\qquad
\qquad

Roll \#	Age	(i)	${ }^{238} \mathrm{U}$	${ }^{206} \mathrm{~Pb}$
0	0	-	50	0
1	1.18 Ga			
2	2.36 Ga			
3	3.54 Ga			
4	4.72 Ga			
5	5.9 Ga			
6	7.08 Ga			
7	8.26 Ga			
8	9.44 Ga			
9	10.62 Ga			
10	11.80 Ga			
11	12.98 Ga			
12	14.16 Ga			
13	15.34 Ga			
14	16.52 Ga			
15	17.7 Ga			

This 6-sided die represents an atom of the radioactive isotope uranium-238 $\left({ }^{238} \mathrm{U}\right)$.

Each time you roll it, it has a $1 / 6$ chance of undergoing radioactive decay and becoming an atom of the stable isotope lead-206 $\left({ }^{206} \mathrm{~Pb}\right)$
Real ${ }^{238} \mathrm{U}$ decays very slowly. It has a half-life of 4.47 billion years (4.47 Ga , "Giga-annum").
We can simulate this decay by rolling a lot of dice and pretending that each roll represents the passing of 1.18 billion years (1.18 Ga).

Data Collection Instructions

After each roll...

count the number of decayed dice...
subtract that number

