

Can we remotely map streambank erosion hotspots from the sky?

Krissy Hopkins U.S. Geological Survey WoW Webinar: September 20, 2023

U.S. Department of the Interior U.S. Geological Survey

USGS Project Team

Ryan Rasmussen

Deanna Hardesty

Charlie Stillwell Krissy Hopkins Laura Gurley

The problem

Excess sediment in surface waters can degrade habitat, cause sedimentation of reservoirs, and increase costs of water treatment

The problem

Streambanks are a leading source of sediment to downstream waterways, especially in the Piedmont

Bank collapse near hwy Richland Creek, Raleigh, NC

Exposed sewer line Walnut Creek Trib Adj Ivy Ln Cary, NC

The problem

Streambanks are a leading source of sediment to downstream waterways, especially in the Piedmont

Bank collapse near hwy Richland Creek, Raleigh, NC

Exposed sewer line Walnut Creek Trib Adj Ivy Ln Cary, NC

Watershed-scale sediment modeling

Streambank erosion contributes 28% of the sediment load in the Chesapeake and Delaware basins

Noe et al. 2022 Environ. Res. Lett.

Watershed-scale sediment modeling

Streambank erosion contributes 28% of the sediment load in the Chesapeake and Delaware basins

Watershed-scale sediment modeling

Zoom into the Piedmont and 75% of the streambank sediment export is from headwater (1-2 order) streams

Hopkins et al. 2023 J. Env. Man.

Delaware

SPARROW sediment modeling

In North Carolina, 62% of the sediment load can be attributed to in-channel sources like streambank erosion

Gurley et al. 2019 USGS ScienceBase

In Atlanta: Sediment export is variable across urban watersheds and between years.

Aulenbach et al. 2022 USGS SIR 2023-5035

Working toward a solution

Assess streambank erosion hotspots along the City of Raleigh's stream network to support the City's efforts of prioritizing future stream mitigation projects.

Objectives

- 1. Conduct **field assessment** of streambank erosion potential at select stream reaches
- 2. Develop **geospatial datasets** that can be used as a proxy to map potential streambank erosion hotspots
- 3. Assess **proximity of infrastructure** to erosion hotspots
- 4. Develop **model to predict** streambank erosion potential using geospatial and field datasets

Study area

- Encompasses the City of Raleigh
- Expanded to include major contributing watersheds and some parts of others that overlap with the City of Raleigh

Began with a rapid field assessment January and March 2022

Field rapid assessment of stream conditions

124 sites across Raleigh

- Bank erosion hazard index (BEHI)
- Rapid geomorphic assessment (RGA)

Stillwell et al. 2022 ScienceBase

Stillwell et al. 2022 ScienceBase

1.5

Right

0

0.5

2

Channel Evolution

Channel Evolution

Channel Evolution

silt/clay

Channel Evolution

BEHI: Extreme MINE CR TRIB BLW CR DR AT RALEIGH, NC

MANGO CR TRIB ADJ STANWAY DR #1 AT KNIGHTDALE, NC

Headwater Streams Drainage < 0.1 mi²

BEHI: Moderate

PIGEON HOUSE BR TRIB ABV GLENN AVE AT RALEIGH, NC

CRABTREE CR TRIB AT UMSTEAD FOREST AT RALEIGH, NC

BEHI: Extreme RICHLAND CR ABV EBENEEZER CHURCH RD AT RALEIGH, NC 9.5 ft banks

2-3 order streams Drainage ~6 mi²

BEHI: Moderate

WALNUT CR 0.3 MI BLW LAKE DAM RD AT RALEIGH, NC 4.5 ft banks

Field Rapid Assessment

Stillwell et al. 2022 ScienceBase

Field Rapid Assessment

Stillwell et al. 2022 ScienceBase

Working toward a solution

Assess streambank erosion hotspots along the City of Raleigh's stream network to support the City's efforts of prioritizing future stream mitigation projects.

Objectives

- 1. Conduct **field assessment** of streambank erosion potential at select stream reaches
- 2. Develop **geospatial datasets** that can be used as a proxy to map potential streambank erosion hotspots
- 3. Assess **proximity of infrastructure** to erosion hotspots
- 4. Develop **model to predict** streambank erosion potential using geospatial and field datasets

Dataset footprints based on year of lidar collection

Processing lidar

- Interpolate a bare earth surface
- Exclude building and vegetation lidar points
- QL2 = 1-m cell size
- Snap grids

Walnut Creek near S States St

Processing lidar

- Interpolate a bare earth surface
- Exclude building and vegetation lidar points
- QL2 = 1-m cell size
- Snap grids

Walnut Creek near S States St

Gurley et al. 2023 ScienceBase

Processing lidar

- Interpolate a bare earth surface
- Exclude building and vegetation lidar points
- QL2 = 1-m cell size
- Snap grids

Walnut Creek near S States St

Gurley et al. 2023 ScienceBase

What is positive openness?

- Calculates mean horizon elevation angle
- 16 directions, search radius of 60ft
- Low values indicate a steep bank

≥USGS

• High values indicate gradual sloped bank

Positive landscape openness along Rocky Branch in Raleigh

Generating a DEM of Difference (DoD)

- Subtract elevation in the 2015 DEM from the 2022 DEM
- Propagated error from both datasets and removed differences within error

- Elevation decreasing erosional Red
- Elevation increasing depositional Blue
- Stand out features

- Elevation decreasing erosional Red
- Elevation increasing depositional Blue
- Stand out features
 - Quarries

- Elevation decreasing erosional Red
- Elevation increasing depositional Blue
- Stand out features
 - Quarries
 - Water level

- Elevation decreasing erosional Red
- Elevation increasing depositional Blue
- Stand out features
 - Quarries
 - Water level
 - Construction

Focusing in on streambanks

- Haresnipe and Mine Creek watersheds
- •Stream segments break at confluences (n=335)

≥USG{

•Buffered stream segments and quantified erosion

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Focusing in on streambanks

• Volume of sediment erosion within _{35°54}' stream buffers

• Up to ~2,500 m³ → approximately could fill an Olympic size swimming pool

• Hotspots tended to be longer stream segments – more bank to erode

≥USGS

Preliminary Information-Subject to Revision. Not for Citation or Distribution.
DEM of Difference

Focusing in on streambanks

Volume of sediment erosion within stream buffers

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

DEM of Difference

Focusing in on streambanks

Volume of sediment erosion within stream buffers

DEM of Difference

Focusing in on streambanks

Volume of sediment erosion within stream buffers

Positive Openness

Positive Openness

Focusing in on streambanks

- Summarized by buffered stream segment
- Quantified 10th percentile
- More interested in lower values for openness

≥USGS

Examples of openness along a stream reach

Higher Openness

Lower Openness

Gurley et al. 2023 ScienceBase

Working toward a solution

Assess streambank erosion hotspots along the City of Raleigh's stream network to support the City's efforts of prioritizing future stream mitigation projects.

Objectives

- 1. Conduct **field assessment** of streambank erosion potential at select stream reaches
- 2. Develop **geospatial datasets** that can be used as a proxy to map potential streambank erosion hotspots
- 3. Assess **proximity of infrastructure** to erosion hotspots
- 4. Develop **model to predict** streambank erosion potential using geospatial and field datasets

Reach level to targeted infrastructure

- What infrastructures should we consider?
- Assess the proximity of those infrastructure features to erosion hotspots

Developed list of potential applications for infrastructure assessment

- Backyard stream stabilization
- Park trails and greenways
- Road transportation infrastructure
- Culverts

BRAINSTORM

- Major stormwater outfalls
- Sewer mains
- Other utility infrastructure (gas, water, etc.)

Selected infrastructures

- 1. Residential backyard streambank erosion
- 2. Greenway trails
- 3. Sewer mains

Backyard residential: Rocky Branch

- Assessed residential riparian buffer
- 55 parcels were within the buffer zone
- Summarized negative change in the DoD within the riparian buffer
- 17 properties had at least one pixel with more than 0.5 m erosion

Backyard residential: Rocky Branch

- Example of erosion detected at Royal St property
- Approx. 2 meters elevation change

Distribution of minimum elevation change detected in the riparian zone of residential property

Working toward a solution

Assess streambank erosion hotspots along the City of Raleigh's stream network to support the City's efforts of prioritizing future stream mitigation projects.

Objectives

- 1. Conduct **field assessment** of streambank erosion potential at select stream reaches
- 2. Develop **geospatial datasets** that can be used as a proxy to map potential streambank erosion hotspots
- 3. Assess **proximity of infrastructure** to erosion hotspots
- 4. Develop **model to predict** streambank erosion potential using geospatial and field datasets

Openness and incision

Exploring patterns between field and geomorphic variables

Positive Openness

Openness and incision

Exploring patterns between field and geomorphic variables

BEHI scores and geospatial proxies

Higher BEHI scores more negative change in the DEM of difference

Less correlation between BEHI and openness

Next Steps: Machine Learning Model Development

Summary

Can we remotely map streambank erosion hotspots from the sky?

- We know streambank erosion is a problem in the Piedmont.
- DoD/openness <u>shows where</u> erosion is happening, the model should help us <u>understand why</u>.
- Interested to explore methods in <u>other settings</u> and see if there a links to <u>water quality patterns.</u>

QR link to project page

Krissy Hopkins khopkins@usgs.gov

