create an exposure risk. As such, it was recommended that vapor intrusion risk in this area be re-evaluated by collecting a groundwater sample from monitoring well MW-12 with instruction for the laboratory to not raise the detection limits of PCE or TCE if possible.

In April 2019, monitoring well MW-12 was sampled. Consistent with previous groundwater sampling events, laboratory analysis of the groundwater sample indicated the presence of CVOCs above NC 2L Groundwater Quality Standards. Mann-Kendall analysis of the recent groundwater sample collected from MW-12 indicated concentrations of PCE and TCE remain stable. Additionally, sub-slab soil gas point (SV-6) located in close proximity to monitoring well MW-12 was installed due to the shallow depth of groundwater (measured as shallow as 3.38 feet below grade in monitoring well MW-12). Concentrations of PCE and TEC in the groundwater sample collected from monitoring well MW-12 exceeded acceptable risk for both residential and non-residential scenarios, however, the sub-slab vapor sample collected from SV-6 (located in close proximity to MW-12) indicated acceptable risk levels for both residential and non-residential scenarios. Results of the April 2019 sampling are summarized in the *Soil Gas and Groundwater Sampling Report*, dated May 2019.

A *Draft Risk Assessment Report* was prepared by AECOM and submitted to DSCA in October 2019. Following review and discussion, a *Final Risk Assessment Report* was submitted to DSCA

on November 7, 2019 (DSCA concurrence provided December 2, 2019). Following the approval of the November 2019 *Risk Assessment*, and submittal of a draft *Risk Management Plan* in December 2020, additional assessment activities were completed in June and December 2023 to further refine the extent of groundwater and vapor impacts requiring land-use restrictions ensuring protection of human health and the environment. The findings of the June and December 2023 assessment activities did not change the findings of the November 2019 *Risk Assessment* with the exception of modifying the area where institutional controls/land-use restrictions will be required. A *Risk Assessment Addendum* was submitted to DSCA on March 12, 2024.

As discussed in detail in **Section 3.0**, the risk assessment process utilized as part of developing the November 2019 *Risk Assessment* and the March 2024 *Risk Assessment Addendum*, concluded that risks associated with chlorinated constituent contamination could be managed through implementation of site-specific land-use controls as detailed in this RMP. Therefore, the risk assessment recommended risk-based closure for the site. The purpose of this RMP is to ensure that the assumptions made in the risk assessment remain valid in the future.

4.2 Remedial Action

According to the DSCA Program's Risk-Based Corrective Action (RBCA) guidance, no remedial action is necessary if the following four site conditions are met:

- i. the dissolved plume is stable or decreasing;
- ii. the maximum concentration within the exposure domain for every complete exposure pathway of any COC is less than ten times the representative concentration (RC) of that COC;
- iii. adequate assurance is provided that the land-use assumptions used in the DSCA program's RBCA process are not violated for current or future conditions; and,
- iv. there are no ecological concerns at the site.

The site's compliance with the four above referenced conditions confirms that the contaminant concentrations are not likely to pose an unacceptable risk either at present or in the future and remedial action at the site is not required. Each of these conditions and their applicability to the subject site are summarized in the following sections.

4.2.1 Condition 1 – The dissolved plume is stable or decreasing

A total of fourteen groundwater monitoring events have been conducted at the site between June 2007 and April 2019. AECOM focused on PCE and TCE as the COCs for evaluation of plume stability.

AECOM utilized the GSI Environmental Inc. (GSI) Mann-Kendall Toolkit for Constituent Trend Analysis (Mann-Kendall Analysis) for sampling events conducted at monitoring wells (MW-1, MW-2, MW-11, MW-12, and MW-14) at the site, which are included in **Appendix A**. As shown on the Mann-Kendall plots, PCE and TCE concentrations have been stable during the sampling events completed through 2018. Based on this data, AECOM concludes that the size of the plume is stable and concentrations in the source area are likely to remain stable. Documentation of the plume stability evaluation, including a figure showing monitoring well locations, a table showing historical groundwater analytical data and concentration versus time graphs are included in **Appendix A**.

4.2.2 Condition 2 – The maximum concentration within the exposure domain for every complete exposure pathway of any COC is less than ten times the RC of that COC

Representative concentrations were not calculated as part of the risk assessment for this site. Instead, a more conservative approach was utilized by using the maximum concentration for each COC within each exposure domain. Hence, this condition has been met for each COC and exposure pathway for the site.

4.2.3 Condition 3 – Adequate assurance is provided that the land-use assumptions used in the DSCA program's RBCA process are not violated for current or future conditions.

The risk assessment completed for the source property was based on current land use being commercial. However, using the most conservative approach, future conditions at the site were considered to be residential. As discussed in Section 6.0, land-use controls will be implemented for the site to ensure that these assumptions remain valid.

4.2.4 Condition 4 – There are no ecological concerns at the site.

A <u>Level 1 Ecological Risk Assessment</u> was completed for the site in accordance with the DSCA Program's RBCA guidance. The results of the evaluation indicate that the release does not pose an unacceptable ecological risk. The completed Level 1 Ecological Risk Assessment Checklists A and B are attached as **Appendix B**.

The site's compliance with the four above referenced conditions confirms that the contaminant concentrations are not likely to pose an unacceptable risk either at present or in the future. The plume is expected to naturally attenuate over time and the appropriate remedial action is to implement appropriate land-use controls on the properties where soil and/or groundwater contamination is present.

5.0 DATA COLLECTED DURING RMP IMPLEMENTATION

No further sampling or other data collection activities are proposed for the site or adjacent properties, assuming the assumptions detailed in the Notice of Dry-Cleaning Solvent Remediation (NDCSR) remain valid. As such, this section is not applicable.

6.0 LAND-USE CONTROLS

As discussed in detail in Section 3.0, the recommendation for closure in the risk assessment for the site was based on the following land-use controls:

- Without prior written approval from DEQ, the Property shall not be used for:
 - a. childcare centers, elementary, middle, or high schools; or elder care facilities. Exceptions to this restriction include use of the property for technical or adult education institutions; technical training centers; or tutorial institutions.
 - b. mining or extraction of coal, oil, gas or any mineral or non-mineral substances.
- No activities that encounter, expose, remove or use groundwater (for example, installation of water supply wells, fountains, ponds, lakes or swimming pools that use groundwater, or construction or excavation activities that encounter or expose groundwater) may occur on the Property without prior approval of DEQ.
- The portion of the Property designated as **Area B** shall be used exclusively for nonresidential land use pursuant to North Carolina Administrative Code (NCAC) 15A NCAC 02S.0102(21) and related amenities (parking, landscape areas and walkways), and all other uses of the Property are prohibited except as approved in writing by DEQ.

- Soil in Area C may not be removed or disturbed unless approved in writing in advance by DEQ or its successor in function, except for routine landscape maintenance and emergency utility repair. In the event of emergency utility repair, DEQ shall be given written notice of any such emergency repair no later than the next business day, and further related assessment and remedial measures may be required.
- No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in "Area C" of the Property, as shown on Exhibit A, without prior approval of DEQ.

Institutional controls will also be implemented to ensure that land-use conditions are maintained and monitored until the land-use controls are no longer required for the site. A NDCSR was prepared for the source property to comply with the land-use control requirement. The NDCSRs are included in **Appendix C**. Refer to the NDCSRs for the specific language to be incorporated to address each of the risk assessment assumptions.

A plat showing the locations and types of dry-cleaning solvent impacts on the site is included as an exhibit to the NDCSR. The locations of dry-cleaning solvent impacts are where contaminants have been detected above unrestricted use standards.

7.0 LONG-TERM STEWARDSHIP PLAN

The NDCSR for the source property contains a clause which requires the owner of the site to submit a notarized "Annual Certification of Land-Use Restrictions" to NCDEQ on an annual basis certifying that the NDCSR remains recorded with the Register of Deeds and that land-use restrictions (LURs) are being complied with. An example of such a certification is included in **Appendix D**.

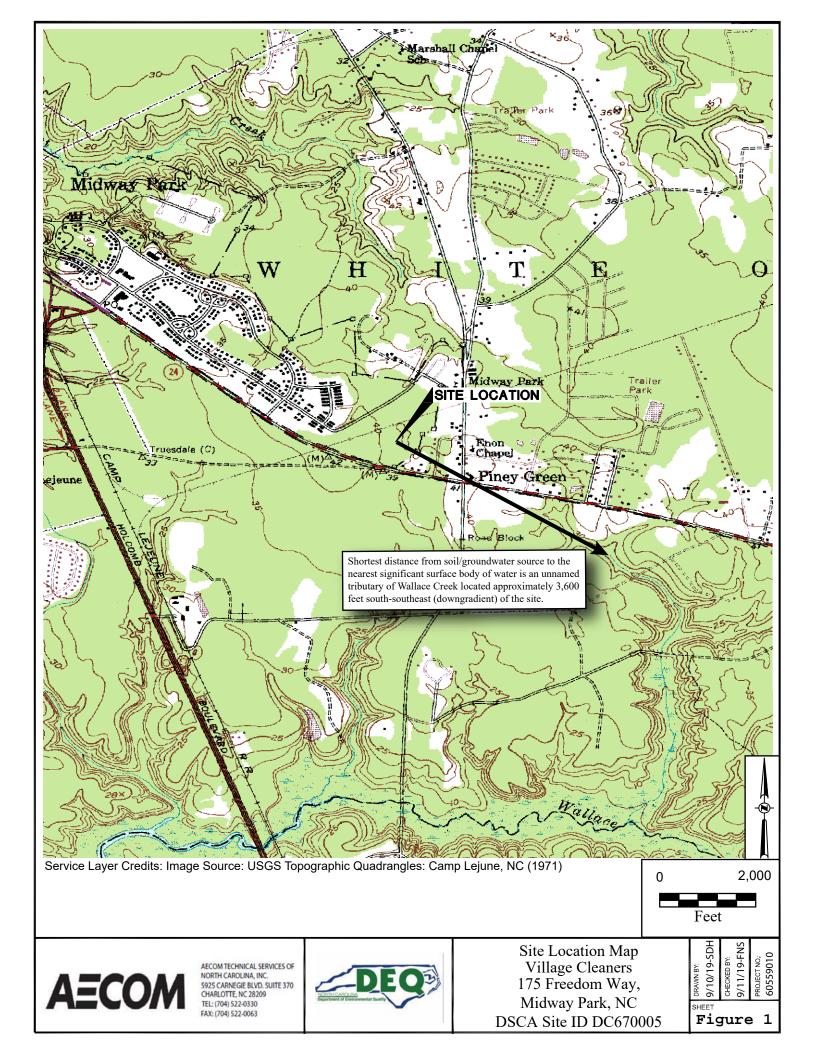
8.0 RMP IMPLEMENTATION SCHEDULE

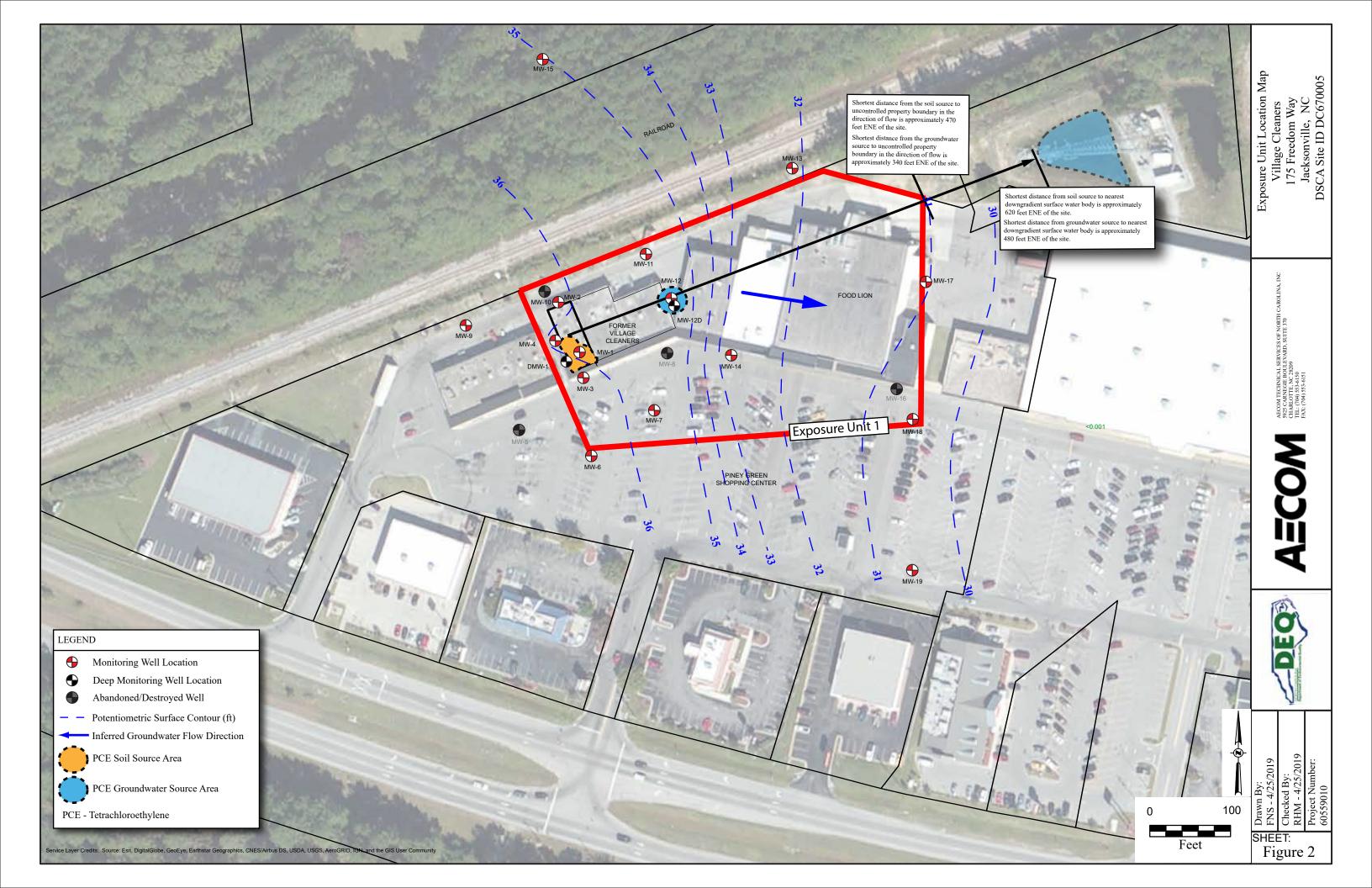
Since the groundwater plume is stable and confined to the source property, and possible exposure to the contamination is managed through the NDCSR, no additional site remediation activities are required to implement the RMP. A 30-day public comment period will be held to allow the community an opportunity to comment on this proposed strategy. **Appendix E**

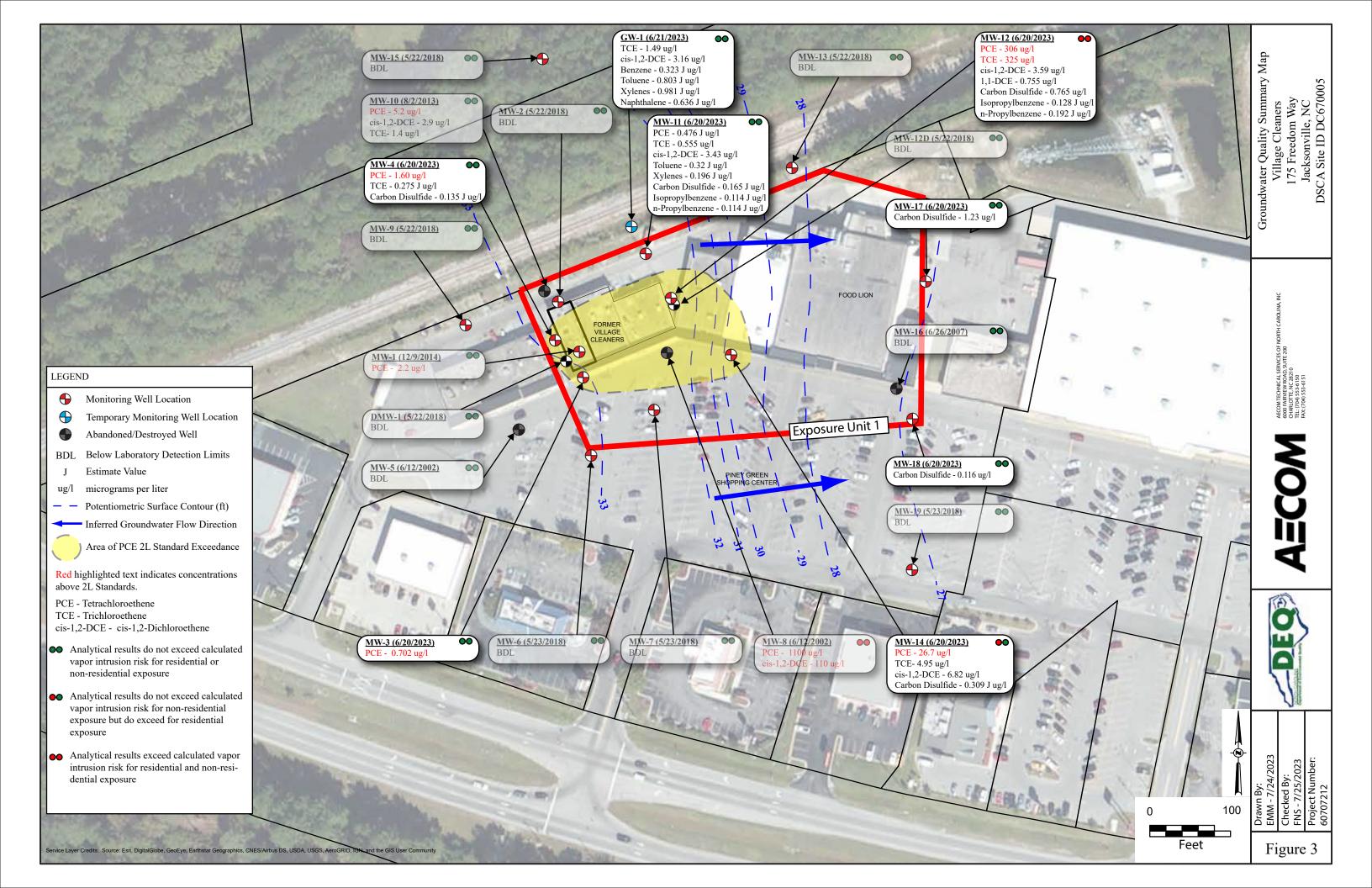
includes example documents used to announce the public comment period in the local newspaper and to inform local officials, nearby property owners, and interested parties. As such, upon completion of the public comment period and final approval of the RMP, the NDCSR will be filed with the Onslow County Register of Deeds and will complete the RMP schedule.

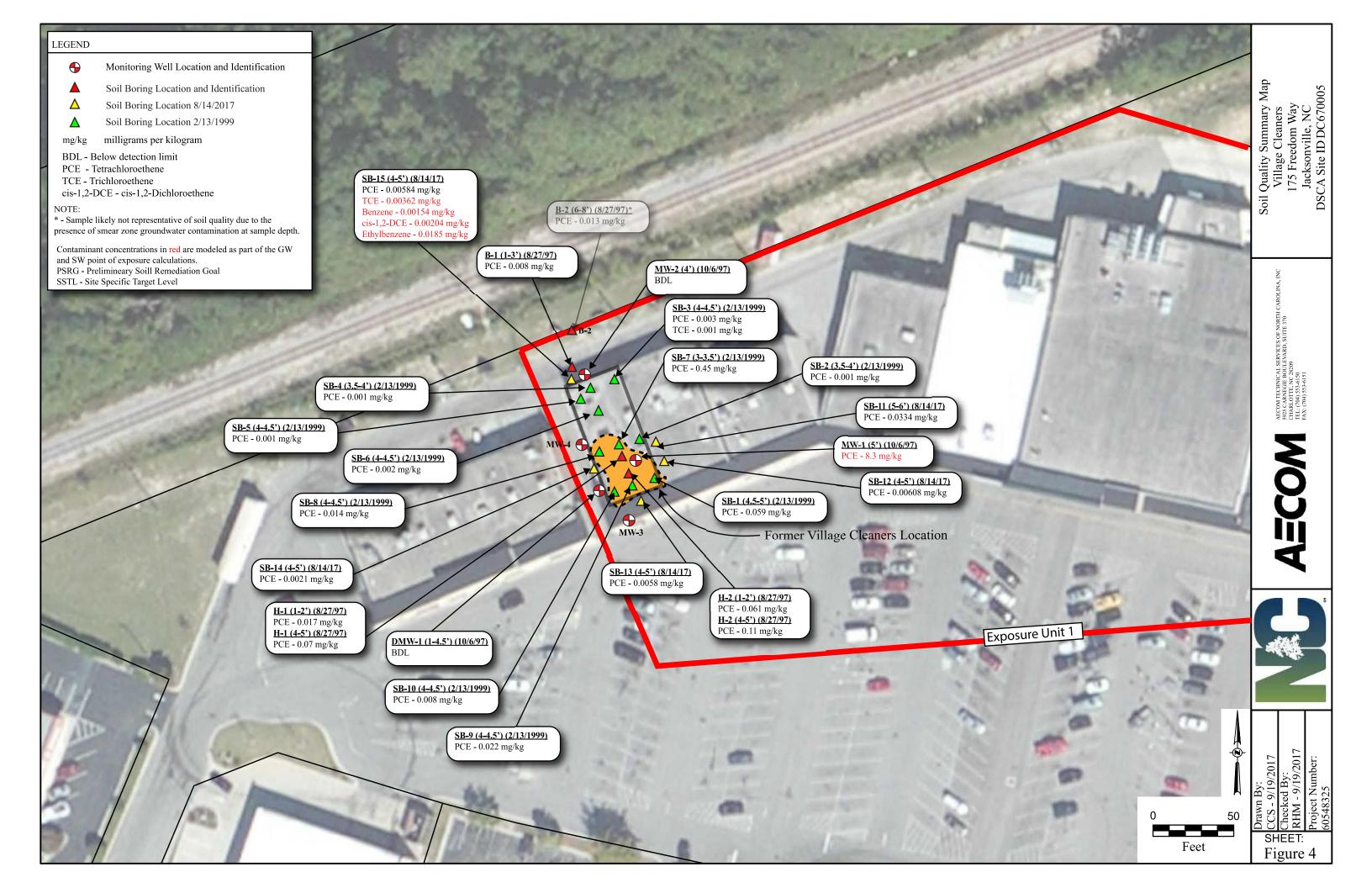
9.0 CRITERIA FOR DEMONSTRATING RMP SUCCESS

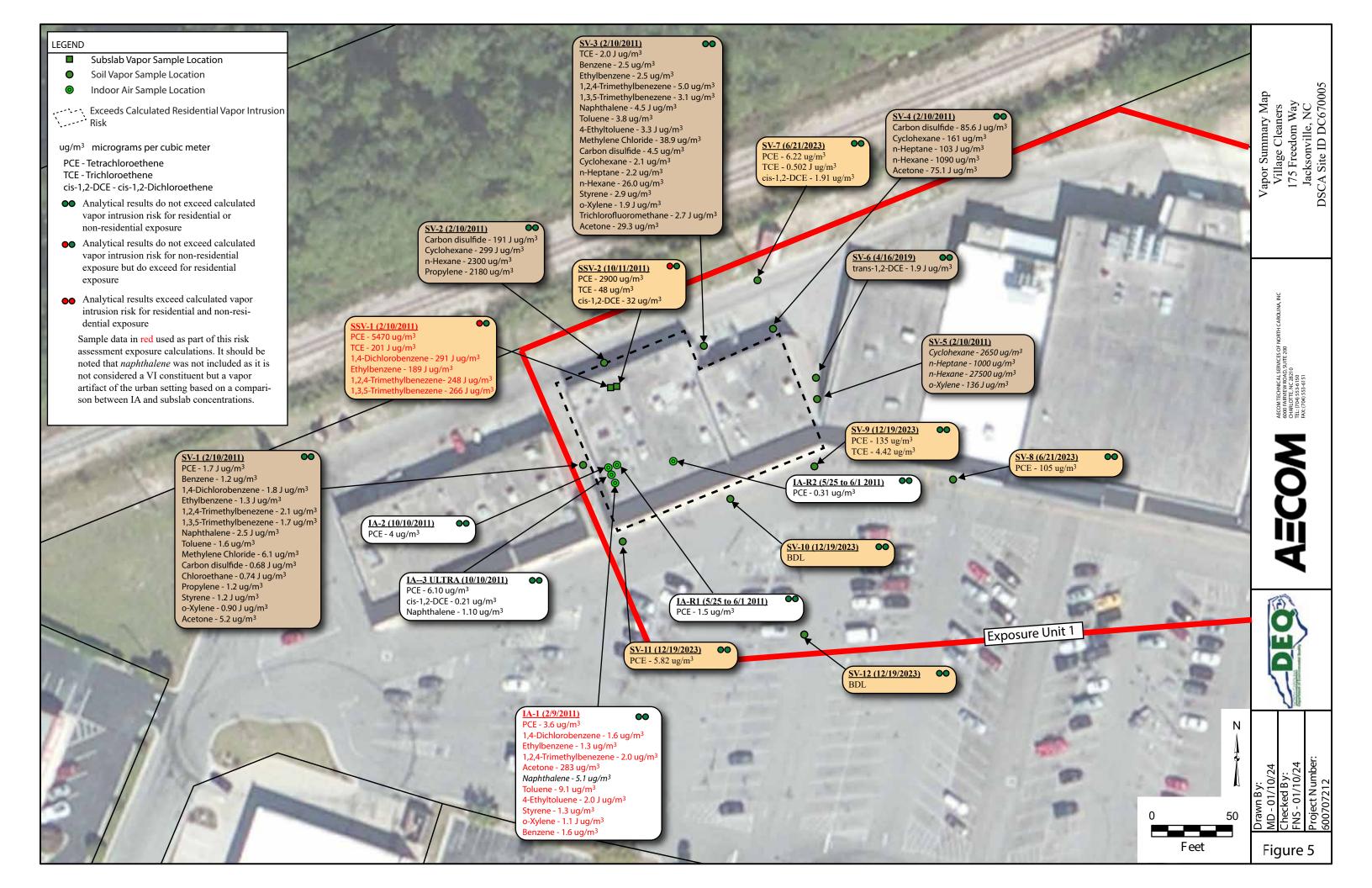
The RMP will be successfully implemented once the required NDCSR has been executed and recorded with the Onslow County Register of Deeds. The NDCSR for the property may, at the request of the property owner, may be canceled by NCDEQ after the risk to public health and the environment associated with the dry-cleaning solvent contamination and any other contaminants included in the dry-cleaning solvent assessment and remediation agreement has been eliminated as a result of the remediation of the property. If NCDEQ is notified of a change in site conditions, per the notification requirements set forth in the NDCSR, the RMP will be reviewed to determine if the site conditions have impacted the requirements set forth in the NDCSR and if changes are required. Enforcement of the RMP will be maintained through receipt of the "Annual Certification of Land-Use Restrictions" from the property owner as part of the NDCSR requirements.

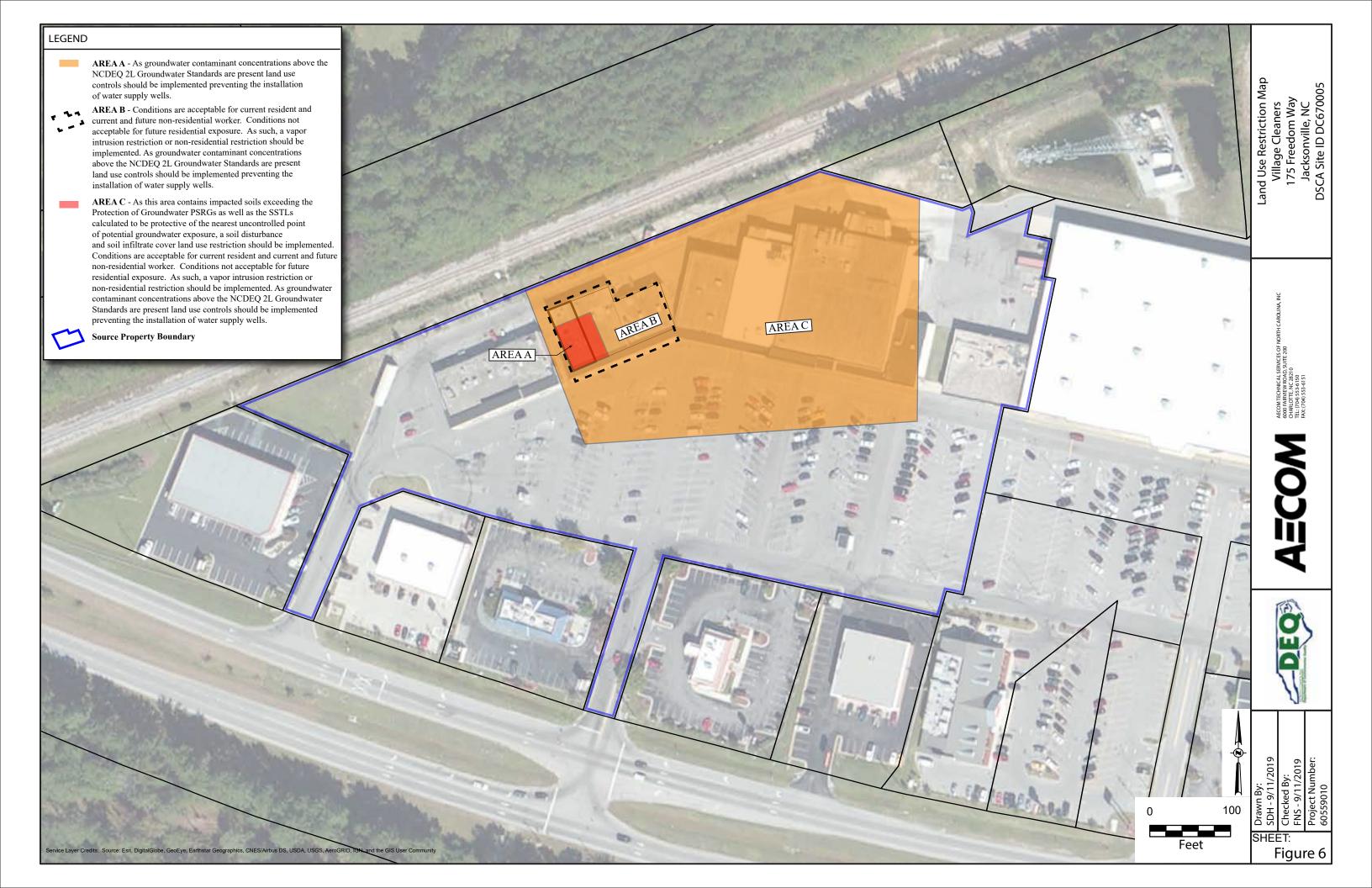

10.0 CONTINGENCY PLAN IF RMP FAILS


As discussed above, unless the DSCA Program is notified of a change in land use at the subject site, per the notification requirements detailed in this plan, the RMP will remain in effect until the RMP has met its objectives and is considered a success. Pursuant to N.C.G.S. 143-215.104K, if any of the LURs set out in the NDCSR are violated, the owners of the property at the time the LURs are violated, the owner's successors and assigns, and the owner's agents who direct or contract for alteration of the site in violation of the LURs, shall be held liable for the remediation of all contaminants to unrestricted use standards.


11.0 CONCLUSIONS AND RECOMMENDATIONS


AECOM has prepared this RMP for the Village Cleaners (DSCA Site ID DC670005) site on behalf of the DSCA Program. The results of the risk assessment completed for the site indicate that contaminant concentrations at the site do not pose an unacceptable risk with appropriate <u>land-use controls applied to the impacted property</u>. The contaminant plume associated with the site appears stable or decreasing. This RMP specifies that the NDCSR requirements provide


notification that land-use conditions observed during the risk assessment evaluation remain valid in the future. Based on the documentation contained in this report, AECOM recommends issuance of a "No Further Action" letter. FIGURES



APPENDIX A PLUME STABILITY DEMONSTRATION

Table 8: Analyt	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	5															
										е							
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	1,1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	lsopropylbenzene	n-Propylbenzene
Gro	San								[mg	/L]							
	10/8/1997	NA	NA	NA	NA	NA	NA	15	< 0.002	NA	<0.1	< 0.1	< 0.002	N/A	NA	NA	NA
	3/10/1999	NA	ND	NA	NA	NA	NA	12	NA	NA	ND	ND	NA	ND	NA	NA	NA
	1/24/2001	NA	ND	NA	NA	NA	NA	9.2	NA	NA	ND	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	ND	NA	NA	NA	NA	9.2	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	0.91	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	1.2	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.01	NA	NA	NA	NA	0.58	NA	< 0.01	< 0.01	< 0.01	NA	< 0.01	NA	NA	NA
	6/12/2002	NA	< 0.002	NA	NA	NA	NA	0.094	NA	< 0.002	0.002	< 0.002	N/A	< 0.002	NA	NA	NA
MW-1	12/4/2006	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01	0.34	< 0.01	< 0.02	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	6/25/2007	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01	0.37	< 0.01	< 0.02	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.348	< 0.001	< 0.001	0.00201	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.432	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	11/23/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.255	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	0.0053	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.11	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	0.0053	< 0.001	< 0.001	< 0.001
	4/8/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	0.045	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/4/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	0.15	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	9/19/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	0.055	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	12/9/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	0.0022	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	10/8/1997	< 0.005	< 0.005	< 0.001	< 0.005	< 0.005	< 0.005	0.003	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	3/10/1999	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	8/2/2013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	0.0053	< 0.001	< 0.001	< 0.001
DMW-1	4/8/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
Diriti I	6/4/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	9/19/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	12/9/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/22/2018	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.006	< 0.01	< 0.002	< 0.002	< 0.002
	10/8/1997	< 0.0025	< 0.0005	< 0.001	< 0.0005	< 0.0005	< 0.0005	0.003	< 0.0005	< 0.0025	0.009	< 0.0025	< 0.0005	< 0.0005	< 0.0025	< 0.0025	< 0.0025
	3/10/1999	NA	0.008	NA	NA	NA	NA	0.008	NA	NA	0.007	0.015	NA	ND	NA	NA	NA
	6/9/2009	0.0029	0.0019	< 0.001	< 0.001	< 0.001	< 0.001	0.00084 J	< 0.001	< 0.001	0.0015	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
MW-2	9/25/2009	0.0029	0.0019	< 0.001	< 0.001	< 0.001	< 0.001	0.00084 J	< 0.001	< 0.001	0.0015	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0068	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
	8/15/2017	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/22/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001

DECENDING: DECENDING Image and the second sec	Table 8: Analyt	ical Data fo	r Ground	water														ADT 8
m m<	DSCA ID No.:	DC670005	;															
108.197 0.0005	oundwater Sampling Point		Benzene	cis-1,2-Dichloroethylene	1,1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	Isopropylbenzene	n-Propylbenzene
310199 NA NA <th< th=""><th>Gr</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>20</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Gr									20	-	-						
MW-3 8/2013 cd.001 cd.001 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												-						
MW-3 Ris2017 -0.001 </td <td></td>																		
5232018 0.001	MW-3																	
620203 <						-											-	
MW-4 10%1997 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001												-						
MW-4 MA NA NA NA OLD NA ND NA NA NA NA NA ND NA																		
MW-4 82/2013 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												-						
MN-4 8/15/2017 <0.001 0.00636 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00						-											-	
5/22018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <td>MW-4</td> <td></td>	MW-4																	
6202023																		
H13/1997 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <<																		
MA NA NA<																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		
HW-5 4/6/2001 NA ND NA NA NA NA ND NA ND NA ND NA NA NA ND ND NA ND NA NA NA NA NA ND NA NA NA ND NA NA NA ND NA ND NA ND NA NA NA ND ND NA ND NA NA NA ND ND NA ND NA NA NA NA ND ND NA ND NA NA NA NA ND ND ND NA ND NA NA NA NA NA ND ND NA NA NA ND NA ND NA NA NA ND NA NA NA ND NA NA																		
MW-5 7/23/2001 NA ND NA NA NA NA ND NA NA ND NA ND NA ND NA ND NA ND NA ND NA NA ND NA ND NA ND NA NA NA ND NA NA NA ND																	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-5											-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	-	
6/12/2002 NA NA NA NA NA																		
						-												
MM-6 NA ND ND ND ND ND ND ND ND N																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	-	
626/2007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00																		
12/22/008 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>						-											-	
MW-6 3/12/2009 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001																		
69/2009 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	MW-6																	
9/25/2009 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0																		
8/2/2013 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <																		
		5/23/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001

Table 8: Analyt	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	5															
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	1,1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	Isopropylbenzene	n-Propylbenzene
0	∽ 11/3/1997	< 0.0005	< 0.0005	< 0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	[mg <0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	3/10/1999	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	1/24/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	6/12/2007	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	12/4/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
N 131 7	6/25/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW-7	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
	4/8/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/4/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	9/19/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	12/9/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/23/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	11/3/1997	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.0005	< 0.0005	0.52	< 0.0005	< 0.005	< 0.005	< 0.005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
	3/10/1999	NA	ND	NA	NA	NA	NA	0.97	NA	NA	ND	ND	NA	ND	NA	NA	NA
	1/24/2001	NA	ND	NA	NA	NA	NA	2	NA	NA	ND	ND	NA	ND	NA	NA	NA
MW-8	4/6/2001	NA	ND	NA	NA	NA	NA	2.7	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	2.1	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	2.9	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	<0.1	NA	NA	NA	NA	2.1	NA	<0.1	0.3100	<0.1	NA	<0.1	NA	NA	NA
	6/12/2002	NA	0.11	NA	NA	NA	NA	1.1	NA	< 0.020	0.3000	< 0.020	NA	< 0.020	NA	NA	NA
	11/3/1997	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	3/10/1999	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
MWO	8/2/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001
MW-9	4/8/2014	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.005	< 0.001	< 0.005	<0.001	<0.001	< 0.001	< 0.003	< 0.005	<0.001	< 0.001	< 0.001
	6/4/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.001	< 0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	9/19/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.001	<0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	5/22/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001

Table 8: Analyt	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	;															
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	1,1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	Isopropylbenzene	n-Propylbenzene
	11/3/1997	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.0005	< 0.0005	0.16	< 0.0005	< 0.005	< 0.005	< 0.005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
	3/10/1999	NA	ND	NA	NA	NA	NA	0.061	NA	NA	0.0040	ND	NA	ND	NA	NA	NA
	12/4/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0034	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	6/26/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0034	< 0.001	< 0.002	0.0017J	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW-10	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00945	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
WI W-10	3/12/2009	< 0.001	0.00234	< 0.001	< 0.001	< 0.001	< 0.001	0.0052	< 0.001	< 0.001	0.00227	0.0182	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	0.0036	< 0.001	< 0.001	< 0.001	< 0.001	0.0068	< 0.001	< 0.001	0.0021	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	0.0036	< 0.001	< 0.001	< 0.001	< 0.001	0.0068	< 0.001	< 0.001	0.0021	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	11/23/2009	< 0.001	0.0059	< 0.001	< 0.001	< 0.001	< 0.001	0.0091	< 0.001	< 0.001	0.0028	0.0081J	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	0.0029	< 0.001	< 0.001	< 0.001	< 0.001	0.0052	< 0.001	< 0.001	0.0014	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
	11/3/1997	< 0.0005	0.006	< 0.001	< 0.0005	< 0.0005	< 0.0005	0.8	< 0.0005	< 0.005	0.047	< 0.005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
	3/10/1999	NA	ND	NA	NA	NA	NA	0.15	NA	NA	0.018	ND	NA	ND	NA	NA	NA
	1/24/2001	NA	0.016	NA	NA	NA	NA	0.24	NA	NA	0.02	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	0.039	NA	NA	NA	NA	0.35	NA	NA	0.034	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	0.007	NA	NA	NA	NA	0.16	NA	NA	0.009	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	0.019	NA	NA	NA	NA	0.33	NA	NA	0.019	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.002	NA	NA	NA	NA	0.11	NA	< 0.002	0.002	< 0.002	NA	< 0.002	NA	NA	NA
	6/12/2002	NA	0.081	NA	NA	NA	NA	0.063	NA	< 0.004	0.009	< 0.004	NA	< 0.004	NA	NA	NA
MW-11	12/4/2006	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01	0.37	< 0.01	< 0.02	0.0006J	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
101 00 - 1 1	6/25/2007	< 0.01	0.034	< 0.001	< 0.01	< 0.01	< 0.01	0.68	< 0.01	< 0.02	0.043	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	12/22/2008	< 0.001	0.0295	< 0.001	< 0.001	< 0.001	< 0.001	1.927	< 0.001	< 0.001	0.0736	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	0.00803	< 0.001	< 0.001	< 0.001	< 0.001	0.758	< 0.001	< 0.001	0.0301	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	0.0108	< 0.001	< 0.001	< 0.001	< 0.001	0.882	0.0044 J	< 0.001	0.0235	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	0.0108	< 0.001	< 0.001	< 0.001	< 0.001	0.882	0.0044 J	< 0.001	0.0235	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	11/23/2009	< 0.001	0.0264	< 0.001	< 0.001	< 0.001	< 0.001	0.885	< 0.001	< 0.001	0.032	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	8/3/2013	< 0.005	< 0.005	< 0.001	< 0.005	< 0.005	< 0.005	0.42	< 0.005	< 0.005	0.032	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005
	5/22/2018	< 0.001	0.00767	< 0.001	< 0.001	< 0.001	< 0.005	0.0283	< 0.001	< 0.001	0.00699	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/20/2023	< 0.001	0.00343	< 0.001	< 0.001	< 0.001	< 0.005	0.000476 J	0.000320 J	< 0.001	0.000555	< 0.001	0.000196 J	< 0.005	0.000165 J	0.000114 J	0.000114 J

Table 8: Analyt	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	;															
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	1,1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	Isopropylbenzene	n-Propylbenzene
	3/10/1999	NA	ND	NA	NA	NA	NA	0.022	NA	NA	ND	ND	NA	ND	NA	NA	NA
	12/4/2006	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01	0.83	< 0.01	< 0.02	0.026	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	6/26/2007	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01	0.63	< 0.01	< 0.02	0.035	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1.696	< 0.001	< 0.001	0.0938	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1.2	< 0.001	< 0.001	0.0842	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.372	< 0.001	< 0.001	0.032	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.372	< 0.001	< 0.001	0.032	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	11/23/2009	< 0.001	0.0013J	< 0.001	< 0.001	< 0.001	< 0.001	0.79	< 0.001	< 0.001	0.00703	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
MW-12	8/2/2013	< 0.001	0.0011	< 0.001	< 0.001	< 0.001	< 0.001	0.980	< 0.001	0.0016	0.160	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
	4/8/2014	< 0.005	< 0.005	< 0.001	< 0.005	< 0.005	< 0.025	1.1	< 0.025	< 0.005	0.2100	< 0.005	< 0.015	< 0.025	< 0.005	< 0.005	< 0.005
	6/4/2014	<0.05	<0.05	<0.001	< 0.05	<0.05	<0.25	1.2	<0.25	< 0.05	0.21	<0.05	< 0.15	<0.25	<0.05	<0.05	<0.05
	9/19/2014	< 0.05	<0.05	<0.001	< 0.05	< 0.05	<0.25	0.95	<0.25	< 0.05	0.28	< 0.05	< 0.15	<0.25	<0.05	< 0.05	< 0.05
	1/20/2015	<0.001	0.0024	<0.001	<0.001 <0.0010	<0.001	<0.005 <0.0050	1.3	<0.005	<0.001	0.32	< 0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	6/11/2015 8/15/2017	<0.0010	0.0021	<0.001 0.00116	<0.0010	<0.0010	<0.0050	0.84	<0.0050 <0.001	<0.0010	0.21	<0.0010	<0.0030 <0.003	<0.0050 <0.005	<0.0010	<0.0010 <0.001	<0.0010 <0.001
	5/22/2018	<0.001	0.0034	<0.001	<0.001	<0.001	<0.005	0.174 0.178	<0.001	<0.001	0.0785	< 0.001	< 0.003	<0.005	<0.001	<0.001	<0.001
	4/16/2019	<0.001	0.00175	0.0117	<0.001	<0.001	<0.005	0.655	<0.001	<0.001	0.358	< 0.001	< 0.003	< 0.005	<0.001	<0.001	<0.001
	6/20/2023	<0.001	0.00359	0.000755	<0.001	<0.001	<0.005	0.306 E	<0.001	<0.001	0.325 E	<0.001	<0.003	<0.005	0.000765	0.000128 J	0.000192 J
	3/10/1999	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	0.003	NA	NA	NA
	1/24/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	6/12/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	12/4/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	6/25/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW-12D	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00332	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.002	<0.001	< 0.001	<0.001	<0.001
	8/2/2013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001
	4/8/2014 6/4/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005 <0.005	<0.001	<0.005	<0.001	<0.001	<0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	6/4/2014 9/19/2014	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.005	<0.001	<0.005 <0.005	<0.001	<0.001	<0.001 <0.001	<0.003 <0.003	<0.005 <0.005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001
	9/19/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	< 0.005	<0.001	<0.001	<0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	5/22/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.003	<0.001	<0.001	< 0.001	< 0.003	<0.005	<0.001	<0.001	<0.001
	5/22/2010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.005	<0.001	<0.001	<0.001

Table 8: Analyti	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	5									_						
Groundwater Sampling Point	Sampling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	1, 1-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Vaphthalene	Fetrachloroethylene	Foluene	rans-1,2-Dichloroethylene	Frichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	lsopropylbenzene	1-Propylbenzene
Gro	Sam								[mg	/L]				Ŭ			
	3/10/1999	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	1/24/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	6/12/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
-	12/4/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
-	6/25/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MW-13	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
-	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00166	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	<0.001
-	6/9/2009	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00077 J	< 0.001	< 0.001	< 0.001	< 0.001	<0.002	< 0.001	< 0.001	< 0.001	<0.001
-	9/25/2009	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00077 J	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001
-	8/2/2013 4/8/2014	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001	<0.003 <0.003	<0.001	<0.001	<0.001	<0.001
-	4/8/2014 6/4/2014	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001	<0.001 <0.001	<0.001	<0.003	<0.005 <0.005	<0.001 <0.001	<0.001	<0.001 <0.001
-	9/19/2014	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	< 0.005	<0.001	<0.001	< 0.001	< 0.003	<0.005	<0.001	<0.001	<0.001
-	9/19/2014 12/9/2014	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.001	<0.001	< 0.003	<0.005	<0.001	<0.001	<0.001
-	8/15/2017	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.003	<0.001	<0.001	< 0.001	< 0.003	<0.005	<0.001	<0.001	<0.001
	5/22/2018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.005	<0.001	<0.001	<0.001
	3/10/1999	<0.001 NA	<0.001 ND	<0.001 NA	<0.001 NA	NA	<0.005 NA	<0.001 ND	<0.001 NA	<0.001 NA	<0.001 ND	<0.001 ND	<0.003 NA	<0.005 ND	<0.001 NA	<0.001 NA	<0.001 NA
	1/24/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	4/6/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	7/23/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	10/4/2001	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA
	5/1/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
MW-14	6/12/2002	NA	< 0.001	NA	NA	NA	NA	< 0.001	NA	< 0.001	< 0.001	< 0.001	NA	< 0.001	NA	NA	NA
	12/4/2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.015	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	6/25/2007	< 0.001	0.0048	< 0.001	< 0.001	< 0.001	< 0.001	0.033	< 0.001	< 0.002	0.0033	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	0.0180	< 0.001	< 0.001	< 0.001	< 0.001	0.019	< 0.001	< 0.001	0.0027	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
	6/11/2015	< 0.001	0.048	< 0.001	< 0.001	< 0.001	< 0.005	0.082	< 0.001	< 0.001	0.017	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/23/2018	< 0.001	0.0219	< 0.001	< 0.001	< 0.001	< 0.005	0.0322	< 0.001	< 0.001	0.0102	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/20/2023	< 0.001	0.00682	< 0.001	< 0.001	< 0.001	< 0.005	0.0267	< 0.001	< 0.001	0.00495	< 0.001	< 0.003	< 0.005	0.000309 J	< 0.001	< 0.001

Table 8: Analyti	ical Data fo	r Ground	water														ADT 8
DSCA ID No.:	DC670005	5															
Groundwater Sampling Point	g Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	L, I-Dichloroethene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Fetrachloroethylene	Foluene	rans-1,2-Dichloroethylene	Frichloroethylene	Vinyl chloride	Xylenes (total)	Chloroform	Carbon Disulfide	lsopropylbenzene	n-Propylbenzene
punor	Sampling J	Ben	cis-	1,1-	Ethy	Met (MT	Nap	Tetr		4	Tric	Vin	Xyh	Chlo	Carl	Isop	n-Pı
0	∽ 3/10/1999	NA	ND	NA	NA	NA	NA	ND	[mg/ NA	L] NA	ND	ND	NA	0.004	NA	NA	NA
	6/25/2007	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001
	12/22/2008	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	< 0.002	<0.001	<0.001	<0.001	<0.001	<0.001
MW-15	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00052 J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00052 J	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	5/22/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
MW-16	6/26/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	0.0015	< 0.001	< 0.001	< 0.001
	6/25/2007	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.001	0.0062	< 0.001	< 0.001	< 0.001
	12/22/2008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	3/12/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	6/9/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	9/25/2009	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
	8/2/2013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
MW-17	4/8/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/4/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	9/19/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	12/9/2014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	8/15/2017	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/22/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/20/2023	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	0.00123	< 0.001	< 0.001
	6/22/2016	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
MW-18	8/15/2017	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/23/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	6/20/2023	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	0.000116 J	< 0.001	< 0.001
MW-19	6/22/2016	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
	5/23/2018	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.003	< 0.005	< 0.001	< 0.001	< 0.001
GW-1	6/21/2023	0.000323 J	0.00316	< 0.001	< 0.001	< 0.001	0.000636 J	< 0.001	0.000803 J	< 0.001	0.00149	< 0.001	0.000981 J	< 0.005	< 0.001	< 0.001	< 0.001

MW-1 0.045 0.15 0.055 0.0022	MW-2	MW-3	Concentration Units: <u>MW-4</u> CONCENTRATION 0.019	MW-11	MW-12	MW-14 0.033
0.15 0.055				0.882		0.033
0.15 0.055		0.0022	0.019			0.033
0.15 0.055		0.0022	0.019			
0.15 0.055		0.0022	0.019			
0.15 0.055	0.0068	0.0022	0.019	0.885		
0.15 0.055	0.0068	0.0022	0.019			
0.15 0.055				0.42		0.019
0.055						
0.0022						
0:0022						
					1.3	
			0.0404		0.84	0.082
	0.0005	0.00604	0.0161		0.174	
	0.0005	0.00192	0.00707	0.0283		0.0322
		0.000700	0.0010	0.000.170		0.0007
		0.000702	0.0016	0.000476	0.306	0.0267
			Values in red a	ro half the laboratory	detection limit	
0 00	1 /3	0.85				0.71
	-					0
						37.5%
Stable	No Trend	Stable	Decreasing	Decreasing	Stable	Stable
					ר בי	MW-1
	0.99 -2 62.5% Stable	0.0005 0.0005 0.99 1.43 -2 -3 62.5% 72.9%	0.0005 0.00192 0.000702 0.000702 0.00192 0.000702 0.000 0.000702 0.00192 0.000702	0.0005 0.00192 0.00707 0.000702 0.0016 <t< td=""><td>0.0005 0.00192 0.00707 0.0283 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.0016 0.000476 0.0016 0.0016 0.00176 0.0016 0.00176 0.0016 0.99 1.43 0.85 0.73 0.901 0.43 0.65 0.73 0.902</td><td>0.0005 0.00192 0.00707 0.0283 0.178 0.0005 0.00192 0.00707 0.0283 0.178 0.000702 0.0016 0.000476 0.306 0.000702 0.0016 0.000476 0.306 0.000 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.0016 0.000476 0.001 0.0016 0.0016 0.0016 0.001 0.0016 0.0016 0.0016 0.99 1.43 0.85 0.73 0.90 <td< td=""></td<></td></t<>	0.0005 0.00192 0.00707 0.0283 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000702 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.000 0.0016 0.000476 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.000476 0.0016 0.0016 0.0016 0.000476 0.0016 0.0016 0.00176 0.0016 0.00176 0.0016 0.99 1.43 0.85 0.73 0.901 0.43 0.65 0.73 0.902	0.0005 0.00192 0.00707 0.0283 0.178 0.0005 0.00192 0.00707 0.0283 0.178 0.000702 0.0016 0.000476 0.306 0.000702 0.0016 0.000476 0.306 0.000 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.000476 0.306 0.001 0.0016 0.0016 0.000476 0.001 0.0016 0.0016 0.0016 0.001 0.0016 0.0016 0.0016 0.99 1.43 0.85 0.73 0.90 <td< td=""></td<>

Notes:

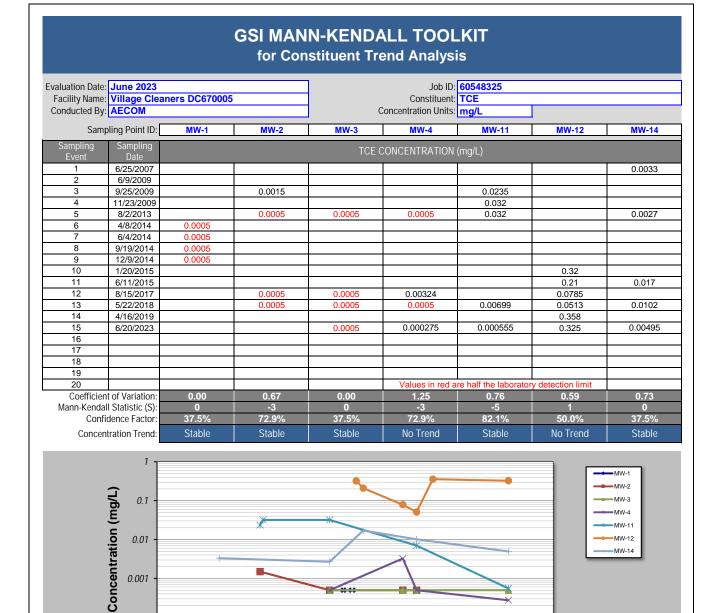
1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

12/14

Sampling Date


09/17

06/20

03/23

12/25

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

Notes:

0.001

0.0001

01/04

10/06

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

07/09

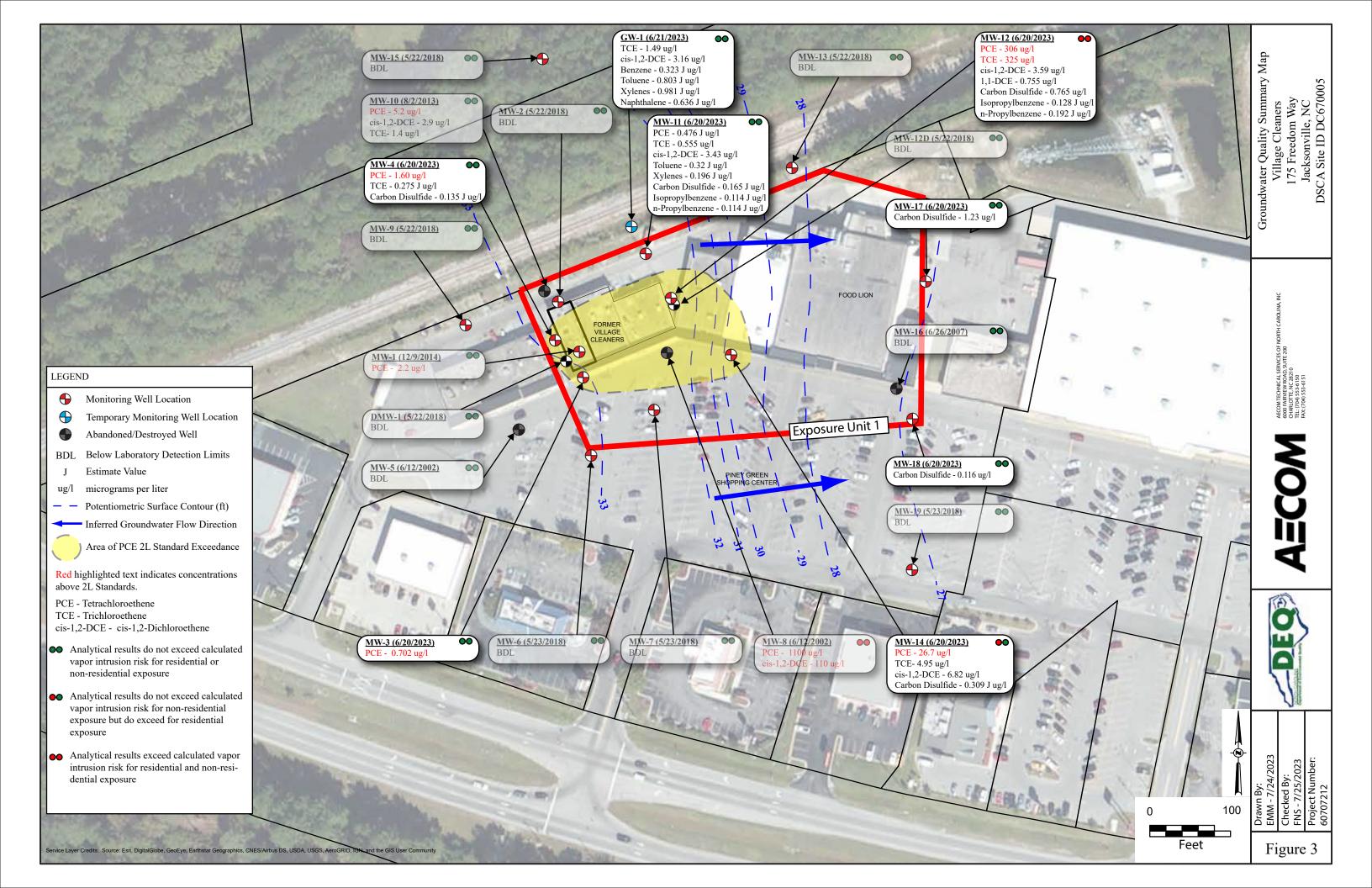
04/12

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

12/14


Sampling Date

09/17

06/20

03/23

12/25

APPENDIX B LEVEL I ECOLOGICAL RISK ASSESSMENT CHECKLISTS

Level 1 Ecological Risk Assessment Checklist A for Potential Receptors and Habitat DSCA Site ID DC670005

- 1. Are there any navigable water bodies or tributaries to a navigable water body on or within the one-half mile of this site? Yes. According to a *Prioritization Assessment Report* prepared by MACTEC Engineering and Consulting, Inc. (MACTEC), dated July 15, 2003, and based on review of the United States Geological Survey (USGS) topographic map, Camp Lejeune, North Carolina, dated 2019, other than the onsite stormwater retention ponds, the closest surface water body is Mott Creek, which is located approximately 4,000 feet to the north, and Wallace Creek, located approximately 4,000 feet to the south. Mott Creek empties into Northeast Creek approximately 1.9 miles to the northwest of the site, and Northeast Creek joins the New River approximately 4 miles west of the site. Additionally, the site contains a drainage ditch to the rear of the property near the property line of the Marine Corps Railroad. Mott Creek is classified as a Class C;NSW water body. Northeast Creek is classified as a SC;HQW,NSW water body and the New River is classified as a SC;NSW water body, and both features are considered navigable. The drainage and surface water features within one-half mile of the site are shown on the attached **Figure 1**.
- **2.** Are there any water bodies anywhere on or within the one-half mile of the site? Yes. The above referenced stormwater retention ponds are located onsite. Other features reference above are located more than one-half mile of the site.
- **3.** Are there any wetland areas such as marshes or swamps on or within one-half mile of the site? Yes. According to the EDR NEPASearch Report, the National Wetland Inventory (NWI) identified 10 wetland features within one-half mile of the site and 29 wetland features within one mile of the site. Off-site wetland features within one-half mile of the site include:
 - 1. PFO4Cd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [C] Seasonally Flooded [d] Partially Drained/Ditched, located approximately 780 ft north;
 - 2. PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched, located approximately 816 ft south-southwest;
 - 3. PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated, located approximately 1,606 ft east;
 - 4. PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated, located approximately 1,771 ft east-southeast;
 - 5. PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched, located approximately 2,184 ft east-southeast;
 - 6. PFO1/4Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous / [4Bd] Unknown Class, located approximately 2,203 ft east-southeast;

- 7. PFO4Ad [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched, located approximately 2,220 ft north-northeast;
- 8. PSS4Ad [P] Palustrine [SS] Scrub Shrub [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched, located approximately 2,435 ft north-northeast;
- 9. PFO4Ad [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched, located approximately 2,587 ft north; and
- 10. PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated, located approximately 2,616 ft east.
- **4.** Are there any sensitive environmental areas on or within one-half mile of the site? Yes. The 10 wetland features referenced above were identified within one-half mile of the site.
- 5. Are there any areas on or within one-half mile of the site owned or used by local tribes? None were identified by the Indian Reservations Database.
- 6. Are there any habitat, foraging area or refuge by rare, threatened, endangered, candidate and/or proposed species (plants or animals), or any otherwise protected species on or within one-half mile of the site? Potentially. According to the EDR NEPASearch Report, the County Endangered Species database identified 10 endangered species in Onslow County: the Red-cockaded woodpecker (bird), the Shortnose sturgeon (fish), the Atlantic sturgeon (fish), Golden sedge (plant), Rough-leaved loosestrife (plant), Pondberry (plant), Cooley's meadowrue (plant), the West Indian Manatee (mammal), the Hawksbill sea turtle (reptile), and the Leatherback sea turtle (reptile). Additionally, six (6) threatened species were identified: the Red knot (bird), the Piping Plover (bird), Seabeach amaranth (plant), the Loggerhead sea turtle (reptile), the American alligator (reptile), and the Green sea turtle (reptile). The U.S. Federal Lands database identified at least one Officially Designated Wildlife Preserve within one-half mile of the site. At least one Officially Designated Wildlife Preserve was also identified by the NC Managed Areas and US Proclamation Boundaries databases.

One (1) additional endangered species, six (6) at risk species (ARS), and one (1) Bald and Golden Eagle Protection Act (BGPA) species were also identified by the U.S. Fish and Wildlife Service (FWS) in Onslow County (https://www.fws.gov/raleigh/species/cntylist/onslow.html). However, none have specifically been identified at or within one-half mile of the site.

7. Are there any breeding, roosting or feeding areas by migratory bird species on or within one-half mile of the site? None were identified by the Federal Lands Databases included in the EDR NEPASearch Report. Additionally, according to the National Audubon Society, Important Bird Areas (IBAs) web page (<u>http://netapp.audubon.org/iba/state/US-NC</u>), there are no breeding, roosting, or feeding areas by migratory bird species on or within one half mile of the site. In addition, no important bird areas or endangered/threatened bird species have been specifically identified within one-half mile of the site.

- 8. Are there any ecologically, recreationally or commercially important species on or within one-half mile of the site? None have been identified.
- **9.** Are there any threatened and/or endangered species (plant or animal) on or within onehalf mile of the site? Potentially. According to the EDR NEPASearch Report, the County Endangered Species database identified 10 endangered species in Onslow County: the Redcockaded woodpecker (bird), the Shortnose sturgeon (fish), the Atlantic sturgeon (fish), Golden sedge (plant), Rough-leaved loosestrife (plant), Pondberry (plant), Cooley's meadowrue (plant), the West Indian Manatee (mammal), the Hawksbill sea turtle (reptile), and the Leatherback sea turtle (reptile). Additionally, six (6) threatened species were identified: the Red knot (bird), the Piping Plover (bird), Seabeach amaranth (plant), the Loggerhead sea turtle (reptile), the American alligator (reptile), and the Green sea turtle (reptile). The U.S. Federal Lands database identified at least one Officially Designated Wilderness Area and at least one Officially Designated Wildlife Preserve within one-half mile of the site. At least one Officially Designated Wildlife Preserve was also identified by the NC Managed Areas and US Proclamation Boundaries databases.

One (1) additional endangered species, six (6) at risk species (ARS), and one (1) Bald and Golden Eagle Protection Act (BGPA) species were also identified by the U.S. Fish and Wildlife Service (FWS) in Onslow County (https://www.fws.gov/raleigh/species/cntylist/onslow.html). However, none have specifically been identified at or within one-half mile of the site.

If the answer is "Yes" to any of the above questions, then complete Level 1 Ecological Risk Assessment, Checklist B for Potential Exposure Pathways.

March 2007

DSCA Program

Wetlands are defined in 40 CFR §232.2 as "areas inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions." The sources to make the determination whether or not wetland areas are present may include, but not limited to, national wetland inventory available at http://nwi.fw.gov, federal or state agency, and USGS topographic maps. Areas that provide unique and often protected habitat for wildlife species. These areas typically used during critical life stages such as breeding, rearing or young and overwintering. Refer to Attachment 1 for examples of sensitive environments. Ecologically important species include populations of species which provide a critical food resource for higher organisms. Ecologically important species include pest an opportunistic species that populate an area if they serve as a food source for other species, but do not include domesticated animals or plants/animals whose existence is maintained by continuous human interventions.

Level 1 Ecological Risk Assessment Checklist B for Potential Receptors and Habitat DSCA Site ID DC670005

- 1A. Can chemicals associated with the site leach, dissolve, or otherwise migrate to groundwater? Yes.
- **1B.** Are chemicals associated with the site mobile in groundwater? Yes.
- 1C. Does groundwater from the site discharge to ecological receptor habitat? Unlikely. Groundwater flows across the site to the east. Other than the onsite stormwater retention ponds, the closest surface water body is Mott Creek, which is located approximately 4,000 feet to the north, and Wallace Creek, located approximately 4,000 feet to the south. Mott Creek empties into Northeast Creek approximately 1.9 miles to the northwest of the site, and Northeast Creek joins the New River approximately 4 miles west of the site. Additionally, the site contains a drainage ditch to the rear of the property near the property line of the Marine Corps Railroad.

Question 1. Could chemicals associated with the site reach ecological receptors through groundwater? Not likely. As documented in a *Groundwater Monitoring and Well Abandonment Report* prepared by AECOM, dated June 20, 2018, groundwater quality stability at the site has been empirically demonstrated (based on a review of the groundwater quality data generated to date), and groundwater contamination above the NCDEQ 2L groundwater standards is not expected to create a 2L exceedance at the point(s) of exposure (POE; the nearest downgradient property boundary of the first property encountered where groundwater impacts have not been observed) identified in the *Risk Assessment* prepared for the site, dated November 7, 2019.

- 2A. Are chemicals present in surface soils on the site? Yes.
- 2B. Can chemicals be leached from or be transported by erosion of surface soils on the site? Unlikely. Impacted soils that remain are located largely under impervious surfaces (i.e., the building and surrounding drive and parking areas) or vegetated areas.
 Question 2. Could chemicals associated with the site reach ecological receptors through runoff or erosion? Not likely. Given the current condition of the site, erosion and runoff are not likely concerns since the surface soil impacts are generally located under impervious or vegetated surfaces.
- **3A.** Are chemicals present in surface soil or on the surface of the ground? Yes.
- **3B.** Are potential ecological receptors on the site? No. Question 3. Could chemicals associated with the site reach ecological receptors through direct contact? Not likely. Given the current condition of the site, direct contact with impacted soil or groundwater are not likely concerns since the site is currently developed with impervious or vegetated surfaces.
- 4A. Are chemicals on the site volatile? Yes.

4B. Could chemicals on the site be transported in air as dust or particulate matter? No. Surface soil impacts were only identified under impervious or vegetated surfaces at the site.

Question 4. Could chemicals associated with the site reach ecological receptors through inhalation of volatilized chemicals or adhered chemicals to dust in ambient air or in subsurface burrows? Not likely. Surficial soil impacts are located beneath impervious or vegetated surfaces at the site. No burrowing animals have been observed or would be expected beneath the building or the paved asphalt at the site.

- 5A. Is Non-Aqueous Phase Liquid (NAPL) present at the site? No.
- **5B. Is NAPL migrating?** Not applicable.
- 5C. Could NAPL discharge occur where ecological receptors are found? Not applicable. Question 5. Could chemicals associated with site reach ecological receptors through migration of NAPL? No. To date, NAPL has not been identified at the site.
- 6A. Are chemicals present in surface and shallow subsurface soils or on the surface of the ground? Yes. Chemicals have been identified at 0 to 3 foot below ground surface (bgs) beneath impervious and vegetated surfaces at the site.
- **6B.** Are chemicals found in soil on the site taken up by plants growing on the site? Potentially. Surface soil impacts are potentially under vegetated surfaces at the site.
- 6C. Do potential ecological receptors on or near the site feed on plants (e.g., grasses, shrubs, forbs, trees, etc.) found on the site? Potentially; however, none have been specifically identified.
- **6D.** Do chemicals found on the site bioaccumulate? No.

Question 6. Could chemicals associated with the site reach ecological receptors through direct ingestion of soil, plants animals or contaminants? Not likely, as soil impacts have only been identified beneath impervious or vegetated surfaces.

If the answer to one or more of the above six questions is "Yes", the DENR may require further assessment to determine whether the site poses an unacceptable risk to ecological receptors.

March 2007

DSCA Program

Village Cleaners, DSCA Site ID DC670005

175 Freedom Way MIDWAY PARK, NC 28544

Inquiry Number: 5931810.1s January 10, 2020

EDR NEPASearch™ Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
EDR NEPASearch Description	1
Map Findings Summary	2
Natural Areas	. 3
Historic Sites	21
Flood Plain	24
Wetlands	26
Wetlands Classification System	32
FCC & FAA Sites	36
Key Contacts and Government Records Searched	42

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Sit Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EDR NEPASearch DESCRIPTION

The National Environmental Policy Act of 1969 (NEPA) requires that Federal agencies include in their decision-making processes appropriate and careful consideration of all environmental effects and actions, analyze potential environmental effects of proposed actions and their alternatives for public understanding and scrutiny, avoid or minimize adverse effects of proposed actions, and restore and enhance environmental quality as much as possible.

The EDR NEPASearch Map Report provides information which may be used, in conjunction with additional research, to determine whether a proposed site or action will have significant environmental effect.

TARGET PROPERTY ADDRESS

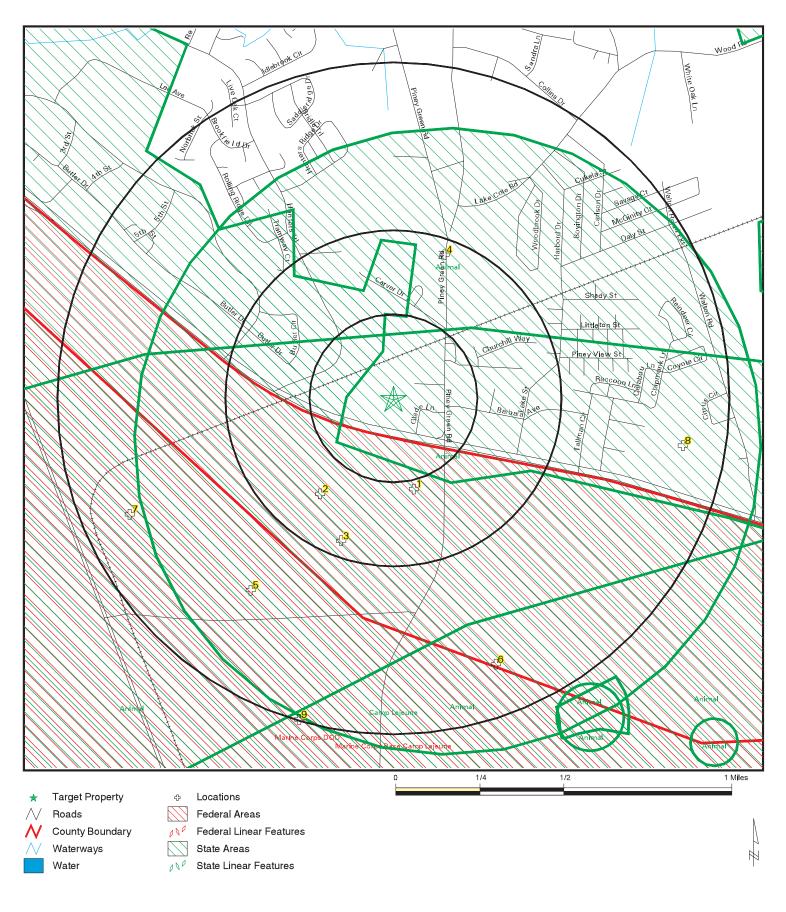
VILLAGE CLEANERS, DSCA SITE ID DC670005 175 FREEDOM WAY MIDWAY PARK, NC 28544 Inquiry #: 5931810.1s Date: 1/10/20

TARGET PROPERTY COORDINATES

Latitude (North): Longitude (West): Universal Tranverse Mercator: UTM X (Meters): UTM Y (Meters):

34.717823 - 34° 43' 4.2" 77.323074 - 77° 19' 23.1" Zone 18 287265.2 3844011.8

The report provides maps and data for the following items (where available). Search results are provided in the Map Findings Summary on page 2 of this report.


Section Natural Areas Map	Regulation
 Federal Lands Data: Officially designated wilderness areas Officially designated wildlife preserves, sanctuaries 	47 CFR 1.1307(1) 47 CFR 1.1307(2)
and refuges - Wild and scenic rivers - Fish and Wildlife • Threatened or Endangered Species, Fish and Wildlife, Critical Habitat Data (where available)	40 CFR 6.302(e) 40 CFR 6.302 47 CFR 1.1307(3); 40 CFR 6.302
 Historic Sites Map National Register of Historic Places State Historic Places (where available) Indian Reservations 	47 CFR 1.1307(4); 40 CFR 6.302
Flood Plain Map • National Flood Hazard Layer Data (where available) • FEMA Q3 Flood Data (where available)	47 CFR 1.1307(6); 40 CFR 6.302 47 CFR 1.1307(6); 40 CFR 6.302
 Wetlands Map National Wetlands Inventory Data (where available) State Wetlands Data (where available) 	47 CFR 1.1307(7); 40 CFR 6.302 47 CFR 1.1307(7); 40 CFR 6.302
 FCC & FAA Map FCC antenna/tower sites, FAA Markings and Obstructions, Airports, Topographic gradient 	47 CFR 1.1307(8)
Key Contacts and Government Records Searched	

MAP FINDINGS SUMMARY

The databases searched in this report are listed below. Database descriptions and other agency contact information is contained in the Key Contacts and Government Records Searched section on page 42 of this report.

Applicable Regulation from 47 CFR/FCC Checklist	Database	Search Distance (Miles)	Within Search	Within 1/8 Mile
NATURAL AREAS MAP				
1.1307a (1) Officially Designated Wilderness Area	US Federal Lands	1.00	YES	NO
	US Wilderness Preservation	1.00	NO	NO
1.1307a (2) Officially Designated Wildlife Preserve	US Federal Lands	1.00	YES	NO
	NC Natural Areas	1.00	NO	NO
	NC Natural Heritage Areas	1.00	NO	NO
	NC Managed Areas	1.00	YES	YES
	US ACEC	1.00	NO	NO
	US Proclamation Boundaries	1.00	YES	YES
	US Scenic River	1.00	NO NO	NO NO
	Conservation Easements US NCED	1.00 1.00	NO	NO
	US Critical Water Habitat	1.00	NO	NO
	US Critical Land Habitat	1.00	NO	NO
1.1307a (3) Threatened or Endangered Species or Critical Habitat	US Endangered Species	County	YES	N/A
1.1307a (3) Threatened or Endangered Species or Critical Habitat	Natural Heritage Element Occur	1.00	YES	YES
HISTORIC SITES MAP				
1.1307a (4) Listed or eligible for National Register	NC NR, SL, DOE Boundaries	1.00	NO	NO
1.1307a (4) Listed or eligible for National Register	NC Historic Preservation Sites	1.00	YES	NO
1.1307a (4) Listed or eligible for National Register	NC Local District Boundaries	1.00 1.00	NO NO	NO NO
1.1307a (4) Listed or eligible for National Register 1.1307a (4) Listed or eligible for National Register	Potomac Heritage National Scen Natchez Trace National Scenic	1.00	NO	NO
1.1307 a (4) Listed of eligible for National Register	Indian Reservations	1.00	NO	NO
1.1307a (4) Listed or eligible for National Register	US Trails	1.00	NO	NO
1.1307a (4) Listed or eligible for National Register	National Register of Hist. Pla	1.00	NO	NO
FLOOD PLAIN MAP				
1.1307 (6) Located in a Flood Plain	Special Flood Hazard Area (1%)	1.00	YES	NO
1.1307 (6) Located in a Flood Plain	0.2% Annual Chance Flood Hazar	1.00	NO	NO
WETLANDS MAP				
1.1307 (7) Change in surface features (wetland fill)	NWI	1.00	YES	NO
1.1307 (7) Change in surface features (wetland fill)	STATE	1.00	NO	NO
	NC COASTAL ZONE	20.00	YES	NO
FCC & FAA SITES MAP	Cellular	1.00	YES	NO
	Antenna Structure Registration	1.00	YES	YES
	AM Antenna	1.00	NO	NO
	FM Antenna	1.00	NO	NO
	FAA DOF	1.00	YES	YES
	Airports	1.00	NO	
	Power Lines	1.00	YES	

Natural Areas Map

SITE NAME:	Village Cleaners, DSCA Site ID DC670005 175 Freedom Way
ADDRESS:	175 Freedom Way
	MIDWAY PARK NC 28544
LAT/LONG:	34.717822 / 77.323072

CLIENT: AECOM CONTACT: Stephanie Hempel INQUIRY #: 5931810.1s DATE: January 10, 2020

TC5931810.1s Page 3 of 49

Copyright © 2020 EDR, Inc. © 2015 TomTom Rel. 2015.

Federal Endangered Species from the U.S. Fish and Wildlife for ONSLOW County Group:Birds

Common Name: Red knot Status: Threatened	Scientific Name: Calidris canutus rufa
Common Name: Red-cockaded woodpecker Status: Endangered	Scientific Name: Picoides borealis
Common Name: Piping Plover Status: Threatened	Scientific Name: Charadrius melodus
Group:Fishes	
Common Name: Shortnose sturgeon Status: Endangered	Scientific Name: Acipenser brevirostrum
Common Name: Atlantic sturgeon Status: Endangered	Scientific Name: Acipenser oxyrinchus oxyrinchus
Group:Flowering Plants	
Common Name: Golden sedge Status: Endangered	Scientific Name: Carex lutea
Common Name: Hirst Brothers' Panic grass Status: Candidate	Scientific Name: Dichanthelium (=Panicum) hirstii
Common Name: Rough-leaved loosestrife Status: Endangered	Scientific Name: Lysimachia asperulaefolia
Common Name: Pondberry Status: Endangered	Scientific Name: Lindera melissifolia
Common Name: Seabeach amaranth Status: Threatened	Scientific Name: Amaranthus pumilus
Common Name: Cooley's meadowrue Status: Endangered	Scientific Name: Thalictrum cooleyi
Group:Mammals	
Common Name: West Indian Manatee Status: Endangered	Scientific Name: Trichechus manatus
Common Name: Little brown bat Status: Species of Concern	Scientific Name: Myotis lucifugus
Group:Reptiles	
Common Name: Hawksbill sea turtle Status: Endangered	Scientific Name: Eretmochelys imbricata
Common Name: Loggerhead sea turtle Status: Threatened	Scientific Name: Caretta caretta
Common Name: Leatherback sea turtle Status: Endangered	Scientific Name: Dermochelys coriacea

Federal Endangered Species from the U.S. Fish and Wildlife for Common Name: American alligator Status: Similarity of Appearance (Threatened)	or ONSLOW County (Continued) Scientific Name: Alligator mississippiensis
Common Name: Green sea turtle Status: Threatened	Scientific Name: Chelonia mydas
Federal Endangered Species from the U.S. Fish and Wildlife for Group:Amphibians	or NC State
Common Name: Cheoah Bald salamander Status: Under Review	Scientific Name: Plethodon cheoah
Common Name: South Mountain gray-cheeked salamande Status: Under Review	r Scientific Name: Plethodon meridianus
Common Name: Green salamander Status: Under Review	Scientific Name: Aneides aeneus
Common Name: Seepage salamander Status: Under Review	Scientific Name: Desmognathus aeneus
Common Name: Chamberlain's Dwarf salamander Status: Under Review	Scientific Name: Eurycea chamberlaini
Common Name: Eastern Hellbender Status: Species of Concern	Scientific Name: Cryptobranchus alleganiensis alleganiensis
Common Name: Hellbender Status: Under Review	Scientific Name: Cryptobranchus alleganiensis
Common Name: Carolina crawfish frog Status: Species of Concern	Scientific Name: Rana areolata capito
Common Name: Neuse River waterdog Status: Under Review	Scientific Name: Necturus lewisi
Group:Arachnids	
Common Name: Lost Nantahala Cave spider Status: Species of Concern	Scientific Name: Nesticus cooperi
Group:Birds	
Common Name: Eastern painted bunting Status: Species of Concern	Scientific Name: Passerina ciris ciris
Common Name: Red knot Status: Threatened	Scientific Name: Calidris canutus rufa
Common Name: Golden-winged warbler Status: Under Review	Scientific Name: Vermivora chrysoptera
Common Name: Black Rail Status: Under Review	Scientific Name: Laterallus jamaicensis
Common Name: Migrant loggerhead shrike	Scientific Name: Lanius Iudovicianus migrans

Federal Endangered Species from the U.S. Fish and Wildlife for NC State (Continued) Status: Species of Concern		
Common Name: Black-capped petrel Status: Under Review	Scientific Name: Pterodroma hasitata	
Group:Clams		
Common Name: Green floater Status: Under Review	Scientific Name: Lasmigona subviridis	
Common Name: Yellow lampmussel Status: Species of Concern	Scientific Name: Lampsilis cariosa	
Common Name: Savannah lilliput Status: Under Review	Scientific Name: Toxolasma pullus	
Common Name: Neuse slabshell Status: Species of Concern	Scientific Name: Elliptio judithae	
Common Name: Tennessee pigtoe Status: Under Review	Scientific Name: Pleuronaia barnesiana	
Common Name: Alabama rainbow Status: Under Review	Scientific Name: Villosa nebulosa	
Common Name: Cumberland moccasinshell Status: Under Review	Scientific Name: Medionidus conradicus	
Common Name: Longsolid Status: Under Review	Scientific Name: Fusconaia subrotunda	
Common Name: Yellow lance Status: Under Review	Scientific Name: Elliptio lanceolata	
Common Name: Waccamaw lance Status: Species of Concern	Scientific Name: Elliptio sp.	
Common Name: Brook floater Status: Under Review	Scientific Name: Alasmidonta varicosa	
Common Name: Atlantic pigtoe Status: Under Review	Scientific Name: Fusconaia masoni	
Group:Conifers and Cycads		
Common Name: Carolina hemlock Status: Under Review	Scientific Name: Tsuga caroliniana	
Group:Crustaceans		
Common Name: Chowanoke crayfish Status: Under Review	Scientific Name: Orconectes virginiensis	
Common Name: Parrish crayfish Status: Under Review	Scientific Name: Cambarus parrishi	

Federal Endangered Species from the U.S. Fish and Wildlife for Common Name: Whitewater crayfish ostracod Status: Species of Concern	or NC State (Continued) Scientific Name: Dactylocythere prinsi
Common Name: French Broad crayfish Status: Species of Concern	Scientific Name: Cambarus reburrus
Common Name: Croatan crayfish Status: Species of Concern	Scientific Name: Procambarus plumimanus
Common Name: [Unnamed] ostracod Status: Species of Concern	Scientific Name: Waltoncythere acuta
Common Name: Little Tennessee crayfish Status: Under Review	Scientific Name: Cambarus georgiae
Common Name: Chauga crayfish Status: Under Review	Scientific Name: Cambarus chaugaensis
Common Name: Grandfather Mountain crayfish Status: Under Review	Scientific Name: Cambarus eeseeohensis
Common Name: [Unnamed] ostracod Status: Species of Concern	Scientific Name: Dactylocythere isabelae
Common Name: Albermarle crayfish Status: Species of Concern	Scientific Name: Procambarus medialis
Common Name: Grayson crayfish ostracod Status: Species of Concern	Scientific Name: Ascetocthere cosmeta
Common Name: Oconee crayfish ostracod Status: Species of Concern	Scientific Name: Cymocythere clavata
Common Name: New River riffle crayfish Status: Status Undefined	Scientific Name: Cambarus chasmodactylus
Common Name: Yancey sideswimmer Status: Species of Concern	Scientific Name: Stygobromus carolinensis
Common Name: Pee Dee lotic crayfish Status: Species of Concern	Scientific Name: Procambarus lepidodactylus
Common Name: Carolina well diacyclops Status: Species of Concern	Scientific Name: Diacyclops jeanneli putei
Common Name: Tidewater amphipod Status: Under Review	Scientific Name: Stygobromus indentatus
Common Name: Bennets Mill Cave water slater Status: Species of Concern	Scientific Name: Caecidotea carolinensis
Common Name: Hiwassee crayfish Status: Species of Concern	Scientific Name: Cambarus hiwasseensis
Common Name: Carolina skistodiaptomus Status: Species of Concern	Scientific Name: Skistodiaptomus carolinensis

Federal Endangered Species from the U.S. Fish and Wildlife for NC State (Continued...)

Group:Ferns and Allies

Common Name: Sp. nov. ined. (Appalachian) oak fern Scientific Name: Gymnocarpium sp. Status: Species of Concern Common Name: Hornwort Scientific Name: Megaceros aenigmaticus Status: Under Review Common Name: Thin-wall guillwort Scientific Name: Isoetes microvela Status: Under Review Common Name: Winter guillwort Scientific Name: Isoetes hyemalis Status: Under Review Common Name: Hall's Pocket moss Scientific Name: Fissidens hallii Status: Under Review Common Name: Appalachian Fissidens moss Scientific Name: Fissidens appalachensis Status: Under Review Common Name: [Unnamed] spleenwort Scientific Name: Asplenium heteroresiliens Status: Species of Concern Common Name: Dwarf polypody Scientific Name: Grammitis nimbata Status: Species of Concern Group:Fishes Common Name: Longhead darter Scientific Name: Percina macrocephala Status: Under Review Common Name: Sickle darter Scientific Name: Percina williamsi Status: Under Review Common Name: Spotted madtom Scientific Name: Noturus insignis ssp. Status: Species of Concern Common Name: Kanawha minnow Scientific Name: Phenacobius teretulus Status: Species of Concern Common Name: Carolina madtom Scientific Name: Noturus furiosus Status: Under Review Common Name: Robust redhorse Scientific Name: Moxostoma robustum Status: Under Review Group:Flowering Plants Common Name: Purpuledisk honeycombhead Scientific Name: Balduina atropurpurea Status: Species of Concern Common Name: [Unnamed] sedge Scientific Name: Carex schweinitzii Status: Species of Concern Common Name: Pineland plantain Scientific Name: Plantago sparsiflora Status: Species of Concern

al Endangered Species from the U.S. Fish and Wildl Common Name: No common name Status: Species of Concern	ife for NC State (Continued) Scientific Name: Plagiochila echinata
Common Name: Sharp's leafy liverwort Status: Under Review	Scientific Name: Plagiochila sharpii
Common Name: Piratebush Status: Species of Concern	Scientific Name: Buckleya distichophylla
Common Name: [Unnamed] liverwort Status: Species of Concern	Scientific Name: Cylindrocolea andersonii
Common Name: No common name Status: Species of Concern	Scientific Name: Lophocolea appalachiana
Common Name: Carolina mnium Status: Species of Concern	Scientific Name: Plagiomnium carolinianum
Common Name: Bog spicebush Status: Under Review	Scientific Name: Lindera subcoriacea
Common Name: Mt. Leconte moss Status: Species of Concern	Scientific Name: Leptothymenium sharpii
Common Name: Carolina birds-in-a-nest Status: Under Review	Scientific Name: Macbridea caroliniana
Common Name: No common name Status: Species of Concern	Scientific Name: Cephaloziella obtusilobula
Common Name: Wooly berry Status: Species of Concern	Scientific Name: Vaccinium hirsutum
Common Name: No common name Status: Species of Concern	Scientific Name: Bazzania nudicaulis
Common Name: Smoky Mountains manna grass Status: Species of Concern	Scientific Name: Glyceria nubigena
Common Name: [Unnamed] liverwort Status: Species of Concern	Scientific Name: Sphenolobopsis pearsoni
Common Name: Cain's reedgrass Status: Species of Concern	Scientific Name: Calamagrostis cainii
Common Name: Mountain bittercress Status: Species of Concern	Scientific Name: Cardamine clematitis
Common Name: Georgia lead-plant Status: Under Review	Scientific Name: Amorpha georgiana georgi
Common Name: Ammon's tortula Status: Species of Concern	Scientific Name: Tortula ammonsiana
Common Name: Blue Ridge catchfly Status: Species of Concern	Scientific Name: Silene ovata

Federal Endangered Species from the U.S. Fish and Wildlife for Common Name: [Unnamed] venus' fly-trap Status: Species of Concern	or NC State (Continued) Scientific Name: Dionaea muscipula
Common Name: Bent avens Status: Species of Concern	Scientific Name: Geum geniculatum
Common Name: Godfryo?=s stitchwort Status: Under Review	Scientific Name: Minuartia godfreyi
Common Name: Spring-flowering goldenrod Status: Species of Concern	Scientific Name: Solidago verna
Common Name: Well's pixie-moss Status: Species of Concern	Scientific Name: Pyxidanthera barbulata brevifolia
Common Name: Gray's saxifrage Status: Species of Concern	Scientific Name: Saxifraga caroliniana
Common Name: Savannah campylopus Status: Species of Concern	Scientific Name: Campylopus carolinae
Common Name: No common name Status: Species of Concern	Scientific Name: Oxypolis ternata
Common Name: [Unnamed] sedge Status: Species of Concern	Scientific Name: Carex roanensis
Common Name: Darlington's spurge Status: Species of Concern	Scientific Name: Euphorbia purpurea
Common Name: Thorne's beaked-rush Status: Under Review	Scientific Name: Rhynchospora thornei
Common Name: No common name Status: Species of Concern	Scientific Name: Plagiochila columbiana
Common Name: Keever's bristle-moss Status: Species of Concern	Scientific Name: Orthotrichum keeverae
Common Name: Serpentine aster Status: Species of Concern	Scientific Name: Symphyotrichum depauperatum
Common Name: Piedmont ragwort Status: Species of Concern	Scientific Name: Packera millefolia
Common Name: No common name Status: Species of Concern	Scientific Name: Lejeunea blomquistii
Common Name: French Broad heartleaf Status: Species of Concern	Scientific Name: Hexastylis rhombiformis
Common Name: Butternut Status: Species of Concern	Scientific Name: Juglans cinerea
Common Name: No common name Status: Species of Concern	Scientific Name: Hexastylis contracta

Federal Endangered Species from the U.S. Fish and Wild	life for NC State (Continued)
Common Name: Anderson's brachymenium Status: Species of Concern	Scientific Name: Brachymenium andersonii
Common Name: No common name Status: Species of Concern	Scientific Name: Eurhychium pringlei
Common Name: [Unnamed] liverwort Status: Species of Concern	Scientific Name: Plagiochila sullivantii
Common Name: No common name Status: Species of Concern	Scientific Name: Rugelia nudicaulis
Common Name: No common name Status: Species of Concern	Scientific Name: Plagiochila virginica euryphylla
Common Name: Alexander's rock-aster Status: Species of Concern	Scientific Name: Eurybia avita
Common Name: Smooth bog-asphodel Status: Species of Concern	Scientific Name: Tofieldia glabra
Common Name: Hirst Brothers' Panic grass Status: Candidate	Scientific Name: Dichanthelium (=Panicum) hirstii
Common Name: Highlands moss Status: Species of Concern	Scientific Name: Schlotheimia lancifolia
Common Name: Gorge leafy liverwort Status: Under Review	Scientific Name: Plagiochila caduciloba
Common Name: Tall larkspur Status: Species of Concern	Scientific Name: Delphinium exaltatum
Common Name: No common name Status: Species of Concern	Scientific Name: Lotus purshianus helleri
Common Name: Short-styled oconee-bells Status: Species of Concern	Scientific Name: Shortia galacifolia brevistyla
Common Name: Manhart's sedge Status: Species of Concern	Scientific Name: Carex manhartii
Common Name: Riverbank vervain Status: Species of Concern	Scientific Name: Verbena riparia
Common Name: Oconee-bells Status: Species of Concern	Scientific Name: Shortia galacifolia
Common Name: No common name Status: Species of Concern	Scientific Name: Paxistima canbyi
Common Name: Bigleaf scurf-pea Status: Species of Concern	Scientific Name: Orbexilum macrophyllum
Common Name: Carolina lead-plant Status: Species of Concern	Scientific Name: Amorpha georgiana confusa

Federal Endangered Species from the U.S. Fish and Wildlife Common Name: [Unnamed] pondweed Status: Species of Concern	f or NC State (Continued) Scientific Name: Potamogeton confervoides
Common Name: No common name Status: Species of Concern	Scientific Name: Porella appalachiana
Common Name: Large-flowered Barbara's buttons Status: Under Review	Scientific Name: Marshallia grandiflora
Common Name: White-wicky Status: Species of Concern	Scientific Name: Kalmia cuneata
Common Name: Gray's lily Status: Species of Concern	Scientific Name: Lilium grayi
Common Name: [Unnamed] beaked-rush Status: Species of Concern	Scientific Name: Rhynchospora decurrens
Common Name: Ravine sedge Status: Under Review	Scientific Name: Carex impressinervia
Common Name: Pine barrens boneset Status: Species of Concern	Scientific Name: Eupatorium resinosum
Common Name: No common name Status: Species of Concern	Scientific Name: Cheilolejeunea evansii
Common Name: No common name Status: Species of Concern	Scientific Name: Trillium pusillum pusillum
Common Name: Fraser's yellow loosestrife Status: Species of Concern	Scientific Name: Lysimachia fraseri
Common Name: Bog bluegrass Status: Species of Concern	Scientific Name: Poa paludigena
Common Name: Sp. nov. ined. blue curls Status: Species of Concern	Scientific Name: Trichostema sp.
Common Name: Wireleaf dropseed Status: Under Review	Scientific Name: Sporobolus teretifolius
Common Name: Wavyleaf wild-quinine Status: Species of Concern	Scientific Name: Parthenium integrifolium
Common Name: Sandhills milk-vetch Status: Species of Concern	Scientific Name: Astragalus michauxii
Common Name: Pickering's morning-glory Status: Species of Concern	Scientific Name: Stylisma pickeringii
Common Name: Pygmypipes Status: Species of Concern	Scientific Name: Monotropsis odorata
Common Name: Awned meadowbeauty Status: Species of Concern	Scientific Name: Rhexia aristosa

Federal Endangered Species from the U.S. Fish and Wildlife	
Common Name: Gorge moss Status: Species of Concern	Scientific Name: Bryocrumia vivicolor
Common Name: [Unnamed] liverwort Status: Species of Concern	Scientific Name: Plagiochila virginica var. caroliniana
Common Name: No common name Status: Species of Concern	Scientific Name: Myriophyllum laxum
Common Name: Piedmont meadow-rue Status: Species of Concern	Scientific Name: Thalictrum macrostylum
Common Name: Heller's bird's-foot trefoil Status: Species of Concern	Scientific Name: Lotus unifoliolatus var. helleri
Common Name: Swamp justiceweed Status: Under Review	Scientific Name: Eupatorium paludicola
Common Name: Long Beach seedbox Status: Under Review	Scientific Name: Ludwigia brevipes
Common Name: Raven's seedbox Status: Under Review	Scientific Name: Ludwigia ravenii
Common Name: Yellow Pond lily Status: Under Review	Scientific Name: Nuphar lutea ssp. sagittifolia
Common Name: Carolina bishopweed Status: Under Review	Scientific Name: Ptilimnium ahlesii
Common Name: Mountain Purple pitcherplant Status: Under Review	Scientific Name: Sarracenia purpurea var. montana
Common Name: Carolina goldenrod Status: Species of Concern	Scientific Name: Solidago pulchra
Group:Insects	
Common Name: American sandburrowing mayfly Status: Species of Concern	Scientific Name: Dolania americana
Common Name: Fraser fir geometrid moth Status: Species of Concern	Scientific Name: Semiothisa fraserata
Common Name: Midget snaketail Status: Species of Concern	Scientific Name: Ophiogomphus howei
Common Name: Lenat's ceraclean caddisfly Status: Species of Concern	Scientific Name: Ceraclea sp.
Common Name: Gammon's stenelmis riffle beetle Status: Species of Concern	Scientific Name: Stenelmis gammoni
Common Name: Grizzled skipper Status: Species of Concern	Scientific Name: Pyrgus centaureae

Common Name: Carter's noctuid moth Status: Species of Concern	Scientific Name: Spartiniphaga carterae
Common Name: Venus flytrap noctuid Status: Species of Concern	Scientific Name: Hemipachnolia subporphyria subpor
Common Name: Margarita River skimmer Status: Under Review	Scientific Name: Macromia margarita
Common Name: Variegated clubtail Status: Species of Concern	Scientific Name: Progomphus bellei
Common Name: Diana fritillary Status: Species of Concern	Scientific Name: Speyeria diana
Common Name: Regal fritillary Status: Under Review	Scientific Name: Speyeria idalia
Common Name: Bronze clubtail Status: Species of Concern	Scientific Name: Stylurus townesi
Common Name: Rare skipper Status: Under Review	Scientific Name: Problema bulenta
Common Name: Mary Alice's smallheaded fly Status: Species of Concern	Scientific Name: Eulonchus marialiciae
Common Name: Sandhills clubtail Status: Species of Concern	Scientific Name: Gomphus parvidens carolinus
Common Name: [Unnamed] looper moth Status: Species of Concern	Scientific Name: Euchlaena milnei
Common Name: Septima's clubtail Status: Under Review	Scientific Name: Gomphus septima
Common Name: [Unnamed] caddisfly Status: Species of Concern	Scientific Name: Helicopsyche paralimnella
Common Name: [Unnamed] ghost moth Status: Species of Concern	Scientific Name: Hepialus sciophanes
Common Name: [Unnamed] noctuid moth Status: Species of Concern	Scientific Name: Schinia indiana
Common Name: Barrens Dagger Moth Status: Species of Concern	Scientific Name: Acronicta albarufa
Common Name: Edmund's snaketail Status: Under Review	Scientific Name: Ophiogomphus edmundo
Common Name: Tawny crescent Status: Species of Concern	Scientific Name: Phyciodes batesii
Common Name: [Unnamed] caddisfly Status: Species of Concern	Scientific Name: Agapetus jocassee

Federal Endangered Species from the U.S. Fish and Wildlife for Common Name: Black lordithon rove beetle Status: Species of Concern	or NC State (Continued) Scientific Name: Lordithon niger
Common Name: Monarch buttefly Status: Under Review	Scientific Name: Danaus plexippus plexippus
Common Name: Smokies needlefly Status: Under Review	Scientific Name: Megaleuctra williamsae
Common Name: Appalachian snaketail Status: Under Review	Scientific Name: Ophiogomphus incurvatus
Common Name: [Unnamed] caddisfly Status: Species of Concern	Scientific Name: Hydroptila englishi
Common Name: Smokies snowfly Status: Under Review	Scientific Name: Allocapnia fumosa
Common Name: Buchholz' dart moth Status: Species of Concern	Scientific Name: Agrotis buchholzi
Common Name: Annointed sallow noctuid moth Status: Species of Concern	Scientific Name: Pyreferra ceromatica
Common Name: Eastern beard grass Skipper Status: Species of Concern	Scientific Name: Atrytone arogos arogos
Group:Lichens	
Common Name: Bluff Mountain Reindeer Lichen Status: Species of Concern	Scientific Name: Cladonia psoromica
Group:Mammals	
Common Name: Southern rock vole Status: Species of Concern	Scientific Name: Microtus chrotorrhinus carolinensis
Common Name: Red wolf Status: Endangered	Scientific Name: Canis rufus
Common Name: Carolina northern flying squirrel Status: Endangered	Scientific Name: Glaucomys sabrinus coloratus
Common Name: Indiana bat Status: Endangered	Scientific Name: Myotis sodalis
Common Name: Southern water shrew Status: Species of Concern	Scientific Name: Sorex palustris punctulatus
Common Name: Southern Appalachian eastern woodrat Status: Species of Concern	Scientific Name: Neotoma floridana haematoreia
Common Name: Southeastern myotis Status: Species of Concern	Scientific Name: Myotis austroriparius
Group:Reptiles	

Federal Endangered Species from the U.S. Fish and Wildlife for Common Name: Southern hognose snake Status: Under Review	or NC State (Continued) Scientific Name: Heterodon simus
Common Name: Northern Red-bellied cooter Status: Under Review	Scientific Name: Pseudemys rubriventris
Common Name: Eastern diamondback rattlesnake Status: Under Review	Scientific Name: Crotalus adamanteus
Common Name: Mimic glass lizard Status: Species of Concern	Scientific Name: Ophisaurus mimicus
Common Name: Northern pine snake Status: Species of Concern	Scientific Name: Pituophis melanoleucus melanoleucus
Common Name: American alligator Status: Similarity of Appearance (Threatened)	Scientific Name: Alligator mississippiensis
Common Name: Northern diamondback terrapin Status: Species of Concern	Scientific Name: Malaclemys terrapin terrapin
Group:Snails	
Common Name: Knotty elimia Status: Species of Concern	Scientific Name: Elimia interrupta
Common Name: Roan supercoil Status: Species of Concern	Scientific Name: Paravitrea varidens
Common Name: Fragile supercoil Status: Species of Concern	Scientific Name: Glyphyalinia clingmani
Common Name: Magnificent ramshorn Status: Candidate	Scientific Name: Planorbella magnifica
Common Name: Panhandle pebblesnail Status: Species of Concern	Scientific Name: Somatogyrus virginicus
Common Name: Cape Fear threetooth Status: Species of Concern	Scientific Name: Triodopsis soelneri
Common Name: Sculpted supercoil Status: Species of Concern	Scientific Name: Paravitrea ternaria
Common Name: Clingman covert Status: Species of Concern	Scientific Name: Mesodon clingmanicus
Common Name: Smooth rocksnail Status: Status Undefined	Scientific Name: Leptoxis virgata

Distance Distance (f	t.)	EDR ID Database
1 North 0-1/8 mi 0	Element Occurrence ID: Taxonomic Group: EO Status: EO Rank: Note:	NCESP0000539639 Natural Heritage Element Occurrence 10447 Animal Current Recent verified as existing, but insufficient information to estimate viability/ecological integrity To determine the listed species, contact the agency with your Element Occurrence ID.
	Element Occurrence ID: Taxonomic Group: EO Status: EO Rank: Note:	33410 Animal Historical EO is old, if surveyed recently, surveys failed to find it but there is no evidence it is destroyed To determine the listed species, contact the agency with your Element Occurrence ID.
2 NW 0-1/8 mi 590	Area ID: Owner: Owner Type: Category: GAP Status:	NCMAREA20092436 NC Managed Areas US Department of Defense Federal Fee 3 - managed for multiple uses - subject to extractive (e.g. mining or

3 SSW 0-1/8 mi 604

Overall Protected Area Name: Local Name: Category: Land Owner Description: Holding Agency: Local Owner: Land Manager Description:

Marine Corps Base Camp Lejeune MCB Camp Lejeune Approved, Proclamation or Extent Boundary Designation Designation Unknown Federal

USPROC000055795 **US** Proclamation Boundaries

Managing Agency: Local Manager: Designation Type: Designation: Level of Access: GAP Status: Status Assigned By: Year Assigned: IUCN Category: Year Assigned: Department of Defense MC Active Approved or Proclamation Boundary Not Reported Closed 4 - no known mandate for biodiversity protection GAP - Default 2017 Unassigned 2017

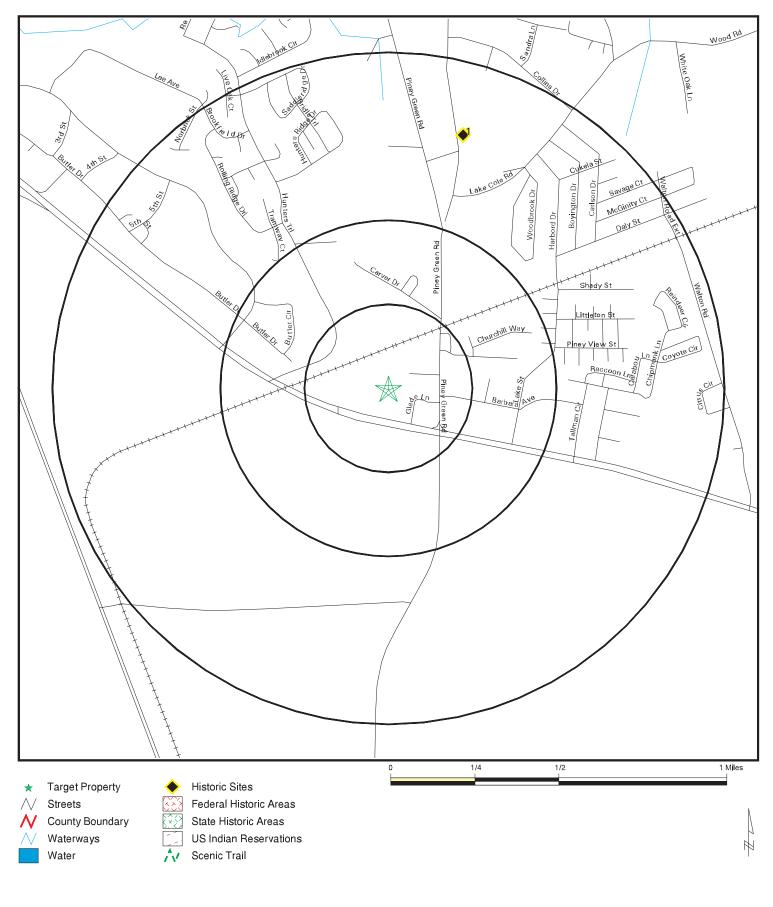
4 NCESP0000538821 North 1/8-1/4 mi Natural Heritage Element Occurrence 1006 33410 Element Occurrence ID: Taxonomic Group: Animal EO Status: Historical EO Rank: EO is old, if surveyed recently, surveys failed to find it but there is no evidence it is destroyed Note: To determine the listed species, contact the agency with your Element Occurrence ID.

5 SW USFLAND00114643 1/2-1 mi US Federal Lands 2871 Name: Camp Lejeune Marine Corps Base Marine Corps DOD **Owning Agency:** Contained by: Not Reported Not Reported Owned By: Also Contained Within: Not Reported Owned By: Not Reported Agency/Bureau: DOD URL: Not Reported

6 SSE 1/2-1 mi 3743

Element Occurrence ID: 10447 Taxonomic Group: Animal EO Status: Current NCESP0000540572 Natural Heritage Element Occurrence

EO Rank: Note:	Recent verified as existing, but insufficient information to estimate viability/ecological integrity To determine the listed species, contact the agency with your Element Occurrence ID.
Element Occurrence ID: Taxonomic Group: EO Status: EO Rank: Note:	 33410 Animal Historical EO is old, if surveyed recently, surveys failed to find it but there is no evidence it is destroyed To determine the listed species, contact the agency with your Element Occurrence ID.
Element Occurrence ID: Taxonomic Group: EO Status: EO Rank: Note:	15879 Animal Current Recent verified as existing, but insufficient information to estimate viability/ecological integrity To determine the listed species, contact the agency with your Element Occurrence ID.


7 West 1/2-1 mi		NCESP0000539733 Natural Heritage Element Occurrence
3916	Element Occurrence ID:	10447
	Taxonomic Group:	Animal
	EO Status:	Current
	EO Rank:	Recent verified as existing, but insufficient information to estimate viability/ecological integrity
	Note:	To determine the listed species, contact the agency with your Element Occurrence ID.

-	Element Occurrence ID: Taxonomic Group: EO Status: EO Rank: Note:	NCESP0000540039 Natural Heritage Element Occurrence 32314 Animal Historical EO is old, if surveyed recently, surveys failed to find it but there is no evidence it is destroyed To determine the listed species, contact the agency with your Element Occurrence ID.
---	---	--

Element Occurrence ID:	10447
Taxonomic Group:	Animal
EO Status:	Current
EO Rank:	Recent verified as existing, but insufficient information to estimate viability/ecological integrity
Note:	To determine the listed species, contact the agency with your Element Occurrence ID.
Element Occurrence ID:	33410
Taxonomic Group:	Animal
EO Status:	Historical
EO Rank:	EO is old, if surveyed recently, surveys failed to find it but there is no evidence it is destroyed
Note:	To determine the listed species, contact the agency with your Element Occurrence ID.

9 SSW 1/2-1 mi 5182	Element Occurrence ID:	NCESP0000540325 Natural Heritage Element Occurrence
	Taxonomic Group:	Animal
	EO Status:	Current
	EO Rank:	Recent verified as existing, but insufficient information to estimate viability/ecological integrity
	Note:	To determine the listed species, contact the agency with your Element Occurrence ID.
	Element Occurrence ID:	15879
	Taxonomic Group:	Animal
	EO Status:	Current
	EO Rank:	Recent verified as existing, but insufficient information to estimate viability/ecological integrity
	Note:	To determine the listed species, contact the agency with your Element Occurrence ID.

Historic Sites Map

SITE NAME:	Village Cleaners, DSCA Site ID DC670005 175 Freedom Way
	MIDWAY PARK NC 28544
LAT/LONG:	34.717822 / 77.323072

CLIENT: AECOM CONTACT: Stephanie Hempel INQUIRY #: 5931810.1s January 10, 2020 DATE:

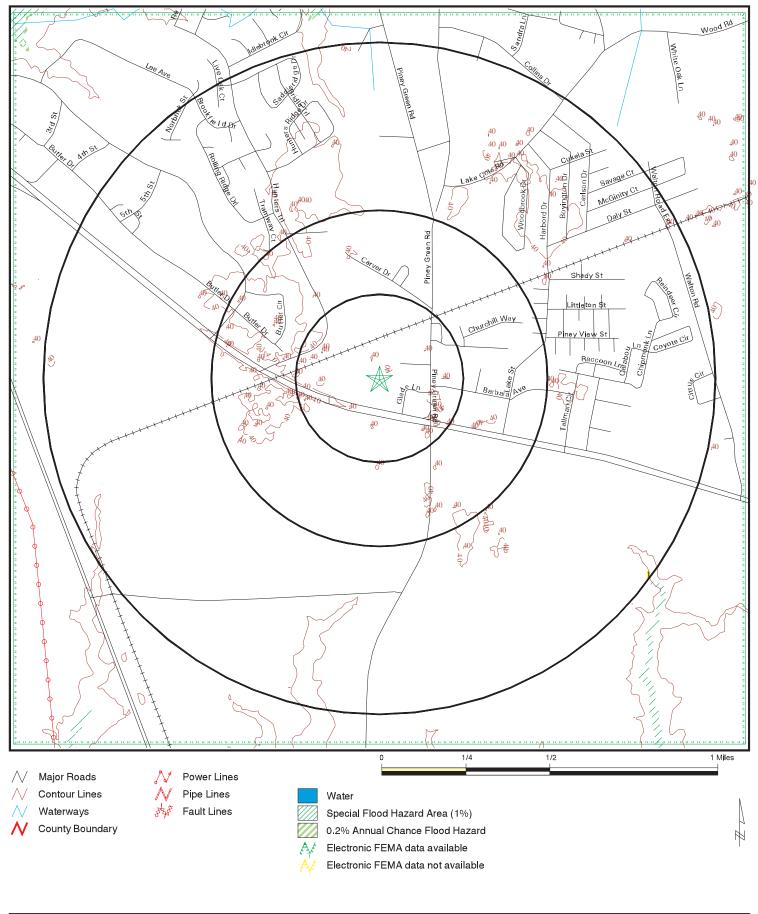
TC5931810.1s Page 21 of 49

Copyright © 2020 EDR, Inc. © 2015 TomTom Rel. 2015.

HISTORIC SITES MAP FINDINGS

Map ID Direction Distance Distance (ft.)

EDR ID Database

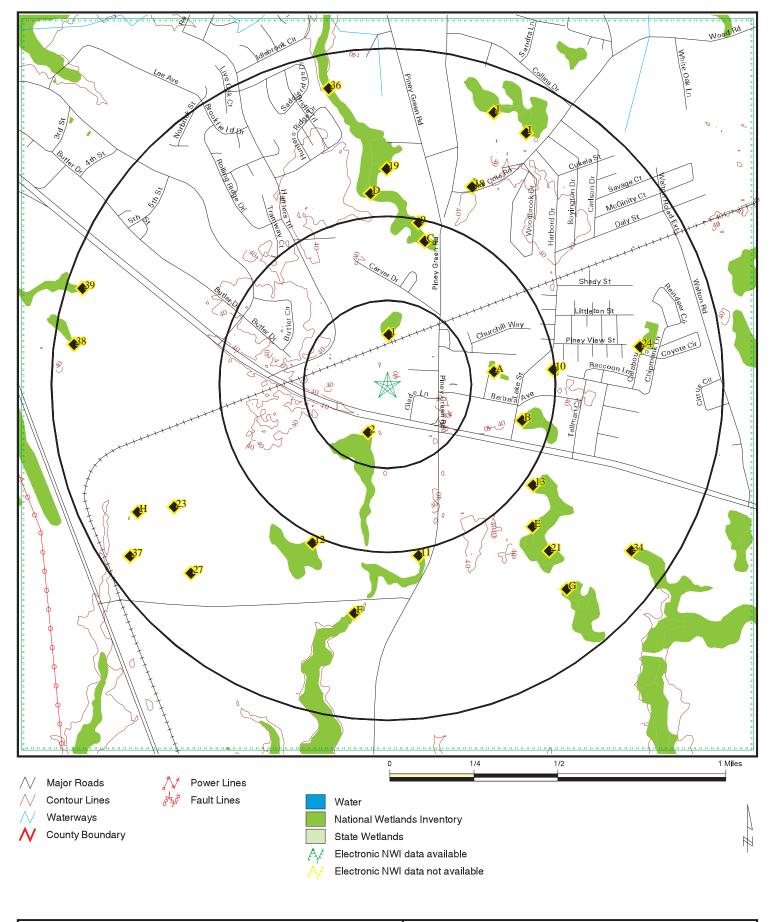

1 NNE 1/2-1 mi	Littleton Family House E side SR 1413 0.9 mi N of jct w/ NC 24		NCSHPOX00035640 NC Historic Preservation Sites
4150	Site ID:	ON0352	
	Description:	Not Reported	
	Year on National Registe	r:Not Reported	
	Year Listed:	Not Reported	
	Year Determined Eligible	1	
	Year of Survey:	1987	
	County:	Onslow	
	Status:	Surveyed Only. No individual designation, but may be	within a National
		Register, Study List, or DOE district	
	Local Status:	None	
	Year Designated Locally:	Not Reported	
	Historic District Status:	None	
	Notes:	Not Reported	
	Photos:	Not Reported	
	URL:	Not Reported	
	Alt URL:	Not Reported	
		·	

UNMAPPABLE HISTORIC SITES

Due to poor or inadequate address information, the following sites were not mapped:	Status
	EDR ID
	Database

No unmapped sites were found in EDR's search of available government records.

Flood Plain Map


ADDRESS:	MIDWAY PARK ŃC 28544	INQUIRY #:		TC5021910 1c Decc 24 of 40
LAT/LONG:	34.717822 / 77.323072	DATE:	January 10, 2020	TC5931810.1s Page 24 of 49
		Convelo	14 @ 2020 EDD Inc. @ 2015 Tom Tom Dol 2015	

FLOOD PLAIN MAP FINDINGS

Source: FEMA FIRM Flood Data, FEMA Q3 Flood Data

Flood Panel Number	FEMA Source Type		
Flood Plain panel at tar 372053040		ta)	
Additional Flood Plain p 372043960 372053060 372043840	0J (FEMA FIRM Flood da 0J (FEMA FIRM Flood da	ita)	
Map ID Direction Distance Distance (ft.)	Descript	ion	Database
1 SE 1/2-1 mi 5182	Special Flood Hazard Area: Flood Hazard Area: Flood Zone: Sub Type:	Yes Special Flood Hazard Area (1%) AE Not Reported	FLOODPLAIN

Wetlands Map

SITE NAME: Village Cleaners, DSCA Site ID DC670005 ADDRESS: 175 Freedom Way MIDWAY PARK NC 28544	CLIENT: AECOM CONTACT: Stephanie Hempel INQUIRY #: 5931810.1s	
LAT/LONG: 34.717822 / 77.323072	DATE: January 10, 2020	TC5931810.1s Page 26 of 49

WETLANDS MAP FINDINGS

Source: Fish and Wildlife Service NWI data

NWI hardcopy map at target property: Camp Lejeune Additional NWI hardcopy map(s) in search area: Not reported in source data

Map ID Direction Distance Distance (f	t.) Code and Description*	Database
1 North 1/8-1/4 mi 780	PFO4Cd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [C] Seasonally Flooded [d] Partially Drained/Ditched Lat/Lon: 34.719967 / -77.322998	NWI
2 SSW 1/8-1/4 mi 816	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.715744 / -77.324081	NWI
A3 East 1/4-1/2 mi 1606	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.718563 / -77.317802	NWI
A4 East 1/4-1/2 mi 1771	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.718166 / -77.317192	NWI
B5 ESE 1/4-1/2 mi 2184	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.716114 / -77.316101	NWI
B6 ESE 1/4-1/2 mi 2203	PFO1/4Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous / [4Bd] Unknown Class Lat/Lon: 34.716423 / -77.315941	NWI
C7 NNE 1/4-1/2 mi 2220	PFO4Ad [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched Lat/Lon: 34.723640 / -77.320854	NWI
C8 NNE 1/4-1/2 mi 2435	PSS4Ad [P] Palustrine [SS] Scrub Shrub [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched Lat/Lon: 34.724361 / -77.321373	NWI

WETLANDS MAP FINDINGS

Map ID Direction Distance Distance (f	t.) Code and Description*	Database
9 North 1/4-1/2 mi 2587	PFO4Ad [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched Lat/Lon: 34.724800 / -77.321442	NWI
10 East 1/4-1/2 mi 2616	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.718460 / -77.314400	NWI
11 South 1/2-1 mi 2736	PFO1/4Ad [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous / [4Ad] Unknown Class Lat/Lon: 34.710426 / -77.321434	NWI
12 SSW 1/2-1 mi 2758	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.710972 / -77.326988	NWI
13 SE 1/2-1 mi 2785	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.713463 / -77.315453	NWI
D14 North 1/2-1 mi 2955	PFO4/1Ad [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen / [1Ad] Unknown Class Lat/Lon: 34.725880 / -77.324257	NWI
D15 North 1/2-1 mi 3064	PSS4/FO4Ad [P] Palustrine [SS] Scrub Shrub [4] Needle-Leaved Evergreen / [FO] Forested [4] Needle-Leaved Evergreen [A] Temporarily Flooded [d] Partially Drained/Ditched Lat/Lon: 34.726227 / -77.323647	NWI
E16 SE 1/2-1 mi 3177	PFO4/1Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen / [1Bd] Unknown Class Lat/Lon: 34.712059 / -77.315132	NWI
E17 SE 1/2-1 mi 3223	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.711288 / -77.315834	NWI

WETLANDS MAP FINDINGS

Map ID Direction Distance Distance (1	it.) Code and Description*	Database
18 NNE 1/2-1 mi 3376	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.726345 / -77.318634	NWI
19 North 1/2-1 mi 3386	PSS4/EM1Ad [P] Palustrine [SS] Scrub Shrub [4] Needle-Leaved Evergreen / [EM] Emergent [1] Persistent [A] Temporarily Flooded [d] Partially Drained/Ditched Lat/Lon: 34.727123 / -77.323105	NWI
F20 South 1/2-1 mi 3500	PFO1F [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [F] Semipermanently Flooded Lat/Lon: 34.708267 / -77.324387	NWI
21 SE 1/2-1 mi 3650	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.710632 / -77.314606	NWI
F22 South 1/2-1 mi 3772	PUBHh [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [h] Diked/Impounded Lat/Lon: 34.707611 / -77.325203	NWI
23 WSW 1/2-1 mi 3866	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.712532 / -77.334221	NWI
24 East 1/2-1 mi 4013	PABHx [P] Palustrine [AB] Aquatic Bed [H] Permanently Flooded [x] Excavated Lat/Lon: 34.719448 / -77.309868	NWI
G25 SE 1/2-1 mi 4245	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.708958 / -77.313889	NWI
H26 WSW 1/2-1 mi 4267	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.712490 / -77.335709	NWI

WETLANDS MAP FINDINGS

Map ID Direction Distance Distance (ft.) Code and Description*	Database
27 SW 1/2-1 mi 4284	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.709667 / -77.333344	NWI
G28 SE 1/2-1 mi 4311	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.709007 / -77.313484	NWI
I29 NNE 1/2-1 mi 4480	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.728497 / -77.315651	NWI
I30 NNE 1/2-1 mi 4491	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.728600 / -77.315796	NWI
J31 NNE 1/2-1 mi 4530	PFO4Bd [P] Palustrine [FO] Forested [4] Needle-Leaved Evergreen [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.729565 / -77.318077	NWI
H32 WSW 1/2-1 mi 4553	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.712116 / -77.336548	NWI
I33 NNE 1/2-1 mi 4566	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.728920 / -77.315987	NWI
34 SE 1/2-1 mi 4641	PFO1/4Cd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous / [4Cd] Unknown Class Lat/Lon: 34.710636 / -77.310318	NWI
J35 NNE 1/2-1 mi 4648	PFO1Bd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [B] Saturated [d] Partially Drained/Ditched Lat/Lon: 34.729549 / -77.316948	NWI

WETLANDS MAP FINDINGS

Map ID Direction Distance Distance (i	it.) Code and Description*	Database
36 North 1/2-1 mi 4740	PFO1/4Ad [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous / [4Ad] Unknown Class Lat/Lon: 34.730591 / -77.326141	NWI
37 WSW 1/2-1 mi 4862	PUBHx [P] Palustrine [UB] Unconsolidated Bottom [H] Permanently Flooded [x] Excavated Lat/Lon: 34.710403 / -77.336517	NWI
38 West 1/2-1 mi 4964	PSS1Cd [P] Palustrine [SS] Scrub Shrub [1] Broad-Leaved Deciduous [C] Seasonally Flooded [d] Partially Drained/Ditched Lat/Lon: 34.719543 / -77.339455	NWI
39 WNW 1/2-1 mi	PFO1Cd [P] Palustrine [FO] Forested [1] Broad-Leaved Deciduous [C] Seasonally Flooded [d] Partially Drained/Ditched	NWI

5019 Lat/Lon: 34.721962 / -77.338997

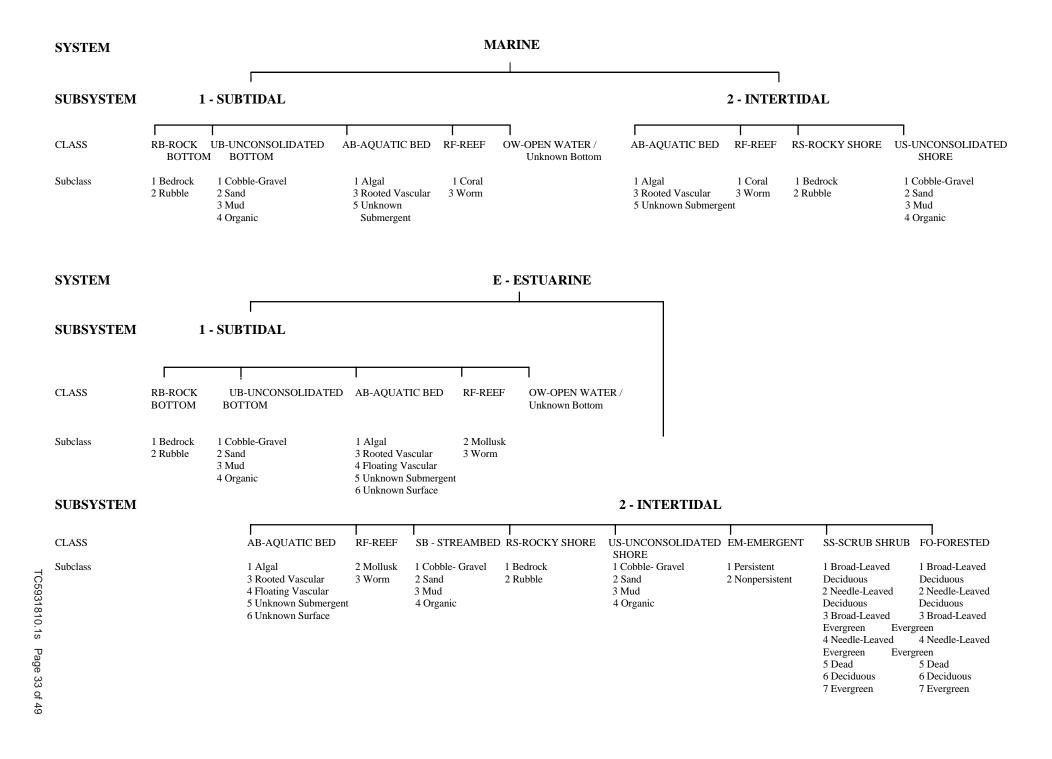
WETLANDS CLASSIFICATION SYSTEM

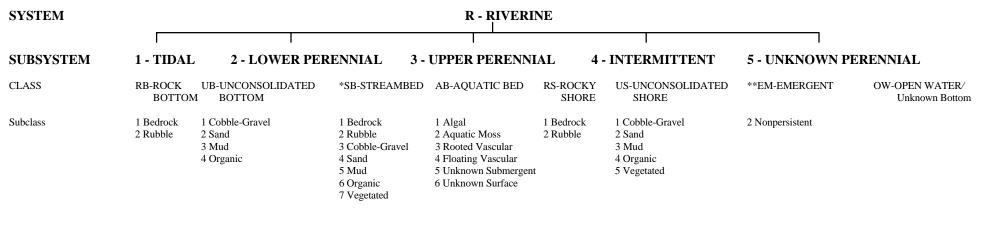
National Wetland Inventory Maps are produced by the U.S. Fish and Wildlife Service, a sub-department of the U.S. Department of the Interior. In 1974, the U.S. Fish and Wildlife Service developed a criteria for wetland classification with four long range objectives:

- · to describe ecological units that have certain homogeneous natural attributes,
- · to arrange these units in a system that will aid decisions about resource management,
- · to furnish units for inventory and mapping, and
- · to provide uniformity in concepts and terminology throughout the U.S.

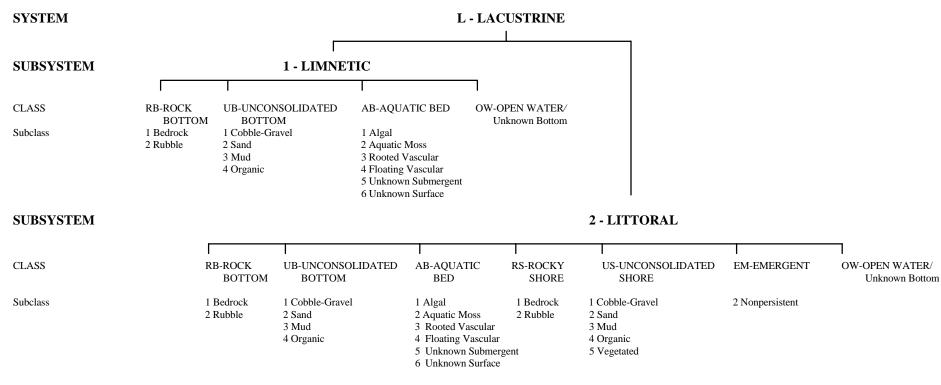
High altitude infrared photographs, soil maps, topographic maps and site visits are the methods used to gather data for the productions of these maps. In the infrared photos, wetlands appear as different colors and these wetlands are then classified by type. Using a hierarchical classification, the maps identify wetland and deepwater habitats according to:

- system
- subsystem
- class
- · subclass
- modifiers


(as defined by Cowardin, et al. U.S. Fish and Wildlife Service FWS/OBS 79/31. 1979.)


The classification system consists of five systems:

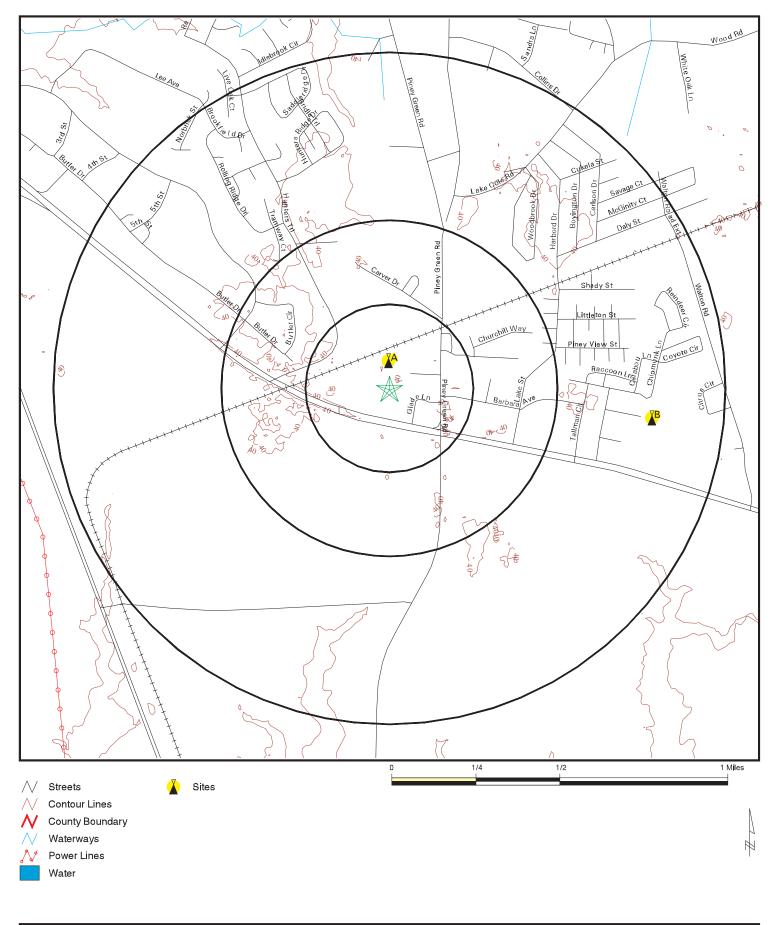
- 1. marine
- 2. estuarine
- 3. riverine
- 4. lacustrine
- 5. palustrine


The marine system consists of deep water tidal habitats and adjacent tidal wetlands. The riverine system consists of all wetlands contained within a channel. The lacustrine systems includes all nontidal wetlands related to swamps, bogs & marshes. The estuarine system consists of deepwater tidal habitats and where ocean water is diluted by fresh water. The palustrine system includes nontidal wetlands dominated by trees and shrubs and where salinity is below .5% in tidal areas. All of these systems are divided in subsystems and then further divided into class.

National Wetland Inventory Maps are produced by transferring gathered data on a standard 7.5 minute U.S.G.S. topographic map. Approximately 52 square miles are covered on a National Wetland Inventory map at a scale of 1:24,000. Electronic data is compiled by digitizing these National Wetland Inventory Maps.

* STREAMBED is limited to TIDAL and INTERMITTENT SUBSYSTEMS, and comprises the only CLASS in the INTERMITTENT SUBSYSTEM. **EMERGENT is limited to TIDAL and LOWER PERENNIAL SUBSYSTEMS.

TC5931810.1s Page 34 of 49


SUBSYSTEM					P - PALUSTRINE				
CLASS Bottom	RBROCK BOTTOM	UBUNCONSOLIDATED I BOTTOM	AB-AQUATIC BED	USUNCONSOLIDATED SHORE	MLMOSS- LICHEN	EMEMERGENT	SSSCRUB-SHRUB	FOFORESTED	OW-OPEN WATER/ Unknown
Subclass	1 Bedrock 2 Rubble 3 Mud 4 Organic	1 Cobble-Gravel 2 Sand	1 Algal 2 Aquatic Moss 3 Rooted Vascular 4 Floating Vascular 5 Unknown Submergent 6 Unknown Surface	1 Cobble-Gravel 2 Sand 3 Mud 4 Organic 5 Vegetated	1 Moss 2 Lichen	1 Persistent 2 Nonpersistent	1 Broad-Leaved Deciduous 2 Needle-Leaved Deciduous 3 Broad-Leaved Evergreen Everg 4 Needle-Leaved Evergreen Everg 5 Dead 6 Deciduous 6Dec 7 Evergreen	4 Needle-Leaved	

MODIFIERS In order to more adequately describe wetland and deepwater habitats one or more of the water regime, water chemistry, soil, or special modifiers may be applied at the class or lower level in the hierarchy. The farmed modifier may also be applied to the ecological system.								
	WATER REGIME			WATER CHEMISTRY			SOIL	SPECIAL MODIFIERS
Non-Tidal A Temporarily Flooded B Saturated C Seasonally Flooded D Seasonally Flooded/ Well Drained E Seasonally Flooded/ Saturated F Semipermanently Flooded G Intermittently Exposed	Tidal CoastalHa H Permanently Flooded J Intermittently Flooded K Artificially Flooded W Intermittently Flooded/Temporary Y Saturated/Semipermanent/ Seasonal Z Intermittently Exposed/Permanent U Unknown		bdifiersfor *S Temporary-Tidal *R Seasonal-Tidal *T Semipermanent -Tidal V Permanent -Tidal U Unknown gimes are only used in ced, freshwater systems.	1 Hyperhaline 2 Euhaline 3 Mixohaline (Brackish) 4 Polyhaline 5 Mesohaline 6 Oligohaline 0 Fresh	7 Hypersaline 8 Eusaline 9 Mixosaline 0 Fresh	all Fresh Water a Acid t Circumneutral i Alkaline	g Organic n Mineral	b Beaver d Partially Drained/Ditched f Farmed h Diked/Impounded r Artificial Substrate s Spoil x Excavated

Source: U.S. Department of the Interior Fish and Wildlife Service National Wetlands Inventory

TC5931810.1s Page 35 of 49

FCC & FAA Sites Map

SITE NAME:	Village Cleaners, DSCA Site ID DC670005
ADDRESS:	175 Freedom Way
	MIDWAY PARK NC 28544
LAT/LONG:	34.717822 / 77.323072

	AECOM Stephanie Hempel 5931810.1s January 10, 2020	TC5931810
0		

TC5931810.1s Page 36 of 49

Copyright © 2020 EDR, Inc. © 2015 TomTom Rel. 2015.

FCC & FAA SITES MAP FINDINGS **TOWERS**

Map ID Direction Distance Distance (ft.)

EDR ID Database

A1 North 0-1/8 mi 428		ANT130000044115 ANTREG
Registration #: File #: Issue Date: Entity: Height: Address: FAA Study: FAA Circular: License ID: Contact Name: Contact Address: Contact City: Contact State:	1056395 A0602441 8/4/2008 American Towers, LLC. 92.9 NC HIGHWAY 24 & PINEY GREEN ROAD (021233/ Truesdale) 2004-ASO-1267-OE 70/7460-1J L00008376 FAA/FCC Compliance Team 1898 Leland Drive Marietta GA	
Contact Zip: ASR Search:	30067 http://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp	

This record is for a license, and it may or may not indicate a site which has been built.

A2

North 0-1/8 mi 440

Obstacle #:	37-002387
Obstacle Type:	TOWER
Quantity:	1
Ft Above Ground:	315
Ft Above Sea Level:	354
Verification Status:	Verified
Lighting:	Medium Intensity White Strobe and Red
Horizontal Accuracy:	+/- 20 ft
Vertical Accuracy:	+/- 3 ft
Markings:	None
Action:	Change
Action Date:	2004130

DOF161200211684 FAA DOF

FCC & FAA SITES MAP FINDINGS TOWERS

Direction Distance Distance (ft.)		EDR ID Database
B3 East 1/2-1 mi 4098		ANT130000000179 ANTREG
Registration #: File #: Issue Date: Entity: Height: Address: FAA Study: FAA Circular: License ID: Contact Name: Contact Address: Contact City: Contact State: Contact Zip: ASR Search:	1000217 A0199659 7/6/2001 United States Cellular Corporation 91.4 128 S SECOND ST 96-ASO-0594-OE 70/7460-1J L00127162 Not Reported 8410 W. BRYN MAWR AVENUE, SUITE 700 CHICAGO IL 60631 http://wireless2.fcc.gov/UIsApp/AsrSearch/asrRegistrationSearch.jsp	

This record is for a license, and it may or may not indicate a site which has been built.

Β4

Map ID

East 1/2-1 mi 4139

Call Sign:	KNKA756
Location #:	5
Address:	128 South Street
City:	Midway
Structure Type:	Not Reported
Ground Elevation:	11
Overall Height:	Not Reported

This record is for a license, and it may or may not indicate a site which has been built.

CELL16100018299 CELLULAR

FCC & FAA SITES MAP FINDINGS TOWERS

Map ID Direction Distance Distance (ft.)

EDR ID Database

B5 East 1/2-1 mi 4211 DOF161200211674 FAA DOF

37-001840 Obstacle #: Obstacle Type: TOWER Quantity: 1 Ft Above Ground: 315 Ft Above Sea Level: 352 Verification Status: Verified Lighting: Medium Intensity White Strobe and Red Horizontal Accuracy: +/- 50 ft Vertical Accuracy: +/- 20 ft Markings: Action: None Change Action Date: 2014152

FCC & FAA SITES MAP FINDINGS AIRPORTS

EDR ID Database

No Sites Reported.

FCC & FAA SITES MAP FINDINGS POWERLINES

EDR ID Database

18678 POWERLINES

Voltage: Range: Hi voltage: Volt cat: Type: Status: Corridor: Owner: Owner id: Num owners: Operator: Operator id: Last owner: Last own id: Last oper: Last oper id: Mileage:

230 Not Reported 0 139-230 kV Alternating current Active Single line Duke Energy Corporation DUKE Single Owner Progress Energy Carolinas Inc. CARPOW Progress Energy Inc. PROGENG Not Reported Not Reported 4.150591450000003

Various Federal laws and executive orders address specific environmental concerns. NEPA requires the responsible offices to integrate to the greatest practical extent the applicable procedures required by these laws and executive orders. EDR provides key contacts at agencies charged with implementing these laws and executive orders to supplement the information contained in this report.

NATURAL AREAS

Wilderness Areas

Government Records Searched in This Report

FED LAND: Federal Lands

Source: USGS Telephone: 703-648-5094

Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service.

- National Parks

- Forests

- Monuments

- Wildlife Sanctuaries, Preserves, Refuges

- Federal Wilderness Areas.

Date of Government Version: 12/31/2005

US NWP: National Wilderness Preservation System

This map layer consists of National Wilderness Preservation System areas of 320 acres or more, in the United States, Puerto Rico, and the U.S. Virgin Islands. Some established wilderness areas which are larger than 320 acres are not included in this map layer because their boundaries were not available from the owning or administering agency.

Source: U.S. Geological Survey. Telephone: 888-275-8747

Federal Contacts for Additional Information National Park Service, Southeast Region 100 Alabama Street SW, 1924 Building Atlanta, GA 30303 404-562-3100

USDA Forest Service, Southern 1720 Peachtree Road, N.W. Atlanta, GA 30367 404-347-2384

BLM - Eastern States Office 7450 Boston Blvd. Springfield, VA 22153 703-440-1713

Fish & Wildlife Service, Fish & Wildlife Region 4 Budget and Finance 1875 Century Boulevard Atlanta, GA 30345 404-679-4096

Wildlife Preserves, Sanctuaries and Refuges

Government Records Searched in This Report

FED_LAND: Federal Lands

Source: USGS Telephone: 703-648-5094 Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service.

- National Parks
- Forests
- Monuments

- Wildlife Sanctuaries, Preserves, Refuges

- Federal Wilderness Areas.

Date of Government Version: 12/31/2005

NC Conservation Easements: NC Conservation Easements Source: NCGIA. Telephone: 919-733-2090

NC Natural Heritage Areas: Significant Natural Heritage Areas The Natural Heritage Program Natural Areas (NHPNA) data identifies terrestrial and aquatic sites that are of special biodiversity significance. A natural areas significance may be due to the presence of rare species, exemplary natural communities, or important animal assemblages. Source: North Carolina Natural Heritage Program. Telephone: 919-707-8630

NC Managed Areas: Lands Managed for Conservation and Open Space The North Carolina Natural Heritage Program developed the Managed Areas (or MAREA) shapefile to document public- and privately-owned lands and easements that are of some conservation interest. Source: North Carolina Natural Heritage Program. Telephone: 919-707-8630

NC Federal Land Ownership: Federal Land Ownership Federal Land Ownership boundaries of land in North Carolina that is owned and managed by the US Government Source: North Carolina Natural Heritage Program. Telephone: 919-707-8630

US ACEC: Areas of Critical Environmental Concern Designated Polygons The designated ACECs are "areas within the public lands where special management attention is required to protect and prevent irreparable damage to important historic, cultural, or scenic values, fish and wildlife resources or other natural systems of processes, or to protect life and safety from natural hazards Source: Bureau of Land Management. Telephone: 202-912-7352

US Critical Water Habitat: US Critical Water Habitat When a species is proposed for listing as endangered or threatened under the Endangered Species Act, the U.S. Fish and Wildlife Service must consider whether there are areas of habitat believed to be essential the species conservation. Those areas may be proposed for designation as critical habitat. Critical habitat is a term defined and used in the Act. Source: US Fish & Wildlife Services. Telephone: 970-226-9468

US Proclamation Boundaries: US Proclamation Boundaries Approved, Proclamation or Extent Boundary Source: USGS. Telephone: 208-301-8288

US Scenic River: National Wild and Scenic River System National Wild and Scenic Rivers System Source: USGS National Atlas and the Interagency Wild and Scenic River Coordinating Council. Telephone: 509-546-8333

US NCED: National Conservation Easement Database

NCED shows a comprehensive picture of privately owned conservation easement lands in the U.S. The NCED will allow better strategic planning for conservation and development by merging data on land protection with biodiversity and resources, improving ecological and economic plans and investments. Source: U.S Endowment for Forestry and Communities. Telephone: 202-621-1647

US Critical Land Habitat: US Critical Land Habitat

When a species is proposed for listing as endangered or threatened under the Endangered Species Act, the U.S. Fish and Wildlife Service must consider whether there are areas of habitat believed to be essential the species conservation. Those areas may be proposed for designation as critical habitat. Critical habitat is a term defined and used in the Act. Source: US Fish & Wildlife Services. Telephone: 970-226-9468

Federal Contacts for Additional Information

Fish & Wildlife Service, Fish & Wildlife Region 4 Budget and Finance 1875 Century Boulevard Atlanta, GA 30345 404-679-4096

State Contacts for Additional Information Wildlife Resources Commission 919-733-3391

Wild and scenic rivers

Government Records Searched in This Report

FED_LAND: Federal Lands Source: USGS Telephone: 703-648-5094 Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service.

- National Parks
- Forests
- Monuments

- Wildlife Sanctuaries, Preserves, Refuges

- Federal Wilderness Areas.
- Date of Government Version: 12/31/2005

Federal Contacts for Additional Information

Fish & Wildlife Service, Fish & Wildlife Region 4 Budget and Finance 1875 Century Boulevard Atlanta, GA 30345 404-679-4096

Endangered Species

Government Records Searched in This Report

NC Natural Heritage Element Occurrence: Natural Heritage Element Occurrence Sites Locations of rare and endangered species populations and occurrences of exemplary or unique natural ecosystems (terrestrial and palustrine) and special wildlife habitats. Source: Natural Heritage Program.. Telephone: 919-707-8630

Federal Endangered Species by County: Threatened and Endangered Species Listing Endangered, Threatened, Emergency Listing (Endangered), Emergency Listing (Threatened), Experimental Population (Essential), Experimental Population (Non-Essential), Similarity of Appearance (Endangered), Similarity of Appearance (Threatened). Source: US Fish and Wildlife Services. Telephone: 800-344-9453

Federal Contacts for Additional Information

Fish & Wildlife Service, Fish & Wildlife Region 4 Budget and Finance 1875 Century Boulevard Atlanta, GA 30345 404-679-4096

State Contacts for Additional Information Natural Heritage Program, Dept. of Env. & Natural Resources 919-733-4181

LANDMARKS, HISTORICAL, AND ARCHEOLOGICAL SITES

Historic Places

Government Records Searched in This Report

National Register of Historic Places:

The National Register of Historic Places is the official federal list of districts, sites, buildings, structures, and objects significant in American history, architecture, archeology, engineering, and culture. These contribute to an understanding of the historical and cultural foundations of the nation. The National Register includes:

- All prehistoric and historic units of the National Park System;
- National Historic Landmarks, which are properties recognized by the Secretary of the Interior as possessing national significance; and
- Properties significant in American, state, or local prehistory and history that have been nominated by State Historic Preservation Officers, federal agencies, and others, and have been approved for listing by the National Park Service.

Date of Government Version: 07/19/2015

NC Local District Boundaries: Boundaries for Local Districts Properties and districts in North Carolina that are locally designated districts. Source: Department of Natural & Cultural Resources. Telephone: 919-807-6586

NC Historic Preservation Sites: Historic Preservation Sites: Properties and districts in North Carolina that are locally designated landmarks. Source: Department of Natural & Cultural Resources. Telephone: 919-807-6586

NC NR, SL, DOE Boundaries: National Register, Study List, and Determined Eligible Sites: Properties and districts in North Carolina that are either listed in the National Register (NR), determined eligible for the National Register in the Section 106 review process (DOE), on the North Carolina Study List for potential nomination to the National Register (SL). Source: Department of Natural & Cultural Resources. Telephone: 919-807-6586

Natchez Trace National Scenic Trail: Natchez Trace National Scenic Trail Source: Natchez Trace Parkway. Telephone: 800-305-7417

US Trails: US Trails This dataset contains a baseline inventory and condition assessment of all non-motorized trails on U.S. Fish and Wildlife Service lands as part of the National Trails Inventory Program conducted by the US Dept. of Transportation, Federal Highway Administration, Federal Lands Highway Division. Source: U.S. Fish and Wildlife. Telephone: 703-358-2205

Indian Reservations: Indian Reservations This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres. Source: USGS. Telephone: 202-208-3710

Potomac Heritage National Scenic Trail: Potomac Heritage National Scenic Trail Source: Potomac Heritage NST Office. Telephone: 304-535-4014

Federal Contacts for Additional Information Park Service; Advisory Council on Historic Preservation 1849 C Street NW Washington, DC 20240 Phone: (202) 208-6843

State Contacts for Additional Information Div. Of Archives & History 919-733-4673

Indian Religious Sites Government Records Searched in This Report

Indian Reservations: This map layer portrays Indian administrated lands of the United States that have any area equal to or greater than 640 acres. Source: USGS Phone: 888-275-8747 Date of Government Version: 12/31/2005

Federal Contacts for Additional Information Department of the Interior- Bureau of Indian Affairs Office of Public Affairs 1849 C Street, NW Washington, DC 20240-0001 Office: 202-208-3711 Fax: 202-501-1516

National Association of Tribal Historic Preservation Officers 1411 K Street NW, Suite 700 Washington, DC 20005 Phone: 202-628-8476 Fax: 202-628-2241

State Contacts for Additional Information A listing of local Tribal Leaders and Bureau of Indian Affairs Representatives can be found at: http://www.doi.gov/bia/areas/agency.html

Eastern Area Office, Bureau of Indian Affairs 3701 N. Fairfax Drive Mail Stop 260-VASQ Arlington, VA 22203 703-235-2571

Scenic Trails

Government Records Searched in This Report APPAL_TRAIL: Appalachian National Scenic Trail Source: Appalachian Trail Conservancy and National Park Service Appalachian Trail Park Office Telephone: (304) 535-6278 Appalachian Trail centerline.

State Contacts for Additional Information Appalachian Trail Conference 799 Washington Street P.O. Box 807 Harpers Ferry, WV 25425-0807 (304) 535-6331

FLOOD PLAIN, WETLANDS AND COASTAL ZONE

Flood Plain Management

Government Records Searched in This Report

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts Special Flood Hazard Areas (1%) and 0.2% Annual Chance of Flood Hazard as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA Phone: 877-336-2627 Date of Government Version: 2015, 2003

Federal Contacts for Additional Information Federal Emergency Management Agency 877-3362-627

State Contacts for Additional Information Dept. of Crime Control & Public Safety, Div. Of Emergency Mgmt. 919-733-3867

Wetlands Protection

Government Records Searched in This Report

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010, and 2015 from the U.S. Fish and Wildlife Service.

Source: U.S. Fish and Wildlife Service. Phone: 608-238-9333 Date of Government Version: 05/28/2015

State Wetlands Data: Wetland Inventory Source: US Fish & Wildlife Service Telephone: 703-358-2171

Federal Contacts for Additional Information Fish & Wildlife Service 813-570-5412

State Contacts for Additional Information Wildlife Conservation Commission 919-733-3391

Coastal Zone Management

Government Records Searched in This Report CAMA Management Areas Dept. of Env., Health & Natural Resources 919-733-2293

Federal Contacts for Additional Information Office of Ocean and Coastal Resource Management N/ORM, SSMC4 1305 East-West Highway Silver Spring, Maryland 20910 301-713-3102

State Contacts for Additional Information DEHNR, Div. Of Coastal Management 919-733-2293

Government Records Searched in This Report

NC Coastal Boundaries NC One Map 919-754-6580

FCC & FAA SITES MAP

For NEPA actions that come under the authority of the FCC, the FCC requires evaluation of Antenna towers and/or supporting structures that are to be equipped with high intensity white lights which are to be located in residential neighborhoods, as defined by the applicable zoning law.

Government Records Searched in This Report

Cellular

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

Antenna Structure Registration

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

AM Antenna

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

FM Antenna

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

FAA Digital Obstacle File

Federal Aviation Administration (FAA)
1305 East-West Highway, Station 5631
Silver Sprinng, MD 20910-3281
Telephone: 301-713-2817
Describes known obstacles of interest to aviation users in the US. Used by the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration to manage the National Airspace System.

Airport Landing Facilities

Federal Aviation Administration Telephone (800) 457-6656 Private and public use landing facilities.

Electric Power Transmission Line Data

PennWell Corporation

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Excessive Radio Frequency Emission

For NEPA actions that come under the authority of the FCC, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the determination of whether the particular facility, operation or transmitter would cause human exposure to levels of radio frequency in excess of certain limits.

Federal Contacts for Additional Information

Office of Engineering and Technology Federal Communications Commission 445 12th Street SW Washington, DC 20554 Phone: 202-418-2470

OTHER CONTACT SOURCES

NEPA Single Point of Contact

State Contacts for Additional Information Department of Administration 1302 Mail Service Center Raleigh, NC 27699-1302 919-807-2323

STREET AND ADDRESS INFORMATION

(c) 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to TomTom North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX C NOTICE OF DRY CLEANING SOLVENT REMEDIATION (NDCSR) FOR SOURCE PROPERTY PINEY GREEN FL, LLC PIN 530510363620

NOTICE OF DRY-CLEANING SOLVENT REMEDIATION

Property Owner: Piney Green FL, LLC Recorded in Book _____, Page _____ Associated plat recorded in Plat Book _____, Page _____

This documentary component of a Notice of Dry-Cleaning Solvent Remediation (hereinafter "Notice") is hereby recorded on this _____ day of ______, 20____ by Piney Green FL, LLC (hereinafter "Property Owner"). The survey plat component of the Notice is being recorded concurrently with this documentary component. The real property (hereinafter "Property") which is the subject of this Notice is located at 175 Freedom Way, Jacksonville, Onslow County, North Carolina, Parcel Identification Number (PIN) 530510363620.

The Property is contaminated with dry-cleaning solvent, as defined at North Carolina General Statutes (hereinafter "N.C.G.S."), Section (hereinafter "§") 143-215.104B(b)(9) and other contaminants. This Notice has been approved by the North Carolina Department of Environmental Quality, or its successor in function (hereinafter "DEQ") under the authority of the Dry-Cleaning Solvent Cleanup Act of 1997, as amended, N.C.G.S. § 143-215.104A *et seq.* (hereinafter "DSCA"), and is required to be filed in the Register of Deeds' Office in the county or counties in which the land is located, pursuant to NCGS § 143-215.104M.

Soil and groundwater at the Property are contaminated with dry-cleaning solvents associated with dry-cleaning operations at the Village Cleaners (DSCA Site DC670005) located at 175 Freedom Way, Midway Park, in the Piney Green Shopping Center. Dry-cleaning operations were conducted on the Property from approximately 1984 to 2002.

Pursuant to N.C.G.S. § 143-215.104M, this Notice is being filed in order to reduce or eliminate the danger to public health or the environment posed by the Property. Attached hereto as **Exhibit A** is a reduction, to 8 1/2" x 11", of the survey plat component of the Notice required by N.C.G.S. § 143-215.104M. The survey plat has been prepared and certified by a professional land surveyor and meets the requirements of G.S. 47-30, and contains the following information required by N.C.G.S. § 143-215.104M:

(1) A description of the location and dimensions of the areas of potential environmental concern with respect to permanently surveyed benchmarks; and

(2) The type, location and quantity of regulated dry-cleaning solvent contamination and other contaminants known to exist on the Property.

Attached hereto as **Exhibit B**, is a legal description of the Property that would be sufficient as a description in an instrument of conveyance.

Pursuant to NCGS § 143-215.104M, a certified copy of this Notice must be filed within 15 days of receipt of DEQ's approval of the Notice or the effective date of the dry-cleaning solvent remediation agreement, whichever is later. Pursuant to NCGS § 143-215.104M, the copy of the Notice certified by DEQ must be recorded in the grantor index under the names of the owners of the land.

LAND-USE RESTRICTIONS

NCGS § 143-215.104M requires that the Notice identify any restrictions on the current and future use of the Property that are necessary or useful to maintain the level of protection appropriate for the designated current or future use of the Property and that are designated in the dry-cleaning remediation agreement. The restrictions shall remain in force in perpetuity unless canceled by the Secretary of DEQ, or his/her designee, after the hazards have been eliminated, pursuant to NCGS §143-215.104M. Those restrictions are hereby imposed on the Property, and are as follows:

- 1. Without prior written approval from DEQ, the Property shall not be used for:
 - a. childcare centers, elementary, middle, or high schools; or elder care facilities. Exceptions to this restriction include use of the property for technical or adult education institutions; technical training centers; or tutorial institutions.
 - b. mining or extraction of coal, oil, gas or any mineral or non-mineral substances.
- 2. No activities that encounter, expose, remove or use groundwater (for example, installation of water supply wells, fountains, ponds, lakes or swimming pools that use groundwater, or construction or excavation activities that encounter or expose groundwater) may occur within **Area A** of the Property without prior approval of DEQ.
- 3. The portion of the Property designated as **Area B** shall be used exclusively for nonresidential land use pursuant to North Carolina Administrative Code (NCAC) 15A NCAC 02S.0102(21) and related amenities (parking, landscape areas and walkways), and all other uses of the Property are prohibited except as approved in writing by DEQ.
- 4. Soil in **Area C** may not be removed or disturbed unless approved in writing in advance by DEQ or its successor in function, except for routine landscape maintenance and emergency utility repair. In the event of emergency utility repair, DEQ shall be given written notice of any such emergency repair no later than the next business day, and further related assessment and remedial measures may be required.
- 5. No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in "Area C" of the Property, as shown on Exhibit A, without prior approval of DEQ.

- 6. In January of each year, on or before January 31st, the owner of any portion of the Property shall submit a notarized Annual Certification of Land-Use Restrictions to DEQ certifying that this Notice remains recorded at the Register of Deeds' office, and that the land-use restrictions are being complied with.
- 7. No person conducting environmental assessment or remediation at the Property or involved in determining compliance with applicable land-use restrictions, at the direction of, or pursuant to a permit or order issued by DEQ may be denied access to the Property for the purpose of conducting such activities.
- 8. The owner of any portion of the Property shall cause the instrument of any sale, lease, grant, or other transfer of any interest in the property to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Notice. The failure to include such a provision shall not affect the validity or applicability of any land-use restriction in this Notice.

RIGHT OF ENTRY

The property owner grants and conveys to DEQ, its agents, contractors, and employees, and any person performing pollution remediation activities under the direction of DEQ, access at reasonable times and under reasonable security requirements to the Property to determine and monitor compliance with the land-use restrictions set forth in this Notice. Such investigations and actions are necessary by DEQ to ensure that use, occupancy, and activities of and at the Property are consistent with the land-use restrictions and to ensure that the structural integrity and continued effectiveness of any engineering controls (if appropriate) described in the Notice are maintained. Whenever possible, at least 48 hours advance notice will be given to the Property Owner prior to entry. Advance notice may not always be possible due to conditions such as response time to complaints and emergency situations.

REPRESENTATIONS AND WARRANTIES

The Property Owner hereby represents and warrants to the other signatories hereto:

- i) that the Property Owner is the sole owner of the Property; **or** that the Property Owner has provided to DEQ the names of all other persons that own an interest in or hold an encumbrance on the Property and have notified such persons of the Property Owner's intention to enter into this Notice;
- ii) that the Property Owner has the power and authority to enter into this Notice, to grant the rights and interests herein provided and to carry out all obligations hereunder; and
- iii) that this Notice will not materially violate or contravene or constitute a material default under any other agreement, document or instrument to which the Property Owner is a party or by which the Property Owner may be bound or affected.

ENFORCEMENT

The above land-use restrictions shall be enforceable without regard to lack of privity of estate or contract, lack of benefit to particular land, or lack of any property interest in particular land. The land-use restrictions shall be enforced by any owner of the Property. The land-use restrictions may also be enforced by DEQ through the remedies provided in NCGS § 143-215.104P or by means of a civil action; by any unit of local government having jurisdiction over any part of the Property; and by any person eligible for liability protection under the DSCA who will lose liability protection if the restrictions are violated. Any attempt to cancel any or all of this Declaration without the approval of the Secretary of DEQ (or its successor in function), or his/her delegate, shall be subject to enforce any of the above restrictions shall in no event be deemed a waiver of the right to do so thereafter as to the same violation or as to one occurring prior or subsequent thereto.

If a land-use restriction set out in this Notice required under NCGS § 143-215.104.M is violated, the owner of the Property at the time the land-use restriction is violated, the owner's successors and assigns, and the owner's agents who direct or contract for alteration of the contamination site in violation of a land-use restriction shall be liable for remediation of all contaminants to unrestricted use standards.

FUTURE SALES, LEASES, CONVEYANCES AND TRANSFERS

When any portion of the Property subject to this Notice is sold, leased, conveyed or transferred, the deed or other instrument of transfer shall contain in the description section, in no smaller type than that used in the body of the deed or instrument, (1) a statement that the property has been contaminated with dry-cleaning solvent and, if appropriate, cleaned up under the Act and (2) a reference by book and page to the recordation of this Notice.

The Property Owner shall notify DEQ within fourteen (14) calendar days of the effective date of any conveyance, grant, gift, or other transfer, whole or in part, of the Property Owner's interest in the Property. This notification shall include the name, business address and phone number of the transferee and the expected date of transfer.

The Property Owner shall notify DEQ within thirty (30) days following the petitioning or filing of any document by any person initiating a rezoning of the Property that would change the base zone of the Property.

This provision shall not apply to leases that do not provide for the right to take actions that would violate the prohibitions and restrictions of this Notice.

PROPERTY OWNER SIGNATURE

IN WITNESS WHEREOF, Property Owner has caused this instrument to be duly executed this _____ day of ______, 20____.

Piney Green FL, LLC

By:

Name of contact

STATE OF ______ COUNTY OF ______

I, ______, a Notary Public of the county and state aforesaid, certify that _______ personally came before me this day and acknowledged that he/she is a Member of Piney Green FL, LLC, a North Carolina limited liability corporation, and its Manager, and that by authority duly given and as the act of the company, the foregoing Notice of Dry-Cleaning Solvent Remediation was signed in its name by him.

WITNESS my hand and official stamp or seal, this ____ day of _____, 20____.

Name typed or printed Notary Public

My Commission expires: ______ [Stamp/Seal]

APPROVAL AND CERTIFICATION

The foregoing Notice of Dry-Cleaning Solvent Remediation is hereby approved and certified.

North Carolina Department of Environmental Quality

By:

William F. Hunneke Chief, Superfund Section Division of Waste Management Date

ATTACHMENT

LIMITED POWER OF ATTORNEY

I ______ "Property Owner", do hereby grant a limited power of attorney to DEQ and to DEQ's independent contractors, as follows:

DEQ and DEQ's independent contractors shall have the limited power of attorney to record this Notice, including its documentary and survey plat components, in accordance with N.C.G.S. § 143-215.104M on my "Property Owner" behalf. This limited power of attorney shall terminate upon completion of the recordation of the Notice.

Signature of Property Owner	
Dated thisday of	, 20
STATE OF COUNTY OF	
	, a Notary Public, do hereby certify that personally appeared before me this day and orney".
WITNESS my hand and official sta	amp or seal, this day of, 20
Name typed or printed	

Name typed or printed Notary Public

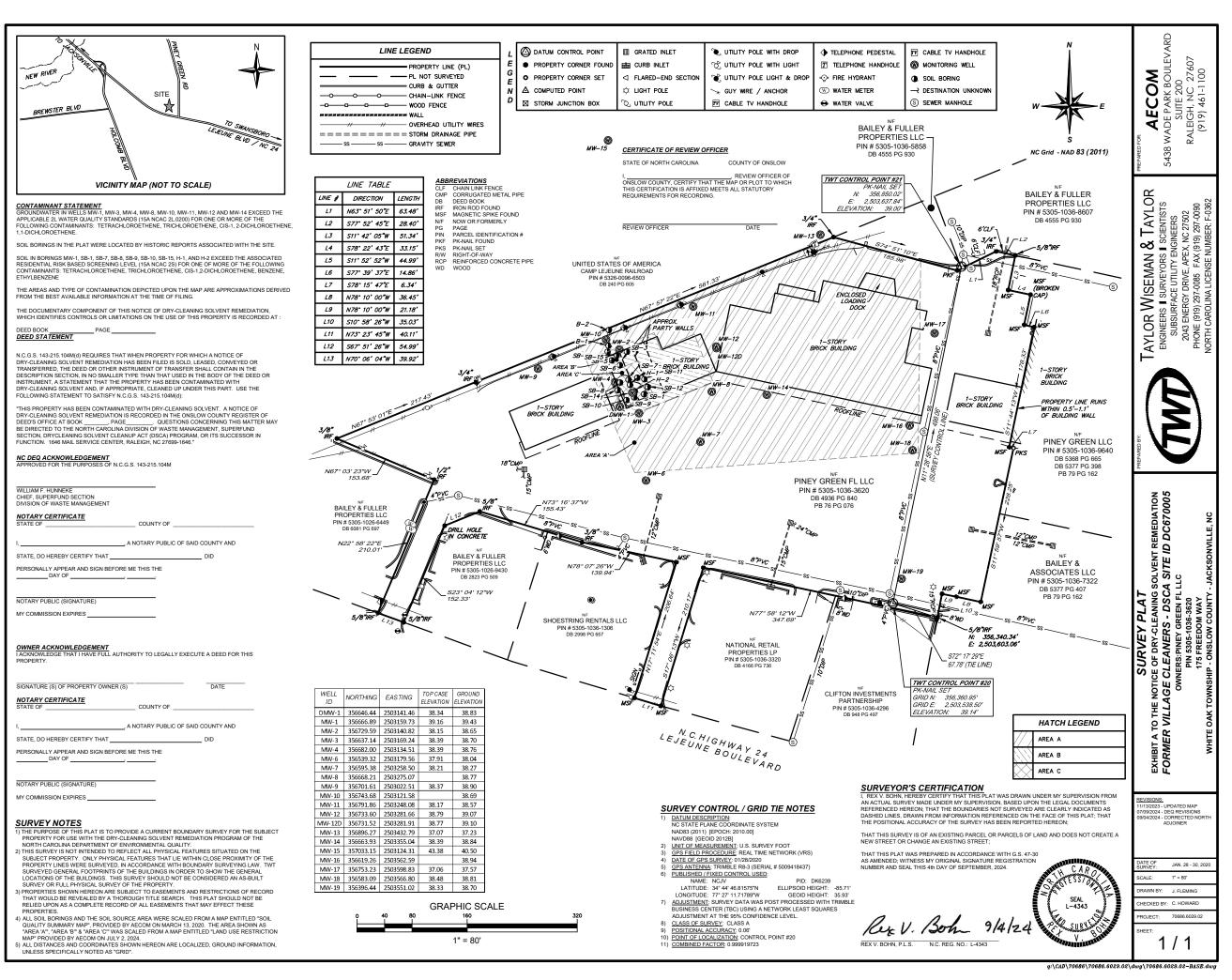
My Commission expires: _____ [Stamp/Seal]

CERTIFICATION OF REGISTER OF DEEDS

The foregoing documentary component of the Notice of Dry-Cleaning Solvent Remediation, and the associated plat, are certified to be duly recorded at the date and time, and in the Book and on the Page(s), shown on the first page hereof.

Register of Deeds for Onslow County

(signature)


By:

Date

Name typed or printed: _____ Deputy/Assistant Register of Deeds

EXHIBIT A REDUCTION OF SURVEY PLAT

EXHIBIT B PROPERTY LEGAL DESCRIPTION

Exhibit A- (page 1 of 2)

Commencing at an existing mag nail set at the centerline intersection of N.C.S.R. 1406 (Piney Green Road) with the Camp Lejeune Marine Corps railroad tracks; thence along the centerline of N.C.S.R. 1406, south 00 degrees 33 minutes 05 seconds east 736.94 feet to an existing PK nail in the centerline of N.C.S.R. 1406; thence leaving said centerline, north 60 degrees 13 minutes 42 seconds west 44.64 feet to a ⁵/₈ inch existing iron stake three inches below ground on the western right-of-way line of N.C.S.R 1406; thence leaving said right-of-way line and with a southern line of the H & H Farms, LLC property recorded in Deed Book 2709 page 567 and with a southern line of Jimmy R. Damiano property recorded in Deed Book 4650 page 596, south 89 degrees 36 minutes 38 seconds west 279.74 feet to a 5/8 inch iron stake set three inches below ground; thence continuing with a southern line of said Damiano property, north 85 degrees 21 minutes 40 seconds west 115.51 feet to a ³/₄ inch existing iron stake one inch below ground; thence continuing with said Damiano property, south 89 degrees 07 minutes 28 seconds west 58.60 feet to a ³/₄ inch existing iron stake one inch below ground; thence with a western line of said Damiano property, north 10 degrees 01 minutes 56 seconds east 32.60 feet to a ³/₄ inch existing iron stake one inch below ground; thence with a southern line of said Damiano property, north 78 degrees 01 minutes 32 seconds west 219.40 feet to a ⁵/₈ inch existing iron stake three inches below ground; thence with a southern line of said Damiano property, south 57 degrees 28 minutes 55 seconds west 22.67 feet to a 1/2 inch existing iron stake; thence with a southern line of the Bailey & Fuller Properties, LLC property recorded as Tract 1 in Deed Book 4555 page 930, north 77 degrees 58 minutes 37 seconds west 273.72 feet to a ⁵/₈ inch iron stake set three inches below ground, said iron stake having N.C. grid coordinates of North = 356,866.134 and East = 2,503,716.415, said iron stake being THE TRUE POINT OF BEGINNING; thence from the above described point of beginning and leaving said Bailey & Fuller tract, a new line, south 11 degrees 46 minutes 37 seconds west 51.32 feet to a survey spike set; thence a new line, south 78 degrees 13 minutes 23 seconds east 33.00 feet to a survey spike set; thence a new line, south 11 degrees 46 minutes 37 seconds west 45.00 feet to a survey spike set; thence a new line, south 78 degrees 13 minutes 23 seconds east 15.00 feet to a survey spike set 0.9 feet west on a one story concrete block building wall; thence a new line and to, with, and beyond a party wall, south 11 degrees 46 minutes 37 seconds west 178.39 feet to a survey spike set; thence a new line, south 78 degrees 13 minutes 23 seconds east 6.34 feet to a survey spike set; thence a new line, south 11 degrees 59 minutes 14 seconds west 228.13 feet to a survey spike set; thence a new line, north 78 degrees 13 minutes 23 seconds west 57.63 feet to a survey spike set; thence a new line, south 10 degrees 49 minutes 07 seconds west 35.00 feet to a ⁵/₈ inch existing iron stake three inches below ground; thence with a northern line of the Clifton Investment Partnership property recorded in Deed Book 948 page 497 and with a northern line of the National Retail Properties, LP property recorded in Deed Book 4166 page 736, north 77 degrees 58 minutes 24 seconds west 347.76 feet to a survey spike set; thence with a western line of the National Retail Properties, LP property recorded in Deed Book 4166 page 736 and with an eastern line of the 20' ingress, egress and regress easement recorded in Deed Book 764 page 641 and Deed Book 1288 page 256, south 17 degrees 06 minutes 54 seconds west 210.14 feet to a survey spike set in the northern right-of-way line of N.C. Highway 24; thence along said right-ofway line, north 73 degrees 26 minutes 36 seconds west 40.12 feet to a survey spike set; thence leaving said right-of-way line, with an eastern line of the Shoestring Rentals, LLC property recorded in Deed Book 2998 page 657 and with the western margin of a 20' ingress, egress and

Exhibit A- (page 2 of 2)

regress easement recorded in Deed Book 764 page 641 and Deed Book 1288 page 256, north 17 degrees 11 minutes 54 seconds east 206.61 feet to a survey spike set; thence with a northern line of said Shoestring Rentals, LLC property, north 78 degrees 06 minutes 49 seconds west 139.97 feet to an existing iron stake; thence with a northern line of said Shoestring Rentals property and with a northern line of Bailey & Fuller Properties, LLC recorded in Deed Book 2823 page 509, north 73 degrees 16 minutes 17 seconds west 155.46 feet to a 1/8 inch existing iron stake eight inches below ground; thence with a northwestern line of the Bailey & Fuller property tract, south 67 degrees 46 minutes 27 seconds west 54.88 feet to a survey spike set; thence with a western line of the Bailey & Fuller property tract, south 23 degrees 05 minutes 48 seconds west 152.33 feet to a ⁵/₈ inch existing iron stake four inches below ground on the northern right-of-way line of N.C. Highway 24; thence along said right-of-way line, north 70 degrees 01 minutes 29 seconds west 40.05 feet to a ⁵/₈ inch existing iron stake three inches below ground; thence leaving said right-ofway line and with an eastern line of the Robert W. Gasperson property recorded in Deed Book 778 page 821, north 23 degrees 00 minutes 53 seconds east 209.94 feet to a ¹/₄ inch existing iron stake; thence with a northern line of said Gasperson property, north 67 degrees 03 minutes 28 seconds west 153.68 feet to a 1/4 inch existing iron stake one inch below ground in the southern right-ofway line of Camp Lejeune Marine Corps railroad right-of-way; thence along said right-of-way line, north 67 degrees 53 minutes 47 seconds east 217.32 feet to a ³/₄ inch existing iron stake one inch below ground; thence continuing along said right-of-way line, north 67 degrees 57 minutes 06 seconds east 561.35 feet to a ⁵/₈ inch existing iron stake two inches below ground; thence leaving said right-of-way line and with the southern line of the Bailey & Fuller Properties, LLC property recorded as Tract 2 in Deed Book 4555 page 930, south 74 degrees 51 minutes 29 seconds east 186.03 feet to an existing PK nail; thence with a southeastern line of said Bailey & Fuller property tract and with a southeastern line of Bailey & Fuller property shown as Tract 1 in Deed Book 4555 page 930, north 63 degrees 55 minutes 01 seconds east 63.42 feet to a 1/2 inch existing iron stake three inches below ground; thence south 77 degrees 58 minutes 37 seconds east 28.52 feet to the point and place of beginning.

Containing 8.057 acres and being a portion of that property recorded in Deed Book 1698 page 260 and being all of that property shown as Tract C on a map entitled "Exempt subdivision plat for Piney Green, LLC" recorded in Map Book $\underline{16}$ page $\underline{16}$ of the Onslow County Registry which is hereby referenced for a more complete and accurate description.

The above description was prepared by Johnny J. Williams Land Surveying, P.C. from a survey completed on February 12, 2019. All courses are correct in their angular relationship to N.C. grid north NAD 1983 (2011 adjustment).

TOGETHER WITH those certain easements set forth in that certain Cross Access and Storm Drainage Easement Agreement in Book $\underline{4936}$, Page $\underline{945}$.

TOGETHER WITH that certain easement set forth in that certain Party Wall Agreement in Book 4936, Page 850.

APPENDIX D EXAMPLE ANNUAL CERTIFICATION OF LAND USE RESTRICTIONS ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL SCOTT Director

<mark><date></mark>

Piney Green FL, LLC PO Box 400 Jacksonville, NC 28541

Subj: Annual Certification of Land-Use Restrictions Former Village Cleaners, 175 Freedom Way Jacksonville, Onslow County, North Carolina DSCA Site ID DC670005

Dear Piney Green FL, LLC:

On <date>, the Division of Waste Management made a "No Further Action" decision for the above referenced site. As part of that decision, it was determined that land-use restrictions were necessary to ensure protection of human health and the environment. The land-use restrictions for this site are specified in the Notice of Dry-Cleaning Solvent Remediation (Notice) signed by the property owner and the Division of Waste Management.

As owner of at least a portion of the DSCA Site, you are required to comply with Condition ______ of the Notice by submitting to DEQ a notarized Annual Certification of Land-Use Restrictions certifying that the Notice remains recorded at the Wake County Register of Deeds' office and that the Land-Use Restrictions are being complied with. Please complete the enclosed Annual Certification of Land-Use Restrictions and return it to me on or before January 31, 20____ at the following address:

NCDEQ Division of Waste Management DSCA/Scott Stupak 1646 Mail Service Center Raleigh, NC 27699-1646

In accordance with § 143-215.104M(f), any person who fails to comply within the time specified in this letter, shall then be subject to the applicable enforcement procedures. The Notice further states that if a land-use restriction is violated, the owner of the contamination site at the time the land-use restriction is violated, the owner's successors and assigns, and the owner's agents who direct or contract for alteration of the contamination site in

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200 violation of a land-use restriction shall be liable for remediation of all contaminants to unrestricted use standards.

If you have any questions concerning these documents or the site, please contact me at (919) 707-8359 or via email at <u>scott.stupak@deq.nc..gov</u>.

Sincerely,

Scott Stupak, Project Manager DSCA Remediation Unit Superfund Section Division of Waste Management

Attachments: Annual Certification of Land-Use Restrictions form

cc: DSCA Site ID DC670005 File

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200

Annual Certification of Land-Use Restrictions

Site Name:Former Village CleanersSite Address:175 Freedom Way, Jacksonville, Onslow CountyDSCA Site ID:DC670005

ANNUAL CERTIFICATION of LAND-USE RESTRICTIONS

Pursuant to land-use restriction number ____ (the land-use restrictions are included as part of this form for reference) in the Notice of Dry-Cleaning Solvent Remediation (Notice) signed by Piney Green FL, LLC (property owner at time of recordation) and recorded in Deed Book
slank>, Page
blank> on <date> at the Onslow County Register of Deeds Office, sproperty owner or authorized designee> hereby certifies, as the current owner of at least part of the property that is the subject of the Notice, that the Notice remains recorded at the Onslow County Register of Deeds office and the land-use restrictions therein are being complied with.

Duly executed this _____ day of _____, 20__.

<property owner or authorized designee> By:______

Name typed or printed:

STATE OF _____ COUNTY OF _____

I, _____, a Notary Public of the county and state aforesaid, certify that ______ personally came before me this day and the foregoing certification was

signed by him/her.

WITNESS my hand and official stamp or seal, this _____ day of _____, 20____.

Name typed or printed: Notary Public

My Commission expires: ______ [Stamp/Seal] APPENDIX E EXAMPLE DOCUMENTS ANNOUNCING PUBLIC COMMENT PERIOD ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL SCOTT Director

<Date>

<name>, <City Manager/County Health Director> <address> <city>, NC <zip>

Subj: Remediation of Dry-Cleaning Solvent Contamination DSCA Site ID DC670005 Former Village Cleaners, 175 Freedom Way, Jacksonville, NC

Dear commons.com.

The Dry-Cleaning Solvent Cleanup Act of 1997 (DSCA), North Carolina General Statutes (N.C.G.S.) Sections 143-215.104A through 143-215.104U, provides for the assessment and remediation of properties that may have been or were contaminated by chlorinated solvents. To satisfy the requirements of N.C.G.S. 143-215.104L, this letter serves as the **Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site** (NOI) approved by the North Carolina Department of Environmental Quality (DEQ).

The NOI must provide, to the extent known, a legal description of the location of the DSCA Site, a map showing the location of the DSCA Site, a description of the contaminants involved and their concentrations in the media of the DSCA Site, a description of the intended future use of the DSCA Site, any proposed investigation and remediation, and a proposed Notice of Dry-Cleaning Solvent Remediation (NDCSR) prepared in accordance with N.C.G.S. Section 143-215.104M. The required components of the NOI are included in the attached Risk Management Plan, and are available during the public comment period on our website. If you would like to view the documents, please go to <u>deq.nc.gov/ncdsca</u> and select "DSCA Public Notices and Announcements" on the right-hand side of the web page.

The DSCA Program is providing a copy of the NOI to all local governments having jurisdiction over the DSCA Site. A 30-day public comment period is being held from <date>, until <date>. Written comments may be submitted to DEQ no later than <date>. Written requests for a public meeting may be submitted to DEQ no later than <date>. All such comments and requests should be sent to:

Scott Stupak, DSCA Remediation Unit Division of Waste Management, NCDEQ 1646 Mail Service Center Raleigh, North Carolina 27699-1646

A Summary of the NOI is being published in the Jacksonville Daily News, copies are being sent to owners of property within and contiguous with the area of contamination, and a copy of the Summary will be conspicuously posted at the Site during the public comment period.

If you have any questions, please feel free to contact me at (919)707-8359.

Sincerely, [SIGNATURE] Scott Stupak, DSCA Project Manager Division of Waste Management, NCDEQ

cc: DSCA Site ID DC670005 File

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200

Public Notice

SUMMARY OF NOTICE OF INTENT TO REMEDIATE A DRY-CLEANING SOLVENT FACILITY OR ABANDONED SITE

N.C. Department of Environmental Quality Division of Waste Management Dry-Cleaning Solvent Cleanup Act (DSCA) Program

Former Village Cleaners DSCA Site ID DC670005

Pursuant to N.C.G.S. §143-215.104L, on behalf of Piney Green FL, LLC, the North Carolina Department of Environmental Quality's (NCDEQ's) private contractor has prepared a Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI). The purpose of this Summary of the NOI is to notify the community of the proposed remedy for the contamination site and invite comment on the proposed remedy.

Village Cleaners formerly conducted dry-cleaning operations at the Piney Green Shopping Center at 175 Freedom Way, in Jacksonville, North Carolina. The property is currently occupied by the Dark Artisan Tattoo. Dry-cleaning solvent contamination in soil and/or groundwater has been identified at the following parcel:

175 Freedom Way, in Jacksonville; Parcel No. 530510363620

An investigation of the extent of contamination has been completed. A risk assessment of the contaminated properties concluded that the contamination poses no unacceptable risks. A Risk Management Plan (RMP) has been prepared which proposes using land-use controls to prevent current and future risks at the affected properties.

The elements of the complete NOI are included in the RMP which is available online at https://deq.nc.gov/about/divisions/waste-management/superfund-section/special-remediation-branch/dsca-public-notices-announcements

The public comment period begins	, 20	, and ends	,	20	
----------------------------------	------	------------	---	----	--

Comments must be in writing and submitted to NCDEQ no later than ______, 20___. Written requests for a public meeting may be submitted to NCDEQ no later than ______, 20___. Requests for additional information should be directed to Scott Stupak at (919)707-8359. All comments and requests should be sent to:

Scott Stupak, DSCA Remediation Unit Division of Waste Management, NCDEQ 1646 Mail Service Center Raleigh, North Carolina 27699-1646 ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL SCOTT Director

<mark><date></mark>

<property owner> <mailing address> <city, state, zip>

Subj: Dry-Cleaning Solvent Contamination at the Former Village Cleaners, 175 Freedom Way, Jacksonville, Onslow County, NC DSCA Site ID DC670005

Dear <property owner>:

You are receiving this letter because your property at <adjacent property address> is adjacent to an area contaminated with dry-cleaning solvents. There are no actions required on your part and your property is not contaminated. This letter is only for notification purposes. The Dry-Cleaning Solvent Clean-up Act (DSCA) Program has completed an assessment of the dry-cleaning solvent contamination associated with the Village Cleaners at 175 Freedom Way in Jacksonville, NC. The property is currently occupied by Dark Artisan Tattoo. A remedial strategy to address the site contamination has been prepared, and in accordance with our program's statutes, the community has an opportunity to review and comment on the proposed strategy.

The attached Summary of the Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI) provides a brief description of the proposed remedy, a web link to the complete NOI, and the dates and procedures for commenting on the proposed remedy. If you do not have access to the internet and wish to view this document, we ask that you contact us to request a hard copy of the complete NOI.

If you have questions, please contact me at scott.stupak@nc.deq.gov or (919) 707-8359.

Sincerely, [SIGNATURE] Scott Stupak, DSCA Project Manager Division of Waste Management, NCDEQ

Attachments: Summary of the NOI

cc: DSCA Site ID DC670005 File

North Carolina Department of Environmental Quality | Division of Waste Management 217 West Jones Street | 1646 Mail Service Center | Raleigh, North Carolina 27699-1646 919.707.8200