29 June 2018

Heather Carter Regional Supervisor Fayetteville Regional Office Department of Environmental Quality 225 Green Street, Suite 714 Fayetteville, NC 28301-5095

Subject:The Chemours Company FC, LLCAir Permit Modification Application - Add-on ControlsFayetteville, Bladen County, North Carolina

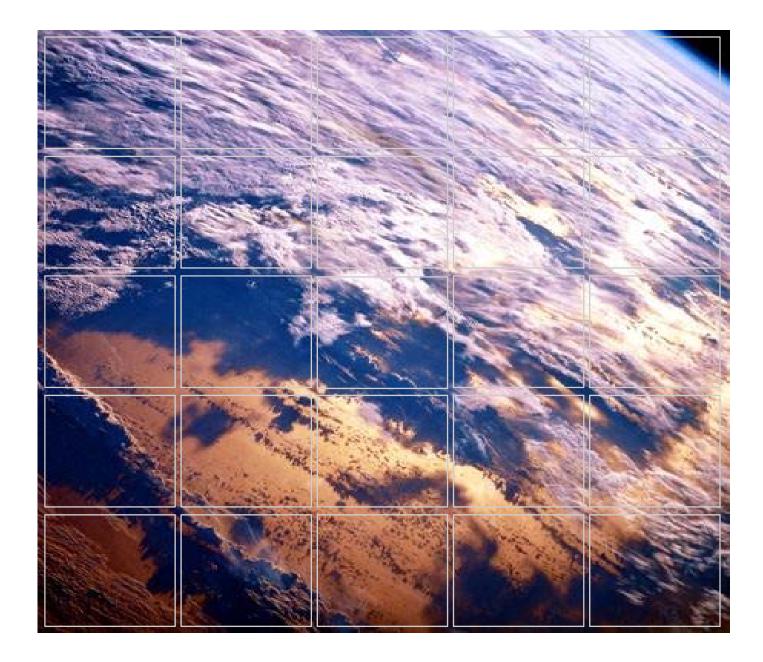
Dear Ms. Carter:

The Chemours Company FC, LLC (Chemours) is submitting herewith two (2) copies of an Application for an Air Permit to Construct/Operate for approval by the North Carolina Department of Environmental Quality (DEQ). The application was prepared by ERM NC, Inc. (ERM). With this enclosed application, Chemours is requesting authorization to construct and operate additional add-on air pollution controls at the facility located at 22828 NC Highway 87 West, Fayetteville, Bladen County, North Carolina (the facility). The controls will include a thermal oxidizer, an acid gas scrubber, and a scrubber on a lime slaker. Additional emissions equipment will include an emergency generator and a cooling tower.

This Application package includes a narrative discussion of the project, project emissions and a regulatory applicability analysis. Completed Application Forms are included as Appendix A. A facility location map is included in Appendix B. Emission calculations are included in Appendix C. Vendor Specifications are included in Appendix D. In addition, a request for a Zoning Consistency Determination is being submitted to the Bladen County Planning Department.

We look forward to working with the NC DEQ through the application review process and issuance of the permit for the facility. Chemours requests the opportunity to review the draft permit before it is issued in final form. As you know, Chemours has committed to NC DEQ to have these air pollution controls, including the thermal oxidizer which is expected to capture and control VOCs and PFAS emissions from a large number of streams at an overall efficiency of 99.99%, installed and operational by the end of 2019. NC DEQ had identified this milestone to us as of the highest priority. The thermal oxidizer equipment has been ordered and is being built off-site, for which we were informed no construction permit was required. Chemours was recently able to obtain agreement from the thermal oxidizer manufacturer to expedite the delivery schedule by three months, so that Chemours was able to make its commitment to NC DEQ to have the equipment installed and operational by the end of 2019. However, to meet that commitment, we will need to begin on-site preparatory work by October 1, 2018. We therefore request that NC DEQ issue the requested air permit by that date, or authorize Chemours to

proceed with such preparatory work, at Chemours's own risk, prior to the issuance of the air permit. Please let us know as soon as possible if you should identify any problems with that timetable.


We believe it would be mutually beneficial to schedule a meeting as soon as possible to discuss the air permit application, the proposed schedule for construction of the thermal oxidizer and other equipment (which is included in the application), and the schedule for NC DEQ's consideration of the application and for its providing required authorizations. I will contact NC DEQ promptly to schedule such a meeting.

In the meantime, if you have any questions or concerns, please contact me by phone at 910.678.1213 orby email at christel.e.compton@chemours.com. We appreciate your consideration of our application.

Sincerely,

Christel Compton Program Manager

Enclosures

Air Permit Modification Application – Thermal Oxidizer System

The Chemours Company - Fayetteville Works Permit No. 03735T43 Fayetteville, Bladen County, North Carolina

June 2018

www.erm.com

The Chemours Company FC, LLC

Air Permit Modification Application – Thermal Oxidizer System

June 2018 ERM Project No. 0458829

The Chemours Company - Fayetteville Works Permit No. 03735T43 Fayetteville, Bladen County, North Carolina

fr AThoughte

Jeffrey Twaddle, P.E. *Partner*

Kevin Eldridge, QEP, GHG-IQ

Kevin Eldridge, QEP, GHG-IQ Project Manager

Christ & Richard ON

Christy Richardson, P.E. Senior Consultant

Environmental Resources Management

4140 Parklake Avenue, Suite 110 Raleigh, North Carolina 27612 T: 919-233 4501 F: 919-578 9044

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
2.0	FAC	ILITY AND PROJECT DESCRIPTION	3
	2.1	Current Facility Description	3
	2.2	Requested Permitting Actions	3
		2.2.1 Thermal Oxidizer/Scrubber System	6
		2.2.2 Lime Processing System	6
		2.2.3 Ancillary Systems	7
	2.3	Project Schedule	12
3.0	EMI	SSIONS ESTIMATES	14
	3.1	Thermal Oxidizer/Scrubber System	14
		3.1.1 Thermal Oxidizer	14
		3.1.2 Caustic Scrubber	14
	3.2	Lime Processing System	14
		3.2.1 Lime Silo	14
		3.2.2 Lime Slaker	14
	3.3	Ancillary Equipment	15
		3.3.1 Emergency Generator	15
		3.3.2 Cooling Tower	15
	3.4	Project Emission Summary	15
4.0	AIR	REGULATORY APPLICABILITY ANALYSIS	17
	4.1	Federal Requirements	17
		4.1.1 Permitting Programs	17
		4.1.2 New Source Performance Standards, 40 CFR Part 60	18
		4.1.3 National Emission Standards for Hazardous Air Pollutants, 40 CFR	l Part
		61 And 40 CFR Part 63	19
		4.1.4 Compliance Assurance Monitoring, 40 CFR Part 64	20
	4.2	State of North Carolina Regulations	21
		4.2.1 15A NCAC 2D .0515: Particulates from Miscellaneous Industrial Processes	21

	4.2.2	15A NCAC 2D .0516: Sulfur Dioxide Emissions from Combustion	
		Source	21
	4.2.3	15A NCAC 2D .0521: Control of Visible Emissions	22
	4.2.4	15A NCAC 2D .0524: New Source Performance Standards	22
	4.2.5	15A NCAC 2D .0530: Prevention of Significant Deterioration	22
	4.2.6	15A NCAC 2D .0540: Control of Fugitive Dust Emissions	22
	4.2.7	15A NCAC 2D .1111: Maximum Achievable Control Technology	22
	4.2.8	15A NCAC 2D .1806: Control and Prohibition of Odorous Emissions	22
	4.2.9	15A NCAC 02Q.0300: Construction and Operation Permits	23
	4.2.10	15A NCAC 02D.1100: Control of Toxic Air Pollutants and 02Q.0700	:
	Toxic 1	Air Pollutant Procedures	23
	4.2.11	15A NCAC 02Q .0102: Activities Exempted from Permit	
	Requir	ements	23
REQU	IESTEI	PERMIT CONDITIONS	25
5.1	Opera	tional Limits	25
	5.1.1	Thermal Oxidizer/Scrubber System	25
5.2	Monit	oring Requirements	25
		Thermal Oxidizer System	25
		Scrubber System	26
	5.2.3	Slaker Scrubber	27
5.3	Stack	Testing Requirements	27

APPENDIX A - NORTH CAROLINA DEQ APPLICATION FORMS

APPENDIX B – FACILITY LOCATION MAP

APPENDIX C - EMISSION CALCULATIONS

APPENDIX D - VENDOR SPECIFICATIONS

5.0

LIST OF TABLES

Table 2-1: Proposed Air Emission Sources and/or Control Devices	4
Table 2-2: Processes to be Controlled by the Thermal Oxidizer/Scrubber System	6
Table 3-1: Summary of Uncontrolled Project Emissions (tpy)	16
Table 3-2: Summary of Controlled Project Emissions (tpy)	16
Table 4-1: PSD Comparison to SERs for Project Emissions (tpy)	18
Table 4-2: PM Emission Limitations from Miscellaneous Industrial Processes	21
Table 4-3: Facility-wide HF Emissions (Post Thermal Oxidizer/Scrubber System	23
Table 4-4: State Regulatory Summary	24
Table 5-1 Proposed Operational Limits	25
Table 5-2: Proposed Monitoring Requirements - Thermal Oxidizer	26
Table 5-3: Proposed Monitoring Requirements - Caustic Scrubber	26
LIST OF FIGURES	
Figure 2-1: Project Schematic	8
Figure 2-2: Thermal Converter Process Diagram	9
Figure 2-3: Sources Venting to Thermal Oxidizer System	10
Figure 2-4: Lime Handling System Diagram	11
Figure 2-5: Project Schedule	13

LIST OF ACRONYMS

BituBritish thermal units $^{\circ}$ Cdegrees Celsius $^{\circ}$ Ccalcium fluoride $^{\circ}$ C ₃ F ₂ OCHFCF ₃ E-1CFRCode of Federal RegulationsCH4methaneCHF ₃ HFC-23CH ₂ F ₂ HFC-32CH ₂ CF ₃ HFC-125CHF ₄ OCF ₃ HFC-125CH ₃ OHMethanolCIcompression ignitionCOcarbon monoxideCO ₂ carbon dioxideCO ₂ carbon dioxideCO ₂ carbon dioxideCO ₂ carbon dioxideCOcarbon dioxideCOgallons of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro] ([trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per hourgpmgallons underHFCOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH5O4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek2CO3potassium carbonatek2CO3potassium carbonatek2CO3potassium carbonatek2CO3potassium carbonatekDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPU <t< th=""><th>ABR BACT</th><th>Agitated Bed Reactor Best Available Control Technologies</th></t<>	ABR BACT	Agitated Bed Reactor Best Available Control Technologies
°Cdegrees CelsiusCaF2calcium fluorideC3F2calcium fluorideC3F2Calco of Federal RegulationsCH4methaneCHF3HFC-23CHF3HFC-25CH42F2HFC-32CHF2CF3HFC-125CHF2OCF3HFC-125CH4MethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide quivalentCO2carbon dioxide quivalentCO4Division of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[diffuoro [(triffuoroethenyl oxy] methyl]- 1,2,22-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per minHFhydrogen fluorideHFOhexafluoropropylene oxidehphour(s)HFQ0sulfuric acidICEinternal combustion engineKHC03potassium fluorideKHC03potassium fluorideKHC03potassium carbonatek2C03potassium carbonatek2C03potassium carbonatek2C03potassium carbonatekDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	-	0
CaF2calcium fluorideC3F2Calcium fluorideC3F2E-1CFRCode of Federal RegulationsCH4methaneCH4MEC-23CH2F2HFC-32CH2F2HFC-32CH52HFC-125 EtherCH30HMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO52carbon dioxide equivalentCO52carbon dioxide equivalentCO52carbon dioxide equivalentCO52carbon dioxide equivalentCO52carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2gallons of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2,-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2Opotassium fluorideKFpotassium fluorideKFpotassium fluorideKFpotassium carbonate k_2CO_3 potassium carbonate<		
CsFrOCHFCF3E-1CFRCode of Federal RegulationsCH4methaneCH4methaneCHF3HFC-23CHF2HFC-32CHF2HFC-125CHF2OCF3HFC-125 EtherCH3OHMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO52carbon dioxide equivalentCO52carbon dioxide equivalentDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[diffuoro [(triffuoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2Opotassium fluorideKFpotassium fluorideKFpotassium fluorideKFCO3potassium fluoride <td></td> <td></td>		
CFRCode of Federal RegulationsCH4methaneCH5HFC-23CH2F2HFC-32CH2F2HFC-32CHF2CF3HFC-125CH3OHMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO2carbon dioxide equivalentCO4compression of Environmental QualityDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per noirGHGgreenhouse fluorideHFOhoxepowerhrhour(s)HFQvaterH2OQwaterH2OQwaterH2OQwaterhrhour(s)H2OwaterH2OQpotassium fluorideHFCpotassium fluorideHFCpotassium fluorideHFCOhoxespowerhrhour(s)H2Opotassium fluorideKFpotassium fluorideKFpotassium fluorideKFCO3potassium fluorideKFCO3potassium fluorideKFCO3potassium fluorideKFCO3potassium fluorideLDARleak detection and repairMACTMaximum Achievable Control TechnologyMACTMaximum Achievable Control	_	
CH4methaneCH4methaneCHF3HFC-23CH4F2HFC-32CH4F2HFC-125CH42CF3HFC-125 EtherCH30HMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO52carbon dioxide equivalentCOF2carbon dioxide equivalentCOF2carbon dioxide equivalentDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsCHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH5O4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek2CO3potassium carbonatek2CO3potassium carbonatebpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
CHF3HFC-23 CH_2F_2 HFC-32 CH_2CF_3 HFC-125 Ether CH_3OCF_3 HFC-125 Ether CH_3OH MethanolCIcompression ignition CO carbon monoxide CO_2 carbon dioxide equivalent CO_2 carbon dioxide equivalent CO_2 carbon furvice DAQ Division of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2_2Osulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonateK2CO3potassium carbonatek2CO3potassium carbonateLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		0
CH_2F_2 HFC-32 CHF_2CF_3 HFC-125 CHF_2OCF_3 HFC-125 Ether CH_3OH Methanol CI compression ignition CO carbon monoxide CO_2 carbon dioxide equivalent CO_2e carbon dioxide equivalent COF_2 carbon dioxide equivalent QO_2e pepartment of Environmental Quality PEQ Department of Environmental Quality EVE propanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- $1,2,2,2$ -tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallons GHG greenhouse gasesgphgallons per hourgpmgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonate K_2CO_3 potassium carbonatebpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
CHF2CF3HFC-125CHF2OCF3HFC-125 EtherCH3OHMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO2carbon dioxide equivalentCO4carbony fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgpmgallons per hourgpmgallons per minHFhydrogen fluorideHFOhexafluoropropylene oxidehphour(s)H2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKFCO3potassium fluorideKFCO3potassium carbonatek2CO3potassium carbonatek2CO3potassium carbonateLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
CHF2OCF3HFC-125 EtherCH3OHMethanolCIcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO2ecarbon yl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphour(s)H2OwaterH2OwaterH2Opotassium fluorideKFC03potassium fluorideKFApotassium fluorideKFApotassium fluorideKFApotassium fluorideKFApotassium fluorideKFApotassium fluorideKFApotassium fluorideKFApotassium fluorideKFC03potassium fluorideKPC04kad etection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
Clcompression ignitionCOcarbon monoxideCO2carbon dioxide equivalentCO2ecarbon dioxide equivalentCO2ecarbonyl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium fluorideKHCO3potassium bicarbonatebpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		HFC-125 Ether
COcarbon monoxideCO2carbon dioxideCO2carbon dioxide equivalentCO2ecarbonyl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OuwaterL2Ouustfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium fluorideKHCO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	CH ₃ OH	Methanol
CO2carbon dioxideCO2ecarbon dioxide equivalentCOF2carbonyl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphour(s)H2OwaterH2Osulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek42CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	CI	compression ignition
CO22ecarbon dioxide equivalentCOF2carbonyl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2Osulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek_2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	СО	carbon monoxide
COF2carbonyl fluorideDAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	CO ₂	carbon dioxide
DAQDivision of Air QualityDEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonatek2cO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	CO _{2e}	carbon dioxide equivalent
DEQDepartment of Environmental QualityEVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonatek2cO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	COF ₂	carbonyl fluoride
EVEpropanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]- 1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	DAQ	Division of Air Quality
1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl estergalgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	DEQ	Department of Environmental Quality
galgallonsGHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	EVE	propanoic acid, 3-[1-[difluoro [(trifluoroethenyl oxy] methyl]-
GHGgreenhouse gasesgphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		1,2,2,2-tetrafluoroethoxy] -2,2,3,3-tetrafluoro-, methyl ester
gphgallons per hourgpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium carbonatek2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	gal	gallons
gpmgallons per minHFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	GHG	greenhouse gases
HFhydrogen fluorideHFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	gph	
HFPOhexafluoropropylene oxidehphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
hphorsepowerhrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
hrhour(s)H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
H2OwaterH2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units	hp	
H2SO4sulfuric acidICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		hour(s)
ICEinternal combustion engineKFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
KFpotassium fluorideKHCO3potassium bicarbonateK2CO3potassium carbonatelbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		
KHCO3potassium bicarbonateK2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		0
K2CO3potassium carbonateIbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		•
IbpoundsLDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		-
LDARleak detection and repairMACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		1
MACTMaximum Achievable Control TechnologyMCPUmiscellaneous organic chemical manufacturing process units		1
MCPU miscellaneous organic chemical manufacturing process units		-
0 01		
MM million	MM	million

NAAQS MON NCAC NCDEQ NESHAP	National Ambient Air Quality Standards Miscellaneous Organic Chemical Manufacturing NESHAP North Carolina Administrative Code North Carolina Department of Environmental Quality National Emission Standards for Hazardous Air Pollutants
N ₂ O	nitrous oxides
NOCS	Notice of Compliance Status
NNSR	Non-Attainment New Source Review
NO _x	nitrogen oxides
N ₂ O	nitrous oxides
NSPS	New Source Performance Standards
NSR	New Source Review
MON	miscellaneous organic NESHAP
PAF	perfluoroacetyl fluorides
PMCP	perfluoromethylcyclopentane
PFAS	poly-fluorinated compounds
PM	particulate matter
PM_{10}	particulate matter with an aerodynamic diameter less than 10 microns
PM _{2.5}	particulate matter with an aerodynamic diameter less than
	2.5 microns
PPA	polymer processing aid
ppmv	parts per million by volume
PPVE	perfluoropropyl vinyl ether
PSEPVE	perfluoro-2-(2-fluorosulfonylethoxy) propyl vinyl ether
PSD	Prevention of Significant Deterioration
RSU	Rearranged Sultone
scmm	standard cubic meters per minute
SER	significant emission rate
SO ₂	sulfur dioxide
TAP	toxic air pollutant
TFE	trifluoroethylene
TPER	toxic pollutant emission rate
TRE	total resource effectiveness
tpy	tons per year
VE	vinyl ethers
VEN	vinyl ethers north
VES	vinyl ethers south
VOC	volatile organic compounds
WWTP	wastewater treatment plant

1.0 INTRODUCTION

The Chemours Company FC, LLC (Chemours) manufactures chemicals, plastic resins, plastic sheeting and plastic film at its facility located at 22828 NC Highway 87 West, Fayetteville, Bladen County, North Carolina (the facility). The facility operates under Air Quality Permit 03735T43, effective 14 December 2016. The facility is a major source of criteria pollutants under the Part 70 (Title V) Operating Permit Program and a major source of Hazardous Air Pollutants (HAP).

As has been discussed for several months with the North Carolina Department of Environmental Quality (NCDEQ), Chemours is in the process of making a substantial investment at the Fayetteville Works facility with respect to air emission control. The investment will include installation of an array of state-of-the-art technology, including a Thermal Oxidizer/Scrubber System (which is on order) and a Lime Processing System.

Chemours has placed an order for the Thermal Oxidizer with Linde Engineering North America, Inc., a world leading engineering company with vast experience in manufacturing thermal oxidizers. Delivery is expected in May of 2019. In addition, NCDEQ informed Chemours that a construction permit was not required to place the order, however a permit will be required before the Thermal Oxidizer/Scrubber System and associated equipment can be installed. Accordingly, Chemours is submitting this permit application.

Chemours is requesting authorization to construct and operate a Thermal Oxidizer/Scrubber System and a Lime Processing System. The permit modification will not change the status of the facility with respect to the applicability of the Title V program or the National Emission Standards for Hazardous Air Pollutants (NESHAP).

Chemours requests that the NC Division of Air Quality (DAQ) process this 15A North Carolina Administrative Code (NCAC) 02Q .0300 permit application using the two step permitting process outlined in 15A NCAC 02Q .0501(c)(1). To satisfy the requirements of 15A NCAC 02Q .0501(c)(2), Chemours will submit the Part 2 permit application within twelve (12) months after commencing operation to request incorporation of the new sources into the Title V Permit and associated permit shield. A check for the required 2Q .0300 Minor Modification application processing fee is enclosed with the original copy of the permit application. Please note that Chemours requests the opportunity to review the draft permit before it is issued for public comment. This application is organized as follows:

- Section 2.0 includes a description of facility processes and permit actions requested in this application.
- Section 3.0 includes a description of emission estimation methodologies.
- Section 4.0 includes an air regulatory applicability analysis.
- Section 5.0 includes recommended permit conditions.
- Appendix A includes NCDEQ Permit Application Forms.
- Appendix B contains a facility location map.
- Appendix C contains the emission calculations.
- Appendix D contains vendor specifications.

2.0 FACILITY AND PROJECT DESCRIPTION

2.1 CURRENT FACILITY DESCRIPTION

The Chemours Fayetteville Works facility is located near Duart Township in Bladen County, North Carolina. The Site is located approximately 15 miles southeast of the City of Fayetteville on NC Highway 87, south of the Bladen-Cumberland county line. Currently, the facility manufactures chemicals, plastic resins, plastic sheeting and plastic film.

Specific materials produced at the Fayetteville facility are:

- Nafion® Fluorocarbon membrane,
- Fluorocarbon intermediates for Nafion® membranes and other fluorocarbon products, and
- Fluoropolymer Processing Aids.

In addition to the manufacturing operations, Chemours operates two natural gas-fired boilers and a wastewater treatment plant (WWTP) for the treatment of process and sanitary wastewaters from Chemours, Kuraray, and DuPont (both Kuraray and DuPont are also located on the site). Currently no wastewater from the Chemours facility is discharged to the WWTP, except reject water from making filtered, deionized/degassed water at the power plant.

2.2 REQUESTED PERMITTING ACTIONS

Chemours is submitting this permit application to modify existing Permit Number 03735T43 for the inclusion of the Thermal Oxidizer/Scrubber System and Lime Processing System along with other ancillary equipment. Table 2-1 provides a listing and description of the air emission sources and/or control devices and other equipment associated with this project. A simplified schematic of the proposed system is shown in Figure 2-1.

System	Source/Control Device	Emission Source or Control Device ID	Description
	2 Gas Accumulation Tanks	N/A	Hold up tank allows for pressure swings for feed into thermal converter injection. Sized to allow for a 1 hour hold up in the event of a flame out situation to allow process to shut down and come to steady state atmospheric hold up condition. This equipment does not generate air emissions.
	Thermal Converter/Oxidizer	NCD-Q1	High temperature (1,100 degrees Celsius [°C]) conversion unit for fluorinated hydrocarbon waste with 99.99% overall efficiency rating.
	Liquid Mist Separator	N/A	Separates rapid quench spray via a packed bed scrubber/demister pad from gaseous combustion products (carbon dioxide [CO ₂] & water). This equipment does not generate air emissions.
	Catch Tank	N/A	Collects aqueous hydrogen fluoride (HF) acid (18 wt %) generated during the thermal conversion of fluorinated hydrocarbons. This equipment does not generate air emissions.
Thermal Oxidizer/	1 Acid Recirculation Coolers	N/A	Heat exchangers used to cool the recirculation acid used in the spray quench via cooling tower water. This equipment does not generate air emissions.
Scrubber System	Acid Storage Tank	N/A	Storage tank for 18 wt % aqueous HF acid prior to being pumped to the lime neutralization/ CAF ₂ recovery system. Vessel sized to maintain thermal conversion operation during any minor process upsets in neutralization. This equipment does not generate air emissions.
	Caustic Scrubber	NCD-Q2	Four-stage packed column to neutralize any residual HF vapor carried over from the liquid mist separator. The lower three stages utilize countercurrent scrubbing with demineralized water. Demineralized water is added to Stage 3 and Stage 3 overflows to Stage 2. Stage 2 overflows to Stage 1. In this manner the HF is efficiently recovered from the flue gas. The bottom of Stage 1 contains 10% aqueous HF, stage 2 reduces concentration to 1%, Stage 3 reduces concentration to 0.1%. Stage 4 utilizes recirculated scrubbing with a pH basic solution with pH controlled by addition of sodium hydroxide (caustic). Stage 4 removes residual HF not recovered by countercurrent water scrubbing and also effectively captures SO ₂ combustion by-product.

Table 2-1: Proposed Air Emission Sources and/or Control Devices

System	Source/Control Device	Emission Source or Control Device ID	Description					
Lime Processing System	Lime Silo with Bin Vent	I-NS-R1	Storage silo for pebble lime or hydrated lime. The baghouse associated with the bin vent is an integral part of the silo. This source is an insignificant activity.					
	Lime Slaker with Scrubber	NS-R2 NCD-R2	Mixing vessel for pebble lime and water to form lime slurry.					
	Crystallizer	N/A	Agitated vessel for formation of Calcium Fluoride crystals during the mixing of aqueous 18 wt% HF acid with a lime slurry (Calcium Hydroxide in water). This equipment does not generate air emissions.					
	Filter Feed Tank	N/A	Batch hold up tank for CaF ₂ slurry to filter press. Separates system from continuous operation to batch operation. This equipment does not generate air emissions.					
	Filter Press and Truck Loading	N/A	Separates CaF ₂ solids from filtrate (water) which is then loaded into trucks.					
	Filtrate Tank	N/A	Allows for sampling of filtrate prior to discharge to outfall or to pump for off-site disposal.					
Ancillary	Emergency Generator	I-RICE 4	320 horsepower (hp) Diesel-Fired Emergency Engine. This source is an insignificant activity.					
Systems	Cooling tower	I-CT	Circulation rate of 6,000 gallons per minute (gpm), expandable to 8,000 gpm. This source is an insignificant activity.					

Table 2-1: Proposed Air Emission Sources and/or Control Devices

2.2.1 Thermal Oxidizer/Scrubber System

The Thermal Oxidizer/Scrubber System will be used to control emissions from existing sources at the Fayetteville facility. The system will include a Thermal Oxidizer to control volatile organic compounds (VOC), per-fluorinated and poly-fluorinated (PFAS) emissions. The system also includes a Caustic Scrubber which will be utilized to remove residual hydrogen fluoride vapor and other acid gases from the discharge of the Thermal Oxidizer and Liquid Mist Separator. This system will replace the currently permitted baffle-plate scrubbers (ID Nos. NCD-Hdr1 and NCD-Hdr2).

The Thermal Oxidizer/Scrubber system consists of two Gas Accumulation Tanks, Thermal Converter, Liquid Mist Separator, Catch Tank, and Acid Storage Tank. A process flow diagram for the Thermal Oxidizer/Scrubber System is provided in Figure 2-2.

The processes and emission units detailed in in Table 2-2 will be vented to the Thermal Oxidizer/Scrubber system as is shown in Figure 2-3. This System will not accept any waste streams outside of the Fayetteville Works site boundary.

Emission Source ID	Unit Name
NS-A	HFPO Process
NA-B	Vinyl Ethers-North Process
NS-C	Vinyl Ethers-South Process
NS-D	RSU Process
NS-E	FPS Liquid Waste Stabilization
NF-F	MMF Process
NS-G	IXM Resins Process
NS-K	E-2 Process
NS-M	TFE/CO ₂ Separation Process
NS-N	HFPO Product Container Decontamination
NS-O	VE-N Product Container Decontamination
NS-P	VE-S Product Container Decontamination

Table 2-2: Processes to be Controlled by the Thermal Oxidizer/Scrubber System

2.2.2 Lime Processing System

The lime processing system will receive pebble or hydrated lime in the Lime Silo (I-NS-R1) and will mix into a wet slurry in the Lime Slaker (NS-R2). A bin vent on the Lime Silo collects dust generated during truck unloading. This baghouse is an integral part of the process and is not considered an air pollution control device and therefore, the Lime Silo will be an insignificant source. The Lime Slaker will mix water and calcium oxide (pebble lime or hydrated lime) to form a calcium hydroxide lime slurry. Fugitive dusts from mixing pebble lime and water in the Lime Slaker will be controlled by a wet scrubber. The lime slurry will then be introduced into the Crystallizer, along with the

aqueous 18 wt% HF acid from the Thermal Oxidizer/Scrubber System. Calcium fluoride (CaF2) crystals will form in the Crystallizer and be fed to the batch hold-up or Filter Feed Tank. Prior to loading, the CaF2 mixture will be sent to the Filter Press where filtrate (water) will be separated from the CaF2 solids. The solids will be loaded into trucks for off-site disposal and the water will be sent to the Filtrate Collection Tank, checked for turbidity, and then sent to the plant outfall or offsite.

A process flow diagram for the Lime Processing System is provided in Figure 2-4.

2.2.3 Ancillary Systems

Emergency Generator (I-RICE 4)

A 320 horsepower (hp) diesel fired emergency engine will be installed as part of this project. It will meet the Tier 3 emission standards and will emit small amounts of air pollution due to the combustion of diesel fuel. The engine will be utilized for emergency purposes only and will be an insignificant source.

Cooling Tower (I-CT)

The cooling tower will be used to remove heat from the recirculating acid produced in the natural gas-fired Thermal Oxidizer. A graphite heat exchanger is used to cool the recirculated acid. The heat removed is from the heat of combustion and heat of solution to absorb the HF produced into the aqueous HF acid produced. The cooling tower water will also be used to remove the heat of neutralization to react aqueous HF with calcium hydroxide and produce calcium fluoride. The cooling tower system will also be used to cool various air compressors including plant air compressors, breathing air compressors and atomizing air compressors. The plan is to install a concrete basin that can support a 4-cell tower capable of cooling 8,000 gpm; Chemours will install a 3-cell tower capable of cooling 6,000 gpm, so the concrete basin will be sufficient. The Cooling Tower will be an insignificant source.

Figure 2-1: Project Schematic

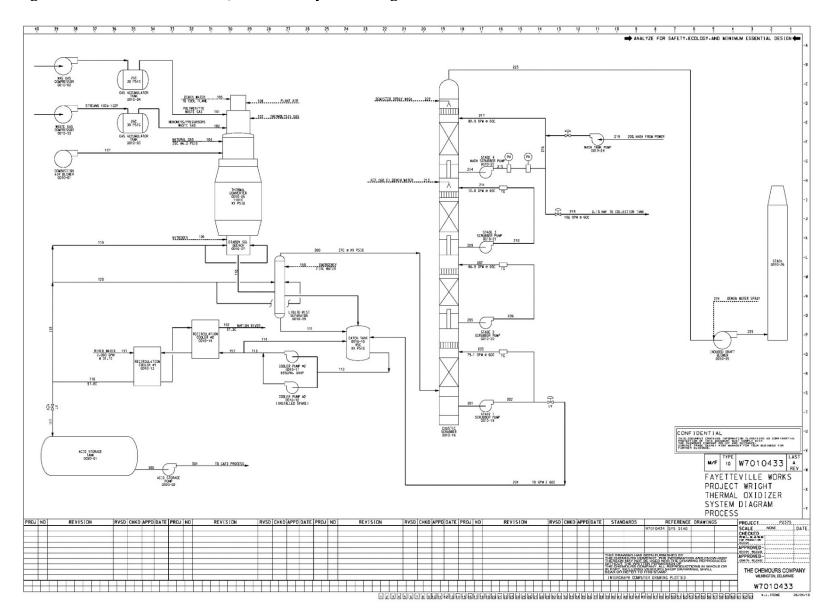


Figure 2-2: Thermal Oxidizer/Scrubber System Diagram

Figure 2-3: Sources Venting to Thermal Oxidizer System

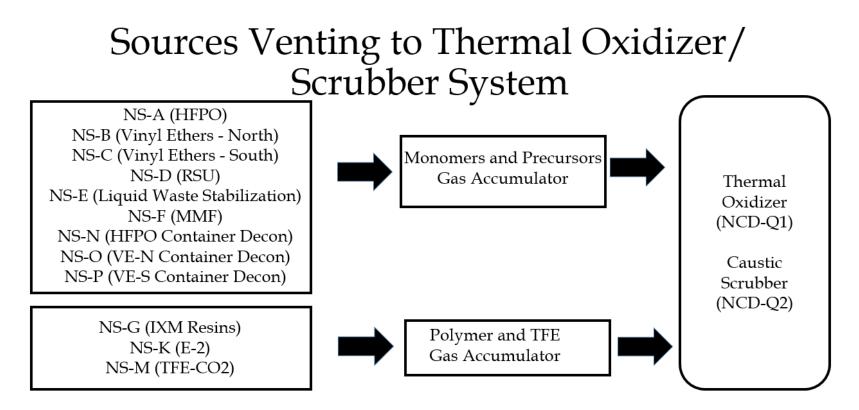
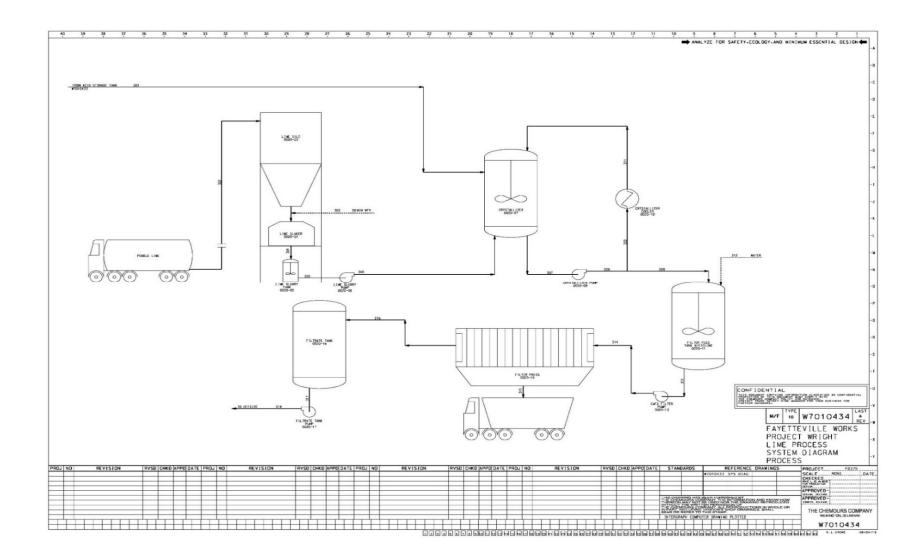



Figure 2-4: Lime Handling System Diagram

2.3 **PROJECT SCHEDULE**

As previously discussed with the NCDEQ, Chemours is committed to the installation of the Thermal Oxidizer System for the reduction of VOCs and PFAS. Chemours has placed an order for the construction of the Thermal Oxidizer with Linde Engineering North America, Inc. The system is expected to be delivered in May of 2019. This technology consists of custom-designed, specialized equipment that must be custom-built and will take approximately 18-24 months to manufacture and install. By the end of 2019, Chemours expects to install the Thermal Oxidizer to reduce overall process emissions of VOCs and PFAS by 99.99%. Chemours has expedited this schedule to the maximum extent possible, and will make all efforts to expedite it further. At the same time, Chemours plans to construct a Caustic Scrubber to remove the HF that will be created by the Thermal Oxidizer. Refer to Figure 2-5 for the proposed project schedule.

Figure 2-5: Project Schedule

	<trm< th=""><th>448-1></th><th>Seb-1></th><th>0^{ct,1}></th><th>Nov. 2></th><th>Dec-1></th><th>Jan-18</th><th>Feb.18</th><th>Mar 28</th><th>40r.28</th><th>Mar 18</th><th>Jun-18</th><th>101, 18</th><th>4u8-18</th><th>Sep-18</th><th>o_{ct 18}</th><th>Nov. 28</th><th>Decize</th><th>$^{I}Q_{Ig}$</th><th>²Q19</th><th>${}^{3}Q_{Ig}$</th><th>⁴Q19</th></trm<>	448-1>	Seb-1>	0 ^{ct,1} >	Nov. 2>	Dec-1>	Jan-18	Feb.18	Mar 28	40r.28	Mar 18	Jun-18	101, 18	4u8-18	Sep-18	o _{ct 18}	Nov. 28	Decize	$^{I}Q_{Ig}$	²Q19	${}^{3}Q_{Ig}$	⁴ Q19
						Vap	or Aba	itemei	nt Sco	pe (The	ermal	Oxidize	er / Ca	lcium	Fluori	de Sys [.]	tem)					
Basic Data & project Definition		_	_						•													
Long Lead equipment Delivery									-													
Design Complete									-										•			
Construction																						
Site Preparation																		→				
Foundation Work																				•		
Install thermal oxidizer modules																						
Steel and Pipe Bridge																						
CaF2 equipment setting																				_	→	
Piping & Insulation																					→	
Electrical & Instrumentation																						→
Commisioning and start up																						

3.0 EMISSIONS ESTIMATES

3.1 THERMAL OXIDIZER/SCRUBBER SYSTEM

3.1.1 Thermal Oxidizer

The existing emission units will be vented to the Thermal Oxidizer/Scrubber System. Overall process emissions of VOCs and PFAS compounds are assumed to be controlled by 99.99% in the Thermal Oxidizer. Hourly VOC emissions are based on highest-case loading to the Thermal Oxidizer/Scrubber system and projected control efficiencies.

The Thermal Oxidizer will generate emissions associated with the combustion of natural gas. The Thermal Oxidizer will also generate HF and CO₂ emissions due to combustion of the organic hydrocarbons. SO₂ will be generated in the thermal oxidizer from the combustion of sulfur containing organic hydrocarbons. The emissions of HF, CO₂, and SO₂ will be further controlled in the scrubber.

3.1.2 Caustic Scrubber

The emissions from the Thermal Oxidizer are then vented to the scrubber. The scrubber will control the emissions of HF and SO₂ generated in the Thermal Oxidizer by 99.95%. The thermal oxidizer will also generate CO₂ that will not be further reduced by the Scrubber; therefore, no control efficiencies have been assumed for CO₂. Hourly emissions of HF, SO₂ and CO₂ were based on the highest-case load to the Thermal Oxidizer and the conversion of compounds to HF, SO₂ and CO₂ using the methodology described in Appendix C.

3.2 LIME PROCESSING SYSTEM

3.2.1 Lime Silo

The emissions from the lime silo were based on a load factor provided by the vendor of the baghouse and the maximum air flow rate. Appendix C provides additional emission calculations.

3.2.2 Lime Slaker

Emissions from the Lime Slaker scrubber are calculated based on a preliminary inlet emission rate supplied by the vendor of 6.17 lb/hr and a vendor guaranteed control efficiency of 99.7%. Appendix C provides emission calculations.

3.3 ANCILLARY EQUIPMENT

3.3.1 Emergency Generator

Chemours plans to purchase a 320 HP emergency generator. The generator will be subject to Tier 3 emission standards for emergency generators. Emissions for carbon monoxide (CO), particluate matter with an aerodynamic diameter less than 10 microns (PM₁₀), and particulate matter with an aerodynamic diameter less than 2.5 microns (PM_{2.5}) are based on the Tier 3 emission limits. Emissions for VOC and nitrogen oxides (NO_x) were based on the ratio of the emission standard to the appropriate AP-42 emission factors for VOC (2.53E-03 lb/hp-hr) and NO_x (0.031E-02 lb/hp-hr). Emission factors for sulfur dioxide (SO₂) were obtained from AP-42 and an assumed sulfur content of 0.0015%. Emission factors for greenhouse gases (GHG) were obtained using methodologies in 40 CFR 98. Emission factors for HAPs were obtained from the NCDAQ spreadsheet¹. Appendix C provides emission calculations.

3.3.2 Cooling Tower

Emissions from the cooling tower were based on the cooling water recirculation rate, the drift factor, makeup water total dissolved solids, and cycles of the concentration. Appendix C provides emission calculations.

3.4 PROJECT EMISSION SUMMARY

Table 3-1 provides a summary of the uncontrolled potential criteria pollutant and carbon dioxide equivalent (CO_{2e}) emissions associated with the project in tons per year (tpy). Table 3-2 provides a summary of the controlled potential criteria pollutant and carbon dioxide equivalent (CO_{2e}) emissions associated with this project. Fluorinated hydrocarbon compounds and hydrogen fluoride are not considered PSD compounds². Emissions are presented in tons per year. Since this is a pollution control project (PCP) for processes that will be vented to the thermal oxidizer/scrubber system, those emissions are not counted towards the project total (existing unmodified Sources). No additional power will be generated in order to operate the new systems.

¹ <u>https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/application-forms-instructions/application-forms-air-quality-permit-construct-operate-non-title-v-title-v-facilities/spreadsheets</u>

² Letter from Donald van der Vaart, Chief, Permits Section, NCDENR to Michael Johnson, Environmental Engineer, DuPont Fluoroproducts, 17 July 2008.

Tuble 5 1. Summary of Cheometonica Project Emissions (tpy)													
Emission Source	VOC	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}	CO _{2e}						
Lime Silo with Bin Vent (I-NS-R1)	0.00	0.00	0.00	0.00	0.75	0.75	0.00						
Lime Slaker (NS-R2)	0.00	0.00	0.00	0.00	27.02	27.02	0.00						
Thermal Oxidizer (NCD-Q1)													
[Fuel Combustion + Conversion of	0.24	4.27	3.59	16.63	0.32	0.32	10,412						
Sulfonated Components]													
Scrubber (NCD-Q2)													
[CO ₂ Generation from Organic	0.00	0.00	0.00	0.00	0.00	0.00	4,724						
Compounds]													
I-RICE 4	0.04	0.49	0.46	0.0015	0.026	0.026	61						
I-CT	0.00	0.00	0.00	0.00	0.79	0.79	0.00						
Total	0.28	4.8	4.1	16.6	28.9	28.9	15,197						
SER	40	40	100	40	15	10	75,000						

Table 3-1: Summary of Uncontrolled Project Emissions (tpy)

 Table 3-2:
 Summary of Controlled Project Emissions (tpy)

	/						
Source	VOC	NO _x	CO	SO_2	PM_{10}	PM _{2.5}	CO _{2e}
Lime Silo with Bin Vent (I-NS-R1)	0.00	0.00	0.00	0.00	0.75	0.75	0.00
Lime Slaker (NS-R2)	0.00	0.00	0.00	0.00	0.081	0.081	0.00
Thermal Oxidizer [Fuel Combustion + Conversion of Sulfonated Components]	0.24	4.27	3.59	0.04	0.32	0.32	10,412
Scrubber Outlet [CO ₂ Generation from Organic Compounds]	0.00	0.00	0.00	0.00	0.00	0.00	4,724
I-RICE 4	0.040	0.49	0.46	0.0015	0.026	0.026	61
I-CT	0.00	0.00	0.00	0.00	0.79	0.79	0.00
Total	0.28	4.8	4.1	0.042	1.97	1.97	15,197
PSD SER	40	40	100	40	15	10	75,000

^a Controlled by Thermal Oxidizer/Scrubber System

 $^{\rm b}$ The threshold shown is for PM_2.5, which is the lowest PM threshold.

4.0 AIR REGULATORY APPLICABILITY ANALYSIS

The applicability determinations made for potentially applicable federal and state air quality regulations are described in this section for addition of the proposed Thermal Oxidizer/ Scrubber System and Lime Processing System, as well as the ancillary equipment.

The Code of Federal Regulations and the North Carolina Department of Environmental Quality, Division of Air Quality, Rules and Regulations were reviewed to determine applicability to the proposed plant. Section 4.1 addresses federal regulatory applicability and Section 4.2 addresses the applicability of state rules to the proposed project.

4.1 FEDERAL REQUIREMENTS

Federal regulations have been promulgated that direct both the process of applying for a permit and the performance standards of various types of emission units. The EPA has delegated the authority to implement the Federal NSR to the NCDEQ. A review of the federal performance standards that may apply to the proposed operations is provided below. The applicable regulations are discussed in the following subsections in the order that they appear in the Code of Federal Regulations (CFR). The Federal Requirements section is broken into the following categories: Permitting Programs, 40 CFR 60, 40 CFR 61, 40 CFR 63, and 40 CFR 64.

4.1.1 Permitting Programs

4.1.1.1 Title V Operating Permit Program

A Title V (Part 70) operating permit is required for facilities that meet the definition of a major source according to 40 CFR Part 70.2. A facility with criteria pollutant emissions greater than 100 tpy, 10 tpy of a single HAP, or 25 tpy of the combination of HAPs is considered a major source under the Title V permitting program. The facility is considered a major source with respect to the Title V permitting program and operates under Permit 03735T43. Chemours will submit the Part 2 permit application within twelve (12) months after commencing operation of the proposed Thermal Oxidizer/Scrubber System and Lime Processing System to request incorporation of the new sources into the Title V Permit.

4.1.1.2 PSD

The federal PSD program, codified in 40 CFR Part 52.21, requires any new major stationary source of air pollutants to obtain a major source air construction permit before commencing construction. North Carolina has incorporated the federal PSD program in 15A NCAC 2Q .0300. The PSD program applies to a facility if potential

emissions exceed applicable major source thresholds. The facility is considered a chemical process plant, which is one of the 28 listed PSD source categories specified in §52.21(b)(1)(i)(a) with a 100-tpy PSD major source threshold for regulated New Source Review (NSR) pollutants. Since the existing facility is a major source with respect to the PSD program, modifications at the facility must undergo major source review if the proposed project will increase emissions of one of the PSD regulated pollutants in excess of the applicable pollutant Significant Emission Rate (SER) threshold.

The uncontrolled emissions from the new sources associated with this project are shown in Table 4-1. Since the uncontrolled emissions of PM_{10} and $PM_{2.5}$ will exceed the PSD SER, Chemours is requesting a PSD avoidance limit for the Lime Slaker unit for PM_{10} and $PM_{2.5}$. As indicated in Tables 3-2 and 4-1, the controlled potential emissions from the Lime Slaker are significantly less than the PSD SERs.

Emission Source	VOC	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}	CO _{2e}
Total Uncontrolled Potential Project Emissions	0.28	4.8	4.1	16.6	28.9	28.9	15,197
Total Controlled Potential Project Emissions	0.28	4.8	4.1	0.042	1.97	1.97	15,197
SER	40	40	100	40	15	10	75,000

Table 4-1: PSD Comparison to SERs for Project Emissions (tpy)

4.1.1.3 Nonattainment Area New Source Review (NNSR)

NNSR is applicable to construction of a new major stationary source or a project that is a major modification at an existing major stationary source in an area designated as nonattainment for the National Ambient Air Quality Standards (NAAQS). The facility is located in Bladen County which is classified as an attainment or unclassifiable county for NSR pollutants. Thus, the facility is not subject to NNSR.

4.1.2 New Source Performance Standards, 40 CFR Part 60

New Source Performance Standards (NSPS), codified in Title 40 CFR Part 60, establish pollutant emission limits and monitoring, reporting, and recordkeeping requirements for various emission sources based on source type and size. The NSPS apply to new, modified, or reconstructed sources as defined by particular NSPS. North Carolina has incorporated the federal NSPS in 15A NCAC 02D.0524.

40 CFR 60 Subpart IIII, "Standards of Performance for Stationary Compression Ignition Internal Combustion Engines," (CI ICE NSPS) applies to the proposed emergency generator to be installed with the project. The applicable requirements are detailed in the following sections.

4.1.2.1 40 CFR 60, Subpart IIII, CI ICE NSPS

The 320 HP diesel-fuel fired emergency generator (ID No. I-RICE 4) is subject to the requirements of 40 CFR 60, Subpart IIII since it is a stationary compression ignition (CI) internal combustion engine (ICE) that was constructed after July 11, 2005. The unit will be subject to the Tier 3 emission limits and Chemours plans purchase a Tier 3 compliant unit. The unit will be used for emergency purposes only; therefore the facility must track the hours of operation on a non-resettable hour meter to ensure operation less than 100 hours per year. The facility must maintain documentation that demonstrates that the unit meets the applicable emissions standards. The engine is also restricted to only combusting diesel fuel with a sulfur content equal to or less than 15 parts per million by volume (ppmv) and is required to be maintained and operated per manufacturer's specifications.

4.1.3 National Emission Standards for Hazardous Air Pollutants, 40 CFR Part 61 And 40 CFR Part 63

National Emission Standards for Hazardous Air Pollutants (NESHAP) are generally applicable to sources of HAP. The NESHAP regulations in 40 CFR 61 are pollutantspecific while the NESHAP regulations in 40 CFR 63 are established based on Maximum Achievable Control Technology (MACT) determinations for particular source types. NESHAP 40 CFR 63 Subpart ZZZZ, "National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines," (RICE MACT) applies to the proposed emergency generator to be installed with the project. The associated requirements are discussed in the following sections.

The facility is also subject to 40 CFR 63 Subpart FFFF, "National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing" (MON). The applicability, with regards to this project, is detailed in the following sections.

4.1.3.1 40 CFR 63 Subpart ZZZZ, National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

The 320 HP diesel fuel-fired emergency generator (ID No. I-RICE 4) meets the definition of a stationary reciprocating internal combustion engine (RICE) and is therefore subject to 40 CFR 63 Subpart ZZZZ, "National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines." However, since this unit is also subject to the requirements of 40 CFR 60 Subpart IIII and has a site rating of less than 500 brake HP, this unit complies with the requirements of this subpart by meeting the requirements in 40 CFR 60 Subpart IIII in accordance with 40 CFR 63.6590(c)(6).

4.1.3.2 40 CFR 63 Subpart FFFF, National Emissions Standards for Hazardous Air Pollutants for Miscellaneous Organic Chemical Manufacturing

The Chemours facility consists of four process units that are subject to the requirements of 40 CFR 63 Subpart FFFF, "National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing." The four miscellaneous organic chemical manufacturing process units (MCPU) are:

- MCPU-1 (NS-A, HFPO),
- MCPU-2 (NS-B, Vinyl Ethers North),
- MCPU-3 (NS-C, Vinyl Ethers South), and
- MCPU-4 (NS-G, Resins).

As detailed in the site's Notice of Compliance Status (NOCS), there are no Group 1 storage tanks, transfer racks, Group 1 wastewater streams, or halogenated vent streams within the four MCPUs. There will be no additional MON applicable process vents, wastewater streams, storage tanks, transfer racks, heat exchangers or equipment as a result of this project

While the four MCPUs have continuous process vents, the vents are not required to be controlled since the vent streams either contain less than 0.005% by weight total HAP or the flowrate is less than 0.005 standard cubic meters per minute (scmm) and the total resource effectiveness (TRE) is greater than 1.9. Therefore, the thermal oxidizer is not required by the MON and is not subject to any requirements.

4.1.4 Compliance Assurance Monitoring, 40 CFR Part 64

Under 40 CFR Part 64, Compliance Assurance Monitoring (CAM), facilities are required to prepare and submit monitoring plans for certain emission units with certain Title V permit applications. Specifically CAM applies to any unit that meets all three of the following criteria:

- be subject to an emission limitation or standard,
- use a control device to achieve compliance, and
- have pre-control emissions that exceed or are equivalent to the major source threshold.

The CAM plan will be updated, as applicable, with the Part 2 Title V Permit Application.

4.2 STATE OF NORTH CAROLINA REGULATIONS

The proposed operations were also evaluated for applicability to state regulations. Applicable state regulatory requirements and standards as they pertain to planned operations at the facility are detailed in the following sections. Also, applicability of each state regulation is presented in Table 4-4 by individual source.

4.2.1 15A NCAC 2D .0515: Particulates from Miscellaneous Industrial Processes

The proposed systems will be subject to the requirements of 15A NCAC 2D .0515, "Particulates from Miscellaneous Industrial Processes." Each affected source, as indicated in Table 4.2, must comply with the allowable PM emission rates determined using the following equations.

> For Process Rates ≤ 30 TPH: $E = 4.10 \times P^{0.67}$ Equation 4-1 For Process Rates > 30 TPH: $E = 55.0 \times P^{0.11} - 40$ Equation 4-2

For the purposes of these equations, "E" is the maximum allowable emission rate in pounds per hour and "p" is the process rate in tons per hour. The following table provides the calculated allowable emission rates for the Lime Silo and Lime Slaker that are subject to this regulation.

Emission Source ID	Emission Source Description	Process Rate (ton per hour)	PM Emission Limit (lb/hr)	Projected PM Emissions (lb/hr)
I-NS-R1	Lime Silo	0.54	2.71	0.17
NS-R2	Lime Slaker	3.75	9.94	0.02

Table 4-2: PM Emission Limitations from Miscellaneous Industrial Processes

4.2.2 15A NCAC 2D .0516: Sulfur Dioxide Emissions from Combustion Source

Sulfur dioxide emissions from the thermal oxidizer shall not exceed 2.3 pounds per million British thermal units (lb/MMBtu). Chemours will demonstrate compliance with the SO_2 emission limits by combusting low sulfur fuels (i.e., natural gas) in the thermal oxidizer.

Chemours will only burn diesel fuel that has less than 15 ppmv in the emergency engine. Using this sulfur content and the AP-42 SO₂ emission factor for diesel combustion, the resulting emission factor is 0.0015 lb/MMBtu, which is less than the limit of 2.5 lb/MMBtu.

4.2.3 15A NCAC 2D .0521: Control of Visible Emissions

The new sources will be subject to 15A NCAC 2D .0521, "Control of Visible Emissions" and therefore the facility must not have visible emissions of more than 20 percent opacity when averaged over a six-minute period, except as specified in 15A NCAC 02D .0521(d). Due to the nature of the operation and/or the control systems planned for these affected sources and/or the fuel combusted in the units, Chemours will comply with the visible emissions standard.

4.2.4 15A NCAC 2D .0524: New Source Performance Standards

New sources proposed as part of this project will be subject to various subparts of the New Source Performance Standards located in 40 CFR 60; therefore the requirements of 15A NCAC 2D .0524, "New Source Performance Standards" apply. Please refer to Section 4.1 for the details and requirements of applicable New Source Performance Standards.

4.2.5 15A NCAC 2D .0530: Prevention of Significant Deterioration

As discussed in Section 4.1.1.2 of this application, the Chemours facility is a major source for Prevention of Significant Deterioration applicability.

4.2.6 15A NCAC 2D .0540: Control of Fugitive Dust Emissions

The Chemours facility is subject to the requirements of 15A NCAC 2D .0540, "Control of Fugitive Dust Emissions" which prohibits the facility from causing or contributing to substantive complaints from dust emissions or causing excess visible emissions beyond the facility's boundary. Chemours plans to take appropriate actions to ensure that fugitive dust emissions from the Lime Processing System do not contribute to substantive complaints or migrate causing visible emissions beyond the facility's property boundaries. This is a facility-wide standard.

4.2.7 15A NCAC 2D .1111: Maximum Achievable Control Technology

New sources proposed as part of this project will be subject to various subparts of the National Emission Standards for Hazardous Air Pollutants located in 40 CFR 63, based on source categories; therefore the requirements of 15A NCAC 2D .1111, "Maximum Achievable Control Technology" apply. Refer to Section 4.1.3 for the details and requirements of applicable MACT Standards.

4.2.8 15A NCAC 2D .1806: Control and Prohibition of Odorous Emissions

The Chemours facility is subject to the requirements of 15A NCAC 2D .1806, "Control and Prohibition of Odorous Emissions." Chemours will ensure there are suitable

measures to control odorous emissions from the facility operations. This rule is state enforceable only and is applicable facility-wide.

4.2.9 15A NCAC 02Q.0300: Construction and Operation Permits

As noted in the Federal Regulations section, the Title V permitting program does apply to the Chemours Fayetteville Works which currently operates under Title V permit number 03735T43.

4.2.10 15A NCAC 02D.1100: Control of Toxic Air Pollutants and 02Q.0700: Toxic Air Pollutant Procedures

The Toxic Air Pollutant Procedures require a permit for any facility with emissions of an Air Toxic Pollutant in excess of the applicable Toxic Pollutant Emission Rates (TPER) presented in 15A NCAC 02Q.0711. The current permit for the Chemours facility contains facility-wide emission limits for each of the applicable pollutants emitted at the facility. The proposed Thermal Oxidizer/Scrubber System will significantly reduce emissions of air toxics emitted from the facility with the exception of HF. HF will be generated by the Thermal Oxidizer but will then be controlled by the Scrubber. HF projected emissions are shown in Table 4-3 and are detailed in Appendix C. As shown, the new projected facility-wide HF emissions are less than the current permit limits for HF. Therefore, air dispersion modeling is not required with this application.

Table 4-5. Tachity-wide III Emissions (10st Thermai Oxidizel/Scrubber System)							
	Facility-wic	le Emissions	Current Permit Limits				
	lb/hr	lb/day	lb/hr	lb/day			
Project Emissions	0.77	18.5	-	-			
Current Source Emissions	0.35	8.3	-	-			
Total	1.12	26.8	9.98	71.85			

Table 4-3: Facility-wide HF Emissions (Post Thermal Oxidizer/Scrubber System)

4.2.11 15A NCAC 02Q .0102: Activities Exempted from Permit Requirements

As specified in 15A NCAC 02Q .0102 (h)(5), sources that have potential uncontrolled emissions of PM_{10} , SO_2 , NOx, VOC and CO of less than 5 tons per year each are not required to obtain a permit under 15A NCAC 02Q .0300. Therefore, since the potential uncontrolled emissions from the Lime Silo, Cooling Tower and the Emergency Generator are less than 5 tons per year for each of the applicable pollutants (see Table 3-1), a construction permit is not required for these sources.

Table 4-4: State Regulatory Summary

Source ID	Control Device ID	Source Description	15A NCAC 02D .0515	15A NCAC 02D .0516	15A NCAC 02D .0521	15A NCAC 02D .0524	15A NCAC 02D .0530	15A NCAC 02D .0540	15A NCAC 02D .1100/ 02Q .0700	15A NCAC 02D .1111	15A NCAC 02D .1806	15A NCAC 02Q .0102
Thermal Oxid	izer / Scrubber	System										
	NCD-Q1	Thermal Oxidizer		x	x							
	NCD-Q2	Caustic Scrubber			x							
Lime Processi	ng System											
I-NS-R1	N/A	Lime Silo with Bin Vent	x		x							x
NS-R2	NCD R-2	Lime Slaker with Scrubber	x		x							
Ancillary Syst	ems											
I-RICE 4	N/A	Emergency Generator		x	x	x				x		x
I-CT	N/A	Cooling Tower	x		x							x
Facility-Wide												
N/A	N/A	Facility-Wide					x	x	x		x	

5.0 **REQUESTED PERMIT CONDITIONS**

The section details the permit conditions that Chemours is requesting as part of this project. This section includes requirements for operational limits, monitoring and recordkeeping requirements, and stack testing requirements.

5.1 **OPERATIONAL LIMITS**

5.1.1 Thermal Oxidizer/Scrubber System

Chemours is requesting operational limits for the Thermal Oxidizer and the Caustic Scrubber on the proposed control devices to ensure proper operation of the units. Table 5-1 details the proposed operation limits for both the Thermal Oxidizer and the Scrubber.

Table 5-1: Proposed Operational Limits

Parameter	Value	Units	
Thermal Oxidizer (NCD-Q1)			
Minimum Combustion Chamber Temperature	1,800	°F	
Maximum Waste Gas Feed Rate	2,200	lb/hr	
Caustic Scrubber (NCD-Q2)			
Minimum Scrubber Liquor Flow (4th Stage)	40	gal/min	
Minimum Scrubber Liquor pH (4 th Stage)	7.1	N/A	

Chemours plans to install, calibrate, maintain, and operate the temperature monitoring device, flow monitoring devices, and pH meters to continuously measure and record the applicable parameters, as detailed in Table 5-1. The Thermal Oxidizer and Caustic Scrubber will be operated when any processes feeding the Thermal Oxidizer/Scrubber System are operating.

If during source testing, it is determined that a different operational limit is preferred, Chemours will request to modify the operational limits in writing.

5.2 MONITORING REQUIREMENTS

5.2.1 Thermal Oxidizer System

Chemours recommends the following monitoring requirements for combustion chamber temperature and maximum gas feed rate to the Thermal Oxidizer as discussed in Section 5.1.

Table 5-2: Proposed Monitoring Requirements – Thermal Oxidizer

Parameter	Monitoring Requirement	Averaging Time	
	Continuous		
Minimum Combustion Chamber Temperature	(once every 15 min)	3 hours	
	Continuous		
Maximum Waste Gas Feed Rate	(once every 15 min)	3 hours	

The combustion zone temperature will be maintained at or above the minimum temperature (3-hour rolling average) during periods when the processes feeding the Thermal Oxidizer/Scrubber System are operating. The waste gas feed rate to the Thermal Oxidizer/Scrubber System will be maintained at or below the maximum feed rate (3-hour rolling average) during periods when the applicable process are operating. Chemours also requests that the following condition be included in the Permit, "The Permittee shall operate the Thermal Oxidizer in a manner in which the monitoring system uptime is at least 97% of the total operational time per semi-annual period."

5.2.2 Scrubber System

Chemours recommends the following monitoring requirements for scrubber liquor flow and scrubber liquor pH to the Caustic Scrubber as discussed in Section 5.1.

 Table 5-3: Proposed Monitoring Requirements - Caustic Scrubber

Parameter	Monitoring Requirement	Averaging Time
	Continuous	
Minimum Scrubber Liquor Flow (4th Stage)	(once every 15 min)	Instantaneous
	Continuous	
Minimum Scrubber Liquor pH (4th Stage)	(once every 15 min)	3 hours

The 4th stage scrubber liquor flow rate will be maintained at or above the minimum flow rate during periods when the processes feeding the Thermal Oxidizer/Scrubber System are operating. The 4th stage scrubber pH will be maintained at or above the minimum pH (3-hour rolling average) during periods when the applicable processes are operating. Chemours also requests that the following condition be included in the Permit, "The Permittee shall operate the Caustic Scrubber in a manner in which the monitoring system uptime is at least 97% of the total operational time per semi-annual period."

5.2.3 Slaker Scrubber

Chemours proposes to take weekly visible emission readings from the slaker. Once a week, Chemours will observe the slaker scrubber exhaust for any visible emissions above normal. Chemours will establish 'normal' within 30 days after operation of the slaker scrubber.

5.3 STACK TESTING REQUIREMENTS

Chemours is proposing to conduct a source test within 90 days after normal operation of the Thermal Oxidizer/Scrubber System. The testing will be conducted on the Thermal Oxidizer/Scrubber System exhaust, as well as the inlet, to document control efficiency. Additional source tests may be required in the future if process operating conditions change. Appendix A NC DEQ Application Forms

Chemours Company - Fayetteville Works Fayetteville, Bladen County, North Carolina

FORM A

GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A						Α				
		Ν	OTE- APPLICA	TION WILL NO	OT BE PRO	DCESSED WITHO	UT THE FO	LLOWING:		
Z	Local Zoning Consi modification only)	stency Determir	nation (new or	7	Appropriate	e Number of Copies of	Application	7	Application Fee (if requir	ed)
Z	Responsible Officia	I/Authorized Co	ntact Signature	v	P.E. Seal (i	if required)				
				GE	NERAL IN	FORMATION				
Legal Corpora	ate/Owner Name:					The Chemours Con	npany FC, LLC			
Site Name:				Т	The Chemours	Company - Fayetteville	e Works			
Site Address (911 Address) Line 1:	22828 NG	C Highway 87 West							
Site Address L	ine 2:									
City:	Fayetteville					State: North	Carolina			
Zip Code:	28306-7332					County: Blade	n			
				CO	NTACT IN	FORMATION				
Responsible (Official/Authorized C	Contact:				Invoice Contact:				
Name/Title:	Brian D. Long/Plai	nt Manager				Name/Title: Christ	el Compton/Pro	ogram Manager		
Mailing Addres	ss Line 1: 22828 NC	Highway 87 We	est			Mailing Address Line 1	: 22828 NC Hig	hway 87 West		
Mailing Addres	ss Line 2:					Mailing Address Line 2	2:			
City: Fayette	eville Sta	te: North Car	rolina Zip Code:	28306-7332		City: Fayetteville	State:	North Carolina	Zip Code: 2	28306-7332
Primary Phone	e No.: 910-	678-1415	Fax No.:	910.678	3.1247	Primary Phone No.:	910.678.121	3	Fax No.: 910.678.12	!47
Secondary Pho	one No.:					Secondary Phone No.:				
Email Address	: Brian.D.Long@che	mours.com				Email Address: christ	<u>el.compton@ch</u>	<u>emours.com</u>		
Facility/Inspec	ction Contact:					Permit/Technical Cor	ntact:			
Name/Title:	Christel Compton/							ogram Manager		
	ss Line 1: 22828 NC	Highway 87 We	est			Mailing Address Line 1		hway 87 West		
Mailing Addres						Mailing Address Line 2	<u>}.</u>			
City: Fayette		ate: North Car		28306-		City: Fayetteville		North Carolina		8306-7332
Primary Phone		678.1213	Fax No.:	910.678	3.1247	Primary Phone No.:	910.678.121	3	Fax No.: 910.678.12	<u>?</u> 47
Secondary Pho						Secondary Phone No.:				
Email Address	christel.compton@	chemours.com				Email Address: christ EING MADE FOF		emours.com		
	Ion-permitted Facility/	One and ald		of Facility (permitte				Deneval Nev	Tale 17	
		nership Change	_		ea)	 Renewal Title \ Renewal with M 		Renewal Non-	l itie v	
		nersnip Change			ION AFTER	R APPLICATION (One)		
	General		Small			bitory Small	Syntheti	,	Title V	
	Conordi			FACILIT		te) INFORMATIO	-,		_ 110 1	
Describe natur	re of (plant site) opera	tion(s): <i>Manufa</i>	icturer of chemicals,	plastic resins, pla	astic sheeting	and plastic film.				
-						Facility ID	No.		900009	
Primary SIC	C/NAICS Code:		326	113		Current/Previous Air P	ermit No.	03735T43	Expiration Date:	31-Mar-2021
Facility Coordin	nates: Latitude:		34.843934			Longitude:	O Degianal Off		78.836834 nitting this application.	***
Does this app confidential d	blication contain data?	Z	YES 🗹	NO	(See Instru		a Regional On	ice prior to subr	mitting this application.	
			PE	rson or fir	RM THAT F	REPARED APPL	ICATION			
Person Name:	Kevin Eldridge					Firm Name: ERM NC	, Inc.			
Mailing Addres	ss Line 1: 4140 Parkl	ake Avenue				Mailing Address Line 2	: Suite 110			
City: Raleigh			State: NC			Zip Code: 27612			County: Wake	
Phone No.:	919.233.4501		Fax No.:			Email Address: Kevin	Eldridge@erm	.com		
			SIGNATUR	E OF RESPO	NSIBLE OF	FICIAL/AUTHOR	IZED CONT	ACT		
Name (typed):	Brian D. Long					Title: Plant Manager				
X Signature(B	Blue Ink):					Date:				

Attach Additional Sheets As Necessary

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

REVISED 09/22/16		NCDEQ/Divis	sion of Air Qual	ity - Application	for Air Permit to	o Const	truct/Operate		Α
	;	SECTION AA	1 - APPLICA	TION FOR NO	ON-TITLE V I	PERM	IT RENEWAL		
			(Company Nam	ne) hereby formall	requests renew	val of Air	Permit No.		
	difications to the originally permitte		•			since the	· _	_	
	40 CFR Part 68 "Prevnetion of Ac		es" - Section 112(_		U YES	NO	
If yes, have you already Did you attach a current	submitted a Risk Manage Plan (R	MP) to EPA?	YES		NO)	Date Submitted:		_
	inventory via AERO or by mail?		Via AERO		ed	Dat	te Mailed:		
		SECTION	AA2- APPLI	CATION FOR					
In accordance with the p	provisions of Title 15A 2Q .0513, th				<u></u>			(Company Name)	
hereby formally request	s renewal of Air Permit No.	-		(Air	Permit No.) and	further of	certifies that:		
(1) The cu	rrent air quality permit identifies ar	nd describes all e	emissions units a	at the above subject	t facility, except	where s	uch units are exempted u	under the	
	Carolina Title V regulations at 15A								
(2) The currequire	rrent air quality permit cits all appl ments:	icable requireme	ents and provides	s the method or me	thods for determ	ning com	npliance with the applicat	ble	
	cility is currently in compliance, and	d shall continue t	o comply, with al	Il applicable requir	emetns. (Note:	As prov	ided under 15A NCAC 2	2Q .0512	
	ance with the conditions of the per								
(4) For app	plicable requirements that become	effective during	the term of the r	enewed permit the	t the facility shall	ll comply	on a timely basis;		
	cility shall fulfill applicable enhance	-							
-	(signature on page 1) certifies und inquiry, are true, accurate, and co		law that all infori	mation and statem	ents provided ab	bove, ba	sed on information and b	lief	
ionned aller reasonable	inquiry, are inde, accurate, and ce	inpiete.							
		SEC	CTION AA3-	APPLICATION	FOR NAME	E CHAI	NGE		
New Facility Name:									
Former Facility Name:									
	change is requested as described	above for the air	nermit mentione	ed on nage 1 of thi	s form Complet	te the oth	per sections if there have	heen	
-	inally premitted facility that would								
associated with this nam	ne change.								
Du this and list time to			N AA4- APPL	ICATION FOR					
	ereby request transfer of Air Qualit esponsibility, coverage and liability		e				er to the new owner as de rt date.) The legal owner		
-	ge 1 of this form has been or will b						peen no modifications to t		
permitted facility that wo	ould require an air quality permit si	nce the last pern	nit was issued.						
Signature of New (Buye	r) Responsible Official/Authorized	Contact (as type	ed on page 1):						
X Signature (Blue Ink):									
Date:									
New Facility Name:									
Former Facility Name:									
Signature of Former (Se	eller) Responsible Official/Authoriz	ed Contact:							
Name (typed or print):									
Title:									
X Signature (Blue Ink):									
Date:									
Former Legal Corporate	/Owner Name:								
	In lieu of the seller's signation	ture on this fo	orm, a letter m	ay be submitte	d with the sell	ler's sig	gnature indicating th	ne ownership change	
		SECTION A	A5- APPLICA	TION FOR AI	MINISTRAT	FIVE A	MENDMENT		
Describe the requested	administrative amendment here (a								

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate					
	EMISSION SOURCE LISTING: New, Modified	, Previously Unpe	ermitted, Replaced, Deleted		
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE		
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION		
E	quipment To Be ADDED By This Application	(New, Previously	Unpermitted, or Replacement)		
		NCD-Q1 and NCD-Q2	Thermal Oxidizer/Scrubber		
NS-R2	Lime Slaker	NCD-R2	Scrubber		
	Existing Permitted Equipment To B	e MODIFIED B	y This Application		
NS-A, NS-B, NS-C, NS-D, NS-E, NS-F, NS-G, NS-K, NS-M, NS-N, NS-O, NS-P	HFPO, VEN, VES, RSU, Liquid Stabilization, MMP, IXM Resins, E2, TFE/CO2, HFPO Decon, VEN Decon, VES Decon ^ª	NCD-Q1 and and NCD-Q2	Thermal Oxidizer/Scrubber		
	Equipment To Be DELE	TED By This App	blication		
		NCD-Hdr1	Baffle Plate Scrubber		
		NCD-Hdr2	Baffle Plate Scrubber		

112(r) APPLICABILITY	INFORMATION		A 3					
Is your facility subject to 40 CFR Part 68 "Prevention of Accider	s your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Federal Clean Air Act? 🛛 🗹 Yes 🗖 No								
If No, please specify in detail how your facility avoided applicabi	f No, please specify in detail how your facility avoided applicability:								
If your facility is Subject to 112(r), please complete the following	j:								
A. Have you already submitted a Risk Management Plan (R	MP) to EPA Pursuant to 40	CFR Part 68.10 or Part 68.150?							
		If submitted, RMP submittal date:	Original 8 june 19	999.					
Yes No Specify required RMP set	ubmittal date: <u>30 June 19</u>								
B. Are you using administrative controls to subject your faci	lity to a lesser 112(r) progra	m standard?							
Yes I No If yes, please specify:									
C. List the processes subject to 112(r) at your facility:									
	PROCESS LEVEL		MAXIMUM I	NTENDED					
PROCESS DESCRIPTION	(1, 2, or 3)	HAZARDOUS CHEMICAL	INVENTO	RY (LBS)					
SO ₃ Process	3	sulfur trioxide	59 ,4	1 00					
TFE Process	TFE Process1tetrafluoroethylene61,000								

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for	B9		
EMISSION SOURCE DESCRIPTION:	Slaker	EMISSION SOURCE ID NO: NS-R2		
		CONTROL DEVICE ID NO(S): NCD-R2		
OPERATING SCENARIO: 1 EMISSION POINT (STACK) ID NO(S): NEP-R2		EMISSION POINT (STACK) ID NO(S): NEP-R2		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Mixing vessel for pebble or hydrated lime and water to form lime slurry				

MATERIALS ENTERING PROCESS - CONTINUOL	JS PROCESS	MAX. DESIGN	REQUESTED CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)		
MATERIALS ENTERING PROCESS - BATCH C	PERATION	MAX. DESIGN	REQUESTED CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)		
Pebble or hydrated lime	1,072	lb/hr	NA		
Water	6,428	lb/hr	NA		
MAXIMUM DESIGN (BATCHES / HOUR):	I	<u>I </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):			
FUEL USED:	TOTAL MAXI	MUM FIRING RATE (MILLION BTI	J/HR):		
		ESTED CAPACITY ANNUAL FUEL USE:			

FORM C8 CONTROL DEVICE (WET PARTICULATE SCRUBBER)

CONTROL DEVICE ID NO. NCD-R2 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): NS-R2 EMISSION POINT ID NO(S): NEP-R2 POSITION IN SERIES OF CONTROLS: NO. 1 OF 1 UNTS DESCRIBE CONTROL SYSTEM The control device is a wet particulate scrubber installed near the top of the lime slaker. The purpose of the wet particulate scrubber is to remove dust created by pebble lime being fed from the silo, and also to remove water vapor created by the slaking process. The wet particulate scrubber is sprayed to suppress the dust and vapor. Ari is used to atmore the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLUTANT(S) COLLECTED: PM _{192.5} DEFORE CONTROL EMISSION RATE (LB/HR): 6.17 CONTROL DEVICE EFFICIENCY: 99.7 % % CONTROL DEVICE EFFICIENCY: 99.7 % % % CONTROL DEVICE EFFICIENCY: 99.7 % % % % CONTROL DEVICE EFFICIENCY: 99.7 % % % % % CONTROL DEVICE EFFICIENCY: 100 % % % % % % %			•					•		C8
EMISSION POINT ID NO(S): NEP-R2 POSITION IN SERIES OF CONTROLS: NO 1 OF 1 UNITS OPERATING SCENARIO:			-					-		60
OPERATING SCENARIO: P.E. SEAL NEEDED (PER 20.0112)? VES NO DESCRIBE CONTROL SYSTEM. The control device is a wet particulate scrubber installed near the top of the lime slaker. The purpose of the wet particulate scrubber is to reaved day prediate scrubber is otherwow dust and vapor from the top of the slaking process. The wet particulate scrubber operates by utilizing an induced draft fan to draw dust and vapor from the top of the slaker to a small chamber, where water is sprayed to suppress the dust and vapor. Air is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(S) COLLECTED: PM.ioz.s BEFORE CONTROL EMISSION RATE (LBHR): 6.17 CONTROL DEVICE EFFICIENCY: 99.7 % CONTROL DEVICE EFFICIENCY: 99.7 % % PRESSURE DROP (IN, H ₀):					EMIS					
		POSITION IN S	ERIES OF	CONTROLS:		NO. 1	OF	1 UNITS		
Describe CONTROL SYSTEM: The control device is a wet particulate scrubber installed near the top of the lime balaker. The purpose of the wet particulate scrubber is to remove dust created by pebble lime baling fed from the silo, and also to remove water vapor created by the slaking process. The wet particulate scrubber operates by utilizing an induced draft fan to draw dust and vapor from the top of the slaker to a small chamber, where water is stryawd to suppress the dust and vapor. Arit is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(s) COLLECTED: POLLUTANT(s) C										
The control device is a wet particulate scrubber installed near the top of the lime slaker. The purpose of the wet particulate scrubber is to remove water vapor created by the slaking process. The wet particulate scrubber operates by utilizing an induced draft fan to draw dust and vapor from the top of the slaker to a small chamber, where water is sprayed to suppress the dust and vapor. Air is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(S) COLLECTED: PM.102.5 BEFORE CONTROL EMISSION RATE (LB/HR): CAPTURE EFFICIENCY: PM.102.5 BEFORE CONTROL EMISSION RATE (LB/HR): CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % % % % CORRESPONDING OVERALL EFFICIENCY: P9.7 % % % % % % % % % % % % % % % % % % %			P.E. SEAL	NEEDED (PE	R 2Q .	.0112)?	L YES	1	NO	
particulate scrubber is to remove dust created by pebble lime being fed from the silo, and also to remove water vapor created by the slaking process. The wet particulate scrubber operates by utilizing an induced draft fan to draw dust and vapor from the top of the slaker to a small chamber, where water is sprayed to suppress the dust and vapor. Air is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(S) COLLECTED: POLLUTANT(S) COLLECTED: POLLUTENT(S) COLLECTED: POLLUTANT(S)		crubber inst	alled nea	ar the top o	f the	lime slal	ker. The	purpose of t	he wet	
Croated by the slaking process. The wet particulate scrubber operates by utilizing an induced draft fan to draw dust and vapor from the top of the slaker to a small chamber, where water is sprayed to suppress the dust and vapor. Air is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked line. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(S) COLLECTED: PM_10225 BEFORE CONTROL EMISSION RATE (LB/HR): 6.17 CAPTURE EFFICIENCY: 99.7 % % % % % % % % % % % % % % % % % % %										apor
vapor from the top of the slaker to a small chamber, where water is sprayed to suppress the dust and vapor. Air is used to atomize the water at the spray nozzle into fine droplets. The resulting liquid water and dust stream is returned to the slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLUTANT(S) COLLECTED: PMinozs BEFORE CONTROL EMISSION RATE (LB/HR): 6.17 CAPTURE EFFICIENCY: 100 % % CONTROL DEVICE EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % PRESSURE DROP (IN, H ₀ 0):				-						-
slaker where it combines with slaked lime. The treated air from the scrubbing chamber is vented to atmosphere. POLLUTANT(S) COLLECTED: PM _{1022.5} BEFORE CONTROL EMISSION RATE (LB/HR): 6.17 CAPTURE EFFICIENCY: 100 % CONTROL DEVICE EFFICIENCY: 99.7 % % CONTROL DEVICE EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % TOTAL AFFER CONTROL EMISSION RATE (LB/HR): 0.019	vapor from the top of the slaker to a sm	all chamber,	where w	/ater is spra	ayed	to suppr	ess the o	dust and vap	or. Air	is used to
POLLUTANT(S) COLLECTED: PM102.3 BEFORE CONTROL EMISSION RATE (LB/HR): 6.17 CAPTURE EFFICIENCY: 100 % % CONTROL DEVICE EFFICIENCY: 99.7 % % CONTROL DEVICE EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % TOTAL AFTER CONTROL EMISSION RATE (LB/HR): 0.019										
BEFORE CONTROL EMISSION RATE (LB/MR): 6.17 CAPTURE EFFICIENCY: 100 % % CONTROL DEVICE EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % TOTAL AFTER CONTROL EMISSION RATE (LB/HR): 0.019	slaker where it combines with slaked lir	ne. The treat	ted air fr	om the scru	ubbir	ng chaml	oer is ver	nted to atmos	sphere.	
CAPTURE EFFICIENCY: 100 % % % CONTROL DEVICE EFFICIENCY: 99,7 % % % CORRESPONDING OVERALL EFFICIENCY: 99,7 % % % TOTAL AFTER CONTROL EMISSION RATE (LB/HR):: 0.019	POLLUTANT(S) COLLECTED:			PM _{10/2.5}						
CONTROL DEVICE EFFICIENCY: 99.7 % % CORRESPONDING OVERALL EFFICIENCY: 99.7 % % TOTAL AFTER CONTROL EMISSION RATE (LB/HR): 0.019	BEFORE CONTROL EMISSION RATE (LB/HR):			6.17	_					
CORRESPONDING OVERALL EFFICIENCY: 99.7 % % EFFICIENCY DETERMINATION CODE: 2	CAPTURE EFFICIENCY:			100	%		%		%	
EFFICIENCY DETERMINATION CODE: 2 TOTAL AFTER CONTROL EMISSION RATE (LB/HR): 0.019 PRESSURE DROP (IN, H ₂ 0): MIN INLET TEMPERATURE (°F): MIN INLET TEMPERATURE (°F): MIN INLET AT FLOW RATE (ACFM): 280 MOISTURE CONTENT: INLET THROAT VELOCITY (FT/SEC): THROAT TYPE: TYPE OF SYSTEM: DUST and Vapor Suppresion TYPE OF PACKING USED IF ANY: N/A ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: MINIMUM LIQUID INJECTION RATE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. 0-1 DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1-10 % Monitor air and water inlet press and flow to spray nozzles. 10-25 50-100 -100 TOTAL = 100 TOTAL = 100 TOTAL = 100	CONTROL DEVICE EFFICIENCY:			99.7	%		%		%	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR): 0.019 PRESSURE DROP (IN, H ₂ 0): MINMAX INLET TEMPERATURE (°F): MIN212MAX OUTLET TEMPERATURE (°F): MINMAX INLET AIR FLOW RATE (ACFM): 280 MOISTURE CONTENT : INLET% OUTLET% THROAT VPE:	CORRESPONDING OVERALL EFFICIENCY:			99.7	%		%		%	
PRESSURE DROP (IN, H ₂ 0):	EFFICIENCY DETERMINATION CODE:			2	_					
INLET TEMPERATURE (°F):180_MIN212_MAX OUTLET TEMPERATURE (°F):MINMAX INLET AIR FLOW RATE (ACFM): 280 MOISTURE CONTENT : INLET% OUTLET% THROAT VELOCITY (FT/SEC): THROAT TYPE:FIXEDVARIABLE TYPE OF SYSTEM: Dust and Vapor Suppresion TYPE OF PACKING USED IF ANY: N/A ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. Monitor air and water inlet press and flow to spray nozzles. Monitor air and water inlet press and flow to spray nozzles. ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:	TOTAL AFTER CONTROL EMISSION RATE (LB/HF	R):		0.019	_					
INLET AIR FLOW RATE (ACFM): 280 MOISTURE CONTENT: INLET% OUTLET% THROAT VELOCITY (FT/SEC): THROAT TYPE: FIXED VARIABLE TYPE OF SYSTEM: Dust and Vapor Suppresion TYPE OF PACKING USED IF ANY: N/A ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. MONITOR ING DEVICES, GAUGES, TEST PORTS, ETC: 1.10 DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1.10 Monitor air and water inlet press and flow to spray nozzles. ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:	PRESSURE DROP (IN. H ₂ 0): MIN	MAX								
THROAT VELOCITY (FT/SEC): THROAT TYPE: FIXED VARIABLE TYPE OF SYSTEM: Dust and Vapor Suppresion TYPE OF PACKING USED IF ANY: N/A ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: N/A MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): PARTICLE SIZE DISTRIBUTION DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning SIZE WEIGHT % CUMULATIVE and maintenance of spray nozzles. 0-1 % 0-1 % DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 11-10 10-25 1	INLET TEMPERATURE (°F): _180_ MIN	_ 212 _ MAX	OUTLET	FEMPERATUR	E (°F)	: N	1IN	MAX		
Type of system: Dust and Vapor Suppresion Type of PACKING USED IF ANY: N/A ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): PARTICLE SIZE DISTRIBUTION DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. SIZE WEIGHT % CUMULATIVE % DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1-10 % 0-1 % Monitor air and water inlet press and flow to spray nozzles. 10-25	INLET AIR FLOW RATE (ACFM): 280		MOISTUR	E CONTENT :	INLE	ET	%	OUTLET	%	
ADDITIVE LIQUID SCRUBBING MEDIUM: Water PERCENT RECIRCULATED: MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: Monitor air and water inlet press and flow to spray nozzles. Monitor air and water inlet press and flow to spray nozzles. Monitor air and water inlet press and flow to spray nozzles. ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:	THROAT VELOCITY (FT/SEC):		THROAT	TYPE:		FIXED		VARIABLE		
MINIMUM LIQUID INJECTION RATE (GAL/MIN): 2.9 MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. SIZE WEIGHT % CUMULATIVE % DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 0-1 % 0-1 % Monitor air and water inlet press and flow to spray nozzles. 10-25 <td< td=""><td>TYPE OF SYSTEM: Dust and Vapor Supp</td><td>oresion</td><td>TYPE OF</td><td>PACKING USE</td><td>ED IF A</td><td>ANY:</td><td>N/A</td><td></td><td></td><td></td></td<>	TYPE OF SYSTEM: Dust and Vapor Supp	oresion	TYPE OF	PACKING USE	ED IF A	ANY:	N/A			
MAKE UP RATE (GAL/MIN): FOR ADDITIVE (GAL/MIN): DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. PARTICLE SIZE DISTRIBUTION DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 0-1 % Monitor air and water inlet press and flow to spray nozzles. 1-10 1 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch	ADDITIVE LIQUID SCRUBBING MEDIUM: Water		PERCENT	RECIRCULA	FED:					
DESCRIBE MAINTENANCE PROCEDURES: Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. Image: Colspan="2">SIZE WEIGHT % CUMULATIVE Monitor air and water inlet press and flow to spray nozzles. 0-1 % Monitor air and water inlet press and flow to spray nozzles. 10-25	MINIMUM LIQUID INJECTION RATE (GAL/MIN):	2.9								
Adjustment of inlet pressure and flow for air and water. Routine cleaning and maintenance of spray nozzles. SIZE WEIGHT % CUMULATIVE 0-1 0-1 0-1 0-1 0-1 DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1-10 0-1 0-1 Monitor air and water inlet press and flow to spray nozzles. 10-25 0-1 0-1 25-50 0 0-1 0-1 0-1 0-1 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch Size attached sketch	MAKE UP RATE (GAL/MIN): FOF	R ADDITIVE (GA	L/MIN):							
and maintenance of spray nozzles. Income to the total income to total income total income to the total income to the tot	DESCRIBE MAINTENANCE PROCEDURES:						PARTIC	CLE SIZE DISTR	IBUTION	ĺ
0-1 0-1 DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1-10 Monitor air and water inlet press and flow to spray nozzles. 10-25 25-50 25-50 50-100		or air and wa	ter. Rou	itine cleanii	ng				CUN	
DESCRIBE ANY MONITORING DEVICES, GAUGES, TEST PORTS, ETC: 1-10 10-25 Monitor air and water inlet press and flow to spray nozzles. 10-25 10-25 25-50 50-100 100 50-100 100 100 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch	and maintenance of spray hozzles.						,	OFICIAL		%
Monitor air and water inlet press and flow to spray nozzles. 10-25 10-25 25-50 50-100 100 50-100 100 100 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): TOTAL = 100 See attached sketch			ETC:							
25-50										
50-100 50-100 >100 TOTAL = 100 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:	monitor an and water met press and he		OLLICS.							
TOTAL = 100 ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:										
ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTROL DEVICE TO ITS EMISSION SOURCE(S): See attached sketch COMMENTS:						>′	100			
See attached sketch COMMENTS:								TOTAL = 100		
COMMENTS:		THE CONTROL	DEVICE T	O ITS EMISSI	ON SC	OURCE(S):				
	See attached sketch									
	COMMENTS:									
	Inlet dust loading is calculated based of	n measured o	outlet en	nission and	rem	oval effic	iency.			

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

		y - Application for Air Permit to Co	,	C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM	MUST BE SEA	LED BY A PROFESSIONAL ENGIN	EER (P.E.) LICENSED IN NO	RTH CAROLINA.
CONTROL DEVICE ID NO: NCD-Q1	CONTROLS E	MISSIONS FROM WHICH EMISSIOI	N SOURCE ID NO(S): See	list below
EMISSION POINT (STACK) ID NO(S): NEP-Q2		SERIES OF CONTROLS	NO. 1 OF 2 UNITS	
MANUFACTURER: Linde	MO	DEL NO: LV-10		
OPERATING SCENARIO:				
Max. Permit Design Basis				
TYPE I AFTERBURNER REGENERATIVE TH EXPECTED LIFE OF CATALYST (YRS): N/A CATALYST MASKING AGENT IN AIR STREA I HAL	METHOD OF I OGEN C R COMPOUND DL (FT ³):N/A OTHER CONT gas-fired Th 1.6 MMBtu/I uench syste	DETECTING WHEN CATALYST NEE SILICONE PHOSP OTHER (SPECIFY) VELOCITY THROUGH CA ROL DEVICES AND SOURCES, AN hermal Oxidizer (model numb hr max heat release with vap m followed by a series of pa	DS REPLACMENT: N/A HOROUS COMPOUND TALYST (FPS): N/A D ATTACH DIAGRAM OF SY ber LV-10 with a nomin or feeds. The combus cked bed scrubbing to	STEM: FW al rating of 10 tion chamber is owers with the final
CONTROL DEVICE EFFICIENCY:	99.99	_%%	%	%
CORRESPONDING OVERALL EFFICIENCY:	99.99	~%	%	%
EFFICIENCY DETERMINATION CODE:	0			
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	0.21			
PRESSURE DROP (IN. H ₂ O) MIN MAX		OUTLET TEMPERATURE (°F):	MIN	1,800 MAX
INLET TEMPERATURE (°F): MIN MAX		RESIDENCE TIME (SECONDS): >	1.2	
INLET AIR FLOW RATE (ACFM): (SCFM):		COMBUSTION TEMPERATURE (
COMBUSTION CHAMBER VOLUME (FT ³):		INLET MOISTURE CONTENT (%)		
% EXCESS AIR: 10%		CONCENTRATION (ppmv)	INLET	OUTLET
AUXILIARY FUEL USED: Natural Gas DESCRIBE MAINTENANCE PROCEDURES:		TOTAL MAXIMUM FIRING RATE vapor feeds)	MILLION BTU/HR): 10 MM	Btu/hr (11.6 with
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INT COMMENTS: <i>The following emission units will be</i> <i>NS-E Liquid Stabilization; NS-F MMP; NS-G IXI</i> <i>VES Decon. Before control emission rate was</i>	e vented to t I Resins; NS	the thermal oxidizer: NS-A H S-K E2; NS-M TFE/CO2; NS-N	I HFPO Decon; NS-O V	EN Decon; NS-P

Attach Additional Sheets As Necessary

FORM C9 - Thermal Converter Flue Gas Scrubber CONTROL DEVICE (OTHER)

	of Air Quality - Appl	•	•	Operate		C9
CONTROL DEVICE ID NO: NCD-Q2 CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): NCD-Q1						
				2 OF	2 UNI	
EMISSION POINT (STACK) ID NO(S): NEP-Q2	FOSITION I	N SERIES OF CONT	ROLS. NO.	2 OF	2 0111	13
OPERATING SCENARIO:				110)0		
Max. Permit Design Basis DESCRIBE CONTROL SYSTEM: The combustion flue	as from the therm	P.E. SEAL REQUI		· —	YES	
quencher to rapidly drop the temperature of the comb introduced into the bottom of a Liquid Mist Separator purpose to remove liquid mist from the SGL Diabon of scrubbed by counter current contact with < 1 wt% HF and 0.01 wt% HF in Stage 3 followed by counter-current defined as the "Final Control Device"	bustion gases from which consists of a open pipe spray que in Stage 1 packed l	1800 deg F (nomina a packed bed scrub encher discharge. T bed, followed by co	al) to 150 deg F (ber containing The flue gas exit unter current sc	(nominal). The free of particular of the ling the Liqui with the l	he quenched cking height id Mist Sepal h <0.1 wt % H	I flue gas is with primary rator is IF in Stage 2,
POLLUTANT(S) COLLECTED:	HF	SO ₂				
BEFORE CONTROL EMISSION RATE (LB/HR):	1,518	3.8				
CAPTURE EFFICIENCY:	100	% 100	%	%		%
CONTROL DEVICE EFFICIENCY:	99.95	% 99.95	%	%		%
CORRESPONDING OVERALL EFFICIENCY:	99.95	% 99.95	%	%		%
EFFICIENCY DETERMINATION CODE:	4	4				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):	0.77	0.002				_
PRESSURE DROP (IN. H ₂ 0): MIN	MAX	BULK PARTICLE	DENSITY (LB/FT	³)		
INLET TEMPERATURE (°F): MIN	MAX	OUTLET TEMPER	RATURE (°F):		MIN	MAX
INLET AIR FLOW RATE (ACFM):		OUTLET AIR FLO	W RATE (ACFM)	:		
INLET AIR FLOW VELOCITY (FT/SEC):		OUTLET AIR FLO	W VELOCITY (F	T/SEC):		
INLET MOISTURE CONTENT (%):		FORCED A	R 🗌 INDUC	ED AIR		
COLLECTION SURFACE AREA (FT ²):		FUEL USED:		FUE	L USAGE RA	ATE:
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCE	D INTO THE CONTR	OL SYSTEM:				
DESCRIBE ANY MONITORING DEVICES, GAUGES, TE	EST PORTS, ETC:					
ATTACH A DIAGRAM OF THE RELATIONSHIP OF THE	CONTROL DEVICE	TO ITS EMISSION	SOURCE(S): Se	e flow diagra	am in enclos	sed report.
COMMENTS: The thermal oxidizer is vented to the s						
Attach manufacturer's specificati	ons, schematics, ar	nd all other drawing	is necessary to c	lescribe this	control.	

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

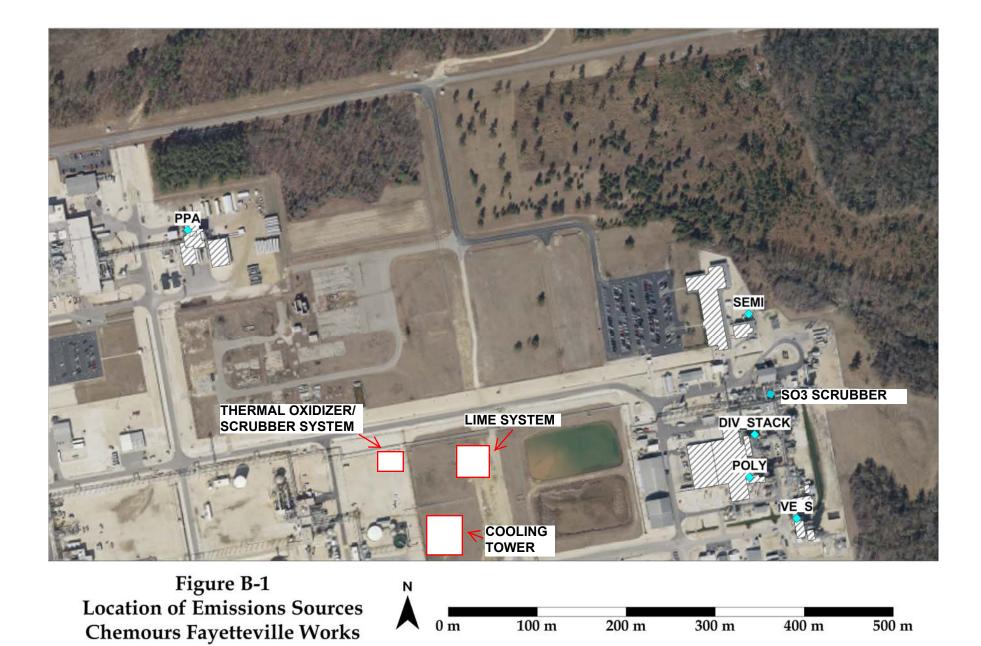
REVISED 09/22/16 NCDEC	/Division of Air Qual	ity - Application	n for Air Permi	t to Construct/O	perate		D1
CRITER	RIA AIR POLLUTAN	IT EMISSIONS	S INFORMATI	ON - FACILITY	-WIDE		
		EMIS (AFTER C	ED ACTUAL SIONS ONTROLS / ATIONS)	(BEFORE C	- EMISSIONS CONTROLS / ATIONS)	(AFTER C	L EMISSIONS CONTROLS / ATIONS)
AIR POLLUTANT EMITTED		tor	ns/yr	tor	is/yr	to	ns/yr
PARTICULATE MATTER (PM)			20	1	100		100
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)			20	-	100		100
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})		<20			100		<50
SULFUR DIOXIDE (SO ₂)	·		<1	-	<5		<5
NITROGEN OXIDES (NOx)			100		100		100
CARBON MONOXIDE (CO)			100		100		100
VOLATILE ORGANIC COMPOUNDS (VOC)			100		100		100
LEAD			<1		:1		<1
GREENHOUSE GASES (GHG) (SHORT TONS)			0,000	-	0,000		0,000
		>10	0,000	>100	0,000	>10	0,000
OTHER						l	
		EXPECTE	D ACTUAL	1			
		EMIS (AFTER C	SIONS ONTROLS /	(BEFORE C	. EMISSIONS ONTROLS / TIONS)	(AFTER C	L EMISSIONS CONTROLS / ATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.		ns/yr		ns/yr		ns/yr
hydrogen fluoride	7664-39-3		<5	>	10		<5
methanol	67-56-1		<1	<1		<1	
acetenitrile	75-05-8		<1		<2		<1
diethylene glycol dimethyl ether	111-96-6		<1		<1		<1
ammonia	7664-41-7	<5			10		<10
sulfuric acid	7664-93-9	<1			:1		<1
benzene	71-43-2	<1		<1			<1
methylene chloride	74-43-2		<1	<1			<1
toluene	108-88-3		<1	<10			<10
acetic acid	64-19-7		<1	<5			<5
other HAPs	04-13-1		<1	<25			<25
Total HAPs			:10	>25			>25
			.10		23		-25
ΤΟΧΙΟ	AIR POLLUTANT	EMISSIONS I	NEORMATION	N - FACILITY-V			
INDICATE REQUESTED ACTUAL EMISSIONS A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSIO	FTER CONTROLS / L	IMITATIONS. E	EMISSIONS AB	OVE THE TOXIC	PERMIT EMIS	,	'ER) IN 15A
					Ŭ Š	Required ?	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
hydrogen fluoride	7664-39-3	1.12	26.8			X	
No other TAPs will increase as a result of this	project.						
							+
		-		-			
		-		-			
							4
		ļ					<u> </u>
							<u> </u>
COMMENTS:							
Facility-wide PTE of HF are less than the current for the current of the current	nt permit limits.						

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality							
	EMPTED PER 2Q						
INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES SIZE OR PRODUCTION DESCRIPTION OF EMISSION SOURCE RATE							
1. I-NS-R1 - Lime Silo		15A NCAC 02Q .0102(h)(5)					
2. I-RICE 4 - I - Diesel Engine for Thermal Oxidizer/Scrubber System Emergency Electrical Generator	320 HP	15A NCAC 02Q .0102(h)(5)					
3. I-CT - Cooling Tower	6,000 gal/min	15A NCAC 02Q .0102(h)(5)					
4.							
5.							
6.							
7.							
8.							
9.							
10.							

FORM D5


TECHNICAL ANALVEIS

		TECHNICAL ANALYSIS TO SUPPOR		
RE	VISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air P		D5
		DE DETAILED TECHNICAL CALCULATIONS TO SUPPOR		
	DEMON	STRATIONS MADE IN THIS APPLICATION. INCLUDE A C NECESSARY TO SUPPORT AND CLARIFY CALCULATION		
		FOLLOWING SPECIFIC ISSUES O		
				19.01
A		S SOURCE (EMISSION INFORMATION) (FORM B and B1 throug L BALANCES, AND/OR OTHER METHODS FROM WHICH THE P		
	INCLUDE CALCULATI	ION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTE	R CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE	
	PROVIDE ANY REFER	RENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALC	CULATIONS.	
в	SPECIFIC EMISSION	SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V	NILY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS AP	PLICABLE
	TO INDIVIDUAL SOUF	RCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSI	ON OUTING METHODS (e.g. FOR TESTING AND/OR MONITO	DRING
	REQUIREMENTS) FOI	R COMPLYING WITH APPLICABLE REGULATIONS, PARTICULA COTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICAT	NRLY THOSE REGULATIONS LIMITING EMISSIONS BASED (N
	(PREVENTION OF SIG	GNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORM	ANCE STANDARDS (NSPS), NATIONAL EMISSION STANDAR	
		LLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FR 3 FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCU		
	RATES CALCULATED	IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL E	QUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.	
~				
С	CONTROL DEVICE AN	NALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNIC/ CIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EI	AL EVALUATION WITH SUPPORTING REFERENCES FOR AN MISSION RATES IN CALCULATIONS UNDER ITEM "A" AROVI	E. INCLUDE
	PERTINENT OPERATI	ING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFAC	FURING RECOMMENDATIONS, AND PARAMETERS AS APPL	LIED FOR IN
	POTENTIAL FOR THE	CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CO PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FA	NTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFU CILITY. DETAIL PROCEDURES FOR ASSURING PROPER O	NCTION
	OF THE CONTROL DE	EVICE INCLUDING MONITORING SYSTEMS AND MAINTENANC	E TO BE PERFORMED.	Liution
D		RATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONL DNAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. RE		
	ANALYSIS IN ITEM "B'	"WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAME		
	DEMONSTRATE COM	IPLIANCE WITH THE APPLICABLE REGULATIONS.	· · · · · · · · · · · · · · · · · · ·	
Е	PROFESSIONAL ENG	INEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112	APPLICATION REQUIRING A PROFESSIONAL ENGINEERIN	G SEAL,"
		NGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQU	JIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATI	
	NEW SOURCES AND	MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIO	NS FOR FURTHER APPLICABILITY).	
	<i>I</i> ,	Jeff Twaddle attest that this application f	or installation of a thermal oxidizer and scrubber	r sytem
	(NCD-Q1 and Q2)		ate, complete and consistent with the information supplied	
	in the engineering plans	s, calculations, and all other supporting documentation to the best een prepared in accordance with the applicable regulations. Altho	of my knowledge. I further attest that to the best of my knowled ugh certain portions of this submittal package may have been de	lge the eveloped by
	other professionals, inc	clusion of these materials under my seal signifies that I have review	ed this material and have judged it to be consistent with the pro	posed
		rdance with NC General Statutes 143-215.6A and 143-215.6B, any lication shall be guilty of a Class 2 misdemeanor which may include		
	violation.	ication shall be guilty of a class 2 misdemeanor which may include	a nne not to exceed \$10,000 as well as civil penalities up to \$2.	5,000 per
	(PLEASE USE BLUE I	NK TO COMPLETE THE FOLLOWING)	PLACE NORTH CAROLINA SEAL HER	E
	NAME:	Jeff Twaddle, P.E.		_
	DATE:	6/27/2018	CARDIZE	
	COMPANY:	ERM	A LEES CARS	/
	ADDRESS:	5000 Meridian Blvd., Suite 300, Franklin, TN 37067		
	TELEPHONE:	615-656-4636	A BEAL STOC	C
	SIGNATURE:		K MADIN	
	PAGES CERTIFIED:	C forms for NCD-Q1 and Q2	Option for Stall	
			THE THE SHE	
			and and a second s	
		ENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)		
_		,		

Attach Additional Sheets As Necessary

Appendix B Site Location Maps

Chemours Company - Fayetteville Works Fayetteville, Bladen County, North Carolina

Appendix C

Emission Calculations Chemours Company - Fayetteville Works Fayetteville, Bladen County, North Carolina

C.1 Thermal Oxidizer/Scrubber

Existing Sources

The existing emission units as indicated in Table 2-2 will be vented to the Thermal Oxidizer/Scrubber System. Overall process emissions of VOCs and PFAS compounds are assumed to be controlled by 99.99% by the Thermal Oxidizer. Hourly VOC emissions are based on highest-case loading to the Thermal Oxidizer/Scrubber system and projected control efficiencies.

Thermal Oxidizer

The thermal oxidizer will generate emissions associated with the combustion of natural gas. Table C-1 details the combustion emissions and is based on the estimated natural gas consumption of the Thermal Oxidizer. Potential emissions were based on the maximum heat input capacity of the unit (10 MMBtu/hr).

The thermal oxidizer will also generate HF and CO_2 emissions due to combustion of the organic hydrocarbons. The thermal oxidizer will also generate SO_2 due to the combustion of sulfur containing organic hydrocarbons. The emissions of HF will be further controlled in the scrubber by 99.95%.

Scrubber

The emissions from the thermal oxidizer are then vented to the scrubber. The scrubber will control the emissions of HF and SO₂ generated in the Thermal Oxidizer by 99.95%. The hourly emissions of these two pollutants are based on the estimated highest-case load to the Thermal Oxidizer. Annual emission from the Scrubber were based on 8,760 hours of operation. The thermal oxidizer will also generate CO₂. Hourly emissions of HF, SO₂ and CO₂ were based on the highest-case load to the Thermal Oxidizer and the conversion of compounds to HF, SO₂ and CO₂ using the methodology descirbed below. There were no controls assumed for CO₂ in the Scrubber. Annual emissions from the Scrubber were based on 8,760 hours of operation with highest-case load conditions and no assumed control in the Scrubber except HF and H₂SO₄.

HF will be generated in the thermal oxidizer and controlled by 99.95% in the Scrubber. For COF2, the molecular weight is 66 and there are 2 fluoride atoms. The molecular weight of HF is 20.

$$E_{HF} = E_x x \frac{C_x}{100} x N F_x \frac{MW_{HF}}{MW_x} x (1 - \frac{C_{HF}}{100})$$

Where, E_{HF} is the emission rate of HF (lb/hr) E_x emission rate of fluorinated compound x, C_x control efficiency of compound x NF_x number of fluoride atoms in compound x MW_{HF} molecular weight of HF – 20 MW_x molecular weight of compound x C_{HF} control efficiency of HF (99.95)

$$E_{HF} = 0.97x \frac{99.999}{100} x^2 x \frac{20}{66} x \left(1 - \frac{99.95}{100}\right) = 0.00030 \frac{lb \, HF}{hr}$$

In a similar manner, SO_2 generated in the thermal oxidizer will be controlled by the scrubber system.

	Emission Factor ^a	Emissions ^b	
POLLUTANT	lb/10 ⁶ scf	lb/yr	tpy
NO _x	100	8,540	4.27
СО	84	7,172	3.59
PM ₁₀	7.6	649	0.32
PM _{2.5}	7.6	649	0.32
SO ₂	0.6	51	0.03
TOC	11	939	0.47
VOC	5.5	470	0.24
CO ₂	1.20E+05	10,241,543	5,121
Methane	2.26E+03	193,127	97
Nitrous Oxide	2.26E+02	19,313	10
CO2e ^c		20,824,921	10,412
Haps/Taps			
Acetaldehyde (H,T)***	0.00E+00	0.00E+00	0.00E+00
Acrolein (H,T)***	0.00E+00	0.00E+00	0.00E+00
Ammonia (T)***	3.20E+00	2.73E+02	1.37E-01
Arsenic (H,T)	2.00E-04	1.71E-02	8.54E-06
Benzene (H,T)	2.10E-03	1.79E-01	8.96E-05
Benzo(a)pyrene (H,T)	1.20E-06	1.02E-04	5.12E-08
Beryllium (H,T)	1.20E-05	1.02E-03	5.12E-07
Cadmium (H,T)	1.10E-03	9.39E-02	4.70E-05
Chromium (VI) (H,T)	1.40E-03	1.20E-01	5.98E-05
Cobalt (H)	8.40E-05	7.17E-03	3.59E-06
Formaldehyde (H,T)****	7.50E-02	6.40E+00	3.20E-03
n-Hexane (H,T)	1.80E+00	1.54E+02	7.68E-02
Lead (H)	5.00E-04	1.42E+00	7.10E-04
Manganese (H,T)	3.80E-04	3.24E-02	1.62E-05
Mercury (H,T)	2.60E-04	2.22E-02	1.11E-05
Naphthalene (H)	6.10E-04	5.21E-02	2.60E-05
Nickel (H,T)	2.10E-03	1.79E-01	8.96E-05
Selenium (H)	2.40E-05	2.05E-03	1.02E-06
Toluene (H,T)	3.40E-03	2.90E-01	1.45E-04

Table C-1: Potential Emissions from Natural Gas Combustion (Thermal Oxidizer)

^a Emissions factors are from AP-42 except as noted.

^b Emissions based on 10 MMBtu/hr (see Vendor specification in Appendix D) and 85.4

MMft³/year (1,026 Btu/scf and 8,760 hours of operation).

 $^{\rm c}$ Emission factors for greenhouse gases obtained from 40 CFR 98 Subpart C. Global warming potential - 1 for CO₂, 25 for CH₄ and 198 for N₂O.

C.2 Lime Processing System

PTE for the Lime Processing System equipment are also shown in Table 3-1.

Lime Silo

The PTE emissions of PM were based on a vendor supplied emission factor of 0.02 grains/standard cubic feet (scf) and an maximum flow rate of 1,000 standard cubic feet per minute (scfm). Emissions were calcualted as follows:

$$E_{PM} = \frac{0.02 \frac{grains}{ft^3} x_{1,000} \frac{ft^3}{min} x_{60} \frac{min}{hr}}{7,000 \frac{grains}{lb}} = 0.17 \frac{lb}{hr} x \frac{8,760 \frac{hr}{yr}}{2,000 \frac{lb}{ton}} = 0.75 tpy$$

Emissions of PM₁₀ and PM_{2.5} are assumed to equal the emissions of PM.

Lime Slaker

The PTE emissions of PM were based on a vendor supplied inlet emission rate to the scrubber of 6.17 lb/hr and a control efficiency of 99.7% as follows :

$$E_{PM} = 6.17 \frac{lb}{hr} inlet \ x \ (1 - 0.997) = 0.019 \ \frac{lb}{hr} \ x \ \frac{8,760 \frac{hr}{yr}}{2,000 \frac{lb}{ton}} = 0.08 \ tpy$$

Emissions of PM₁₀ and PM_{2.5} assumed to equal the emissions of PM.

C.3 Ancillary Equipment

Emergency Generator

Chemours plans to purchase a 320 HP emergency generator. The generator will be subject to Tier 3 emission standards for emergency generators. These limits are shown in Table C-2. Emissions for VOC and NO_x were based on the ratio of the emission standard to the appropriate AP-42 emission factors for VOC (2.53E-03 lb/hp-hr) and NO_x (0.031E-02 lb/hp-hr) as follows :

$$EF_{NOx} = 3.0 \ \frac{g}{hp - hr} x \frac{0.031}{(0.031 + 0.00253)} = 2.77 \frac{g}{hp - hr}$$
$$EF_{VOC} = 3.0 \ \frac{g}{hp - hr} x \frac{0.00253}{(0.031 + 0.00253)} = 0.23 \frac{g}{hp - hr}$$

Emission factors for SO₂ were obtained from AP-42 and an assumed sulfur content of 0.0015%. Emission factors for greenhouse gases were obtained from 40 CFR 98. Emission factors for HAPs were obtained from the NCDAQ spreadsheet available at <u>https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/application-forms-instructions/application-forms-air-quality-permit-construct-operate-non-title-v-title-v-facilities/spreadsheets.</u> Table C-3 provides calculations. Annual PTE were based on 100 hours per year of operation.

Pollutant	Emission Standards g/hp-hr			
СО	2.6			
NMHC/NOx	3.0			
PM	0.15			

 Table C-2:
 Tier 3 Emission Standards

Source Stack ID Heat			t Rating		Total Hrs of	Total million	Total		
Jource	Stack ID	kW	MW	НР	MMBtu/hr	Operation	Btu/yr	MW/yr	
I-RICE-4	NEP-RICE 4	200	0.20	320	2.1	500	1,043	100	
NO _x					C	0			
EF Source	g/hp-hr	(lb/hr)	(lb/yr)	(tons/yr)	EF Source	g/hp-hr	(lb/hr)	(lb/yr)	(tons/yr)
Tier 3 Std ^a	2.77	1.96	979	0.49	Tier 3 Std	2.60	1.83	917	0.46
PM _{Total}					PM_{10}				
EF Source	g/hp-hr	lb/hr	(lb/yr)	(tons/yr)	EF Source	g/hp-hr	(lb/hr)	(lb/yr)	(tons/yr)
Tier 3 Std	0.15	0.106	53	0.026	Tier 3 Std ^b	0.15	0.106	53	0.026
	-	PM _{2.5}				_	SO_2		
EF Source	g/hp-hr	(lb/hr)	(lb/yr)	(tons/yr)	EF Source	lb/MMBt u	(lb/hr)	(lb/yr)	(tons/yr)
Tier 3 Std ^b	0.150	0.11	53	0.026	NCDAQ ^c	1.52E-03	6.06E-03	3.0	1.52E-03
VOC					CO ₂				
EF Source	g/hp-hr	(lb/hr)	(lb/yr)	(tons/yr)	EF Source	kg/MMBt u	(lb/hr)	(lb/yr)	(tons/yr)
Tier 3 Std ^a	0.23	0.16	79	0.040	40 CFR 98	53.06	244	122,053	61
CH ₄					N ₂ O				
EF Source	kg/MMBt u	(lb/hr)	(lb/yr)	(tons/yr)	EF Source	kg/MMBt u	(lb/hr)	(lb/yr)	(tons/yr)
40 CFR 98	1.00E-03	9.47E-04	0.095	4.74E-05	40 CFR 98	1.00E-04	9.47E-05	0.05	2.37E-05
Total HAPs				CO _{2e}					
EF Source	g/hp-hr	(1b/hr)	(lb/yr)	(tons/yr)			(lb/hr)	(lb/yr)	(tons/yr)
NCDAQ ^c	8.98E-03	6.33E-03	3.2	1.58E-03			244	122,079	61

Table C-3: Potential to Emit – Emergency Generator

^a The emission factor for NO_x and VOC was based on the Tier 3 emission limit of 3.0 g/hp-hr and the ratio of the AP-42 emission factors.

^b PM10 and PM2.5 assumed to be equal to the Tier 3 emission limit of 0.15 g/hp-hr.

 $^{\rm c}$ HAP emissions based on the DAQ spreadsheet obtained from - https://deq.nc.gov/about/divisions/air-quality/air-quality-permits/application-forms-instructions/application-forms-air-quality-permit-construct-operate-non-title-v-title-v-facilities/spreadsheets

Cooling Tower

Emissions from the cooling tower were based on the following input:

Cooling tower circulation rate – 6,000 gallons per minute Drift factor (%) – 0.005% Makeup water total dissolved solids– 200 parts per million Cycles if concentration – 6 Density of water – 8.34 lb/gal

At the Fayetteville Works facility, the maximum conductivity of the filtered river water that will be used for cooling tower make-up water and is about 200 micromhos. Typical conductivity is 180 to 190 micromhos. The site's local water treatment vendor expects that the cooling tower can operate at 6 cycles.

Emissions of PM are calculated as follows :

$$E_{PM} = \frac{6,000 \frac{gal}{min} \times 0.005\% \times 200 \ ppm \ x \ 6 \ cycles \ x \ 8.34 \frac{lb}{gal} \times 60 \frac{min}{hr}}{1,000,000} = 0.18 \frac{lb}{hr}$$
$$E_{PM} = 0.18 \frac{lb}{hr} \times \frac{8,760 \frac{hr}{yr}}{2,000 \frac{lb}{ton}} = 0.79 \ tpy$$

Emissions of PM₁₀ and PM_{2.5} assumed to equal the emissions of PM.

Appendix D

Vendor Specifications Chemours Company - Fayetteville Works Fayetteville, Bladen County, North Carolina

Technical Proposal

for

THE CHEMOURS COMPANY At Fayetteville, NC, USA

Project Wright P-2817 Thermal Converter and Quench System

by Selas Linde North America Proposal No.: P7718004 Tech, Iss.4

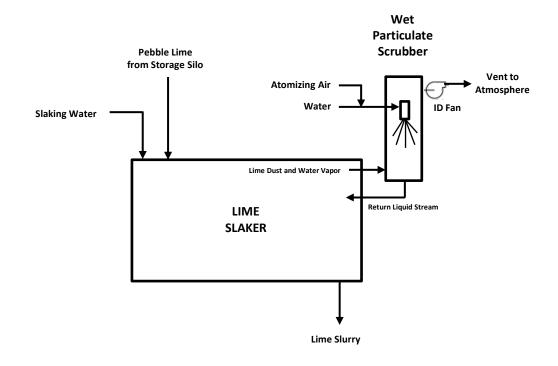
May 15, 2018

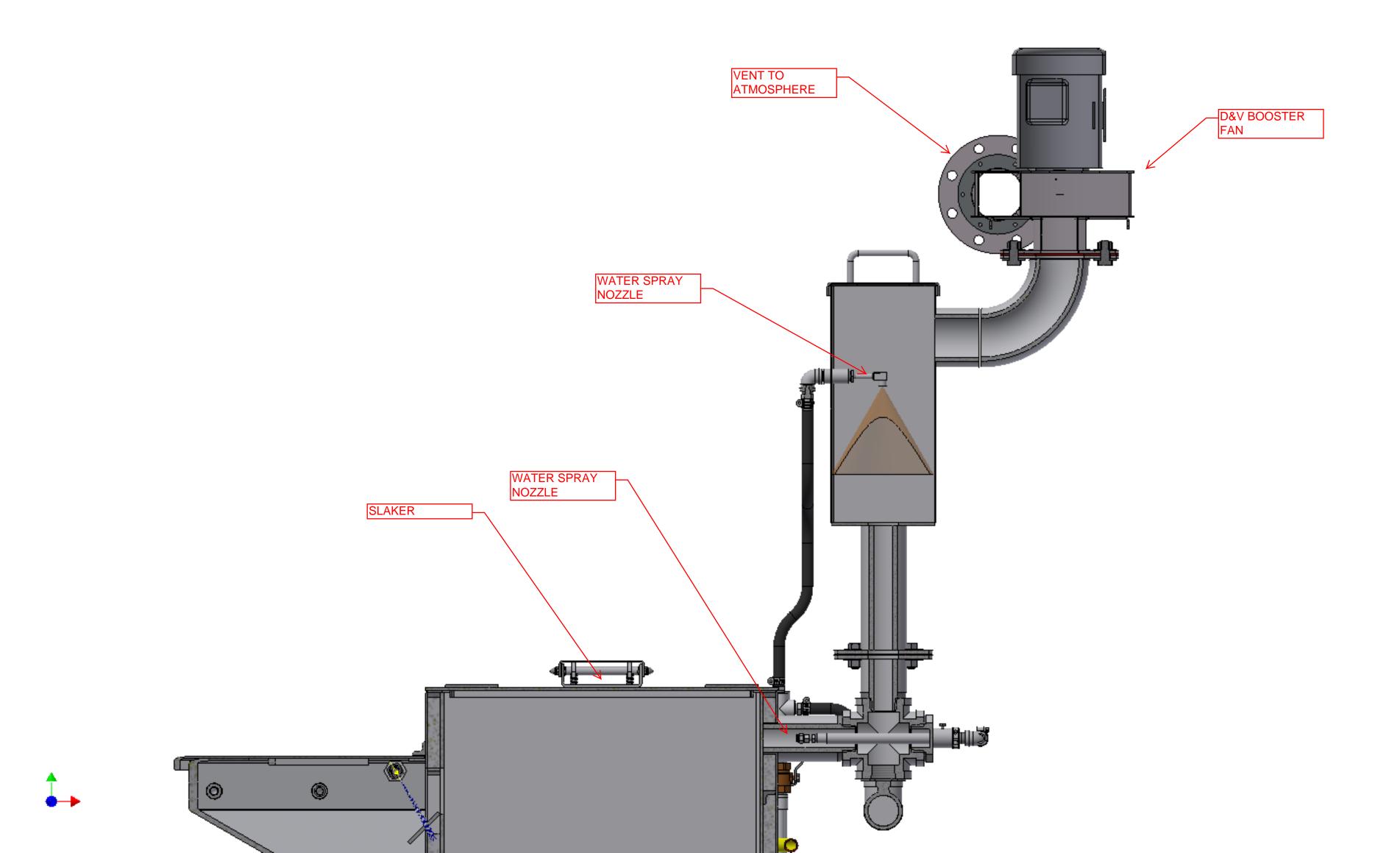
This proposal and any work product subsequently provided by Selas Linde North America Inc. (SLNA), represents proprietary and confidential information belonging solely and exclusively to SLNA, which is not to be duplicated, disclosed to third parties, or used for any purpose not authorized in writing by SLNA.

SECTION 5

Emissions Guarantees

The following emission guarantees only are offered with the proposed equipment when the equipment is operated at steady state conditions as outlined in SLNA's operating and maintenance manuals. The waste composition must be within the specified elemental analysis. No emission reduction is accounted for ambient dust, fumes, particles being introduced into the system by the combustion air blower, etc. Emission reduction is based strictly on the designated waste feed. Minimum concentrations, test parameters, and methodology must be mutually agreed upon for performance testing. The purchaser is responsible for compliance to all federal, state, and local laws, codes and regulations. The Seller makes no claim to such compliance and provides only the specifically stated performance quarantees below:


Flue Gas Effluents


VOC	99.99% Destruction & Removal Efficiency (DRE)
NOx	
СО	50 ppm @ 7% O2 vdb

Selas Linde's guarantees are contingent upon providing a complete offering (engineering + material procurement) of the system as described in the proposal package.

Attachment to C8 Form

Process Sketch – Slaker – Wet Particulate Scrubber

From: Senra Duque Junior Jose [mailto:jsenra@sttenvirocorp.com]
Sent: Wednesday, May 16, 2018 1:52 PM
To: Victor Ciarlante
Subject: [External] FW: [EXT] RE: Cao / Ca(OH)2 System - Request for Budget Quote

Dear Victor,

Good afternoon.

Please find below and attached the comments of our technicians.

QUOTED

Hello all.

Here is something we have written that we can stand behind. Based on our EPA approved standard emissions testing and some calculations.

This test was based on slaking quicklime. We have not tested the scrubber in a hydrated lime make up scenario.

If you believe the dust loading that your lime vendor is implying (at 1%) you would be OK for a small 1,000 lbs./hr. make up system but would be in trouble with a large make up system.

I don't believe the 1% 'dusting' estimate. Seems high to me.

The expected scrubbing efficiency of the STT Enviro Corp <u>Induced Draft Wet Dust</u> <u>Scrubber</u> would be 99.7% removal.

This efficiency can be achieved if the scrubber is installed correctly and if appropriately adjusted.

Appropriate adjustment includes two areas.

- 1. The water flow for the two spray nozzles needs the correct feed pressure and flow (40 psig and 2.9 US gpm per scrubber unit).
- 2. The air flow though the scrubber body must also be correctly adjusted by means of the included air flow damper on the fan discharge (target between 260 and 320 scfm).

This efficiency calculation was determined using the worst case emissions rate that was recently tested according to standard EPA approved procedures and is based on an approximation of the typical inlet loading that would be expected for a typical lime slaker using a wetting bowl feed system and also for a recycled ash slurry tank.

STT Enviro Corp would be pleased to assist with the installation and set-up / adjustment of the <u>Induced Draft Wet Dust Scrubbers</u>.

UNQUOTED

Any doubt let us know.

Best regards,

José Senra Capital Sales Representative, STT Enviro Corp

Direct: +1 905-875-5566 | Main: +1 905-693-9301 Ext.241 | Mobile: +1 778-384-2838 | Fax: +1 905-693-9432 jsenra@sttenvirocorp.com | Website | LinkedIn