

Role of Green Infrastructure for North Carolina's Changing Storms

July 20, 2022

Building on Past Discussions

Hazen

GSI Becoming More Popular and Prevalent

Storms are Changing

Priorities are Changing

Balancing Shifting Stormwater Priorities

Comparing Rainfall Data to NOAA Atlas 14

Raleigh

Atlas 14 Comparison

ARI (yrs)

Charlotte

Atlas 14 Comparison

ARI (yrs)

Wilmington

At	Atlas 14 Comparison						E	Expected Storms		Observed Storms	
	2-hr Duration		6-hr Duration		ation	12	12-hr Duration		2	24-hr Duration	
1	12	17	1	12	14	1	12	16	1	12	14
2	6	10	2	6	6	2	6	10	2	6	10
5	2	4	5	2	5	5	2	4	5	2	5
10	1	1	10	1	1	10	1	2	10	1	3
25	0	0	25	0	0	25	0	0	25	0	1
50	0	0	50	0	0	50	0	0	50	0	0
100	0	0	100	0	0	100	0	0	100	0	0
200	0	0	200	0	0	200	0	0	200	0	0
500	0	0	500	0	0	500	0	0	500	0	0
1000	0	0	1000	0	0	1000	0	0	1000	0	0

ARI (yrs)

What about the future?

Wake County Average Daily Max Temperature

U.S. Climate Resilience Toolkit Climate Explorer

Storm Projections from SWMM-CAT

----- Near Term Warm/Wet ----- Far Term Median ----- Far Term Hot/Dry ----- Far Term Warm/Wet ----- Far Term Median ----- Far Term Hot/Dry

Projected 10-yr, 24-hr Design Storm Changes

2045-2074 Timeframe

City	Current	Low Adjustment	High Adjustment	Low Adjustment	High Adjustment
Wilmington	7.22''	-0.3%	5.5%	-0.02''	0.39''
Greenville	5.81''	0.9%	5.8%	0.05''	0.33''
Raleigh	4.94''	0.5%	6.2%	0.02''	0.30''
Fayetteville	5.52''	0.1%	6.1%	0.01''	0.34''
Greensboro	4.77''	0.7%	6.1%	0.03''	0.29''
Charlotte	4.86''	-0.4%	5.6%	-0.02''	0.27''
Asheville	4.94''	2.6%	6.5%	0.13''	0.32''

How are storms changing?

- Increased frequency of smaller storms contributing to nuisance flooding
- Incremental increases in 10-yr storm depths
 - 10-yr depth increases for many locations are less than 0.5 inches

What is the role of GSI?

- Can GSI mitigate incremental increases in storm depth associated with climate change?
- Can GSI play a larger role in managing localized urban flooding?

Limitations of Conventional Pipe Upsizing

Construction Disruption and Impacts

Pipe Replacement

Green Stormwater Infrastructure

Green Stormwater Infrastructure and Runoff Detention

Example Characteristics

- Curbside bioretention
- Sized to store runoff from 1" storm
- Assumed soil infiltration rate of 0.5 in/hr

Hydrologic Simulations

- 10-yr, 24-hr NRCS hydrograph
 - 6% increase to a 4.9" 10-yr storm
- Routed through bioretention, accounting for bypass/overflow
- Existing and future conditions with and without GSI
- If peak flow for future condition with GSI < existing without GSI, then storm changes are mitigated

Basic Bioretention Scenario

GSI Sizing Target	Internal Overflow	Controlled Underdrain	Simulated Storm
1.0" Storm	No	No	10-yr, 24-hr

Basic Bioretention No Underdrain No Internal Overflow

Scenario Summary

Current Conditions

- GSI capacity exceeded before storm peak
- Marginal peak reduction attributed to infiltration

Future Conditions

- GSI capacity exceeded before storm peak
- Marginal peak reduction attributed to infiltration

Mitigated Impacts of Changing Storms?

• No

Internal Overflow

Internal Overflow Options

- Stone Gabion
- Perforated Riser
- Inlet Connected to Perforated Distribution Pipe

Exchanging WQ treatment for storage capacity

Hazen

Bioretention No Underdrain Internal Overflow

Scenario Summary

Current Conditions

- Better capture
- GSI capacity exceeded before storm peak
- Marginal peak reduction attributed to infiltration

Future Conditions

- Better capture
- GSI capacity exceeded before storm peak
- Marginal peak reduction attributed to infiltration

Mitigated Impacts of Changing Storms?

• No

Controlled Underdrain

Underdrain flow restriction tailored to maximize storage for 10-yr event

Controlled Underdrain Options

- Cap w/ drilled orifice
- Weir wall
- Valve
- Automated valve

Bioretention Controlled Underdrain Internal Overflow

Scenario Summary

Current Conditions

- Flow regulated throughout storm
- Substantial peak reduction

Future Conditions

- Flow regulated throughout storm
- Substantial peak reduction

Mitigated Impacts of Changing Storms?

• Yes

Iceberg Green Stormwater Infrastructure

Expanded Bioretention Controlled Underdrain Internal Overflow

Scenario Summary

Current Conditions

- Flow regulated throughout storm
- Substantial peak reduction

Future Conditions

- Flow regulated throughout storm
- Substantial peak reduction

Mitigated Impacts of Changing Storms?

• Yes

Gutted Bioretention

- Responsive repurposing of bioretention to maximize storage and support drainage relief
- Remove treatment elements
- Maximize storage within footprint
- Include controlled underdrain
- Could be retrofitted near end of functional life

Hazen

Bioretention Modifications

	Basic Bioretention	Internal Overflow	Controlled Underdrain	2" Target GSI	Gutted Bioretention		
Internal Overflow	No	Yes	Yes	Yes	Yes		
Controlled Underdrain	No	No	Yes	Yes	Yes		
2" Target GSI	No	No	No	Yes	No		
Future Climate w/ GSI vs. Current Climate w/ No GSI							
Peak Flow Change	+5%	+5%	-10%	-65%	-78%		
Climate Impacts Mitigated?	×	×					

What is the role of GSI?

- Can GSI mitigate incremental increases in storm depth associated with climate change?
- Can GSI play a larger role in managing localized urban flooding?

A: Yes

Part of the toolbox but dependent upon site specifics

Why Grey Infrastructure is Not Going Away

GSI Not Addressing Entirety of Storms

Siting Constraints Limit Full Implementation

Localized Hydraulics Vary

Stormwater Controls Can't Do Just One Thing

Multi-Function Stormwater Management Areas

Multi-Function Stormwater Management Areas

Hazen

Multi-Function Stormwater Management Areas

Dry Weather

Cloudburst Event

Building a Bigger Toolbox

Building Adaptability for the Future

Questions

Matthew Jones, PhD, PE mjones@hazenandsawyer.com

