The following pages contain a [1] summary of the core concepts at play in this exercise. Some or all of these concepts may be relevant to your classroom objectives. The pages of this guide have a three column structure, whereby each concept gets a keyword, an
 explanation, and illustration (or example).

Table of Contents Keyword Page Page Title

ATOM	1	Anatomy of an Atom
CHARGE	1	
ELEMENT	1	
ISOTOPE	1	
STABILITY	2	Radioactive Decay
HALF-LIFE	2	
EXPONENTIAL DECAY	2	
PROBABILITY	3	Probability Theory
$\mathrm{P}(\mathrm{e})$	3	
"OR"	3	
"NOT"	4	
"AND"	4	
TRANSLATION	4	
LAW OF LARGE NUMBERS (LLN)	5	Dice \& Exponential Decay
DECAY OF A SINGLE DIE	5	
$\mathrm{N}(\mathrm{r})=\mathrm{N} 0 \cdot(5 / 6)^{\mathrm{r}}$	5	
FIVE-SIXTHS-LIFE	5	
CONVERTING TO HALF-LIFE	6	
RADIOMETRIC DATING	6	

Atoms have a nucleus - a core made of some number of protons and neutrons, and are surrounded by a cloud of elections.

Ellectirons have a negative charge, protons have an equally strong positive charge, and neutrons have no charge. If an atom has an unequal number of electrons and protons, the atom itself has a net charge. Charged atoms and molecules are called ions. Oppositely charged ions might come together like magnets to form ionic bonds, or they might flow from one place to another in an electromagnetic field. contains determines essentially everything about how that atom behaves chemically. For this reason, we classify atoms into elements based on this number.

Two atoms belonging to the same element might have a different number of neutions, resulting in slightly different versions of the same element. We call these versions "isotopes." Different isotopes of the same element behave mostly the same way chemically, but are a little heavier or lighter.

This is an atom. It has

This atom has 2 protons, so it is classified as the element helium (He).

This atom has 4 total protons and neutions, so it is classified as the isotope of helium called helium-4, abbreviated ${ }^{4} \mathrm{He}$.

The number and configuration of protons and neutrons in the nucleus of an atom also determines if that atom is stable. An unstable atom is said to be radioactive, and might spontaneously undergo radioactive decay, emitting radiation and transforming into a different isotope or even a different element.

Radioactive decay is a random process, but it is more or less likely in different isotopes. Radioactive isotopes can be very unstable, lasting for only fractions of a second, or they can be only a little unstable, lasting for billions of years. We measure this instability in terms of half-life. The half-life of a radioactive isotope is an interval of time within which an atom has a 50-50 chance of decaying. Very unstable isotopes have short half-lives. Less unstable ones have long half-lives.

Of course, we almost never consider one atom at a time, but the septillions of atoms that make up "stuff." If you watch a large number of radioactive atoms over time, they will decay according to the exponential decay function: a function of time and half-life. 50% of the remaining atoms will decay every half-life. can be very unstable, lasting for only

Helium-4 is considered stable because it has never been observed to undergo radioactive decay.

Unlike helium-4, the isotope hydrogen-3 is radioactive. ${ }^{3} \mathrm{H}$ decays into ${ }^{3} \mathrm{He}$ with a half-life of 12.32 years. That means that if you watch an atom of ${ }^{3} \mathrm{H}$ for 12.32 years, there's a $50-50$ chance you'll see it spontaneously transform into ${ }^{3} \mathrm{He}$. This happens when one of its neutrons turns into a proton by kicking out an electron and an electron anti-neutrino.

The probability of an event is the chance that it will occur. Probability theory is the mathematical description of probability. We encounter probability every day, and have good intuition for things like coin tosses, but probability theory lets us determine the chance of more complicated events like a coin landing heads-up three times in a row.

In probability theory, the probability of an event "e" occurring is symbolized $\mathbf{P}(\mathrm{e})$. When e is impossible, we say $\mathrm{P}(\mathrm{e})=0$. When e is certain, we say $\mathrm{P}(\mathrm{e})=1$. When an event is neither certain, nor impossible, the value of its probability is between 0 and 1 . Probabilities are often expressed as decimals, fractions, or percentages.

A pair of events can be mutually exclusive, meaning they can't happen at
combined probability of one event or the other happening is the sum of their individual probabilities.

Consider the rolling of a standard die.

There are six possible, equally likely outcomes.

The die could land on $1,2,3,4,5$, or 6 .

Events are denoted by variables. t: "the die lands on 3"
s: "the die lands on 6 "
" $\mathrm{P}(\mathrm{e})$ " reads "the probability of e."
$\mathbf{P}(\mathrm{t})=1 / 6=16.6 \%=.16$
$\mathbf{P}(\mathbf{s})=1 / 6=16.6 \%=.16$
t and \mathbf{s} are mutually exclusive.
There is no chance they will both happen.

The complement of an event comprises the set of all possible outcomes other than that event. The probability of one of these outcomes occurring is $1-\mathrm{P}(\mathrm{e})$. The complement of e could be thought of as "not-e," and is often symbolized "ē".

A pair of events can be independent, meaning the occurrence of one does not affect the probability of the other. For example, the results of series of dice rolls are independent, because past rolls don't affect future rolls. In these cases, the overall probability of both events (i.e. the first event and the second event) occurring is the product of their probabilities.

Knowing only how to say "or," "not," and "and," we can calculate chances that appear to be beyond our abilities to describe if we can be clever translators. For example, we can't symbolize...
"two coins land on the same side," but we can symbolize...
"[coin 1 lands on heads and coin 2 lands on heads] or [coin 1 does not land on heads and coin 2 does not land on heads]"

Which might be symbolized:
$\left[\mathrm{P}\left(\mathrm{h}_{1}\right) \times \mathrm{P}\left(\mathrm{h}_{2}\right)\right]+\left[\left(\mathrm{P}\left(\overline{\mathrm{h}}_{1}\right) \times \mathrm{P}\left(\overline{\mathrm{h}}_{2}\right)\right]=\right.$ $.5 \times .5+.5 \times .5=.5$

The complement of t is symbolized $\mathbb{\pi}$, which you could read as "not-t". It stands for the event "the die lands on $1,2,4,5$, or 6 "

Imagine a series of n dice rolls. t_{n} : "The die lands on 3 on the $n^{\text {th }}$ roll."
t_{1} and t_{2} are independent, so the chance of rolling two 3's in a row is:
$\mathbf{P}\left(\mathrm{t}_{1}\right.$ and $\left.\mathrm{t}_{2}\right)=1 / 6 \times 1 / 6=1 / 36$
a: "The die lands on 3 at least once in a series of three rolls."

What is the value of $\mathbf{P}(\mathbf{a})$? We don't know how to directly symbolize this, but we can do it if we manage to say "at least once" in terms of "not," "and," and "or." One way to do this is...

$$
\mathbf{P}(\mathrm{a})=1-\mathbf{P}\left(\mathbb{\mathbb { t }}_{1} \text { and } \overline{\mathbb{t}}_{2} \text { and } \overline{\mathbb{t}}_{3}\right)
$$

which might read "The probability of \mathbf{a} is the probability of not rolling inot-three on the filirst and second and thired roll."

$$
1-(5 / 6 \times 5 / 6 \times 5 / 6)=42 \%
$$

The Law of Large Numbers
$(\mathbf{L L N})$ is a principle of statistics that states that while small numbers of probabilistic entities like dice or radioactive atoms behave unpredictably， larger groups behave more predictably－ tending to converge as a group on an expected behavior．

A single＂radioactive die＂like the one pictured to the right has a $1 / 6$ chance《島 of＂decaying＂on a given roll．In order to號 survive two rolls，it must survive one roll and then another roll－an event with a probability of $5 / 6 \times 5 / 6=25 / 36$ ．

The chance that such a die will last ＂ \mathbf{r}＂rolls is $5 / 6 \times 5 / 6 \times \ldots .5 / 6$ repeated \mathbf{r} times，or $(5 / 6)^{\mathrm{r}}$ ．

A single such die behaves unpredictably，but because of the LLN， 6 about $5 / 6$ of a large population of radioactive dice will survive a given roll．A mathematical description of this decay might look like：

$$
\mathrm{N}(\mathrm{r})=\mathbf{N}_{0} \cdot(5 / 6)^{\mathrm{r}} \text {, read: }
$$

＂The population（after so many rolls）is the initiail population multiplied by $(5 / 6)$ once for every roll．＂．＂

$$
\mathrm{N}(\mathrm{r})=\mathrm{N}_{0} \cdot(5 / 6)^{\mathrm{r}} \text { is an exponential }
$$ decay function．Functions of this same form govern the decay of radioactive atoms．However，those functions tend to be written in terms of half－life，which allows us to compare，at a glance，the relative stabilities of different radioisotopes．Our equation，written in terms of＂flive－sixths－lives，＂is not as useful．We＇ll need logarithms to convert it．

An LLN Experiment
with a standard die

Consider the rolling of a this special die：

It has one face
 $\operatorname{marked}(i)$ ，and five blank faces．
We will say that it ＂decays＂when it lands on $\overbrace{\circ}$ ．

Expected Decay of a Large Number of Dice

$$
\mathrm{N}(\mathrm{r})=\mathrm{N}_{0} \cdot(5 / 6)^{\mathrm{r}} / 1_{\text {roll }}
$$

 $\left.\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \cdot(1 / 2)_{\text {years elapsed }}^{\mathrm{t}}\right)^{12.32 \mathrm{yt}}$ half－life in terms of years

We want to know the half-life (in terms of rolls) of a population of radioactive dice. We can see on the red graph that it takes between 3 and 4 rolls for $\mathrm{N}(\mathrm{r})$ to reach 50% of N_{0}, but to solve for the exact value, we need to solve $\mathrm{N}(\mathrm{r}) / \mathrm{N}_{\mathrm{o}}=(5 / 6)^{\mathrm{r}}=50 \%$ for r . Basically, we are asking: "What power r would turn $5 / 6$ into $1 / 2$?"

By solving for r , we find that $\mathrm{N}(\mathrm{r}) / \mathrm{N}_{\mathrm{o}}=50 \%$ when $\mathrm{r}=3.8$. In other words, the half-life of a six-sided die is 3.8 rolls. Now, by coming up with a fictitious conversion factor between rolls and years, you can produce populations of radioactive dice that behave just like any given radioisotope.

Now that we are capable of setting up an environment in which a group of dice faithfully represents a group of radioactive atoms, we can do more than just watch those dice decay. We can examine a partially decayed group and determine its "age" based on how many dice have decayed and how many dice remain. This rearranging of the exponential decay function is the basis for radiometric dating.

Math English

| $(5 / 6)^{\mathrm{r}}=.5$ | $" 5 / 6$ to the power r is $.5 . "$
 $\log _{5 / 6} .5=\mathrm{r}$ |
| :---: | :---: | | "The power that turns |
| :---: |
| $5 / 6$ into .5 is r ." |

$$
\log _{5 / 6} 5=\mathrm{r}=3.8 \underbrace{\text { terms of tolls! }}_{\text {half-life in }}
$$

So, when 1 roll represents 3.24
$\frac{\mathbf{1 2 . 3 2} \text { yr. }}{\mathbf{3 . 8} \text { rolls }}=\frac{\mathbf{3 . 2 4} \text { yr. years elapsing, a }}{\mathbf{1} \text { roll }}$ behaves just like an atom of ${ }^{3} \mathrm{H}$!

