HEAVY-MINERAL RESOURCE POTENTIAL OF SURFICIAL SEDIMENTS ON THE ATLANTIC CONTINENTAL SHELF OFFSHORE OF NORTH CAROLINA: A RECONNAISSANCE STUDY

BY

ANDREW E. GROSZ, CHARLES W. HOFFMAN, PATRICIA E. GALLAGHER, JEFFREY C. REID, AND JOHN C. HATHAWAY

OPEN-FILE REPORT 90-3

NORTH CAROLINA GEOLOGICAL SURVEY

DIVISION OF LAND RESOURCES

RALEIGH

1990

STATE OF NORTH CAROLINA JAMES G. MARTIN, GOVERNOR

DEPARTMENT OF ENVIRONMENT, HEALTH, AND NATURAL RESOURCES WILLIAM W. COBEY, Jr., SECRETARY This report is also published as U. S. Geological Survey Open-File Report 90-245. North Carolina Geological Survey staff participation was supported, in part, by a grant under cooperative agreement 14-12-0001-30387, between the Association of American State Geologists and the U. S. Minerals Management Service for study of the U.S. Continental Margin. The cooperative agreement is managed and administered by The University of Texas - Bureau of Economic Geology.

Author affiliations:

Andrew E. GroszU. S. Geological Survey, Reston, VA 22092Charles W. HoffmanNorth Carolina Geological Survey, RaleighPatricia E. GallagherNorth Carolina Geological Survey, RaleighJeffrey C. ReidNorth Carolina Geological Survey, RaleighJohn C. HathawayU. S. Geological Survey, Woods Hole, MA 02543

Note: Use of trade names does not constitute an endorsement by the U.S. Geological Survey

CONTENTS

stract
roduction
nple acquisition
poratory procedures
sults1
ta analysis
nclusions
knowledgements
ferences

FIGURES

1	Location map	- 3
2	Contour map of heavy-mineral percentages	32
3	Contour map of total feldspar percentages	33
4	Histograms showing distribution of feldspar	34
5	Histograms showing distribution of heavy minerals	35
6	Histograms showing distribution of economic heavy minerals	37
7	Histograms showing distribution of CaCO ₃	38
8	Histograms showing distribution of phosphorite	44
9	Histograms showing gamma-radiation signatures	51
10	Plot of gamma activity and heavy mineral content	52

TABLES

1	Location coordinates and lithologic descriptions	4
2	Water depth, sampling equipment type, and textural data	8
3	Grain-size distribution, mean size, bulk radiation	
	activity, and mineralogic data	13
4	Heavy-mineral data	18
5	Statistical data grouped into all, northern,	
	and southern sets	25
6	Statistical data south of Cape Hatteras grouped according to	
	compositional, textural, and bathymetric criteria	39
7	Statistical data north of Cape Hatteras grouped according to	
	compositional, textural, and bathymetric criteria	46

Heavy-mineral resource potential of surficial sediments of the Atlantic Continental Shelf offshore of North Carolina: A reconnaissance study

by

Andrew E. Grosz, Charles W. Hoffman, Patricia E. Gallagher, Jeffrey C. Reid, and John C. Hathaway

ABSTRACT

Textural, mineralogic, and geophysical data derived from 87 ocean floor grab samples from the Atlantic Continental Shelf offshore of North Carolina show a change in character at Cape Hatteras. Quartz-rich sediments dominate north of Hatteras, whereas carbonate-rich sediments prevail to the south. Sediments north of Cape Hatteras are finer grained, less mature (contain more feldspar), richer in heavy minerals, and more radioactive than carbonaterich sediments to the south.

The offshore sediments north of Cape Hatteras may have potential for a number of strategic and critical heavy minerals if concentrations and compositions measured in surficial sediments persist with depth. Although sediments to the south of Hatteras contain a more mature assemblage, low overall concentrations constrain the resource potential. The observed heavy-mineral assemblages include ilmenite, rutile, zircon, monazite, sillimanite, and kyanite, as well as species of lesser economic importance such as garnet, tourmaline, and staurolite.

Concentrations of heavy minerals average 1.77 weight percent in a range of 0.04 to 7.79 weight percent. The economically valuable heavy minerals ilmenite, rutile, leucoxene (altered ilmenite), zircon, monazite, and aluminosilicates make up as much as 4.4 weight percent of some bulk samples. The highest concentrations of heavy minerals in the study area occur in approximately coast-parallel zones north of Cape Hatteras. These zones are

identified as attractive targets for heavy-mineral exploration on the United States Atlantic Continental Shelf.

INTRODUCTION

The Proclamation of the United States Exclusive Economic Zone (EEZ) in March 1983 nearly doubled the jurisdictional area of the United States. Although the location, concentration, and abundance of resources in the EEZ are incompletely understood, many strategic and critical minerals have been shown to exist, locally in large concentrations (Goodwin and Thomas, 1973; Grosz and Escowitz, 1983; Grosz and others, 1986; Grosz, 1987; Berquist and Hobbs, 1988; Grosz and Nelson, 1989; Grosz and others, 1989).

As part of a larger effort to assess the potential for mineral resources in Atlantic Continental Shelf sediments, this report presents data on grain-size distribution and mineral components and concentrations determined for 87 surface grab samples from offshore of North Carolina. The grab samples were collected in the 1960's by the Woods Hole Oceanographic Institution and the U.S. Geological Survey as part of a joint program of study of the Atlantic continental margin of the United States.

SAMPLE ACQUISITION

The suite of surface grab samples utilized in this study consists of widely distributed samples (average spacing 20 km) from offshore of North Carolina (Figure 1). Splits of the 87 grab samples used in this study are retained in the USGS collection at Woods Hole Oceanographic Institution, MA (Hathaway, 1971). Location coordinates and lithologic descriptions for the grab samples are given in Table 1; water depth, sampling equipment type, bulk weight, and textural data are given in Table 2; and grain-size distribution, mean grain size, gamma activity and feldspar content are given in

Figure 1. --Map showing locations of surface grab samples from the Atlantic Continental Shelf offshore of North Carolina. Coordinates are given in degrees of latitude (N), and longitude (W). Table 1. --Location coordinates and lithologic descriptions of 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina (modified from Hathaway, 1971).

SAMPLE	LONGITUDE	LATITUDE
NUMBER	(WEST)	(NORTH)

LITHOLOGIC DESCRIPTION

1426 -74.95835 36.64168 GRAY-BROWN FINE TO MEDIUM SAND, CLEAN, WELL SORTED, SAND DOLLARS, SHELL 1427 -75.25334 36.50334 BROWN UNIFORM FINE SAND 1429 -75.25(101 36.16000 GRAY-BROWN FINE TO MEDIUM SAND, WITH LARGE AMOUNT OF HEAVY MINERALS 1430 -75.23334 35.99335 DARK GRAY FINE SAND. HIGH PERCENTAGE OF DARK MINERALS 1431 -75.24334 35.85502 GRAY-BROWN WELL SORTED VERY FINE SAND WITH LARGE AMOUNT OF DARK MINERALS 1432 ~75.24667 35.67001 GRAY-BROWN FINE-V. FINE WELL SORTED SAND WITH DK. GRAY LUMPS OF SILTY MATERIAL 1433 -75.25334 35.50834 GRAY TO DARK BROWN VERY FINE TO SILTY SAND, WITH DARK GRAY SILTY-CLAYEY LUMPS 1434 -75.25501 35.33334 DARK GRAY-BROWN VERY FINE SILTY SAND WITH HIGH PERCENTAGE OF DARK MINERALS 1435 -75.24667 35.17500 LIGHT BROWN WELL SORTED MEDIUM TO VERY COURSE SAND 1436 -75.35167 35.10834 LIGHT GRAY CLEAN WELL SORTED FINE SAND. WITH SOME BROKEN SHELLS 1437 -75.51668 34.98669 DARK BROWNISH-GRAY FINE-MEDIUM SAND WITH MANY SHELL FRGS, GRAVEL TO 1.5 CM 1438 -75.73001 34.92502 GREENISH-GRAY FINE CLEAN WELL-SORTED SAND, MUCH HEAVY MINERALS 1439 -76.00000 34.96002 BROWNISH-GRAY WELL SORTED MEDIUM SAND, OYSTER AND CLAM SHELLS, PIECE WOOD 1440 -75.99669 34.83335 GRAY-GREEN FINE TO MEDIUM WELL-WASHED SAND, SOME SHELL HASH 1442 -76.25167 34.66668 LIGHT BROWN FINE UNIFORM SAND 1447 ~76.76835 34.49001 GRAY-BROWN FINE SAND WITH SHELL HASH 1448 -77.02500 34.49668 GRAY-BROWN FINE-MEDIUM WELL-WASHED SAND WITH BROKEN SAND \$. OYSTER SHELLS 1449 -77.01500 34.29334 FINE SAND, WITH SHELL HASH 1450 -77.23167 34.32001 LIGHT GRAY UNIFORM WELL-SORTED SAND 1452 -77.48668 34.15000 LIGHT GRAYISH-BROWN FINE SAND WITH LUMPS OF CALCAREOUS ROCK AND CORAL TO 12 CH 1453 -77.50001 34.00000 LIGHT GRAY WELL SORTED SAND 1454 -77.73335 33.98669 GRAY-GREEN-BROWN SAND, MEDIUM TO FINE, WITH ABUNDANT SHELL HASH 1455 -77, 74168 33, 83168 YELLOW-BROWN COARSE TO VERY COARSE GRAVELLY SAND, SOME CALCAREOUS PARTICLES 1456 -77,50001 33.82500 GRAY TO GREENISH-BROWN GRVL WITH CSE SAND AND SHELL HASH, GRAY MUD BALLS TO 4 CM 1457 -77.50501 33.67668 BROWN MEDIUM SAND, WITH MUCH SAND-SIZE SHELL MATERIALS 1459 -77.68501 33.57334 GRRY-BROWN COARSE SAND AND SHELL HASH 1460 -77.75002 33.50001 LIGHT GRAY FINE WELL SORTED SAND, WITH A FEW SHELL FRAGMENTS 1461 -77.98502 33.50001 LIGHT GRAY CLEAN HELL SORTED FINE SAND WITH SHELL FRAGMENTS 1462 -78.25001 33.34167 GRAY-GREEN FINE SAND. SAND DOLLAR CONTAINS DARK GRAY SILTY ODZE

	SAMPLE	LONGITUDE	LATITUDE	LITHOLOGIC
	NUMBER	WEST	NORTH	DESCRIPTION
	=======			
	1463	-78.20007	33.68501	UNKK GKNY-GKEEN WELL SUKTED SILL, WITH SUGE VERT FINE SAMU
	1404	-70.01100	33.07301	ULLIGHT CROV_CLEON NATEORY MEDIUM TO CEE COSINED UITH SORTED CHOITZ COND. 27 CUCU
	1792	-70.02333	33.30334	A LIGHT GRATEGEAM UNTERNATIONATION TO USE GRATHED WITH SURTED WORKTZ SHAD, 2% SAELL
	1001	-77 76500	33.00033	CROW COND 15-W CUELI
	1002	-77 63169	33.17300	CRAT SAND, 1374 SALL COAV OND TON COND 947 CUEL
	1805	-77 50334	33.39107	BRAN MATTIEN MENTING TO CORDER CORTNER SAND AND SHELL HASH
	1814	-77.28667	33, 49168	MOTTLED REALED THE CORRECT SAND WITH SPECKS OF SHELL AND DAPK MINERALS
	1815	-77.25334	33,66001	REPUNTER CERT THEORET OF THE STATE STATE STATE STATE STATES AND STATES AND STATES AND STATES
	1816	-77.25834	33.84002	SALT AND PEPPER SAND. FINE GRAINED SHELL HASH
	1817	-77.24000	34.00000	SALT AND PEPPER SAND, 85% QUARTZ, RK FRAGS AND NON-MAGNETIC DARK MINERALS
	1818	-76.99669	34.15000	TAN AND GRAY SAND. SHELL
	1819	-76.99502	33.99502	FINE TO MEDIUM GRAINED SAND, SHELL
ര	1820	-77.02000	33.84335	TAN SHELL SAND
	1821	-76.99002	33.65001	BROWN MOTTLED MEDIUM TO CORRSE GRAINED CLEAN QUARTZ-CARBONATE SAND
	1822	-76,99835	33.50001	BROWN MOTTLED MEDIUM TO CORRSE GRAINED CLEAN QUARTZ-CARBONATE SAND
	1839	-76.75002	33.51001	LIGHT GRAY GLOBIGERINA OOZE SAND SPECKLED WITH DARK GLAUCONITE 5% and SHELLS 3%
	1842	-76.74168	33.65335	SHELL SAND, COARSE, GRAY-TAN, GREATER THAN 90% SHELL MATERIAL
	1843	-76.74668	33.84002	SHELL HASH, SMALL AND MEDIUM SHELLS, ROCKS 3-4 CM
	1846	-76.73835	34.00000	YELLOW-BROWN POORLY SORTED CLERN SAND, FEW SMALL ANGULAR PEEBLES, 5% SHELL
	1848	-76.51668	34.16500	FINE-MEDIUM-COARSE SAND, QUARTZ AND ROCK FRGS, LARGE % SHELL HASH, LARGE SHELLS 4-5 CM
	1849	-76.23500	34.17334	DARK GRAY SAND, ABOUT 15% SHELL HASH
	1857	-76.00167	34.31167	OLIVE-TAN QUARTZ AND SHELL SAND, MEDIUM TO COARSE GRAINED
	1858	-75.99669	34.47668	DARK GRAY SAND QUARTZ, SHELL LESS THAN 10%, FINE TO MEDIUM GRAINED
	1859	-76.01000	34.65835	GRRY WELL-SORTED CLEAN FINE QUARTZ SAND, 1-2% SHELL
	1961	-75.74335	34.71001	OLIVE-GRAY, MED-CSE, MODY SRT SAND, 90% QUARTZ AND ROCK FRGS, 5% SHELL, 5% OPAQUE MIN
	1863	-75.50834	34.85502	NEUIUN-MINE UNKK MUUUY WUNKIZ SHNU
	1007	-74.98302	33.3416/	UNKN ULIVE GKAT IU UNKN GKAT DILIT AUU DOOK ODOK EINE OHODIT (LESE THON SOM) IN SOI DOCK EDGEMENTE DOOK MINEDOLE MOONETITE
•	19/0	-14.20007	33.47034	UNKE BERT FINE WURKLE VEEDD INNY DURY DURY DINU, M DEL, EUCE FENDINENTD, UNKE MINERHED, MHONETTE

SAMPLE	LONGITUDE	LATITUDE	
NUMBER	WEST	NORTH	

LITHOLOGIC DESCRIPTION

1971 -75.03167 35.68501 TAN MEDIUM GRAINED FAIRLY WELL SORTED QUARTZ SAND, LESS THAN 10% SHELL 1972 -75.00000 35.83335 TAN AND GRAY MED-CSE GRAINED QUARTZ SAND, POORLY SORTED, GREATER THAT 5% SHELL 1873 -75.00000 36.00000 DARK GRAY CLEAN QUARTZ SAND, FINE GRAINED, SOME BENTHIC FORAMS, WORM TUBES 1975 -75.00167 36.33834 GRAY FINE GRAINED, UNIFORM, CLEAN QUARTZ SAND, SHELL 5% 1876 -74.99169 36.49668 DARK GRAY WITH SORTED CLEAN FINE SAND, WITH DARK MINERALS, 1-2% SHELL 1878 -74.75168 36.66668 COARSE TO MEDIUM QUARTZ SAND, MODERATE TO WELL SORTED 2053 -75.24834 36.66668 FINE GRAY-BROWN SAND 2054 -75.51168 36.65668 BROWN SAND, SHELL DEBRIS 2060 -75.75168 36.33001 GRAYISH BROWN FINE-MEDIUM SAND 2061 -75.50000 36.50834 GRAY SAND (FINE-MEDIUM) 2062 -75.50001 36.32667 OLIVE GRAY FINE SILTY SAND 2064 -75.49501 36.00000 BROWN MEDIUM SAND, NO GRAVEL, OBVIOUS BLACK OPAQUES 2305 ~77.91335 33.64668 MEDIUM-COARSE LIGHT BROWN SAND 2315 -76.53668 34.49668 WELL SORTED FINE GRAINED MEDIUM OLIVE-GRAY SAND, DARK GRAY BELOW 3 CM 2316 -76.45301 34.52668 CORRSE VERY SHELLY SAND, VARICOLORED, ABOUT MEDIUM OLIVE GRAY 2317 -76.38334 34.70835 VERY SHELLY CORRSE SAND, APPROACHING A SHELL HASH, VARICOLORED, MD. OLIVE. GRAY. 2318 -76.10167 34.93002 MEDIUM SAND, MANY SHELL FRAGMENTS, NEARLY A SHELL HASH, VARICOLORED 2320 -75.79668 35.13000 LT OLIVE-GRAY FINE W-SORTED SAND, THIN MED GRAY STREAKS IN THIN LAYERS 3-4 CM BELOW TOP 2321 -75.63168 35.15500 DARK GREENISH GRAY VERY FINE SAND OR SILT 2322 -75.49001 35.11834 SILTY VERY FINE SAND, MEDIUM OLIVE GRAY 2323 -75.46334 35.27167 WELL SORTED VERY FINE SAND OR SILT, FEW OR NO SHELL FRAGMENTS, DARK OLIVE GRAY 2324 -75.45501 35.42501 VERY FINE WELL SORTED SAND OR SILT, MEDIUM DARK OLIVE GRAY 2325 -75.39334 35.62001 CORRSE QUARTZ SAND WITH MUCH SHELL FRAGMENTS, BROWN 2326 -75.47001 35.76502 COARSE QUARTZ SAND, NUMEROUS SHELL FRAGMENTS 2327 ~75.56668 35.92502 MEDIUM LIGHT BROWN SAND (BEACH SAND), SHELL FRAGMENTS LARGER THAN SAND SIZE 2328 -75.64668 36.07333 WELL SORTED VERY FINE SAND OR SILT, DARK GREENISH GRAY 2329 -75.67001 36.20000 MEDIUM GRAINED LIGHT BROWN QUARTZ SAND WITH SOME SHELL 2330 -75.81835 36.42834 DRRK GREENISH GRAY FINE SOMEWHAT POORLY SORTED SAND, MANY WORM TUBES 2331 -75.83335 36.57168 MEDIUM-CORRSE BROWN SAND, DARK YELLOWISH BROWN

Table 2. --Water depth, sampling equipment type, and textural data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina.

Explanation of footnotes:

.

·• .

- 1 From Hathaway, 1971.
- 2 Sampling equipment code: 1) Campbell grab with camera,
 2) Campbell grab without camera (from Hathaway, 1971).
- 3 N/A: data not available.

. . i

	SAMPLE	WATER	EQPT	BULK	GRAVEL	SAND	SILT	CLAY	WT Z	WT %	WT %
	NLIMBER	DEPTH	TYPE	MT	>2.00	2.00 TO	0.0625 TO	<0.0039	>16	<16->325	<325
		(m)		(g)	ጣጠ %	0.0625 mm	0.0039 mm	ጠጠ	MESH	MESH	MESH
				-		z	z	Z			
		======	======	.======			=======================================		=====		======
	1426	32	1	385.1	0.0	100.0	0.0	0.0	0.8	99.0	0.2
	1427	32	1	397.0	0.0	100.0	0.0	0.0	4.7	95.0	0.3
	1429	27	1	258.7	0.0	100.0	0.0	0.0	0.9	98.9	0.2
	1430	35	1	192.2	0.0	99.0	1.0	0.0	.0	99.7	0.3
	1431	32	1	251.8	0.0	100.0	0.0	0.0	0.1	99.7	0.2
	1432	34	1	108.1	0.0	99.0	1.0	0.0	0.6	98.2	1.2
	1433	30	2	241.8	0.0	97.0	3.0	0.0	0.3	98.3	1.4
	1434	25	2	206.7	0.0	100.0	0.0	0.0	0.2	99.2	0.5
	1435	27	2	248.6	0.0	100.0	0.0	0.0	3.7	96.3	0.0
	1436	26	2	217.3	0.0	100.0	0.0	0.0	0.6	99.4	0.0
	1437	44	2	236.1	1.0	99.0	0.0	0.0	12.1	86.6	1.3
	1438	27	2	222.5	0.0	100.0	0.0	0.0	1.0	98.9	0.1
	1439	20	2	221.1	0.0	99.0	1.0	0.0	2.4	97.5	0.1
>	1440	28	2	241.5	0.0	98.5	1.5	0.0	4.2	95.7	0.1
	1442	27	2	239.9	0.0	100.0	0.0	0.0	0.3	99.5	0.2
	1447	22	2	217.1	0.0	100.0	0.0	0.0	0.6	99.4	0.0
	1448	- 18	2	224.8	0.0	100.0	0.0	0.0	8.1	91.8	0.1
	1449	27	2	263.5	0.0	98.0	2.0	0.0	3.5	96.3	0.1
	1450	22	2	283.4	0.0	100.0	0.0	0.0	1.1	98. 9	0.0
	1452	20	2	212.9	0.0	100.0	0.0	0.0	11.4	88.6	0.0
	1453	22	2	208.9	0.0	100.0	0.0	0.0	2.0	97.9	0.1
	1454	15	2	272.5	0.0	100.0	0.0	0.0	5.4	94.6	0.0
	1455	19	2	231.7	6.0	94.0	0.0	0.0	22.6	77.4	0.0
	1456	27	2	260.6	1.5	98.5	0.0	0.0	44.8	55.2	0.0
	1457	29	2	154.7	0.0	100.0	0.0	0.0	2.9	97.1	0.0
	1459	17	2	154.0	2.0	98.0	0.0	0.0	14.9	85.1	0.0
	1460	22	2	219.5	0.0	100.0	0.0	0.0	1.4	98.6	0.0
	1461	23	2	304.8	0.0	100.0	0.0	0.0	0.8	a/ ^{99.2}	0.0
	1462	22	2	229.9	0.0	100.0	0.0	0.0	N/R ^s	N/R	N/A

..*

SAMPLE	WATER		BULK	GRAVEL	Sand 2 00 to	SILT 0.0625.T0	CLAY <0,0039	WT % >16	WT % <16->325	WT % <325
NUMBER		1176	(0)	~2.00 mm %	R.0625 mm	0.0039 mm		MESH	MESH	MESH
	X III Z		191		%	%	%			
============		=====								=====
1463	16	2	200.0	0.0	98. 0	2.0	0.0	N/A	N/A	N/A
1464	16	2	244.7	0.0	100.0	0.0	0.0	N/A	N/A	N/A
1792	28	2	209.5	0.0	100.0	0.0	0.0	1.8	98.2	0.0
1801	151	2	176.6	0.0	94.0	6.0	0.0	0.2	98.9	0.9
1802	43	2	230.5	0.0	98. 0	2.0	0.0	1.2	98.7	0.1
1804	22	2	153.8	0.0	100.0	0.0	0.0	1.1	98.9	0.0
1805	22	2	227.0	1.0	99.0	0.0	0.0	20.7	79.3	0.0
1814	39	2	178.8	0.0	99.0	1.0	0.0	1.9	98.0	0.1
1815	35	2	182.7	0.0	99.0	1.0	0.0	1.0	98.9	.0
1816	35	2	271.4	0.0	99.0	1.0	0.0	0.4	99.5	0.1
1817	25	2	160.9	0.0	1 00. 0	0.0	0.0	10.7	89.3	0.0
1818	33	2	147.7	0.0	100.0	0.0	0.0	2.8	97.0	0.2
1819	33	2	175.5	0.0	98.0	2.0	0.0	0.9	98.9	0.1
1820	38	2	162.6	0.0	100.0	0.0	0.0	0.2	99.7	0.1
1821	35	2	177.6	1.0	99.0	0.0	0.0	9.1	90.9	0.0
1822	45	2	187.3	1.0	99.0	0.0	0.0	12.4	87.6	0.1
1839	259	2	94.8	0.0	98.0	2.0	0.0	1.3	98. 6	0.1
1842	130	2	179.3	0.0	100.0	0.0	0.0	21.7	77.9	0.3
1843	43	2	212.6	0.0	100.0	0.0	0.0	8.4	91.6	0.0
1846	38	2	181.1	1.0	99. 0	0.0	0.0	27.2	72.8	0.0
1848	35	2	148.0	0.0	100.0	0.0	0.0	20.0	80.0	0.0
1849	54	2	223.8	0.0	99. 0	1.0	0.0	4.8	95.1	0.1
1857	85	2	255.7	0.0	100.0	0.0	0.0	8.9	91.1	0.0
1858	54	2	249.7	0.0	100.0	0.0	0.0	0.3	98.2	1.5
1859	33	2	238.6	0.0	100.0	0.0	0.0	0.6	99.4	0.0
1861	41	2	241.8	0.0	99.0	1.0	0.0	7.1	92.8	0.1
1863	86	2	239.7	0.0	97.0	3.0	0.0	2.3	97.0	0.7
1869	70	2	145.0	0.0	76.0	17.5	6.5	0.1	92. 2	7.8
1870	42	2	146.2	0.0	98.0	2.0	0.0	1.3	98.1	0.6

Sample Number	WATER DEPTH (m)	eqpt Type	BULK WT (g)	GRAVEL >2.00 mm %	5AND 2.00 TO 0.0625 mm %	5ILT 0.0625 TO 0.0039 mm %	CLAY <0.0039 ៣៣ %	WT % >16 MESH	WT % <16->325 MESH	WT % <325 MESH
22222222	Z22222 2				2222222222			2222222 2 5	97 5	
1871	43	2	271.8	0.5	77.3	0.0	0.0	2.0	97.7	0.0
1872	45	2	202.0	0.0	92.0	0.0	0.0	0.2	99.7	0.1
1873	44	2	262.0	0.0	100.0	0.0	0.0	1 9	98 1	0.2
1875	38	<	188.3	0.0	100.0	0.0	0.0	0.2	99.5	0.3
1875	38	2	3/6.2	0.0	100.0	0.0	0.0	4 2	95.8	0.0
18/8	26	2	227.0	0.0	100.0	0.0	0.0	1 0	98.9	n 1
2053	32	2	378.1	0.0	100.0	0.0	0.0	2 9	97 0	о. 1 П 1
2054	20	2	283.9	0.0	100.0	0.0	0.0	2.2 N A	99 5	0.1
2060	15	1	207.4	0.0	55.0	1.0	0.0	0.7	99 5	0.1
2061	29	1	122.1	0.0	100.0	0.0	0.0	0.2	99 6	0.0
2062	30	1	168.4	0.0		0.0	0.0	0.7	99.1	0.0
2064	23	1	181.4	0.0	100.0	0.0	0.0	0.2	99.9	n n
2305	10	2	210.6	0.0		0.0	0.0	0.1	97 5	2 3
2315	16	1	143.9	0.0	9 0. 0	2.0	0.0	24 9	75 1	0.0
2316	16	1	198.7	3.0	97.0	0.0	0.0	16 0	P3 2	0.0
2317	16	2	187.1	0.0	100.0	0.0	0.0	20.0	65 6	0.0
2318	16	2	157.2	7.0	93.0	0.0	0.0	59.4	92 3	1.8
2320	16	2	191.6	0.0	100.0	16.0	0.0	0.0	92.J 90 3	1.0
2921	16	2	122.2	0.0	84.0	10.0	0.0	0.0	90.3	1 7
2322	16	2	184.0	0.0	92.0	10.0	0.0	0.1	00.2	л., П. 6
2323	16	2	160.8	0.0	90.0	10-0	0.0	0.1	27.J QQ J	0.0
2324	15	2	154.2	0.0	93.0	7.0	0.0	27 0	72 1	0.0
2325	18	2	180.2	4.0	96.0	0.0	0.0	20.2	72.1	0.0
2326	17	2	207.5	9.0	91.0	0.0		20.3	74 9	0.0
2327	16	2	180.9	6. 0	94.U	10.0	0.0	20.2	99.9	0.0
2328	17	2	184.0	0.0	90.0	10.0	0.0	11 7	0.7	0.7
2329	18	2	176.8	5.0	90.U	U.U c n	0.0	21.0	97 2	0.0
2330	9	2	202.7	0.0	34.U 100 0	0.0	0.0	2.1	96 1	0.7
2331	10	2	182.3	U. U	100.0	0.0	0.0	9.9	20.1	0.0

Table 3. The accuracy of the sample locations is estimated to be within about 1 nautical mile of the coordinates given in Table 1. The grab samples may not accurately represent the bulk ocean-floor sediments because part of the fine-grained material may have been lost from coarse-grained or gravelly sediments due to their collection with a Campbell grab-sampler.

LABORATORY PROCEDURES

An average of 213.30 grams of bulk sample (in a range of 94.83 to 396.95 grams) from each location was split and sieved in dry condition into three textural classes: 1) gravel and very coarse sand (>16 mesh), 2) coarseto very fine-grained sand (<16 to >325 mesh), and 3) silt and clay (<325 mesh). The heavy-mineral fraction of the coarse- to very fine-grained sand fraction was separated using bromoform (SG >2.85). As large a split as could be derived from the original sample was used for the separation of heavy minerals because some mineral species, such as monazite, are present in very small quantities. Smaller samples are less likely to contain representative amounts of rare minerals (see for example, Clifton and others, 1969).

Heavy-mineral concentrates exceeding 1 gram in mass were separated into three magnetic sub-fractions on a Frantz Isodynamic Magnetic Mineral Separator (0.0 to 0.5 ampere, 0.5 to 1.0 ampere, and >1.0 ampere) after the highly magnetic minerals were removed by use of a hand-held magnet. Heavymineral concentrates weighing less than 1 gram were separated into two magnetic sub-fractions on a Frantz Magnetic Barrier Separator at 0.5 ampere. Each sub-fraction was weighed and studied independently with petrographic and reflected light microscopes. The identification of some minerals was made by X-ray diffraction. Comparison charts for the visual estimation of

Table 3. --Grain-size distribution, mean size, bulk radiation activity and mineralogic data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina.

Explanation of footnotes:

- 1 From Hathaway, 1971.
- 2 Modified from Hathaway, 1971.

Sample NUMBER	NUMBER OF SIZE MODES	MERN SIZE	GAMMA ACTIVITY CPM/g	VOL % CaCO3 OF SAND C	POTASH PLAG FELDSPAR FELI AS A PERCENTI CARBONATE 0.125	IOCLASE / 1 DSPAR FE AGE OF THE 250 mm FR	COTAL 2/ CLOSPAR NON- PACTION		
1426	:====== 1	0.29	عن که به که بین پیر پر ک که اور ا		8	1	9		
1427	1	0.36		2	5	3	8		
1429	1	0.19		1	8	7	15		
1430	1	0.19	0.64	1	10	8	18		
1431	1	0.16		1	13	9	. 22		
1432	1	0.13	1.05						
1433	1	0.12		2	9	1	10		
1434	1	0.11	1.53	2	11	2	13		
1435	1	0.34		7	7	2	9		
1436	1	0.18	0.48	3	17	1	18		
1437	1	0.42		50	3	4	7		
1438	1	0.15	0.62	Э	7	5	12		
1439	1	0.27		3	З	Э	6		
1440	1	0.24	0.25	5	4	1	5		
1442	2	0.19		3	б	1	7		
1447	2	0.20	0.81	23	4	Э	7		
1448	1	0.20							
1449	1	0.21	1.10	17	3	2	5		
1450	2	0.21	0.93	10	3	1	4		
1452	2	0.33	1.52	20	3	1	4		
1453	1	0.19		11	3	1	4		
1454	1	0.27	0.61	19	З	1	4		
1455	1	0.93		7	7	2	9		
1456	1	0.63	0.72	15	5	1	6		
1457	1	0.28		45	Э	1	4		
1459	1	0.71	0.34	28	1	1	2		
1460	1	0.19		17	4	1	5		
1461	1	0.22	0.79						
1462	1	0.23		8	3	1	4	• *	
					2				

· · ·

.

	SAMPLE	NUMBER	MEAN	Gamma	VOL %	POTASH	PLAGIOCLASE	TOTAL
	NUMBER	OF	SIZE	ACTIVITY	CaCO3	FELDSPAR	FELDSPAR	FELDSPAR
		SIZE	ጠጠ	CPM/g	OF	as a pei	RCENTAGE OF 1	THE NON-
		MODES			SAND	CARBONATE	0.125250 mm	FRACTION
1	==== == === 1463	:=== =2= :: 1	Π. 14	-========= Π. 52	======= A	2823222233		
	1464	1	N 14	0.02	3	5	1	6
	1792	1	0.31		ä	2	-	•
	1801	- 1	0.10	0,75	35	15	5	20
	1802	1	0.22		11	4	1	5
	1804	1	0.22		21	3	1	4
	1805	1	0.65	0.27	42	2	1	Э
	1814	1	0.22		31	Э	5	8
	1815	1	0.23	0.73	42	3	1	4
	1816	1	0.23		42	Э	4	7
	1817	1	0.43	0.90	17	2	1	Э
	1818	1	0.27	0.47	35	2	4	6
	1819	1	0.21		42	5	1	6
	1820	1	0.19	1.11	78	5	6	11
	1821	1	0.55		58	Э	1	4
	1822	1	0.55	0.45	47	Э	2	5
	1839	1	0.19		77	5	1	6
	1842	1	0.44	0.48	75	10	5	15
	1843	1	0.35	0.60	67	Э	Э	6
	1846	1	0.38	1.12	42	3	2	5
	1848	- 1	0.43		37	4	1	5
	1849	1	0.22	0.59	31	7	2	9
	1857	1	0.36	0.27	40	4	2	6
	1858	2	0.12		8	13	7	20
	1859	1	0.20	0.37	Э	Э	5	8
	1861	1	0.43		4	4	7	11
	1863	1	0.23	0.68	7			
	1869	1	0.06		6	7	3	10
	1870	1	n 14	n 93				

	SAMPLE	NUMBER	MEAN	Gamma	VOL %	POTASH	PLAGIOCLASE	TOTAL
	NUMBER	OF	SIZE	ACTIVITY	CaCO3	FELOSPAR	FELDSPAR	Feldspar
		SIZE	រារា	CPM/g	OF	as a per	RCENTAGE OF TH	HE NON-
		MODES			SAND	CARBONATE ().125250 mm	FRACTION
					123222;	**********		
	1871	1	0.41	0.63	1	~	10	17
	1072	1	0.23	0.20	1	(10	17
	1075	1	0.10		2	•	••	10
	1873	1	0.10	0.57	1	8	11	19
	1070	1	0.10	0.27	1	10	0	10
	2052	1	0.33	0.72	J 1	10	2	15
	2033	1	0.20	0.19	1	c	7	12
	2034	1	0.42			0 7	Å	15
	2000	2	n 12			, 10	7 10	20
	2001	2	ñ 1c	с од	• 1	10	10 6	20
	2062	<u>د</u>	0.10	0.36	*	5	Ĵ	
	2305	1	0.22	0.00		1	£.	0
	2315	2	n 17	0 97		q	Э	12
6	2316	2	ñ. 55	0. 21		á	2	5
	2317	2	n. 42	D 26	11	3	1	4
	2318	3	0.68	0.20	37	ž	2	4
	2320	1	0.34		8	ğ	ŝ	14
	2321	ī	D.08	1.01	2	11	9	20
	2322	2	0.11		2	13	8	21
	2323	- 2	0.10	2.18	2	8	9	17
	2324	2	0.11		2	10	7	17
	2325	2	0.69	0.15	8	2	Э	5
	2326	Э	0.65		7			
	2327	Э	0.75		1	5	2	7
	2328	2	0.11	1.48	2	10	9	19
	2329	З	0.50		6			
	2330	4	0.14	0.71	1	6	10	16
	2331	2	0.38		1	5	5	10

percentage composition (Terry and Chillingar, 1955) and point-counting were utilized to estimate mineral abundances in each magnetic sub-fraction. The identification of zircon and monazite was aided by the use of long- and short-wave ultraviolet illumination. Abundances of individual mineral species in each magnetic sub-fraction were summed and calculated as percentages of the total heavy-mineral fraction without compensation for differences in densities of individual mineral species. The results of the mineralogic determinations are given in Table 4.

RESULTS

Sketch contour plots of the percentage of heavy minerals (Figure 2), and of total feldspar content (Figure 3), show a systematic change in distribution patterns coincident with the NW-SE axis of Diamond Shoals which extend SE from Cape Hatteras. The significantly higher heavy-mineral and feldspar content and the lower carbonate content of the sediments to the north of Hatteras provide the basis for a division of the study area into northern and southern segments. Statistical parameters for all samples (N = 87), the northern group (N = 33), and the southern group (N = 54) are given on Table 5.

Within each of the two groups the samples were further sub-divided into inner-, mid-, and outer-shelf categories (<20 m, >20 m to <40 m, and >40 m water depth intervals, respectively, as per Swift and others (1973) and Stubblefield and others (1983). Carbonate-rich and carbonate-poor categories and sand and gravel categories were generated as well. These categories were generated on the basis of change in slope on cumulative frequency plots for the variables. The northern group of samples separated into carbonate-rich and carbonate-poor subgroups at 2 percent CaCO₃;

Table 4.--Heavy-mineral data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina.

Explanation of footnotes:

- 1 SG >2.85 expressed as a percentage of the bulk sample weight.
- 2 Undifferentiated pyroxenes and amphiboles.
- 3 Aluminosilicates (undifferentiated sillimanite, kyanite, andalusite).
- 4 Others may include unidentified opaques, unidentified nonopaques, quartz, clayballs, polymineralic grains, feldspar, shell fragments, glauconite, mica, siderite(?) spinel(?), sulfides.
- 5 EHM/C; Economic heavy minerals (ilmenite + leucoxene + rutile + zircon + monazite + aluminosilicates) expressed as a percentage of the heavy-mineral assemblage.
- 6 EHM/T; Economic heavy minerals expressed as a percentage of the bulk sample.
- 7 Labiles; sum of magnetite, pyroboles, garnet, and epidote expressed as a percentage of the heavy-mineral fraction.
- 8 ZTR index; zircon + tourmaline + rutile expressed as a percentage of the sum of the non-opaque heavy minerals.
- 9 P; <0.1 percent of the heavy-mineral fraction.
- 10 N; not detected.
- 11 NC; not calculated.

		<u>у</u>					2	/ 3	1	
SAMPLE	WEIGHT	TILMENITE	MAGNETITE	GARNET	STAUROLITE	EPIDOTE	PYROBOLES	ALUMINO-	TOURMALINE	LEUCOXENE
	HM							5121011125		

				EXPR	essed a	S WEIGHT PER	CENTAGES (DF THE SG >2	.85 FRACTIO	IN	
==:	=======		2222222222222		======	8852222222222	==================		2222222222		=======
	1426	1.45	23.0	pΨ	13.0	6.5	э.о	28.0	6.0	3.5	3.5
	1427	2.08	28.0	Ρ	17.0	17.5	6.0	10.0	7.0	1.5	1.0
	1429	3.47	47.5	Ρ	9.0	2.6	1.7	6.0	26.7	0.5	4.3
	1430	3.21	25.7	р	20.7	0.7	2.6	17.7	26.2	1.6	2.4
	1431	5.34	28.7	Ρ	15.4	2.0	3.4	23.3	16.9	2.2	1.6
	1432	3.13	38.8	P	9.2	2.3	1.2	13.3	27.2	0.7	3.0
	1433	5.24	45.1	Р	8.2	Р	0.9	8.6	28.7	0.8	2.6
	1434	5.12	8.9	Pial	8.2	1.2	3.2	43.3	26.6	1.0	2.8
	1435	0.43	19.7	NS	26.7	9.8	5.7	10.3	17.3	1.8	0.7
	1436	0.59	26.6	N	11.7	2.6	3.9	29.5	15.5	1.1	2.2
	1437	0.41	14.3	N	5.7	1.7	P	21.8	22.1	P	Р
	1438	2.21	37.5	N	6.2	2.4	5.3	19.9	15.4	1.1	1.8
	1439	0.64	47.4	N	6.2	8.1	6.4	4.3	11.0	Э.1	0.7
	1440	0.62	56.9	Ν	Э.б	4.2	5.0	2.0	14.1	1.6	0.8
-	1442	0.78	38.1	N	5.9	6.3	5.9	20.1	13.5	1.7	1.6
	1447	1.39	15.7	N	8.0	9.5	3.5	20.8	23.1	1.7	2.6
	1448	1.49	29.0	N	3.9	5.2	2.9	4.6	6.8	1.6	0.8
	1449	1.56	22.9	N	Э.4	11.4	1.5	2.1	12.8	0.7	1.1
	1450	1.41	18.8	N	4.2	14.7	2.9	6.8	20.5	1.1	1.9
	1452	3.27	22.5	N	5.8	21.8	0.6	P	8.6	0.3	P
	1453	0.81	31.0	N	2.1	7.5	2.5	2.2	9.7	2.1	0.6
	1454	0.52	24.8	N	э.2	14.2	2.3	6.2	12.2	2.5	1.6
	1455	0.12	12.4	N	э.о	5.1	0.6	Р	7.0	2.3	Р
	1456	0.47	20.0	N	5.7	11.9	2.1	2.9	11.4	1.3	1.3
	1457	1.37	16.4	N	э.О	17.9	2.8	э.2	12.8	0.8	2.1
	1459	0.14	N	N	P	1.0	N	Р	P	N	N
	1460	1.32	29.2	P	2.6	14.2	3.4	3.7	15.7	2.8	2.9
•	1461	0.72	26.1	P	3.4	12.1	6.8	8.7	14.1	7.3	5.3
	1462	0.87	30.2	N	э.э	15.2	3.8	6.8	17.0	3.8	2.6

SAMPLE WEIGHT ILMENITE MAGNETITE GARNET STAUROLITE EPIDOTE PYROBOLES ALUMINO- TOURMALINE LEUCOXENE NUMBER % HM

				RE3320 N	5 MC1001 PC			- OJ FRACIJ		
1871	0.94	16.5	N .	27.9	5.1	2.6	18.8	16.7	3.4	1.3
1872	2.35	19.1	N	22.8	4.2	5.6	23.7	16.8	1.1	1.6
1873	4.05	47.6	4.8	4.6	7.6	11.4	6.3	12.0	3.0	0.9
1875	7.16	37.9	7.3	7.5	12.6	10.6	6.7	12.5	3.0	0.8
1876	5.12	10.0	P	12.0	7.0	5.5	42.0	7.0	4.0	2.5
1878	1.05	45.3	1.3	5.4	10.2	6.1	14.7	10.0	1.9	Э.б
2053	3.22	17.0	Р	19.0	17.0	Р	21.5	9.0	10.0	1.5
2054	1.13	9.5	P	12.0	13.0	7.5	25.0	7.0	7.5	3.0
2060	2.11	21.1	N	6.9	2.6	6.3	29.0	19.1	1.9	Э.2
2061	5.25	9.0	Р	7.0	4.0	2.5	42.0	21.0	6.0	2.0
2062	2.36	14.7	Р	10.1	2.3	2.1	25.7	37.4	2.6	1.4
2064	0.83	15.1	N	11.3	8.3	11.3	27.1	22.8	1.2	1.2
2305	1.24	15.8	N	14.1	34.0	2.7	1.5	4.8	3.9	2.3
2315	2.23	30.7	N	8.3	3.0	5.2	25.6	17.8	0.8	0.8
2316	0.73	12.1	. N	6.2	7.8	1.6	0.9	2.0	P	N
2317	0.49	24.4	N	11.1	13.9	2.8	1.7	14.7	0.9	0.9
2318	0.32	23.2	N	12.5	9.8	6.3	9.4	4.4	2.5	0.7
2320	0.44	4.6	N	5.5	5.5	7.9	35.6	26.4	1.4	4.3
2321	2.81	5.6	Р	9.8	1.3	2.5	32.9	39.5	2.6	1.7
2322	2.32	7.0	Р	8.0	1.3	3.8	35.7	33.9	1.3	1.5
2323	4.60	4.5	0.1	6.7	0.2	1.5	47.0	30.2	1.7	2.5
2324	7.79	13.7	0.1	6.8	1.3	3.7	27.0	38.1	3.4	1.8
2325	0.29	30.8	N	21.5	2.4	3.6	7.5	16.0	4.1	0.8
2326	1.74	21.8	N	27.9	12.3	14.4	6.6	8.1	0.8	0.2
2327	0.47	21.5	N	20.1	11.7	4.7	5.0	9.3	6.6	2.3
2328	5.02	14.2	Р	10.5	1.8	3.1	33.5	27.1	2.1	2.4
2329	0.19	10.5	N	- 13.9	5.8	7.9	32.7	19.3	2.1	2.1
2330	1.71	12.6	P	3.9	1.3	4.2	33.9	30.8	1.9	5.8
2331	0.73	22.1	N	17.8	3.0	7.1	16.3	11.9	4.3	2.9

.

-----EXPRESSED AS WEIGHT PERCENTAGES OF THE SG >2.85 ERACTION--------

NUMBER	% HM						SI	LICATES		
			EXP	RESSED A	S WEIGHT PE	RCENTAGES	OF THE SG >2	.85 FRACTIO)N	
1463	1.05	29.8	Ρ	2.6	6.3	10.5	10.8	26.7	0.6	1.2
1464	0.85	17.3	P	1.4	3.3	13.1	24.9	29.3	0.3	0.8
1792	0.38	28.5	N	э.э	12.8	9.4	6.6	14.0	6.5	1.3
1801	1.19	23.7	N	1.5	0.6	0.2	22.0	25.4	0.4	N
1802	0.64	30.9	N	2.4	10.9	8.0	8.2	13.9	4.4	2.1
1804	0.46	16.0	N	2.7	11.4	2.7	3.3	21.6	7.0	0.6
1805	0.52	3.8	N	1.9	7.5	0.4	P	2.6	2.6	N
1814	0.49	22.6	N	2.8	10.0	5.1	3.0	16.9	2.0	1.6
1815	1.25	8.4	N	0.9	3.8	0.5	1.3	16.0	0.5	Р
1816	1.64	14.7	N	2.4	11.4	3.9	0.9	8.4	0.6	Р
1817	2.55	14.1	N	5.4	19.0	2.3	0.3	5.5	1.1	0.6
1818	1.63	13.8	N	5.3	12.9	1.4	1.9	16.4	1.0	0.5
1819	1.41	15.4	N	5.1	13.9	3.6	0.1	12.2	1.3	Р
1820	0.55	20.0	N	2.3	6.2	3.0	2.4	14.1	0.7	0.3
1821	1.18	4.4	N	0.9	4.6	0.5	0.4	4.3	0.6	0.2
1822	1.44	2.3	N	1.9	5.2	0.9	Р	2.4	0.3	р
1839	0.32	1.2	N	0.6	2.6	0.4	Р	1.3	0.8	0.3
1842	0.04	31.0	N	10.0	5.0	5.0	3.0	10.0	2.0	1.0
1843	0.33	10.4	N	8.1	11.4	1.6	0.3	2.7	2.7	N
1846	0.63	6.7	N	6.4	10.9	2.5	0.3	3.0	2.0	0.7
1848	0.84	5.3	N	4.4	0.9	1.8	4.4	2.0	0.4	Р
1849	0.43	14.9	N	5.2	7.7	7.7	7.7	12.8	4.0	0.5
1857	0.57	3.2	N	1.9	1.4	1.0	1.0	2.0	0.3	Р
1858	1.86	22.7	N	6.2	4.2	4.0	34.4	18.9	2.2	0.9
1859	0.64	26.1	N	7.2	11.3	14.3	11.6	15.6	2.7	1.4
1861	1.26	30.6	N	11.6	11.0	7.1	2.9	6.6	4.0	1.3
1863	1.13	30.0	N	5.8	12.9	3.8	8.7	19.2	0.7	1.5
1869	3.85	9.6	0.6	4.8	0.3	0.6	41.2	35.0	0.9	1.1
1870	5.88	33.7	N	12.3	0.6	5.3	19.4	22.9	0.9	1.4

SAMPLE WEIGHT ILMENITE MAGNETITE GARNET STAUROLITE EPIDOTE PYROBOLES ALUMINO- TOURMALINE LEUCOXENE

NUMBER	EXF	PRESSED A	SG >2.85	PERCENTAGES		EHM/C	EHM/T	LABILES	INDEX	LEUCOXENE RATIO
					CZ22221	******	*******	53822222		
1426	2.5	3.5	0.5	Р	7.0	39.0	0.57	44.0	14.3	6.6
1427	3.0	4.0	0.5	N	4.5	43.5	0.90	33.0	12.8	28.0
1429	P	1.3	P	0.1	0.3	79.9	2.77	16.6	3.8	11.0
1430	0.3	1.2	P	P	0.9	55.7	1.79	41.0	4.3	10.6
1431	0.7	5.6	Р	N	0.1	53.5	2.86	42.1	12.3	17.6
1432	0.1	3.3	Р	P	0.8	72.5	2.27	23.7	7.3	12.9
1433	P	3.6	Р	0.1	1.4	80.0	4.19	17.7	8.7	17.3
1434	Р	3.2	P	P	1.5	41.6	2.13	54.7	4.9	3.2
1435	0.3	3.9	Р	2.2	1.8	41.8	0.18	42.7	7.9	30.1
1436	P	4_4	1.6	Р	1.0	50.2	0.30	45.2	7.8	12.1
1437	Р	10.7	Р	1.1	22.5	47.1	0.19	27.5	5.8	NC
1438	P	7.1	Р	0.2	3.2	61.7	1.37	31.4	14.2	21.2
1439	0.0	11.1	0 .0	1.6	0.1	70.1	0.45	16.9	28.2	70.9
1440	P	9.9	P	2.0	Р	81.7	0.50	10.6	28.4	67.2
1442	0.3	6.3	Р	0.1	0.1	59.8	0.46	31.9	13.8	24.3
1447	0.3	6.8	P	6.5	1.5	48.6	0.67	32.2	11.9	6.0
1448	0.4	10.0	P	34.2	0.8	46.9	0.70	11.4	33.9	36.9
1449	P	3.8	Р	39.1	1.1	40.6	0.63	7.0	12.8	21.0
1450	P	3.0	P	24.4	1.6	44.2	0.62	13.9	7.8	10.1
1452	P	3.5	Р	36.9	Р	34.5	1.13	6.4	9.4	NC
1453	0.3	7.2	P	33.9	0.9	48.9	0.40	6.8	28.7	53.4
1454	Р	5.4	P	27.0	0.5	44.0	0.23	11.8	17.2	15.4
1455	· N	3.5	N	66.0	Р	23.0	0.03	3.6	27.0	NC
1456	Р	22.7	Р	20.8	P	55.4	0.26	10.6	41.4	15.1
1457	P	7.9	P	22.3	10.8	39.2	0.54	9.0	18.0	7.7
1459	1.0	Р	N	5.0	93.0	1.0	.00	0.0	50.0	NC
1460	0.8	11.6	Р	12.3	0.9	60.2	0.79	9.6	27.7	10.0
1461	2.6	10.9	Р	1.7	1.0	59.0	0.42	18.9	31.6	4.9
1462	P	14.0	P	0.6	0.9	65.0	0.57	13.9	29.9	11.6

SAMPLE RUTILE ZIRCON MONAZITE PHOSPHORITE OTHERS WT 2 WT 2 WT 2 ZTR ILMENITE/ NUMBER -----EXPRESSED AS WEIGHT PERCENTAGES----- EHM/C EHM/T LABILES INDEX LEUCOXENE OF THE SG >2.85 FRACTION

SAMPLE	RUTILE	ZIRCON	MONAZITE	PHOSPHORITE OTHERS	WT Z	WT %	WT Z	ZTR	ILMENITE/
NUMBER	EX	PRESSED	AS WEIGHT	PERCENTAGES	EHM/C	EHM/T	LRBILES	INDEX	LEUCOXENE
		OF THE	E SG >2.85	5 FRACTION					RATIO

=========					=========	======		===================		
146	3 0.5	9.7	Р	1.2	P	67.9	0.71	23.9	16.0	24.6
146	4 0.8	7.3	P	1.3	0.1	55.5	0.47	39.5	10.5	20.7
1793	2 1.3	15.1	Р	0.9	0.4	60.2	0.23	19.2	33.1	22.1
180	1 N	1.8	N	1.5	23.0	50.9	0.60	23.7	4.3	NC
1803	2 0.6	13.8	0.2	4.1	0.7	61.4	0.39	18.5	30.3	15.0
1804	4 P	9.3	Р	19.4	6.2	47.5	0.22	8.6	28.2	25.8
180	5 P	4.4	P	5.3	71.5	10.8	0.06	2.3	35.9	NC
1814	4 0.5	9.3	Р	23.7	2.3	51.0	0.25	10.9	23.9	14.1
1815	5 P	1.5	Р	59 . 5	7.7	25.8	0.32	2.7	8.1	NC
1810	6 P	6.5	Р	41.1	10.1	29.6	0.49	7.2	20.9	NC
1817	7 0.3	9.7	Р	36.1	5.6	30.1	0.77	8.0	25.4	25.6
1816	Э Р	13.4	P	22.1	11.2	44.1	0.72	8.6	27.5	25.8
1819	9 1.1	8.5	Ρ	32.7	6.1	37.3	0.52	8.8	23.8	NC
1820	1.3	8.1	Р	35.8	5.8	43.8	0.24	7.7	26.5	66.7
1821	L N	2.6	Р	13.5	68.0	11.5	0.14	1.7	23.0	25.7
1822	2 Р	0.9	P	4.7	81.6	5.6	0.08	2.7	9.9	NC
1839	Э Р	0.6	Р	59.8	32.4	3.4	0.01	1.0	22.2	4.0
1842	2 N	Э.О	N	15.0	15.0	45.0	0.02	18.0	13.2	31.0
1843	9 0.7	3.4	Р	28.0	30.7	17.1	0.06	10.0	21.8	NC
1846	5 0.4	3.0	0.1	37.5	26.5	13.9	0.09	9.2	18.8	9.0
1848	3 N	2.5	0.2	Р	78.3	9.9	0.08	10.6	17.2	NC
1849	Э Р	4.8	1.0	4.0	29.6	34.1	0.15	20.6	17.4	30.9
1857	7 P	0.9	0.2	1.1	87.0	6.3	0.04	3.9	13.7	NC
1858	9 0.5	4.3	Р	0.3	1.2	47.3	0.88	44.7	9.4	26.3
1859	9 1.4	7.1	0.7	0.6	N	52.3	0.33	33.1	15.6	18.5
1861	1.2	15.3	0.3	6.4	1.7	55.3	0.70	21.6	34.1	23.2
1863	3 0.5	4.9	0.3	8.2	Э.4	56.4	0.64	18.3	10.7	19.4
1869	Э Р	0.8	N	0.2	5.1	46.5	1.79	47.2	1.9	8.9
1870) 0.7	1.4	Р	P	1.4	60.0	3.53	37.0	4.7	24.5

SAMPLE	RUTILE ZIRCON MONAZITE PHOSPHORITE OTHERS	WT %	WT Z	WT %	ZTR	ILMENITE/
NUMBER	EXPRESSED AS WEIGHT PERCENTAGES	EHM/C	EHM/T	LABILES	INDEX	LEUCOXENE
	OF THE SG >2.85 FRACTION					RATIO

1871	0.4	4.2	0.6	P	2.6	39.7	0.37	49.3	10.1	12.5
1872	0.4	3.3	P	N	1.5	41.2	0.97	52.0	6.1	11.7
1873	0.3	0.1	P	N	1.4	60.9	2.47	27.1	7.5	52.9
1875	0.3	0.6	P	0.3	N	52.1	3.73	32.0	7.2	46.0
1876	2.0	2.0	Т	Т	6.0	23.5	1.20	59.5	9.8	4.0
1878	Р	0.2	P	1.3	N	59.1	0.62	27.5	4.4	12.6
2053	3.0	2.0	2.0	N	4.0	34.5	1.11	34.5	19.4	11.3
2054	3.0	5.0	0.5	N	7.0	28.0	0.32	44.5	19.3	3.2
2060	0.9	7.9	N	P	1.2	52.2	1.10	42.2	14.3	6.6
2061	1.5	1.5	Ť	N	3.5	35.0	1.84	51.5	10.5	4.5
2062	0.3	2.3	P	P	1.0	56.2	1.33	37.9	6.3	10.7
2064	0.5	1.2	P	N	N	40.8	0.34	49.7	3.5	12.2
2305	3.3	11.4	P	2.1	4.1	37.7	0.47	18.3	24.5	6.8
2315	1.1	6.5	P	0.2	0.2	56.9	1.27	39.0	12.3	38.0
2316	N	0.7	0.9	0.7	67.8	15.1	0.11	8.7	3.5	NC
2317	0.4	6.7	0.6	4.2	17.8	47.7	0.23	15.5	15.2	27.4
2318	0.4	5.6	P	2.5	22.7	34.3	0.11	28.2	16.6	31.2
2320	0.2	3.2	P	1.0	4.4	38.7	0.17	49.0	5.7	1.1
2321	0.2	1.2	N	Р	2.8	48.1	1.35	45.1	4.5	3.2
2322	0.6	2.0	Р	Р	4.9	45.0	1.04	47.5	4.5	4.6
2323	· 0.3	1.7	N	N	3.6	39.2	1.80	55.3	4.1	1.8
2324	0.6	2.0	P	Р	1.6	56.2	4.38	37.6	7.2	7.4
2325	0.8	4.2	0.7	0.3	7.1	53.5	0.16	32.5	15.1	36.3
2326	0.8	6.2	0.3	P	0.8	37.3	0.65	48.8	10.0	140.2
2327	1.0	6.6	P	0.7	10.6	40.7	0.19	29.8	4.6	9.3
2328	0.5	2.6	P	1.1	1.0	46.9	2.35	47.1	6.3	5.8
2329	0.3	6.1	P	N	N	38.2	0.07	53.9	9.7	4.9
2330	0.6	3.0	P	Р	2.0	52.8	0.90	42.0	6.9	2.2
2331	0.3	2.0	P	1.6	10.7	39.2	0.29	41.2	10.5	7.7

.

Table 5. --Table showing statistical data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina grouped into all, northern, and southern sets. Explanation of column headers is given on Tables 2 - 4; NV indicates statistics are not valid because of the small number of samples.

		GRAVEL	SAND	SILT	CLAY	WT %	WT %	WT Z	MERN	Gamma
		>2.00	2.00 TO	0.0625 TO	<0.0039	>16	<16->325	<325	SIZE	ACTIVITY
		መጠ Ζ	0.0625 mm	0.0039 mm	ጠጠ	MESH	MESH	MESH	መመ	CPM/g
			Χ.	z	z					
	:			**********		=====	=======	*======	======	
	COUNT	87	87	87	87	84	84	84	87	44
	MINIM	n_n	76.0	0.0	ົ້	0.0	55.2	ດ ດ	0.06	0 15
ALL SAMPLES	AVERAGE	0.6	98.0	1.4	0.0	6.2	93.5	0.0	n 29	0.10
	MAXIMUM	9.0	100.0	17.5	6.5	44 R	99.9	7 8	0.27	2 18
		1 6	3.9	3.2	0.0	9.2	9 1		0.19	0 42
		1.0	5.0	J.C	0.7	7.6	2.1	0.9	0.10	0.72
	COUNT	33	33	33	33	33	33	33	33	16
	MINIMUM	0.0	76.0	0.0	0.0	.0	71.7	0.0	0.06	0.15
NORTHERN GROUP	AVERAGE	0.7	97.0	2.0	0.2	3.9	95.6	0.5	0.26	0.79
	MAXIMUM	9.0	100.0	17.5	6.5	28.3	99.7	7.8	0.75	2.10
	STD DEV	2.1	5.0	4.0	1.1	7.7	7.6	1.3	0.17	0.55
	COUNT	54	54	54	54	51	51	51	54	28
	MINIMUM	0.0	84.0	0.0	0.0	0.0	55.2	0.0	0.08	0.25
SOUTHERN GROUP	AVERAGE	0.5	98.6	1.0	0.0	7.6	92.1	0.3	0.31	0.69
	MAXIMUM	7.0	100.0	16.0	0.0	44.8	99.9	2.3	0.93	1.52
	STO DEV	1.3	2.7	2.5	0.0	9.8	9.7	<u></u>	0.18	0.31

·

	-	VOL % CACO3 OF SAND	POTASH PLAGIOCLASE TOTAL FELDSPAR FELDSPAR FELDSPAR AS A PERCENTAGE OF THE NON- CARBONATE 0.125250 mm FRACTION			NUMBER OF SIZE MODES	WEIGHT % HM	ILMENITE MAGNETITE GARNET EXPRESSED AS WEIGHT PERCENTAGES OF THE SG >2.85 FRACTION			
ALL SAMPLES	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	76 1 17 78 20	75 1 6 17 3	73 1 4 11 3	73 2 10 22 6	87 1.0 1.3 4.0 0.6	87 0.04 1.77 7.79 1.69	86 1.2 21.1 56.9 11.9	6 0.1 2.4 7.3 2.7	86 0.6 8.0 27.9 6.2	
NORTHERN GROUP	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	27 1 2 8 2	25 2 8 17 3	25 1 6 11 3	25 5 14 22 5	33 1.0 1.5 4.0 0.8	99 0.19 2.97 7.79 2.10	33 4.5 22.7 47.6 12.1	6 0.1 2.4 7.3 2.7	33 3.9 12.9 27.9 6.8	
SOUTHERN GROUP	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	49 2 25 78 21	50 1 5 15 3	48 1 3 9 2	48 2 7 21 5	54 1.0 1.2 3.0 0.4	54 0.04 1.04 3.27 0.71	53 1.2 20.1 56.9 11.6	0 NV NV NV	53 0.6 5.0 14.1 3.1	
			· ·								

STAUROLITE	EPIDOTE	PYROBOLES	ALUMINO-	TOURMALINE	LEUCOXENE	RUTILE	ZIRCON	MONAZITE
			SILICATES					

			EXPRESSE	D AS WEIGH	IT PERCENTA	GES OF THE S	5G > 2.85	FRACT	ION	
	COUNT	86	84	81	86	84	73	56	87	18
	MINIMUM	0.2	0.2	0.1	1.3	0.3	0.2	0.1	0.0	0.1
ALL SAMPLES	average	7.7	4.3	14.6	15.7	2.3	1.7	0.9	5.3	0.6
	MAXIMUM	34.0	14.4	47.0	39.5	10.0	5.8	э. э	22.7	2.0
	STD DEV	5.9	3.2	13.0	9.2	1.9	1.1	0.8	4.2	0.5
	COUNT	32	32	33	33	33	33	27	33	8
	MINIMUM	0.2	0.6	5.0	6.0	0.5	0.2	0.1	0.1	0.3
NORTHERN GROUP	AVERAGE	5.6	5.0	22.5	19.3	2.7	2.1	0.9	Э.1	0.8
	MAXIMUM	17.5	14.4	47.0	38.1	10.0	5.8	э.о	7.9	2.0
	STD DEV	4.9	э.э	12.3	9.3	2.1	1.2	0.9	1.9	0.6
	COUNT	54	52	48	53	51	40	29	53	10
	MINIMUM	0.6	0.2	0.1	1.3	0.3	0.2	0.2	0.6	0.1
Southern Group	AVERAGE	8.9	4.0	9.2	13.5	2.0	1.4	0.9	6.9	0.4
	MAXIMUM	34.0	14.3	35.7	39.5	7.3	5.3	э.э	22.7	1.0
	STD DEV	6.1	Э.1	10.4	8.5	1.6	1.0	0.7	4.5	0.3

		PHOSPHORITE EXPRESSED AS PERCENTAGES SG >2.85 FR	OTHERS WEIGHT OF THE ACTION	WT % EHM/C	WT % EHM/T	'WT % LABILES	ZTR INDEX	ILMENITE/ LEUCOXENE RATIO
ALL SAMPLES	COUNT	61	78	87	86	87	87	73
	MINIMUM	0.1	0.0	1.0	.0	0.0	1.9	1.1
	AVERAGE	13.4	12.3	43.9	0.9	25.9	15.5	20.6
	MRXIMUM	66.0	93.0	81.7	4.4	59.5	50.0	140.2
	STD DEV	17.1	22.2	17.2	1.0	16.7	10.1	21.0
NORTHERN GROUP	COUNT	10	29	33	33	33	33	33
	MINIMUM	0.1	0.1	23.5	0.1	16.6	1.9	1.8
	AVERAGE	0.8	3.1	48.2	1.5	40.6	8.6	17.8
	MAXIMUM	2.2	10.7	80.0	4.4	59.5	19.4	140.2
	STD DEV	0.7	2.9	12.9	1.2	10.6	4.3	24.8
Southern group	COUNT	51	48	54	53	54	54	40
	MINIMUM	0.1	0.1	1.0	.0	0.0	3.5	1.1
	AVERAGE	15.9	18.1	41.3	0.5	16.9	19.7	22.9
	MAXIMUM	66.0	93.0	81.7	1.4	49.0	50.0	70.9
	STO DEV	17.7	26.6	18.8	0.3	12.8	10.3	16.9

whereas the southern group of samples separated into carbonate-rich and carbonate-poor subgroups at 40 percent $CaCO_3$. Greater or less than 10 weight percent >16 mesh (>1.18mm) defined coarser-grained (gravel) and finer-grained (sand) populations within each area.

The average gravel content (>2.00 mm size fraction) for the 87 samples is 0.6 weight percent in a range of 0.0 to 9.0 percent (Table 5). The particles in this size fraction are composed mostly of carbonate (shells and shell fragments), with minor quartz pebbles, and rock fragments. The sand-size fraction (2.00 to 0.0625 mm) constitutes an average of 98.0 weight percent in a range of 76.0 to 100.0 percent of the bulk sample. Quartz is the dominant mineral constituent of the sand-size fraction in both the northern and southern portions of the study area, however, a significant portion of this size fraction consists of carbonate in some places. The silt-size fraction (0.0625 to 0.0039 mm) averages 1.4 weight percent in a range of 0.0 to 17.5 percent. The clay-size fraction (<0.0039 mm) averages 0.1 weight percent in a 0.0 to 6.5 percent range.

The percentage of heavy minerals (calculated as a percentage of the bulk sample on a dry weight basis) ranges from 0.04 to 7.79, and averages 1.77 (Table 5). The heavy-mineral assemblage (population average percentage given in parenthesis) consists of ilmenite (21.1), aluminosilicates (undifferentiated sillimanite, kyanite, and andalusite, 15.7), pyroboles (undifferentiated pyroxene and amphibole, 14.6), phosphorite (13.4), garnet (8.0), staurolite (7.7), zircon (5.3), epidote (4.3), magnetite (2.4), tourmaline (2.4), leucoxene (altered ilmenite, 1.7), rutile (0.9), and monazite (0.6). An "others" group was also estimated and includes shell fragments (both macro- and microfossil), mica, polymineralic grains, siderite(?), spinel(?),

glauconite, sulfides (of biogenic origin), unidentified opaques and nonopaques, quartz, and clay balls.

DATA ANALYSIS

Variations in mineral composition appear to be a function of sediment texture and site bathymetry. An abrupt decrease in the heavy-mineral content of the offshore sediments to the south of Cape Hatteras (Figure 2) is paralleled by a decrease in total feldspar content (Figure 3). We interpret the higher feldspar content of the sediments to the north of Hatteras as an indicator of a fluvial source of detritus. Seismic surveys showing the presence of an eastward-trending ancestral Albemarle channel, as well as fluvial channel deposits (Shideler and Swift, 1972) and bathymetric and textural data showing what may constitute the retreat path of the ancestral James River (Swift and others, 1977) provide supporting evidence for this interpretation. Within the northern group $CaCO_3$ -poor sands have higher feldspar contents as do deeper-water samples (Figure 4). Within the southern group, outer- and inner-shelf $CaCO_3$ -poor sands have higher feldspar contents while mid-shelf sediments have lower values.

The heavy-mineral content and distribution in the northern and southern groups also show marked differences (Figure 5). Overall, the northern group contains almost three times more heavy minerals than the southern group does. In the north, heavy-mineral values are highest in the mid-shelf region; south of Cape Hatteras the heavy-mineral content decreases steadily with increasing water depth. CaCO₃-poor sands in both areas have the highest heavy-mineral contents. Distribution of the economically valuable heavy minerals (EHM/T; the sum of ilmenite, leucoxene (altered ilmenite), rutile, zircon, monazite, and aluminosilicates (undif-

Figure 2. --Contour map of the percentage of heavy minerals in surficial sediments on the Atlantic Continental Shelf offshore of North Carolina. Contour interval is 0.5 percent.

Figure 3. --Contour map of the percentage of total feldspar in surficial sediments on the Atlantic Continental Shelf offshore of North Carolina. Contour interval is 1.0 percent.

•

Figure 4. --Histograms showing the distribution of feldspar in samples from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

Figure 5. --Histograms showing the distribution of heavy minerals in samples from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

ferentiated sillimanite, kyanite, andalusite) expressed as a weight percentage of the bulk sample) parallels the distribution pattern of the heavy minerals (Figure 6). On the northern segment of the North Carolina Continental Shelf economically valuable heavy minerals have their highest level of concentration in the mid-shelf region; on the southern segment, highest values are found in the inner-shelf region.

The CaCO₃ content of the shelf sediments south of Cape Hatteras is approximately 10 times that of the sediments to the north (Figure 7). The southern sediments show a steady increase of carbonate content with distance from shore, reaching 40 percent by weight of the sand-size fraction in the outer-shelf region. Mid-shelf sediments of the northern area have lower carbonate content than adjacent regions. The data on the CaCO₃ content of the sediments to the north and to the south of Cape Hatteras are consistent with Uchupi's (1963) observation that the Cape Hatteras area divides the dominantly relict fluvial or nearshore quartzose sands to the north from the dominantly calcareous organic and authigenic sediments to the south.

Sedimentary phosphorite (probably a carbonate fluorapatite) is about 20 times more abundant in sediments to the south of Cape Hatteras than to the north (Table 6, Figure 8). Quter-shelf sediments in the northern area have no detectable phosphorite in the heavy-mineral assemblage; in the southern area mid-shelf sediments have higher concentrations than the inner- or outer-shelf regions. Higher overall phosphorite contents of the sediments to the south are consistent with previously documented phosphorite resources in ocean floor sediments (for example, Riggs and others, 1982; Riggs and others, 1985).

36

i

Figure 6. --Histograms showing the distribution of economic heavy minerals (expressed as weight percentages of bulk samples) in samples from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

Figure 7. --Histograms showing the distribution of CaCO₃ (calcium carbonate) in sediments from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

Table 6. --Table showing statistical data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina south of Cape Hatteras grouped according to compositional, textural, and bathymetric criteria. Explanation of column headers given on Tables 2 - 4.

		GRAVEL >2.00 mm %	SAND 2.00 TO 0.0625 mm %	SILT 0.0625 TO 0.0039 mm %	CLAY <0.0039 ៣៣ %	WT X >16 MESH	WT % <16->325 MESH	WT % <325 MESH	MEAN SIZE mm	GAMMA ACTIVITY CPM/g
Southern Inner Shelf <20m Depth	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	16 0.0 1.1 7.0 2.2	16 84.0 97.1 100.0 4.2	16 0.0 1.8 16.0 4.2	16 0.0 0.0 0.0 0.0	14 0.0 10.4 33.4 10.3	14 66.6 89.0 99.9 9.9	14 0.0 0.5 2.3 0.8	16 0.08 0.35 0.93 0.24	7 0.26 0.75 1.52 0.41
SOUTHERN MID SHELF >20m-<40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	26 0.0 0.2 1.5 0.4	26 98.0 99.5 100.0 0.7	26 0.0 0.3 2.0 0.6	26 0.0 0.0 0.0 0.0	25 0.2 6.4 44.8 10.6	25 55.2 93.5 99.7 10.6	25 0.0 0.1 0.2 0.1	26 0.15 0.29 0.65 0.14	14 0.25 0.73 1.12 0.29
SOUTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	12 0.0 0.2 1.0 0.4	12 94.0 98.6 100.0 1.7	12 0.0 1.3 6.0 1.7	12 0.0 0.0 0.0 0.0	12 0.2 6.7 21.7 6.2	12 77.9 92.8 98.9 6.1	12 0.0 0.4 1.5 0.5	12 0.10 0.30 0.55 0.14	7 0.27 0.55 0.75 0.15
SOUTHERN Cacog-Poor SEDIMENTS	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	36 0.0 0.5 7.0 1.5	36 84.0 98.3 100.0 3.2	36 0.0 1.2 16.0 3.0	36 0.0 0.0 0.0 0.0	33 0.0 7.1 44.8 10.1	33 55.2 92.6 99.5 10.0	33 0.0 0.3 1.8 0.5	36 0.08 0.30 0.93 0.18	19 0.25 0.67 1.52 0.32
SOUTHERN CaCO3-RICH SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	13 0.0 0.4 1.0 0.5	13 90.0 99.2 100.0 0.7	13 0.0 0.5 2.0 0.7	13 0.0 0.0 0.0 0.0	13 0.2 9.1 27.2 8.9	13 72.8 90.7 99.7 9.0	13 0.0 0.2 1.3 0.3	13 0.19 0.36 0.65 0.15	7 0.27 0.68 1.12 0.30
Southern	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	97 0.0 .0 1.0 0.2	37 84.0 98.6 100.0 3.0	37 0.0 1.4 16.0 3.0	37 0.0 0.0 0.0 0.0	97 0.0 2.5 9.1 2.7	37 90.9 97.1 99.9 2.7	97 0.0 0.3 2.3 0.6	37 0.08 0.23 0.55 0.09	10 0.25 0.70 1.11 0.25
Southern Gravels	Count Minimum Average Maximum STD Dev	14 0.0 1.7 7.0 2.2	14 93.0 98.3 100.0 2.2	14 0.0 0.0 0.0 0.0	14 0.0 0.0 0.0 0.0	14 10.7 21.0 44.8 9.2	14 55.2 78.9 89.3 9.1	14 0.0 0.1 1.3 0.3	14 0.33 0.54 0.93 0.16	9 0.26 0.67 1.52 0.41

	-	VOL % CRCO3 OF SAND	Potash Feldspar As a pei Carbonate (PLAGIOCLASE FELDSPAR RCENTAGE OF 0.125250 m	TOTAL FELDSPAR THE NON- n FRACTION	NUMBER OF SIZE MODES	WEIGHT % HM	ILMENITE M EXPRES PERCEN SG >2	IAGNETITE ISED AS WEI ITAGES OF T 2.85 FRACTI	GARNET GHT HE ON
SOUTHERN INNER SHELF <20m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STO DEV	12 2 12 37 11	14 1 5 13 4	13 1 3 9 3	13 2 9 21 6	16 1.0 1.4 3.0 0.6	16 0.1 1.2 3.3 1.0	15 4.6 20.4 47.4 11.1	O NV NV NV NV	15 1.4 6.8 14.1 3.7
SOUTHERN MID SHELF >20m-<40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	25 3 26 78 19	25 2 4 7 1	24 1 2 6 2	24 3 6 12 2	26 1.0 1.1 2.0 0.3	26 0.4 1.1 2.5 0.6	26 3.8 20.9 56.9 11.8	0 NV NV NV	26 0.9 3.9 8.0 1.8
SOUTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	12 4 38 77 25	11 9 6 15 4	11 1 4 7 2	11 5 10 20 6	12 1.0 1.1 2.0 0.3	12 .0 0.8 1.9 0.5	12 1.2 17.9 31.0 11.3	0 NV NV NV NV	12 0.6 5.1 11.6 3.4
SOUTHERN CaCO3-POOR SEDIMENTS	COUNT MINIMUM AVERAGE MRXIMUM STD DEV	36 2 15 40 12	34 1 5 15 3	33 1 9 2	33 2 8 21 5	36 1.0 1.3 3.0 0.5	36 0.1 1.1 3.3 0.8	35 3.2 22.9 56.9 11.6	0 VV NV NV NV	35 1.4 5.1 12.5 2.8
SOUTHERN CaCO3-RICH SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	13 42 54 78 14	13 2 4 10 2	13 1 2 6 2	13 3 6 15 3	13 1.0 1.0 1.0 0.0	13 .0 0.9 1.6 0.5	13 1.2 11.5 31.0 8.1	0 NV NV NV NV	13 0.6 3.8 10.0 2.9
SOUTHERN SANDS	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	33 2 24 78 22	34 1 5 15 3	32 1 3 9 2	32 4 8 21 5	37 1.0 1.2 2.0 0.4	37 0.3 1.1 2.8 0.6	37 1.2 21.5 56.9 12.2	0 NV NV NV NV	37 0.6 4.8 14.1 3.0
Southern Gravels	Count Minimum Average Maximum STD Dev	13 7 33 75 18	14 1 4 10 2	14 1 2 5 1	14 2 6 15 3	14 1.0 1.4 3.0 0.6	14 .0 0.9 3.3 0.9	13 2.3 14.8 31.0 8.6	0 NV NV NV	13 1.9 6.1 12.5 3.2

.

STAUROLITE EPIDOTE PYROBOLES ALUMINO- TOURMALINE LEUCOXENE RUTILE ZIRCON MONAZITE SILICATES

	-		-EXPRESSED	AS WEIGHT	PERCENTAGES	OF THE	SG > 2.85	FRACT	ION	
SOUTHERN INNER SHELF <20m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	16 1.0 8.8 34.0 8.5	15 0.6 4.6 13.1 3.5	13 0.9 14.9 35.7 13.3	15 2.0 16.3 39.5 11.5	14 0.3 1.7 3.9 1.1	12 0.7 1.5 4.3 1.0	11 0.2 0.8 3.3 0.8	15 0.7 5.8 11.4 3.4	2 NV NV NV NV
SOUTHERN MID SHELF >20m-<40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	26 0.9 10.2 19.0 4.6	26 0.4 3.7 14.3 2.9	25 0.1 5.4 20.8 6.1	26 2.0 12.8 23.1 5.6	26 0.4 2.1 7.3 1.9	21 0.2 1.5 5.3 1.1	13 0.3 1.0 2.6 0.7	26 1.5 8.2 22.7 4.6	3 0.1 0.3 0.7 0.3
SOUTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	12 0.6 6.2 12.9 4.2	11 0.2 3.6 8.0 2.9	10 0.3 11.0 34.4 10.7	12 1.3 11.4 25.4 8.2	11 0.3 2.0 4.4 1.5	7 0.3 1.1 2.1 0.6	5 0.5 0.7 1.2 0.2	12 0.6 5.4 15.3 4.9	5 0.2 0.4 1.0 0.3
SOUTHERN CaCO3-POOR SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	36 0.6 8.8 21.8 5.4	35 0.2 4.6 14.3 3.4	33 0.3 11.1 35.7 10.9	35 2.0 15.9 39.5 8.4	35 0.3 2.1 7.0 1.6	30 0.5 1.4 4.3 0.8	21 0.2 0.7 1.9 0.4	35 0.9 7.5 22.7 4.8	8 0.2 0.4 1.0 0.3
SOUTHERN Caco3-Rich Sediments	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	13 1.7 7.9 17.9 4.7	12 0.4 2.1 5.0 1.5	10 0.1 3.4 21.8 6.2	13 1.3 8.6 22.1 6.3	12 0.3 1.2 2.7 0.8	6 0.2 0.8 2.1 0.7	4 0.4 0.9 1.3 0.4	13 0.6 4.7 10.7 3.1	1 NV NV NV
Southern Sands	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	37 0.6 9.0 34.0 6.2	37 0.2 4.1 14.3 2.9	36 0.1 9.8 35.7 11.0	37 1.3 14.8 39.5 8.0	37 0.3 2.2 7.3 1.8	31 0.2 1.5 5.3 1.1	21 0.2 0.9 3.3 0.8	37 0.6 6.9 15.3 4.1	6 0.2 0.5 1.0 0.3
Southern Gravels	Count Minimum Average Maximum STD Dev	14 0.9 8.7 21.8 6.2	12 0.4 2.2 6.3 1.7	9 0.3 5.0 21.8 6.5	13 2.0 7.4 22.1 5.8	11 0.3 1.4 2.6 0.9	6 0.6 0.9 1.3 0.2	5 0.3 0.5 1.0 0.3	13 0.7 5.9 22.7 5.6	4 0.1 0.3 0.6 0.2

		PHOSPHORITE EXPRESSED AS PERCENTAGES SG >2.85 FR	OTHERS WEIGHT OF THE RCTION	WT % EHM/C	WT % EHM/T	WT % LABILES	ZTR INDEX	ILMENITE/ LEUCOXENE RATIO
Southern Inner Shelf <20m Depth	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	14 0.2 13.1 66.0 19.4	13 0.1 16.9 93.0 28.3	16 1.0 41.7 70.1 17.5	15 .0 0.6 1.4 0.4	16 0.0 22.8 49.0 16.0	16 3.5 17.4 50.0 12.3	12 1.1 23.4 70.9 19.0
SOUTHERN MID SHELF >20m-<40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	25 0.1 19.7 59.5 16.3	23 0.1 14.0 78.3 23.4	26 9.9 43.6 81.7 18.1	26 0.1 0.5 1.4 0.3	26 1.7 12.9 33.1 9.1	26 7.8 22.8 41.4 8.5	21 4.9 23.1 67.2 17.6
Southern Outer Shelf >40m Depth	COUNT MINIMUM AVERAGE MAXIMUM STO DEV	12 0.3 11.2 59.8 16.5	12 0.7 27.4 87.0 27.9	12 3.4 35.8 61.4 20.9	12 .0 0.3 0.9 0.3	12 1.0 17.5 44.7 11.7	12 4.3 16.1 34.1 9.0	7 4.0 21.4 31.0 8.9
Southern Cacog-Poor Sediments	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	33 0.1 12.6 66.0 15.6	30 0.1 13.6 93.0 25.4	36 1.0 46.8 81.7 17.1	35 .0 0.5 1.4 0.3	36 0.0 19.6 49.0 13.3	36 4.3 19.8 50.0 10.8	30 1.1 22.8 70.9 16.0
SOUTHERN - CaCO3-RICH SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	13 1.1 27.4 59.8 18.7	13 5.8 29.9 81.6 25.6	13 3.4 25.4 47.1 15.3	13 .0 0.2 0.5 0.2	13 1.0 8.3 27.5 7.1	13 5.8 19.1 35.9 7.9	6 4.0 24.0 66.7 21.5
Southern Sands	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	35 0.1 16.3 59.8 17.1	35 0.1 10.5 87.0 18.8	37 3.4 45.0 81.7 16.5	37 .0 0.5 1.4 0.3	37 1.0 18.4 49.0 13.5	37 4.3 19.5 34.1 9.1	31 1.1 23.2 70.9 18.7
Southern Gravels	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	13 0.7 18.1 66.0 19.4	11 5.6 45.7 93.0 30.9	14 1.0 26.7 55.4 17.1	13 .0 0.2 1.1 0.3	14 0.0 10.8 28.2 8.4	14 3.5 20.7 50.0 13.3	6 9.0 23.2 31.2 8.3

.

•

.

Figure 8. --Histograms showing the distribution of phosphorite in samples from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

Gamma-ray activity (expressed as counts per minute per gram of bulk sample) is higher overall in sediments to the north of Cape Hatteras than to the south (Tables 3, 6, 7, 8, and Figure 9); inner-shelf $CaCO_3$ -poor sediments have the higher gamma-radiation signature--southern sediments have uniformly low gamma radiation activity. A general linear relationship between the heavy-mineral content of a sample and its gamma activity (Figure 10) implies that the radioactivity of the ocean floor samples is controlled by the abundance of radioactive minerals (probably monazite because of its thorium and uranium, zircon because of its uranium and thorium, and phosphorite because of its uranium) in the heavy-mineral suite. However, potash feldspar (because of its potassium) in the sediments also should affect the radioactivity of the samples. Because feldspar (Table 3) was determined only for non-carbonate 0.125 - 0.250 mm fractions, and phosphorite is reported as a percentage recovered by heavy liquid (Table 4) from the <16 ->325 mesh (1.18 - 0.045 mm) size fraction of the bulk samples, their effect on the gamma-ray radiation signature can not be fully evaluated with the existing data. These relationships are consistent with onshore observations of Coastal Plain sediments (Mahdavi, 1964; Force and others, 1982; Grosz, 1983; Grosz and others, in press) as well as with findings on the Continental Shelf offshore of New Jersey (Grosz and others, 1989).

45

İ.

Table 7.--Table showing statistical data for 87 surface grab samples collected from the Atlantic Continental Shelf offshore of North Carolina north of Cape Hatteras grouped according to compositional, textural, and bathymetric criteria. Explanation of column headers given on Tables 2 - 4.

	-	GRAVEL >2.00 mm %	SAND 2.00 TO 0.0625 mm %	SILT 0.0625 TO 0.0039 mm 2	CLAY <0.0039 mm %	WT % >16 MESH	WT % <16->325 MESH	WT % <325 MESH	MERN SIZE mm	GAMMA ACTIVITY CPM/g
NORTHERN INNER SHELF <20m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	11 0.0 2.2 9.0 3.1	11 90.0 94.7 100.0 3.5	11 0.0 3.1 10.0 4.1	11 0.0 0.0 0.0 0.0	11 0.1 9.3 28.3 11.3	11 71.7 90.4 99.5 11.2	11 0.0 0.3 0.9 0.3	11 0.10 0.37 0.75 0.24	4 0.15 1.13 2.18 0.77
NORTHERN MID SHELF >20m-<40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	16 0.0 0.0 0.0 0.0	16 97.0 99.7 100.0 0.8	16 0.0 0.3 3.0 0.8	16 0.0 0.0 0.0 0.0	16 .0 1.0 4.7 1.3	16 95.0 98.7 99.7 1.3	16 0.0 0.3 1.4 0.4	16 0.11 0.20 0.36 0.08	8 0.19 0.68 1.53 0.43
NORTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	6 0.0 0.1 0.5 0.2	6 76.0 94.3 100.0 8.6	6 0.0 4.6 17.5 6.4	6 D.O 1.1 6.5 2.4	6 0.1 1.7 4.2 1.4	6 92.2 96.8 99.7 2.4	6 0.0 1.4 7.8 2.8	6 0.06 0.23 0.41 0.12	4 0.20 0.67 0.93 0.30
NORTHERN CaCO3-POOR SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	21 0.0 0.3 6.0 1.3	21 90.0 97.5 100.0 3.6	21 0.0 2.1 10.0 3.5	21 0.0 0.0 0.0 0.0	21 .0 2.4 25.2 5.3	21 74.8 97.3 99.7 5.2	21 0.0 0.3 1.4 0.4	21 0.10 0.24 0.75 0.15	11 0.19 0.69 2.18 0.60
NORTHERN CaCO3-RICH SEDIMENTS	Count Minimum Average Maximum STD Dev	7 0.0 2.6 9.0 3.3	7 76.0 94.0 100.0 8.0	7 0.0 2.5 17.5 6.1	7 0.0 0.9 6.5 2.3	7 0.1 10.9 28.3 11.4	7 71.7 88.0 99.4 10.7	7 0.0 1.1 7.8 2.7	7 0.06 0.40 0.69 0.22	9 0.15 0.52 0.92 0.32
NORTHERN SANDS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	29 0.0 .0 0.5 0.1	29 76.0 97.5 100.0 5.1	29 0.0 2.3 17.5 4.2	29 0.0 0.2 6.5 1.2	29 .0 1.3 4.7 1.4	29 92.2 98.2 99.7 1.7	29 0.0 0.6 7.8 1.4	29 0.06 0.21 0.42 0.10	15 0.19 0.83 2.18 0.54
NORTHERN GRAVELS	Count Minimum Average Maximum Sto Dev	4 4.0 6.0 9.0 1.9	4 91.0 94.0 96.0 1.9	4 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0	4 11.7 23.3 28.3 6.8	4 71.7 76.7 88.3 6.8	4 0.0 0.0 0.0 0.0	4 0.50 0.65 0.75 0.09	1 NU NU NU NU

	-	VOL % CRCO3 OF SAND	Potash Felospar As a pei Carbonate	PLAGIOCLASE FELDSPAR RCENTAGE OF 0.125250 m	TOTAL FELDSPAR THE NON- m FRACTION	NUMBER OF SIZE MODES	WEIGHT % HM	ILMENITE EXPRE PERCE SG >	MAGNETITE SSED AS WE NTAGES OF 2.85 FRACT	GRRNET IGHT THE ION
NORTHERN	COUNT MINIMUM	9	9	9 2	9 5 12	11 1.0 2.2	11 0.2	11 4.5	2 NV NU	11 3.9
<20m DEPTH	MAXIMUM STD DEV	5 9 3	10 2	10 3	13 19 5	2.3 4.0 0.9	2.3 7.8 2.3	30.8 7.2	NV NV	27.9 7.2
NORTHERN MID SHELF >20m-<40m DEPTH	Count Minimum Average Maximum STD Dev	13 1 2 7 2	13 5 9 17 3	13 1 5 11 4	13 8 14 22 5	16 1.0 1.1 2.0 0.3	16 0.4 3.4 7.2 1.9	16 8.9 24.7 47.5 12.1	1 NV NV NV	16 7.0 12.5 26.7 5.1
NORTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	5 1 3 6 2	3 7 8 10 1	3 3 7 10 3	3 10 15 19 4	6 1.0 1.0 1.0 0.0	6 0.9 3.0 5.9 1.8	6 9.6 28.6 47.6 14.5	3 0.6 · 2.2 4.8 1.8	6 4.6 13.0 27.9 9.2
NORTHERN CaCO3-POOR SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	21 1 1 3 1	17 5 8 13 2	17 1 6 11 3	17 7 15 22 4	21 1.0 1.5 4.0 0.8	21 0.5 3.5 7.8 2.1	21 4.5 24.0 47.6 13.1	5 0.1 2.7 7.3 2.9	21 3.9 12.4 27.9 6.4
NORTHERN CaCO3-RICH SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	7 3 6 8 2	5 2 9 17 5	5 1 4 9 3	5 5 12 19 5	7 1.0 1.7 3.0 0.9	7 0.2 1.2 3.9 1.2	7 9.6 23.5 45.3 11.5	2 NV NV NV NV	7 4.8 16.0 27.9 8.8
NORTHERN SANDS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	23 1 2 7 2	23 5 8 17 3	23 1 6 11 3	23 8 14 22 4	29 1.0 1.3 4.0 0.6	29 0.4 3.3 7.8 2.0	29 4.5 22.9 47.6 12.6	6 0.1 2.4 7.3 2.7	29 3.9 11.8 27.9 6.2
NORTHERN GRAVELS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	4 1 6 9	2 2 4 5 2	2 NU NU NU NU	2 27 27 27 27 27 27 27 27 27 27 27 27 27	4 2.0 2.8 3.0 0.4	4 0.2 0.7 1.7 0.6	4 10.5 21.1 30.8 7.2	0 77 77 77 77	4 13.9 20.9 27.9 5.0

•

·

	-			D AS WEIGHT	r percenta	GES OF THE SG	> 2.85	FRACTI	ON	
NORTHERN INNER SHELF <20m DEPTH	COUNT MINIMUM RVERAGE MAXIMUM STD DEV	11 0.2 5.0 13.0 4.7	11 1.5 5.8 14.4 3.3	11 5.0 23.9 47.0 12.9	11 7.0 19.7 38.1 10.0	11 0.8 3.3 7.5 2.0	11 0.2 2.5 5.8 1.4	11 0.3 0.8 3.0 0.7	11 1.7 4.3 7.9 2.1	3 0.3 0.5 0.7 0.2
NORTHERN MID SHELF >20m-<40m DEPTH	Count MINIMUM AVERAGE MAXIMUM STD DEV	15 0.7 6.4 1 7.5 5.4	15 0.9 4.2 11.3 3.0	16 6.0 22.2 43.3 12.3	16 6.0 19.2 37.4 9.0	16 0.5 2.6 10.0 2.4	16 0.7 2.1 4.3 1.0	12 0.1 1.2 3.0 1.1	16 0.6 2.7 5.6 1.4	4 0.5 1.1 2.0 0.7
NORTHERN OUTER SHELF >40m DEPTH	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	6 0.3 4.7 10.2 3.5	6 0.6 5.3 11.4 3.4	6 6.3 20.7 41.2 10.6	6 10.0 18.9 35.0 8.3	6 0.9 1.9 3.4 1.0	6 0.9 1.6 3.6 0.9	4 0.3 0.4 0.7 0.1	6 0.1 1.7 4.2 1.6	1 NV NV NV NV
NORTHERN CaCO3-POOR SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	20 0.2 5.8 17.5 5.2	20 0.9 4.5 11.4 2.7	21 5.0 21.9 47.0 12.5	21 6.0 19.4 38.1 10.2	21 0.5 2.9 10.0 2.1	21 0.8 2.4 5.8 1.2	17 0.3 1.0 3.0 1.0	21 0.1 2.6 6.6 1.6	4 0.5 0.9 2.0 0.6
NORTHERN CaCO3-RICH SEDIMENTS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	7 0.3 6.2 12.3 4.3	7 0.6 5.9 14.4 4.0	7 6.6 20.3 41.2 12.9	7 8.1 17.3 35.0 8.1	7 0.8 1.8 4.1 1.1	7 0.2 1.5 3.6 1.1	4 0.3 0.5 0.8 0.3	7 0.2 3.7 6.2 2.2	3 0.3 0.9 1.6 0.5
NORTHERN SRNDS	COUNT MINIMUM AVERAGE MAXIMUM STD DEV	28 0.2 5.3 17.5 4.9	28 0.6 4.6 11.4 2.9	29 6.0 23.8 47.0 11.8	29 6.0 20.2 38.1 9.4	29 0.5 2.6 10.0 2.1	29 0.7 2.2 5.8 1.1	23 0.1 1.0 3.0 1.0	29 0.1 2.7 7.9 1.7	6 0.5 0.9 2.0 0.6
NORTHERN GRAVELS	Count Minimum Average Maximum STD Dev	4 2.4 8.1 12.3 4.1	4 3.6 7.5 14.4 4.2	4 5.0 12.9 32.7 11.4	4 8.1 13.2 19.3 4.6	4 0.8 3.4 6.6 2.2	4 0.2 1.4 2.3 0.9	4 0.3 0.7 1.0 0.3	4 4.2 5.8 6.6 0.9	2 54 54 74 74 74 74

STAUROLITE EPIDOTE PYROBOLES ALUMINO- TOURMALINE LEUCOXENE RUTILE ZIRCON MONAZITE SILICATES

		PHOSPHORITE EXPRESSED AS PERCENTAGES SG >2.85 FR	OTHERS WEIGHT OF THE RCTION	WT % EHM/C	WT % EHM∕T	WT % LABILES	ZTR INDEX	ILMENITE/ LEUCOXENE RATIO
	COUNT							
NODTLEDN	MINIMUM	4 1 0 2	01	20 0	0,1	11	· 11 A 1	1 0
INNED SHELE	AUFDAGE	0.3	4 6	44 0	1 1	43.2	98	20.5
	MAXIMUM	1.6	10.7	56.2	4.4	55.3	19.3	140.2
	STD DEV	0.5	3.8	8.4	1.2	7.6	4.5	38.9
	COUNT	4	14	16	16	16	16	16
NORTHERN	MINIMUM	I 0.1	0.1	23.5	0.2	16.6	3.5	3.2
MID SHELF	AVERAGE	0.7	2.4	50.0	1.7	39.1	8.8	14.9
>20m-<40m DEPTH	MAXIMUM	2.2	7.0	80.0	4.2	59.5	19.4	46.0
	STD DEV	0.9	2.1	15.7	1.2	12.0	4.1	10.9
	COUNT	2	5	6	6	6	6	6
NORTHERN	MINIMUM	I NV	1.4	39.7	0.4	27.1	1.9	8.9
OUTER SHELF	AVERAGE	. NV	2.4	51.2	1.6	40.0	5.8	20.5
>40m DEPTH	MAXIMUM	I NV	5.1	60.9	3.5	52.0	10.1	52.9
	STD DEV	NV NV	1.4	9.0	1.1	10.1	2.6	15.3
	COUNT	7	19	21	21	21	21	21
NORTHERN	MINIMUM	0.1	0.1	23.5	0.2	16.6	3.8	1.8
CaC O3-P OOR	AVERAGE	0.7	э.э	49.3	1.8	39.1	8.2	13.8
SEDIMENTS	MAXIMUM	1.6	10.7	80.0	4.4	59.5	19.4	52.9
	STO DEV	0.6	3.1	13.5	1.2	11.4	3.9	13.0
	COUNT	4	5	7	7	7	7	7
NORTHERN	MINIMUM	0.2	0.8	37.3	0.1	27.5	1.9	4.9
CaCO3-RICH	AVERAGE	1.0	3.1	46.7	0.5	42.5	8.1	35.0
SEDIMENTS	MAXIMUM	2.2	7.1	59.1	1.8	53.9	15.1	140.2
	5TD DEV	0.8	2.5	7.5	П.Б	Я, 6 	9.9 	44.3
	COUNT	8	26	29	29	29	29	29
NORTHERN	MINIMUM	0.1	0.1	23.5	0.2	16.6	1.9	1.8
SANDS	AVERAGE	0.9	2.8	49.0	1.7	40.5	8.4	13.7
	MAXIMUM	2.2	10.7	80.0	4.4	59.5	19.4	52.9
	STU DEV	0.8	2.5	13.4	1.2	10.6	4.3	12.0
	COUNT	2	3	° 4	4	4	4	4
NORTHERN	MINIMUM	NV	0.8	37.3	0.1	29.8	4.6	4.9
GRAVELS	AVERAGE	NV	6.2	42.4	0.3	41.3	9.9	47.7
	MAXIMUM	NV	10.6	53.5	0.6	53.9	15.1	140.2
	STU DEV	NV	4.1	6.5	0.2	10.3	3.7	54.8

Figure 9. --Histograms showing the gamma-radiation signature of sediments from north of Cape Hatteras (upper histograms) and from south of Cape Hatteras (lower histograms). Class headers are ALL, all samples; INNER, inner-shelf; MID, mid-shelf; OUTER, outer shelf; CaCO-, carbonate-poor (<2 percent in the northern samples --<40 percent in the southern samples) sediments; CaCO3+, carbonate-rich samples (>2 percent in the northern samples-->40 percent in the southern samples); SANDS, <10 weight percent >16 mesh fraction; GRAVELS, >10 weight percent >16 mesh fraction.

Figure 10. --Plot of gamma activity and heavy-mineral content of bulk samples for the study area.

CONCLUSIONS

Data generated for the North Carolina Continental Shelf show patterns of heavy-mineral distribution that are related to sample texture, and to site physiography and bathymetry. High concentrations of heavy minerals are associated with sediments north of Cape Hatteras where glacial-fluvial sedimentation was dominant during the Pleistocene (Hathaway, 1987). Little fluvial sedimentation takes place today north of Hatteras (Hathaway, 1972). South of Hatteras a mid-Tertiary carbonate- and phosphate-rich substrate (Popenoe, 1985) is associated with heavy-mineral concentrations that are about 30 percent of those of the northern area. The data indicate that fluvial sedimentation south of Hatteras is minimal.

North of Cape Hatteras, sediments of the inner- and mid-shelf provinces contain comparatively high concentrations of heavy minerals with notable concentrations of economically valuable heavy minerals in sediments of the mid-shelf region. Mid-shelf ridges on the Atlantic Continental Shelf offshore of New Jersey were interpreted as submerged paleobarriers that developed between 8,000 and 14,000 years B.P. and were subsequently modified by shelf currents (Swift and others, 1973; Stubblefield and others, 1983). Studies of heavy-mineral assemblages supported that interpretation (Grosz and others, 1989).

Similar data from this study only partially support that interpretation for the North Carolina Continental Shelf. In North Carolina the characteristic mineralogic and textural fingerprints of mid-shelf beachcomplex sediments are apparently dispersed by the cumulative effects of sea-level transgression and shelf currents. The overall fluvial character of the sediments, however, is not changed by these processes. Thus, heavy-

mineral studies, in conjunction with other data can be of utility in mapping the geology and resolving the geologic evolution of the surficial sediments on the North Carolina Continental Shelf.

Comparison to results from study areas offshore of New Jersey, Virginia, South Carolina, and northeastern Florida (Grosz and others, 1989; Grosz and Escowitz, 1983; Grosz and Nelson, 1989) shows that the northern segment of the North Carolina Shelf has high overall concentrations of economic heavy minerals. Inasmuch as these data were derived from surficial grab samples, their application to resource assessment is limited. The data do, however, provide guides for selection of heavy-mineral exploration targets in the study area. Vibracore samples should be collected and analyzed from inner- and mid-shelf locations where geologic, mineralogic, textural, and bathymetric criteria suggest potential for placer deposits of economic heavy minerals.

ACKNOWLEDGMENTS

We are indebted to J. Santos and M. Costello of the USGS at Woods Hole, MA for processing the samples for their heavy-mineral content. We are also indebted to G.D. Robinson and J.P. D'Agostino of the USGS, Reston, VA for their careful review of the manuscript.

This study was funded in part by a grant from the Minerals Management Service under Cooperative Agreement 14-12-0001-30387 to the North Carolina Geological Survey. Arjun R. Gadgil, Volunteer for Science to the U.S. Geological Survey, from South Lakes High School, Reston, Virginia entered data into a computer spreadsheet and drafted Figure 1.

REFERENCES

- Berquist, C.R., Jr., and Hobbs, C.H., III, 1988, Study of economic heavy minerals of the Virginia inner continental shelf: Virginia Division of Mineral Resources Open-File Report 88-4, 149 p.
- Clifton, H.E., Hunter, R.E., Swanson, F.J., and Phillips, R.L., 1969, Sample size and meaningful gold analysis: U. S. Geological Survey Professional Paper 625-C, 19 p.
- Force, E.R., Grosz, A.E., Loferski, P.J., and Maybin, A.H., 1982, Aeroradioactivity maps in heavy-mineral exploration--Charleston, South Carolina, area: U. S. Geological Survey Professional Paper 1218, 19 p.
- Goodwin, B.K., and Thomas, J.B., 1973, Inner shelf sediments off Chesapeake Bay, v. III, Heavy Minerals: Virginia Institute of Marine Science, Special Scientific Report 68, 34 p.
- Grosz, A.E., 1983, Application of total count aeroradiometric maps to the exploration for heavy-mineral deposits in the Coastal plain of Virginia (with a section on field-spectrometer-data reduction by Kenneth L. Kosanke): U. S. Geological Survey Professional Paper 1263, 20 p.
- Grosz, A.E., and Escowitz, E.C., 1983, Economic heavy minerals of the United States Atlantic continental shelf, <u>in</u>, Nearshore sedimentology, W.F. Tanner, ed., Proceedings of the 6th symposium on coastal sediment-ology, Florida State University, pp. 231-242.
- Grosz, A.E., Hathaway, J.C., and Escowitz, E.C., 1986, Placer deposits of heavy minerals in Atlantic Continental Shelf sediments: Proceedings of the 18th Annual Offshore Technology Conference, Houston, Texas, May 5-8, 1986, Volume 2, pp. 387-394.

- Popenoe, Peter, 1985, Cenozoic depositional and structural history of the North Carolina margin from seismic-stratigraphic analyses, <u>in</u>, Poag, C.W., ed., Geologic evolution of the United States Atlantic Margin, New York, Van Nostrand Reinhold Co., pp. 125-187.
- Riggs, S.R., Hine, A.C., Snyder, S.W., Lewis, D.W., Ellington, M.D., and Stewart, T.L., 1982, Phosphate exploration and resource potential on the North Carolina continental shelf: Proceedings of the 14th Annual Offshore Technology Conference, Houston, Texas, May 3-6, 1982, pp. 737-742.
- Riggs, S.R., Snyder, S.W.P., Hine, A.C., Snyder, S.W., Ellington, M.D., and Mallette, P.M., 1985, Geologic framework of phosphate resources in Onslow Bay, North Carolina continental shelf: Economic Geology, v. 80, pp. 716-738.
- Shideler, G.L., and Swift, D.J.P., Seismic reconnaissance of post-Miocene deposits, Middle Atlantic continental shelf - Cape Henry, Virginia to Cape Hatteras, North Carolina: Marine Geology, v. 12, pp. 165-185.
- Stubblefield, W.L., Kersey, D.G., and McGrail, D.W., 1983, Development of middle continental shelf sand ridges; New Jersey: The American Association of Petroleum Geologists Bulletin, v. 67, no. 5, pp. 817-830.
- Swift, D.J.P., Duane, D.B., and McKinney, T.F., 1973, Ridge and swale topography of the Middle Atlantic Bight, North America: secular response to the Holocene hydraulic regime: Marine Geology, v. 15, pp. 227-247.Swift, D.J.P., Nelsen, Terry, McHone, John, Holliday, Barry, Palmer, Harold, and Shideler, Gerald, 1977, Holocene evolution of the inner shelf of southern Virginia: Journal of Sedimentary Petrology, v. 47,

no. 4, pp. 1454-1474.

- Terry, R.D., and Chillingar, G.V., 1955, Comparison charts for visual estimation of percentage composition: Journal of Sedimentary Petrology, v. 25, pp. 229-234.
- Uchupi, Elazar, 1963, Sediments on the continental margin off the eastern United States: U.S. Geological Survey Professional Paper 475-C, pp. C132-C137.