


	——— contact - location inferred		diabase di	ke - location inferred
	contact - location concealed		diabase di	ke - location concealed
	——— brittle fault - location inferred		diabase - i	inferred from aeromagnetic
	brittle fault - location concealed		data or str	eam patterns
72	Strike and dip of inclined regional foliation		မ်ာ <i>80</i>	Strike and dip of schlieren
	Strike of inclined regional foliation, dip unknow	n	Ŧ	Strike of schlieren, dip unknown
	Strike of vertical regional foliation		Ţ	Strike of vertical pegmatite dike
70	Strike and dip of cleavage		- 50	Strike and dip of quartz vein
58	Strike and dip of biotite foliation		+	Strike of vertical quartz vein
	Strike of vertical biotite foliation		<i>45</i> ↑	Trend and plunge of lineation
	Strike of biotite foliation, dip unknown		\$	Trend of oriented inclusion, dip unknow
78	Strike and dip of inclined joint surface		41	Trend and plunge of fold hinge
	Strike of vertical joint surface		53 ∳	Trend and plunge of crenulation lineation

					OXIDES IN PERCENT													SELECTED ELEMENTS IN PPM																	
SAMPLE ID	Geologist	Rock Type	Rock Type Detail	Map Unit	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	Na2O	K2	20 P205	Cr2O3	LOI	+H2O	-H2O	TOTAL	Ag	As	Au	Ba	Ce	Co	Nd	Ni	Sc	Sr	Та	U	v	Y	Zn	Zr
GLW-219	Stoddard	mafic gneiss	biotite amphibolite	CZrgn	55.5	0.82	17.2	8.57	0.19	3.49	6.28	3.92	1.6	68 0.15		0.65			98.2	< 0.1	<1	<2	310	17	49	11	4	19.7	274	3.9	1.4	189	29	108	112
GLW-329F	Stoddard	mafic gneiss	clinopyroxene amphibolite	CZrgn	44.3	0.83	18.2	11.40	0.21	5.30	14.70	0.99	0.7	77 0.10		1.00			97.9	< 0.1	<1	<2	97	20	57	11	47	43.0	381	2.8	0.4	286	22	66.2	57
GLW-161	Stoddard	Nottingham granitoid orthogneiss	biotite-garnet-magnetite leucogranitic gneiss	PzZng	76.8	0.14	11.9	1.50	0.05	0.31	1.45	3.64	2.5	59 0.02	< 0.01	0.30			98.8	0.5	<1	<2	595	31	27	11	4	4.0	106	3.7	3.0	3	38	47.4	124
TR99-204B	Stoddard	felsic gneiss	biotite leucogranitic gneiss	CZrgn	76.6	0.13	12.4	1.92	0.06	0.02	0.70	4.01	3.3	31 <0.01		0.30			99.5	0.5	<1	<2	515	71	< 0.5	20	1	6.0	68	< 0.5	3.9	3	48	76.3	260
GLW-210	Stoddard	Rolesville granite	medium biotite granite	Prg	71.5	0.23	14.1	1.68	0.03	0.42	1.61	3.70	4.3	32 0.07	< 0.01	0.45			98.3	5.0	<1	<2	630	52	37	20	4	3.2	253	5.0	6.2	20	18	50.4	142
GLW-227	Stoddard	Lake Benson granite	medium biotite granite	Plbg	69.1	0.40	15.1	2.79	0.03	0.82	2.14	3.20	4.7	78 0.13	< 0.01	0.40			99.2	2.9	<1	<2	1440	146	37	48	14	3.6	407	5.3	3.4	34	22	97.2	264
GLW-I40	Stoddard	Rolesville granite	medium biotite granite	Prg	69.6	0.36	14.9	2.27	0.03	0.73	1.90	3.82	4.2	27 0.10	< 0.01	0.50			98.7	6.1	<1	<2	1020	92	67	28	6	3.8	445	6.0	2.8	33	12	60.3	202
RVGN-3A	Speer	Rolesville granite	medium biotite granite	Prg	70.06	0.36	15.11	2.38	0.03	0.71	1.91	4.41	3.5	59 0.11	0.01	0.47	0.34	0.08	99.15				1130	84	2			4.5	358	<2	3.2	32	14	68	222
RVGN-3B	Speer	Rolesville granite	megacrystic biotite granite	Prg	71.25	0.29	14.32	2.09	0.02	0.66	1.74	4.06	4.0	02 0.09	0.01	0.47	0.29	0.01	99.02				840	74	3			4.5	218	<2	4.4	36	16	58	192
RVGN-3C	Speer	Rolesville granite	mafic (fine, gneissic biotite-rich enclave)	Prg	56.74	1.40	16.87	6.93	0.10	2.75	4.47	4.91	3.5	53 0.81	0.01	1.19	0.72	0.14	99.71				1135	262	14			11.0	1230	<2	3.2	161	22	141	519

Samples collected by Stoddard analyzed by XRAL, Toronto, Canada Samples collected by Speer analyzed at ALS Chemex Labs in Sparks, NV. NA = No sample analysis PPM = parts per million LOI = loss on ignition

Compiled Geologic Map of the Garner 7.5-minute Quadrangle, Wake and Johnston Counties, North Carolina

Edward F. Stoddard (area west of the Rolesville Batholith and Johnston County portion of map area) J. Alexander Speer (Rolesville Batholith portion) John G. Nickerson and Norman K. Gay (Coastal Plain)

Digital representation by Michael A. Medina, Philip J. Bradley and Heather D. Hanna

2016 (Version 12/12/2016) Base topographic map is digital raster graphic image of the Garner 7.5 minute USGS quadrangle (1993).

Rolesville Batholith geology mapped 1992 - 1994. Supported by the U.S. Geological Survey under assistance award #1434-93-A-1165 through the North Carolina Geological Survey.

> Geologic units in the Raleigh terrane portion of the quadrangle from Clark and others (2004).

> > Area west of Rolesville Batholith 1994 - 1995 by Edward F. Stoddard.

Johnston County portion mapped 1993 – 1994 by Edward F. Stoddard.

Coastal Plain mapped by John G. Nickerson and Norman K. Gay in 2000 – 2001 with partial support from USGS Statemap program award #00HQG148 (2000).

> Data entry of A. Speer field notes by Anna Katerina Pascht

This is an Open-File Map. It has been reviewed internally for conformity with North Carolina Geological Survey mapping standards and with the North American Stratigraphic Code. Further revisions or corrections to this Open File map may occur.

Research supported by the U.S. Geological Survey, National Cooperative Geologic Mapping Program. This map and explanatory information is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for governmental use. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

Geology by

ADJOINING 7.5' QUADRANGLES

Version 10/25/2016