

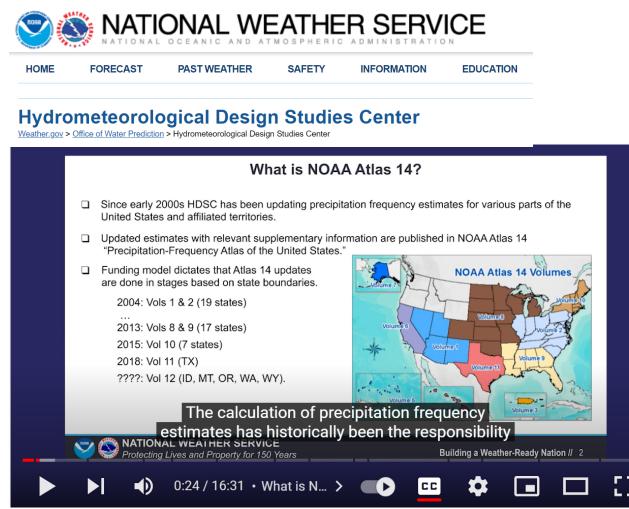
NORTH CAROLINA Department of Transportation

NC-NOAA Atlas-14 Volume 13 Update Status

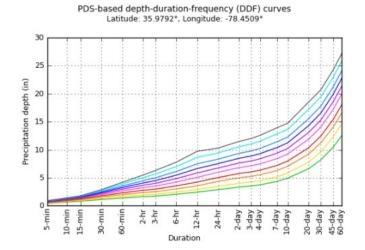
Matthew (Matt) Lauffer, CPM, PE

NCDOT Hydraulics Unit

NC Erosion and Sediment Control Workshop – December 2, 2021


Agenda

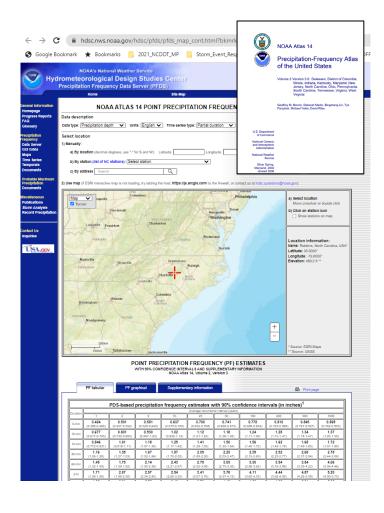
- Existing NOAA Atlas 14
- Updated NOAA Atlas 14 What is taking so long?
- Are there other Options?
- What about Non-Stationarity?
- NCDOT Precipitation Research
 - NCHRP 50-61
 - RP-2020-57
- Next Steps


ncdot.gov

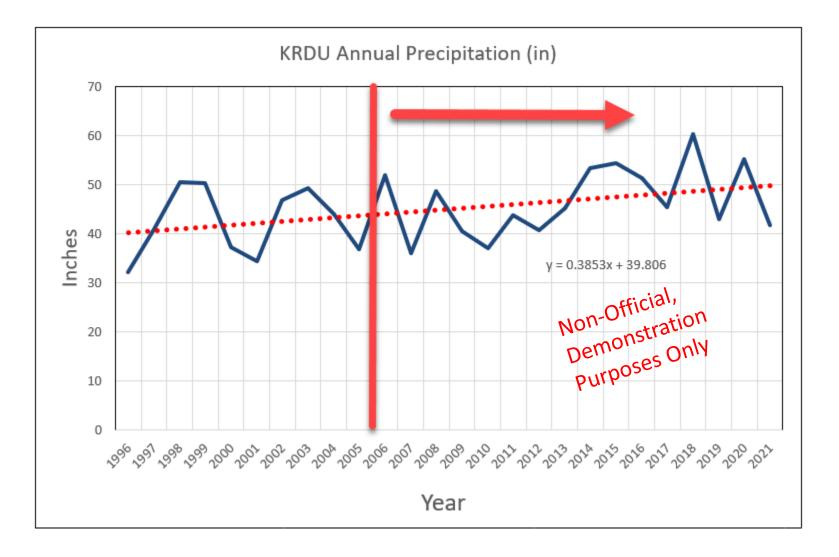
Background NOAA ATLAS-14

https://www.youtube.com/watch?v=bD623aYVxeE&t=490s

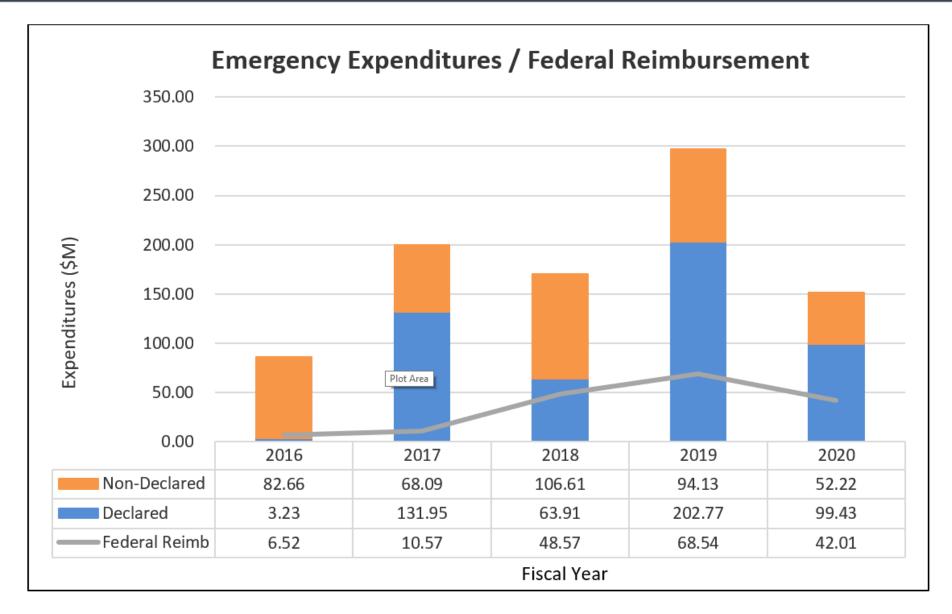
Provides DDF and IDF data for locations around the US.



Existing NOAA Atlas 14 Volume 2


Current NWS Precipitation Frequency (PF) Documents

PF DOCUMENTS BY TITLE:


Document Link	Title	Release Year	Latest Revision
NOAA Atlas 2 Vol 1	Precipitation-Frequency Atlas of the Western United States, Montana	1973	1973
NOAA Atlas 2 Vol 2	Precipitation-Frequency Atlas of the Western United States, Wyoming	1973	2006
NOAA Atlas 2 Vol 5	Precipitation-Frequency Atlas of the Western United States, Idaho	1973	1973
NOAA Atlas 2 Vol 9	Precipitation-Frequency Atlas of the Western United States, Washington	1973	1973
NOAA Atlas 2 Vol 10	Precipitation-Frequency Atlas of the Western United States, Oregon	1973	1973
NOAA Atlas 14 Vol 1	Precipitation-Frequency Atlas of the United States, Semiarid Southwest	2006	2011
NOAA Atlas 14 Vol 2	Precipitation-Frequency Atlas of the United States, Ohio River Basin and Surrounding States	2004	2006
NOAA Atlas 14 Vol 3	Precipitation-Frequency Atlas of the United States, Puerto Rico and the U.S. Virgin Islands	2006	2008
NOAA Atlas 14 Vol 4	Precipitation-Frequency Atlas of the United States, Hawaiian Islands	2009	2011
NOAA Atlas 14 Vol 5	Precipitation-Frequency Atlas of the United States, Selected Pacific Islands	2009	2011
NOAA Atlas 14 Vol 6	Precipitation-Frequency Atlas of the United States, California	2011	2014
NOAA Atlas 14 Vol 7	Precipitation-Frequency Atlas of the United States, Alaska	2012	2012
NOAA Atlas 14 Vol 8	Precipitation-Frequency Atlas of the United States, Midwestern States	2013	2013
NOAA Atlas 14 Vol 9	Precipitation-Frequency Atlas of the United States, Southeastern States	2013	2013
NOAA Atlas 14 Vol 10	Precipitation-Frequency Atlas of the United States, Northeastern States	2015	2015
NOAA Atlas 14 Vol 11	Precipitation-Frequency Atlas of the United States, Texas	2018	2018
Technical Paper 40	Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years	1961	1961
Technical Paper 49	Two- to Ten-Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States	1964	1964
Arkell & Richards	Short Duration Rainfall Relations for the Western United States. Preprint Volume of the Conference on Climate and Water Management, AMS	1986	1986

Annual Precipitation from RDU

5

Figure 1: Emergency Expenditures and Federal Reimbursement

Updated Atlas 14 for NC. What is taking so long?

- Atlas 14 is supported by external funding sources
- Require Memorandums of Agreement between NOAA and partnering Agency
- May 2020 FHWA –Transportation Pooled Fund Study (TPF) - Solicitation for NOAA Atlas 14, Volume 13 Update (DE, MD, VA, NC)

FHWA- Transportation Pooled Fund Study

PF TRANSPORTA	UND	Solici	tations	✓ Tools ✓ Help ✓ (
	ed Fund - Solicitation Details RECIPITATION FREQUENCY ESTIMATES FOR DELAWARE, MARYLAND	, NORTH CAROLINA AND VIRGINIA (NOAA ATLAS 14 VOLU	ME 13)	
	TION FREQUENCY ESTIMATES FOR DEL I CAROLINA AND VIRGINIA (NOAA ATLA	-		🖶 Print
General Information		Financial Summary		
Solicitation Number:	1534	Commitment Start Year:	2020	
Status:	Cleared by FHWA	Commitment End Year:	2022	
Date Posted:	May 11, 2020	100% SP&R Approval:	Approved	
Last Updated:	Mar 19, 2021	Commitments Required:	\$1,096,000.00	
	Dec 31, 2022	Commitments Received:	\$1,096,030.00	
Solicitation Expires:				
Solicitation Expires: Partners:	DE, DEQ, MDOT SHA, NC, VA	Compared by Compared		
	DE, DEQ, MDOT SHA, NC, VA Federal Highway Administration	Contact Information	Curathia Numri	
Partners:		Contact Information Lead Study Contact(s):	Cynthia Nurmi	
Partners:			Cynthia Nurmi Cynthia.Nurmi@dot.go Cynthia Nurmi	ν

Budget NOAA Atlas XIV Vol 13

Cost Description	DE	MD	NC	VA	Project Total
Contract Labor	\$30,920	\$160,820	\$402,240	\$350,020	\$946,000
PRISM	\$4,000	\$17,000	\$44,000	\$37,000	\$100,000
Web Support	\$600	\$5,100	\$13,200	\$11,100	\$30,000
IT Equipment	\$300	\$2,550	\$6,600	\$5,550	\$15,000
Office Supply	\$100	\$850	\$2,200	\$1,850	\$5,000
TOTAL COST:	\$35,920	\$186,320	\$468,240	\$405,520	\$1,096,000

Budget NOAA Atlas XIV Vol 13

Organization	A Year	Commitments	Technical Contact Name	Funding Contact Name	Contact Number
Delaware Department of Transportation	2021	\$35,950.00	Michael DuRoss	Art Jenkins	(302)760-2092
Maryland Department of Transportation State Highway Administration	2021	\$93,160.00	Sandy Hertz	Sharon Hawkins	410-545-2920
Maryland Department of Transportation State Highway Administration	2022	\$93,160.00	Sandy Hertz	Sharon Hawkins	410-545-2920
North Carolina Department of Transportation	2021	\$234,120.00	Matt Lauffer	Neil Mastin	919 707 6661
North Carolina Department of Transportation	2022	\$234,120.00	Matt Lauffer	Neil Mastin	919 707 6661
Virginia Department of Environmental Quality	2021	\$142,760.00	ANDREW HAMMOND	Carla Woods	(804)698-4056
Virginia Department of Environmental Quality	2022	\$142,760.00	ANDREW HAMMOND	Carla Woods	(804)698-4056
Virginia Department of Transportation	2021	\$60,000.00	Alex Foraste	Bill Kelsh	434-293-1934
Virginia Department of Transportation	2022	\$60,000.00	Alex Foraste	Bill Kelsh	434-293-1934

NOAA Atlas XIV Vol 13 Benefits/ Objectives

Benefits:

- More Stations
- Two more decades of record
- Better Analysis Techniques

Objectives:

- update precipitation frequency estimates
- the estimates and associated bounds of 90% confidence intervals will be provided at 30arc-sec resolution for durations of 5-minute through 60-day at average recurrence intervals (ARIs)of 1-year through 1,000-year
- web based publication available at Precipitation Frequency Data Server (PFDS).
- Detailed Scope of Work available at:

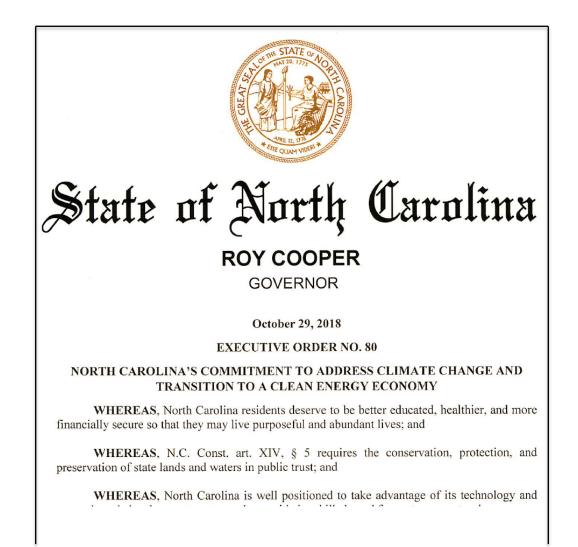
https://www.pooledfund.org/Document/Download?id=8985

NOAA Atlas XIV Vol 13 Schedule

- Interagency Agency Agreement FHWA/NOAA FFY22 Q2
- Study Begins FFY22 Q2
- Study Concludes FFY 24 Q2

WorkPlan Task Breakdown:

- Task 1 Data collection and quality control
- Task 2 Regionalization and calculation of regional statistics
- Task 3 Frequency distribution selection and frequency calculations
- Task 4 Estimates for 5-minute and 10-minute durations
- Task 5 Internal consistency at observing locations
- Task 6 Error estimates for DDF/IDF curves
- Task 7 Rainfall frequency estimates with confidence limits
- Task 8 Spatial interpolation and consistency
- Task 9 Temporal distributions
- Task 10 Peer review
- Task 11 Documentation
- Task 12 Final deliverables
- Task 13 Status Reporting


Other Options for Atlas 14 update? Infrastructure Investment and Jobs Act

\$492M for NOAA mapping, observations and modeling. Investments in NOAA flood mapping and modeling programs can have significant benefits of protecting lives and property during extreme weather events. Specific programs funded include the Coastal Mapping Program, nextGen National Water Modeling framework, Atlas 14 & Probable Maximum Precipitation, and flood inundation maps (FIM) that depict the extent and depth of floods stemming from actual and forecasted events.

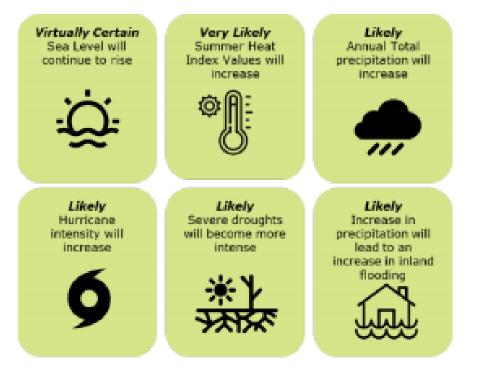
- Update precipitation frequency estimates for entire nation
- Would include climate adaptation/non-stationarity
- Later delivery date FY25 or FY26

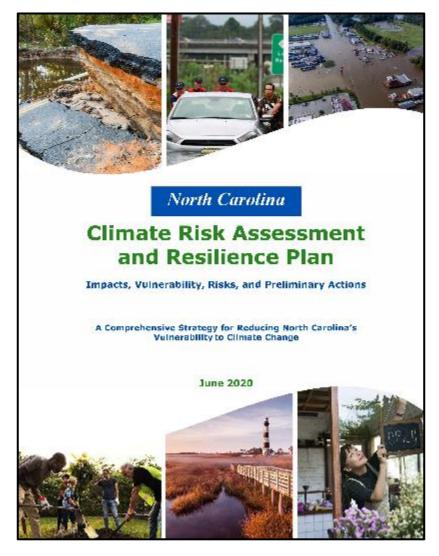
What about Non-Stationarity/Climate Adaptation?

Executive Order 80

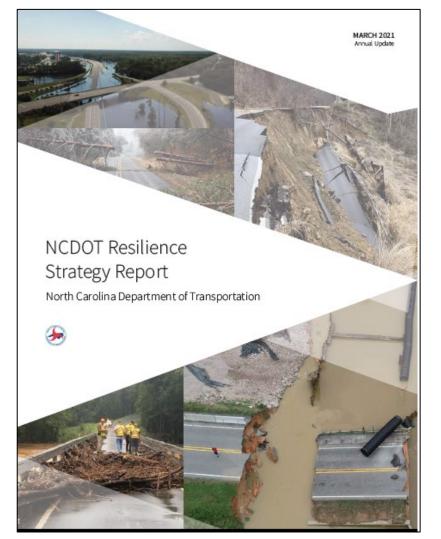
Report from the climate scientists

North Carolina Climate Science Report




Report from the climate scientists

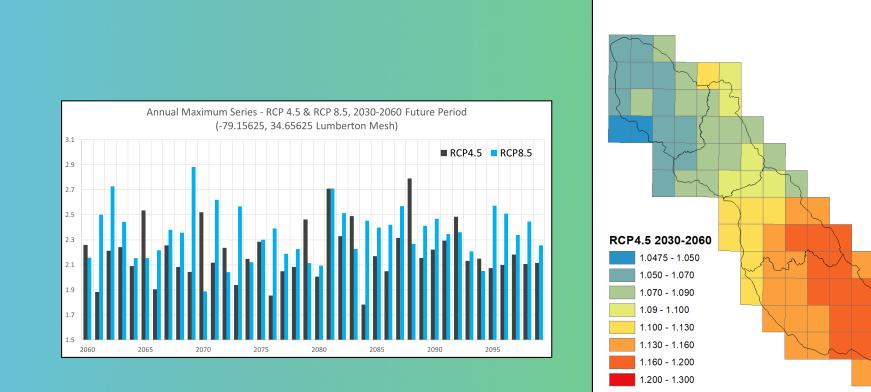
North Carolina Climate Risk Assessment and Resilience Plan June 2020


A. Climate Change Projections in North Carolina¹

NC Climate RARP

Resilience Strategy Report

NCDOT Climate Precipitation Research

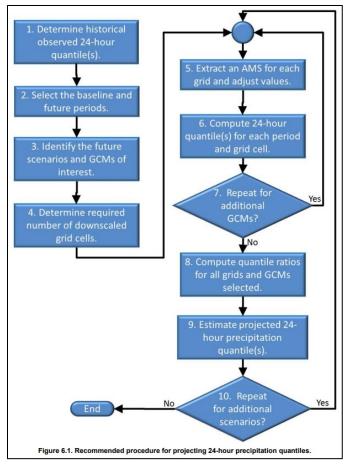

- National Cooperative Highway Research Program Project (NCHRP) 15-61 – Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure
- NCDOT Participated in an inland precipitation and coastal design project.

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4046

NCHRP Project 15	i-61
	mate Change Information to Hydrologic and Design of Transportation Infrastructure
	Design Practices
	PREPARED FOR
THE NATIO	NAL COOPERATIVE HIGHWAY RESEARCH PROGRAM
	TRANSPORTATION RESEARCH BOARD
Roge	er Kilgore, Kilgore Consulting and Management, Denver, CO
Wil	lbert O. Thomas, Jr., Michael Baker International, Cary, NC
	Douglass and Bret Webb, South Coast Engineers, Fairhope, AL
	yhoe and Anne Stoner, Atmos Research and Consulting, Lubbock, TX M. Jacobs, Jennifer M. Jacobs and Associates, Portsmouth, NH
	vid B. Thompson, Thompson Hydrologics, Carson City, NV
	. Herrmann, Desert Sky Engineering and Hydrology, Lubbock, TX
	Ellen Douglas, Fremont, NH
	Chris Anderson, SkyDoc, LLC, Ames, IA
	March 15, 2019
	TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES OF SOLENCES, ENGINEERING AND MEDICINE PRUVILEGED DOCUMENT

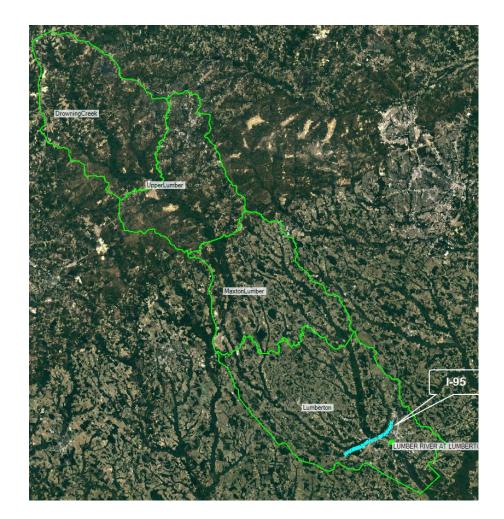
NCDOT — NCRHP Project 15-61 Inland Hydrology, Climate Change Guidelines Pilot

Lumber River Basin, North Carolina



NCRHP Project 15-61 Inland Hydrology

- Problem Statement
- Project Context
- Methods
- Results
- Conclusions

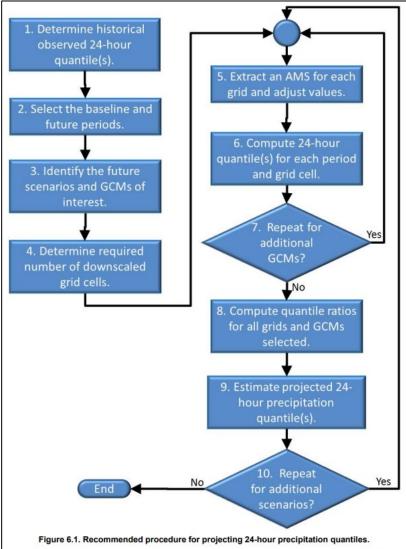


Problem Statement

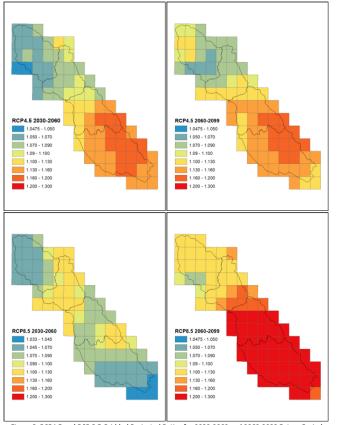
- Project 24-Hour Precipitation Quantiles using the 10-Step Procedure
- "Guidelines" (hereto after known as)
 - NCHRP Project 15-61: Applying Climate Change Information to Hydrologic and Coastal Design of Transportation Infrastructure, Design Practices
- Project 24-Hour Event Flood Elevations along I-95 Corridor in Lumberton, NC


Project Context

- Interstate 95 widening
 Lumberton, NC
- Lumber River
 watershed
- NCHRP 15-61
 Guidelines



Methods


- Atlas 14 AEP
 - Extract AEP rainfall depths from 24-hour spatial grids
- LOCA Downscaled CMIP5 Precipitation (1950-2099) (1/16th Degree)
 - RCP 4.5, RCP 8.5
- CMIP Tool

- Load observed and loca5 data
- Project 24-Hour Precipitation
 Quantiles using the 10-Step
 Procedure
- Simulate projected flood elevations

- Area-Weighted
 - 75 downscaled
 CMIP5 grid cells

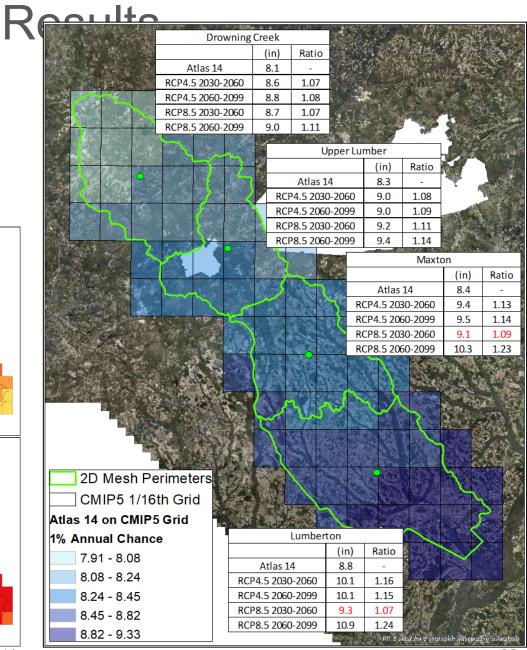


Figure 8. RCP4.5 and RCP 8.5 Gridded Projected Ratios for 2030-2060 and 2060-2099 Future Periods

Results

- Centroid Grid Cell
 - 4 downscaled
 CMIP5 grid cells

Table 2. Area-Weighted CMIP5 Grid Cell 1% Projected Rainfall Ratios

	RCP 4.5		RCP 8.5		
2D Mesh /	Projected Rainfall				
Subarea	2030-	2060-	2030-	2060-	
	2060	2099	2060	2099	
Drowning Creek	1.07	1.08	1.07	1.11	
Upper Lumber	1.08	1.09	1.11	1.14	
Maxton - Lumber	1.13	1.14	1.09	1.23	
Lumberton	1.16	1.15	1.07	1.24	

Table 4. Subbasin Centroid CMIP5 Grid Cell 1% Projected Rainfall Ratios (2030-2060, 2060-2099)

	RCP 4.5		RCP 8.5	
2D Mesh / Subarea	Projected Rainfall Ratios			
	2030-	2060-	2030-	2060-
	2060	2099	2060	2099
-79.59375, 35.15625 (Drowning Creek)	1.07	1.08	1.09	1.11
-79.40625, 35.03125 (Upper Lumber)	1.08	1.09	1.11	1.14
-79.28125, 34.84375 (Maxton)	1.13	1.14	1.09	1.23
-79.15625, 34.65625 (Lumberton)	1.16	1.16	1.07	1.25

Results

- Centroid Grid Cell, RCP4.5 and RCP8.5
 - 2000-2049
 - 2030-2060

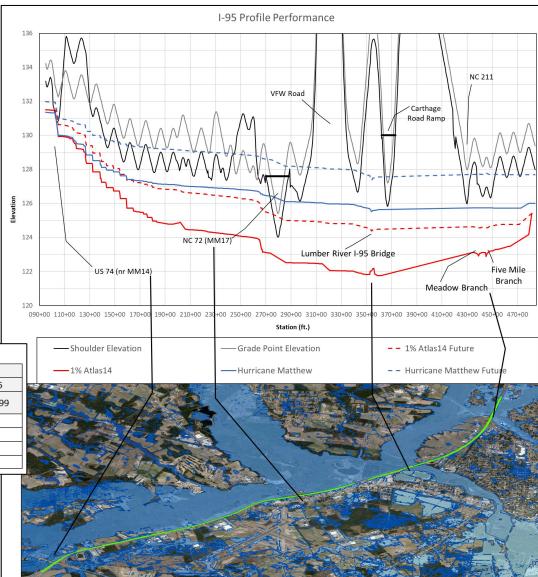
- 2050-2099

- 2060-2099

Table 6. Subbasin Centroid CMIP5 Grid Cell 1% Projected Rainfall Ratios (2000-2049, 2030-2060, 2050-2099, 2060-2099)

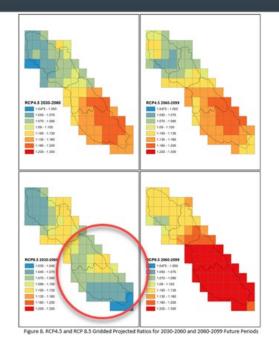
	RCP 4.5				
2D Mesh / Subarea	Projected Rainfall Ratios				
	2000-	2030-	2050-	2060-	
	2049	2060	2099	2099	
-79.59375, 35.15625 (Drowning Creek)	1.02	1.07	1.09	1.08	
-79.40625, 35.03125 (Upper Lumber)	1.03	1.08	1.10	1.09	
-79.28125, 34.84375 (Maxton)	1.06	1.13	1.15	1.14	
-79.15625, 34.65625 (Lumberton)	1.09	1.16	1.16	1.16	

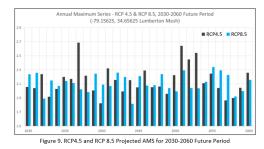
Table 7. Subbasin Centroid CMIP5 Grid Cell 1% Projected Rainfall Ratios (2000-2049, 2030-2060, 2050-2099, 2060-2099)


2D Mesh / Subarea	RCP 8.5				
	Projected Rainfall Ratios				
	2000-	2030-	2050-	2060-	
	2049	2060	2099	2099	
-79.59375, 35.15625 (Drowning Creek)	1.03	1.09	1.09	1.11	
-79.40625, 35.03125 (Upper Lumber)	1.07	1.11	1.12	1.14	
-79.28125, 34.84375 (Maxton)	1.08	1.08	1.18	1.23	
-79.15625, 34.65625 (Lumberton)	1.08	1.06	1.20	1.25	

ncdot.gov

Results


- Projected 24-Hour 1% Event WSEL increase
 - US74
 - 0.5'
 - NC72
 - 2.4'
 - Lumber River bridge
 - 2.3'
 - Five Mile Branch culvert
 - 1.7'


Table 9. Future Rainfall Ratios, and 1% Atlas 14 and 1% Future Rainfall Depths					
1% Projected 1% Rainfall (in)					
2D Mesh / Subarea	Rainfall Ratio	Atlas 14	RCP 8.5		
	*(centroid method)		2060-2099		
-79.59375, 35.15625 (Drowning Creek)	1.11	8.1	9.0		
-79.40625, 35.03125 (Upper Lumber)	1.14	8.3	9.4		
-79.28125, 34.84375 (Maxton)	1.23	8.4	10.3		
-79.15625, 34.65625 (Lumberton)	1.25	8.8	11.0		

Conclusions

- RCP 8.5 2060-2099 ratios selected, most aggressive
- Projected increase in rainfall for the Lumberton mesh suggests the future 24-hour 1% annual chance rainfall is half an inch less than a historical 24-hour 500-year rainfall of 11.5".
- Using grid cells containing subarea centroids (4 grid cells) produced very similar ratios to area-weighted values (75 grid cells).
- Connectivity maintained for future 1%, not for future Matthew for sections.
- Ratios from later projected time periods may be less than from earlier

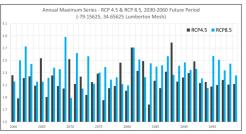
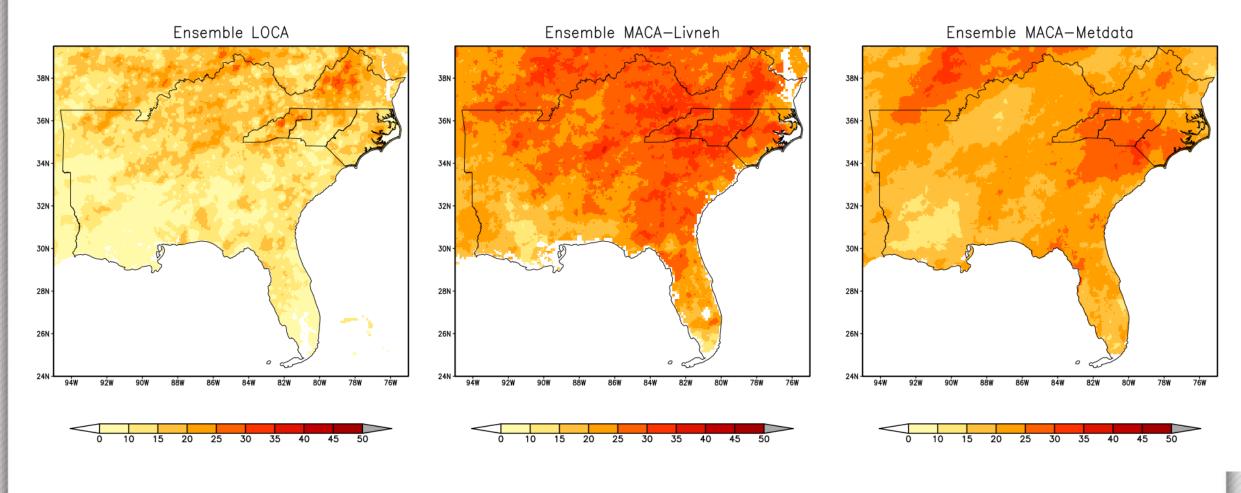


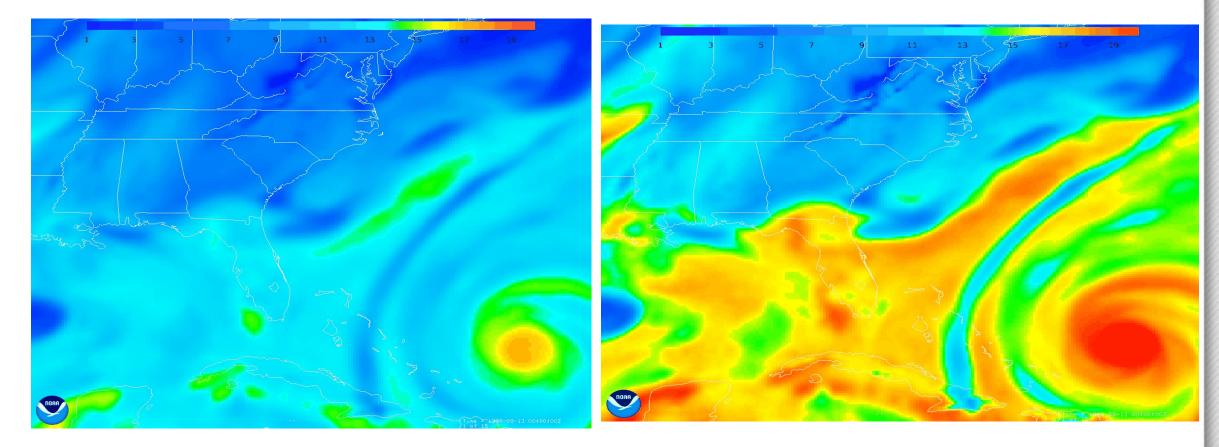
Figure 10. RCP4.5 and RCP 8.5 Projected AMS for 2060-2099 Future Period

NCDOT Climate Precipitation Research

RP-2057 – Future Precipitation for Resilient Design


PI - Dr. Jared Bowden, NCSU, Department of Applied Ecology Co-PI, Dr. Gary Lackmann, NCSU - Marine, Earth, and Atmospheric Sciences Co-PI, Dr. Kenneth Kunkel, NCSU - North Carolina Institute for Climate Studies Co-PI, Dr. Kathie Dello, NCSU - State Climate Office of North Carolina Co-I, Rebecca Ward, NCSU – State Climate Office of North

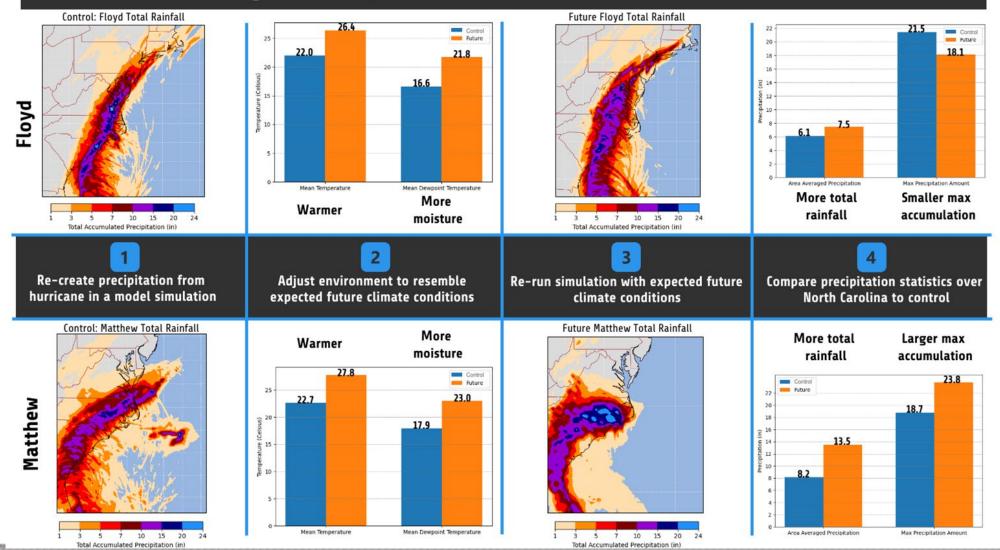
Objectives:


- 1. Assist NCDOT with climate adaptation
- 2. Improve confidence in future flood risk using:
 - 1. existing downscaling data/ methodologies
 - 2. tailored high-resolution climate model projections Floyd, Matthew, Florence

ncdot.gov

Daily (24hr duration) Annual Maximum Series Difference (%) <u>Average of RCP8.5 (2070-2099) Relative to Average Historical (1976-2005)</u>

Hurricane Floyd: Water Vapor Comparison Loop



Current (1999)

~1.5 km altitude (.863 level) water vapor Future (2099)

Hurricanes Floyd and Matthew in a Future Climate

Changes in Precipitation - Process and Preliminary Results

Next Steps:

- NCDOT /NCORR will continue to work with FHWA/NOAA to complete NC Atlas 14 update
- Complete Future Precipitation Research and develop climate adaptation design tools
- Develop climate adaptation design guidelines that incorporate future uncertainty
- Maintain strong partnerships with state, federal, and private entities

Matt Lauffer mslauffer@ncdot.gov 919-621-0443

Strong Partnerships

RB

Please Remember to Complete the End of Workshop Evaluation

https://bit.ly/2021EscEval

Crop & Soil Sciences

