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summary of  the core concepts at play in 
this exercise. Some or all of  these 
concepts may be relevant to your 
classroom objectives. The pages of  this 
guide have a three column structure, 
whereby each concept gets a keyword, an 
explanation, and illustration (or example).
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Anatomy of  an Atom

e-

e-

p+

p+ no

This is an atom. It has
2 protons,
 2 neutrons, and
  2 electrons.
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This atom’s total charge is 
zero, so it is not an ion.

2×(+1)
2×(0)

+ 2×(-1)
0

This atom has 2 protons, so it is 
classified as the element helium (He).
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This atom has 4 total protons and 
neutrons, so it is classified as the 
isotope of  helium called helium-4, 
abbreviated 4He.

1

 Two atoms belonging to the same 
element might have a different number 
of  neutrons, resulting in slightly different 
versions of  the same element. We call 
these versions “isotopes.” Different 
isotopes of  the same element behave 
mostly the same way chemically, but are 
a little heavier or lighter.

 The number of  protons an atom 
contains determines essentially 
everything about how that atom behaves 
chemically. For this reason, we classify 
atoms into elements based on this 
number.

 Electrons have a negative charge, 
protons have an equally strong positive 
charge, and neutrons have no charge. If  
an atom has an unequal number of  
electrons and protons, the atom itself  
has a net charge. Charged atoms and 
molecules are called ions. Oppositely 
charged ions might come together like 
magnets to form ionic bonds, or they 
might flow from one place to another in 
an electromagnetic field.

 Atoms have a nucleus - a core - 
made of  some number of  protons and 
neutrons, and are surrounded by a cloud 
of  electrons.
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3H
remaining 

Radiogenic (radioactively produced)
3He

12.32 24.64 36.96 49.28 61.60years
1 2 3 4 5half-lives

exponential decay curve

Unlike helium-4, the isotope 
hydrogen-3 is radioactive. 3H decays 
into 3He with a half-life of  12.32 
years. That means that if  you watch 
an atom of  3H for 12.32 years, there’s 
a 50-50 chance you’ll see it 
spontaneously transform into 3He. 
This happens when one of  its 
neutrons turns into a proton by 
kicking out an electron and an 
electron anti-neutrino.

e-

νe

pop!

Helium-4 is considered stable 
because it has never been observed 
to undergo radioactive decay.

2

3H

3He

 Of  course, we almost never 
consider one atom at a time, but the 
septillions of  atoms that make up “stuff.” 
If  you watch a large number of  
radioactive atoms over time, they will 
decay according to the exponential 
decay function: a function of  time and 
half-life. 50% of  the remaining atoms 
will decay every half-life.

 Radioactive decay is a random 
process, but it is more or less likely in 
different isotopes. Radioactive isotopes 
can be very unstable, lasting for only 
fractions of  a second, or they can be 
only a little unstable, lasting for billions 
of  years. We measure this instability in 
terms of  half-life. The half-life of  a 
radioactive isotope is an interval of  time 
within which an atom has a 50-50 chance 
of  decaying. Very unstable isotopes have 
short half-lives. Less unstable ones have 
long half-lives.

 The number and configuration of  
protons and neutrons in the nucleus of  
an atom also determines if  that atom is 
stable. An unstable atom is said to be 
radioactive, and might spontaneously 
undergo radioactive decay, emitting 
radiation and transforming into a 
different isotope or even a different 
element.



A pair of  events can be mutually 
exclusive, meaning they can’t happen at 
the same time. In these cases, the 
combined probability of  one event or 
the other happening is the sum of  their 
individual probabilities.

 In probability theory, the 
probability of  an event “e” occurring is 
symbolized P(e). When e is impossible, 
we say P(e)=0. When e is certain, we say 
P(e)=1. When an event is neither certain, 
nor impossible, the value of  its 
probability is between 0 and 1. 
Probabilities are often expressed as 
decimals, fractions, or percentages.

 The probability of  an event is the 
chance that it will occur. Probability 
theory is the mathematical description 
of  probability. We encounter probability 
every day, and have good intuition for 
things like coin tosses, but probability 
theory lets us determine the chance of  
more complicated events like a coin 
landing heads-up three times in a row.

Consider the rolling of  
a standard die.

t: “the die lands on 3”

P(t)= 1/6 = 16.6% = .16 

s: “the die lands on 6”

P(s)= 1/6 = 16.6% = .16 

There are six 
possible, equally 
likely outcomes. 

The die could land 
on 1, 2, 3, 4, 5, or 6.
 

t and s are mutually exclusive. 
There is no chance they will both 
happen. 

So, P(t or s) = 1/6 + 1/6 = 1/3

Radioactive Dice - Background
Probability Theory

Events are denoted by variables.

“P(e)” reads “the probability of  e.”
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 Knowing only how to say “or,” 
“not,” and “and,” we can calculate 
chances that appear to be beyond our 
abilities to describe if  we can be clever 
translators. For example, we can’t 
symbolize...
“two coins land on the same side,”
 but we can symbolize...

“[coin 1 lands on heads and coin 2 lands 
on heads] or [coin 1 does not land on 
heads and coin 2 does not land on 
heads]”
 Which might be symbolized:
[P(h1)×P(h2)]+[(P(h1)×P(h2)] =
  .5    ×  .5    +    .5   ×  .5    =   .5

 A pair of  events can be 
independent, meaning the occurrence of  
one does not affect the probability of  
the other. For example, the results of  
series of  dice rolls are independent, 
because past rolls don’t affect future 
rolls. In these cases, the overall 
probability of  both events (i.e. the first 
event and the second event) occurring is 
the product of  their probabilities.

 The complement of  an event 
comprises the set of  all possible 
outcomes other than that event. The 
probability of  one of  these outcomes 
occurring is 1-P(e). The complement of  
e could be thought of  as “not-e,” and is 
often symbolized “ē”.

The complement of  t is 
symbolized t, which you could read 
as “not-t”. It stands for the event 
“the die lands on 1, 2, 4, 5, or 6”

P(not t ) = P(t) = 1-P(t) = 5/6

Imagine a series of  n dice rolls.
tn: “The die lands on 3 on the nth roll.”

t1 and t2 are independent, so the 
chance of  rolling two 3’s in a row 
is:

P(t1 and t2) = 1/6 × 1/6 = 1/36

a: “The die lands on 3 at least once 
in a series of  three rolls.”

 What is the value of  P(a)?
We don’t know how to directly 
symbolize this, but we can do it if  
we manage to say “at least once” in 
terms of  “not,” “and,” and “or.” 
One way to do this is...

P(a) = 1 - P(t1 and t2 and t3)

which might read “The probability 
of  a is the probability of  not 
rolling not-three on the first and 
second and third roll.”

 1 - (5/6 × 5/6 × 5/6) = 42%
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Consider the rolling of  a this 
special die:

It has one face 
marked☢, and five 
blank faces.
We will say that it 
“decays” when it 
lands on ☢.

N(r) = N0∙(5/6)r / 1 roll

N(t) = N0∙(1/2)t /12.32 yr

rolls elapsed

“five-sixths-life” 
in terms of  rolls

years elapsed
half-life in 
terms of  years

 N(r) = N0∙(5/6)r is an exponential 
decay function. Functions of  this same 
form govern the decay of  radioactive 
atoms. However, those functions tend to 
be written in terms of  half-life, which 
allows us to compare, at a glance, the 
relative stabilities of  different 
radioisotopes. Our equation, written in 
terms of  “five-sixths-lives,” is not as 
useful. We’ll need logarithms to convert it.

 A single such die behaves 
unpredictably, but because of  the LLN, 
about 5/6 of  a large population of  
radioactive dice will survive a given roll. A 
mathematical description of   this decay 
might look like:

N(r) = N0∙(5/6)r, read:
“The population (after so many rolls) is 
the initial population multiplied by (5/6) 
once for every roll.”

 The Law of  Large Numbers 
(LLN) is a principle of  statistics that 
states that while small numbers of  
probabilistic entities like dice or 
radioactive atoms behave unpredictably, 
larger groups behave more predictably - 
tending to converge as a group on an 
expected behavior.
 A single “radioactive die” like the 
one pictured to the right has a 1/6 chance 
of  “decaying” on a given roll. In order to 
survive two rolls, it must survive one roll 
and then another roll - an event with a 
probability of  5/6 × 5/6 = 25/36. 
 The chance that such a die will last 
“r” rolls is 5/6 × 5/6 ×.... 5/6 repeated r 
times, or (5/6)r.
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A Series of  50 Rolls

An LLN Experiment
with a standard die

expected value (3.5)
running average
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A Series of  20 Mass Rolls

Expected Decay of  a Large Number of  Dice
N0

N(20)
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(5/6)r = .5 “5/6 to the power r is .5.”

Log5/6.5 = r “The power that turns 
5/6 into .5 is r.”

Math English

Log5/6.5 = r = 3.8 half-life in 
terms of  rolls!

3.8 rolls
12.32 yr.

1 roll
3.24 yr.=

half-life 
of  3H

half-life of  a 
six-sided die

So, when 1 roll 
represents 3.24 
years elapsing, a 
six-sided die 
behaves just like 
an atom of  3H!

N(r)/No = (1/2)r / 3.8 rolls

14/(36+14) = (1/2)r / 3.8 rolls

.28 = (1/2)r / 3.8 rolls

Log(1/2).28= r / 3.8

r ≈ 7 rolls old, or
7×3.24 = 22.68 years old

Consider

and

 Now that we are capable of  setting 
up an environment in which a group of  
dice faithfully represents a group of  
radioactive atoms, we can do more than 
just watch those dice decay. We can 
examine a partially decayed group and 
determine its “age” based on how many 
dice have decayed and how many dice 
remain. This rearranging of  the 
exponential decay function is the basis 
for radiometric dating.

 By solving for r, we find that 
N(r)/No = 50% when r = 3.8. In other 
words, the half-life of  a six-sided die is 
3.8 rolls. Now, by coming up with a 
fictitious conversion factor between 
rolls and years, you can produce 
populations of  radioactive dice that 
behave just like any given radioisotope.

 We want to know the half-life (in 
terms of  rolls) of  a population of  
radioactive dice. We can see on the red 
graph that it takes between 3 and 4 rolls 
for N(r) to reach 50% of  N0, but to 
solve for the exact value, we need to 
solve N(r)/No = (5/6)r = 50% for r.
Basically, we are asking:
“What power r would turn 5/6 into 1/2?”
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