Radioactive Dice Radiometric Dating

Uranium-Lead Dating

Zircon is a mineral with the chemical formula ZrSiO_{4}. As it grows in cooling magma, it allows ${ }^{238} \mathrm{U}$ into its crystal structure, but it will not allow any ${ }^{206} \mathrm{~Pb}$ in, so a newly formed zircon crystal contains no lead. However, the ${ }^{238} \mathrm{U}$ trapped inside still decays into ${ }^{206} \mathrm{~Pb}$ according to its half-life. When a geologist finds a zircon crystal that contains ${ }^{206} \mathrm{~Pb}$, they know that all of that lead came from the decay of uranium. By measuring the amounts of lead and uranium in the crystal, they can "work backwards" to figure out how much time has passed since the crystal formed. This technique is called uranium-lead dating a type of radiometric dating.

Name:
Date:
\qquad
\qquad

Zircon crystals selected for uranium-lead dating in Dr. Drew Coleman's Geochemistry Lab at UNC Chapel Hill. The horizontal field of view of this photomicrograph is half a millimeter!

Let's Do It!

Someone has given you a rock and asked you to figure out how old it is.

You see that the rock contains the mineral zircon, so you decide to use uranium-lead dating.
You analyze a zircon crystal and discover that it has 6 trillion atoms of ${ }^{238} \mathrm{U}$ and 3 trillion atoms of ${ }^{206} \mathrm{~Pb}$ trapped in its crystal structure.
Using the information on this page, answer these questions to figure out the age of the rock:

1. How many were there in the zircon crystal right after it formed?	2. How many ${ }^{238} \mathrm{U}$ atoms were there in the zircon crystal right after it formed?	3. What percentage of the original ${ }^{2388} \mathrm{U}$ atoms are left?	4. According to the graph above, how long would that decay take? How old is the rock?
Write your answer here and plot the corresponding point on the graph above.			

