

Solid State Lighting

LED Lighting Panel Discussion

Department of Environmental Quality

The Panel

Panelists:

- Dr. Lynn Davis, Fellow, RTI International
- **Robert Talley**, PE, NC Dept. of Administration, State Construction Office
- Renee Hutcheson, FAIA, NC Department of Environmental Quality
- Questions during the presentation

The Work Group

Environmental Quality

Public Schools of North Carolina State Board of Education Department of Public Instruction

Department of Environmental Quality

The Work Group

Dr. Lynn Davis Renee Hutcheson, FAIA Randy Allison, PE Howard Beasley, PE David Bell, PE Eric Frazier Thomas Hunter, PE, RA

- Jonathan Jones, PE
- Lalitha Krishnasami, PE
- John Majernik, EI, PEM
 - Jeannie Smith, PE
 - Robert Talley, PE
 - Dr. Leonard White, PE

Department of Environmental Quality

AGENDA

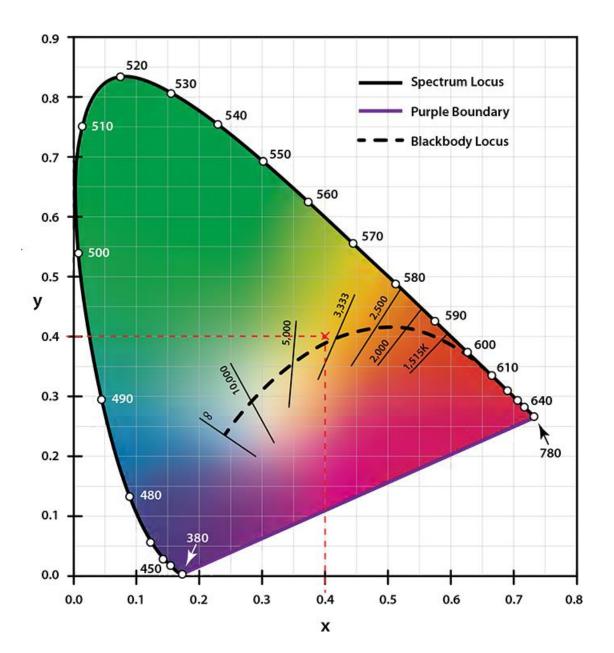
- 1. Background
- 2. Basic Principles of Good Lighting Design
- 3. Basic Principles of Building Designs
- 4. LED Retrofits
- 5. Additional Resources
 - A. Nomenclature and Common Terms
 - B. List of Reference Standards
 - C. Examples of Performance Specifications

Background

GUIDELINES not RULES for using SSL

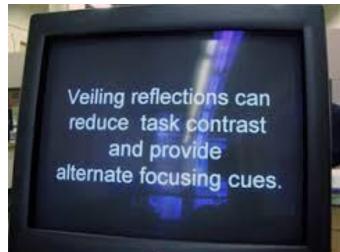
Standard

Specification


- Illuminance
 - Amount of light falling onto and illuminating an object such as table or sidewalk (horizontal illuminance) or wall or open space (vertical illuminance)
 - Two common units of measure
 - Lux lumens/m²
 - Footcandles (fc) lumens/ft²
- Luminance
 - Amount of emitted or reflected light contained within a solid angle.
 - Common units
 - Candela/m² (nit, Σ)

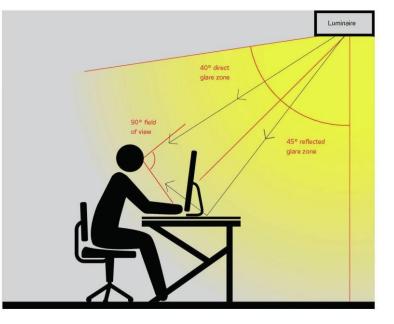
Light Level and Illuminance (measured in lux or foot-candles)

- Energy consumption (costs) is proportional to light level
 - Less energy can be consumed if a lower lighting level or illuminance is feasible,
 - IES recommended illuminance levels have changed as more technology is used in the office and classroom
- Provide illuminance levels sufficient for the task
- Light levels must still meet code requirements.
- Follow appropriate recommended IES illuminance levels for the space type/application,
- Understand light distribution in the space
- Lighting calculations are recommended for all spaces


- Correlated Color Temperature (CCT) and Color Rendering Index (CRI)
 - lower CCT value warmer the perceived color of the light
 - higher CCT value cooler the perceived color of the light
 - CRI metric that measures how accurately the lighting source reproduces colors
 - R9 what is it?

• Luminance and Luminous Intensity (measured in candela)

- LED light sources tend to produce intense white light
- · Glare can be an issue in both indoor and outdoor lighting
- Luminance values can be too high
- Luminance ratios can be too high
- 4 Factors to Evaluate for glare
 - Luminance of light source
 - Size of the light source
 - Position of the glare source in the field of view
 - Luminance of the background



• Luminance and Luminous Intensity (measured in candela)

- · LED light sources tend to produce intense white light
- Glare can be an issue in both indoor and outdoor lighting
- Luminance values can be too high
- Luminance ratios can be too high
- 4 Factors to Evaluate for glare
 - Luminance of light source
 - Size of the light source
 - Position of the glare source in the field of vie
 - · Luminance of the background

- Control
 - Dimming range
 - Dimmer loads
 - · Control architectures and compatibility
 - Improper use of controls can lead to premature failure

4 Wire (0-10V)

PWM

14

Exit and Emergency Lighting

- LED Exit signs typically are in use 24/7
- This section of the document is based on over 20 years of use

Third Party Listings and Certifications

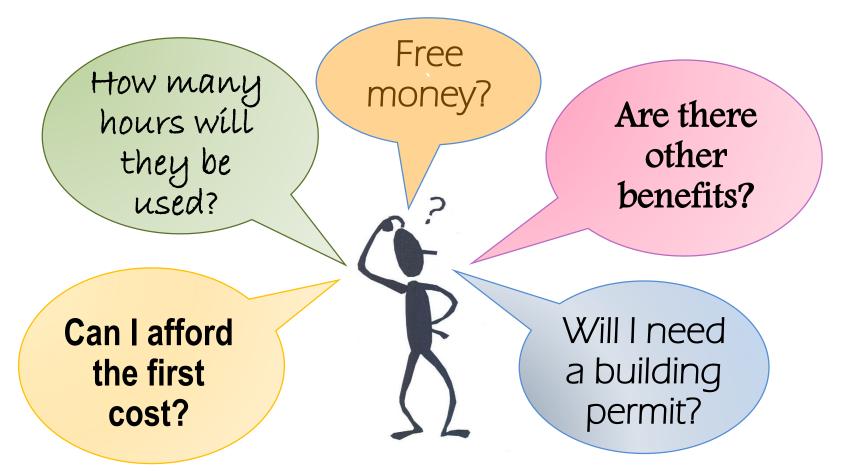
- NC General Statutes for Electrical Safety
- NEC requirements
- Life Safety

Outdoor Lighting

- Surge protection rated for surges of at least 10 KV.
- Grounding
- Filters

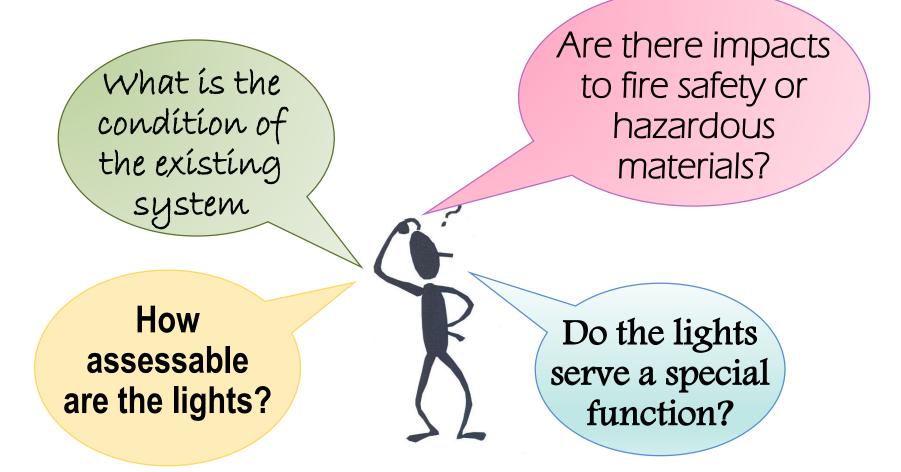
BASIC PRINCIPLES OF BUILDING DESIGNS

Wiring Methods


- Dedicated full-sized (i.e., 100%) neutrals
- Wiring per NEC

Special Considerations for the Distribution System

- A dedicated lighting panel is recommended
- Separate from large non-linear loads
- Consider harmonic filters and harmonic mitigating
- Voltage Drop
 - consideration should be given to wire length and size
- Inrush Current and Circuit Loading
 - NEMA 410 allows for short duration (i.e., less than several milliseconds) inrush currents
 - many of our successful project have used branch circuit loading of 50% or less.
- Emergency Power for LED Systems


Costs/Budget

- consistent with the scope of the work
- consistent with the Life Cycle Costs Analysis (LCCA)

Costs/Budget

• The cost-benefit analysis of LED lighting could be impacted by site considerations

UNC System-wide Lighting PC

15 Universities and Affiliates

East Carolina UNC Charlotte Western Carolina UNC Asheville Appalachian State NC A&T NCCU The NC Arboretum

Department of Environmental Quality

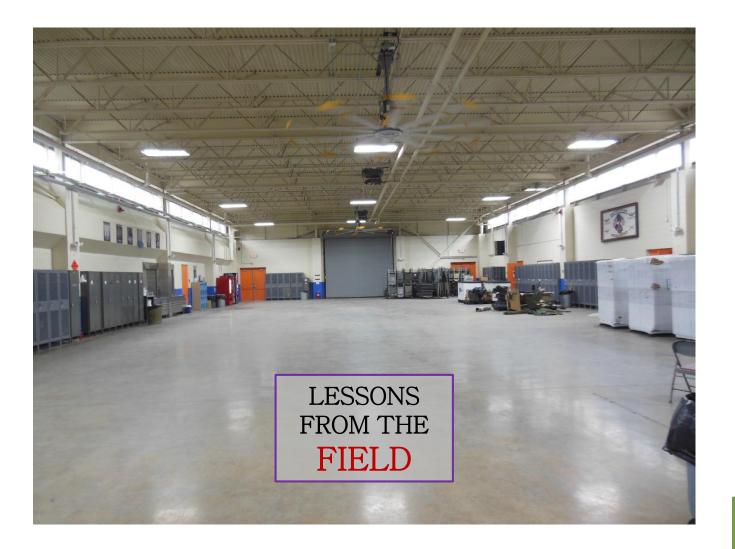
UNC Pembroke School of the Arts School of Science of Math Fayetteville State UNC General Administration Winston-Salem State UNC-TV

UNC System-wide Lighting PC

\$ 25.5m Lighting Contract Costs
96,000 New Fixtures
174,000 New Lamps
2,850 Occupancy Sensors
1,300 Exit Signs

Department of Environmental Quality

UNC System-wide Lighting PC



- \$ 4mAnnual Projected Energy Savings
- \$ 29.2m Energy Savings over 7 Years
 - 7 yr. Payback

Improved Light Quality Lower Maintenance Costs

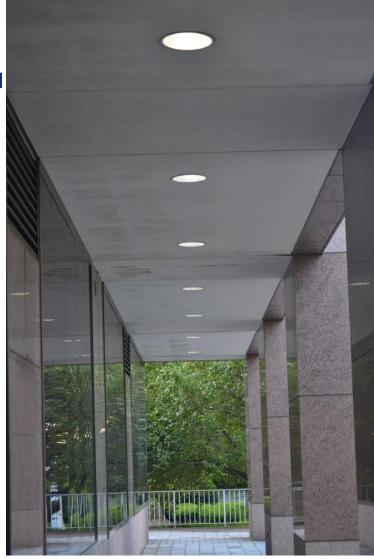
Yr	Guaranteed Electric Dollar Savings*		Guaranteed Natural Gas Dollar Savings*		Guaranteed Operational Dollar Savings		Guaranteed Dollar Savings	
1	\$	3,503,129.03	\$	(74,657.48)	\$	496,100.28	\$	3,924,571.82
2	\$	3,573,191.61	\$	(74,657.48)	\$	506,022.28	\$	4,004,556.41
3	\$	3,644,655.44	\$	(74,657.48)	\$	516,142.73	Ŕ	4,086,140.69
4	\$	3,717,548.55	\$	(74,657.48)	\$	526,465.58	\$	4,169,356.65
5	\$	3,791,899.52	\$	(74,657.48)	\$	536,994.90	\$	4,254,236.93
6	\$	3,867,737.51	\$	(74,657.48)	\$	547,734.79	\$	4 \$40,814.82
7	\$	3,945,092.26	\$	(74,657.48)	\$	558,689.49	4	4,429,124.27
Total	\$	26,043,253.90	\$	(522,602.36)	\$	3,688,150.06	\$	29,208,801.59

Department of Environmental Quality

4 Types of Retrofit Projects

- 1. Lamp replacement
 - a direct replacement of an existing conventional lamp

• 4 Types of Retrofit Projects


- 1. Lamp replacement
 - a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors

• 4 Types of Retrofit Projects

- 1. Lamp replacement
 - a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors

4 Types of Retrofit Projects

- 1. Lamp replacement
 - a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors

• 4 Types of Retrofit Projects

- 1. Lamp replacement
 - a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors

(2) 14 Watt LED with existing ballast

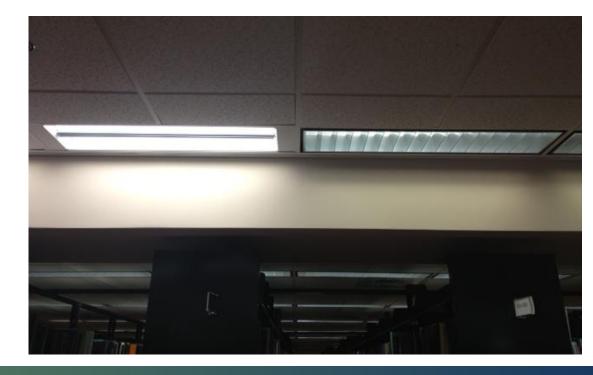
(2) 32 Watt T8 with ballast

4 Types of Retrofit Projects

- 1. Lamp replacement
 - · a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors
- 3. Complete luminaire replacement
 - 1:1 replacement

Before: (7) 175 w metal halidesAfter: (7) 99 w LED'sView of Dayrooms from Officer's Control Room

• 4 Types of Retrofit Projects


- 1. Lamp replacement
 - · a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors
- 3. Complete luminaire replacement
 - 1:1 replacement

New and Old Fixtures Side-by-Side

66% reduction in energy

50% increase in fc

• 4 Types of Retrofit Projects

- 1. Lamp replacement
 - · a direct replacement of an existing conventional lamp
- 2. Replacement kits for luminaires
 - replace key components of a luminaire such as lamps, drivers, connectors, lenses, reflectors
- 3. Complete luminaire replacement
 - 1:1 replacement
- 4. Lighting system redesign
 - Re-design of the illuminance in a space lighting simulation software

Existing Infrastructure and Building Conditions

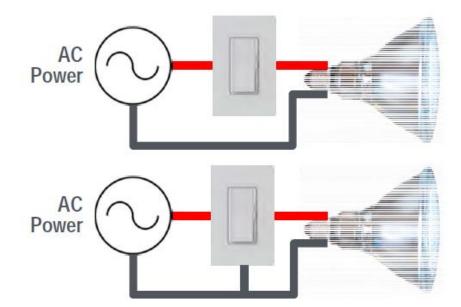
- Electrical non linear loads
- Hazardous materials
- Ceiling types
- Painting and patching
- Insulation above ceilings
- Emergency systems and exit lighting
- HVAC and heat load effects
- All fixtures are not equal...

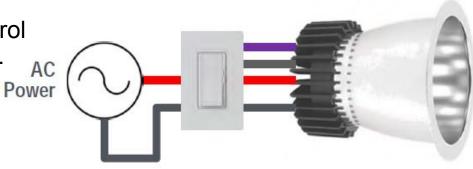
- Physical Size
- Housing
- Sockets
- Lenses
- Ballast/drivers
- Input voltages
- Whip length and location of knock out boxes
- Manufacturer
- Third Part Listing

- Physical Size
- Housing
- Sockets
- Lenses
- Ballast/drivers
- Input voltages
- Whip length and location of knock out boxes
- Manufacturer
- Third Part Listing

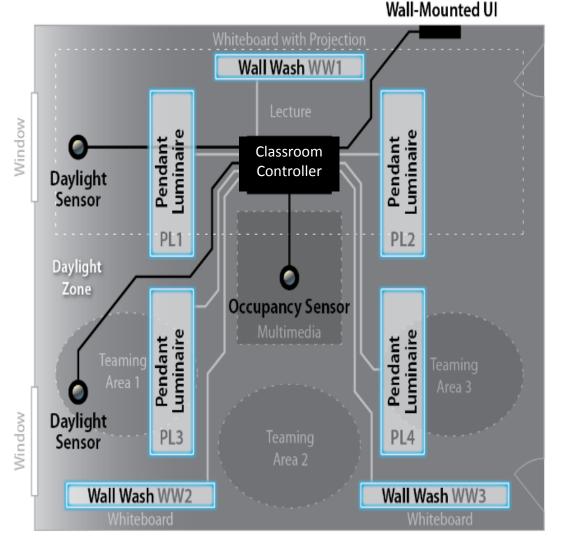
- Physical Size
- Housing
- Sockets
- Lenses
- Ballast/drivers
- Input voltages
- Whip length and location of knock out boxes
- Manufacturer
- Third Part Listing

- Physical Size
- Housing
- Sockets
- Lenses
- Ballast/drivers
- Input voltages
- Whip length and location of knock out boxes
- Manufacturer
- Third Part Listing




- Physical Size
- Housing
- Sockets
- Lenses
- Ballast/drivers
- Input voltages
- Whip length and location of knock out boxes
- Manufacturer
- Third Part Listing

• Two main methods of lighting controls for dimming


- Analog/change in AC power supplied to luminaire
 - Phase-cut
 - Amplitude reduction
 - Most existing dimming circuits
- Independent supply signal between control & driver (Pulse width modulation)
 - DALI
 - DMX
 - Others
- Compatibility between the existing control system and the retrofit must be verified.
 - Check with manufacturers
 - Mock-ups and hardware verification

Common Controls

- Photocells
- Daylight harvesting controls
- Dimming
- Occupancy/Vacancy
- Building or room control systems
- Controls can have an impact on both energy consumption and flicker.

Outdoor and Exterior Lighting LED Retrofits

- Spacing and light distribution
- Glare
- Light trespass
- Sky glow
- Backlight, Uplight, and Glare (BUG) rating
- Durability
- Surge protection
- Vibration rating
- Grounding
- Photocell and controls
- Warranty
- Wiring / rewiring
- Availability
- Cost payback

Where Can I Find The Guidance Document?

SCO Website

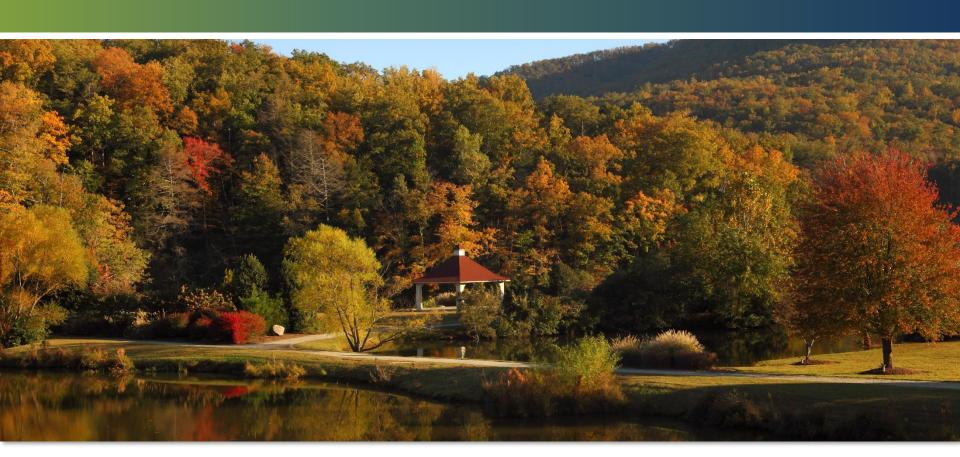
http://ncadmin.nc.gov/document/ssl-guidance

DEQ Website

http://deq.nc.gov/conservation/utility-savings/tools-technology

Where Can I Find The Presentation?

http://deq.nc.gov/conservation/utility-savings/outreach-training


For Questions and Comments:

Howard Beasley, PE NC Dept. of Administration, State Construction Office howard.beasley@doa.nc.gov

Renee Hutcheson, FAIA NC Department of Environmental Quality renee.hutcheson@ncdenr.gov

Department of Environmental Quality

