

Mapping & Evaluating Wetlands in Coastal NC: Project Overview

Ken Richardson – NC Division of Coastal Management August 19, 2020

Outline: NC DCM Wetlands Mapping

3

Background

2 Methodology & Output

GIS Products

4 Where are we in 2020?

Background: Acknowledgments

- James (Jim) Stanfill
- Kelly Williams
- Chase Barnard
- Lori Sutter
- Mac Haupt
- Mike Wood
- Jim Wuenscher
- Brian Bledsoe
- Chris Bruce

- Lonnie Shull
- Sheila Balsdon
- Sean McGuire
- Greg Meyer
- Cherri Smith
- Steven Stichter
- ...and many others

jim.stanfill@ncdenr.gov

Background: Conception and Components

1991 to 1999

- 1. Wetlands Mapping & Inventory
- 2. Functional Assessment of Wetlands (NC-CREWS)
- 3. Wetland Restoration Identification & Prioritization
- 4. Coordination with Wetland Regulatory Agencies
- 5. Potential Coastal Area Wetlands Policies
- 6. Local Land Use Planning

2 Methodology & Output: Geographic Extent

CAMA Counties (included) Non- CAMA Counties (included) No Data (not included)

2 Methodology & Output: Initial Considerations

- **1. Limited Resources**
- 2. Limited Time Frame
- **3. Large Geographic Area** (over 2.5 million acres of wetlands)

- Wide range of users
- Planning Tool
- Basis of Functional Assessment and Potential Restoration Efforts

Accurate, Comprehensive, Understandable GIS Method

2 Methodology: Wetland Inventory

National Wetland Inventory Maps

Most comprehensive inventory of wetlands

<u>Goal #1</u>: Identify location, type, amount of wetlands in coastal NC starting with GIS data

NRCS Digital Soils Maps

- Particularly useful in marginal areas
- Identify omitted areas

• Landsat 30M TM Imagery - 1988, 1994

- Most recent data source
- Identify omitted areas
- Identify cut-over and cleared wetlands

Hydrography

· Utilized in HGM Classification

Methodology & Output: Wetland Classification 2

Data Inputs:

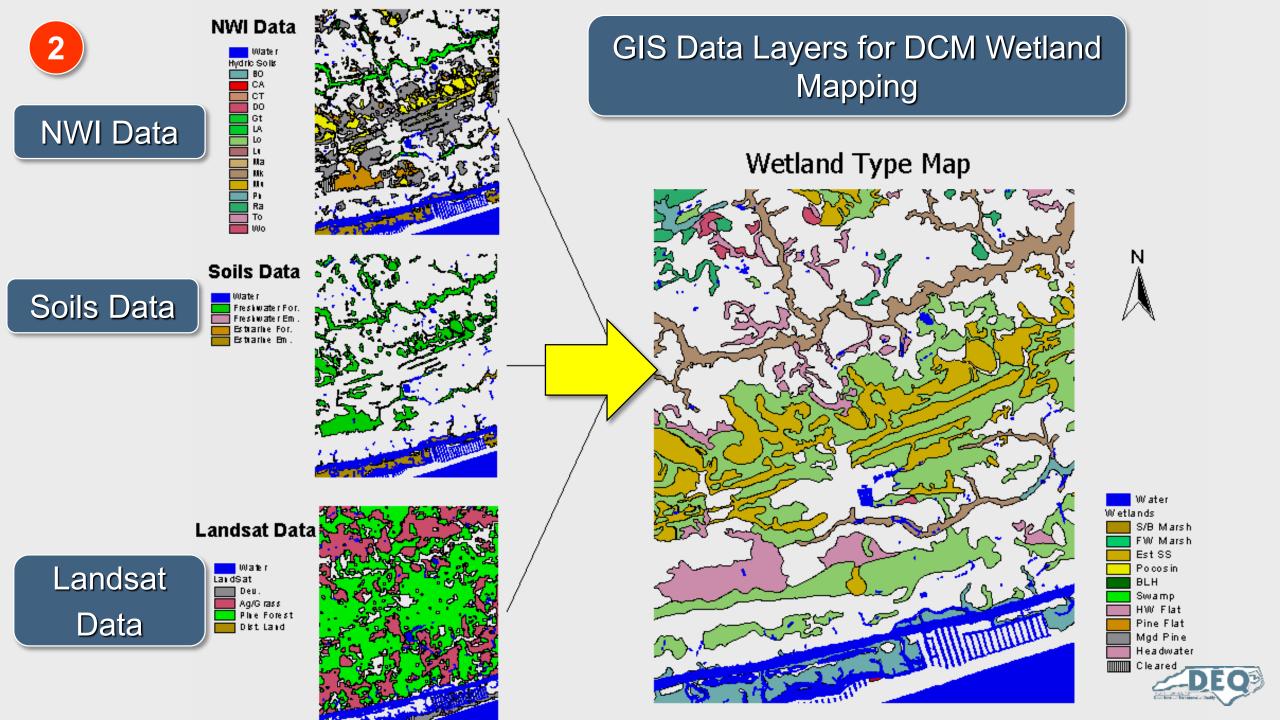
- Cowardin • Classifications
- Water Regime •
- Soil Type ullet
- Satellite Imagery ullet
- Landscape Position ightarrow
- Hydrography •
- Over 400 Field Site \bullet **Evaluations**

DCM Wetland Types:

- Bottomland Hardwood Estuarine Forest •
- Pocosin •
- Pine Flat •
- Hardwood Flat •
- Managed Pine •
- Freshwater Marsh •
- Salt/Brackish Marsh •
- **Estuarine Scrub Shrub** \bullet

- Maritime Forest •
- Headwater Swamp
- Human Impacted

2 Methodology & Output: Wetland Classification


Each wetland polygon generated by the overlay analysis contains the following information:

- All attributes from the source data layers
- DCM wetland type
- Hydrogeomorphology (HGM) Class (used in later analysis)

Some wetlands are given a "modifier"

- Drained or Ditched
- Cut-over
- Cleared

2 Methodology & Output: Accuracy Assessment

- Over 600 field sites visited
- Accuracy
 - 89% for wetlands overall
 - 97% (marsh, bottomland hardwoods, swamps & pocosin
 - 65%-75% headwater forest, hardwood flats & managed pines.

2 Methodology & Output: Limitations of Wetlands Maps

<u>Limitations</u>

- Minimum Mapping Size: 1 acre
- Source data is not perfect
- Maps show only the probability of finding a wetland in a particular area

Implications

- Small wetlands not included
- Data are an Underestimation of wetlands
- Maps Cannot be used for on-site wetland determinations

3 Methodology & Output: Strengths of Wetlands Maps

Simple

- Simplification of a complex system
- Easily understood wetland types

Comprehensive

Includes wetlands not found on NWI

Accurate

- 89% wetland probability rate
- Includes 1988 and 1994 data

Ability to Manipulate and Query

Can generate statistics on range/extent or loss/gain

2 Methodology & Output: NC-CREWS

Goal #2: North Carolina Coastal Region Evaluation of Wetland Significance

48 Separate Parameters Analyzed

Water Quality

- Nonpoint Source Removal
- Floodwater Cleansing

Hydrology

- Surface Runoff Storage
- Floodwater Storage
- Shoreline Stabilization

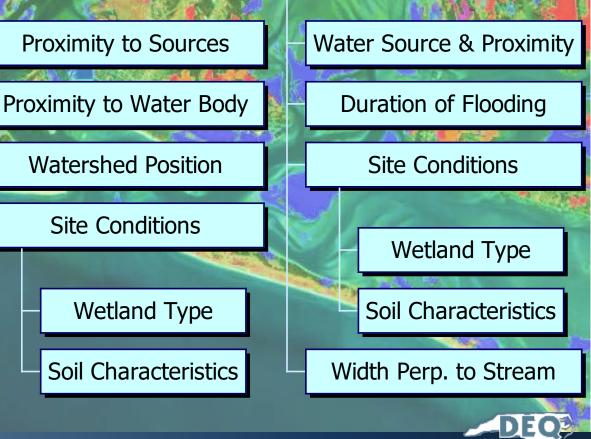
Wildlife Habitat

- Terrestrial Wildlife
- Aquatic Life

Potential Risk

- Wetland Extent and Rarity
- Replacement Difficulty
- Land Use Characteristics

2 Methodology & Output: NC-CREWS


Example: Water Quality Function

Water Quality Function

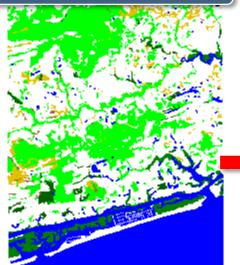
Non-Point Source Function

Floodwater Cleansing

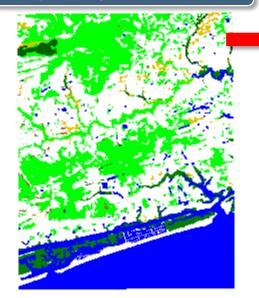
Considerations of both the capability and the opportunity to perform a specific function.

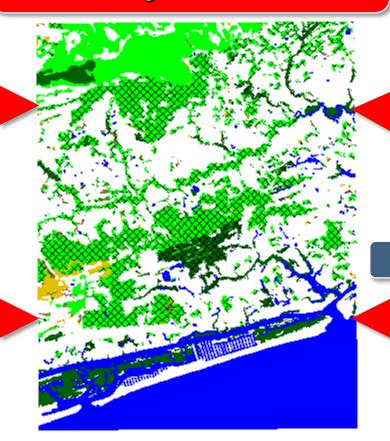
2 Methodology & Output: NC-CREWS

The model produces ratings for each wetland polygon:

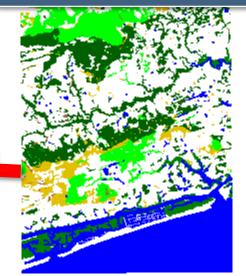

- Beneficial Functional Significance
- Substantial Functional Significance
- **Exceptional** Functional Significance

Wetlands can be evaluated on the basis of an overall rating or in terms of individual functions.

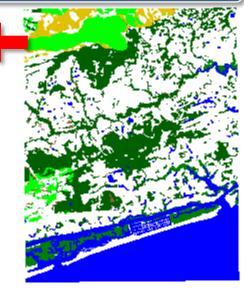



Water Quality Functions

Hydrologic Functions



Overall Wetland Functional Significance



Water Wetland Functional Significance Unable to Evaluate Beneficial Functional Significance Substantial Functional Significance Exceptional Functional Significance

Habitat Functions

Potential Risks

2 Methodology & Output: NC-CREWS Applications

Development and Transportation Planning

- Wetland Identification of Most Significant Wetlands
- Wetland Avoidance of Most Significant Wetlands
- Identification of Functional Impacts

CAMA Land Use Planning

- Identification of Fragile Areas
- Development of Conservation Classification and Land Use Classification Maps

Acquisition of Ecologically Significant Wetlands

2 Methodology & Output: Enhancement, Restoration, & Creation

Goal #3: Wetland Enhancement, Restoration & Creation Potential

- Wetland Creation is the process of creating a wetland where none has existed before.
- Restoration refers to creating a wetland on a site which was at one time a wetland but currently is not.
- Enhancement is the process of enhancing an existing wetland to a higher level of functioning.

2 Step Process:

Step 1: Classification of restoration type

Step 2: Identification of Sites

Soils by Potential Restoration Type

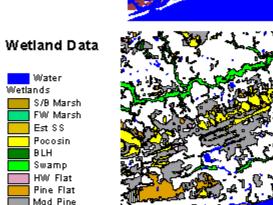
Water Wetlands

> S/B Marsh FW Marsh Est SS

Pocosin

Swamp

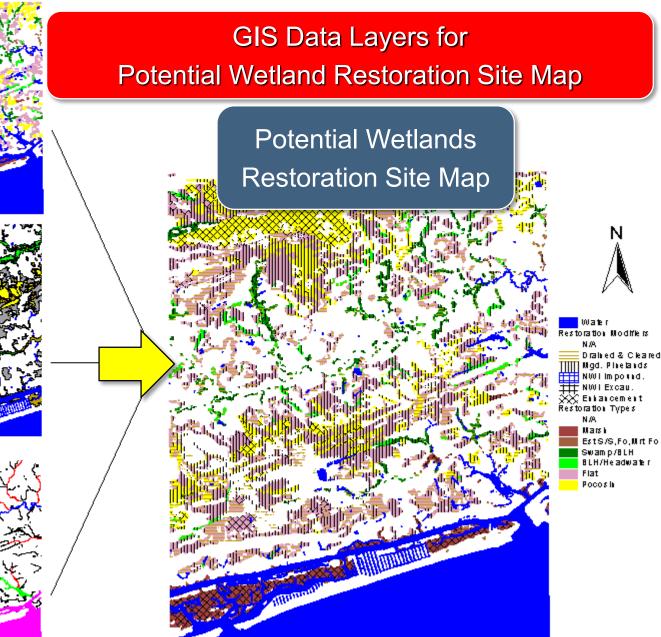
HW Flat


Pine Flat

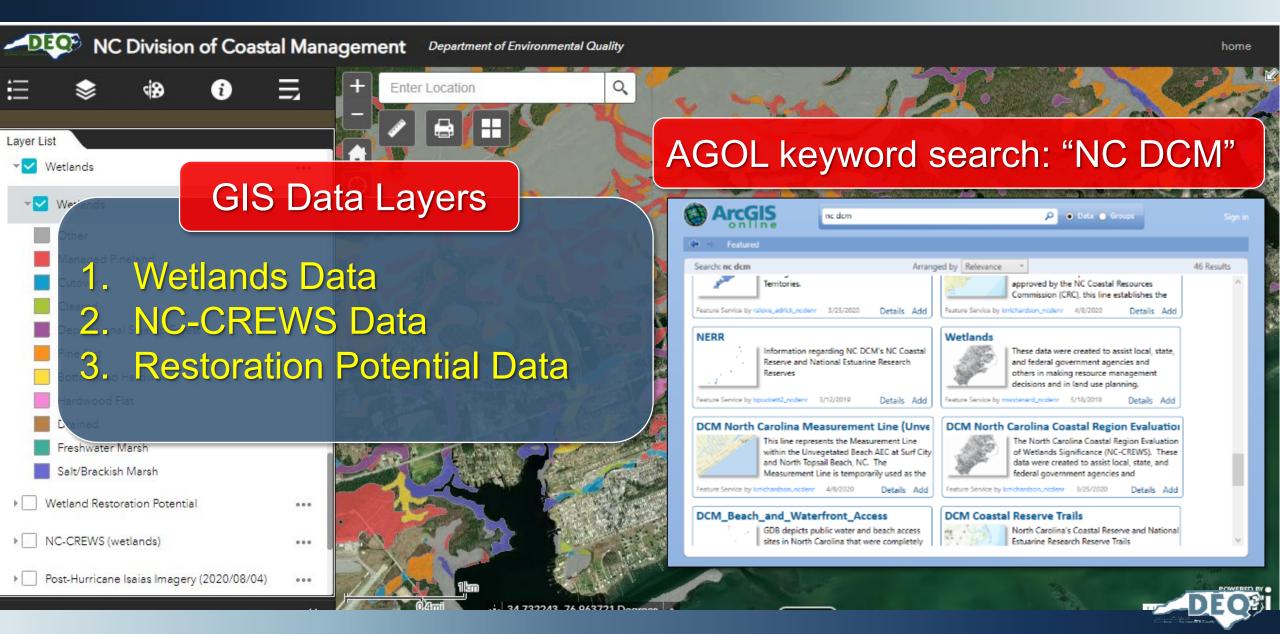
Mgd Pine

Headwater Cleared

Stream Order


BLH

Wetland Data



2 Methodology & Output: Benefits of Restoration Potential Data

- Quick identification or scan of potential restoration sites.
- Better management of sites over a large geographic area.
- Landscape level/Ecological approach vs. "For Sale" Sign.
- Further analysis can be used to prioritize sites based upon potential to perform specific functions.

3 GIS Products: ArcGIS Online (AGOL) & Downloads

4 Where are we in 2020?

- 1999 project completed
- 2005 No dedicated Wetlands DCM Staff
- 2020
 - NC DOT & others continue to use data
 - NC DCM continues to make the data available
 - NC DCM has no planned updates

NC Division of Coastal Management

DCM Contact: Ken.Richardson@ncdenr.gov

DCM Website: https://deq.nc.gov/about/divisions/coastal-management or NCCoastalManagement.net

ArcGIS Online (keyword search): "NC DCM"

