

H.F. Lee Energy Complex Duke Energy Progress 1199 Black Jack Church Road Goldsboro, N.C. 27530

November 6, 2017

Mr. William Willets, Section Chief Division of Air Quality North Carolina Department of Environmental Quality 1641 Mail Service Center Raleigh, North Carolina 27699-1641

#### Reference: Construction Permit Application for STAR<sup>®</sup> Facility Duke Energy Progress, LLC H. F. Lee Steam Electric Plant Goldsboro, North Carolina; Wayne County Air Quality Permit No. 01812T; Facility ID: 9600017

Dear Mr. Willets:

Duke Energy Progress, LLC currently operates the H.F. Lee Steam Electric Plant under Air Quality Permit No. 01812T42 which will expire on June 30, 2020. Enclosed please find 3 copies of an air permit application including associated application forms and fee to construct an ash beneficiation facility at the H.F. Lee Plant. An additional copy has been sent to the attention of Robert Fisher at the Washington Regional Office.

If you have any questions concerning the contents of this submittal, please contact Erin Wallace at (919) 546-5797 or Mike Graham at (919) 722-6551.

Certification statement:

Based on information and belief formed after reasonable inquiry, the undersigned certifies under penalty of law that all information and statements provided in the enclosure are true, accurate, and complete.

Respectfully submitted,

flug Am

Jeffery Hines Station Manager

cc: Robert Fisher, Washington Regional Office Erin Wallace, Duke Energy Mike Graham, Duke Energy

# PERMIT APPLICATION FOR MODIFICATION OF THE H.F. LEE STEAM ELECTRIC PLANT GOLDSBORO, NORTH CAROLINA

**Prepared for:** 

DUKE ENERGY PROGRESS, LLC Goldsboro, North Carolina

**Prepared by:** 

Environmental Consulting & Technology of North Carolina, PLLC

> 7208 Falls of Neuse Road, Suite 102 Raleigh, North Carolina 27615-3244

> > ECT No. 170324-0100

October 2017

## **Document Review**

The dual signatory process is an integral part of Environmental Consulting & Technology, Inc.'s (ECT's) Document Review Policy No. 9.03. All ECT documents undergo technical/peer review prior to dispatching these documents to any outside entity.

This document has been authored and reviewed by the following employees:

Amrita Iyer

Joshua Ralph Peer Review

Signature

Author

Signature

October XX, 2017

Date

October XX, 2017

Date



## TABLE OF CONTENTS

| Section |            |                                                                                                                                                       | Page                            |
|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.0     | INT        | TRODUCTION                                                                                                                                            | 1-1                             |
|         | 1.2<br>1.3 | PROJECT LOCATION<br>PROJECT OVERVIEW                                                                                                                  | 1-2<br>1-2<br>1-2               |
|         | 1.7        | APPLICATION                                                                                                                                           | 1-4                             |
| 2.0     | PRC        | OCESS DESCRIPTION                                                                                                                                     | 2-1                             |
|         | 2.2        | PRE-REACTOR MATERIAL HANDLING EQUIPMENT<br>STAR® TECHNOLOGY<br>POST-REACTOR MATERIAL HANDLING EQUIPMENT                                               | 2-1<br>2-3<br>2-5               |
| 3.0     | EM         | ISSIONS CALCULATIONS                                                                                                                                  | 3-1                             |
|         | 3.1        | <ul> <li>3.1.1 STAR<sup>®</sup> SYSTEM</li> <li>3.1.2 MATERIAL HANDLING</li> <li>3.1.3 FUGITIVE EMISSIONS</li> <li>3.1.4 PROJECT EMISSIONS</li> </ul> | 3-1<br>3-1<br>3-2<br>3-3<br>3-3 |
|         | 3.2<br>3.3 | MODIFIED PREVENTION OF SIGNIFICANT<br>DETERIORATION AVOIDANCE CONDITION<br>TOXIC EMISSIONS                                                            | 3-5<br>3-7                      |
| 4.0     | REC        | GULATORY ANALYSIS                                                                                                                                     | 4-1                             |
|         |            | PSD (40 CFR 52.21)/ 15A NCAC 02D .0530<br>NORTH CAROLINA AMBIENT AIR QUALITY                                                                          | 4-1                             |
|         |            | STANDARDS<br>4.2.1 15A NCAC 2Q .0101 - REQUIRED AIR QUALITY                                                                                           | 4-4                             |
|         |            | PERMITS<br>4.2.2 15A NCAC 2D .0400. AMBIENT AIR QUALITY                                                                                               | 4-4                             |
|         |            | STANDARDS<br>4.2.3 15A NCAC 2D .0515 – PARTICULATES FROM                                                                                              | 4-4                             |
|         |            | MISCELLANEOUS INDUSTRIAL PROCESSES<br>4.2.4 15A NCAC 02D .0516 – SULFUR DIOXIDE                                                                       | 4-5                             |
|         |            | EMISSIONS FROM COMBUSTION SOURCES<br>4.2.5 15A NCAC 2D .0521 – CONTROL OF VISIBLE                                                                     | 4-7                             |
|         |            | EMISSIONS<br>4.2.6 15A NCAC 02D .0530 PREVENTION OF                                                                                                   | 4-7                             |
|         |            | SIGNIFICANT DETERIORATION                                                                                                                             | 4-8                             |



|     | 4.2.7  | 15A NCA  | AC 2D .0535 - EXCESS EMISSIONS            |      |
|-----|--------|----------|-------------------------------------------|------|
|     |        | REPORT   | TING AND MALFUNCTIONS                     | 4-8  |
|     | 4.2.8  | 15A NCA  | AC 02D .0540 - PARTICULATES FROM          |      |
|     |        |          | /E DUST EMISSION SOURCES                  | 4-9  |
|     | 4.2.9  |          | AC 02D .0544 - PREVENTION OF              |      |
|     |        |          | CANT DETERIORATION                        |      |
|     |        |          | EMENTS FOR GREENHOUSE GASES               | 4-9  |
|     | 4.2.10 | ~        | AC 02D .1100 - CONTROL OF TOXIC AIR       | . ,  |
|     |        | POLLUT   |                                           | 4-9  |
|     | 4.2.11 |          | AC 02D .1200 - CONTROL OF                 |      |
|     |        |          | ONS FROM INCINERATORS                     | 4-9  |
|     | 4.2.12 | 15A NCA  | AC 02D .1400 – NITROGEN OXIDES            | 4-10 |
| 4.3 | B FEDE | RAL REG  | ULATIONS                                  | 4-11 |
|     | 4.3.1  | NEW SO   | URCE PERFORMANCE STANDARDS                |      |
|     |        | (NSPS)   |                                           | 4-12 |
|     |        | 4.3.1.1  | NSPS for Commercial and Industrial Solid  |      |
|     |        |          | Waste Incineration Units (40 CFR 60,      |      |
|     |        |          | Subpart CCCC)                             | 4-12 |
|     |        | 4.3.1.2  | NSPS for Large Municipal Waste            |      |
|     |        |          | Combustors (40 CFR 60, Subpart Eb)        | 4-12 |
|     |        | 4.3.1.3  | NSPS Subpart IIII—Standards of            |      |
|     |        |          | Performance for Stationary Compression    |      |
|     |        |          | Ignition Internal Combustion Engines      | 4-13 |
|     | 4.3.2  |          | IAL EMISSION STANDARD FOR                 |      |
|     |        | HAZARI   | DOUS AIR POLLUTANT (NESHAP)               | 4-13 |
|     |        | 4.3.2.1  | NESHAP for Stationary Reciprocating       |      |
|     |        |          | Internal Combustion Engines (40 CFR 63,   |      |
|     |        |          | Subpart ZZZZ)                             | 4-14 |
|     |        | 4.3.2.2  | NESHAP for Industrial, Commercial and     |      |
|     |        |          | Institutional Boilers and Process Heaters |      |
|     |        |          | (40 CFR 63, Subpart DDDDD)                | 4-14 |
|     |        | 4.3.2.3  | NESHAP for Industrial, Commercial and     |      |
|     |        |          | Institutional Boilers Area Sources        |      |
|     |        |          | (40 CFR 63, Subpart JJJJJJ)               | 4-14 |
|     | 4.3.3  |          | 64 - COMPLIANCE ASSURANCE                 |      |
|     |        | MONITO   | DRING REGULATIONS                         | 4-15 |
| ΔI  | ROUAL  | ITV IMPA | ACT ASSESSMENT                            | 5-1  |
| 111 | K QUAL |          |                                           | 5-1  |
| 5.1 | I MODI | EL SELEC | CTION                                     | 5-1  |
|     | 5.1.1  | PHYSIC   | AL SOURCE GEOMETRY/GOOD                   |      |
|     |        | ENGINE   | ERING PRACTICE STACK HEIGHT               |      |
|     |        | ANALYS   | SIS                                       | 5-1  |
|     |        |          | TOPOGRAPHY                                | 5-4  |
| 5.2 | 2 AERN | IOD MOE  | DEL APPLICATION                           | 5-4  |
|     | 5.2.1  | METEOI   | ROLOGICAL DATA                            | 5-4  |



5.0

|     | 5.2.2 | RECEPTORS AND TOPOGRAPHY FOR       |      |
|-----|-------|------------------------------------|------|
|     |       | AERMOD                             | 5-4  |
|     | 5.2.3 | PHYSICAL SOURCE AND EMISSIONS DATA | 5-5  |
| 5.3 | MOD   | ELING RESULTS                      | 5-13 |

**APPENDICES** 

APPENDIX A—AIR PERMIT APPLICATION FORMS APPENDIX B—SUPPORTING EMISSION CALCULATIONS APPENDIX C—EMISSION CALCULATIONS SUPPORT DOCUMENTATION APPENDIX D—DRAWINGS APPENDIX E—AIR DISPERSION MODELING APPENDIX F—NHSM DETERMINATION APPENDIX G—CAM PLAN APPENDIX H—ZONING COMMISSION DOCUMENTATION



| LIST | OF | TA | BL | ES |
|------|----|----|----|----|
|------|----|----|----|----|

| Table                                                                                       | Page Page |
|---------------------------------------------------------------------------------------------|-----------|
| 3-1. Proposed Project Emissions                                                             | 3-4       |
| 3-2. PSD Avoidance Limits                                                                   | 3-6       |
| 3-3. Net Emission Increases – Proposed STAR® Project                                        | 3-8       |
| 3-4. Summary of Potential TAP Emissions from the H.F. Lee facility and Comparison the TPERs | 3-9       |
| 3-5. Comparison of Potential and Optimized 1-hr TAP Emissions from the H.F. Lee Facility    | 3-10      |
| 3-6. Comparison of Potential and Optimized Daily TAP Emissions from the H.F. Lee Facility   | 3-11      |
| 3-7. Comparison of Potential and Optimized Annual TAP Emissions from the H.F. Lee Facility  | 3-12      |
| 4-1. Ambient Air Quality Standards                                                          | 4-2       |
| 4-2. Attainment Status for Wayne County, North Carolina                                     | 4-3       |
| 4-3. 15A NCAC 2D .0515 Allowable Emissions                                                  | 4-6       |
| 5-1. Source Parameters—Existing and Proposed Point Sources                                  | 5-7       |
| 5-2. Source Parameters—Proposed Volume Sources                                              | 5-8       |
| 5-3. Source Parameters—Proposed Area Sources                                                | 5-9       |
| 5-4. Modeled (Optimized) Emission Rates—Existing Units Point Sources                        | 5-10      |
| 5-5. Modeled (Optimized) Emission Rates—Proposed Units Point Sources                        | 5-11      |
| 5-6. Modeled (Optimized) Emission Rates—Proposed Volume and Area<br>Sources                 | 5-12      |
| 5-7. Results for AERMOD Dispersion Modeling using Optimized Emission<br>Rates               | 5-14      |



## LIST OF FIGURES

| Figure                                                        | Page |
|---------------------------------------------------------------|------|
| 1-1. Site Location Map                                        | 1-3  |
| 1-2. Process Flow Diagram                                     | 1-6  |
| 5-1. Facility Layout—Sources and Building Locations in AERMOD | 5-3  |



#### **1.0 INTRODUCTION**

Duke Energy Progress, LLC (Duke Energy) is currently permitted (Air Permit No. 01812T42) to operate the H.F. Lee Steam Electric Plant (H.F. Lee Plant) located in Wayne County, North Carolina, which is currently attainment for all regulated pollutants. H.F. Lee Plant currently consists of five (5) combustion turbine generators (CTGs) operating in simple cycle mode. H.F. Lee Plant also consists of three (3) CTGs with supplemental duct firing operating in a 3x1 combined cycle mode and simple cycle mode.

Duke Energy is proposing to install and operate a fly ash processing facility consisting of a Staged Turbulent Air Reactor (STAR<sup>®</sup>) plant and associated ancillary activities. To support this project, Duke Energy is submitting this application for a minor source construction permit.

North Carolina Department of Environmental Quality (NC DEQ) application forms and tables are located in Appendix A. Supporting emission calculations are presented in Appendix B. Emission calculations support documentation is present in Appendix C. A site plan, plot plan and process flow diagrams for the proposed project can be found in Appendix D. The toxic air dispersion modeling files are presented in Appendix E. The non-hazardous secondary material (NHSM) determination is provided in Appendix F. A draft CAM Plan is provided in Appendix G and Appendix H contains Zoning Commission documentation.



### 1.1 GENERAL APPLICATION INFORMATION

Following is the applicant's primary point of contact and the address and telephone number where he/she can be reached:

| Duke Energy Contact | Erin Wallace, Sr. Environmental Specialist<br>Duke Energy Progress, LLC<br>410 S. Wilmington Street,<br>Raleigh, North Carolina 27601<br>(919)-546-5797 (Office)                                      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECT Contact         | Thomas O. Pritcher, P.E.<br>Environmental Consulting & Technology, Inc.<br>7208 Falls of Neuse Road, Suite 102<br>Raleigh, North Carolina 27615<br>(919) 861-8888 (Office)<br>(919) 631-1537 (Mobile) |

## 1.2 **PROJECT LOCATION**

The H.F. Lee STAR<sup>®</sup> facility will be located on the property associated with Duke Energy's H.F. Lee Plant, which is located at 1199 Black Jack Church Road, Goldsboro, NC 27530. Figure 1-1 provides a regional topographic map showing the site location.

## 1.3 **PROJECT OVERVIEW**

The STAR<sup>®</sup> system is a patented technology developed by The SEFA Group Inc. (SEFA) to process feedstock (of any carbon content) like fly ash (wet or dry) along with other ingredient materials into a variety of commercial products. These products are used, not only for application as a partial cement replacement, but for many other commercial and industrial applications. For example, there are several products that SEFA is currently capable of producing because of the flexibility embodied in the STAR<sup>®</sup> process, including STAR<sup>®</sup> RP, Ultrix<sup>®</sup>, Spherix<sup>®</sup>, Fortimix<sup>®</sup>, and Permanix<sup>™</sup>.





The associated sources of air emissions proposed to support the STAR<sup>®</sup> system includes the following:

- Ash Basin excavation.
- Ash Handling/Processing.
- Haul Roads.
- Screener.
- Crusher.
- Two diesel engines associated with a Screener and a Crusher.
- Wet ash receiving area and storage shed.
- Wet ash feed hopper.
- Wet ash unloading pile.
- Two External heat exchangers (EHE) (with baghouses).
- Transfer silo filling and unloading (with bin vent product capture device).
- Feed silo filling and unloading (with bin vent product capture device).
- Storage dome filling and unloading (with bin vent product capture device).
- Loadout silo (with bin vent product capture device).
- Loadout silo chute 1A (with bin vent product capture device).
- Loadout silo chute 1B (with bin vent product capture device).
- FGD Byproduct Silo (with bin vent product capture device).
- FGD Absorbent Silo (with bin vent product capture device).

The H.F. Lee STAR<sup>®</sup> facility will be designed to produce up to 400,000 tons of fly ash product annually. Figure 1-2 illustrates a general process flow diagram for proposed facility.

#### 1.4 <u>CONTENTS OF THE MODIFICATION PERMIT APPLICATION</u>

Section 2.0 of this document provides a source description of the facility. Section 3.0 presents the projected air emissions. Section 4.0 discusses the regulatory applicability, and Section 5.0 presents the air toxic dispersion modeling methodology and results. The appendices are organized as follows:



- Appendix A—Required North Carolina permit application forms.
- Appendix B—Supporting emission calculations.
- Appendix C—Emission calculations support documentation.
- Appendix D— Facility Drawings.
- Appendix E— Electronic air dispersion modeling.
- Appendix F—NHSM Determination.
- Appendix G—CAM Plan.
- Appendix H—Zoning Commission Documentation.







#### 2.0 PROCESS DESCRIPTION

#### 2.1 PRE-REACTOR MATERIAL HANDLING EQUIPMENT

Excavation and processing of materials from the ash ponds to meet the STAR<sup>®</sup> system fly ash (ingredient) specifications will be under the control of Duke Energy. All fly ash reclaimed from an ash pond delivered for use as an ingredient in the STAR<sup>®</sup> system must first undergo processing by the owner to be:

- A. Free of all, but minimal contaminants (e.g., organic debris, slag);
- B. Finely-divided and free-flowing,
- C. Have consistent moisture content of  $\leq 25\%$ ; and
- D. Have a consistent chemical composition, including organic content measured by loss on ignition.

The processing sequence of events will include fly ash being excavated and staged to allow for dewatering (ensures moisture content of  $\leq 25\%$ ). Dewatered fly ash will then be screened to remove contaminants (organic debris, slag, etc.), to produce a consistent chemical composition and a finely divided free-flowing ingredient.

Wet fly ash, nominal 15 percent by weight moisture (water) is delivered via trucks. The wet fly ash can be unloaded from the trucks into the storage shed, unloaded from the trucks to a pile that is then transferred to a storage shed by a front-end loader, or unloaded from the trucks directly into the feed hopper. The wet fly ash in the shed is transferred via front-end loader to a hopper at up to 70 wet "short" tons per hour (tph) (one "short" ton = 2,000 lb), which then conveys the wet fly ash to the mechanical conveyance equipment. The material is discharged from the mechanical conveyance equipment into a material delumper unit to reduce the "overs" material. The material discharged from the delumper unit is then introduced into the EHE by gravity, where it is continually fluidized using preheated air.



The fluidized material is dried by two heat transfer means: (1) intimate contact of the wet, fluidized material with the heated fluidizing air and (2) direct contact of the wet material with hot water heat exchangers located in the EHE. By contact of the material with the outer surfaces of the heat exchanger tube, heating energy is transferred from the tube-side hot water (hot water that is a part of the facility's cooling loop at approximately 350 degrees Fahrenheit [°F] at 250 pounds per square inch gauge [psig]) to the material such that the material heats and, consequently, dries, while the supplied hot water temperature is reduced.

The material is discharged from the EHE units via two means. The primary method of material discharge from the unit is via the fixed-height overflow weir located at the discharge end of the unit. This overflow stream (comprising the majority of the material discharged from the unit) enters the integrally-constructed discharge box/chute of the unit. The second method of material discharge from the unit is via an integrally-constructed underflow discharge screw or rotary valve. The purpose of this underflow discharge stream is to discharge large or oversized material from the unit that, due to these particles' size, may not sufficiently fluidize to the point that they would reach the normal overflow weir height. The material is discharged from the unit at less than 2.0 percent by weight moisture and at a temperature range of 150 to 300°F to downstream material-handling equipment (transfer silos).

The exhaust air is discharged from each EHE through interconnecting ductwork to a highefficiency bag filter unit operation for feedstock recovery/exhaust air treatment. The moisture- and dust-laden exhaust air enters the unit, and, as the air passes through the filter media, dust is separated from the exhaust air stream with high fractional removal efficiency. The high-efficiency filter media used will be able to achieve a particulate matter (PM) exhaust rate of 0.025 grain per dry standard cubic foot (gr/dscf) of exhaust air (or less).



After the bag filter unit, the cleaned exhaust air stream passes through interconnecting ductwork to the exhaust air fan. The exhaust air volumetric rate is estimated at approximately 41,550 actual cubic feet per minute (acfm) at 10 inches in the water column (water gauge) static pressure (atmospheric pressure) and at approximately between 150-300°F (and at or below the dust loading rate of 0.025 gr/dscf).

#### 2.2 STAR® TECHNOLOGY

As discussed previously, the STAR<sup>®</sup> process is a patented technology developed by SEFA to process feedstock (of any carbon content) like fly ash (wet or dry) along with other ingredient materials into a variety of commercial products. These products are used not only for application as a partial cement replacement but also as an ingredient in many other commercial and industrial applications.

The STAR<sup>®</sup> process is inherently flexible in that operating parameters can be varied and different ingredients can be added to produce a desired product. The primary component of the STAR<sup>®</sup> is a cylindrical refractory-lined vessel in which the majority of the process reactions take place. These reactions can include a range of both chemical and physical reactions. Air required for pneumatic uplift of the solids and for the process reactions enters through the floor of the STAR<sup>®</sup> system as well as through the walls at multiple locations. The raw feedstock and any other ingredients are introduced through the walls of the STAR<sup>®</sup>. All of the solids and gases exit together at the top of the reactor. The gas/solids mixture enters a hot cyclone, where the majority of solids are separated from the gas and recycled back to the STAR<sup>®</sup> system. The high rate of hot recycle solids increases the operating flexibility of the process. The process reactions can occur through this reactor/hot cyclone loop. Due to the high gas velocity, multiple injection points, and recycle solids, there is a significant amount of turbulence created that enhances the mixing of the ingredients and optimizes the reactions. The gas and remaining solids not collected by the hot cyclone are passed over a heat exchanger, which can be designed to preheat the process air, used in heat recovery or to simply cool the gas/solids mixture. Once cooled, the solids are separated from the gas in a fabric filter recovery device. The STAR<sup>®</sup> system's integral design allows for solids to be removed from the bottom of the reactor or from the recycle



loop ultimately to be combined with the solids/gas stream before the heat recovery equipment. By design the STAR<sup>®</sup> operates under a wide range of process parameters to produce a high-quality class F fly ash for beneficial use in ready mix concrete or other specialty products.

Fly ash entering the reactor is sprayed with water and it is assumed that 90% of the time the water used is recycled instead of raw water. Process wash-down water, Storm water and fly ash contact water may be recycled.

During startup, the process air is heated with a startup burner firing auxiliary fuel (i.e., natural gas or propane) until reactor temperatures reach auto-ignition. At this point, the residual carbon in the fly ash reacts and becomes the heat source for the self-sustaining process. Under certain conditions, auxiliary fuel may be co-fired with the residual carbon in the fly ash. Process controls meter additional raw fly ash through a feeder into the reactor as necessary. As additional material is added to the reactor, processed fly ash is entrained in the exhaust and exits the top of the reactor.

After exiting the reactor, the fly ash entrained in the flue gas passes through a hot cyclone where solids are returned to the reactor for temperature control. The fly ash and flue gas leaving the hot cyclone is conveyed to the air preheater then passes through a gas cooler. The cooled flue gas and fly ash passes through a fabric filter baghouse, which is an integral part of the process for product capture, and then exhausts to a Dry Flue Gas Desulfurization (FGD) system (using hydrated lime as a reagent and an additional fabric filter control device) to reduce sulfur dioxide (SO<sub>2</sub>) emissions. The FGD exhaust is vented to the atmosphere through a stand-alone stack.

The Dry FGD system consist of a Circulating Dry Scrubbing System (CDS) and a Fabric Filter baghouse (FF). Flue gas, reagent (hydrated lime) and water are mixed homogenously in the CDS to absorb the acid gas, sulfur oxides, and is collected in the FF baghouse. The clean gas will then flow from the CDS-FF system to an Induced Draft (ID) fan which forces the clean exhaust gas up the stack where it discharges to atmosphere. The byproduct solids



are discharged from the FF baghouse into a byproduct storage silo. The system is comprised of a three (3) day storage silo with vent filter, fluidizing air stones and dry unloading chutes. Dry dust unloading chutes are telescoping chutes equipped with small ventilation fans that recirculate displaced air back to the top of the byproduct storage silo.

#### 2.3 POST-REACTOR MATERIAL HANDLING EQUIPMENT

Once the fly ash leaves the reactor, it is collected in the product recovery baghouse and pneumatically transferred to either the storage dome or the loadout silo, each equipped with a bin vent. The truck loadout station uses telescoping chutes and a negative pressure ventilation system to reduce fugitive emissions.



#### 3.0 EMISSIONS CALCULATIONS

For the emission sources to be added for the proposed Project, emission rates are based on process information developed and provided by SEFA, Duke Energy, manufacturers' data, and/or published emission factors such as those contained in the U.S. Environmental Protection Agency's (EPA) Compilation of Air Pollutant Emission Factors, AP-42. Unit design parameters and operational practices have been incorporated into the analysis to make the emission estimates conservative and representative of on-site conditions. Emission estimates are provided for criteria pollutants, hazardous air pollutants (HAP) and toxic air pollutants (TAP).

#### 3.1 PROJECT EMISSIONS

#### 3.1.1 STAR<sup>®</sup> SYSTEM

Emissions from the STAR<sup>®</sup> system, include PM/particulate matter with a diameter less than 10 microns (PM<sub>10</sub>)/particulate matter with a diameter less than 2.5 microns (PM<sub>2.5</sub>), SO<sub>2</sub>, nitrogen dioxide (NO<sub>x</sub>), carbon monoxide (CO), volatile organic compounds (VOC), and greenhouse gases (GHG) from the auxiliary fuels and residual carbon in the fly ash. Emissions from the auxiliary fuels were estimated using the most recent emissions factors for natural gas and propane-fired boilers contained in the EPA's Compilation of Air Pollutant Emissions Factors, AP-42. The auxiliary fuel burners are a low-NO<sub>x</sub> design intended to comply with North Carolina NO<sub>x</sub> control regulations.

Fly ash generated from the combustion of coal may contain trace quantities of heavy metals. Duke Energy performed site-specific ash analysis, data obtained was used to calculate the emission rates for each metal.

Emission factors of the heavy metals in the fly ash before entering the reactor are based on the site specific ash analysis data. Emission factors of the heavy metals in the fly ash after exiting from the reactor are based on the site specific ash analysis data with a contribution from the use of process water in the reactor.



Emissions of NO<sub>x</sub> and CO from the processing of the residual carbon in the fly ash were estimated based on emissions estimates from other existing STAR<sup>®</sup> units. Particulate emissions for the STAR<sup>®</sup> are based on the baghouse manufacturer's data of 0.025 grain per actual cubic foot (gr/acf). The induced draft fan providing the motive force for the product transfer is rated at 77,500 acfm, at the expected process conditions of 350°F and nominal atmospheric pressure.

 $SO_2$  emissions are a function of the amount of fly ash processed through the reactor, the sulfur content of the fly ash, the amount of sulfur remaining in the product ash exiting the  $STAR^{\ensuremath{\mathbb{R}}}$  reactor, and the  $SO_2$  air pollution control equipment removal efficiency, in this case the dry scrubber. Assuming ash sulfur content of 0.15 percent and 100 percent oxidation of the sulfur, the dry scrubber will be designed to provide 100 percent capture and can be operated with an  $SO_2$  control efficiency of 95 percent.

The STAR<sup>®</sup> system will normally fire auxiliary fuels during system startup and will cut back on auxiliary fuel feed as the reactor reaches self-sustaining conditions. However, emissions have been estimated conservatively by combining the total emissions associated with firing the worst-case auxiliary fuel at full capacity with the total emissions from fly ash processing.

GHG emissions were also calculated from the STAR<sup>®</sup> reactor. GHG emissions were based on the annual natural gas and propane usages and emissions factors from Table C-1 of Chapter 40, Part 98, Code of Federal Regulations (CFR), Subpart C, along with the loss of ignition of the fly ash. Appendix B provides detailed spreadsheets and example calculations.

#### 3.1.2 MATERIAL HANDLING

The material handling system includes one wet ash raw feed unloading pile, one wet ash storage shed, one wet ash EHE feed hopper, two EHE's, raw feed silos, one loadout silo,



two loadout chutes, transfer silos, a product storage dome, FGD byproduct silo, FGD absorbent silo, screener, crusher, ash basin and handling and haul roads. The silos are each equipped with a bin vent product capture device to minimize product losses associated with the pneumatic transfer process. The truck loadout station uses telescoping chutes and a negative pressure ventilation system to reduce fugitive emissions.

Particulate emissions from the silos were estimated using the maximum short- and long-term transfer rates and appropriate emissions factors from previous STAR<sup>®</sup> facilities.

Trace metal concentration data discussed previously for the STAR<sup>®</sup> system were used in conjunction with the calculated PM emissions rates to estimate emissions of trace metal from the material handling activities. Appendix B contains detailed spreadsheets and example calculations.

#### 3.1.3 FUGITIVE EMISSIONS

Additional particulate emissions were also calculated for the wet ash receiving process, ash handling process (including screening and crushing activities) and haul roads. Windblown fugitive dust emissions were also calculated from the unloading pile. The emissions were calculated using the appropriate emissions factors from AP-42. Appendix B contains detailed spreadsheets and example calculations.

#### 3.1.4 PROJECT EMISSIONS

Table 3-1 presents a summary of the proposed project emissions.



|                                | Prop<br>Project E |          |
|--------------------------------|-------------------|----------|
| Pollutant                      | lb/hr             | tpy      |
| PM                             | 26.52             | 112.49   |
| $PM_{10}$                      | 23.50             | 99.43    |
| PM <sub>2.5</sub>              | 13.52             | 55.73    |
| $SO_2$                         | 24.94             | 98.53    |
| NO <sub>x</sub>                | 59.72             | 198.96   |
| СО                             | 25.01             | 92.26    |
| VOC                            | 3.21              | 9.54     |
| Lead                           | 5.30E-04          | 2.31E-03 |
| GHG (mass basis)               |                   | 116,599  |
| GHG (CO <sub>2</sub> e basis)* |                   | 116,604  |
| Sulfuric acid mist             | 0.10              | 0.44     |

#### Table 3-1. Proposed Project Emissions

Note: lb/hr = pound per hour.

 $PM_{10}$  = particulate matter less than or equal to 10 micrometers.

 $PM_{2.5}$  = particulate matter less than or equal to 2.5 micrometers.

 $CO_2e =$  carbon dioxide equivalent.

Source: ECT, 2017.



#### 3.2 <u>MODIFIED PREVENTION OF SIGNIFICANT DETERIORATION AVOID-</u> <u>ANCE CONDITION</u>

Duke Energy will maintain emissions below the Prevention of Significant Deterioration (PSD) avoidance limits under conditions in Section 2.1.D.5.a of Air Permit No. 01812T42 for each PSD pollutant (PM/PM<sub>10</sub>/PM<sub>2.5</sub>, SO<sub>2</sub>, NO<sub>x</sub>, CO, VOCs, sulfuric acid and lead). Specifically, Duke Energy is requesting that the PSD avoidance condition will address each PSD pollutant emissions without any change to the respective avoidance limits indicated in Section 2.1.D.5.a Air Permit No. 01812T42 for the following units:

Existing units:

• Three natural gas/No. 2 fuel oil-fired simple/combined-cycle internal combustion turbines - Lee IC Unit 1A, Lee IC Unit 1B and Lee IC Unit 1C (Units 15, 16 and 17).

Proposed units:

STAR<sup>®</sup> unit (ES-31) and associated sources proposed to support the STAR<sup>®</sup> system as mentioned in Section 1.3.

The PSD Avoidance limits are shown in Table 3-2. Please note that GHG emissions are expected to increase by a value more than the Significant Emission Rate (SER) for GHG emissions. GHG emissions have been categorized as an "anyway" pollutant and require another PSD pollutant to be subject to PSD review before PSD review applies to GHG emissions. Therefore, GHG are not subject to PSD review for the proposed project. The emission calculation methodologies used to prepare the values are provided in Appendix B.



| Pollutant                                | Limits (tpy) |
|------------------------------------------|--------------|
| PM/ PM <sub>10</sub> / PM <sub>2.5</sub> | 218.2        |
| $SO_2$                                   | 14,663.1     |
| NO <sub>x</sub>                          | 3,414.6      |
| СО                                       | 829.3        |
| VOC                                      | 65.1         |
| Lead                                     | 0.77         |
| Sulfuric acid mist                       | 64.3         |

Table 3-2. PSD Avoidance Limits

Source: Section 2.1.D.5.a of Air Permit No. 01812T42.



#### 3.3 TOXIC EMISSIONS

The toxic permitting emission rate (TPER) analysis was performed using the procedures outlined in 15A NCAC 2Q.0706.

The first step of the TPER analysis is to determine if the modification results in "a net increase in emissions of any toxic air pollutant that the facility was emitting before the modification" or if the modification results in "emissions of any toxic air pollutant that the facility was not emitting before the modification if such emissions exceed the levels contained in Rule .0711." The proposed modification is the installation of the STAR<sup>®</sup> unit and associated equipment. Table 3-3 presents the potential emissions of the TAPs from the proposed modification at the H.F. Lee STAR<sup>®</sup> facility. Please note that the diesel engines (ES-39B and ES-40B) were not included in the TPER analysis per 15A NCAC 2Q.0702 (a)(27). Additional calculation information is provided in Appendix B.

Using the list of TAPs determined from the first step of the TPER analysis, the emissions from the H.F. Lee STAR<sup>®</sup> facility, including the proposed modifications (Table 3-3) and the existing equipment, were compared to the TPERs, presented in Table 3-4, to identify the compounds exceeding their respective TPERs. The emissions for the existing turbines and auxiliary equipment were taken from the Toxic Modeling Analysis Appendix A Table for Potential Emissions (April 2011). Once the compounds exceeding the TPERs were identified, an air dispersion modeling analysis was completed for the whole H.F. Lee STAR<sup>®</sup> facility including the STAR<sup>®</sup> unit, existing combined and simple cycle turbines and auxiliary equipment.

To maximize operational flexibility of the H.F. Lee STAR<sup>®</sup> facility, Duke Energy is requesting permit limits based on the optimization of the potential emissions from the STAR<sup>®</sup> unit and existing equipment, which are presented in Tables 3-5 through 3-7 for the shortterm and annual pollutants, respectively. Appendix B presents the calculations of the potential TAP emissions from the STAR<sup>®</sup> unit and from existing equipment. It also includes summary of the potential and optimized emissions for the H.F. Lee facility.



|                                |          | Total Emissions |       |
|--------------------------------|----------|-----------------|-------|
| Compound                       | lb/hr    | lb/day          | lb/yr |
|                                |          |                 |       |
| Sulfuric acid                  | 1.00E-01 | 2.40            | -     |
| Benzene                        | -        | -               | 3.34  |
| Formaldehyde                   | 7.64E-03 | -               | -     |
| n-Hexane                       | -        | 2.54            | -     |
| Toluene                        | 1.32E-03 | 3.17E-02        | -     |
| Arsenic                        | -        | -               | 8.60  |
| Beryllium                      | -        | -               | 0.94  |
| Cadmium                        | -        | -               | 0.61  |
| Chromium VI (Soluble Chromate) | -        | 4.05E-04        |       |
| Manganese                      | -        | 3.34E-02        | -     |
| Mercury                        | -        | 4.64E-04        | -     |
| Nickel                         | -        | 1.71E-02        | -     |

## Table 3-3. Net Emission Increases – Proposed STAR<sup>®</sup> Project



|                                     | 7      | <b>Total Emissions</b> |          |       | TPER   |       |       | Exceed TPI | ER    |
|-------------------------------------|--------|------------------------|----------|-------|--------|-------|-------|------------|-------|
| Compound                            | lb/hr  | lb/day                 | lb/yr    | lb/hr | lb/day | lb/yr | lb/hr | lb/day     | lb/yr |
| Sulfuric acid                       | 270.61 | 6,494.64               |          | 0.025 | 0.25   |       | YES   | YES        |       |
| Benzene                             |        |                        | 1,787.54 |       |        | 8.1   |       |            | YES   |
| Formaldehyde                        | 11.61  |                        |          | 0.04  |        |       | YES   |            |       |
| n-Hexane                            |        | 64.18                  |          |       | 23.0   |       |       | YES        |       |
| Toluene                             | 4.42   | 106.11                 |          | 14.4  | 98.0   |       | NO    | YES        |       |
| Arsenic                             |        |                        | 289.30   |       |        | 0.053 |       |            | YES   |
| Beryllium                           |        |                        | 8.86     |       |        | 0.28  |       |            | YES   |
| Cadmium                             |        |                        | 124.13   |       |        | 0.37  |       |            | YES   |
| Chromium VI (Sol-<br>uble Chromate) |        | 2.12                   |          |       | 0.013  |       |       | YES        |       |
| Manganese                           |        | 302.91                 |          |       | 0.630  |       |       | YES        |       |
| Mercury                             |        | 0.46                   |          |       | 0.013  |       |       | YES        |       |
| Nickel                              |        | 1.79                   |          |       | 0.013  |       |       | YES        |       |

#### Table 3-4. Summary of Potential TAP Emissions from the H.F. Lee facility and Comparison the TPERs



|               | Potential            | Optimized            | Ratio of Potential to |
|---------------|----------------------|----------------------|-----------------------|
| Compound      | Emissions<br>(lb/hr) | Emissions<br>(lb/hr) | Optimized Emissions   |
| Formaldehyde  | 11.61                | 1,776.30             | 0.0065                |
| Sulfuric acid | 270.61               | 947.13               | 0.29                  |
| Toluene       | 4.42                 | 961,534.32           | 0.0000046             |

Table 3-5. Comparison of Potential and Optimized 1-hr TAP Emissions from the H.F. Lee Facility



| _             | Potential             | Optimized             | Ratio of Potential<br>to Optimized Emis-<br>sions |  |
|---------------|-----------------------|-----------------------|---------------------------------------------------|--|
| Compound      | Emissions<br>(lb/day) | Emissions<br>(lb/day) |                                                   |  |
| Sulfuric acid | 6,494.64              | 10,781.10             | 0.60                                              |  |
| n-Hexane      | 64.18                 | 138,647.28            | 0.00046                                           |  |
| Toluene       | 106.11                | 11,593,642.41         | 0.0000092                                         |  |
| Chromic VI    | 2.12                  | 616.41                | 0.0034                                            |  |
| Manganese     | 302.91                | 62,703.25             | 0.0048                                            |  |
| Mercury       | 0.46                  | 1,204.33              | 0.00038                                           |  |
| Nickel        | 1.79                  | 232.17                | 0.0077                                            |  |

Table 3-6. Comparison of Potential and Optimized Daily TAP Emissions from the H.F. Lee Facility



|           | Potential            | Optimized            | _ Ratio of Potential<br>to Optimized<br>Emissions |  |
|-----------|----------------------|----------------------|---------------------------------------------------|--|
| Compound  | Emissions<br>(lb/yr) | Emissions<br>(lb/yr) |                                                   |  |
| Arsenic   | 289.30               | 387.55               | 0.75                                              |  |
| Benzene   | 1,787.54             | 510,598.49           | 0.0035                                            |  |
| Beryllium | 8.86                 | 212.67               | 0.042                                             |  |
| Cadmium   | 124.13               | 14,274.49            | 0.0087                                            |  |

Table 3-7. Comparison of Potential and Optimized Annual TAP Emissions from the H.F. Lee Facility



#### 4.0 REGULATORY ANALYSIS

Federal and state regulations were reviewed to determine their applicability to and implications for the various emissions sources at the H.F. Lee STAR<sup>®</sup> facility. The regulations that may apply only to the proposed emissions sources as a result of modification at the facility are discussed in the following subsections.

EPA promulgated regulations that set the national ambient air quality standards (NAAQS) for seven criteria compounds: SO<sub>2</sub>, CO, NO<sub>x</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, lead, and ozone (O<sub>3</sub>). Two classes of ambient air quality standards have been established: (1) primary standards defining levels of air quality that the EPA has judged as necessary to protect public health; and (2) secondary standards defining levels for protecting soils, vegetation, wildlife, and other aspects of public welfare. Table 4-1 lists the national primary and secondary and state ambient air quality standards in micrograms per cubic meter ( $\mu$ g/m<sup>3</sup>). The NC DEQ ambient air quality standards are also included in Table 4-1.

According to 40 CFR §81.334, the current attainment status for the project area, Wayne County, for each of the criteria pollutants is provided in Table 4-2. The proposed facility is located in an area that is in attainment of the NAAQS.

#### 4.1 PSD (40 CFR 52.21)/ 15A NCAC 02D .0530

The determination of whether PSD regulations are applicable to a specific project is conducted in two parts: first dealing with the air quality status of the location of the project and second evaluating the type and quantity of PSD-regulated pollutants that will be emitted. For the regulations to apply to a given project, it must first be determined whether the proposed location is in an area that has been classified as attainment or as unclassifiable. The H.F. Lee facility is in Wayne County, which is designated as attainment or unclassifiable/attainment for all the criteria pollutants.



|                   | Averaging | NAAQS     | NAAQS (µg/m³†) |           | NC DEQ Regulation Standard<br>(µg/m <sup>3</sup> †) |  |
|-------------------|-----------|-----------|----------------|-----------|-----------------------------------------------------|--|
| Pollutant         | Period*   | Primary   | Secondary      | Primary   | Secondary                                           |  |
| SO <sub>2</sub>   | Annual‡   | 80        | —§             | 80        | —§                                                  |  |
|                   | 24-hour‡  | 365       | —-§            | 365       | —§                                                  |  |
|                   | 1-hour    | 196       | —-§            | 196       | —§                                                  |  |
|                   | 3-hour    | —§        | 1,300          | —§        | 1,300                                               |  |
| $PM_{10}$         | 24-hour   | 150       | 150            | 150       | 150                                                 |  |
| PM <sub>2.5</sub> | Annual    | 12        | 15             | 12        | 15                                                  |  |
|                   | 24-hour   | 35        | 35             | 35        | 35                                                  |  |
| CO                | 8-hour    | 10,000    | —-§            | 10,000    | —§                                                  |  |
|                   | 1-hour    | 40,000    | —-§            | 40,000    | —§                                                  |  |
| Ozone             | 8-hour    | 0.070 ppm | 0.070 ppm      | 0.075 ppm | 0.075 ppm                                           |  |
| NO <sub>2</sub>   | Annual    | 100       | 100            | 100       | 100                                                 |  |
|                   | 1-hour    | 188       | —§             | 188       | —§                                                  |  |
| Lead              | 3-month£  | 0.15      | 0.15           | 0.15      | 0.15                                                |  |

Table 4-1. Ambient Air Quality Standards

Note: ppm = part per million.

ppb = part per billion.  $NO_2 = nitrogen dioxide$ .

\*National short-term ambient standards may be exceeded once per year; annual standards may never be exceeded. North Carolina short-term standards may be exceeded once per year, annual standards may never be exceeded. Ozone standard is attained when the expected number of days of an exceedance is equal to or less than one.

†Standards expressed in micrograms per cubic meter ( $\mu g/m^3$ ) unless otherwise noted.

<sup>‡</sup>Final rule signed June 2, 2010. The 1971 annual and 24-hour SO<sub>2</sub> standards were revoked in this rulemaking. However, these standards remain in effect until one year after an area is designated for the 2010 standard, except in areas designated nonattainment for the 1971 standards, where the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standard are approved.

§No ambient standard for this pollutant and/or averaging period.

 $\pounds$ The rule signed October 15, 2008, finalized a new lead standard. The 1978 lead standard of 1.5 µg/m<sup>3</sup> as a quarterly average remains in effect until one year after an area is designated for the 2008 standard, except in areas designated nonattainment for the 1978 standard, where, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.

Sources: 40 CFR 50. 15A NCAC 2D .0400.



| Pollutant         | Attainment Status         |  |  |
|-------------------|---------------------------|--|--|
| СО                | Unclassifiable/attainment |  |  |
| $SO_2$            | Attainment                |  |  |
| NO <sub>2</sub>   | Unclassifiable/attainment |  |  |
| $PM_{10}$         | Unclassifiable/attainment |  |  |
| PM <sub>2.5</sub> | Unclassifiable/attainment |  |  |
| Ozone (8-hour)    | Unclassifiable/attainment |  |  |
| Lead              | Unclassifiable/attainment |  |  |

Table 4-2. Attainment Status for Wayne County, North Carolina

Source: 40 CFR 81.334.



The project's potential to emit (PTE) is then reviewed to determine whether it constitutes a major stationary source or major modification. A major stationary source is defined as either one of the sources identified in 40 CFR 52.21 and which has a PTE 100 tons or more per year of any regulated pollutant, or any other stationary source which has the PTE 250 tons or more per year of a regulated pollutant. A major modification is defined as a source having an increase in emissions above the PSD significant emission rates.

As explained in Section 3.2, Duke Energy will maintain emissions below the PSD avoidance limits under conditions in Section 2.1.D.5.a of Air Permit No. 01812T42 for each PSD pollutant. Again, GHG emissions are expected to increase by a value more than the Significant Emission Rate (SER) for GHG emissions. GHG emissions have been categorized as an "anyway" pollutant and require another PSD pollutant to be subject to PSD review before PSD review applies to GHG emissions. Therefore, GHG are not subject to PSD review for the proposed project.

#### 4.2 NORTH CAROLINA AMBIENT AIR QUALITY STANDARDS

#### 4.2.1 15A NCAC 2Q .0101 - REQUIRED AIR QUALITY PERMITS

This regulation requires the owner or operator of all sources for which there is an ambient air quality or emission control standard, which is not exempted from permit requirements, to apply for an air quality permit. The owner or operator of a source required to have a permit shall not begin construction or operation of the source without first obtaining a permit. The STAR<sup>®</sup> system and the material handling equipment listed in Section 1.3 are not categorically exempt from permitting. Thus, Duke Energy is submitting this air permit application to obtain a permit prior to any construction or change in method of operation of these sources. Duke Energy will submit a separate Title V permit application within 12 months after the initial start-up of the proposed project.

## 4.2.2 15A NCAC 2D .0400. AMBIENT AIR QUALITY STANDARDS

The purpose of the ambient air quality standards is to establish certain maximum limits on parameters of air quality considered desirable for the preservation and enhancement of the


quality of the State's air resources. The ambient air quality standards for North Carolina are the same as those promulgated by the EPA. All standards promulgated by the EPA as of June 22, 1988, have been adopted and incorporated by reference as the official ambient air quality standards of the State of North Carolina. Duke Energy expects that the proposed project will be in compliance with the applicable air quality standards.

# 4.2.3 15A NCAC 2D .0515 – PARTICULATES FROM MISCELLANEOUS INDUSTRIAL PROCESSES

Allowable emissions of particulate matter from any industrial process for which no other emission control standards are applicable shall not exceed the amounts calculated by the following equation:

 $E = 4.10 \text{ x P}^{0.67}$  for  $P \le 30$  tons per hour

or

 $E = 55.0 \text{ x } P^{0.11}$  - 40 for P > 30 tons per hour

where: E = allowable emission rate in pounds per hour

P =process weight in tons per hour

Solid fuels charged are considered as part of the process weight, liquid and gaseous fuels and combustion air are not.

Table 4-3 presents the process weight rates and associated allowable emissions for the equipment onsite. Compliance with this requirement is expected and appropriate monitoring and recordkeeping will be performed to verify this expectation.



| Emissions Source             | Process Rate<br>(tph) | Allowable PM<br>(lb/hr) |  |
|------------------------------|-----------------------|-------------------------|--|
| EHE (Units1 and 2)           | 70                    | 47.8                    |  |
| Feed silo filling            | 125                   | 53.5                    |  |
| Feed silo unloading          | 75                    | 48.4                    |  |
| FGD Byproduct Silo filling   | 1.75                  | 5.97                    |  |
| FGD Byproduct Silo unloading | 300                   | 63                      |  |
| FGD Absorbent Silo filling   | 25                    | 35.4                    |  |
| FGD Absorbent Silo unloading | 1.5                   | 5.4                     |  |
| STAR <sup>®</sup> Reactor    | 75                    | 48.4                    |  |
| Storage dome filling         | 75                    | 48.4                    |  |
| Storage dome unloading       | 275                   | 62.02                   |  |
| Transfer silo filling        | 125                   | 53.5                    |  |
| Transfer silo unloading      | 75                    | 48.4                    |  |
| Loadout                      | 300                   | 63                      |  |
| Loadout chute 1A             | 100                   | 51.3                    |  |
| Loadout chute 1B             | 100                   | 51.3                    |  |
| Screener                     | 165                   | 56.4                    |  |
| Crusher                      | 7                     | 15.1                    |  |

Table 4-3. 15A NCAC 2D .0515 Allowable Emissions

Note: lb/hr = pound per hour.

Source: 15A NCAC 2D .0515.



#### 4.2.4 15A NCAC 02D .0516 – SULFUR DIOXIDE EMISSIONS FROM COMBUSTION SOURCES

Emission of sulfur dioxide from any source of combustion that is discharged from any vent, stack, or chimney shall not exceed 2.3 pounds of sulfur dioxide per million BTU input. Sulfur dioxide formed by the combustion of sulfur in fuels, wastes, ores, and other substances shall be included when determining compliance with this standard. Sulfur dioxide formed or reduced as a result of treating flue gases with sulfur trioxide or other materials shall also be accounted for when determining compliance with this standard.

A source subject to an emission standard for sulfur dioxide in Rules 2D .0524, .0527, .1110, .1111, .1205, .1206, .1210, or .1211 of 15A NCAC shall meet the standard in that particular rule instead of the standard in the above paragraph.

The STAR<sup>®</sup> unit is not subject to any sulfur dioxide standards; therefore, it is subject to the requirements in 2D .0516. Compliance with the emission standard of 2.3 lb/million Btu is expected based on the conceptual design of the SO<sub>2</sub> device. Appropriate monitoring and recordkeeping will be performed to verify this expectation.

#### 4.2.5 15A NCAC 2D .0521 – CONTROL OF VISIBLE EMISSIONS

The intent of this Rule is to prevent, abate and control emissions generated from fuel burning operations and industrial processes where visible emissions can be reasonably expected to occur, except during startup, shutdowns, and malfunctions approved as such according to procedures approved under 15A NCAC 2D .0535.

This Rule shall apply to all fuel burning sources and to other processes that may have a visible emission. However, sources subject to a visible emission standard in Rules .0506, .0508, .0524, .0543, .0544, .1110, .1111, .1205, .1206, .1210, .1211, or .1212 of this Subchapter shall meet that standard instead of the standard contained in this Rule.



For sources manufactured after July 1, 1971, visible emissions shall not be more than 20 percent opacity when averaged over a six-minute period. However, except for sources required to install, operate, and maintain continuous opacity monitoring systems (COMS), compliance with the 20 percent opacity limit shall be determined as follows:

- i. No six-minute period exceeds 87 percent opacity;
- ii. No more than one six-minute period exceeds 20 percent opacity in any hour; and
- iii. No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

Duke Energy assumes the proposed STAR<sup>®</sup> unit and associated sources of air emissions will be subject to this rule. Compliance will be achieved through the use of the proposed emission control equipment.

# 4.2.6 15A NCAC 02D .0530 PREVENTION OF SIGNIFICANT DETERIORATION

As explained above in Section 4.1, the Project will maintain emissions below the PSD avoidance limits under conditions in Section 2.1.D.5.a of Air Permit No. 01812T42, therefore the PSD review provisions of this rule do not apply.

# 4.2.7 15A NCAC 2D .0535 - EXCESS EMISSIONS REPORTING AND MALFUNCTIONS

This regulation applies to all permitted facilities and outlines the procedures of reporting excess emissions as a result of malfunctions or operational upsets. The facility owner/operator must notify the appropriate regional office of any excess emissions that last for greater than four hours. This report must be made by 9:00 a.m. Eastern time of the Division's next business day of becoming aware of the occurrence. Notify the Director or designee immediately when the corrective measures have been accomplished. Submit a written report to the Director within 15 days after the request.



#### 4.2.8 15A NCAC 02D .0540 - PARTICULATES FROM FUGITIVE DUST EMIS-SION SOURCES

This rule requires that fugitive dust emissions not cause or contribute to substantive complaints, excessive fugitive dust emissions at the property boundary, or NAAQS violations. Dust emissions from the Ash handling and Loading/Unloading sources are expected to be in compliance. Appropriate monitoring and recordkeeping will be performed to verify this expectation.

#### 4.2.9 15A NCAC 02D .0544 - PREVENTION OF SIGNIFICANT DETERIORATION REQUIREMENTS FOR GREENHOUSE GASES

This rule indicates that a major stationary source or major modification shall not be required to obtain a PSD permit on the sole basis of its greenhouse gases emissions. Duke Energy will maintain emissions below the PSD avoidance limits under conditions in Section 2.1.D.5.a of Air Permit No. 01812T42 for each PSD pollutant, thus, PSD review for GHGs does not apply.

#### 4.2.10 15A NCAC 02D .1100 - CONTROL OF TOXIC AIR POLLUTANTS

This rule applies to all facilities that emit a toxic air pollutant that are required to have a permit under 15A NCAC 2Q .0700. NC DEQ requires any facility that emits a regulated TAP at a rate greater than the TPER, as listed in the 15A NCAC 2Q .0711, demonstrate through air dispersion modeling that emissions from the facility are not resulting in the exceedance of the Acceptable Ambient Level (AAL) for that pollutant, as listed in 15A NCAC 2D .1104. Per 2Q.0700, The H.F. Lee facility has the potential to emit TAPs in excess of de minimis thresholds. Detailed explanation of toxic modeling analyses is presented in Section 5 of this application.

#### 4.2.11 15A NCAC 02D .1200 - CONTROL OF EMISSIONS FROM INCINERATORS

Fly ash is not a waste material; instead, it is a feedstock (or an ingredient) for the H.F. Lee STAR<sup>®</sup> facility. The coal fly ash is a raw material for the proposed H.F. Lee STAR<sup>®</sup> facility. It is required to produce beneficiated product as per the standards of American Society for Testing and Materials (ASTM) Standard C618, and American Association of State



Highway and Transportation Officials (AASHTO) Standard M 295 for pozzolan-grade fly ash.

Based on the determination that fly ash, as proposed to be used, is not a waste material, the H.F. Lee STAR<sup>®</sup> facility is not subject to this requirement. NC DEQ's concurrence with this conclusion is supported by the documentation included in Appendix F.

#### 4.2.12 15A NCAC 02D .1400 - NITROGEN OXIDES

Under this Section Rules .1407 through .1409(b) and .1413 applies to facilities with potential emissions of NO<sub>x</sub> equal to or greater than 100 tons per year or 560 pounds per calendar day beginning May 1 through September 30 of any year in the following areas: (1) Cabarrus County; (2) Gaston County; (3) Lincoln County; (4) Mecklenburg County; (5) Rowan County; (6) Union County; and (7) Davidson Township and Coddle Creek Township in Iredell County. The H.F. Lee STAR<sup>®</sup> facility is in Wayne county which is not in the list provided above, hence this rule is not applicable.

Under the same Section Rules .1416 through .1423 apply statewide and Rule .1409(c) applies to Gas Pipeline Stations. Rule .2400 has expired and is no longer valid, Rules .1416, .1417, .1419, .1420, .1421 and .1422 are being repealed and H.F. Lee STAR<sup>®</sup> facility does not fall under the category of a Gas Pipeline Station, hence this section is not applicable. Rule .1418 applies to any fossil fuel-fired stationary boiler, combustion turbine, or combined cycle system having a maximum design heat input greater than 250 million Btu per hour and large reciprocating internal combustion (IC) engines rated at equal to or greater than 2,400 brake horsepower. The H.F. Lee STAR<sup>®</sup> facility is not proposing any boiler or turbine or large IC engine which will meet the definition above, hence Rule .1418 is not applicable.

Under this standard, Rule .1400 is not applicable to incinerator or thermal or catalytic oxidizer used primarily for the control of air pollution, emergency generator, emergency use internal combustion engine and stationary internal combustion engine less than 2400 brake



horsepower that operates no more than the following hours between May 1 and September 30:

- (A) for diesel engines:
  - t = 833,333 / ES
- (B) for natural gas-fired engines:

t= 700,280 / ES

where t equals time in hours and ES equals engine size in horsepower.

There are two stationary internal combustion diesel engines proposed at the site:

- Screener Engine 91 hp, 2,600 hr/yr
- Crusher Engine 300 hp; 365 hr/yr.

Based on the equation provide above the diesel engines will be exempt if they operate less than the following hours:

- Screener Engine 9,157 hours
- Crusher Engine 2,777 hours

The diesel engines will operate less than the allowable hours; therefore, they are exempt.

The STAR<sup>®</sup> process does not meet the definition of a fuel-burning operation or meet the definition of any such unit mentioned previously. The combustion of natural gas or propane during startup is direct-fired with all of the STAR<sup>®</sup> ingredients, including fly ash. As described above, rule .1400 is not applicable to the STAR<sup>®</sup> unit or any other units of the H.F. Lee STAR<sup>®</sup> facility.

## 4.3 **FEDERAL REGULATIONS**

Federal regulations were reviewed to determine their applicability to the proposed H.F. Lee STAR<sup>®</sup> facility. The federal regulations that were found to be potentially applicable only to the proposed STAR<sup>®</sup> are discussed as follows:



#### 4.3.1 NEW SOURCE PERFORMANCE STANDARDS (NSPS)

NSPS are technology-based standards applicable to new and modified stationary sources. The standards relevant to the proposed H.F. Lee STAR<sup>®</sup> facility are discussed in this subsection.

#### 4.3.1.1 <u>NSPS for Commercial and Industrial Solid Waste Incineration Units</u> (40 CFR 60, Subpart CCCC)

Unless exempt, combustion of a NHSM as defined in 40 C.F.R. Part 241 would subject an emissions unit to 40 CFR 60 Subpart CCCC-Standards Of Performance For Commercial And Industrial Solid Waste Incineration Units (CISWI). In accordance with 40 CFR 241.3(b)(3), "non-hazardous secondary materials used as an ingredient in a combustion unit that meet the legitimacy criteria..." are not solid wastes. Additionally, in accordance with 40 CFR 241.3(b)(4), "...ingredient products that are used in a combustion unit and are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria" are not solid wastes. Based on this it is determined that use of fly ash is not a waste but an ingredient. Therefore, the H.F. Lee STAR<sup>®</sup> unit is not subject to CISWI.

#### 4.3.1.2 NSPS for Large Municipal Waste Combustors (40 CFR 60, Subpart Eb)

These standards apply to large municipal waste combustor units with a combustion capacity greater than 250 tons per day of municipal solid waste that initiated construction after September 20, 1994. According to 40 CFR 60.51b, a municipal waste combustor means "any equipment that combusts solid, liquid, or gasified municipal solid waste." Municipal solid waste means household, commercial, retail, or institutional waste and specifically excludes "industrial process or manufacturing wastes." Even if the raw fly ash were considered a solid waste, it does not meet the definition of municipal solid waste. The proposed H.F. Lee STAR<sup>®</sup> unit, therefore, is not subject to the NSPS codified under 40 CFR 60, Subpart Eb.



#### 4.3.1.3 <u>NSPS Subpart IIII—Standards of Performance for Stationary</u> <u>Compression Ignition Internal Combustion Engines</u>

Per 40 CFR 60.4200(a)(2), the provisions of this subpart are applicable to, "Owners and operators of stationary compression ignition internal combustion engines that commence construction after July 11, 2005, where the stationary compression ignition internal combustion engines are:

- (i) Manufactured after April 1, 2006, and are not fire pump engines, or
- (ii) Manufactured as a certified National Fire Protection Association fire pump engine after July 1, 2006."

The diesel-fired engines will commence construction (be ordered) after July 11, 2005, and be manufactured after April 1, 2006; therefore, are subject to 40 CFR 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines. Per 40 CFR 60.4201(a), Stationary CI internal combustion engine manufacturers must certify their 2007 model year and later non-emergency stationary CI ICE with a maximum engine power less than or equal to 2,237 kilowatt (KW) (3,000 horsepower (HP)) and a displacement of less than 10 liters per cylinder to the certification emission standards for new nonroad CI engines in 40 CFR 89.112, 40 CFR 89.113, 40 CFR 1039.101, 40 CFR 1039.102, 40 CFR 1039.104, 40 CFR 1039.105, 40 CFR 1039.107, and 40 CFR 1039.115, as applicable, for all pollutants, for the same model year and maximum engine power. Proposed diesel engines (ES-39B and ES-40B) have displacement less than 10 liters per cylinder to the certification this rule are applicable. Duke Energy will comply with all applicable Subpart IIII emissions limitation, monitoring, recordkeeping, and reporting requirements.

#### 4.3.2 NATIONAL EMISSION STANDARD FOR HAZARDOUS AIR POLLU-TANT (NESHAP)

NESHAP are standards for HAPs from stationary sources. In general, the 40 CFR 63 NESHAP are only applicable to major HAP sources (i.e., facilities that have potential emissions of an individual HAP of 10 tpy or more and potential emissions of total HAPs of 25 tpy or more). The H.F. Lee facility has potential HAP emissions above the NESHAP



standard. Therefore, the H.F. Lee facility is a major source of HAP emissions. The applicability of relevant NESHAP is discussed in the following subsections.

#### 4.3.2.1 <u>NESHAP for Stationary Reciprocating Internal Combustion Engines (40</u> <u>CFR 63, Subpart ZZZZ)</u>

NESHAP Subpart ZZZZ applies to new and existing internal combustion engines located at major and area sources. The engines associated with the screening and crushing are subject to Subpart ZZZZ. Since the engines are new and located at a major source of HAP, the requirements of 40 CFR 60, Subpart IIII, must be met to meet the requirements of Subpart ZZZZ. The engines will meet applicable NSPS requirements.

#### 4.3.2.2 <u>NESHAP for Industrial, Commercial and Institutional Boilers and Process</u> <u>Heaters (40 CFR 63, Subpart DDDDD)</u>

40 CFR 63 Subpart DDDDD, establishes national emission limitations and work practice standards for HAP emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. None of the proposed units at the H.F Lee STAR<sup>®</sup> facility meet the definition of a boiler or a process heater under 40 CFR 63.7575. Therefore, the STAR<sup>®</sup> system is not subject to the NESHAP codified under 40 CFR 63, Subpart DDDDD.

#### 4.3.2.3 <u>NESHAP for Industrial, Commercial and Institutional Boilers Area</u> <u>Sources (40 CFR 63, Subpart JJJJJJ)</u>

These standards apply to industrial, commercial, and institutional boilers at an area source of HAP. An area HAP source is defined as a facility that has the potential to emit less than 10 tpy of any individual HAP or less than 25 tpy of any combination of HAPs (40 CFR 63.2). The H.F. Lee facility is major source of HAPs. Therefore, no sources are subject to the NESHAP codified under 40 CFR 63, Subpart JJJJJJ. In addition, no proposed units for the project meet the definition of a boiler under 40 CFR 63.11237.



#### 4.3.3 40 CFR 64 - COMPLIANCE ASSURANCE MONITORING REGULA-TIONS

On October 27, 1997, EPA promulgated the Compliance Assurance Monitoring (CAM) Rule, 40 CFR Part 64, which addresses monitoring for certain emission units at major sources, thereby assuring that facility owners and operators conduct effective monitoring of their air pollution control equipment. In order to be subject to CAM, the following criteria must be met:

- The unit is subject to an emissions limitation or standard for the pollutant of concern;
- An "active" control device is used to achieve compliance with the emission limit; and
- The emission unit's pre-control potential-to-emit is greater than the applicable major source threshold.

For emissions of SO<sub>2</sub> from the STAR® system (ES-31), Duke Energy is subject to CAM requirements for the state SO<sub>2</sub> standard, i.e., 2.3 lb/MMBtu per 15A NCAC 02D .0516. A preliminary draft of a CAM plan is included in Appendix G for the agency's review.



#### 5.0 AIR QUALITY IMPACT ASSESSMENT

#### 5.1 MODEL SELECTION

For this modeling analysis, the American Meteorological Society (AMS)/EPA Regulatory Model Improvement Committee (AERMIC) model (AERMOD) system components were used. These include the existing regulatory components (AERMOD, AERMOD meteorological preprocessor program [AERMET], AERMOD terrain preprocessor program [AER-MAP], and Building Profile Input Program [BPIP] for Plume Rise Model Enhancement [PRIME] [BPIPPRM]), AERSURFACE and AERMINUTE. AERMOD (Version 16216r) was used in the refined modeling analyses for flat, elevated, and complex terrain.

The procedures used in conducting the air quality modeling analyses followed the requirements outlined in the 40 CFR 51, Appendix W, Guidelines on Air Quality Models; NC DEQ Air Toxic Quality Modeling Guidelines, February 2014; and direction received from the NC DEQ Modeling Section. Supporting information for the air quality modeling study included building downwash analyses, meteorological data, and terrain data.

#### 5.1.1 PHYSICAL SOURCE GEOMETRY/GOOD ENGINEERING PRACTICE STACK HEIGHT ANALYSIS

A good engineering practice (GEP) stack height/building wake effect analysis was conducted to identify which building structures influence plume dispersion from each emissions source. Based on the formula, GEP stack height and region of influence, the Building Profile Input Program (BPIP) PRIME program was run for the point source emissions points and related building structures. Figure 5-1 shows the H.F. Lee facility layout (including the modeled sources) and property lines. The BPIP PRIME (Version 04274 dated September 30, 2004) program was used to calculate the GEP height and wind directionspecific building dimensions for input to the air dispersion model.

The GEP analysis was used to identify critical buildings and to determine wind directionspecific building dimensions for use in the modeling analysis. GEP was also used to



demonstrate compliance with applicable state and federal stack height regulations. Following the Guideline for Determination of GEP Stack Height (Technical Document for the Stack Height Regulation), GEP height was calculated using the following equation:

```
Hg = H + 1.5 L
```

where: Hg = good engineering practice stack height.

- H = height of the structure or nearby structure.
- L = lesser dimension (height or projected width of the structure or nearby building).

In a situation where a nearby structure consists of multiple tiers or there are several structures nearby, the GEP height was calculated for each tier or structure, and the one resulting in the greatest calculated GEP height determined both the GEP height and the wind direction-specific building dimension used when modeling a stack that is lower than the GEP height.

The direction-specific building dimensions obtained from the BPIP PRIME analysis were put into the air dispersion model to simulate the effects of building-induced downwash. The BPIP files are included with the air dispersion modeling files on the DVD included in Appendix E.





### 5.1.2 LOCAL TOPOGRAPHY

Local topography played an important role in the selection of the appropriate dispersion model. Available dispersion models can be divided into two general categories: those applicable to terrain that is below stack top (simple terrain) and above stack top (complex terrain). The terrain near the H.F. Lee facility can be described as generally flat terrain. A model that simulated both simple and complex terrain was used.

## 5.2 <u>AERMOD MODEL APPLICATION</u>

The AERMOD modeling system consists of two preprocessors and the dispersion model. AERMET is the meteorological preprocessor component, and AERMAP is the terrain preprocessor component that characterizes the terrain and generates receptor elevations along with critical hill heights for those receptors.

AERMOD has the following capabilities applicable to this study:

- Handles all terrain features.
- Simulates PRIME aerodynamic building downwash.
- Simulates both short- and long-term averaging periods.
- Handles large numbers of receptors.
- Calculates concentrations within the building cavity and within 5L of the stack.

## 5.2.1 METEOROLOGICAL DATA

For this project, refined modeling analyses were conducted using a data set downloaded from the NC DEQ Website that consisted of 5 years (2012 through 2016) of hourly meteorological data from Rocky Mount-Wilson, North Carolina (surface), and Newport, North Carolina (upper air). This data set was processed by NC DEQ.

## 5.2.2 RECEPTORS AND TOPOGRAPHY FOR AERMOD

A single nested Cartesian receptor grid was generated for use in the AERMOD refined modeling. Receptors were spaced 100 meters apart along the property boundary, except where a source was within 100 meters, receptors were spaced 25 meters apart. Receptors



were spaced 100 meters apart extending from the property boundary out to 1,000 meters. Receptors were spaced 500 meters apart extending from 1,000 meters out to 10,000 meters. The receptor grid used in the modeling analysis was based on North American Datum of 1983 (NAD 83) and in Zone 17. The AERMAP (Version 11103) processor program was used to calculate terrain elevations and critical hill heights for the receptor grid (NAD 83 and Zone 17) using National Elevation Data (NED). The NED dataset was downloaded from the Multi-Resolution Land Characteristics Consortium (MRLC) website.

The base elevation for the buildings and emissions sources was also obtained from the NED. The base elevation for each building and emission source was then manually adjusted to be the lowest elevation for the buildings and sources in a particular area.

### 5.2.3 PHYSICAL SOURCE AND EMISSIONS DATA

The air dispersion modeling analysis was conducted with emissions rates and exhaust characteristics (flow rate and temperature) that are expected to represent the worst-case parameters for the proposed and existing sources.

Please note that this toxic analysis included the existing combustion turbines in combinedcycle mode at 100-percent load with duct burners and in simple-cycle mode at 100-percent load with evaporative cooler to account for the worst-case stack parameters. The annual emissions were modeled with four scenarios that are based on the following combinations:

- <u>Scenario #1</u>—Each combustion turbine operating in:
  - Combined-cycle mode for 6,760 hours per year (hr/yr) operating on natural gas.
  - Simple-cycle mode for 1,000 hr/yr operating on natural gas and 1,000 hr/yr operating on fuel oil.
- <u>Scenario #2</u>—Each combustion turbine operating in:
  - Combined-cycle mode for 5,760 hr/yr operating on natural gas and 1,000 hr/yr operating on fuel oil.
  - Simple-cycle mode for 2,000 hr/yr operating on natural gas.



- <u>Scenario #3</u>—Each combustion turbine operating in combined-cycle mode for 8,760 hr/yr operating on natural gas.
- <u>Scenario #4</u>—Each combustion turbine operating in combined-cycle mode for 7,760 hr/yr operating on natural gas and 1,000 hr/yr operating on fuel oil.

Tables 5-1 through 5-3 provide summaries of the exhaust data. Tables 5-4 through 5-6 present summaries of optimized emission rates for the air pollutants addressed in this modeling analysis.



| Source ID<br>and Description                                         | Stack<br>Height<br>(ft) | Stack<br>Diameter<br>(ft) | Temperature<br>(°F) | Exit<br>Velocity<br>(fps)€ |
|----------------------------------------------------------------------|-------------------------|---------------------------|---------------------|----------------------------|
| Existing Units                                                       |                         |                           |                     |                            |
| SC_FO10 & SC_FO11 – Unit 10 & 11*                                    | 100                     | 20                        | 962.01              | 129.10                     |
| SC_F012 & SC_F013 – Unit 12 & 13*                                    | 115                     | 18                        | 1,065.99            | 154.90                     |
| SC_F014 – Unit 40                                                    | 115                     | 18                        | 1,065.99            | 151.80                     |
| SC_NG10 & SC_NG11 – Unit 10 & 11*                                    | 100                     | 20                        | 973                 | 129.80                     |
| SC_NG12 & SC_NG13 – Unit 12 & 13*                                    | 115                     | 18                        | 1,068.01            | 150.90                     |
| SC_NG14 – Unit 40                                                    | 115                     | 18                        | 1,068.01            | 147.90                     |
| CC_NG15, CC_NG16 & CC_NG17 – Unit 15, 16 & 17 (100% w/ Evap Clr)*    | 175                     | 18                        | 171                 | 65.28                      |
| CC_FO15, CC_FO16 & CC_FO17 – Unit 15, 16&17 (Base Load w/ Evap Clr)* | 175                     | 18                        | 260.01              | 76.09                      |
| SC_NG15, SC_NG16 & SC_NG17 – Unit 15, 16 & 17 (100% w/ Evap Clr)*    | 120                     | 22                        | 1,087               | 111.35                     |
| SC_F015, SC_F016 & SC_F017 – Unit 15, 16&17 (Base Load w/ Evap Clr)* | 120                     | 22                        | 1,053               | 109.11                     |
| AUX_BLR – Auxiliary Boiler                                           | 55                      | 3                         | 570                 | 47.50                      |
| FGH – Fuel Gas Heater                                                | 25                      | 2                         | 717.01              | 18.91                      |
| DPH15, DPH16 & DPH17 – Dew Point Heater for Unit 15, 16 & 17*        | 45                      | 1.30                      | 70                  | 6.30                       |
| FWP – Fire Water Pump                                                | 20                      | 0.50                      | 840                 | 119.18                     |
| EXST_FGH – Fuel Gas Heater at Wayne site                             | 25                      | 2                         | 717.01              | 18.91                      |
| Proposed Units                                                       |                         |                           |                     |                            |
| EP30 (ES-30A&B) – Feed Silo                                          | 111                     | 1.5                       | 70                  | 0.003281                   |
| EP31 (ES-31) – STAR <sup>®</sup> Reactor (Exhaust Stack)             | 110                     | 4                         | 155                 | 102.79                     |
| EP34 (ES-34) – EHE – 1 (Dust Collector)                              | 51                      | 4                         | 187                 | 55.11                      |
| EP35 (ES-35) – EHE – 2 (Dust Collector)                              | 51                      | 4                         | 187                 | 55.11                      |
| EP36 (ES-36A&B) – Transfer Silo                                      | 100                     | 0.667                     | 70                  | 0.003281                   |
| EP37 (ES-37A&B) – Storage Dome (Ash)                                 | 125                     | 1.5                       | 70                  | 0.003281                   |
| EP38 (ES-38) - Loadout Silo (1500 Ton)                               | 111                     | 1.5                       | 70                  | 0.003281                   |
| EP38A (ES-38A) – Loadout Silo Chute 1A                               | 111                     | 1.5                       | 70                  | 0.003281                   |
| EP38B (ES-38B) – Loadout Silo Chute 1B                               | 111                     | 1.5                       | 70                  | 0.003281                   |
|                                                                      |                         |                           |                     |                            |

#### Table 5-1. Source Parameters—Existing and Proposed Point Sources

Note:  ${}^{\circ}F =$  degree Fahrenheit. fps = foot per second. ft = foot.

 ${\ensuremath{\in}}$  Horizontal exhaust orientation is represented as 0.003281 fps.

\* Stack parameters for individual stack units.



| Source ID<br>and Description                             | Release<br>Height<br>(ft) | Initial<br>Horizontal<br>Dimension<br>(ft) | Initial<br>Vertical<br>(ft) |
|----------------------------------------------------------|---------------------------|--------------------------------------------|-----------------------------|
| FEP1 (F-1) - wet ash receiving, transfer to storage shed | 5                         | 29.76                                      | 13.94                       |
| FEP2 (F-2) - wet ash receiving, transfer to hopper       | 10                        | 6.99                                       | 6.99                        |

#### Table 5-2. Source Parameters—Proposed Volume Sources

Note: ft = foot.



| Table 5-3. Source Parameters— | -Proposed Area Sources |
|-------------------------------|------------------------|
|-------------------------------|------------------------|

| Source ID<br>and Description                                                                                   | Release<br>Height<br>(ft) | Easterly<br>Length<br>(ft) | Northerly<br>Length<br>(ft) | Angle from<br>North<br>(degree) |
|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-----------------------------|---------------------------------|
| FEP3 (F-3) – Unloading Pile<br>FEP4A/4B/4C (F-4/F-5/EP39A/EP-40A) –<br>Ash Basin/Ash Handling/Screener/Crusher | 4<br>10                   | 119.75<br>660.0            | Default<br>Default          | Default<br>Default              |

Note: ft = foot.



|                                     |                            |                 |                 |          |                 |                 |          | Emi                | ssions Rates (l    | b/hr)              |                    |             |          |                  |          |              |
|-------------------------------------|----------------------------|-----------------|-----------------|----------|-----------------|-----------------|----------|--------------------|--------------------|--------------------|--------------------|-------------|----------|------------------|----------|--------------|
| Pollutant                           | Averag-<br>ing Pe-<br>riod | SC_FO10<br>&11* | SC_FO12<br>&13* | SC_FO14  | SC_NG10<br>&11* | SC_NG12<br>&13* | SC_NG14  | CC_NG1<br>5,16&17* | CC_F015<br>,16&17* | SC_NG15<br>,16&17* | SC_FO15<br>,16&17* | AUX_BL<br>R | FGH      | DPH15,1<br>6&17* | FWP      | EXST_F<br>GH |
| Formaldehyde                        | 1-HR                       | 8.25E+01        | 7.79E+01        | 8.71E-01 | 2.10E+02        | 1.97E+02        | 2.11E+02 | 2.49E+02           | 9.23E+01           | 2.42E+02           | 9.23E+01           | 9.56E-01    | 5.06E-02 | 4.50E-02         | 7.68E-01 | 6.18E-02     |
| Sulfuric Acid Mist                  | 1-HR                       | 2.84E+01        | 2.83E+01        | 2.80E+01 | 3.19E+00        | 2.91E+00        | 2.91E+00 | 3.61E+00           | 2.68E+02           | 6.65E-01           | 5.84E-01           |             |          |                  |          |              |
| Toluene                             | 1-HR                       | 1.55E+05        | 1.47E+05        | 1.64E+05 | 5.44E+04        | 5.13E+04        | 5.48E+04 | 6.39E+04           |                    | 6.29E+04           |                    | 3.81E+01    | 3.26E+00 | 2.89E+00         | 3.78E+02 | 3.98E+00     |
| Sulfuric Acid Mist                  | 24-HR                      | 1.35E+01        | 1.34E+01        | 1.33E+01 | 1.51E+00        | 1.38E+00        | 1.38E+00 | 1.71E+00           | 1.27E+02           | 3.15E-01           | 2.77E+01           |             |          |                  |          |              |
| Hexane                              | 24-HR                      |                 |                 |          |                 |                 |          | 1.81E+03           |                    |                    |                    | 3.39E+02    | 1.80E+01 | 1.60E+01         |          | 2.20E+01     |
| Toluene                             | 24-HR                      | 7.81E+04        | 7.39E+04        | 8.24E+04 | 2.73E+04        | 2.58E+04        | 2.75E+04 | 3.21E+04           |                    | 3.16E+04           |                    | 1.91E+01    | 1.64E+00 | 1.45E+00         | 1.90E+02 | 2.00E+00     |
| Chromium VI (Sol-<br>uble Chromate) | 24-HR                      | 1.00E+00        | 9.46E-01        | 1.06E+00 |                 |                 |          | 1.81E-01           | 6.90E+00           |                    | 6.90E+00           | 3.40E-02    | 1.80E-03 | 1.60E-03         |          | 2.20E-03     |
| Manganese                           | 24-HR                      | 3.15E+02        | 2.98E+02        | 3.31E+02 |                 |                 |          | 3.50E-02           | 3.52E+02           |                    | 3.52E+02           | 6.56E-03    | 3.48E-04 | 3.08E-04         |          | 4.24E-04     |
| Mercury                             | 24-HR                      | 6.04E+00        | 5.70E+00        | 6.38E+00 |                 |                 |          | 3.00E-01           | 6.74E+00           |                    | 6.74E+00           | 5.67E-02    | 3.00E-03 | 2.67E-03         |          | 3.66E-03     |
| Nickel                              | 24-HR                      | 1.15E+00        | 1.09E+00        | 1.21E+00 |                 |                 |          | 1.21E-01           | 1.29E+00           |                    | 1.29E+00           | 2.28E-02    | 1.20E-03 | 1.07E-03         |          | 1.47E-03     |
| Arsenic                             | Annual‡                    | 6.53E-03        | 6.17E-03        | 6.89E-03 |                 |                 |          | 1.20E-04           | 3.65E-03           |                    | 3.65E-03           | 2.25E-05    | 1.19E-06 | 3.17E-06         |          |              |
| Benzene                             | Annual‡                    | 7.26E+00        | 6.84E+00        | 7.65E+00 | 1.58E+00        | 1.49E+00        | 1.60E+00 | 7.39E+00           | 3.71E+00           | 1.67E+00           | 4.05E+00           | 5.25E-02    | 2.78E-03 | 7.41E-03         | 6.78E-02 | 7.77E-04     |
| Beryllium                           | Annual‡                    | 3.26E-03        | 3.10E-03        | 3.46E-03 |                 |                 |          | 1.28E-04           | 1.83E-03           |                    | 1.83E-03           | 2.40E-05    | 1.27E-06 | 3.38E-06         |          | 3.55E-07     |
| Cadmium                             | Annual‡                    | 2.43E-01        | 2.29E-01        | 2.56E-01 |                 |                 |          | 5.62E-02           | 1.32E-01           |                    | 1.36E-01           | 1.05E-02    | 5.58E-04 | 1.48E-03         |          | 1.55E-04     |

#### Table 5-4. Modeled (Optimized) Emission Rates-Existing Units Point Sources

\* Stack emission rates are for individual stacks.

‡ Emission rate is the overall maximum emission rate considered over the four operating scenarios.



|                      | Averaging      |          |             |          |           | Emissions Ra | ates (lb/hr) |          |          |         |
|----------------------|----------------|----------|-------------|----------|-----------|--------------|--------------|----------|----------|---------|
| Pollutant            | Period         | EP30     | EP31        | EP34     | EP35      | EP36         | EP37         | EP38     | EP38A    | EP38B   |
| Formaldehyde         | 1-HR           |          | 6.75E-01    |          |           |              |              |          |          |         |
| Sulfuric Acid Mist   | 1-HR           |          | 3.50E-01    |          |           |              |              |          |          |         |
| Toluene              | 1-HR           |          | 4.35E+01    |          |           |              |              |          |          |         |
| Sulfuric Acid Mist   | 24-HR          |          | 1.66E-01    |          |           |              |              |          |          |         |
| Hexane               | 24-HR          |          | 2.40E+02    |          |           |              |              |          |          |         |
| Toluene              | 24-HR          |          | 2.19E+01    |          |           |              |              |          |          |         |
| Chromium VI (Soluble | <b>0</b> ( 11D | 1.000    | 2 2 2 5 6 2 |          | 1.2.15.02 | 1.005.07     | 2 225 06     |          | 0.405.05 | 0.405.0 |
| Chromate)            | 24-HR          | 1.90E-06 | 3.23E-03    | 1.34E-03 | 1.34E-03  | 1.90E-06     | 3.32E-06     | 2.85E-06 | 9.49E-07 | 9.49E-0 |
| Manganese            | 24-HR          | 1.10E-04 | 1.91E-01    | 7.70E-02 | 7.70E-02  | 1.10E-04     | 1.92E-04     | 1.64E-04 | 5.46E-05 | 5.46E-0 |
| Mercury              | 24-HR          | 4.08E-06 | 4.70E-02    | 2.87E-03 | 2.87E-03  | 4.08E-06     | 7.13E-06     | 6.11E-06 | 2.04E-06 | 2.04E-0 |
| Nickel               | 24-HR          | 2.95E-05 | 6.64E-02    | 2.08E-02 | 2.08E-02  | 2.95E-05     | 5.17E-05     | 4.43E-05 | 1.48E-05 | 1.48E-0 |
| Arsenic              | Annual‡        | 2.31E-07 | 8.82E-04    | 3.58E-04 | 3.58E-04  | 2.31E-07     | 2.32E-07     | 1.16E-07 | 5.79E-08 | 5.79E-0 |
| Benzene              | Annual‡        |          | 3.71E-02    |          |           |              |              |          |          |         |
| Beryllium            | Annual‡        | 4.54E-07 | 1.71E-03    | 7.01E-04 | 7.01E-04  | 4.54E-07     | 4.54E-07     | 2.27E-07 | 1.13E-07 | 1.13E-0 |
| Cadmium              | Annual‡        | 9.22E-08 | 7.80E-03    | 1.42E-04 | 1.42E-04  | 9.22E-08     | 9.22E-08     | 4.62E-08 | 2.31E-08 | 2.31E-0 |

#### Table 5-5. Modeled (Optimized) Emission Rates-Proposed Units Point Sources

|                                | Averaging |          | Emissions Rates (lb/hr) |          |             |  |  |  |  |
|--------------------------------|-----------|----------|-------------------------|----------|-------------|--|--|--|--|
| Pollutant                      | Period    | FEP1     | FEP2                    | FEP3     | FEP4A/4B/4C |  |  |  |  |
| Formaldehyde                   | 1-HR      |          |                         |          |             |  |  |  |  |
| Sulfuric Acid Mist             | 1-HR      |          |                         |          |             |  |  |  |  |
| Toluene                        | 1-HR      |          |                         |          |             |  |  |  |  |
| Sulfuric Acid Mist             | 24-HR     |          |                         |          |             |  |  |  |  |
| Hexane                         | 24-HR     |          |                         |          |             |  |  |  |  |
| Toluene                        | 24-HR     |          |                         |          |             |  |  |  |  |
| Chromium VI (Soluble Chromate) | 24-HR     | 2.91E-07 | 5.85E-07                | 6.11E-07 | 3.26E-04    |  |  |  |  |
| Manganese                      | 24-HR     | 1.68E-05 | 3.37E-05                | 3.52E-05 | 1.87E-02    |  |  |  |  |
| Mercury                        | 24-HR     | 6.27E-07 | 1.25E-06                | 1.31E-06 | 6.98E-04    |  |  |  |  |
| Nickel                         | 24-HR     | 4.55E-6  | 9.10E-06                | 9.52E-06 | 5.06E-03    |  |  |  |  |
| Arsenic                        | Annual‡   | 5.09E-08 | 1.02E-07                | 1.63E-07 | 8.75E-05    |  |  |  |  |
| Benzene                        | Annual‡   |          |                         |          |             |  |  |  |  |
| Beryllium                      | Annual‡   | 9.97E-08 | 1.99E-07                | 3.20E-07 | 1.68E-04    |  |  |  |  |
| Cadmium                        | Annual‡   | 2.02E-08 | 4.04E-08                | 6.49E-08 | 3.41E-05    |  |  |  |  |

#### Table 5-6. Modeled (Optimized) Emission Rates-Proposed Volume and Area Sources

‡ Emission rate is the overall maximum emission rate considered over the four operating scenarios.

### 5.3 MODELING RESULTS

This section presents the results of the air quality impact analyses performed for the H.F. Lee STAR<sup>®</sup> facility. The air quality analyses were conducted using the inputs and methodologies described previously. Methodologies and protocols adhere to the EPA and NC DEQ Guidelines. In accordance with NC DEQ requirements, Appendix E contains a DVD containing the modeling input and output files.

Optimized emissions from the equipment were modeled with AERMOD to estimate the maximum concentrations for the pollutants and corresponding averaging period for each year of meteorological data. Table 5-7 provides a summary of the AERMOD modeling results for each pollutant with the optimized emission rates and averaging period for the Cartesian grid and fenceline receptors discussed in Section 5.2.2.

Based on the results, the H.F. Lee STAR<sup>®</sup> facility demonstrates compliance with 15A NCAC 02Q .0700.



|                                | Averaging |      |           | Mode      | eled Impact (µ | g/m <sup>3</sup> ) |           | Maximum Impact | Maximum<br>Allowable Concentration | Percent of AAL | Complies |
|--------------------------------|-----------|------|-----------|-----------|----------------|--------------------|-----------|----------------|------------------------------------|----------------|----------|
| Chemical                       | Period    | Rank | 2012      | 2013      | 2014           | 2015               | 2016      | $(\mu g/m^3)$  | $(\mu g/m^3)$                      | (%)            | (Yes/No) |
| Formaldehyde                   | 1-HR      | Н    | 107.58    | 131.19    | 140.91         | 106.71             | 98.47     | 140.91         | 150                                | 93.9           | Yes      |
| Sulfuric Acid Mist             | 1-HR      | Н    | 76.02     | 91.01     | 91.61          | 68.44              | 71.39     | 91.61          | 100                                | 91.6           | Yes      |
| Toluene                        | 1-HR      | Н    | 46,702.41 | 46,920.21 | 53,600.71      | 39,975.63          | 47,744.78 | 53,600.71      | 56,000                             | 95.7           | Yes      |
| Sulfuric Acid Mist             | 24-HR     | Н    | 5.90      | 10.51     | 7.62           | 7.80               | 8.68      | 10.51          | 12.00                              | 87.6           | Yes      |
| Hexane                         | 24-HR     | Н    | 1,039.88  | 807.94    | 933.07         | 1063.46            | 961.91    | 1,063.46       | 1,100                              | 96.7           | Yes      |
| Toluene                        | 24-HR     | Н    | 4,327.50  | 4,244.73  | 4,502.69       | 3,435.96           | 3,309.75  | 4,502.69       | 4,700                              | 95.8           | Yes      |
| Chromium VI (Soluble Chromate) | 24-HR     | Н    | 0.33      | 0.58      | 0.43           | 0.44               | 0.48      | 0.58           | 0.62                               | 93.5           | Yes      |
| Manganese                      | 24-HR     | Н    | 26.12     | 29.13     | 27.13          | 21.64              | 24.13     | 29.13          | 31                                 | 94.0           | Yes      |
| Mercury                        | 24-HR     | Н    | 0.50      | 0.57      | 0.52           | 0.44               | 0.48      | 0.57           | 0.60                               | 95.4           | Yes      |
| Nickel                         | 24-HR     | Н    | 0.55      | 0.53      | 0.44           | 0.59               | 0.42      | 0.59           | 0.60                               | 98.4           | Yes      |
| Arsenic                        | Annual‡   | Н    | 2.02E-03  | 1.93E-03  | 1.64E-03       | 1.84E-03           | 1.61E-03  | 2.02E-03       | 2.10E-03                           | 96.2           | Yes      |
| Benzene                        | Annual‡   | Н    | 8.65E-02  | 1.15E-01  | 7.48E-02       | 7.99E-02           | 9.08E-02  | 1.15E-01       | 1.20E-01                           | 95.9           | Yes      |
| Beryllium                      | Annual‡   | Н    | 3.94E-03  | 3.77E-03  | 3.21E-03       | 3.60E-03           | 3.16E-03  | 3.94E-03       | 4.10E-03                           | 96.1           | Yes      |
| Cadmium                        | Annual‡   | Н    | 5.15E-03  | 5.04E-03  | 5.37E-03       | 5.21E-03           | 4.69E-03  | 5.37E-03       | 5.50E-03                           | 97.6           | Yes      |

Table 5-7. Results for AERMOD Dispersion Modeling using Optimized Emission Rates

Note:  $\mu g/m^3 =$  microgram per cubic meter. H = highest.

‡Maximum concentration is the overall maximum ground level impact considered over the four operating scenarios.

**APPENDIX A** 

# AIR PERMIT APPLICATION FORMS



#### FORM A GENERAL FACILITY INFORMATION

| VISED 09/                    | /22/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NCDEQ/Division of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ir Quality - Applicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n for Air Permit to Cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | truct/Operate                                                                                                   |                   |                       |                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TE- APPLICATION WILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | ):                |                       | The second                                                                                                      |
|                              | Local Zoning Consistency Determi<br>modification only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nation (new or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appropria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | te Number of Copies of /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Application                                                                                                     | I 4               | Application Fee (if n | equired)                                                                                                        |
| Ø                            | Responsible Official/Authorized Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | ,                 |                       |                                                                                                                 |
|                              | Responsible Official/Authorized Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (if required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | -                 |                       |                                                                                                                 |
| agal Campa                   | mte/Ourses Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GENERAL INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | -                 |                       |                                                                                                                 |
| ite Name:                    | rate/Owner Name: Duke En<br>H.F. Lee Steam Electric Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ergy Progress, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
|                              | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ale Lande Churrele Dans d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| Site Address                 | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ck Jack Church Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| City:                        | Goldsboro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| ip Code:                     | 27530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State: NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                   |                       |                                                                                                                 |
| p ooue.                      | 27000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTACT INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | County: Wayne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | -                 |                       |                                                                                                                 |
| esponsible                   | Official/Authorized Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTROL IN O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Invoice Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                   | di=/A                 |                                                                                                                 |
| lame/Title:                  | Jeffery D. Hines / General Manage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r II H F. Lee Steam Electric Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Minston / Managor                                                                                             | Dormit            | ting & Compliance     | Caselines                                                                                                       |
|                              | ess Line 1: 1199 Black Jack Church R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mailing Address Line 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 10 S Wilmingt                                                                                                 |                   |                       | caroinas                                                                                                        |
| failing Addre                | 1001 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mailing Address Line 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | un atree          |                       |                                                                                                                 |
| ity: Golds                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zip Code: 27530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | City: Raleigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State                                                                                                           | NC                | Zip Code              | 27604                                                                                                           |
| rimary Phon                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fax No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Phone No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (919)-546-5538                                                                                                  |                   | Fax No.:              | 27601                                                                                                           |
| econdary Pl                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Secondary Phone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (010)-040-0000                                                                                                  |                   | 64 NU.                | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |
|                              | s: jeffery.hines@duke-energy.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annual contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email Address Cynth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a.Winston@duke-er                                                                                               | erav co           | m                     | See See                                                                                                         |
| acility/Insp                 | ection Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permit/Technical Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the second se |                   |                       |                                                                                                                 |
| lame/Title                   | Mike Graham, Sr. EHS Profession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | nental S          | necialist             |                                                                                                                 |
| lailing Addre                | ess Line 1: 1199 Black Jack Church R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Name/Title: Erin Wallace, Sr. Environmental Specialist Mailing Address Line 1: 410 S. Wilmington Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| lailing Addre                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.111 - 1.111 - 1.111 - 1.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mailing Address Line 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                   |                       |                                                                                                                 |
| ity: Golds                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zip Code: 2753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | City: Raleigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State                                                                                                           | NC                | Zip Code:             | 27601                                                                                                           |
| mary Phon                    | ne No.: 919-722-6551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fax No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Phone No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 919-546-5797                                                                                                    | T                 | Fax No.:              | 21001                                                                                                           |
| ondary Pl                    | hone No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Secondary Phone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                   |                       |                                                                                                                 |
| mail Addres                  | ss: mike.graham2@duke-energy.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email Address: erin.w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | allace@duke-energy                                                                                              | .com              |                       |                                                                                                                 |
| T                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LICATION IS BEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| New I                        | Non-permitted Facility/Greenfield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modification of Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y (permitted)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Renewal Title \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | enewal            | Non-Title V           |                                                                                                                 |
| Name                         | e Change 🔲 Ownership Chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TATA AND ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Statement and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Renewal with N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                   |                       |                                                                                                                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FACILITY CLASSIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k Only One)                                                                                                     | The second second |                       |                                                                                                                 |
|                              | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second data was not as a s | hibitory Small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Synthetic Mi                                                                                                    | nor               | 🗹 Title               | V                                                                                                               |
| 221/10                       | ure of (plant site) operation(s) H.F. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LITY (Plant Site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   | anti-                 | A MA W                                                                                                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility ID No. 96000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117                                                                                                             |                   |                       |                                                                                                                 |
| rimary SIC/                  | NAICS Code: 4911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Current/Previous Air P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                   | Expiration Date: 0    | 6/30/2020                                                                                                       |
| acility Coord                | dinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Latitude 764252.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Longitude: 3919730.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                   |                       |                                                                                                                 |
| Does this ap<br>confidential | optication contain 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES 🗹 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***If yes,<br>applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | please contact the DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | rior to s         | submitting this       |                                                                                                                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERSON OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R FIRM THAT PRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PARED APPLICAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ION                                                                                                             | 1 221             |                       |                                                                                                                 |
| erson Nam                    | e: Thomas O. Pritcher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Firm Name: Environm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ental Consulting & T                                                                                            | echnolo           | gy, Inc.              |                                                                                                                 |
| ailing Addre                 | ess Line 1: 7208 Falls of Neuse Road,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Suite 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mailing Address Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                   |                       |                                                                                                                 |
| ity: Raleigh                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State: NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zip Code: 27615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   | County: Wake          |                                                                                                                 |
| hone No.:                    | (919) 861-8888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fax No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email Address: tpritch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                   |                       |                                                                                                                 |
| -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIGNATURE OF RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPONSIBLE OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                   |                       |                                                                                                                 |
| Name (typed                  | i) Jeffery D. Hines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Title: General Manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er II, H.F. Lee Steam                                                                                           | 1 Electri         | c Plant               | Media                                                                                                           |
| X Signature(                 | (Blue Ink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date: ///6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                   |                       |                                                                                                                 |
| Ĵ                            | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Attach Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | itional Sheets A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second sec |                                                                                                                 |                   |                       | Page                                                                                                            |

## FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

| REVISED 09/      | /22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate                                                                                                                             | Α |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                  | SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL                                                                                                                                                           |   |
|                  | (Company Name) hereby formally requests renewal of Air Permit No.                                                                                                                                                  |   |
| There have be    | een no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.                                                             | - |
|                  | subject to 40 CFR Part 68 "Prevnetion of Accidental Releases" - Section 112(r) of the Clean Air Act?                                                                                                               |   |
|                  | ou already submitted a Risk Manage Plan (RMP) to EPA?                                                                                                                                                              | - |
|                  | h a current emissions inventory?                                                                                                                                                                                   |   |
|                  | SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL                                                                                                                                                                | _ |
| In accordance    | e with the provisions of Title 15A 2Q .0513, the responsible official of (Company Name)                                                                                                                            |   |
|                  | Ily requests renewal of Air Permit No. (Air Permit No.) and further certifies that:                                                                                                                                |   |
| (1)              | The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the                                                          |   |
|                  | North Carolina Title V regulations at 15A NCAC 2Q .0500;                                                                                                                                                           |   |
| (2)              | The current air quality permit cits all applicable requirements and provides the method or methods for determing compliance with the applicable requirements;                                                      |   |
| (3)              | The facility is currently in compliance, and shall continue to comply, with all applicable requiremetns. (Note: As provided under 15A NCAC 2Q .0512                                                                |   |
|                  | compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);                                                                   |   |
| (4)              | For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis;                                                                          |   |
| (5)              | The facility shall fulfill applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64.                                                                        |   |
| -                | ble official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief<br>reasonable inquiry, are true, accurate, and complete. |   |
|                  |                                                                                                                                                                                                                    |   |
|                  | SECTION AA3- APPLICATION FOR NAME CHANGE                                                                                                                                                                           |   |
| New Facility N   | Name:                                                                                                                                                                                                              |   |
| Former Facilit   | ty Name:                                                                                                                                                                                                           |   |
| An official faci | ility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been                                                              |   |
| modifications    | to the originally premitted facility that would requie an air quality permit since the last permit was issued and if ther has been an ownership change                                                             |   |
| associated wi    | ith this name change.                                                                                                                                                                                              |   |
|                  | SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE                                                                                                                                                                   |   |
| By this applica  | ation we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below.                                                                                              |   |
| The transfer o   | of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the                                                                                       |   |
| facility describ | bed on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally                                                                                           |   |
| permitted faci   | lity that would require an air quality permit since the last permit was issued.                                                                                                                                    |   |
| Signature of N   | New (Buyer) Responsible Official/Authorized Contact (as typed on page 1);                                                                                                                                          |   |
| -                |                                                                                                                                                                                                                    |   |
| X Signature (B   | Blue Ink):                                                                                                                                                                                                         |   |
| Date:            |                                                                                                                                                                                                                    |   |
| New Facility N   | Name:                                                                                                                                                                                                              |   |
| Former Facilit   | tv Name:                                                                                                                                                                                                           |   |
|                  |                                                                                                                                                                                                                    |   |
| Signature of F   | Former (Seller) Responsible Official/Authorized Contact:                                                                                                                                                           |   |
| Name (typed      | or print):                                                                                                                                                                                                         |   |
| Title:           |                                                                                                                                                                                                                    |   |
|                  |                                                                                                                                                                                                                    |   |
| X Signature (E   | Blue Ink):                                                                                                                                                                                                         |   |
| Date:            |                                                                                                                                                                                                                    |   |
| Former Legal     | Corporate/Owner Name:                                                                                                                                                                                              |   |
|                  | In lieu of the seller's signature on this form, a letter may be submitted with the seller's signature indicating the ownership change                                                                              |   |
|                  | SECTION AA5- APPLICATION FOR ADMINISTRATIVE AMENDMENT                                                                                                                                                              |   |
| Describe the I   | requested administrative amendment here (attach additional documents as necessary):                                                                                                                                |   |
|                  |                                                                                                                                                                                                                    |   |
|                  |                                                                                                                                                                                                                    |   |

#### FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

| REVISED 09/22/16 | NCDEQ/Division of Air Quality - Application | on for Air Permit to Co | onstruct/Operate A2          |
|------------------|---------------------------------------------|-------------------------|------------------------------|
|                  | EMISSION SOURCE LISTING: New, Modified      | , Previously Unpe       | rmitted, Replaced, Deleted   |
| EMISSION SOURCE  | EMISSION SOURCE                             | CONTROL DEVICE          | CONTROL DEVICE               |
| ID NO.           | DESCRIPTION                                 | ID NO.                  | DESCRIPTION                  |
| I                | Equipment To Be ADDED By This Application   | (New, Previously        | Unpermitted, or Replacement) |
| S-30A            | Feed Silo Filling                           | CD-30                   | Bin Vent                     |
| ES-30B           | Feed Silo Unloading                         | CD-30                   | Bin Vent                     |
| S-31             | STAR® Reactor                               | CD-31A & CD-31B         | Scrubber and Baghouse        |
| ES-32            | FGD Byproduct Silo                          | CD-32                   | Bin Vent                     |
| ES-33            | FGD Absorbent Silo                          | CD-33                   | Bin Vent                     |
| ES-34            | EHE- External Heat Exchanger 1              | CD-34                   | Baghouse                     |
| S-35             | EHE- External Heat Exchanger 2              | CD-35                   | Baghouse                     |
| S-36A            | Transfer Silo Filling                       | CD-36                   | Bin Vent                     |
| ES-36B           | Transfer Silo Unloading                     | CD-36                   | Bin Vent                     |
| S-37A            | Storage Dome Filling                        | CD-37                   | Bin Vent                     |
| S-37B            | Storage Dome Unloading                      | CD-37                   | Bin Vent                     |
| S-38             | Loadout Silo                                | CD-38                   | Bin Vent                     |
| S-38A            | Loadout Silo Chute 1A                       | CD-38A                  | Bin Vent                     |
| S-38B            | Loadout Silo Chute 1B                       | CD-38B                  | Bin Vent                     |
| S-39A            | Screener                                    | N/A                     | N/A                          |
| S-39B            | Screener-Diesel Engine                      | N/A                     | N/A                          |
| S-40A            | Crusher                                     | N/A                     | N/A                          |
| ES-40B           | Crusher-Diesel Engine                       | N/A                     | N/A                          |
| -1               | Wet Ash Receiving-Transfer to Shed          | N/A                     | N/A                          |
| 2                | Wet Ash Receiving-Transfer to Uneque        | N/A                     | N/A                          |
| -2               | Wet Ash Receiving-Unloading Pile            | N/A                     | N/A                          |
|                  | Ash Basin                                   | N/A                     | N/A                          |
| -4               | Ash Basin<br>Ash Handling                   | N/A                     | N/A                          |
| -5<br>F-6        | Haul Roads                                  | N/A                     | NA                           |
| 1-0              | Existing Permitted Equipment To E           |                         |                              |
| 1                | Existing Permitted Equipment To E           |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  | Equipment To Be DELE                        | IED By This App         | lication                     |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |
|                  |                                             |                         |                              |

| 112(r) APPLICABILITY INFORMATION                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                    |                |                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------------|--|--|--|--|--|
| Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Federal Clean Air Act? 🛛 Yes 🗹 No                                                                                                                                                                                                                                                              |                                                                                                                  |                    |                |                       |  |  |  |  |  |
| If No, please specify in detail how your facility avoided applicabilit                                                                                                                                                                                                                                                                                                                                | Facility does not use, store or handles any of the regutive this rule above their respective threshold quantity. | lated substance    | s listed under |                       |  |  |  |  |  |
| If your facility is Subject to 112(r), please complete the following:                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                    |                |                       |  |  |  |  |  |
| A. Have you already submitted a Risk Management Plan (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150?     Yes No Specify required RMP submittal date: If submitted, RMP submittal date: B. Are you using administrative controls to subject your facility to a lesser 112(r) program standard?     Yes No If yes, please specify: C. List the processes subject to 112(r) at your facility: |                                                                                                                  |                    |                |                       |  |  |  |  |  |
| PROCESS DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                   | PROCESS LEVEL<br>(1, 2, or 3)                                                                                    | HAZARDOUS CHEMICAL | -              | INTENDED<br>DRY (LBS) |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                    |                |                       |  |  |  |  |  |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDEC                                                           | Q/Division of A    | Air Quality - Applic     | ation for A   | ir Permit to  | Construct/     | Operate        |                | В                |
|---------------------------------------------------------------------------------|--------------------|--------------------------|---------------|---------------|----------------|----------------|----------------|------------------|
| EMISSION SOURCE DESCRIPTION: F                                                  | eed Silo Filling   | I                        |               | EMISSION      | SOURCE I       | D NO: ES-3     | 80A            |                  |
|                                                                                 |                    |                          |               | CONTROL       |                | NO(S): CE      | -30            |                  |
| OPERATING SCENARIO1_                                                            | OF                 | 1                        |               |               | POINT (ST      | . ,            |                |                  |
| DESCRIBE IN DETAILTHE EMISSION a<br>Ash feed silo filled pneumatically at the f |                    | •                        |               |               | t capture de   | evice.         |                |                  |
| TYPE OF EMISSION SOUR                                                           | CE (CHECK A        | ND COMPLETE AF           | PROPRIA       | TE FORM B     | 1-B9 ON TH     | E FOLLOV       | VING PAGE      | S):              |
| Coal,wood,oil, gas, other burner (Fo                                            | rm B1)             |                          | (Form B4)     |               | 🗆 Man          | uf. of chemi   | cals/coating   | gs/inks (Form E  |
| Int.combustion engine/generator (Fo                                             | orm B2)            | Coating/finishi          | ng/printing   | (Form B5)     | 🗌 Incin        | eration (For   | m B8)          |                  |
| Liquid storage tanks (Form B3)                                                  |                    | Storage silos/           | oins (Form I  | 36)           | □ Othe         | r (Form B9)    | 1              |                  |
| START CONSTRUCTION DATE: TBD                                                    |                    |                          | DATE MA       | NUFACTUR      | ED: TBD        |                |                |                  |
| MANUFACTURER / MODEL NO.: TBD                                                   |                    |                          | EXPECTE       | D OP. SCH     | EDULE: 24      | HR/DAY 7       | DAY/WK 5       | 2 WK/YR          |
| IS THIS SOURCE SUBJECT 🛛 NS                                                     | SPS (SUBPAR        | TS?):                    |               |               | SHAP (SUB      | PARTS?):_      |                |                  |
| PERCENTAGE ANNUAL THROUGHPU                                                     |                    | ,                        | R-MAY 25      |               | JN-AUG         | 25             | SEP-NO\        | / 25             |
|                                                                                 |                    | ANT EMISSION             | IS INFOF      | RMATION       | FOR TH         | SOUR           | CE             |                  |
|                                                                                 |                    | SOURCE OF                | EXPECTE       | D ACTUAL      |                | POTENTIA       |                | DNS              |
|                                                                                 |                    | EMISSION                 | AFTER CON     | ROLS / LIMITS | SEFORE CONT    | ROLS / LIMITS  | (AFTER CO      | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                           |                    | FACTOR                   | lb/hr         | tons/yr       | lb/hr          | tons/yr        | lb/hr          | tons/yr          |
| PARTICULATE MATTER (PM)                                                         |                    |                          |               |               |                |                |                |                  |
| PARTICULATE MATTER<10 MICRONS (                                                 | PM <sub>10</sub> ) |                          |               | 1             |                |                |                |                  |
| PARTICULATE MATTER<2.5 MICRONS                                                  | 10,                |                          |               |               |                |                |                |                  |
| SULFUR DIOXIDE (SO2)                                                            | (* 2.0)            |                          |               |               |                |                |                |                  |
| NITROGEN OXIDES (NOX)                                                           |                    |                          | SEE           |               | B. Table 5     |                |                |                  |
| CARBON MONOXIDE (CO)                                                            |                    |                          | -             | 1             | _,             |                |                |                  |
| VOLATILE ORGANIC COMPOUNDS (V                                                   | 00)                |                          |               |               |                |                |                |                  |
| LEAD                                                                            | 00,                |                          |               |               |                |                |                |                  |
| OTHER                                                                           |                    |                          | 1             |               |                |                |                |                  |
| HAZARDOUS                                                                       | AIR POLLU          | TANT EMISSIO             | ONS INFO      | ORMATIO       | N FOR T        | HIS SOU        | RCE            |                  |
|                                                                                 | <u>т. с</u> Т      | SOURCE OF                | 1             | ED ACTUAL     |                | POTENTIA       |                | MIC              |
|                                                                                 |                    | EMISSION                 |               | ROLS / LIMITS |                |                |                | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                         | CAS NO.            | FACTOR                   | Ib/hr         | tons/yr       | lb/hr          | tons/yr        | lb/hr          | tons/yr          |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          | SEE           | APPENDIX      | B, Table 5     |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 | T                  |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
| TOXIC AIR                                                                       | POLLUTAN           | NT EMISSIONS             | INFORM        | IATION F      | OR THIS        | SOURC          | Ξ              |                  |
|                                                                                 |                    | SOURCE OF                | EXPECTE       | D ACTUAL      | EMISSION       | S AFTER C      | ONTROLS        | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                             | CAS NO.            | EMISSION<br>FACTOR       | lt            | o/hr          | lb/e           | day            |                | lb/yr            |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          | SEE A         | PPENDIX B,    | Table 5        |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
|                                                                                 | 1                  |                          |               |               |                |                |                |                  |
|                                                                                 |                    |                          |               |               |                |                |                |                  |
| Attachments: (1) emissions calculations and s                                   | supporting docum   | entation: (2) indicate : | all requested | state and fed | eral enforceal | ole permit lim | its (e.a. hour | s of operation   |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

 MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

## EMISSION SOURCE (STORAGE SILO/BINS)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate |                                                                             |                         |            |                                |                     |                     | B6 |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|------------|--------------------------------|---------------------|---------------------|----|--|
| EMISSION SOURCE DESCRIPT                                                                         | MISSION SOURCE DESCRIPTION: Feed Silo Filling EMISSION SOURCE ID NO: ES-30A |                         |            |                                |                     |                     |    |  |
|                                                                                                  |                                                                             |                         |            | CONTROL DEVICE ID NO(S): CD-30 |                     |                     |    |  |
| OPERATING SCENARIO:                                                                              | 1                                                                           | OF1                     |            | EMISSION PC                    | DINT(STACK) ID N    | O(S): EP-30         |    |  |
| DESCRIBE IN DETAIL THE PRC<br>Ash feed silo filled pneumatically                                 |                                                                             |                         | vith bin v | vent product capture de        | evice.              |                     |    |  |
| MATERIAL STORED: Fly Ash                                                                         |                                                                             |                         |            | DENSITY OF MATER               | RIAL (LB/FT3): 60 t | oulk, 90 structural |    |  |
| CAPACITY                                                                                         | CUBIC FEET: 76,000                                                          | )                       |            | TONS:                          |                     |                     |    |  |
| DIMENSIONS (FEET)                                                                                | HEIGHT: 97                                                                  | DIAMETER: 41            | (OR)       | LENGTH:                        | WIDTH:              | HEIGHT:             |    |  |
| ANNUAL PRODUCT THRO                                                                              | UGHPUT (TONS)                                                               | ACTUAL: 400,000         |            | MAXIMUM DE                     | SIGN CAPACITY       | 400,000             |    |  |
| PNEUMATICALLY FIL                                                                                | LED                                                                         | MECHANIC                | ALLY FI    | LLED                           |                     | FILLED FROM         |    |  |
| BLOWER                                                                                           |                                                                             | SCREW CONVEYOR          |            |                                |                     | R                   |    |  |
|                                                                                                  |                                                                             | BELT CONVEYOR           |            |                                |                     |                     |    |  |
| OTHER:                                                                                           |                                                                             | BUCKET ELEVATOR         |            |                                | _                   | GE PILE             |    |  |
|                                                                                                  |                                                                             | OTHER:                  |            |                                | □ OTHER             | :                   |    |  |
| NO. FILL TUBES: 3                                                                                |                                                                             |                         |            |                                |                     |                     |    |  |
| MAXIMUM ACFM: 6600                                                                               |                                                                             |                         |            |                                |                     |                     |    |  |
| MATERIAL IS UNLOADED TO:                                                                         |                                                                             |                         |            |                                |                     |                     |    |  |
| N/A<br>BY WHAT METHOD IS MATERI                                                                  |                                                                             |                         |            |                                |                     |                     |    |  |
| N/A                                                                                              |                                                                             |                         |            |                                |                     |                     |    |  |
| MAXIMUM DESIGN FILLING RA                                                                        | TE OF MATERIAL (T                                                           | ONS/HR): 125            |            |                                |                     |                     |    |  |
| MAXIMUM DESIGN UNLOADING                                                                         | G RATE OF MATERIA                                                           | AL (TONS/HR): N/A       |            |                                |                     |                     |    |  |
| COMMENTS:<br>This form is for Feed Silo Filling.                                                 | Unloading data is prov                                                      | vided in Form B6 for ES | -30B.      |                                |                     |                     |    |  |
|                                                                                                  |                                                                             |                         |            |                                |                     |                     |    |  |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDI                                                       | EQ/Division of A       | Air Quality - Applic  | ation for Ai  | r Permit to   | Construct/ | Operate        |             | В                |
|----------------------------------------------------------------------------|------------------------|-----------------------|---------------|---------------|------------|----------------|-------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                               | Feed Silo Unloa        | ding                  |               | EMISSION      | SOURCE     | ID NO: ES-3    | 30B         |                  |
|                                                                            |                        |                       |               |               |            | D NO(S): CE    |             |                  |
| OPERATING SCENARIO1                                                        | OF                     | 1                     |               |               |            | TACK) ID NO    |             | )                |
| DESCRIBE IN DETAILTHE EMISSION<br>Ash feed silo unloaded at the rate of 75 |                        | •                     |               |               | X          | ,              |             |                  |
| TYPE OF EMISSION SOU                                                       | RCE (CHECK A           | ND COMPLETE AF        | PROPRIAT      | E FORM B      | 1-B9 ON TI | HE FOLLOW      | ING PAGE    | S):              |
| Coal,wood,oil, gas, other burner (F                                        | orm B1)                | Woodworking (         | Form B4)      |               | 🗆 Mar      | nuf. of chemi  | cals/coatin | gs/inks (Form E  |
| Int.combustion engine/generator (F                                         | orm B2)                | Coating/finishir      | ng/printing ( | Form B5)      | 🗌 Incii    | neration (Fo   | m B8)       |                  |
| Liquid storage tanks (Form B3)                                             |                        | Storage silos/b       | ins (Form B   | 6)            | □ Oth      | er (Form B9)   |             |                  |
| START CONSTRUCTION DATE: TBD                                               |                        |                       | DATE MA       | NUFACTUR      | ED: TBD    |                |             |                  |
| MANUFACTURER / MODEL NO.: TBD                                              |                        |                       | EXPECTE       | D OP. SCH     | EDULE: 24  | HR/DAY 7       | DAY/WK      | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                     | SPS (SUBPAR            | ΓS?):                 |               |               | SHAP (SUE  | BPARTS?):_     |             |                  |
| PERCENTAGE ANNUAL THROUGHP                                                 | UT (%): DEC-FI         | EB 25 MAR             | -MAY 25       | JU            | N-AUG      | 25             | SEP-NOV     | 25               |
| CRITERIA A                                                                 | IR POLLUT/             | ANT EMISSION          | IS INFOR      | MATION        | FOR TH     | IS SOUR        | CE          |                  |
|                                                                            |                        | SOURCE OF             | EXPECTE       | D ACTUAL      |            | POTENTIA       | L EMISSIC   | DNS              |
|                                                                            |                        | EMISSION              | AFTER CONT    | ROLS / LIMITS | BEFORE CON | TROLS / LIMITS | (AFTER CO   | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                      |                        | FACTOR                | lb/hr         | tons/yr       | lb/hr      | tons/yr        | lb/hr       | tons/yr          |
| PARTICULATE MATTER (PM)                                                    |                        |                       |               |               |            |                |             |                  |
| PARTICULATE MATTER<10 MICRONS                                              | (PM <sub>10</sub> )    |                       |               |               |            |                |             |                  |
| PARTICULATE MATTER<2.5 MICRONS                                             | 6 (PM <sub>2.5</sub> ) |                       |               |               |            |                |             |                  |
| SULFUR DIOXIDE (SO2)                                                       |                        |                       |               |               |            |                |             |                  |
| NITROGEN OXIDES (NOx)                                                      |                        |                       | SEE           | APPENDIX      | B, Table 5 | 5              |             |                  |
| CARBON MONOXIDE (CO)                                                       |                        |                       |               |               |            |                |             |                  |
| VOLATILE ORGANIC COMPOUNDS (                                               | VOC)                   |                       |               |               |            |                |             |                  |
| LEAD                                                                       |                        |                       |               |               |            |                |             |                  |
| OTHER                                                                      |                        |                       |               |               |            |                |             |                  |
| HAZARDOUS                                                                  | AIR POLLU              | TANT EMISSIC          | ONS INFO      | RMATIO        | N FOR T    | HIS SOU        | RCE         |                  |
|                                                                            |                        | SOURCE OF             | EXPECTE       | D ACTUAL      |            | POTENTIA       | L EMISSIC   | DNS              |
|                                                                            |                        | EMISSION              | AFTER CONT    | ROLS / LIMITS | BEFORE CON | TROLS / LIMITS | (AFTER CO   | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                    | CAS NO.                | FACTOR                | lb/hr         | tons/yr       | lb/hr      | tons/yr        | lb/hr       | tons/yr          |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       | SEE           | APPENDIX      | B, Table 5 | 5              |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
| TOXIC AIR                                                                  | R POLLUTAI             | NT EMISSIONS          | INFORM        | ATION F       | OR THIS    | SOURCE         |             |                  |
|                                                                            |                        | SOURCE OF<br>EMISSION | EXPECTE       | D ACTUAL      | EMISSION   | S AFTER C      | ONTROLS     | / LIMITATIONS    |
| TOXIC AIR POLLUTANT                                                        | CAS NO.                | FACTOR                | lt            | o/hr          | lb         | /day           |             | lb/yr            |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            | Table 5        |             |                  |
|                                                                            | +                      | L                     | +             | SEE AF        | PPENDIX B  | , i able 5     | ļ           |                  |
|                                                                            | _                      | L                     |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |
|                                                                            |                        |                       |               |               |            |                |             |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

 MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUL

 Attach Additional Sheets As Necessary

## EMISSION SOURCE (STORAGE SILO/BINS)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate |                            |                         |           |                                |                |          | B6            |                  |  |
|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------|-----------|--------------------------------|----------------|----------|---------------|------------------|--|
| EMISSION SOURCE DESCRIPTION: Feed Silo Unloading                                                 |                            |                         |           |                                | EMISSION SOL   | JRCE II  | D NO: ES-30   | )B               |  |
|                                                                                                  |                            |                         |           | CONTROL DEVICE ID NO(S): CD-30 |                |          |               | 30               |  |
| OPERATING SCENARIO:                                                                              | 1                          | OF1                     |           |                                | EMISSION POI   | NT(STA   | ACK) ID NO(   | S): EP-30        |  |
| DESCRIBE IN DETAIL THE PRC<br>Ash feed silo unloaded at the rate                                 |                            |                         | duct capt | ture dev                       | ice.           |          |               |                  |  |
| MATERIAL STORED: Fly Ash                                                                         |                            |                         |           | DENS                           | ITY OF MATERIA | AL (LB/I | FT3): 60 bull | k. 90 structural |  |
|                                                                                                  | CUBIC FEET: 76,000         | )                       |           | TONS                           |                | (,       | 10). 00 20    |                  |  |
|                                                                                                  | HEIGHT: 97                 | DIAMETER: 41            | (OR)      | LENG                           | TH:            | WIDTH    | l: F          | HEIGHT:          |  |
| ANNUAL PRODUCT THRO                                                                              |                            | ACTUAL: 400,000         |           |                                | MAXIMUM DES    |          |               | 00,000           |  |
| PNEUMATICALLY FIL                                                                                | LED                        | MECHANIC                | ALLY FI   | ILLED                          |                |          |               | FILLED FROM      |  |
| BLOWER                                                                                           |                            | SCREW CONVEYOR          | 2         |                                |                |          | RAILCAR       |                  |  |
|                                                                                                  |                            | BELT CONVEYOR           |           |                                |                |          | TRUCK         |                  |  |
| OTHER:                                                                                           |                            | BUCKET ELEVATOR         |           |                                |                |          | STORAGE       | PILE             |  |
|                                                                                                  |                            | OTHER:                  |           |                                |                |          | OTHER:        |                  |  |
| NO. FILL TUBES: N/A                                                                              |                            |                         |           |                                |                |          |               |                  |  |
| MAXIMUM ACFM: 6600                                                                               |                            |                         |           |                                |                |          |               |                  |  |
| MATERIAL IS UNLOADED TO:                                                                         |                            |                         |           |                                |                |          |               |                  |  |
| STAR® Reactor                                                                                    |                            |                         |           |                                |                |          |               |                  |  |
| BY WHAT METHOD IS MATERI<br>N/A<br>MAXIMUM DESIGN FILLING RA                                     |                            |                         |           |                                |                |          |               |                  |  |
| MAXIMUM DESIGN UNLOADING                                                                         |                            |                         |           |                                |                |          |               |                  |  |
| COMMENTS:<br>This form is for Feed Silo Unload                                                   | ling. Filling data is prov | /ided in Form B6 for ES | 3-30A.    |                                |                |          |               |                  |  |
|                                                                                                  |                            |                         |           |                                |                |          |               |                  |  |

#### FORM C1 CONTROL DEVICE (FABRIC FILTER)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C |                                                                         |                  |         |                      |                  |                     |         | C1                     |            |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|---------|----------------------|------------------|---------------------|---------|------------------------|------------|
| CONTROL DEVICE ID NO: CD-30                                                                        | CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-30A & ES-30B |                  |         |                      |                  |                     |         |                        |            |
| EMISSION POINT (STACK) ID NO(S): EP-30                                                             | POSITION IN SERIES OF CONTROLS NO. 1 OF 1 UNITS                         |                  |         |                      |                  |                     |         | UNITS                  |            |
| OPERATING SCENARIO:                                                                                |                                                                         |                  |         |                      |                  |                     |         |                        |            |
| 1OF1                                                                                               |                                                                         | P.E. SEAL REQUIR | ED (PE  | ER 2q .0112)?        |                  | 7                   | YES     |                        | NO         |
| DESCRIBE CONTROL SYSTEM: A bin vent for particulate o                                              | ontrol on the feed silo.                                                |                  |         |                      |                  |                     |         |                        |            |
| POLLUTANTS COLLECTED:                                                                              |                                                                         | PM (Filling)     |         | PM10/PM2.5 (Filling) |                  | PM (Unloading)      |         | PM10/PM2.5 (Unloading) |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                                                              |                                                                         | 0.0061           |         | 0.00288              |                  | 0.00365             |         | 0.00173                |            |
| CAPTURE EFFICIENCY:                                                                                |                                                                         | <= 0.005 gr/dscf | %       | <= 0.005 gr/dscf     | %                | <= 0.005 gr/dscf    | %       | <= 0.005 gr/dscf       | %          |
| CONTROL DEVICE EFFICIENCY:                                                                         |                                                                         | N/A              | %       | N/A                  | %                | N/A                 | %       | N/A g                  | %          |
| CORRESPONDING OVERALL EFFICIENCY:                                                                  |                                                                         | N/A              | %       | N/A                  | %                | N/A                 | %       | N/A <sup>d</sup>       | %          |
| EFFICIENCY DETERMINATION CODE:                                                                     |                                                                         | 2                |         | 2                    |                  | 2                   |         | 2                      |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                                                         |                                                                         | 0.0061           |         | 0.00288              |                  | 0.00365             |         | 0.00173                |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-15 wg                                       | GAUGE?                                                                  | YES              |         | ] NO                 |                  |                     |         |                        |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25                                                    |                                                                         | INLET TEMPERATU  | JRE (°F | F): Contract         | MIN              |                     | MAX     |                        |            |
| POLLUTANT LOADING RATE: N/A 🛛 LB/HR 🛛                                                              | ] GR/FT <sup>3</sup>                                                    | OUTLET TEMPERA   | TURE    | (°F) Contract        | MIN              |                     | MAX     |                        |            |
| INLET AIR FLOW RATE (ACFM): 1300                                                                   |                                                                         | FILTER OPERATIN  | G TEM   | P (°F): Contract     |                  |                     |         |                        |            |
|                                                                                                    | PER COMPARTMENT:                                                        |                  |         |                      | LENG             | TH OF BAG (IN.):    | 20-30   |                        |            |
|                                                                                                    | CE AREA PER CARTH                                                       |                  | 4       |                      |                  | TER OF BAG (IN.)    |         |                        |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract                                             | AIR TO CLOTH RAT                                                        | . ,              |         |                      |                  |                     | . 0 10  |                        |            |
| DRAFT TYPE: INDUCED/NEGATIVE                                                                       | FORCED/POSITIVE                                                         |                  |         |                      | م مناسبة ما مر م | Chula II            | WOVE    | N 🗆 I                  | FELTED     |
|                                                                                                    | FORCED/POSITIVE                                                         |                  |         | FILTER MATERIAL: Ca  | annoge           |                     |         |                        | FELIED     |
| DESCRIBE CLEANING PROCEDURES:                                                                      |                                                                         |                  |         | F                    |                  |                     | PARTIC  | LE SIZE DISTRIBUTION   |            |
| AIR PULSE                                                                                          | SONIC                                                                   |                  |         |                      |                  | SIZE                |         | WEIGHT %               | CUMULATIVE |
| REVERSE FLOW                                                                                       | SIMPLE BAG COLLA                                                        | APSE             |         |                      |                  | (MICRONS)           |         | OF TOTAL               | %          |
| □ MECHANICAL/SHAKER □                                                                              | RING BAG COLLAPS                                                        | SE               |         |                      |                  | 0-1                 |         |                        |            |
| OTHER:                                                                                             |                                                                         |                  |         | •                    |                  | 1-10                |         |                        |            |
| DESCRIBE INCOMING AIR STREAM: Air stream will contain                                              | fly ash.                                                                |                  |         |                      |                  | 10-25               |         |                        |            |
|                                                                                                    |                                                                         |                  |         | -                    |                  | 25-50               |         |                        |            |
|                                                                                                    |                                                                         |                  |         | •                    |                  | 50-100              |         |                        |            |
|                                                                                                    |                                                                         |                  |         | •                    |                  | >100                |         |                        |            |
|                                                                                                    |                                                                         |                  |         | •                    |                  |                     | 1       | TOTAL = 100            |            |
|                                                                                                    |                                                                         |                  |         | r                    | Suppli           | er specific, 94% pa | ssina 3 |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING                                                       | THE RELATIONSHIP                                                        | OF THE CONTROL D | DEVICE  | TO ITS EMISSION SO   | URCE(            | (S):                |         |                        |            |
| COMMENTS:                                                                                          |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |
|                                                                                                    |                                                                         |                  |         |                      |                  |                     |         |                        |            |

Attach Additional Sheets As Necessary

### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

|                                                                                                         | EQ/Division of A      | ,                    | bilication fo  | r Air Permit                  | to Constru    | ict/Operate      |                 | В               |
|---------------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------|-------------------------------|---------------|------------------|-----------------|-----------------|
| EMISSION SOURCE DESCRIPTION:                                                                            | STAR® Reactor         | •                    |                | EMISSION                      | SOURCE I      | D NO: ES-31      |                 |                 |
|                                                                                                         |                       |                      |                | CONTROL                       | DEVICE ID     | NO(S): CD-3      | 1               |                 |
| OPERATING SCENARIO                                                                                      | 1 OF                  | 1                    |                | EMISSION                      | POINT (ST     | ACK) ID NO(      | S): EP-31       |                 |
| DESCRIBE IN DETAILTHE EMISSIO<br>The STAR® Reactor will process feed<br>variety of commercial products. |                       | •                    |                | ,                             | ng with othe  | er ingredient m  | aterials into   | a               |
| TYPE OF EMISSION SOU                                                                                    | RCE (CHECK A          | ND COMPLETE          | APPROPR        |                               | B1-B9 ON      | THE FOLLO        | WING PAG        | ES):            |
| Coal,wood,oil, gas, other burner (I                                                                     | Form B1)              | U Woodwork           | ing (Form E    | 4)                            | 🗆 Man         | uf. of chemica   | als/coatings/   | 'inks (Form B   |
| Int.combustion engine/generator (                                                                       | Form B2)              | Coating/fin          | ishing/printi  | ng (Form B5                   | i 🗌 Incir     | neration (Form   | B8)             |                 |
| Liquid storage tanks (Form B3)                                                                          |                       | Storage sil          | os/bins (Fo    | rm B6)                        | 🕝 Othe        | er (Form B9)     |                 |                 |
| START CONSTRUCTION DATE: TBD                                                                            | )                     |                      | DATE MAI       | NUFACTURE                     | ED: TBD       |                  |                 |                 |
| MANUFACTURER / MODEL NO.: TBI                                                                           | D                     |                      | EXPECTE        | D OP. SCHE                    | DULE: 24      | HR/DAY 7 DA      | AY/WK 52 \      | NK/YR           |
| IS THIS SOURCE SUBJECT                                                                                  | NSPS (SUBPAR          | TS?):                |                |                               | SHAP (SUB     | PARTS?):         |                 |                 |
| PERCENTAGE ANNUAL THROUGH                                                                               |                       | •                    | MAR-MAY        | 25                            | JUN-AUG       |                  | SEP-NO          | OV 25           |
|                                                                                                         |                       |                      |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | SOURCE OF            | EXPECTE        | D ACTUAL                      |               | POTENTIA         | L EMISSIO       | NS              |
|                                                                                                         |                       | EMISSION             |                |                               | BEFORE CO     | NTROLS / LIMITS) | (AFTER CON      | NTROLS / LIMITS |
| AIR POLLUTANT EMITTED                                                                                   |                       | FACTOR               | lb/hr          | tons/yr                       | lb/hr         | tons/yr          | lb/hr           | tons/yr         |
| PARTICULATE MATTER (PM)                                                                                 |                       |                      |                | tonio, yi                     |               | tonio, ji        |                 | to no, y        |
| PARTICULATE MATTER<10 MICRONS                                                                           | S (PM <sub>40</sub> ) | 1                    |                |                               |               |                  |                 |                 |
| PARTICULATE MATTER<2.5 MICRON                                                                           | 10,                   | 1                    |                |                               |               |                  |                 |                 |
| SULFUR DIOXIDE (SO2)                                                                                    | G (1 112.5)           | 1                    |                |                               |               |                  |                 |                 |
| NITROGEN OXIDES (NOx)                                                                                   |                       |                      |                | SEE APPENDIX B, Table 3A & 3B |               |                  |                 |                 |
| CARBON MONOXIDE (CO)                                                                                    |                       |                      |                | JEE AFFE                      |               |                  |                 |                 |
| ( ),                                                                                                    | ()(00)                | -                    |                |                               |               |                  |                 |                 |
| VOLATILE ORGANIC COMPOUNDS                                                                              | (VUC)                 | -                    |                |                               |               |                  |                 |                 |
| LEAD                                                                                                    |                       |                      |                |                               |               |                  |                 |                 |
| OTHER<br>HAZARDOUS                                                                                      |                       |                      |                |                               |               |                  |                 |                 |
| TIAZARD005                                                                                              |                       | 1                    | 1              |                               |               |                  |                 |                 |
|                                                                                                         |                       | SOURCE OF            |                | D ACTUAL                      |               | POTENTIA         |                 | -               |
|                                                                                                         |                       | EMISSION             |                | 1                             |               | NTROLS / LIMITS) |                 | ITROLS / LIMITS |
| HAZARDOUS AIR POLLUTANT                                                                                 | CAS NO.               | FACTOR               | lb/hr          | tons/yr                       | lb/hr         | tons/yr          | lb/hr           | tons/yr         |
|                                                                                                         |                       | 4                    |                |                               |               |                  |                 |                 |
|                                                                                                         | _                     | 4                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | 4                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | 4                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | 4                    |                | SEE APPE                      | ENDIX B, T    | able 3A & 3B     |                 |                 |
|                                                                                                         |                       | 4                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | -                    | L              | <u> </u>                      |               |                  |                 |                 |
|                                                                                                         |                       |                      |                |                               |               |                  |                 |                 |
| TOXIC All                                                                                               | R POLLUTAN            | II EMISSIOI          | VS INFOI       | RMATION                       | FOR TH        | IS SOURC         | E               |                 |
|                                                                                                         |                       | SOURCE OF            | EXPECT         | ED ACTUAL                     | EMISSION      | IS AFTER CO      | NTROLS / I      | LIMITATIONS     |
|                                                                                                         |                       | EMISSION             |                | //                            |               | /dev/            |                 | lle /ur         |
| TOXIC AIR POLLUTANT                                                                                     | CAS NO.               | FACTOR               | 10             | o/hr                          | IL.           | o/day            |                 | lb/yr           |
|                                                                                                         |                       | 1                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | 4                    |                | 000 4000                      |               |                  |                 |                 |
|                                                                                                         |                       | 4                    |                | SEE APPE                      |               | able 3A & 3B     |                 |                 |
|                                                                                                         |                       | 1                    |                |                               |               |                  |                 |                 |
|                                                                                                         |                       | 1                    |                |                               |               |                  |                 |                 |
| Attachments: (1) emissions calculations and                                                             | d supporting docum    | entation: (2) indica | ate all reques | ted state and f               | ederal enforc | eable permit lim | uits (e.a. hour | s of operation  |

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU Attach Additional Sheets As Necessary

# FORM B9 EMISSION SOURCE (OTHER)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate                                                                                                                                                                                                           |                                |                                    |                                               |                          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-----------------------------------------------|--------------------------|--|--|--|
| EMISSION SOURCE DESCRIPTION: STAR® Reactor                                                                                                                                                                                                                                                                 |                                | EMISSION SOURCE ID NO: ES-3        |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            | CONTROL DEVICE ID NO(S): CD-31 |                                    |                                               |                          |  |  |  |
| OPERATING SCENARIO:1 OF1                                                                                                                                                                                                                                                                                   |                                | EMISSION POINT (STACK) ID NO       | O(S): EP-31                                   |                          |  |  |  |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): The STAR®<br>ingredient materials into a variety of commercial products. The fly ash is not a fuel<br>to maintain temperature in the reactor should the fly ash not contain enough carbor<br>British thermal units per hour and are low-NOx burners. | and does not u                 | ndergo combustion. The natural gas | /propane burners are                          | only used for startup or |  |  |  |
| MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS                                                                                                                                                                                                                                                            |                                | MAX. DESIGN                        | REQUEST                                       | ED CAPACITY              |  |  |  |
| ТҮРЕ                                                                                                                                                                                                                                                                                                       | UNITS                          | CAPACITY (UNIT/HR)                 | LIMITATIO                                     | N(UNIT/HR)               |  |  |  |
| Reactor- Feed Ash                                                                                                                                                                                                                                                                                          | MMBtu                          | 140                                |                                               | 140                      |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
| MATERIALS ENTERING PROCESS - BATCH OPERATION                                                                                                                                                                                                                                                               |                                | MAX. DESIGN                        | PEQUEST                                       |                          |  |  |  |
| TYPE                                                                                                                                                                                                                                                                                                       | UNITS                          | CAPACITY (UNIT/BATCH)              | REQUESTED CAPACITY<br>LIMITATION (UNIT/BATCH) |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            | UNITO .                        |                                    | Liwit/(Hold                                   |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                            |                                |                                    |                                               |                          |  |  |  |
| MAXIMUM DESIGN (BATCHES / HOUR):                                                                                                                                                                                                                                                                           |                                |                                    |                                               |                          |  |  |  |
| REQUESTED LIMITATION (BATCHES / HOUR):                                                                                                                                                                                                                                                                     | (BATCHES/Y                     | ′R):                               |                                               |                          |  |  |  |
| FUEL USED: Natural Gas/Propane                                                                                                                                                                                                                                                                             | TOTAL MAXI                     | MUM FIRING RATE (MILLION BTU       | J/HR): 140                                    |                          |  |  |  |
| MAX. CAPACITY HOURLY FUEL USE: NG-58,824 scf/hr & Propane- 663 gal/hr                                                                                                                                                                                                                                      | REQUESTED                      | CAPACITY ANNUAL FUEL USE:          | NG-58,824 scf/hr & Pr                         | opane- 663 gal/hr        |  |  |  |
| COMMENTS:                                                                                                                                                                                                                                                                                                  |                                |                                    |                                               |                          |  |  |  |
# FORM C9 CONTROL DEVICE (OTHER)

| REVISED 09/22/16                      | NCDEQ/Divisio                      | n of Air Quality - App | olication fo  | Air Permit to C      | Construct/Operat              | te                | C9        |
|---------------------------------------|------------------------------------|------------------------|---------------|----------------------|-------------------------------|-------------------|-----------|
| CONTROL DEVICE ID NO: CD-31A          |                                    | CONTROLS               | S EMISSION    | IS FROM WHIC         | H EMISSION SO                 | URCE ID NO(S): ES | S-31      |
| EMISSION POINT (STACK) ID NO(S        | S): EP-31                          | POSITION               | N SERIES      | OF CONTROLS          | NO. 1                         | OF 2 UNIT         | S         |
| OPERAT                                | ING SCENARIO:                      |                        |               |                      |                               |                   |           |
| 1                                     | OF1                                |                        | P.E. SE/      | AL REQUIRED (        | PER 2Q .0112)?                | ✓ YES             | □ NO      |
| DESCRIBE CONTROL SYSTEM: D            | ry scrubber for SO <sub>2</sub> re | moval.                 |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| POLLUTANT(S) COLLECTED:               |                                    | S                      | 02            |                      |                               |                   |           |
| BEFORE CONTROL EMISSION RAT           | TE (LB/HR):                        | 482.                   |               |                      |                               |                   |           |
| CAPTURE EFFICIENCY:                   |                                    |                        | /A %          | %                    |                               | %                 | %         |
| CONTROL DEVICE EFFICIENCY:            |                                    |                        | 95 %          | %                    |                               | %                 | %         |
| CORRESPONDING OVERALL EFFI            | CIENCY:                            | N                      | /A %          | %                    | ,<br>0                        | %                 | %         |
| EFFICIENCY DETERMINATION CO           | DE:                                |                        | 2             |                      |                               |                   |           |
| TOTAL AFTER CONTROL EMISSIO           | N RATE (LB/HR):                    | 24.                    | 14            |                      |                               |                   |           |
| PRESSURE DROP (IN. H <sub>2</sub> 0): | _10 MIN                            | _15 MAX                | BULK P        | ARTICLE DENS         | ITY (LB/FT <sup>3</sup> ) Use | gypsum as surroga | ite.      |
| INLET TEMPERATURE (°F):               | _335 MIN                           | _400 MAX               | OUTLET        | TEMPERATUR           | :Ε (°F):                      | 150 MIN           | 225 MAX   |
| INLET AIR FLOW RATE (ACFM): 65        | 000 operating/77500                | maximum                | OUTLET        | AIR FLOW RA          | TE (ACFM): 77,50              | 00                |           |
| INLET AIR FLOW VELOCITY (FT/SE        | EC):                               |                        | OUTLET        | AIR FLOW VEI         | OCITY (FT/SEC)                | ):                |           |
| INLET MOISTURE CONTENT (%): 1         | 5-25% by volume                    |                        | 🗌 F(          | ORCED AIR            | INDUCED A                     | IR                |           |
| COLLECTION SURFACE AREA (FT           | <sup>2</sup> ): N/A                |                        | FUEL U        | SED: N/A             |                               | FUEL USAGE        | RATE: N/A |
| DESCRIBE MAINTENANCE PROCE            | DURES: Maintenand                  | e to be performed as   | per manufa    | cturing guideline    | es.                           |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| DESCRIBE ANY AUXILIARY MATER          | RIALS INTRODUCED                   | INTO THE CONTRO        | LSYSTEM       | None                 |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| DESCRIBE ANY MONITORING DEV           | /ICES, GAUGES, TE                  | ST PORTS, ETC: Typ     | ical for this | type of installation | ins.                          |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| ATTACH A DIAGRAM OF THE RELA          | ATIONSHIP OF THE                   | CONTROL DEVICE 1       | O ITS EMIS    | SSION SOURCE         | :(S):                         |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| COMMENTS:                             |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
|                                       |                                    |                        |               |                      |                               |                   |           |
| Attach man                            | ufacturer's specifica              | tions, schematics, a   | ind all othe  | r drawings nec       | essary to descril             | be this control.  |           |

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------|------------|--|--|--|--|
| CONTROL DEVICE ID NO: CD-31B                                                                        | CONTROLS EMISS            | ONS FROM WHICH EMISSION SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | URCE ID NO(S) | : ES-31            |                    |            |  |  |  |  |
| EMISSION POINT (STACK) ID NO(S): EP-31                                                              | POSITION IN SERIE         | S OF CONTROLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | NO.                | 2 OF 2             | UNITS      |  |  |  |  |
| OPERATING SCENARIO:                                                                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
| 1OF1                                                                                                |                           | P.E. SEAL REQUIRED (PER 2q .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112)?         | <b>v</b>           | YES                | □ NO       |  |  |  |  |
| DESCRIBE CONTROL SYSTEM: A baghouse for particula                                                   | te control on the STAR    | reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
| POLLUTANTS COLLECTED:                                                                               |                           | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PM10          | PM2.5              |                    | _          |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
| BEFORE CONTROL EMISSION RATE (LB/HR):                                                               |                           | 16.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.28         | 8.8                |                    | -          |  |  |  |  |
| CAPTURE EFFICIENCY:                                                                                 |                           | 100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100           | % 100              | %                  | %          |  |  |  |  |
|                                                                                                     |                           | OLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-31           DN IN SERIES OF CONTROLS         NO. 2 OF 2 UNITS           P.E. SEAL REQUIRED (PER 2q.0112)?         YES           n the STAR reactor.         No           16.61         15.28           100 %         100 %           209.9 %         >99.9 %           >99.9 %         >99.9 %           2         2           16.61         15.28           16.61         15.28           2         2           2         2           2         2           2         2           16.61         15.28           8.8 |               | -                  |                    |            |  |  |  |  |
| CONTROL DEVICE EFFICIENCY:                                                                          |                           | > 99.9 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 99.9        | % > 99.9           | %                  | %          |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
| CORRESPONDING OVERALL EFFICIENCY:                                                                   |                           | > 99.9 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 99.9        | % > 99.9           | %                  | _%         |  |  |  |  |
| EFFICIENCY DETERMINATION CODE:                                                                      |                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2             | 2                  |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    | -          |  |  |  |  |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                                                          |                           | 16.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.28         | 8.8                |                    | _          |  |  |  |  |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 4-12 inch                                       | GAUGE?                    | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                    |                    |            |  |  |  |  |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25                                                     |                           | INLET TEMPERATURE (°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | MIN 170            | MAX 350            |            |  |  |  |  |
| POLLUTANT LOADING RATE:                                                                             | ✓ GR/FT <sup>3</sup> 437  | OUTLET TEMPERATURE (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | IIN 165 MAX 350    |                    |            |  |  |  |  |
| INLET AIR FLOW RATE (ACFM): 77500                                                                   |                           | FILTER OPERATING TEMP (°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170           |                    |                    |            |  |  |  |  |
| NO. OF COMPARTMENTS: 4 NO. OF BAGS                                                                  | PER COMPARTMENT           | : 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | LENGTH OF BAG (    | IN.): 315          |            |  |  |  |  |
| NO. OF CARTRIDGES: Bags = 676 FILTER SURF                                                           | ACE AREA PER CART         | RIDGE (FT <sup>2</sup> ): Per bag = 39.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | DIAMETER OF BAG    | G (IN.): 6         |            |  |  |  |  |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): 26,790                                                | AIR TO CLOTH RAT          | TO: 2.18 : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |                    |            |  |  |  |  |
| DRAFT TYPE: 🗹 INDUCED/NEGATIVE 🗌                                                                    | FORCED/POSITIVE           | FILTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MATERIAL:     |                    | WOVEN 🗹            | FELTED     |  |  |  |  |
| DESCRIBE CLEANING PROCEDURES:                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | PAR                | TICLE SIZE DISTRIB | UTION      |  |  |  |  |
| ☑ AIR PULSE                                                                                         | SONIC                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | SIZE               | WEIGHT %           | CUMULATIVE |  |  |  |  |
| REVERSE FLOW                                                                                        | SIMPLE BAG COLL           | APSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | (MICRONS)          | OF TOTAL           | %          |  |  |  |  |
| MECHANICAL/SHAKER                                                                                   | RING BAG COLLAP           | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0-1                |                    |            |  |  |  |  |
| OTHER:                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 1-10               |                    |            |  |  |  |  |
|                                                                                                     | crubber effluent flue gas | s, containing gypsum and unreacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lime, passes  | 10-25              |                    |            |  |  |  |  |
| through the baghouse for particulate control.                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 25-50              |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 50-100             |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | >100               |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    | TOTAL              | _ = 100    |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | See attached jpeg. |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
| ON A SEPARATE PAGE. ATTACH A DIAGRAM SHOWIN                                                         | THE RELATIONSHIP          | OF THE CONTROL DEVICE TO ITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EMISSION SO   | URCE(S):           |                    |            |  |  |  |  |
| COMMENTS:                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 211100101100  | 01102(0).          |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |
|                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                    |                    |            |  |  |  |  |





| Size (µm) | Vol Under % | Size (µm) | Vol Under % | Size (um) | Vol Under % | Size (um) | Vol Under % | 5128 (µm) | Vol Under % | Size (µm) | Vol Under %   |
|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|---------------|
| 0.020     | 0.00        | 0.142     | 0.00        | 1.002     | 27.29       | 7.095     | 99.98       | 50.238    | 100.001     | 355.656   | 100.00        |
| 0.022     | 0.00        | 0.159     | 0.00        | 1.125     | 30.92       | 7,952     | 100.00      | 56.368    | 100.00      | 399.052   | 100.00        |
| 0.025     | 0.00        | 0.178     | 0.00        | 1.262     | 34.91       | 8.934     | 100.00      | 63.246    | 100.00      | 447.744   | 100.00        |
| 0.028     | 0.00        | 0.200     | 0.02        | 1.416     | 39.35       | 10.000    | 100.00      | 70.963    | 100.00      | 502.377   | 100.00        |
| 0.032     | 0,00        | 0.224     | 0.33        | 1.589     | 44.27       | 11.247    | 100.00      | 79.621    | 100.00      | 663.877   | 100.00        |
| 0.036     | 0.00        | 0.252     | 0.85        | 1.783     | 49.87       | 12.619    | 100.00      | 69.337    | 100.00      | 632.456   | 100.00        |
| 0,040     | 0.00        | 0.283     | 1.60        | 2.000     | 55.49       | 14,159    | 100.00      | 100.237   | 100.00      | 709.627   | 100.00        |
| 0.045     | 0.00        | 0.317     | 2.63        | 2.244     | 61.62       | 15,887    | 100.00      | 112.465   | 100.00      | 796.214   | 100.00        |
| 0,050     | 0.00        | 0,356     | 3.98        | 2.518     | 67.66       | 17.825    | 100.00      | 128.191   | 100.00      | 893.357   | 100.00        |
| 0,056     | 0.00        | 0,399     | 5.69        | 2.825     | 73.99       | 20,000    | 100,00      | 141,589   | 100.00      | 1002.374  | 100.00        |
| 0.063     | 0.00        | 0.445     | 7.72        | 3.170     | 79.75       | 22.440    | 100,00      | 158.866   | 100.00      | 1124.083  | 100.00        |
| 0.071     | 0.00        | 0.502     | 10.02       | 3.557     | 85.03       | 25 179    | 100.00      | 178,250   | 100.00      | 1281.915  | 100.00        |
| 0.080     | 0.00        | 0.564     | 12.51       | 3.001     | 89.55       | 28,251    | 100.00      | 200.000   | 100.00      | 1415.892  | 100.00        |
| 0.089     | 0,00        | 0.632     | 15.16       | 4,477     | 93,27       | 31.698    | 100.00      | 224,404   | 100.00      | 1585.656  | 100.00        |
| 0,100     | 0.00        | 0,710     | 17.94       | 5.024     | 95,16       | 35.556    | 100,00      | 251,785   | 100 00      | 1782 502  | 100.00        |
| 0.112     | 0.00        | 0.796     | 20.67       | 5.637     | 98,26       | 39.905    | 100.00      | 282.508   | 100.00      | 2000,000  | 100.00        |
| 0,128     | 0,00        | 0.893     | 23.97       | 8 325     | 99.55       | 44.774    | 100.00      | 316,979   | 100.00      | 0.000     | 1.1.1.1.1.1.1 |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                   | Q/Division of A        | ir Quality - Applic | ation for A   | ir Permit to   | o Construc        | t/Operate      |              | В                |
|------------------------------------------------------------------------|------------------------|---------------------|---------------|----------------|-------------------|----------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                           | FGD Byproduc           | t Silo              |               | EMISSION       | <b>SOURCE</b>     | ID NO: ES-     | 32           |                  |
|                                                                        |                        |                     |               | CONTROL        |                   | D NO(S): CE    | D-32         |                  |
| OPERATING SCENARIO                                                     | 1 OF                   | 1                   |               | EMISSION       | I POINT (S        | TACK) ID N     | O(S): EP-3   | 2                |
| DESCRIBE IN DETAILTHE EMISSIO<br>The byproduct solids from the dry FGI |                        |                     |               |                | nto a bypro       | duct storage   | e silo.      |                  |
| TYPE OF EMISSION SOUR                                                  | RCE (CHECK A           | ND COMPLETE A       | PPROPRIA      | TE FORM E      | 31-B9 ON T        | HE FOLLO       | WING PAG     | ES):             |
| Coal,wood,oil, gas, other burner (F                                    | Form B1)               | U Woodworking       | g (Form B4)   |                | 🗆 Man             | uf. of chemi   | cals/coating | gs/inks (Form    |
| □ Int.combustion engine/generator (                                    | Form B2)               | Coating/finish      | ning/printing | (Form B5)      | 🗌 Incir           | eration (For   | rm B8)       |                  |
| Liquid storage tanks (Form B3)                                         |                        | Storage silos       | /bins (Form   | B6)            | □ <sup>Othe</sup> | er (Form B9)   | )            |                  |
| START CONSTRUCTION DATE: TBD                                           | )                      |                     | DATE MA       | NUFACTUR       | ED: TBD           |                |              |                  |
| MANUFACTURER / MODEL NO.: TBI                                          | C                      |                     | EXPECTE       | D OP. SCH      | EDULE: 24         | HR/DAY 7       | DAY/WK       | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                 | NSPS (SUBPAR           | TS?):               |               |                | SHAP (SUE         | PARTS?):_      |              |                  |
| PERCENTAGE ANNUAL THROUGHE                                             |                        |                     |               |                | JUN-AUG           | 25             | SEP-N        | OV 25            |
| CRITERIA A                                                             | IR POLLUTA             | ANT EMISSION        | NS INFOR      | RMATION        | FOR TH            | IS SOUR        | CE           |                  |
|                                                                        |                        | SOURCE OF           | EXPECTE       | D ACTUAL       |                   | POTENTIA       | L EMISSIC    | ONS              |
|                                                                        |                        | EMISSION            | AFTER CONT    | ROLS / LIMITS) | BEFORE CON        | TROLS / LIMITS | (AFTER COM   | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                  |                        | FACTOR              | lb/hr         | tons/yr        | lb/hr             | tons/yr        | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                                |                        |                     |               |                |                   |                |              |                  |
| PARTICULATE MATTER<10 MICRONS                                          | 6 (PM <sub>10</sub> )  |                     |               |                |                   |                |              |                  |
| PARTICULATE MATTER<2.5 MICRON                                          | S (PM <sub>2.5</sub> ) |                     |               |                |                   |                |              |                  |
| SULFUR DIOXIDE (SO2)                                                   |                        |                     |               |                |                   |                |              |                  |
| NITROGEN OXIDES (NOx)                                                  |                        |                     | SEE           | APPENDIX       | B, Table 7        |                |              |                  |
| CARBON MONOXIDE (CO)                                                   |                        |                     |               |                |                   |                |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                             | (VOC)                  |                     |               |                |                   |                |              |                  |
| LEAD                                                                   |                        |                     |               |                |                   |                |              |                  |
| OTHER                                                                  |                        |                     |               |                |                   |                |              |                  |
| HAZARDOUS                                                              | AIR POLLU              | TANT EMISSIC        | ONS INFO      | ORMATIO        | N FOR T           | 'HIS SOU       | RCE          |                  |
|                                                                        |                        | SOURCE OF           | EXPECTE       | D ACTUAL       |                   | POTENTIA       | L EMISSIC    | NS               |
|                                                                        |                        | EMISSION            | AFTER CONT    | ROLS / LIMITS) | BEFORE CON        | TROLS / LIMITS | (AFTER CON   | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                | CAS NO.                | FACTOR              | lb/hr         | tons/yr        | lb/hr             | tons/yr        | lb/hr        | tons/yr          |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
| N/A                                                                    |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
| TOXIC AIF                                                              | R POLLUTAN             | IT EMISSIONS        | S INFORM      | IATION F       | OR THIS           | SOURC          | E            |                  |
|                                                                        |                        | SOURCE OF           | EXPECTE       | D ACTUAL       | EMISSION          | S AFTER C      | ONTROLS      | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                    | CAS NO.                | EMISSION<br>FACTOR  | lb            | /hr            | lb/               | day            |              | lb/yr            |
|                                                                        |                        |                     | -             |                |                   | ,              |              | ,                |
|                                                                        |                        |                     | 1             |                |                   |                |              |                  |
|                                                                        | 1                      |                     |               |                |                   |                |              |                  |
| N/A                                                                    |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     | 1             |                |                   |                |              |                  |
|                                                                        | 1                      |                     |               |                |                   |                |              |                  |
|                                                                        |                        |                     |               |                |                   |                |              |                  |

| REVISED 09/22/16                                        | NCDEQ/Divis         | sion of Air Quality - A         | oplication  | n for Air                       | r Permit to Con | struct/O  | perate    |              | B6 |
|---------------------------------------------------------|---------------------|---------------------------------|-------------|---------------------------------|-----------------|-----------|-----------|--------------|----|
| EMISSION SOURCE DESCRIP                                 | TION: FGD Byproduct | Silo                            |             |                                 | EMISSION SOL    | JRCE ID   | NO: ES-3  | 32           |    |
|                                                         |                     |                                 |             |                                 | CONTROL DEV     | /ICE ID N | NO(S): CD | -32          |    |
| OPERATING SCENARIO:                                     | 1                   | OF1                             |             |                                 | EMISSION POI    | NT(STAC   | CK) ID NO | 9(S): EP-32  |    |
| DESCRIBE IN DETAIL THE PRO                              |                     |                                 | c Filter ba | aghouse                         | into a byproduc | t storage | e silo.   |              |    |
| MATERIAL STORED: Byproduct                              | ts from FGD         |                                 |             | DENSI                           | TY OF MATERIA   | AL (LB/F  | T3): 30   |              |    |
| CAPACITY                                                | CUBIC FEET: 3120    |                                 |             | TONS:                           |                 | <b>X</b>  | -,        |              |    |
| DIMENSIONS (FEET)                                       | HEIGHT: 65          | DIAMETER: 13                    | (OR)        | LENGT                           |                 | WIDTH:    |           | HEIGHT:      |    |
| ANNUAL PRODUCT THRO                                     | DUGHPUT (TONS)      | ACTUAL: 5694                    |             | MAXIMUM DESIGN CAPACITY: 15,100 |                 |           |           |              |    |
| PNEUMATICALLY FI                                        | LLED                | MECHANICALLY FILLED FILLED FROM |             |                                 |                 |           |           | FILLED FROM  |    |
| BLOWER                                                  |                     | SCREW CONVEYOR                  | 2           |                                 |                 |           | RAILCAR   |              |    |
|                                                         |                     | BELT CONVEYOR                   |             |                                 |                 |           | TRUCK     |              |    |
| OTHER:                                                  |                     | BUCKET ELEVATOR STORAGE PILE    |             |                                 |                 |           |           | E PILE       |    |
|                                                         |                     | OTHER:                          |             |                                 |                 | 7         | OTHER:    | Dry Scrubber |    |
| NO. FILL TUBES: 1                                       |                     |                                 |             |                                 |                 |           |           |              |    |
| MAXIMUM ACFM: 1300                                      |                     |                                 |             |                                 |                 |           |           |              |    |
| MATERIAL IS UNLOADED TO:<br>Trucks                      |                     |                                 |             |                                 |                 |           |           |              |    |
| BY WHAT METHOD IS MATER<br>Gravity unloading to trucks. | IAL UNLOADED FROI   | M SILO?                         |             |                                 |                 |           |           |              |    |
| MAXIMUM DESIGN FILLING RA                               | ATE OF MATERIAL (T  | ONS/HR): 1.75                   |             |                                 |                 |           |           |              |    |
| MAXIMUM DESIGN UNLOADIN                                 | G RATE OF MATERIA   | AL (TONS/HR): 300               |             |                                 |                 |           |           |              |    |
| COMMENTS:                                               |                     |                                 |             |                                 |                 |           |           |              |    |

| REVISED 09/22/16                                                                                            |        | NCDEQ/Division of     | of Air Quality - Appli | cation f | or Air Permit to Cons | truct/O  | perate                |        |          | C1         |
|-------------------------------------------------------------------------------------------------------------|--------|-----------------------|------------------------|----------|-----------------------|----------|-----------------------|--------|----------|------------|
| CONTROL DEVICE ID NO: CD-32                                                                                 |        | CONTROLS EMISSI       | ONS FROM WHICH         | EMISSI   | ON SOURCE ID NO(      | S): ES-3 | 32                    |        |          |            |
| EMISSION POINT (STACK) ID NO(S): EP-32                                                                      |        | POSITION IN SERIE     | S OF CONTROLS          |          |                       |          | NO.                   |        | 1 OF 1   | UNITS      |
| OPERATING SCENARIO                                                                                          | :      |                       |                        |          |                       |          |                       |        |          |            |
| 1 OF1                                                                                                       |        |                       | P.E. SEAL REQUIR       | ED (PE   | R 2q .0112)?          |          | V                     | YES    |          | □ NO       |
| DESCRIBE CONTROL SYSTEM: A bin vent for partie                                                              | culate | control on the FGD By | product Silo.          |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
| POLLUTANTS COLLECTED:                                                                                       |        |                       | PM                     |          | PM10                  |          | PM2.5                 |        |          |            |
|                                                                                                             |        |                       |                        | -        |                       | -        |                       |        |          |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                                                                       |        |                       | 0.06                   | _        | 0.05                  | _        | 0.03                  |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
| CAPTURE EFFICIENCY:                                                                                         |        |                       | <= 0.005 gr/dscf       | %        | <= 0.005 gr/dscl      | %        | <= 0.005 gr/dscf      | %      |          | %          |
| CONTROL DEVICE EFFICIENCY:                                                                                  |        |                       | N/A                    | %        | N/A                   | %        | N/A                   | %      |          | %          |
|                                                                                                             |        |                       | 107                    |          | 107                   |          |                       | /0     |          | 70         |
| CORRESPONDING OVERALL EFFICIENCY:                                                                           |        | N/A                   | %                      | N/A      | %                     | N/A      | %                     |        | %        |            |
|                                                                                                             |        |                       |                        | _        |                       | _        |                       |        |          |            |
| EFFICIENCY DETERMINATION CODE:                                                                              |        | 2                     | -                      | 2        | _                     | 2        |                       | ·      |          |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR)                                                                   | :      |                       | 0.06                   |          | 0.05                  |          | 0.03                  |        |          |            |
|                                                                                                             |        | 0411052               |                        |          |                       | -        |                       |        |          |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-1<br>BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25 | 5 wg   | GAUGE?                | YES                    |          |                       | MIN      |                       | MAX    |          |            |
| POLLUTANT LOADING RATE: N/A                                                                                 | - 1    | GR/FT <sup>3</sup>    | OUTLET TEMPERA         |          |                       | MIN      |                       | MAX    |          |            |
| INLET AIR FLOW RATE (ACFM): 1300                                                                            |        | _                     | FILTER OPERATIN        |          |                       |          |                       |        |          |            |
|                                                                                                             | BAGS   | PER COMPARTMENT       |                        |          | (.).                  | LENG     | TH OF BAG (IN.): 20   | )-30   |          |            |
|                                                                                                             |        | CE AREA PER CART      | -                      | ct       |                       |          | ETER OF BAG (IN.):    |        |          |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract                                                      |        | AIR TO CLOTH RAT      |                        |          |                       | 0.0 0010 |                       | 0.0    |          |            |
| DRAFT TYPE: INDUCED/NEGATIVE                                                                                | ~      | FORCED/POSITIVE       |                        |          | FILTER MATERIAL: (    | Cartrido | e Style 🔽             | wov    | EN 🔽     | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                                                                               |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        | SONIC                 |                        |          |                       |          | SIZE                  | _      | WEIGHT % | CUMULATIVE |
|                                                                                                             |        | SIMPLE BAG COLL       | APSE                   |          |                       |          | (MICRONS)             |        | OF TOTAL | %          |
|                                                                                                             |        | RING BAG COLLAP       |                        |          |                       |          | 0-1                   |        | OF TOTAL | ,,,        |
| OTHER:                                                                                                      |        | KING BAG COLLAP       | 3E                     |          |                       |          | 1-10                  |        |          |            |
| DESCRIBE INCOMING AIR STREAM:                                                                               |        |                       |                        |          |                       |          | 10-25                 |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          | 25-50                 |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          | 50-100                |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          | >100                  |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          | 100                   |        | TOTAL    | - 100      |
|                                                                                                             |        |                       |                        |          |                       | Suppli   | er specific, 94% pass | sing 3 |          | - 100      |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHC<br>COMMENTS:                                                       | WING   | THE RELATIONSHIP      | OF THE CONTROL         | DEVICE   | E TO ITS EMISSION S   | SOURCI   | E(S):                 |        |          |            |
| COMMENTS.                                                                                                   |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |
|                                                                                                             |        |                       |                        |          |                       |          |                       |        |          |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDEC                                                                     | Q/Division of Ai       | r Quality - Appli | cation for A  | Air Permit to  | o Construc  | t/Operate     |              | В                |
|-------------------------------------------------------------------------------------------|------------------------|-------------------|---------------|----------------|-------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                                              | FGD Absorber           | nt Silo           |               | EMISSION       | SOURCE      | ID NO: ES-:   | 33           |                  |
|                                                                                           |                        |                   |               | CONTROL        | DEVICE ID   | 0 NO(S): C    | D-33         |                  |
| OPERATING SCENARIO1                                                                       | OF                     | 1                 |               | EMISSION       |             | ( )           |              | 3                |
| DESCRIBE IN DETAILTHE EMISSION<br>Storage of absorbent (hydrated lime)                    |                        | •                 | I FLOW DIA    | AGRAM):        |             |               |              |                  |
| TYPE OF EMISSION SOUR                                                                     | CE (CHECK AN           | D COMPLETE A      | PPROPRIA      | TE FORM        | 31-B9 ON 1  | THE FOLLO     | WING PAC     | ES):             |
| Coal,wood,oil, gas, other burner (F                                                       | Form B1)               | □ Woodworkin      | ng (Form B4   | )              | 🗆 Man       | uf. of chemi  | cals/coating | gs/inks (Form I  |
| □ Int.combustion engine/generator (I                                                      | Form B2)               | Coating/finis     | shing/printin | g (Form B5)    | 🗆 Incin     | eration (For  | rm B8)       |                  |
| Liquid storage tanks (Form B3)                                                            |                        | Storage silo      | s/bins (Forn  | n B6)          | □ Othe      | r (Form B9)   | )            |                  |
| START CONSTRUCTION DATE: TBD                                                              |                        |                   | DATE MAI      | NUFACTUR       | ED: TBD     |               |              |                  |
| MANUFACTURER / MODEL NO.: TBE                                                             | )                      |                   | EXPECTE       | D OP. SCH      | EDULE: 24   | HR/DAY 7      | DAY/WK       | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                                    | NSPS (SUBPAR           | TS?):             |               |                | SHAP (SUB   | PARTS?):_     |              |                  |
| PERCENTAGE ANNUAL THROUGHP                                                                | UT (%): DEC-F          | EB 25 N           | IAR-MAY       | 25             | JUN-AUG     | 25            | SEP-         | NOV 25           |
| CRITERIA AI                                                                               | IR POLLUTA             | NT EMISSIO        | NS INFOI      | RMATION        | I FOR TH    | IIS SOUR      | RCE          |                  |
|                                                                                           |                        | SOURCE OF         | EXPECTE       | D ACTUAL       |             | POTENTIA      | L EMISSIC    | DNS              |
|                                                                                           |                        | EMISSION          | AFTER CONT    | ROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS | (AFTER CON   | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                                     |                        | FACTOR            | lb/hr         | tons/yr        | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                                                   |                        |                   |               |                |             |               |              |                  |
| PARTICULATE MATTER<10 MICRONS                                                             | (PM <sub>10</sub> )    |                   |               |                |             |               |              |                  |
| PARTICULATE MATTER<2.5 MICRONS                                                            | 6 (PM <sub>2.5</sub> ) |                   |               |                |             |               |              |                  |
| SULFUR DIOXIDE (SO2)                                                                      |                        |                   |               |                |             |               |              |                  |
| NITROGEN OXIDES (NOx)                                                                     |                        |                   | SEE           | APPENDIX       | B, Table 7  |               |              |                  |
| CARBON MONOXIDE (CO)                                                                      |                        |                   |               |                |             |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                                                | (VOC)                  |                   |               |                |             |               |              |                  |
| LEAD                                                                                      |                        |                   |               |                |             |               |              |                  |
| OTHER                                                                                     |                        |                   |               |                |             |               |              |                  |
| HAZARDOUS                                                                                 | AIR POLLUT             | ANT EMISSI        | ONS INF       | ORMATIC        | ON FOR 1    | THIS SOL      | JRCE         |                  |
|                                                                                           |                        | SOURCE OF         | EXPECTE       | D ACTUAL       |             | POTENTIA      | L EMISSIC    | NS               |
|                                                                                           |                        | EMISSION          | AFTER CONT    | ROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS | (AFTER CON   | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                                   | CAS NO.                | FACTOR            | lb/hr         | tons/yr        | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
| N/A                                                                                       |                        |                   |               |                |             |               |              |                  |
| <u> </u>                                                                                  |                        |                   |               |                |             |               |              |                  |
| <u> </u>                                                                                  |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
| TOXIC AIR                                                                                 | POLLUTAN               | T EMISSION        | S INFORI      | ATION F        | OR THIS     | S SOURC       | Ê            |                  |
|                                                                                           |                        | SOURCE OF         | EXPECTE       | D ACTUAL I     | EMISSION    | SAFTER C      | ONTROLS      | / LIMITATION     |
|                                                                                           |                        | EMISSION          |               |                |             |               |              |                  |
| TOXIC AIR POLLUTANT                                                                       | CAS NO.                | FACTOR            | lb            | /hr            | Ib/o        | day           |              | lb/yr            |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
| N/A                                                                                       |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
|                                                                                           |                        |                   |               |                |             |               |              |                  |
| Attachments: (1) emissions calculations and<br>emission rates) and describe how these are |                        |                   |               |                |             |               |              |                  |

| NCDEQ/Divis        | ion of Air Quality - Ap                                                                                                                                     | plicatior                                                                                                                                                                                                                                      | n for Air Permit to C                                                                        | Construct/Operate                                 | B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ION: FGD Absorbent | Silo                                                                                                                                                        |                                                                                                                                                                                                                                                | EMISSION                                                                                     | SOURCE ID NO: ES-33                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                | CONTROL                                                                                      | DEVICE ID NO(S): CD-33                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1                  | OF1                                                                                                                                                         |                                                                                                                                                                                                                                                | EMISSION                                                                                     | POINT(STACK) ID NO(S): EP-33                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| orbent             |                                                                                                                                                             |                                                                                                                                                                                                                                                | DENSITY OF MAT                                                                               | ERIAL (LB/FT3): 25                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| CUBIC FEET: 10000  |                                                                                                                                                             |                                                                                                                                                                                                                                                | TONS: 125                                                                                    |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| HEIGHT: 100        | DIAMETER: 14                                                                                                                                                | (OR)                                                                                                                                                                                                                                           | LENGTH:                                                                                      | WIDTH: HEIGHT:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| UGHPUT (TONS)      | ACTUAL: 3723 MAXIMUM DESIGN CAPACITY: 13,140                                                                                                                |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| LED                | MECHANIC                                                                                                                                                    | ALLY FI                                                                                                                                                                                                                                        | LLED                                                                                         | FILLED FROM                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | SCREW CONVEYOR                                                                                                                                              |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | BELT CONVEYOR                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                              | TRUCK                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | BUCKET ELEVATOR                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              | STORAGE PILE                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | OTHER:                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                              | OTHER:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| J RATE OF MATERIA  | L (TONS/HR). 1.5                                                                                                                                            |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                                                                                                                                                             |                                                                                                                                                                                                                                                |                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | TON: FGD Absorbent 1 DCESS (ATTACH FLO lime) used in the dry F  rbent CUBIC FEET: 10000 HEIGHT: 100 UGHPUT (TONS) LED   AL UNLOADED FROM TE OF MATERIAL (TO | TON: FGD Absorbent Silo OF  DCESS (ATTACH FLOW DIAGRAM): lime) used in the dry FGD system.  rbent  CUBIC FEET: 10000 HEIGHT: 100 DIAMETER: 14 UGHPUT (TONS) ACTUAL: 3723 LED  CUBIC FEET: 0000  G  BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR | TON: FGD Absorbent Silo OFOF  DCESS (ATTACH FLOW DIAGRAM): lime) used in the dry FGD system. | ION: FGD Absorbent Silo       EMISSION<br>CONTROL | cONTROL DEVICE ID NO(S): CD-33          OF         EMISSION POINT(STACK) ID NO(S): EP-33           DCESS (ATTACH FLOW DIAGRAM):<br>lime) used in the dry FGD system.         EMISSION POINT(STACK) ID NO(S): EP-33           rbent         DENSITY OF MATERIAL (LB/FT3): 25           CUBIC FEET: 10000         TONS: 125           HEIGHT: 100         DIAMETER: 14         (ØR)           JUGHPUT (TONS)         ACTUAL: 3723         MAXIMUM DESIGN CAPACITY: 13,140           LED         MECHANICALLY FILLED         FILLED FROM           LED         MECHANICALLY FILLED         FILLED FROM           BELT CONVEYOR         In TRUCK         STORAGE PILE           BUCKET ELEVATOR         OTHER:         OTHER: |  |

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1 |                           |                  |                                              |                    |          |                       |            |         |            |
|-----------------------------------------------------------------------------------------------------|---------------------------|------------------|----------------------------------------------|--------------------|----------|-----------------------|------------|---------|------------|
| CONTROL DEVICE ID NO: CD-33                                                                         | CONTROLS EMISSI           | ONS FROM WHICH   | EMISSIC                                      | ON SOURCE ID NO(S  | ): ES-3  | 3                     |            |         |            |
| EMISSION POINT (STACK) ID NO(S): EP-33                                                              | POSITION IN SERIE         | S OF CONTROLS    |                                              |                    |          | NO.                   | 1          | OF 1    | UNITS      |
| OPERATING SCENARIO:                                                                                 |                           |                  |                                              |                    |          |                       |            |         |            |
| 1OF1                                                                                                |                           | P.E. SEAL REQUIR | ED (PEF                                      | R 2q .0112)?       |          | 7                     | YES        |         | □ NO       |
| DESCRIBE CONTROL SYSTEM: A bin vent for particula                                                   | ate control on the FGD Ab | sorbent Silo.    |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
| POLLUTANTS COLLECTED:                                                                               |                           | PM               |                                              | PM10               |          | PM2.5                 |            |         |            |
|                                                                                                     |                           |                  | _                                            |                    |          |                       | -          |         |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                                                               |                           | 0.06             | _                                            | 0.05               |          | 0.03                  | _          |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
| CAPTURE EFFICIENCY:                                                                                 |                           | <= 0.005 gr/dscf | %                                            | <= 0.005 gr/dscf   | %        | <= 0.005 gr/dscf      | %          |         | %          |
| CONTROL DEVICE EFFICIENCY:                                                                          |                           | N/A              | %                                            | N/A                | 0/_      | N/A                   | 0/_        |         | %          |
|                                                                                                     |                           | 107              | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1071               |          |                       | -          |         | /0         |
| CORRESPONDING OVERALL EFFICIENCY:                                                                   |                           | N/A              | %                                            | N/A                | %        | N/A                   | %          |         | %          |
|                                                                                                     |                           |                  |                                              |                    |          |                       | -          |         |            |
| EFFICIENCY DETERMINATION CODE:                                                                      |                           | 2                | _                                            | 2                  |          | 2                     | -          |         |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                                                          | 0.06                      |                  | 0.05                                         |                    | 0.03     |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          | 0.00                  |            |         |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-15 v                                         | vg GAUGE? 🗳               | YES              |                                              |                    |          |                       |            |         |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25 POLLUTANT LOADING RATE: N/A LB/HR                   | □ GR/FT <sup>3</sup>      | INLET TEMPERATI  |                                              |                    | MIN      |                       | MAX<br>MAX |         |            |
|                                                                                                     |                           | OUTLET TEMPERA   |                                              |                    | IVIIIN   |                       | IVIAA      |         |            |
| INLET AIR FLOW RATE (ACFM): 1300<br>NO. OF COMPARTMENTS: 1 NO. OF BAC                               |                           |                  | GIEWF                                        |                    |          |                       | 20         |         |            |
|                                                                                                     | SS PER COMPARTMENT        | -                | at                                           |                    |          | TH OF BAG (IN.): 20   |            |         |            |
| NO. OF CARTRIDGES: Contract FILTER SUF<br>TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract    | AIR TO CLOTH RAT          |                  | u                                            |                    | DIAIVIE  | TER OF BAG (IN.):     | 5-15       |         |            |
|                                                                                                     | FORCED/POSITIVE           |                  |                                              | FILTER MATERIAL: C | ortriday | s Stulo 🔽             | WOVE       | N D     | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                                                                       |                           |                  | 1                                            | IETER WATERIAL C   | annuge   |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    | _        |                       |            |         |            |
|                                                                                                     | _                         |                  |                                              |                    |          | SIZE                  |            | EIGHT % | CUMULATIVE |
|                                                                                                     | -                         |                  |                                              |                    |          | (MICRONS)             | 0          | F TOTAL | %          |
|                                                                                                     | RING BAG COLLAP           | SE               |                                              |                    |          | 0-1                   |            |         |            |
| OTHER:     DESCRIBE INCOMING AIR STREAM:                                                            |                           |                  |                                              |                    |          | 1-10                  |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          | 10-25                 |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          | 25-50                 |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          | 50-100                |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          | >100                  |            |         |            |
|                                                                                                     |                           |                  |                                              |                    | Suppli   | er specific, 94% pass | sing 325   | TOTAL   | = 100      |
|                                                                                                     |                           |                  |                                              |                    | ouppin   |                       | 5111g 020  | mean    |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWI                                                          | NG THE RELATIONSHIP       | OF THE CONTROL   | DEVICE                                       | TO ITS EMISSION S  | OURCE    | E(S):                 |            |         |            |
| COMMENTS:                                                                                           |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
|                                                                                                     |                           |                  |                                              |                    |          |                       |            |         |            |
| 1                                                                                                   |                           |                  |                                              |                    |          |                       |            |         |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                  | Q/Division of A        | Air Quality - Applic  | ation for A  | ir Permit to  | Construct/  | Operate       |               | В                |
|-----------------------------------------------------------------------|------------------------|-----------------------|--------------|---------------|-------------|---------------|---------------|------------------|
| EMISSION SOURCE DESCRIPTION: E                                        | EHE- External F        | leat Exchanger 1 &    | 2            | EMISSION      | SOURCE I    | D NO: ES-     | 34 and ES-3   | 35               |
|                                                                       |                        |                       |              | CONTROL       |             | NO(S): CE     | 0-34 and CI   | 0-35             |
| OPERATING SCENARIO1_                                                  | OF                     | 1                     |              | EMISSION      | POINT (ST   | ACK) ID N     | O(S): EP-34   | and EP-35        |
| DESCRIBE IN DETAILTHE EMISSION<br>Process heat exchanger. Maximum and |                        | -                     |              | -             | 0 hours per | year.         |               |                  |
| TYPE OF EMISSION SOUR                                                 | RCE (CHECK A           | ND COMPLETE A         | PPROPRIA     | TE FORM B     | 1-B9 ON TH  | HE FOLLO      | WING PAGI     | ES):             |
| Coal,wood,oil, gas, other burner (F                                   | orm B1)                | U Woodworking         | (Form B4)    |               | 🗆 Man       | uf. of chemi  | icals/coating | gs/inks (Form E  |
| Int.combustion engine/generator (F                                    | form B2)               | Coating/finish        | ing/printing | (Form B5)     | 🗌 Incin     | eration (Fo   | rm B8)        |                  |
| Liquid storage tanks (Form B3)                                        |                        | Storage silos/        | bins (Form   | B6)           | 🔽 Othe      | r (Form B9    | )             |                  |
| START CONSTRUCTION DATE: TBD                                          |                        |                       | DATE MA      | NUFACTUR      | ED: TBD     |               |               |                  |
| MANUFACTURER / MODEL NO.: TBD                                         | )                      |                       | EXPECTE      | D OP. SCH     | EDULE: 24   | HR/DAY 7      | DAY/WK 5      | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                | ISPS (SUBPAR           | TS?):                 |              |               | SHAP (SUB   | PARTS?):_     |               |                  |
| PERCENTAGE ANNUAL THROUGHP                                            | UT (%): DEC-F          | EB 25 MA              | R-MAY 2      | 5 JI          | JN-AUG      | 25            | SEP-NO        | V 25             |
| CRITERIA A                                                            | IR POLLUT/             | ANT EMISSION          | IS INFOR     | RMATION       | FOR TH      | IS SOUR       | CE            |                  |
|                                                                       |                        | SOURCE OF             |              | ED ACTUAL     |             | -             | AL EMISSIC    | DNS              |
|                                                                       |                        | EMISSION              | AFTER CON    | ROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER COI    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                 |                        | FACTOR                | lb/hr        | tons/yr       | lb/hr       | tons/yr       | lb/hr         | tons/yr          |
| PARTICULATE MATTER (PM)                                               |                        |                       |              |               |             |               |               |                  |
| PARTICULATE MATTER<10 MICRONS                                         | (PM <sub>10</sub> )    |                       |              |               |             |               |               |                  |
| PARTICULATE MATTER<2.5 MICRONS                                        | 6 (PM <sub>2.5</sub> ) |                       |              |               |             |               |               |                  |
| SULFUR DIOXIDE (SO2)                                                  |                        |                       |              |               |             |               |               |                  |
| NITROGEN OXIDES (NOx)                                                 |                        |                       | SEE          | APPENDIX      | B, Table 4  |               |               |                  |
| CARBON MONOXIDE (CO)                                                  |                        |                       |              |               |             |               |               |                  |
| VOLATILE ORGANIC COMPOUNDS (                                          | VOC)                   |                       |              |               |             |               |               |                  |
| LEAD                                                                  |                        |                       |              |               |             |               |               |                  |
| OTHER                                                                 |                        |                       |              |               |             |               |               |                  |
| HAZARDOUS                                                             | AIR POLLU              | TANT EMISSIC          | ONS INFO     | ORMATIO       | N FOR T     | HIS SOU       | IRCE          |                  |
|                                                                       |                        | SOURCE OF             | EXPECTE      | ED ACTUAL     |             | POTENTIA      | AL EMISSIC    | DNS              |
|                                                                       |                        | EMISSION              | AFTER CON    | ROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER COI    | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                               | CAS NO.                | FACTOR                | lb/hr        | tons/yr       | lb/hr       | tons/yr       | lb/hr         | tons/yr          |
|                                                                       | -                      |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       | -                      |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       | -                      |                       | eee          | APPENDIX      | P. Table 4  |               |               |                  |
|                                                                       |                        |                       | 322          | AFFENDIA      | D, Table 4  |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
| TOXIC AIR                                                             |                        | NT EMISSIONS          |              |               | OR THIS     | SOURC         | F             | I                |
| 70,007,007                                                            |                        |                       | 1            |               |             |               |               |                  |
|                                                                       |                        | SOURCE OF<br>EMISSION | EXPECTE      | DACIUAL       | EMISSION    | S AFTER C     | ONTROLS       | / LIMITATIONS    |
| TOXIC AIR POLLUTANT                                                   | CAS NO.                | FACTOR                | I            | o/hr          | lb/e        | day           |               | lb/yr            |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       | • •          |               | <u> </u>    |               |               |                  |
|                                                                       | -                      |                       | SEE A        | PPENDIX B,    | rable 4     |               | ļ             |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       |                        |                       |              |               |             |               |               |                  |
|                                                                       | 1                      |                       |              |               |             |               | -             |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

# FORM B9 EMISSION SOURCE (OTHER)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--|--|--|--|--|
| EMISSION SOURCE DESCRIPTION: EHE- Extern                                                         | nal Heat Exchanger 1 & 2 |             | EMISSION SOURCE ID NO: ES-3                                                                                                            | 34 and ES-35   |            |  |  |  |  |  |
|                                                                                                  |                          |             | CONTROL DEVICE ID NO(S): CD                                                                                                            | 0-34 and CD-35 |            |  |  |  |  |  |
| OPERATING SCENARIO:1 O                                                                           | F1                       |             | EMISSION SOURCE ID NO: ES-34 and ES-35<br>CONTROL DEVICE ID NO(S): CD-34 and CD-35<br>EMISSION POINT (STACK) ID NO(S): EP-34 and EP-35 |                |            |  |  |  |  |  |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH                                                           | FLOW DIAGRAM): Proces    | s neat exch | anger                                                                                                                                  |                |            |  |  |  |  |  |
| MATERIALS ENTERING PROCESS -                                                                     | CONTINUOUS PROCESS       |             | MAX DESIGN                                                                                                                             | REQUESTED      |            |  |  |  |  |  |
| ТҮРЕ                                                                                             |                          | UNITS       |                                                                                                                                        |                |            |  |  |  |  |  |
| Heat Exchanger                                                                                   | Тс                       | ons         |                                                                                                                                        | X              | , 70       |  |  |  |  |  |
| ¥                                                                                                |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
| MATERIALS ENTERING PROCESS                                                                       | - BATCH OPERATION        |             | MAX. DESIGN                                                                                                                            | REQUESTED      | CAPACITY   |  |  |  |  |  |
| ТҮРЕ                                                                                             |                          | UNITS       | CAPACITY (UNIT/BATCH)                                                                                                                  | LIMITATION (U  | NIT/BATCH) |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
|                                                                                                  |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
| MAXIMUM DESIGN (BATCHES / HOUR):                                                                 |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |
| REQUESTED LIMITATION (BATCHES / HOUR):                                                           | (B                       | ATCHES/YI   | R):                                                                                                                                    |                |            |  |  |  |  |  |
| FUEL USED: N/A                                                                                   | тс                       | OTAL MAXIN  | UM FIRING RATE (MILLION BTU                                                                                                            | J/HR): N/A     |            |  |  |  |  |  |
| MAX. CAPACITY HOURLY FUEL USE: N/A                                                               |                          |             | CAPACITY ANNUAL FUEL USE:                                                                                                              | •              |            |  |  |  |  |  |
| COMMENTS:                                                                                        |                          |             |                                                                                                                                        |                |            |  |  |  |  |  |

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1 |                    |                             |                          |                     |          |              |              |            |                    |  |
|-----------------------------------------------------------------------------------------------------|--------------------|-----------------------------|--------------------------|---------------------|----------|--------------|--------------|------------|--------------------|--|
| CONTROL DEVICE ID NO: CD-34 & CD-35                                                                 | CONTROLS EMISSI    | ONS FROM WHICH              | EMIS                     | SION SOURCE ID NO(S | ): ES-3  | 4 & ES-35    |              |            |                    |  |
| EMISSION POINT (STACK) ID NO(S): EP-34 & EP-35                                                      | POSITION IN SERIE  | S OF CONTROLS               |                          | · · · · ·           |          | NO.          | 1 OF         | 1          | UNITS              |  |
| OPERATING SCENARIO:                                                                                 |                    |                             |                          |                     |          |              |              |            |                    |  |
| 0F1                                                                                                 |                    | P.E. SEAL REQUIR            | ED (P                    | FR 2g (0112)?       |          | <b>v</b>     | YES          |            | NO                 |  |
| DESCRIBE CONTROL SYSTEM: A baghouse for particulate c                                               |                    |                             |                          |                     | for one  |              | 120          |            |                    |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              |            |                    |  |
| POLLUTANTS COLLECTED:                                                                               |                    | PM                          |                          | PM10                | -        | PM2.5        |              |            |                    |  |
| BEFORE CONTROL EMISSION RATE (LB/HR):                                                               |                    | 6.86                        |                          | 6.31                | -        | 3.63         |              |            |                    |  |
| CAPTURE EFFICIENCY:                                                                                 |                    | 99.95                       | %                        | 99.95               | %        | 99.95        | %            |            | %                  |  |
| CONTROL DEVICE EFFICIENCY:                                                                          |                    | N/A                         | %                        | N/A                 | %        | N/A          | %            |            | %                  |  |
| CORRESPONDING OVERALL EFFICIENCY:                                                                   |                    | N/A                         | %                        | N/A                 | %        | N/A          | %            |            | %                  |  |
| EFFICIENCY DETERMINATION CODE:                                                                      |                    | 2                           |                          | 2                   | -        | 2            |              |            |                    |  |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                                                          |                    | 6.86                        |                          | 6.31                | -        | 3.63         |              |            |                    |  |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10"                                             | GAUGE?             | YES                         |                          | ] NO                |          |              |              |            |                    |  |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 60                                                     |                    | INLET TEMPERATI             | URE (°                   | F):                 | MIN 18   | 30           | MAX 325      |            |                    |  |
| POLLUTANT LOADING RATE: 🛛 LB/HR                                                                     | GR/FT <sup>3</sup> | OUTLET TEMPERA              | TURE                     | (°F)                | MIN 15   |              |              |            |                    |  |
| INLET AIR FLOW RATE (ACFM): 48,000                                                                  | FILTER OPERATIN    | G TEN                       | 1P (°F): 250 (excursions | s to 325            | i)       |              |              |            |                    |  |
| NO. OF COMPARTMENTS: 1 NO. OF BAGS PER COMPARTMENT: N/A                                             |                    |                             |                          |                     | LENGT    | H OF BAG     | (IN.): N/A   |            |                    |  |
| NO. OF CARTRIDGES: N/A FILTER SURFACE                                                               | AREA PER CARTRI    | DGE (FT <sup>2</sup> ): N/A |                          |                     | DIAME    | TER OF BA    | G (IN.): 6   |            |                    |  |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): N/A                                                   | AIR TO CLOTH RAT   | IO: 3:1                     |                          |                     |          |              |              |            |                    |  |
| DRAFT TYPE: 🗹 INDUCED/NEGATIVE 🗌                                                                    | FORCED/POSITIVE    |                             |                          | FILTER MATERIAL:    |          |              | WOVEN        | V          | FELTED             |  |
| DESCRIBE CLEANING PROCEDURES:                                                                       |                    |                             |                          |                     |          | PAR          | TICLE SIZI   |            | UTION              |  |
| ☑ AIR PULSE                                                                                         | SONIC              |                             |                          |                     |          | SIZE         | WEIG         | iHT %      | CUMULATIVE         |  |
| REVERSE FLOW                                                                                        | SIMPLE BAG COLLA   | APSE                        |                          |                     | (MIC     | CRONS)       | OF T         | OTAL       | %                  |  |
|                                                                                                     | RING BAG COLLAPS   | SE                          |                          | =                   |          | 0-1          |              |            |                    |  |
| OTHER:                                                                                              |                    |                             |                          | -                   |          | 1-10         |              |            |                    |  |
| DESCRIBE INCOMING AIR STREAM: Air stream will contain fly                                           | / ash.             |                             |                          |                     | 1        | 0-25         |              |            |                    |  |
|                                                                                                     |                    |                             |                          | -                   |          | 25-50        |              |            |                    |  |
|                                                                                                     |                    |                             |                          | Ī                   | 5        | 0-100        |              |            |                    |  |
|                                                                                                     |                    |                             |                          |                     | :        | >100         |              |            |                    |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              | TOTAL      | = 100              |  |
|                                                                                                     |                    |                             |                          |                     | Particle | Size Distrib | oution 0-100 | micron wit | h an average of 20 |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              |            |                    |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              |            |                    |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              |            |                    |  |
|                                                                                                     |                    |                             | E) // 0 =                |                     | 005/     |              |              |            |                    |  |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING TH<br>COMMENTS:                                        | IE RELATIONSHIP OI | F THE CONTROL D             | EVICE                    | TO ITS EMISSION SOL | JRCE(S   | 5):          |              |            |                    |  |
|                                                                                                     |                    |                             |                          |                     |          |              |              |            |                    |  |

### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                            | Q/Division of /      | Air Quality - Applic    | ation for A         | ir Permit to                                                                             | Construct/          | Operate        |                     | В                |  |
|---------------------------------------------------------------------------------|----------------------|-------------------------|---------------------|------------------------------------------------------------------------------------------|---------------------|----------------|---------------------|------------------|--|
| EMISSION SOURCE DESCRIPTION: 1                                                  | Fransfer Silo Fi     | lling                   |                     | EMISSION SOURCE ID NO: ES-36A                                                            |                     |                |                     |                  |  |
|                                                                                 |                      |                         |                     | CONTROL                                                                                  | DEVICE ID           | NO(S): CE      | 0-36                |                  |  |
| OPERATING SCENARIO1_                                                            | OF                   | 1                       |                     | EMISSION                                                                                 | I POINT (ST         | ACK) ID N      | D(S): EP-36         | 3                |  |
| DESCRIBE IN DETAILTHE EMISSION<br>Transfer silo is filled at the rate of 125 to |                      | •                       |                     |                                                                                          |                     |                |                     |                  |  |
| TYPE OF EMISSION SOUR                                                           | CE (CHECK A          |                         | PPROPRIA            | TE FORM B                                                                                |                     |                |                     |                  |  |
| Coal,wood,oil, gas, other burner (Fo                                            | orm B1)              | Woodworking             | (Form B4)           |                                                                                          | 🗆 Man               | uf. of chemi   | cals/coating        | gs/inks (Form E  |  |
| Int.combustion engine/generator (Fo                                             | orm B2)              | Coating/finish          | <b>e</b> . <b>e</b> | ,                                                                                        |                     | eration (Fo    | -                   |                  |  |
| Liquid storage tanks (Form B3)                                                  |                      | Storage silos/          | bins (Form          | B6)                                                                                      | □ Othe              | er (Form B9)   | )                   |                  |  |
| START CONSTRUCTION DATE: TBD                                                    |                      |                         | DATE MA             | NUFACTUR                                                                                 | ED: TBD             |                |                     |                  |  |
| MANUFACTURER / MODEL NO.: TBD                                                   |                      |                         |                     | D OP. SCH                                                                                | EDULE: 24           | HR/DAY 7       | DAY/WK 5            | 52 WK/YR         |  |
| IS THIS SOURCE SUBJECT                                                          | SPS (SUBPAR          | TS?):                   |                     |                                                                                          | SHAP (SUB           | PARTS?):_      |                     |                  |  |
| PERCENTAGE ANNUAL THROUGHPL                                                     | ( )                  |                         | R-MAY 2             |                                                                                          | UN-AUG              | 25             | SEP-NO              | V 25             |  |
| CRITERIA AI                                                                     | R POLLUT             | ANT EMISSION            | IS INFOR            | RMATION                                                                                  | FOR TH              | IS SOUR        | CE                  |                  |  |
|                                                                                 |                      | SOURCE OF               |                     | EXPECTED ACTUAL POTENTIAL EMIS<br>AFTER CONTROLS / LIMITS EFORE CONTROLS / LIMITS (AFTER |                     |                |                     |                  |  |
|                                                                                 |                      | EMISSION                | AFTER CON           | ROLS / LIMITS                                                                            | BEFORE CONT         | ROLS / LIMITS  | (AFTER CO           | NTROLS / LIMITS) |  |
| AIR POLLUTANT EMITTED                                                           |                      | FACTOR                  | lb/hr               | tons/yr                                                                                  | lb/hr               | tons/yr        | lb/hr               | tons/yr          |  |
| PARTICULATE MATTER (PM)                                                         |                      |                         |                     |                                                                                          |                     |                |                     | ļ                |  |
| PARTICULATE MATTER<10 MICRONS (                                                 | 10,                  |                         |                     |                                                                                          |                     |                |                     |                  |  |
| PARTICULATE MATTER<2.5 MICRONS                                                  | (PM <sub>2.5</sub> ) |                         |                     |                                                                                          |                     |                |                     |                  |  |
| SULFUR DIOXIDE (SO2)                                                            |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| NITROGEN OXIDES (NOx)                                                           |                      |                         | SEE                 | APPENDIX                                                                                 | B, Table 5          |                |                     |                  |  |
| CARBON MONOXIDE (CO)                                                            |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| VOLATILE ORGANIC COMPOUNDS (V                                                   | (OC)                 |                         |                     |                                                                                          |                     |                |                     |                  |  |
| LEAD                                                                            |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| OTHER                                                                           |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| HAZARDOUS                                                                       | AIR POLLU            | 1                       |                     |                                                                                          | 1                   | HIS SOU        | RCE                 |                  |  |
|                                                                                 |                      | SOURCE OF               |                     | D ACTUAL                                                                                 |                     |                | AL EMISSIC          | ONS              |  |
| HAZARDOUS AIR POLLUTANT                                                         | CAS NO.              | EMISSION<br>FACTOR      | AFTER CONT<br>Ib/hr | TROLS / LIMITS                                                                           | BEFORE CONT         | TROLS / LIMITS | (AFTER COI<br>lb/hr | NTROLS / LIMITS) |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         | SEE                 | APPENDIX                                                                                 | B Table 5           |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| TOXIC AIR                                                                       | POLLUTA              | NT EMISSIONS            |                     |                                                                                          | OR THIS             | SOURC          | E                   | 1                |  |
|                                                                                 |                      | 1                       | 1                   |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      | SOURCE OF<br>EMISSION   | EXPECTE             | D ACTUAL                                                                                 | EMISSION            | S AFTER C      | ONTROLS             | / LIMITATION     |  |
| TOXIC AIR POLLUTANT                                                             | CAS NO.              | FACTOR                  | lk                  | o/hr                                                                                     | lb/d                | day            |                     | lb/yr            |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         | SEE A               | PPENDIX B                                                                                | Table 5             |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
|                                                                                 |                      |                         |                     |                                                                                          |                     |                |                     |                  |  |
| Attachments: (1) emissions calculations and s                                   | supporting docun     | nentation; (2) indicate | all requested       | state and fed                                                                            | l<br>leral enforcea | ble permit lin | nits (e.g. hou      | rs of operation, |  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| DESCRIBE IN DETAIL THE PROCESS<br>Transfer silo is filled at the rate of 125 to<br>MATERIAL STORED: Fly Ash<br>CAPACITY CUBIC<br>DIMENSIONS (FEET) HEIGH<br>ANNUAL PRODUCT THROUGHPL<br>PNEUMATICALLY FILLED    | 1<br>6 (ATTACH FLO | OF1<br>W DIAGRAM):     | ct captur                      | CONTROL DE<br>EMISSION PO | DURCE ID NO: ES<br>EVICE ID NO(S): (<br>DINT(STACK) ID N | CD-36               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------------------------|---------------------------|----------------------------------------------------------|---------------------|--|
| DESCRIBE IN DETAIL THE PROCESS<br>Transfer silo is filled at the rate of 125 to<br>MATERIAL STORED: Fly Ash<br>CAPACITY CUBIC<br>DIMENSIONS (FEET) HEIGH<br>ANNUAL PRODUCT THROUGHPL<br>PNEUMATICALLY FILLED    | G (ATTACH FLO      | W DIAGRAM):            | ct captur                      | EMISSION PC               |                                                          |                     |  |
| Transfer silo is filled at the rate of 125 to         MATERIAL STORED: Fly Ash         CAPACITY       CUBIC         DIMENSIONS (FEET)       HEIGH         ANNUAL PRODUCT THROUGHPL         PNEUMATICALLY FILLED | G (ATTACH FLO      | W DIAGRAM):            | ct captur                      |                           | DINT(STACK) ID N                                         | NO(S): EP-36        |  |
| Transfer silo is filled at the rate of 125 to         MATERIAL STORED: Fly Ash         CAPACITY       CUBIC         DIMENSIONS (FEET)       HEIGH         ANNUAL PRODUCT THROUGHPL         PNEUMATICALLY FILLED |                    |                        | ict captur                     | e device.                 |                                                          |                     |  |
| CAPACITY CUBIC<br>DIMENSIONS (FEET) HEIGH<br>ANNUAL PRODUCT THROUGHPU<br>PNEUMATICALLY FILLED                                                                                                                   |                    |                        |                                |                           |                                                          |                     |  |
| DIMENSIONS (FEET) HEIGH<br>ANNUAL PRODUCT THROUGHPU<br>PNEUMATICALLY FILLED                                                                                                                                     |                    |                        |                                | DENSITY OF MATER          | RIAL (LB/FT3): 60                                        | bulk, 90 structural |  |
| ANNUAL PRODUCT THROUGHPU<br>PNEUMATICALLY FILLED                                                                                                                                                                | C FEET: N/A        |                        |                                | TONS: 300                 |                                                          |                     |  |
| PNEUMATICALLY FILLED                                                                                                                                                                                            | HT: 100            | DIAMETER: 41           | AMETER: 41 (OR) LENGTH: WIDTH: |                           |                                                          |                     |  |
|                                                                                                                                                                                                                 | UT (TONS)          | ACTUAL: 400,000        |                                |                           | SIGN CAPACITY                                            |                     |  |
|                                                                                                                                                                                                                 |                    | MECHANIC               | ALLY FI                        | LLED                      |                                                          | FILLED FROM         |  |
| BLOWER                                                                                                                                                                                                          |                    | SCREW CONVEYOR         |                                |                           |                                                          | ١R                  |  |
|                                                                                                                                                                                                                 |                    | BELT CONVEYOR          |                                |                           |                                                          | •                   |  |
| OTHER:                                                                                                                                                                                                          |                    | BUCKET ELEVATOR        |                                |                           | _                                                        | AGE PILE            |  |
|                                                                                                                                                                                                                 |                    | OTHER:                 |                                |                           |                                                          | <u>t:</u>           |  |
| NO. FILL TUBES: 3                                                                                                                                                                                               |                    |                        |                                |                           |                                                          |                     |  |
| MAXIMUM ACFM: 9000                                                                                                                                                                                              |                    |                        |                                |                           |                                                          |                     |  |
| MATERIAL IS UNLOADED TO:<br>N/A                                                                                                                                                                                 |                    |                        |                                |                           |                                                          |                     |  |
| BY WHAT METHOD IS MATERIAL UNL<br>N/A                                                                                                                                                                           | LOADED FROM        | I SILO?                |                                |                           |                                                          |                     |  |
| MAXIMUM DESIGN FILLING RATE OF                                                                                                                                                                                  | - MATERIAL (T(     | ONS/HR): 125           |                                |                           |                                                          |                     |  |
| MAXIMUM DESIGN UNLOADING RATE                                                                                                                                                                                   | E OF MATERIA       | L (TONS/HR): N/A       |                                |                           |                                                          |                     |  |
| COMMENTS:<br>This form is for Transfer Silo Filling. Unlo                                                                                                                                                       | loading data is p  | rovided in Form B6 for | ES-36B.                        |                           |                                                          |                     |  |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCI                                                      | DEQ/Division of         | Air Quality - Applic     | ation for Air         | Permit to     | Construct/C     | Operate        |               | В                |
|--------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------|---------------|-----------------|----------------|---------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                             | Transfer Silo Un        | loading                  |                       | EMISSION      | 36B             |                |               |                  |
|                                                                          |                         |                          |                       | CONTROL       |                 | NO(S): CE      | 0-36          |                  |
| OPERATING SCENARIO                                                       | 1OF_                    | 1                        |                       |               | N POINT (ST     | . ,            |               | 3                |
| DESCRIBE IN DETAILTHE EMISSIO<br>Transfer silo unloaded at the rate of 7 |                         |                          |                       | ,             | X               |                |               |                  |
| TYPE OF EMISSION SO                                                      | URCE (CHECK A           | ND COMPLETE AP           | PROPRIAT              | E FORM B      | 1-B9 ON TH      | E FOLLOW       | ING PAGE      | S):              |
| Coal,wood,oil, gas, other burner (                                       | Form B1)                | Woodworking (            | Form B4)              |               | 🗆 Man           | uf. of chemi   | cals/coating  | gs/inks (Form    |
| Int.combustion engine/generator (                                        | (Form B2)               | Coating/finishin         | <b>U</b> . <b>U</b> . | ,             | 🗌 Incin         | eration (Fo    | rm B8)        |                  |
| Liquid storage tanks (Form B3)                                           |                         | Storage silos/bi         | ins (Form B6          | 6)            | □ Othe          | er (Form B9)   | )             |                  |
| START CONSTRUCTION DATE: TBI                                             | 0                       |                          | DATE MA               | NUFACTUF      | RED: TBD        |                |               |                  |
| MANUFACTURER / MODEL NO.: TB                                             | D                       |                          | EXPECTE               | D OP. SCH     | IEDULE: 24      | HR/DAY 7       | DAY/WK 5      | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                   | NSPS (SUBPART           | rs?):                    |                       |               | SHAP (SUB       | PARTS?):_      |               |                  |
| PERCENTAGE ANNUAL THROUGH                                                | PUT (%): DEC-FI         | EB 25 MAR-               | -MAY 25               | JUI           | N-AUG           | 25             | SEP-NOV       | 25               |
| CRITERIA                                                                 | AIR POLLUT              | ANT EMISSION             | S INFORI              | MATION        | FOR THI         | s sourd        | CE            |                  |
|                                                                          |                         | SOURCE OF                | EXPECTE               | D ACTUAL      | -               | POTENTIA       | L EMISSIC     | ONS              |
|                                                                          |                         | EMISSION                 | AFTER CONT            | ROLS / LIMITS | BEFORE CONT     | FROLS / LIMITS | (AFTER CO     | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                    |                         | FACTOR                   | lb/hr                 | tons/yr       | lb/hr           | tons/yr        | lb/hr         | tons/yr          |
| PARTICULATE MATTER (PM)                                                  |                         |                          |                       |               |                 |                |               |                  |
| PARTICULATE MATTER<10 MICRON                                             | S (PM <sub>10</sub> )   |                          |                       |               |                 |                |               |                  |
| PARTICULATE MATTER<2.5 MICRON                                            | IS (PM <sub>2.5</sub> ) |                          |                       |               |                 |                |               | 1                |
| SULFUR DIOXIDE (SO2)                                                     |                         |                          | SEE                   | APPENDIX      | B, Table 5      |                |               | 1                |
| NITROGEN OXIDES (NOx)                                                    |                         |                          |                       |               |                 |                |               |                  |
| CARBON MONOXIDE (CO)                                                     |                         |                          |                       |               |                 |                |               | 1                |
| VOLATILE ORGANIC COMPOUNDS                                               | (VOC)                   |                          |                       |               |                 |                |               | 1                |
| LEAD                                                                     |                         |                          |                       |               |                 |                |               |                  |
| OTHER                                                                    |                         |                          |                       |               |                 |                |               |                  |
| HAZARDOU                                                                 | S AIR POLLU             | TANT EMISSIC             | NS INFO               | RMATIO        | N FOR TI        | HIS SOU        | RCE           |                  |
|                                                                          |                         | SOURCE OF                | EXPECTE               | D ACTUAL      |                 | POTENTIA       |               | DNS              |
|                                                                          |                         | EMISSION                 | AFTER CONT            | ROLS / LIMITS | BEFORE CONT     | FROLS / LIMITS | (AFTER CO     | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                  | CAS NO.                 | FACTOR                   | lb/hr                 | tons/yr       | lb/hr           | tons/yr        | lb/hr         | tons/yr          |
|                                                                          |                         |                          |                       |               |                 | -              |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               | 1                |
|                                                                          |                         |                          |                       |               |                 |                |               | 1                |
|                                                                          |                         |                          |                       |               |                 |                |               | 1                |
|                                                                          |                         |                          | SEE                   | APPENDIX      | B, Table 5      |                |               | 1                |
|                                                                          |                         |                          |                       |               |                 |                |               | 1                |
|                                                                          |                         |                          |                       |               |                 |                |               | 1                |
|                                                                          |                         |                          |                       | İ             |                 |                |               |                  |
|                                                                          |                         |                          |                       | l             |                 |                |               | 1                |
|                                                                          |                         |                          |                       | [             |                 |                |               | [                |
| TOXIC A                                                                  | IR POLLUTA              | NT EMISSIONS             | <b>INFORM</b>         | ATION F       | OR THIS         | SOURCE         |               |                  |
|                                                                          |                         |                          | EVDEOTE               |               |                 |                |               |                  |
|                                                                          |                         | SOURCE OF<br>EMISSION    | EXPECTE               | DACTUAL       | EMISSION        | S AFTER C      | UNTROLS       | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                      | CAS NO.                 | FACTOR                   | lb                    | /hr           | lb/             | day            |               | lb/yr            |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
|                                                                          |                         |                          | SEE AF                | PENDIX B      | , Table 5       |                |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
|                                                                          |                         |                          |                       |               |                 |                |               |                  |
| Attachments: (1) emissions calculations an                               | d supporting docum      | entation: (2) indicate a | I requested st        | ate and fede  | ral enforceable | e permit limit | s (e.a. hours | of operation.    |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| REVISED 09/22/16                                 | NCDEQ/Divis             | sion of Air Quality - Ap | plicatior                     | n for Air Permit to Con | struct/Oper | rate                      | B6 |
|--------------------------------------------------|-------------------------|--------------------------|-------------------------------|-------------------------|-------------|---------------------------|----|
| EMISSION SOURCE DESCRIPT                         | FION: Transfer Silo Ur  | nloading                 |                               | EMISSION SO             | URCE ID NO  | D: ES-36B                 |    |
|                                                  |                         |                          |                               | CONTROL DE              | VICE ID NO  | (S): CD-36                |    |
| OPERATING SCENARIO:                              | 1                       | OF1                      |                               | EMISSION PO             | INT(STACK)  | ) ID NO(S): EP-36         |    |
| DESCRIBE IN DETAIL THE PRO                       |                         |                          | uct captu                     | ire device.             |             |                           |    |
| MATERIAL STORED: Fly Ash                         |                         |                          |                               | DENSITY OF MATERI       | AL (LB/FT3) | ): 60 bulk, 90 structural |    |
| CAPACITY                                         | CUBIC FEET: N/A         |                          |                               | TONS: 300               |             |                           |    |
| DIMENSIONS (FEET)                                | HEIGHT: 100             | DIAMETER: 41             | METER: 41 (OR) LENGTH: WIDTH: |                         |             |                           |    |
| ANNUAL PRODUCT THRO                              | UGHPUT (TONS)           | ACTUAL: 400,000          |                               | MAXIMUM DES             | SIGN CAPA   | CITY: 400,000             |    |
| PNEUMATICALLY FIL                                | LED                     | MECHANIC                 | ALLY FI                       | LLED                    |             | FILLED FROM               |    |
| □ BLOWER                                         |                         | SCREW CONVEYOR           |                               |                         | 🗆 RA        | AILCAR                    |    |
|                                                  |                         | BELT CONVEYOR            |                               |                         |             | RUCK                      |    |
| OTHER:                                           |                         | BUCKET ELEVATOR          |                               |                         | □ st        | ORAGE PILE                |    |
|                                                  |                         | OTHER:                   |                               |                         | П от        | THER:                     |    |
| NO. FILL TUBES: N/A                              |                         |                          |                               |                         |             |                           |    |
| MAXIMUM ACFM: 9000                               |                         |                          |                               |                         |             |                           |    |
| MATERIAL IS UNLOADED TO:                         |                         |                          |                               |                         |             |                           |    |
| N/A<br>BY WHAT METHOD IS MATERI                  |                         |                          |                               |                         |             |                           |    |
| Gravity                                          |                         |                          |                               |                         |             |                           |    |
| MAXIMUM DESIGN FILLING RA                        |                         |                          |                               |                         |             |                           |    |
| MAXIMUM DESIGN UNLOADIN                          | G RATE OF MATERI        | AL (TONS/HR): 75         |                               |                         |             |                           |    |
| COMMENTS:<br>This form is for Transfer Silo Unle | oading. Filling data is | provided in Form B6 for  | ES-36A                        |                         |             |                           |    |
|                                                  |                         |                          |                               |                         |             |                           |    |

| REVISED 09/22/16                                             | REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1 |                  |         |                      |          |                     |          |                        |            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|---------|----------------------|----------|---------------------|----------|------------------------|------------|
| CONTROL DEVICE ID NO: CD-36                                  | CONTROLS EMISSI                                                                                     | ONS FROM WHICH   | EMISS   | ION SOURCE ID NO(S)  | : ES-36  | 6A & ES-36B         |          |                        |            |
| EMISSION POINT (STACK) ID NO(S): EP-36                       | POSITION IN SERIE                                                                                   | S OF CONTROLS    |         |                      |          | NO.                 | 1        | OF 1                   | UNITS      |
| OPERATING SCENARIO:                                          |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
| 1OF1                                                         |                                                                                                     | P.E. SEAL REQUIR | ED (PE  | ER 2q .0112)?        |          | 7                   | YES      |                        | NO         |
| DESCRIBE CONTROL SYSTEM: A bin vent for particulate c        | ontrol on the transfer s                                                                            | ilo.             |         |                      |          |                     |          |                        |            |
| POLLUTANTS COLLECTED:                                        |                                                                                                     | PM (Filling)     |         | PM10/PM2.5 (Filling) |          | PM (Unloading)      | -        | PM10/PM2.5 (Unloading) |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                        |                                                                                                     | 0.0061           |         | 0.0029               |          | 0.0037              |          | 0.0017                 |            |
| CAPTURE EFFICIENCY:                                          |                                                                                                     | <= 0.005 gr/dscf | %       | <= 0.005 gr/dscf     | %        | <= 0.005 gr/dscf    | %        | <= 0.005 gr/dscf       | %          |
| CONTROL DEVICE EFFICIENCY:                                   |                                                                                                     | N/A              | %       | N/A                  | %        | N/A                 | %        | N/A                    | %          |
| CORRESPONDING OVERALL EFFICIENCY:                            |                                                                                                     | N/A              | %       | N/A                  | %        | N/A                 | %        | N/A                    | %          |
| EFFICIENCY DETERMINATION CODE:                               |                                                                                                     | 2                |         | 2                    |          | 2                   | •        | 2                      |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                   |                                                                                                     | 0.0061           |         | 0.0029               |          | 0.0037              |          | 0.0017                 |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-15 wg | GAUGE?                                                                                              | ] YES            |         | ] NO                 |          |                     |          |                        |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25              |                                                                                                     | INLET TEMPERATU  | JRE (°F | F): Contract         | MIN      |                     | MAX      |                        |            |
| POLLUTANT LOADING RATE: N/A 🛛 LB/HR 🛛                        | GR/FT <sup>3</sup>                                                                                  | OUTLET TEMPERA   | TURE    | (°F) Contract        | MIN      |                     | MAX      |                        |            |
| INLET AIR FLOW RATE (ACFM): 1300                             |                                                                                                     | FILTER OPERATIN  | G TEM   | P (°F): Contract     |          |                     |          |                        |            |
| NO. OF COMPARTMENTS: 1 NO. OF BAGS F                         | PER COMPARTMENT:                                                                                    | Contract         |         |                      | LENG     | TH OF BAG (IN.):    | 20-30    |                        |            |
|                                                              | CE AREA PER CARTE                                                                                   |                  | t.      |                      |          | TER OF BAG (IN.)    |          |                        |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract       | AIR TO CLOTH RAT                                                                                    | . ,              |         |                      | 20,000   |                     |          |                        |            |
| DRAFT TYPE: INDUCED/NEGATIVE                                 | FORCED/POSITIVE                                                                                     | 0. 104.1         |         | FILTER MATERIAL: C   | artridad | Style 2             | WOVE     | N 🗆                    | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                                | TORCED/TOSITIVE                                                                                     |                  |         | TIETER WATERIAL G    | artriuge |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         | r i                  |          |                     | AKTIC    |                        |            |
| AIR PULSE                                                    | SONIC                                                                                               |                  |         |                      |          | SIZE                |          | WEIGHT %               | CUMULATIVE |
| REVERSE FLOW                                                 | SIMPLE BAG COLLA                                                                                    | APSE             |         |                      |          | (MICRONS)           |          | OF TOTAL               | %          |
| □ MECHANICAL/SHAKER □                                        | RING BAG COLLAPS                                                                                    | SE               |         |                      |          | 0-1                 |          |                        |            |
| OTHER:                                                       |                                                                                                     |                  |         |                      |          | 1-10                |          |                        |            |
| DESCRIBE INCOMING AIR STREAM: Air stream will contain        | fly ash.                                                                                            |                  |         |                      |          | 10-25               |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | 25-50               |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | 50-100              |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | >100                |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          | TOTAL = 100            |            |
|                                                              |                                                                                                     |                  |         |                      | Suppli   | er specific, 94% pa | ssing 32 |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING                 | THE RELATIONSHIP                                                                                    | OF THE CONTROL [ | DEVICE  | TO ITS EMISSION SO   | URCE(    | (S):                |          |                        |            |
| COMMENTS:                                                    |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |          |                        |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCD                                                         | EQ/Division of         | Air Quality - Applic  | ation for A | ir Permit to                  | Construct/  | Operate     |               | В                |  |
|-----------------------------------------------------------------------------|------------------------|-----------------------|-------------|-------------------------------|-------------|-------------|---------------|------------------|--|
| EMISSION SOURCE DESCRIPTION:                                                | Storage Dome           | Filling               |             | EMISSION SOURCE ID NO: ES-37A |             |             |               |                  |  |
|                                                                             |                        |                       |             | CONTROL                       |             | ) NO(S): CE | D-37          |                  |  |
| OPERATING SCENARIO                                                          | 1OF                    | 1                     |             | EMISSION                      | I POINT (ST | ACK) ID N   | O(S): EP-37   | 7                |  |
| DESCRIBE IN DETAILTHE EMISSIO<br>Storage Dome silo is filled at the rate of |                        |                       |             | ,                             | rice.       |             |               |                  |  |
| TYPE OF EMISSION SOU                                                        | RCE (CHECK A           |                       | PPROPRIA    | TE FORM B                     |             |             |               |                  |  |
| Coal,wood,oil, gas, other burner (I                                         | Form B1)               |                       | ` '         |                               | 🗆 Man       | uf. of chem | icals/coating | gs/inks (Form E  |  |
| Int.combustion engine/generator (                                           | Form B2)               | Coating/finish        | 01 0        | · /                           |             | eration (Fo | ,             |                  |  |
| Liquid storage tanks (Form B3)                                              |                        | Storage silos/        | bins (Form  | B6)                           |             | er (Form B9 | )             |                  |  |
| START CONSTRUCTION DATE: TBE                                                | )                      |                       | T           | NUFACTUR                      |             |             |               |                  |  |
| MANUFACTURER / MODEL NO.: TBI                                               |                        |                       | EXPECTE     | D OP. SCH                     | EDULE: 24   | HR/DAY 7    | DAY/WK 5      | 52 WK/YR         |  |
|                                                                             | NSPS (SUBPAR           | /                     |             |                               | SHAP (SUB   | PARTS?):_   |               |                  |  |
| PERCENTAGE ANNUAL THROUGHE                                                  | . ,                    | -                     | R-MAY 2     |                               | UN-AUG      | 25          | SEP-NO        | V 25             |  |
| CRITERIA A                                                                  | AIR POLLUT             | ANT EMISSION          | -           |                               | FOR TH      |             |               |                  |  |
|                                                                             |                        | SOURCE OF             |             | D ACTUAL                      |             | -           | AL EMISSIO    |                  |  |
|                                                                             |                        | EMISSION              |             | ROLS / LIMITS                 |             |             |               | NTROLS / LIMITS) |  |
|                                                                             |                        | FACTOR                | lb/hr       | tons/yr                       | lb/hr       | tons/yr     | lb/hr         | tons/yr          |  |
| PARTICULATE MATTER (PM)                                                     |                        |                       |             | <b> </b>                      |             |             |               |                  |  |
| PARTICULATE MATTER<10 MICRONS                                               | 10,                    |                       |             |                               |             |             |               |                  |  |
| PARTICULATE MATTER<2.5 MICRON                                               | S (PM <sub>2.5</sub> ) |                       |             |                               |             |             |               |                  |  |
| SULFUR DIOXIDE (SO2)                                                        |                        |                       | 055         |                               |             |             |               |                  |  |
|                                                                             |                        |                       | SEE         | APPENDIX                      | B, Table 6  |             |               |                  |  |
|                                                                             | (1 (0 0)               |                       |             |                               |             |             |               |                  |  |
| VOLATILE ORGANIC COMPOUNDS                                                  | (VUC)                  |                       |             |                               |             |             |               |                  |  |
| LEAD                                                                        |                        |                       |             |                               |             |             |               |                  |  |
| OTHER                                                                       |                        | TANT EMISSIO          |             |                               |             |             | IPCE          |                  |  |
| MAZANDOUS                                                                   |                        | Ì                     |             |                               | 1           |             |               | 2010             |  |
|                                                                             |                        | SOURCE OF<br>EMISSION |             |                               |             |             |               | NTROLS / LIMITS) |  |
| HAZARDOUS AIR POLLUTANT                                                     | CAS NO.                | FACTOR                | lb/hr       | tons/yr                       | lb/hr       | tons/yr     | lb/hr         | tons/yr          |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        |                       | SEE         | APPENDIX                      | B Tablo 6   |             |               |                  |  |
|                                                                             |                        |                       | JLL         |                               |             |             |               |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        | 1                     |             | 1                             |             |             |               |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
| TOXIC AI                                                                    | R POLLUTAI             | NT EMISSIONS          | INFORM      | ATION F                       | OR THIS     | SOURC       | E             |                  |  |
|                                                                             |                        | SOURCE OF             | 1           |                               |             |             |               | / LIMITATIONS    |  |
| TOXIC AIR POLLUTANT                                                         | CAS NO.                | EMISSION<br>FACTOR    | lt          | o/hr                          | lb/e        | day         |               | lb/yr            |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |
|                                                                             |                        |                       | SEE A       | PPENDIX B                     | , Table 6   |             |               |                  |  |
|                                                                             |                        | 1                     | 1           |                               |             |             | 1             |                  |  |
|                                                                             |                        | 1                     | 1           |                               | 1           |             | 1             |                  |  |
|                                                                             |                        |                       |             |                               |             |             |               |                  |  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| REVISED 09/22/16                                                 | NCDEQ/Divis              | ion of Air Quality - Ap | plicatior | n for Aiı | r Permit to Con | struct/C | Operate    |                    | B6 |
|------------------------------------------------------------------|--------------------------|-------------------------|-----------|-----------|-----------------|----------|------------|--------------------|----|
| EMISSION SOURCE DESCRIPT                                         | FION: Storage Dome F     | filling                 |           |           | EMISSION SOL    | JRCE II  | D NO: ES-  | 37A                |    |
|                                                                  |                          |                         |           |           | CONTROL DEV     | /ICE ID  | NO(S): CI  | D-37               |    |
| OPERATING SCENARIO:                                              | 1                        | OF1                     |           |           | EMISSION POI    | NT(STA   | ACK) ID NO | D(S): EP-37        |    |
| DESCRIBE IN DETAIL THE PRC<br>Storage Dome is filled at the rate |                          |                         | uct captu | ure devic | ce.             |          |            |                    |    |
| MATERIAL STORED: Fly Ash                                         |                          |                         |           | DENSI     | TY OF MATERIA   | AL (LB/I | FT3): 60 b | ulk, 90 structural |    |
|                                                                  | CUBIC FEET: N/A          |                         |           |           | 30,000          |          |            |                    |    |
| DIMENSIONS (FEET)                                                | HEIGHT: 125              | DIAMETER: 41            | (OR)      | LENGT     | ſH:             | WIDTH    |            | HEIGHT:            |    |
| ANNUAL PRODUCT THRO                                              | UGHPUT (TONS)            | ACTUAL: 400,000         |           |           | MAXIMUM DES     | SIGN CA  | APACITY:   | 400,000            |    |
| PNEUMATICALLY FIL                                                | LED                      | MECHANIC                | ALLY FI   | LLED      |                 |          |            | FILLED FROM        |    |
| BLOWER                                                           |                          | SCREW CONVEYOR          | ,         |           |                 |          | RAILCAF    | २                  |    |
|                                                                  |                          | BELT CONVEYOR           |           |           |                 |          | TRUCK      |                    |    |
| OTHER:                                                           |                          | BUCKET ELEVATOR         |           |           |                 |          | STORAG     | GE PILE            |    |
|                                                                  |                          | OTHER:                  |           |           |                 |          | OTHER:     |                    |    |
| NO. FILL TUBES: 1                                                |                          |                         |           |           |                 |          |            |                    |    |
| MAXIMUM ACFM: 7600                                               |                          |                         |           |           |                 |          |            |                    |    |
| MATERIAL IS UNLOADED TO:                                         |                          |                         |           |           |                 |          |            |                    |    |
| N/A<br>BY WHAT METHOD IS MATERI<br>N/A                           | AL UNLOADED FROM         | / SILO?                 |           |           |                 |          |            |                    |    |
|                                                                  |                          |                         |           |           |                 |          |            |                    |    |
| MAXIMUM DESIGN FILLING RA                                        |                          |                         |           |           |                 |          |            |                    |    |
| MAXIMUM DESIGN UNLOADIN                                          | G RATE OF MATERIA        | L (TONS/HR): N/A        |           |           |                 |          |            |                    |    |
| COMMENTS:<br>This form is for Storage Dome Fi                    | lling. Unloading data is | s provided in Form B6 f | or ES-37  | В.        |                 |          |            |                    |    |
|                                                                  |                          |                         |           |           |                 |          |            |                    |    |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                    | Q/Division of A      | Air Quality - Applic | ation for A | ir Permit to   | Construct/  | Operate       |               | В                |
|-----------------------------------------|----------------------|----------------------|-------------|----------------|-------------|---------------|---------------|------------------|
| EMISSION SOURCE DESCRIPTION: \$         | Storage Dome         | Unloading            |             | EMISSION       | SOURCE I    | D NO: ES-     | 37B           |                  |
|                                         |                      |                      |             |                | DEVICE ID   |               |               |                  |
| OPERATING SCENARIO1_                    | OF                   | 1                    |             | 1              | POINT (ST   | . ,           |               |                  |
| DESCRIBE IN DETAILTHE EMISSION          |                      | DCESS (ATTACH F      |             |                | (           |               | 0(0): 2: 0:   |                  |
| Storage Dome is unloaded at the rate of |                      | -                    |             | -              | evice.      |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
| TYPE OF EMISSION SOUR                   | CE (CHECK A          | ND COMPLETE A        | PPROPRIA    | TE FORM B      |             |               |               |                  |
| Coal,wood,oil, gas, other burner (Fo    | orm B1)              |                      | (Form B4)   |                | 🗆 Manı      | uf. of chemi  | icals/coating | js/inks (Form E  |
| □ Int.combustion engine/generator (Fo   | orm B2)              | Coating/finish       | 0. 0        | ,              | 🗌 Incin     | eration (For  | rm B8)        |                  |
| Liquid storage tanks (Form B3)          |                      | Storage silos/       | bins (Form  | B6)            | Othe Othe   | er (Form B9)  | )             |                  |
| START CONSTRUCTION DATE: TBD            |                      |                      | DATE MA     | NUFACTUR       | ED: TBD     |               |               |                  |
| MANUFACTURER / MODEL NO.: TBD           |                      |                      | EXPECTE     | D OP. SCH      | EDULE: 24   | HR/DAY 7      | DAY/WK 5      | 2 WK/YR          |
| IS THIS SOURCE SUBJECT                  | SPS (SUBPAR          | TS?):                |             |                | SHAP (SUBI  | PARTS?):_     |               |                  |
| PERCENTAGE ANNUAL THROUGHPU             | ( )                  |                      | R-MAY 2     |                | UN-AUG      | 25            | SEP-NO        | √ 25             |
| CRITERIA AI                             | R POLLUTA            | ANT EMISSION         | IS INFOR    | RMATION        | FOR TH      | IS SOUR       | CE            |                  |
|                                         |                      | SOURCE OF            | EXPECTE     | ED ACTUAL      |             | POTENTI/      | AL EMISSIC    | NS               |
|                                         |                      | EMISSION             | AFTER CONT  | FROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER CON    | ITROLS / LIMITS) |
| AIR POLLUTANT EMITTED                   |                      | FACTOR               | lb/hr       | tons/yr        | lb/hr       | tons/yr       | lb/hr         | tons/yr          |
| PARTICULATE MATTER (PM)                 |                      |                      | T           |                |             |               |               |                  |
| PARTICULATE MATTER<10 MICRONS (         | (PM <sub>10</sub> )  |                      |             |                |             | <u> </u>      |               |                  |
| PARTICULATE MATTER<2.5 MICRONS          | (PM <sub>2.5</sub> ) |                      |             |                |             |               |               |                  |
| SULFUR DIOXIDE (SO2)                    |                      |                      |             |                |             |               |               |                  |
| NITROGEN OXIDES (NOx)                   |                      |                      | SEE         | APPENDIX       | B, Table 6  | <u> </u>      |               |                  |
| CARBON MONOXIDE (CO)                    |                      |                      |             |                |             | <u> </u>      |               |                  |
| VOLATILE ORGANIC COMPOUNDS (V           | /OC)                 |                      | <u> </u>    |                |             |               |               |                  |
| LEAD                                    |                      |                      |             |                |             | <u> </u>      |               |                  |
| OTHER                                   |                      | <u> </u>             | I           | T              | []          | ſ             |               |                  |
| HAZARDOUS                               | AIR POLLU            | TANT EMISSIC         | ONS INFO    | ORMATIO        | N FOR T     | 'HIS SOU      | IRCE          |                  |
|                                         | T                    | SOURCE OF            | EXPECTE     | ED ACTUAL      |             | POTENTIA      | AL EMISSIC    | NS               |
|                                         |                      | EMISSION             | AFTER CONT  | FROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER CON    | ITROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                 | CAS NO.              | FACTOR               | lb/hr       | tons/yr        | lb/hr       | tons/yr       | lb/hr         | tons/yr          |
|                                         |                      |                      |             |                |             | <b></b>       |               |                  |
|                                         |                      |                      |             |                |             | <u> </u>      |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      |                      | SEE         | APPENDIX       | B, Table 6  |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      | L                    |             |                |             |               |               |                  |
|                                         |                      |                      |             |                |             | <b></b>       |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
| TOXIC AIR                               | POLLUTAN             | NT EMISSIONS         | INFORM      | 1ATION F       | OR THIS     | SOURC         | E             |                  |
|                                         |                      | SOURCE OF            | EXPECTE     | DACTUAL        | EMISSIONS   | S AFTER C     | ONTROLS       | LIMITATIONS      |
| TOXIC AIR POLLUTANT                     | CAS NO.              | EMISSION<br>FACTOR   |             | o/hr           | lb/r        | day           |               | lb/yr            |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      | <u> </u>             | <u> </u>    |                |             |               |               |                  |
|                                         |                      | <u> </u>             |             | PPENDIX B.     | Table 6     |               |               |                  |
|                                         |                      |                      | SEE AF      | PENDIA D,      | Table 6     |               |               |                  |
|                                         |                      |                      |             | i              |             |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |
|                                         |                      |                      |             |                |             |               |               |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| NCDEQ/Divi             | sion of Air Quality        | y - Applicatior                       | for Air Permit to C                   | onstruct/Operate                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      | B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|----------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ION: Storage Dome      | Unloading                  |                                       | EMISSION S                            | SOURCE ID NO: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-37B                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       | CONTROL D                             | EVICE ID NO(S):                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CD-37                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                      | OF                         | 1                                     | EMISSION F                            | OINT(STACK) ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO(S): EP-37                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            | n vent product                        | capture device.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       | DENSITY OF MATE                       | RIAL (LB/FT3): 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) bulk, 90 structural                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CUBIC FEET: N/A        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HEIGHT: 125            | DIAMETER: 41               |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UGHPUT (TONS)          | ACTUAL: 400,0              | 00                                    | MAXIMUM D                             | ESIGN CAPACIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y: 400,000                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LED                    | MECH                       | IANICALLY FI                          | LLED                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FILLED FROM                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | SCREW CONVE                | EYOR                                  |                                       | RAILC                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AR                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | BELT CONVEYO               | OR                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | к                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | BUCKET ELEVA               | ATOR                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGE PILE                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | OTHER:                     |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                            |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| G RATE OF MATERI       | AL (TONS/HR): 27           | 5                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nloading. Filling data | is provided in Form        | n B6 for ES-37                        | Α.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | ION: Storage Dome        1 | ION: Storage Dome Unloading        OF | ION: Storage Dome Unloading        OF | ION: Storage Dome Unloading EMISSION S<br>CONTROL D<br>OF EMISSION F<br>CCESS (ATTACH FLOW DIAGRAM):<br>rate of 275 ton/hr and equipped with bin vent product capture device.<br>DENSITY OF MATE<br>CUBIC FEET: N/A TONS: 30,000<br>HEIGHT: 125 DIAMETER: 41 ( <i>OR</i> ) LENGTH:<br>UGHPUT (TONS) ACTUAL: 400,000 MAXIMUM D<br>LED MECHANICALLY FILLED<br>SCREW CONVEYOR<br>BELT CONVEYOR<br>BUCKET ELEVATOR<br>OTHER:<br>AL UNLOADED FROM SILO?<br>TE OF MATERIAL (TONS/HR): N/A | ION: Storage Dome Unloading EMISSION SOURCE ID NO: E<br>CONTROL DEVICE ID NO(S):<br> | Image: CONTROL DEVICE ID NO(S): CD-37         Image: CONTROL DEVICE ID NO(S): CD-37         CESS (ATTACH FLOW DIAGRAM):         rate of 275 ton/hr and equipped with bin vent product capture device.         DENSITY OF MATERIAL (LB/FT3): 60 bulk, 90 structural         CUBIC FEET: N/A       TONS: 30,000         HEIGHT: 125       DIAMETER: 41       (OR)         JUGHPUT (TONS)       ACTUAL: 400,000       MAXIMUM DESIGN CAPACITY: 400,000         LED       MECHANICALLY FILLED       FILLED FROM         Image: |

| REVISED 09/22/16                                             | REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1 |                  |         |                      |          |                     |         |                        |            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|---------|----------------------|----------|---------------------|---------|------------------------|------------|
| CONTROL DEVICE ID NO: CD-37                                  | CONTROLS EMISSI                                                                                     | ONS FROM WHICH   | EMISS   | ION SOURCE ID NO(S)  | : ES-37  | 'A & ES-37B         |         |                        |            |
| EMISSION POINT (STACK) ID NO(S): EP-37                       | POSITION IN SERIE                                                                                   | S OF CONTROLS    |         |                      |          | NO.                 | 1       | OF 1                   | UNITS      |
| OPERATING SCENARIO:                                          |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
| 1OF1                                                         |                                                                                                     | P.E. SEAL REQUIR | ED (PE  | ER 2q .0112)?        |          | 7                   | YES     |                        | NO         |
| DESCRIBE CONTROL SYSTEM: A bin vent for particulate c        | control on the storage d                                                                            | lome.            |         |                      |          |                     |         |                        |            |
| POLLUTANTS COLLECTED:                                        |                                                                                                     | PM (Filling)     |         | PM10/PM2.5 (Filling) |          | PM (Unloading)      |         | PM10/PM2.5 (Unloading) |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                        |                                                                                                     | 0.0037           |         | 0.0017               |          | 0.0134              |         | 0.0063                 |            |
| CAPTURE EFFICIENCY:                                          |                                                                                                     | <= 0.005 gr/dscf | %       | <= 0.005 gr/dscf     | %        | <= 0.005 gr/dscf    | %       | <= 0.005 gr/dscf       | %          |
| CONTROL DEVICE EFFICIENCY:                                   |                                                                                                     | N/A              | %       | N/A                  | %        | N/A                 | %       | N/A                    | %          |
| CORRESPONDING OVERALL EFFICIENCY:                            |                                                                                                     | N/A              | %       | N/A                  | %        | N/A                 | %       | N/A                    | %          |
| EFFICIENCY DETERMINATION CODE:                               |                                                                                                     | 2                |         | 2                    |          | 2                   |         | 2                      |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                   |                                                                                                     | 0.0037           |         | 0.0017               |          | 0.0134              |         | 0.0063                 |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-15 wg | GAUGE?                                                                                              | YES              |         | ] NO                 |          |                     |         |                        |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25              |                                                                                                     | INLET TEMPERATU  | JRE (°F | F): Contract         | MIN      |                     | MAX     |                        |            |
| POLLUTANT LOADING RATE: N/A 🛛 LB/HR 🛛                        | GR/FT <sup>3</sup>                                                                                  | OUTLET TEMPERA   | TURE    | (°F) Contract        | MIN      |                     | MAX     |                        |            |
| INLET AIR FLOW RATE (ACFM): 1300                             |                                                                                                     | FILTER OPERATIN  | G TEM   | P (°F): Contract     |          |                     |         |                        |            |
| NO. OF COMPARTMENTS: 1 NO. OF BAGS F                         | PER COMPARTMENT:                                                                                    | Contract         |         |                      | LENG     | TH OF BAG (IN.): 2  | 20-30   |                        |            |
|                                                              | CE AREA PER CARTI                                                                                   |                  | :t      |                      |          | TER OF BAG (IN.)    |         |                        |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract       | AIR TO CLOTH RAT                                                                                    | · · /            |         |                      |          |                     |         |                        |            |
| DRAFT TYPE: I INDUCED/NEGATIVE                               | FORCED/POSITIVE                                                                                     |                  |         | FILTER MATERIAL: Ca  | artridae | Style 🔽             | WOVE    | N 🗆                    | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                                | TOROLD/TOOTIVE                                                                                      |                  |         | THETER MULTERINE. O  | annage   |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         | F                    |          |                     | ARTIO   |                        |            |
| ☑ AIR PULSE                                                  | SONIC                                                                                               |                  |         |                      |          | SIZE                |         | WEIGHT %               | CUMULATIVE |
| REVERSE FLOW                                                 | SIMPLE BAG COLLA                                                                                    | APSE             |         |                      |          | (MICRONS)           |         | OF TOTAL               | %          |
| MECHANICAL/SHAKER                                            | RING BAG COLLAPS                                                                                    | SE               |         |                      |          | 0-1                 | -       |                        |            |
| OTHER:                                                       |                                                                                                     |                  |         |                      |          | 1-10                | -       |                        |            |
| DESCRIBE INCOMING AIR STREAM: Air stream will contain        | i fly ash.                                                                                          |                  |         |                      |          | 10-25               |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | 25-50               |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | 50-100              |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          | >100                |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         | TOTAL = 100            |            |
|                                                              |                                                                                                     |                  |         |                      | Suppli   | er specific, 94% pa | ssing 3 | 25 mesh                |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING<br>COMMENTS:    | THE RELATIONSHIP                                                                                    | OF THE CONTROL [ | DEVICE  | TO ITS EMISSION SO   | URCE(    | S):                 |         |                        |            |
| COMMENTS:                                                    |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |
|                                                              |                                                                                                     |                  |         |                      |          |                     |         |                        |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                        | EQ/Division of A    | Air Quality - Applica | ation for Ai   | r Permit to   | Construct/    | Operate        |           | В                |
|-----------------------------------------------------------------------------|---------------------|-----------------------|----------------|---------------|---------------|----------------|-----------|------------------|
| EMISSION SOURCE DESCRIPTION:                                                | Loadout Silo        |                       |                | EMISSION      | SOURCE        | ID NO: ES-3    | 38        |                  |
|                                                                             |                     |                       |                |               |               | D NO(S): CE    |           |                  |
| OPERATING SCENARIO                                                          | OF                  | 1                     |                | 1             |               | FACK) ID N     |           | 3                |
| DESCRIBE IN DETAILTHE EMISSION<br>Loadout silo is unloaded at the rate of 3 | SOURCE PRO          | CESS (ATTACH FL       |                | AM):          |               |                |           | <u>.</u>         |
| TYPE OF EMISSION SOU                                                        | RCE (CHECK A        | ND COMPLETE AF        | PROPRIAT       | E FORM B      | 1-B9 ON TH    | E FOLLOV       | ING PAGE  | S):              |
| Coal,wood,oil, gas, other burner (Fo                                        | •                   | □ Woodworking (       |                |               | _             |                |           | gs/inks (Form I  |
| Int.combustion engine/generator (F                                          | orm B2)             | Coating/finishir      | ng/printing (I | Form B5)      |               | neration (Fo   |           |                  |
| Liquid storage tanks (Form B3)                                              |                     | Storage silos/b       | ins (Form B    | 6)            | □ Othe        | er (Form B9    | )         |                  |
| START CONSTRUCTION DATE: TBD                                                |                     |                       | DATE MA        | NUFACTUR      | ED: TBD       |                |           |                  |
| MANUFACTURER / MODEL NO.: TBD                                               |                     |                       | EXPECTE        | D OP. SCH     | EDULE: 24     | HR/DAY 7       | DAY/WK    | 52 WK/YR         |
|                                                                             | SPS (SUBPAR         | TS?):                 |                |               | SHAP (SUB     | PARTS?):       |           |                  |
| PERCENTAGE ANNUAL THROUGHPU                                                 | JT (%): DEC-F       | EB 25 MAR             | -MAY 25        | JU            | N-AUG         | 25             | SEP-NOV   | 25               |
| CRITERIA A                                                                  | IR POLLUT           | ANT EMISSION          | S INFOR        | MATION        | FOR TH        | S SOUR         | CE        |                  |
|                                                                             |                     | SOURCE OF             | EXPECTE        | D ACTUAL      |               | POTENTIA       | L EMISSIC | ONS              |
|                                                                             |                     | EMISSION              | AFTER CONT     | ROLS / LIMITS | BEFORE CON    | TROLS / LIMITS | (AFTER CO | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                       |                     | FACTOR                | lb/hr          | tons/yr       | lb/hr         | tons/yr        | lb/hr     | tons/yr          |
| PARTICULATE MATTER (PM)                                                     |                     |                       |                | , í           | 1             | , í            |           | ´                |
| PARTICULATE MATTER<10 MICRONS                                               | (PM <sub>10</sub> ) |                       |                |               | 1             | 1              |           | [                |
| PARTICULATE MATTER<2.5 MICRONS                                              | -                   |                       |                |               | 1             | 1              |           | [                |
| SULFUR DIOXIDE (SO2)                                                        |                     |                       |                |               |               |                |           | [                |
| NITROGEN OXIDES (NOx)                                                       |                     |                       | SEE            | APPENDIX      | B, Table 6    | 1              |           | [                |
| CARBON MONOXIDE (CO)                                                        |                     |                       |                |               |               |                |           | [                |
| VOLATILE ORGANIC COMPOUNDS (                                                | /OC)                |                       |                |               |               |                |           | [                |
| LEAD                                                                        | ,                   |                       |                |               | 1             | 1              |           | [                |
| OTHER                                                                       |                     |                       |                |               |               |                |           |                  |
| HAZARDOUS                                                                   | AIR POLLU           | TANT EMISSIC          | NS INFO        | RMATIO        | N FOR T       | HIS SOU        | RCE       |                  |
|                                                                             |                     | SOURCE OF             | EXPECTE        | D ACTUAL      |               | POTENTIA       | L EMISSIC | ONS              |
|                                                                             |                     | EMISSION              | AFTER CONT     | ROLS / LIMITS | BEFORE CON    | TROLS / LIMITS | (AFTER CO | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                     | CAS NO.             | FACTOR                | lb/hr          | tons/yr       | lb/hr         | tons/yr        | lb/hr     | tons/yr          |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       | SEE            | APPENDIX      | B, Table 6    |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
| TOXIC AIR                                                                   | POLLUTAI            | NT EMISSIONS          | INFORM         | ATION F       | OR THIS       | SOURCE         |           |                  |
|                                                                             |                     | SOURCE OF             | EXPECTE        | D ACTUAL      | EMISSION      | S AFTER C      | ONTROLS   | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                         | CAS NO.             | EMISSION<br>FACTOR    | lb             | /hr           | lb/           | day            |           | lb/yr            |
|                                                                             |                     |                       |                |               |               | ,              |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       | SEE AF         | PENDIX B      | Table 6       |                |           |                  |
|                                                                             |                     |                       |                |               |               |                |           |                  |
|                                                                             |                     |                       | 1              |               |               |                |           |                  |
|                                                                             |                     |                       | 1              |               |               |                |           |                  |
|                                                                             | 1                   | 1                     | 1              |               | ral enforceab |                | 1         |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| REVISED 09/22/16                     | NCDEQ/Divis         | ion of Air Quality - Ap | plicatior | n for Air Permit to Cor | nstruct/Operate     |             | B6 |
|--------------------------------------|---------------------|-------------------------|-----------|-------------------------|---------------------|-------------|----|
| EMISSION SOURCE DESCRIPT             | FION: Loadout Silo  |                         |           | EMISSION SO             | URCE ID NO: ES-38   |             |    |
|                                      |                     |                         |           | CONTROL DE              | VICE ID NO(S): CD-3 | 38          |    |
| OPERATING SCENARIO:                  | 1                   | OF1                     |           | EMISSION PO             | INT(STACK) ID NO(   | S): EP-38   |    |
| DESCRIBE IN DETAIL THE PRO           |                     |                         | roduct ca | apture device.          |                     |             |    |
| MATERIAL STORED: Fly Ash             |                     |                         |           | DENSITY OF MATER        | IAL (LB/FT3): N/A   |             |    |
|                                      | CUBIC FEET: N/A     |                         |           | TONS: 50,000            |                     |             |    |
|                                      | HEIGHT: 111         | DIAMETER: 41            | (OR)      | LENGTH:                 | WIDTH: H            | IEIGHT:     |    |
| ANNUAL PRODUCT THRO                  | •                   | ACTUAL: 400,000         |           |                         | SIGN CAPACITY: 40   | 00,000      |    |
| PNEUMATICALLY FIL                    |                     | MECHANIC                | ALLY FI   | LLED                    |                     | FILLED FROM |    |
| BLOWER                               |                     | SCREW CONVEYOR          |           |                         | □ RAILCAR           |             |    |
|                                      |                     | BELT CONVEYOR           |           |                         |                     |             |    |
| OTHER:                               |                     | BUCKET ELEVATOR         |           |                         |                     | PILE        |    |
|                                      |                     | OTHER:                  |           |                         | OTHER:              |             |    |
| NO. FILL TUBES: 1                    |                     |                         |           |                         |                     |             |    |
| MAXIMUM ACFM: 6000                   |                     |                         |           |                         |                     |             |    |
| MATERIAL IS UNLOADED TO:<br>Trucks   |                     |                         |           |                         |                     |             |    |
| BY WHAT METHOD IS MATERI<br>Gravity  | AL UNLOADED FROM    | 1 SILO?                 |           |                         |                     |             |    |
| MAXIMUM DESIGN FILLING RA            | ATE OF MATERIAL (TO | ONS/HR): N/A            |           |                         |                     |             |    |
| MAXIMUM DESIGN UNLOADIN              | G RATE OF MATERIA   | L (TONS/HR): 300        |           |                         |                     |             |    |
| COMMENTS:<br>This silo only unloads. |                     |                         |           |                         |                     |             |    |

| REVISED 09/22/16 N                                           | CDEQ/Division of Air    | Quality - Applicatio              | on for <i>l</i> | Air Permit to Construct | /Operate             |             |             | C1         |
|--------------------------------------------------------------|-------------------------|-----------------------------------|-----------------|-------------------------|----------------------|-------------|-------------|------------|
| CONTROL DEVICE ID NO: CD-38                                  | CONTROLS EMISSIC        | ONS FROM WHICH                    | EMISS           | SION SOURCE ID NO(S)    | ): ES-38             |             |             |            |
| EMISSION POINT (STACK) ID NO(S): EP-38                       | POSITION IN SERIES      | S OF CONTROLS                     |                 |                         | NC                   | ). 1 C      | )F 1        | UNITS      |
| OPERATING SCENARIO:                                          |                         |                                   |                 |                         |                      |             |             |            |
| 1OF1                                                         |                         | P.E. SEAL REQUIR                  | ED (PI          | ER 2g .0112)?           | √                    | YES         | [           | □ NO       |
| DESCRIBE CONTROL SYSTEM: A bin vent for particulate co       | ontrol on the Loadout s | ilo.                              |                 |                         |                      |             |             |            |
|                                                              |                         |                                   |                 |                         |                      |             |             |            |
| POLLUTANTS COLLECTED:                                        | -                       | PM                                |                 | PM10/PM2.5              |                      |             |             |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                        | -                       | 0.0146                            |                 | 0.0069                  |                      |             |             |            |
| CAPTURE EFFICIENCY:                                          |                         | <= 0.005 gr/dscf                  | %               | <= 0.005 gr/dscf        | %                    | _%          |             | %          |
| CONTROL DEVICE EFFICIENCY:                                   |                         | N/A                               | %               | N/A                     | %                    | _%          |             | %          |
| CORRESPONDING OVERALL EFFICIENCY:                            | -                       | N/A                               | %               | N/A                     | %                    | %           |             | %          |
| EFFICIENCY DETERMINATION CODE:                               | -                       | 2                                 |                 | 2                       |                      |             |             |            |
| TOTAL AFTER CONTROL EMISSION RATE (LB/HR):                   |                         | 0.0146                            |                 | 0.0069                  |                      |             |             |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg: 10-15 wg | GAUGE?                  | ] YES                             |                 | ] NO                    |                      |             |             |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25              |                         | INLET TEMPERATU                   | JRE (°I         | F): Contract            | MIN                  | MAX         |             |            |
| POLLUTANT LOADING RATE: N/A 🛛 LB/HR 🗌                        | ] GR/FT <sup>3</sup>    | OUTLET TEMPERA                    | TURE            | (°F) Contract           | MIN                  | MAX         |             |            |
| INLET AIR FLOW RATE (ACFM): 1300                             |                         | FILTER OPERATING                  | G TEM           | P (°F): Contract        |                      |             |             |            |
| NO. OF COMPARTMENTS: 1 NO. OF BAGS P                         | ER COMPARTMENT:         | Contract                          |                 |                         | LENGTH OF BAG        | (IN.): 20-3 | 30          |            |
| NO. OF CARTRIDGES: Contract FILTER SURFAC                    | CE AREA PER CARTR       | RIDGE (FT <sup>2</sup> ): Contrac | zt              |                         | DIAMETER OF BA       | G (IN.): 5- | -15         |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contract       | AIR TO CLOTH RATION     | O: 1 to 4 : 1                     |                 |                         |                      |             |             |            |
| DRAFT TYPE: INDUCED/NEGATIVE                                 | FORCED/POSITIVE         |                                   |                 | FILTER MATERIAL: C      | artridge Style <     | WOVEN       |             | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                                |                         |                                   |                 |                         | PAI                  | RTICLE SIZ  | ZE DISTRIBL | JTION      |
| AIR PULSE                                                    | SONIC                   |                                   |                 |                         | SIZE                 | WE          | IGHT %      | CUMULATIVE |
| REVERSE FLOW                                                 | SIMPLE BAG COLLA        | PSE                               |                 |                         | (MICRONS)            | OF          | TOTAL       | %          |
| MECHANICAL/SHAKER                                            | RING BAG COLLAPS        | SE                                |                 |                         | 0-1                  |             |             |            |
| OTHER:                                                       |                         |                                   |                 |                         | 1-10                 |             |             |            |
| DESCRIBE INCOMING AIR STREAM: Air stream will contain        | fly ash.                |                                   |                 |                         | 10-25                |             |             |            |
|                                                              |                         |                                   |                 |                         | 25-50                |             |             |            |
|                                                              |                         |                                   |                 |                         | 50-100               |             |             |            |
|                                                              |                         |                                   |                 |                         | >100                 |             |             |            |
|                                                              |                         |                                   |                 |                         |                      |             | TOTAL       | . = 100    |
|                                                              |                         |                                   |                 |                         | Supplier specific, § | 4% passin   | g 325 mesh  |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING                 | THE RELATIONSHIP C      | OF THE CONTROL D                  | DEVICI          | E TO ITS EMISSION SO    | URCE(S):             |             |             |            |
| COMMENTS:                                                    |                         |                                   |                 |                         |                      |             |             |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                       | Q/Division of A      | Air Quality - Applic   | ation for A   | ir Permit to  | Construct/    | Operate        |                | В                |
|----------------------------------------------------------------------------|----------------------|------------------------|---------------|---------------|---------------|----------------|----------------|------------------|
| EMISSION SOURCE DESCRIPTION: L                                             | oadout Silo Ch       | ute 1A                 |               | EMISSION      | SOURCE I      | D NO: ES-3     | 38A            |                  |
|                                                                            |                      |                        |               | CONTROL       |               | NO(S): CE      | )-38A          |                  |
| OPERATING SCENARIO1_                                                       | OF                   | 11                     |               |               | POINT (ST     | . ,            |                | 8A               |
| DESCRIBE IN DETAILTHE EMISSION<br>Loadout silo chute 1A is unloaded at the |                      | -                      |               | -             | oture device  |                |                |                  |
| TYPE OF EMISSION SOUR                                                      | •                    |                        | PPROPRIA      | TE FORM B     |               |                |                |                  |
| Coal,wood,oil, gas, other burner (Fo                                       | ,                    |                        | . ,           |               |               |                |                | gs/inks (Form E  |
| Int.combustion engine/generator (Fo                                        | orm B2)              | Coating/finish         | 0. 0          | . ,           |               | eration (Fo    | ,              |                  |
| Liquid storage tanks (Form B3)                                             |                      | Storage silos/         | bins (Form    | B6)           |               | er (Form B9)   |                |                  |
| START CONSTRUCTION DATE: TBD                                               |                      |                        | DATE MA       | NUFACTUR      | ED: TBD       |                |                |                  |
| MANUFACTURER / MODEL NO.: TBD                                              |                      |                        |               | D OP. SCH     | EDULE: 24     | HR/DAY 7       | DAY/WK 5       | 52 WK/YR         |
| IS THIS SOURCE SUBJECT UNS                                                 | SPS (SUBPAR          | TS?):                  |               |               | SHAP (SUB     | PARTS?):_      |                |                  |
| PERCENTAGE ANNUAL THROUGHPL                                                |                      |                        | R-MAY 2       |               | JN-AUG        | 25             | SEP-NO         | / 25             |
| CRITERIA AI                                                                | R POLLUTA            | ANT EMISSION           | IS INFOR      | RMATION       | FOR TH        | IS SOUR        | CE             |                  |
|                                                                            |                      | SOURCE OF              | EXPECTE       | ED ACTUAL     |               | POTENTIA       | L EMISSIC      | ONS              |
|                                                                            |                      | EMISSION               | AFTER CON     | ROLS / LIMITS | SEFORE CONT   | ROLS / LIMITS  | (AFTER CO      | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                      |                      | FACTOR                 | lb/hr         | tons/yr       | lb/hr         | tons/yr        | lb/hr          | tons/yr          |
| PARTICULATE MATTER (PM)                                                    |                      |                        |               |               |               |                |                |                  |
| PARTICULATE MATTER<10 MICRONS (                                            | (PM <sub>10</sub> )  |                        |               |               |               |                |                |                  |
| PARTICULATE MATTER<2.5 MICRONS                                             | (PM <sub>2.5</sub> ) |                        |               |               |               |                |                |                  |
| SULFUR DIOXIDE (SO2)                                                       |                      |                        |               |               |               |                |                |                  |
| NITROGEN OXIDES (NOx)                                                      |                      |                        | SEE           | APPENDIX      | B, Table 6    |                |                |                  |
| CARBON MONOXIDE (CO)                                                       |                      |                        |               |               |               |                |                |                  |
| VOLATILE ORGANIC COMPOUNDS (V                                              | OC)                  |                        |               |               |               |                |                |                  |
| LEAD                                                                       |                      |                        |               |               |               |                |                |                  |
| OTHER                                                                      |                      |                        |               |               |               |                |                |                  |
| HAZARDOUS                                                                  | AIR POLLU            | TANT EMISSIC           | ONS INFO      | ORMATIO       | N FOR T       | 'HIS SOU       | RCE            |                  |
|                                                                            |                      | SOURCE OF              | EXPECTE       | ED ACTUAL     |               | POTENTIA       | L EMISSIC      | DNS              |
|                                                                            |                      | EMISSION               | AFTER CON     | ROLS / LIMITS | SEFORE CONT   | ROLS / LIMITS  | (AFTER CO      | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                    | CAS NO.              | FACTOR                 | lb/hr         | tons/yr       | lb/hr         | tons/yr        | lb/hr          | tons/yr          |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        | SEE           | APPENDIX      | B, Table 6    |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
| TOXIC AIR                                                                  | POLLUTAN             | IT EMISSIONS           | INFORM        | IATION F      | OR THIS       | SOURC          | E              |                  |
|                                                                            |                      | SOURCE OF<br>EMISSION  | EXPECTE       | D ACTUAL      | EMISSION      | S AFTER C      | ONTROLS        | / LIMITATIONS    |
| TOXIC AIR POLLUTANT                                                        | CAS NO.              | FACTOR                 | lt            | o/hr          | lb/           | day            |                | lb/yr            |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        | SEE A         | PPENDIX B,    | Table 6       |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
|                                                                            |                      |                        |               |               |               |                |                |                  |
| Attachments: (1) emissions calculations and s                              | supporting docum     | entation: (2) indicate | all requested | state and fed | eral enforcea | ble permit lin | nits (e.a. hou | s of operation.  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| REVISED 09/22/16                                               | NCDEQ/Divis                    | ion of Air Quality - | Applicatior   | for Air Permit to Co     | onstruct/Operate   |             | B6 |
|----------------------------------------------------------------|--------------------------------|----------------------|---------------|--------------------------|--------------------|-------------|----|
| EMISSION SOURCE DESCRIPT                                       | ION: Loadout Silo Ch           | ute 1A               |               | EMISSION S               | OURCE ID NO: ES    | -38A        |    |
|                                                                |                                |                      |               | CONTROL D                | EVICE ID NO(S): C  | D-38A       |    |
| OPERATING SCENARIO:                                            | 1                              | OF1                  |               |                          | OINT(STACK) ID N   |             |    |
| DESCRIBE IN DETAIL THE PRC<br>Loadout silo chute 1A is unloade |                                |                      | th bin vent p | product capture devic    | e.                 |             |    |
|                                                                |                                |                      |               |                          |                    |             |    |
| MATERIAL STORED: Fly Ash                                       |                                |                      |               | DENSITY OF MATER         | RIAL (LB/F13): N/A |             |    |
|                                                                | CUBIC FEET: N/A<br>HEIGHT: 111 | DIAMETER: 41         | (OR)          | TONS: 150 tph<br>LENGTH: | WIDTH:             | HEIGHT:     |    |
| DIMENSIONS (FEET)<br>ANNUAL PRODUCT THRO                       |                                | ACTUAL: 200,000      |               |                          | ESIGN CAPACITY:    |             |    |
| PNEUMATICALLY FIL                                              |                                |                      | ICALLY FI     |                          | ESIGN CAFACITT.    | FILLED FROM |    |
| BLOWER                                                         |                                | SCREW CONVEYO        |               |                          |                    |             |    |
|                                                                |                                | BELT CONVEYOR        |               |                          |                    |             |    |
|                                                                |                                | BUCKET ELEVATO       |               |                          |                    | GE PILE     |    |
|                                                                |                                | OTHER:               |               |                          |                    |             |    |
| NO. FILL TUBES: N/A                                            |                                | Official.            |               |                          |                    | ·           |    |
| MAXIMUM ACFM: 6000                                             |                                |                      |               |                          |                    |             |    |
| MATERIAL IS UNLOADED TO:                                       | l                              |                      |               |                          |                    |             |    |
| N/A                                                            |                                |                      |               |                          |                    |             |    |
| BY WHAT METHOD IS MATERI.<br>N/A                               | AL UNLOADED FROM               | 1 SILO?              |               |                          |                    |             |    |
| MAXIMUM DESIGN FILLING RA                                      | TE OF MATERIAL (TO             | ons/hr): N/A         |               |                          |                    |             |    |
| MAXIMUM DESIGN UNLOADING                                       | G RATE OF MATERIA              | L (TONS/HR): 100     |               |                          |                    |             |    |
| COMMENTS:<br>This silo only unloads.                           |                                |                      |               |                          |                    |             |    |

| REVISED 09/22/16                                              | N              | ICDEQ/Division of Air     | r Quality - Applicatio | on for | Air Permit to Construct        | t/Operate            |            |                    | C1                                            |
|---------------------------------------------------------------|----------------|---------------------------|------------------------|--------|--------------------------------|----------------------|------------|--------------------|-----------------------------------------------|
| CONTROL DEVICE ID NO: CD-38A                                  |                | CONTROLS EMISSI           | ONS FROM WHICH         | EMIS   | SION SOURCE ID NO(S            | ): ES-38A            |            |                    | -                                             |
| EMISSION POINT (STACK) ID NO(S): EP-                          | -38A           | POSITION IN SERIE         | S OF CONTROLS          |        |                                | NC                   | . 1        | OF 1               | UNITS                                         |
| OPERATING SCEN                                                | IARIO:         |                           |                        |        |                                |                      |            |                    |                                               |
| 10F1                                                          | 1              |                           | P.E. SEAL REQUIR       | ED (F  | PER 2q .0112)?                 | $\checkmark$         | YES        |                    | □ NO                                          |
| DESCRIBE CONTROL SYSTEM: A bin vent for                       | particulate c  | ontrol on the Loadout     | silo chute 1A.         |        |                                |                      |            |                    |                                               |
| POLLUTANTS COLLECTED:                                         |                |                           | PM                     |        | PM10/PM2.5                     |                      |            |                    |                                               |
| BEFORE CONTROL EMISSION RATE (LB/HR):                         | :              |                           | 0.005                  |        | 0.002                          |                      |            |                    |                                               |
| CAPTURE EFFICIENCY:                                           |                |                           | <= 0.005 gr/dscf       | %      | <= 0.005 gr/dscf               | %                    | _%         |                    | <u>%</u>                                      |
| CONTROL DEVICE EFFICIENCY:                                    |                |                           | N/A                    | %      | N/A                            | %                    | _%         |                    | %                                             |
| CORRESPONDING OVERALL EFFICIENCY:                             |                |                           | N/A                    | %      | N/A                            | %                    | _%         |                    | <u>%</u>                                      |
| EFFICIENCY DETERMINATION CODE:                                |                |                           | 2                      |        | 2                              |                      |            |                    |                                               |
| TOTAL AFTER CONTROL EMISSION RATE (LE                         | 3/HR):         |                           | 0.005                  |        | 0.002                          |                      |            |                    | <u>.                                     </u> |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg            | j: 10-15 wg    | GAUGE?                    | YES                    |        | NO                             |                      |            |                    |                                               |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25               |                |                           | INLET TEMPERATU        |        |                                | MIN                  | MAX        |                    |                                               |
|                                                               | _B/HR [        | GR/FT <sup>3</sup>        | OUTLET TEMPERA         |        |                                | MIN                  | MAX        |                    |                                               |
| INLET AIR FLOW RATE (ACFM): 1300                              |                |                           | FILTER OPERATIN        | G TEN  | MP ( <sup>o</sup> F): Contract |                      |            |                    |                                               |
|                                                               |                | PER COMPARTMENT           | -                      |        |                                | LENGTH OF BAG        | . ,        |                    | -                                             |
|                                                               |                | CE AREA PER CARTI         |                        | t      |                                | DIAMETER OF BA       | G (IN.): 5 | -15                |                                               |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contrac         |                | AIR TO CLOTH RAT          |                        |        |                                | antrida a Otuda 🖂    |            |                    | FELTED                                        |
| DRAFT TYPE: INDUCED/NEGATIVI<br>DESCRIBE CLEANING PROCEDURES: | E              | FORCED/POSITIVE           |                        |        | FILTER MATERIAL: C             |                      |            |                    |                                               |
|                                                               |                | CONIC                     |                        |        |                                |                      | T          |                    |                                               |
| <ul><li>AIR PULSE</li><li>REVERSE FLOW</li></ul>              |                | SONIC<br>SIMPLE BAG COLLA | ADRE                   |        |                                | SIZE<br>(MICRONS)    |            | EIGHT %<br>F TOTAL | CUMULATIVE<br>%                               |
|                                                               | _              |                           |                        |        |                                | . ,                  | 0          | TOTAL              | /8                                            |
| <ul> <li>MECHANICAL/SHAKER</li> <li>OTHER:</li> </ul>         |                | RING BAG COLLAP           | SE                     |        |                                | 0-1<br>1-10          |            |                    |                                               |
| DESCRIBE INCOMING AIR STREAM: Air stream                      | m will contain | fly ash.                  |                        |        |                                | 10-25                |            |                    |                                               |
|                                                               |                |                           |                        |        |                                | 25-50                |            |                    |                                               |
|                                                               |                |                           |                        |        |                                | 50-100               |            |                    |                                               |
|                                                               |                |                           |                        |        |                                | >100                 |            |                    |                                               |
|                                                               |                |                           |                        |        |                                |                      |            | ΤΟΤΑΙ              | L = 100                                       |
|                                                               |                |                           |                        |        |                                | Supplier specific, 9 | 4% passi   | ng 325 mesh        |                                               |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM                          | I SHOWING      |                           | OF THE CONTROL D       | DEVIC  | E TO ITS EMISSION SO           | URCE(S):             |            |                    |                                               |
| COMMENTS:                                                     |                |                           |                        |        |                                |                      |            |                    |                                               |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCI                     | DEQ/Division of        | Air Quality - Applica | ation for Air | Permit to 0   | Construct/C | )perate       |              | В                |
|-----------------------------------------|------------------------|-----------------------|---------------|---------------|-------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:            |                        |                       |               | T             | I SOURCE I  | -             | 18B          |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
| OPERATING SCENARIO                      |                        | 1                     |               |               |             | . ,           |              |                  |
|                                         |                        |                       |               |               | I POINT (ST | ACK) ID N     | J(3). EP-30  | D                |
| Loadout silo chute 1B is unloaded at ti |                        | •                     |               |               | ure device. |               |              |                  |
| TYPE OF EMISSION SO                     | URCE (CHECK A          | ND COMPLETE AP        | PROPRIAT      | E FORM B1     | -B9 ON TH   | E FOLLOW      | ING PAGE     | S):              |
| Coal,wood,oil, gas, other burner (F     | Form B1)               | Woodworking (I        | Form B4)      |               | 🗆 Man       | uf. of chemi  | cals/coating | gs/inks (Form    |
| □ Int.combustion engine/generator (     | Form B2)               | Coating/finishin      | g/printing (F | orm B5)       | 🗌 Incin     | eration (For  | m B8)        |                  |
| Liquid storage tanks (Form B3)          |                        | Storage silos/bi      | ns (Form B6   | 5)            | □ Othe      | er (Form B9)  |              |                  |
| START CONSTRUCTION DATE: TBE            | )                      |                       | DATE MA       | NUFACTUR      | ED: TBD     |               |              |                  |
| MANUFACTURER / MODEL NO.: TBI           | D                      |                       | EXPECTE       | D OP. SCH     | EDULE: 24   | HR/DAY 7      | DAY/WK 5     | 52 WK/YR         |
| IS THIS SOURCE SUBJECT 🛛 I              | NSPS (SUBPAR           | FS?):                 |               |               | SHAP (SUB   | PARTS?):_     |              |                  |
| PERCENTAGE ANNUAL THROUGHF              | PUT (%): DEC-F         | EB 25 MAR-            | MAY 25        | JUN           | I-AUG       | 25            | SEP-NOV      | 25               |
| CRITERIA                                | AIR POLLUT             | ANT EMISSION          | S INFOR       | MATION        | FOR THIS    | s sourc       | E            |                  |
|                                         |                        | SOURCE OF             | EXPECTE       | D ACTUAL      |             | POTENTIA      | L EMISSIC    | DNS              |
|                                         |                        | EMISSION              | AFTER CONT    | ROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                   |                        | FACTOR                | lb/hr         | tons/yr       | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                 |                        |                       |               |               |             |               |              |                  |
| PARTICULATE MATTER<10 MICRONS           | S (PM <sub>10</sub> )  |                       |               |               |             |               |              |                  |
| PARTICULATE MATTER<2.5 MICRON           | S (PM <sub>2.5</sub> ) |                       |               |               |             |               |              |                  |
| SULFUR DIOXIDE (SO2)                    |                        |                       |               |               |             |               |              |                  |
| NITROGEN OXIDES (NOx)                   |                        |                       | SEE           | APPENDIX      | B, Table 6  |               |              |                  |
| CARBON MONOXIDE (CO)                    |                        |                       |               |               |             |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS              | (VOC)                  |                       |               |               |             |               |              |                  |
| LEAD                                    |                        |                       |               |               |             |               |              |                  |
| OTHER                                   |                        |                       |               |               |             |               |              |                  |
| HAZARDOU                                | S AIR POLLU            | ITANT EMISSIC         | ONS INFO      | RMATIOI       | N FOR TH    | IIS SOUI      | RCE          |                  |
|                                         |                        | SOURCE OF             | EXPECTE       | D ACTUAL      |             | POTENTIA      | L EMISSIC    | DNS              |
|                                         |                        | EMISSION              | AFTER CONT    | ROLS / LIMITS | BEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                 | CAS NO.                | FACTOR                | lb/hr         | tons/yr       | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       | SEE           | APPENDIX      | B, Table 6  |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
| TOXIC AI                                | IR POLLUTA             | NT EMISSIONS          | INFORM        | ATION FO      | OR THIS     | SOURCE        |              |                  |
|                                         |                        | SOURCE OF             | EXPECTE       | D ACTUAL      | EMISSION    | S AFTER C     | ONTROLS      | / LIMITATION     |
|                                         |                        | EMISSION              |               |               |             |               |              |                  |
| TOXIC AIR POLLUTANT                     | CAS NO.                | FACTOR                | lk            | o/hr          | lb/e        | day           |              | lb/yr            |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       | SEE A         | PPENDIX B,    | Table 6     |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |
|                                         |                        |                       |               |               |             |               |              |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

| REVISED 09/22/16                                                | NCDEQ/Divis           | ion of Air Qualit | ty - Applicatior  | n for Air Permit to Co | onstruct/Operate             | B6 |
|-----------------------------------------------------------------|-----------------------|-------------------|-------------------|------------------------|------------------------------|----|
| EMISSION SOURCE DESCRIPT                                        | ION: Loadout Silo Chu | ute 1B            |                   | EMISSION S             | OURCE ID NO: ES-38B          |    |
|                                                                 |                       |                   |                   | CONTROL D              | EVICE ID NO(S): CD-38B       |    |
| OPERATING SCENARIO:                                             | 1                     | OF                | 1                 | EMISSION P             | OINT(STACK) ID NO(S): EP-38B |    |
| DESCRIBE IN DETAIL THE PRC<br>Loadout silo chute 1B is unloader |                       |                   | d with bin vent p | product capture device | e.                           |    |
| MATERIAL STORED: Fly Ash                                        |                       |                   |                   | DENSITY OF MATER       | RIAL (LB/FT3): N/A           |    |
|                                                                 | CUBIC FEET: N/A       |                   |                   | TONS: 150 tph          |                              |    |
|                                                                 | HEIGHT: 111           | DIAMETER: 41      | (OR)              | LENGTH:                | WIDTH: HEIGHT:               |    |
| ANNUAL PRODUCT THRO                                             |                       | ACTUAL: 200,0     | 000               | MAXIMUM DI             | ESIGN CAPACITY: 200,000      |    |
| PNEUMATICALLY FIL                                               |                       | MECI              | HANICALLY FI      | LLED                   | FILLED FROM                  |    |
| BLOWER                                                          |                       | SCREW CONV        | EYOR              |                        | RAILCAR                      |    |
|                                                                 |                       | BELT CONVEY       | ′OR               |                        |                              |    |
| OTHER:                                                          |                       | BUCKET ELEV       | ATOR              |                        | STORAGE PILE                 |    |
|                                                                 |                       | OTHER:            |                   |                        | OTHER:                       |    |
| NO. FILL TUBES: N/A                                             |                       |                   |                   |                        |                              |    |
| MAXIMUM ACFM: 6000                                              |                       |                   |                   |                        |                              |    |
| MATERIAL IS UNLOADED TO:                                        |                       |                   |                   |                        |                              |    |
| N/A                                                             |                       |                   |                   |                        |                              |    |
| BY WHAT METHOD IS MATERI,<br>N/A                                |                       |                   |                   |                        |                              |    |
| MAXIMUM DESIGN FILLING RA                                       | TE OF MATERIAL (TO    | ons/hr): N/A      |                   |                        |                              |    |
| MAXIMUM DESIGN UNLOADING                                        | 3 RATE OF MATERIA     | L (TONS/HR): 10   | 00                |                        |                              |    |
| COMMENTS:<br>This silo only unloads.                            |                       |                   |                   |                        |                              |    |

| REVISED 09/22/16                                      | N              | CDEQ/Division of Ai   | r Quality - Applicatio | on for | Air Permit to Construct | t/Operate            |                 | C1         |
|-------------------------------------------------------|----------------|-----------------------|------------------------|--------|-------------------------|----------------------|-----------------|------------|
| CONTROL DEVICE ID NO: CD-38B                          |                | CONTROLS EMISSI       | IONS FROM WHICH        | EMIS   | SION SOURCE ID NO(S     | ): ES-38B            |                 | -          |
| EMISSION POINT (STACK) ID NO(S): EP-                  | -38B           | POSITION IN SERIE     | S OF CONTROLS          |        |                         | NO                   | . 1 OF          | 1 UNITS    |
| OPERATING SCEN                                        | IARIO:         |                       |                        |        |                         |                      |                 |            |
| 1OF1                                                  | 1              |                       | P.E. SEAL REQUIR       | ED (F  | PER 2q .0112)?          | ×                    | YES             | □ NO       |
| DESCRIBE CONTROL SYSTEM: A bin vent for               | particulate c  | ontrol on the Loadout | silo chute 1B.         |        |                         |                      |                 |            |
| POLLUTANTS COLLECTED:                                 |                |                       | PM                     |        | PM10/PM2.5              |                      |                 |            |
| BEFORE CONTROL EMISSION RATE (LB/HR):                 | :              |                       | 0.005                  |        | 0.002                   |                      |                 |            |
| CAPTURE EFFICIENCY:                                   |                |                       | <= 0.005 gr/dscf       | %      | <= 0.005 gr/dscf        | %                    | %               | %          |
| CONTROL DEVICE EFFICIENCY:                            |                |                       | N/A                    | %      | N/A                     | %                    | %               | %          |
| CORRESPONDING OVERALL EFFICIENCY:                     |                |                       | N/A                    | %      | N/A                     | %                    | _%              | %          |
|                                                       |                |                       | 2                      |        | 2                       |                      |                 |            |
| TOTAL AFTER CONTROL EMISSION RATE (LE                 | 3/HR):         |                       | 0.005                  |        | 0.002                   | <u> </u>             |                 |            |
| PRESSURE DROP (IN H <sub>2</sub> 0): MIN: MAX: Avg    | j: 10-15 wg    | GAUGE?                | ✓ YES                  |        | NO                      |                      |                 |            |
| BULK PARTICLE DENSITY (LB/FT <sup>3</sup> ): 25       |                |                       | INLET TEMPERATU        |        |                         | MIN                  | MAX             |            |
|                                                       | _B/HR [        | GR/FT <sup>3</sup>    | OUTLET TEMPERA         |        |                         | MIN                  | MAX             |            |
| INLET AIR FLOW RATE (ACFM): 1300                      |                |                       | FILTER OPERATING       | GIEN   | AP ('F): Contract       |                      | (1)             |            |
|                                                       |                | PER COMPARTMENT       |                        | *      |                         | LENGTH OF BAG        |                 |            |
| TOTAL FILTER SURFACE AREA (FT <sup>2</sup> ): Contrac |                | AIR TO CLOTH RAT      |                        | il.    |                         | DIAIVIETER OF BA     | 3 (IN.). 5-15   |            |
| DRAFT TYPE: INDUCED/NEGATIVE                          |                | FORCED/POSITIVE       |                        |        | FILTER MATERIAL: C      | artridae Style       | WOVEN           | FELTED     |
| DESCRIBE CLEANING PROCEDURES:                         |                | TOROLD/TOSITIVE       |                        |        | TIETER MATERIAL O       |                      | TICLE SIZE DIST |            |
| AIR PULSE                                             |                | SONIC                 |                        |        |                         | SIZE                 | WEIGHT %        | CUMULATIVE |
|                                                       |                | SIMPLE BAG COLL       | ADSE                   |        |                         | (MICRONS)            | OF TOTAL        | %          |
|                                                       |                |                       |                        |        |                         | , ,                  | OFTOTAL         | 70         |
| <ul> <li>MECHANICAL/SHAKER</li> <li>OTHER:</li> </ul> |                | RING BAG COLLAP       | 'SE                    |        |                         | 0-1<br>1-10          |                 |            |
| DESCRIBE INCOMING AIR STREAM:Air stream               | n will contain | fly ash.              |                        |        |                         | 10-25                |                 |            |
|                                                       |                |                       |                        |        |                         | 25-50                |                 |            |
|                                                       |                |                       |                        |        |                         | 50-100               |                 |            |
|                                                       |                |                       |                        |        |                         | >100                 |                 |            |
|                                                       |                |                       |                        |        |                         | 100                  | ТС              | DTAL = 100 |
|                                                       |                |                       |                        |        |                         | Supplier specific, 9 |                 |            |
| ON A SEPARATE PAGE, ATTACH A DIAGRAM                  | I SHOWING      | THE RELATIONSHIP      | OF THE CONTROL D       | DEVIC  | E TO ITS EMISSION SC    | URCE(S):             |                 |            |
| COMMENTS:                                             |                |                       |                        |        |                         |                      |                 |            |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCD                                                                           | EQ/Division of A        | Air Quality - Appli                                    | cation for A   | ir Permit to    | Construct/  | Operate                     |              | В                |
|-----------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------|----------------|-----------------|-------------|-----------------------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                                                  | Screener                |                                                        |                | EMISSION        | SOURCE II   | D NO: ES-3                  | 9A           |                  |
|                                                                                               |                         |                                                        |                | CONTROL         | DEVICE ID   | NO(S): N/A                  |              |                  |
| OPERATING SCENARIO                                                                            | 1OF                     | 1                                                      |                | EMISSION        | POINT (ST   | ACK) ID NC                  | )(S): EP-39  |                  |
| DESCRIBE IN DETAILTHE EMISSIO<br>The screening process will occur to pr                       |                         | •                                                      |                |                 | or.         |                             |              |                  |
| TYPE OF EMISSION SOU                                                                          | IRCE (CHECK A           | ND COMPLETE A                                          | PPROPRIA       | TE FORM B       | 1-B9 ON TH  | IE FOLLOV                   | VING PAGI    | ES):             |
| Coal,wood,oil, gas, other burner (                                                            | Form B1)                | U Woodworking                                          | g (Form B4)    |                 | 🗆 Man       | uf. of chemi                | cals/coating | gs/inks (Form    |
| <ul> <li>Int.combustion engine/generator (</li> <li>Liquid storage tanks (Form B3)</li> </ul> | Form B2)                | <ul><li>Coating/finish</li><li>Storage silos</li></ul> | 01 0           | ,               |             | eration (For<br>r (Form B9) | ,            |                  |
| START CONSTRUCTION DATE: TBE                                                                  | )                       |                                                        | DATE MA        | NUFACTURI       | ED: TBD     |                             |              |                  |
| MANUFACTURER / MODEL NO.: TB                                                                  | D                       |                                                        | EXPECTE        | D OP. SCHE      | EDULE: 260  | 0 hours/yea                 | r            |                  |
| IS THIS SOURCE SUBJECT                                                                        | NSPS (SUBPAR            | TS?):                                                  |                | NES             | SHAP (SUBP  | PARTS?):                    |              |                  |
| PERCENTAGE ANNUAL THROUGH                                                                     | PUT (%): DEC-F          | EB 25 MA                                               | R-MAY 2        | 5 JI            | JN-AUG      | 25                          | SEP-NO       | / 25             |
| CRITERIA A                                                                                    | AIR POLLUT              | ANT EMISSIOI                                           | <b>NS INFO</b> | RMATION         | FOR TH      | IS SOUR                     | CE           |                  |
|                                                                                               |                         | SOURCE OF                                              | EXPECT         | ED ACTUAL       |             | POTENTIA                    | L EMISSIC    | DNS              |
|                                                                                               |                         | EMISSION                                               | (AFTER CON     | TROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS               | (AFTER CO    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                                         |                         | FACTOR                                                 | lb/hr          | tons/yr         | lb/hr       | tons/yr                     | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                                                       |                         |                                                        |                |                 |             |                             |              |                  |
| PARTICULATE MATTER<10 MICRON                                                                  | S (PM <sub>10</sub> )   |                                                        |                |                 |             |                             |              |                  |
| PARTICULATE MATTER<2.5 MICRON                                                                 | IS (PM <sub>2.5</sub> ) |                                                        |                |                 |             |                             |              |                  |
| SULFUR DIOXIDE (SO2)                                                                          |                         |                                                        |                |                 |             |                             |              |                  |
| NITROGEN OXIDES (NOx)                                                                         |                         |                                                        | SEE A          | PPENDIX B,      | Table 14A   |                             |              |                  |
| CARBON MONOXIDE (CO)                                                                          |                         |                                                        |                |                 |             |                             |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                                                    | (VOC)                   |                                                        |                |                 |             |                             |              |                  |
| LEAD                                                                                          | ( )                     |                                                        |                |                 |             |                             |              |                  |
| OTHER                                                                                         |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               | AIR POLLU               | TANT EMISSI                                            | ONS INF        | ORMATIO         | N FOR T     | HIS SOU                     | RCE          | 1                |
|                                                                                               |                         | SOURCE OF                                              | EXPECT         | ED ACTUAL       |             | POTENTIA                    | L EMISSIC    | DNS              |
|                                                                                               |                         | EMISSION                                               | (AFTER CON     | TROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS               | (AFTER CO    | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                                       | CAS NO.                 | FACTOR                                                 | lb/hr          | tons/yr         | lb/hr       | tons/yr                     | lb/hr        | tons/yr          |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        | SEE A          | PPENDIX B,      | Table 14A   |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         | l                                                      | İ.             |                 | 1           |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        | 1              | 1               | 1           |                             |              |                  |
| TOXIC AI                                                                                      | R POLLUTAN              | NT EMISSIONS                                           | <b>INFORI</b>  | ATION F         | OR THIS     | SOURC                       | E            |                  |
|                                                                                               |                         | SOURCE OF                                              | 1              |                 |             |                             |              | LIMITATION       |
| TOXIC AIR POLLUTANT                                                                           | CAS NO.                 | EMISSION<br>FACTOR                                     |                | o/hr            | lb/         | day                         |              | lb/yr            |
|                                                                                               |                         | THOTON .                                               |                | 5,111           | 10/         | uuy                         |              | 10/ yi           |
|                                                                                               | 1                       |                                                        |                |                 |             |                             |              |                  |
|                                                                                               | 1                       | 1                                                      |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        | SFF AP         | PENDIX B, 1     | Table 144   |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |
|                                                                                               |                         | <u> </u>                                               | 1              |                 | I           |                             |              |                  |
|                                                                                               |                         |                                                        |                |                 |             |                             |              |                  |

# FORM B9 EMISSION SOURCE (OTHER)

| REVISED 09/22/16 NCDEQ/Division of Air Quality - A              | pplication for A | Air Permit to Construct/Operate | B9                      |     |
|-----------------------------------------------------------------|------------------|---------------------------------|-------------------------|-----|
| EMISSION SOURCE DESCRIPTION: Screener                           |                  | EMISSION SOURCE ID NO: ES-39A   | -<br>\                  |     |
|                                                                 |                  | CONTROL DEVICE ID NO(S): N/A    |                         |     |
| OPERATING SCENARIO:1 OF1                                        |                  | EMISSION POINT (STACK) ID NO(S  | S): EP-39               |     |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): The scree | ning process wi  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
| MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS                 | 3                | MAX. DESIGN                     | REQUESTED CAPACITY      |     |
| ТҮРЕ                                                            | UNITS            | CAPACITY (UNIT/HR)              | LIMITATION(UNIT/HR)     |     |
| Capacity                                                        | ton              | 165                             | - (- · )                | 165 |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
| MATERIALS ENTERING PROCESS - BATCH OPERATION                    |                  | MAX. DESIGN                     | REQUESTED CAPACITY      |     |
| ТҮРЕ                                                            | UNITS            | CAPACITY (UNIT/BATCH)           | LIMITATION (UNIT/BATCH) |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
| MAXIMUM DESIGN (BATCHES / HOUR):                                |                  |                                 |                         |     |
| REQUESTED LIMITATION (BATCHES / HOUR):                          | (BATCHES/Y       | ′R):                            |                         |     |
| FUEL USED: N/A                                                  | TOTAL MAX        | IMUM FIRING RATE (MILLION BTU/H | R): N/A                 |     |
| MAX. CAPACITY HOURLY FUEL USE: N/A                              | REQUESTE         | CAPACITY ANNUAL FUEL USE: N/A   | Ą                       |     |
| COMMENTS:                                                       |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |
|                                                                 |                  |                                 |                         |     |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

|                                                                        | EQ/DIVISION OF       | Air Quality - Applicat      | ion for Air  | Permit to C   | onstruct/O | perate            |             | В                    |
|------------------------------------------------------------------------|----------------------|-----------------------------|--------------|---------------|------------|-------------------|-------------|----------------------|
| EMISSION SOURCE DESCRIPTION: S                                         | Screener-Diese       | l Engine                    |              | EMISSION      | SOURCE I   | D NO: ES-3        | 9B          |                      |
|                                                                        |                      |                             |              | CONTROL       | DEVICE ID  | NO(S): N/A        | ١           |                      |
| OPERATING SCENARIO1_                                                   | OF                   | 1                           | _            | EMISSION      | POINT (ST  | ACK) ID NO        | )(S): EP-39 |                      |
| DESCRIBE IN DETAILTHE EMISSION S<br>Diesel Engine to run the Screener. | SOURCE PRO           | CESS (ATTACH FLO)           | W DIAGRAN    | <b>/</b> ):   |            |                   |             |                      |
| TYPE OF EMISSION SOU                                                   | RCE (CHECK           | AND COMPLETE APP            | ROPRIATE     | FORM B1-      | B9 ON THE  | FOLLOWI           | NG PAGES    | 5):                  |
| Coal,wood,oil, gas, other burner (Fo                                   | •                    | Woodworking (Fo             |              |               |            |                   |             | ,<br>gs/inks (Form I |
| Int.combustion engine/generator (Fo                                    | orm B2)              | Coating/finishing/          | printing (Fo | rm B5)        | 🗌 Incin    | eration (For      | m B8)       |                      |
| Liquid storage tanks (Form B3)                                         | ,                    | Storage silos/bins          | (Form B6)    | ,             | □ Othe     | er (Form B9)      | ,           |                      |
| START CONSTRUCTION DATE: TBD                                           |                      | _                           | DATE MAN     | UFACTUR       | ED: TBD    |                   |             |                      |
| MANUFACTURER / MODEL NO.: TBD                                          |                      |                             |              |               | EDULE: 260 | 0 hours/vea       | ar          |                      |
| IS THIS SOURCE SUBJECT SIN NS                                          | SPS (SUBPAR          | [S?)·                       |              | _             | HAP (SUB   | ,                 |             |                      |
| PERCENTAGE ANNUAL THROUGHPU                                            | -                    |                             | AY 25        | JUN-4         | ,          | , –               | P-NOV 2     | 5                    |
|                                                                        |                      | TANT EMISSIONS              |              |               |            |                   | -           | .5                   |
|                                                                        |                      | SOURCE OF                   |              | D ACTUAL      |            | POTENTIA          |             | NS                   |
|                                                                        |                      | EMISSION                    |              |               | EFORE CONT |                   |             | TROLS / LIMITS)      |
|                                                                        |                      |                             |              |               |            |                   | ,           | ,                    |
|                                                                        |                      | FACTOR                      | lb/hr        | tons/yr       | lb/hr      | tons/yr           | lb/hr       | tons/yr              |
| PARTICULATE MATTER (PM)                                                |                      |                             |              |               |            |                   |             |                      |
| PARTICULATE MATTER -10 MICRONS (F                                      | 10,                  |                             |              |               |            |                   |             |                      |
| PARTICULATE MATTER<2.5 MICRONS (                                       | (PM <sub>2.5</sub> ) |                             |              |               |            |                   |             |                      |
| SULFUR DIOXIDE (SO2)                                                   |                      |                             |              |               |            |                   |             |                      |
| NITROGEN OXIDES (NOx)                                                  |                      |                             | SEE AP       | PENDIX B,     | Table 14B  |                   |             |                      |
| CARBON MONOXIDE (CO)                                                   |                      |                             |              |               |            |                   |             |                      |
| VOLATILE ORGANIC COMPOUNDS (V                                          | (OC)                 |                             |              |               |            |                   |             |                      |
| LEAD                                                                   |                      |                             |              |               |            |                   |             |                      |
| OTHER                                                                  |                      |                             |              |               |            |                   | _           |                      |
| HAZARDOUS                                                              | AIR POLL             | UTANT EMISSIOI              | IS INFOR     | RMATION       | FOR TH     | IS SOUR           | CE          |                      |
|                                                                        |                      | SOURCE OF                   |              | D ACTUAL      |            | POTENTIA          |             | NS                   |
|                                                                        |                      | EMISSION                    | AFTER CONT   | ROLS / LIMITS | EFORE CONT | ROLS / LIMITS     | (AFTER CON  | TROLS / LIMITS)      |
| HAZARDOUS AIR POLLUTANT                                                | CAS NO.              |                             |              |               | lb/hr      | tons/yr           | lb/hr       | tons/yr              |
|                                                                        | CAS NO.              | FACTOR                      | lb/hr        | tons/yr       |            |                   |             |                      |
|                                                                        | CAS NO.              | FACTOR                      | lb/hr        | tons/yr       | 10/11      |                   |             |                      |
|                                                                        | CAS NO.              | FACTOR                      | lb/hr        | tons/yr       | 10/111     |                   |             |                      |
|                                                                        |                      | FACTOR                      | lb/hr        | tons/yr       |            |                   |             |                      |
|                                                                        |                      | FACTOR                      | lb/hr        | tons/yr       |            |                   |             |                      |
|                                                                        |                      | FACTOR                      | lb/hr        | tons/yr       |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              | tons/yr       |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              |               |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              |               |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              |               |            |                   |             |                      |
|                                                                        |                      |                             |              |               |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              |               |            |                   |             |                      |
|                                                                        |                      | FACTOR                      |              |               |            |                   |             |                      |
|                                                                        |                      | FACTOR                      | SEE AP       | PENDIX B,     | Table 14B  | SOURCE            |             |                      |
|                                                                        |                      |                             | SEE AP       | PENDIX B,     | Table 14B  |                   |             |                      |
|                                                                        |                      | NT EMISSIONS I              | SEE AP       | PENDIX B,     | Table 14B  |                   | DNTROLS     | / LIMITATIONS        |
|                                                                        |                      |                             | SEE AP       | PENDIX B,     | Table 14B  |                   |             | / LIMITATIONS        |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER CO        |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER CO        |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER CO        |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER Co<br>day |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER Co<br>day |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER Co<br>day |             |                      |
| TOXIC AIF                                                              | R POLLUTA            | NT EMISSIONS I<br>SOURCE OF | SEE AP       | PENDIX B,     | Table 14B  | S AFTER Co<br>day |             |                      |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. **OMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR** 

## EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)

| REVISED 09/22/16                | NCDEQ/Division of Air Quality | y - Application for Air Perm | it to Construct                    | /Operate                    | B2             |
|---------------------------------|-------------------------------|------------------------------|------------------------------------|-----------------------------|----------------|
| EMISSION SOURCE DESCRIPTION: S  | Screener-Diesel Engine        |                              | EMISSION SOL                       | URCE ID NO: ES-39B          | _              |
|                                 |                               |                              | CONTROL DE                         | VICE ID NO(S): N/A          |                |
| OPERATING SCENARIO:             | 1 OF 1                        |                              |                                    | NT (STACK) ID NO(S): EP-39  |                |
|                                 | EMERGENCY                     | SPACE HEAT                   |                                    | RICAL GENERATION            |                |
| (CHECK ALL THAT APPLY)          | PEAK SHAVER                   | OTHER (DESCRIBE): To o       |                                    |                             |                |
| GENERATOR OUTPUT (KW):          |                               | ATED ACTUAL HOURS OF         | -                                  |                             |                |
| ENGINE OUTPUT (HP): 91          |                               |                              | 01 210 11011 (11                   |                             |                |
|                                 | E J DIESEL ENGINE UP          |                              |                                    | ATER THAN 600 HP 🔲 DU       | AL FUEL ENGINE |
|                                 |                               |                              |                                    | ete below)                  |                |
|                                 | _                             |                              | (+++++++++++++++++++++++++++++++++ |                             |                |
| EMISSION REDUCTION MODIFICATION |                               | RETARD 🗌 PREIG               | NITION CHAME                       |                             | HER            |
| OR 🗌 STATIONARY GAS TURB        | INE (complete below)          |                              |                                    | OR TURBINE (complete below) |                |
|                                 |                               | TYPE: 2-CYCLE LEAN           |                                    | □ 4-CYCLE LEAN □ TU         | RBINE          |
| OTHER (DESCRIBE):               |                               | 4-CYCLE RICH                 | IBURN                              | OTHER (DESCRIBE):           |                |
|                                 |                               | DLS: COMBUSTION              |                                    | NS (DESCRIBE):              |                |
|                                 |                               | ISELECTIVE CATALYTIC RE      | EDUCTION                           | SELECTIVE CATALYTIC R       | EDUCTION       |
| CONTROLS: UNATER-S              |                               | AN BURN AND PRECOMBL         | ISTION CHAMB                       |                             |                |
|                                 | LEAN-PREMIX                   |                              |                                    |                             |                |
| OTHER (SPECIFY):                |                               |                              |                                    |                             |                |
|                                 | FUEL USAGE (II                | NCLUDE STARTUP/BA            | ACKUP FUE                          | L)                          |                |
|                                 |                               | MAXIMUM DESIGN               |                                    | REQUESTED CAPACI            | TY             |
| FUEL TYPE                       | UNITS                         | CAPACITY (UNIT/HR            | R)                                 | LIMITATION (UNIT/HF         | र)             |
| Diesel                          | gallons                       | 3.75 @ 75 % load             |                                    | 2600 hr/yr                  |                |
|                                 | <u>y</u>                      |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 | FUEL CHARACTERISTICS          | G (COMPLETE ALL TH           | AT ARE APP                         | PLICABLE)                   |                |
|                                 |                               |                              |                                    | SULFUR CONTEN               | <u></u><br>Т   |
| FUEL TYPE                       | BTU/UNIT                      | UNITS                        |                                    | (% BY WEIGHT)               |                |
| Diesel                          | 6.40E+05                      | Hour                         |                                    |                             | 0.0015%        |
|                                 | 0.402+00                      |                              |                                    |                             | 0.001378       |
|                                 |                               |                              |                                    |                             |                |
|                                 | MANUFACTURER'S SPE            | L                            | TORS (IF AV                        | AILABLE)                    |                |
| POLLUTANT                       | T T                           | CO PM                        | · · ·                              | M10 VOC                     | OTHER          |
| EMISSION FACTOR LB/UNIT         |                               |                              |                                    |                             | _              |
| UNIT                            |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
| DESCRIBE METHODS TO MINIMIZE    | ISIBLE EMISSIONS DURING IDLI  | NG, OR LOW LOAD OPERA        | TIONS:                             |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
| COMMENTS:                       |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |
|                                 |                               |                              |                                    |                             |                |

## SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCD                     | EQ/Division of A       | Air Quality - Appli   | cation for A   | ir Permit to    | Construct/  | Operate       |              | В                |
|-----------------------------------------|------------------------|-----------------------|----------------|-----------------|-------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:            | Crusher                | -                     |                | EMISSION        | SOURCE II   | D NO: ES-4    | 0A           |                  |
|                                         |                        |                       |                |                 | DEVICE ID   |               |              |                  |
| OPERATING SCENARIO                      | OF                     | 1                     |                |                 | POINT (ST   | . ,           |              |                  |
|                                         |                        |                       |                |                 |             |               | (O). EI 40   |                  |
| Fly ash will be processed further by pa |                        | •                     |                |                 | roduce more | e fine and fr | ee flowing f | eedstock.        |
| TYPE OF EMISSION SOU                    | RCE (CHECK A           | ND COMPLETE A         | PPROPRIA       | TE FORM B       | 1-B9 ON TH  | E FOLLOV      | VING PAGE    | S):              |
| Coal,wood,oil, gas, other burner (F     | Form B1)               | U Woodworking         | (Form B4)      |                 | 🗆 Man       | uf. of chemi  | cals/coating | s/inks (Form     |
| Int.combustion engine/generator (       | Form B2)               | Coating/finish        | ning/printing  | (Form B5)       | 🗌 Incin     | eration (For  | m B8)        |                  |
| Liquid storage tanks (Form B3)          |                        | Storage silos         | /bins (Form    | B6)             | 🗸 Othe      | r (Form B9)   |              |                  |
| START CONSTRUCTION DATE: TBD            | )                      |                       | DATE MA        | NUFACTUR        | ED: TBD     |               |              |                  |
| MANUFACTURER / MODEL NO.: TBI           | 0                      |                       | EXPECTE        | D OP. SCHE      | EDULE: 365  | hours/year    |              |                  |
| IS THIS SOURCE SUBJECT 🛛 I              | NSPS (SUBPAR           | TS?):                 |                | NES             | HAP (SUBF   | PARTS?):      |              |                  |
| PERCENTAGE ANNUAL THROUGHF              | PUT (%): DEC-F         | EB 25 MA              | R-MAY 2        | 5 Jl            | JN-AUG      | 25            | SEP-NO\      | / 25             |
| CRITERIA A                              | IR POLLUT              | ANT EMISSIOI          | <b>VS INFO</b> | RMATION         | FOR TH      | IS SOUR       | CE           |                  |
|                                         |                        | SOURCE OF             | EXPECT         | ED ACTUAL       |             | POTENTIA      | L EMISSIC    | NS               |
|                                         |                        | EMISSION              | (AFTER CON     | FROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS | (AFTER COM   | ITROLS / LIMITS) |
| AIR POLLUTANT EMITTED                   |                        | FACTOR                | lb/hr          | tons/yr         | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                 |                        |                       |                |                 |             |               |              |                  |
| PARTICULATE MATTER<10 MICRONS           | 6 (PM <sub>10</sub> )  |                       |                |                 |             |               |              |                  |
| PARTICULATE MATTER<2.5 MICRON           | S (PM <sub>2.5</sub> ) |                       |                |                 |             |               |              |                  |
| SULFUR DIOXIDE (SO2)                    |                        |                       |                |                 |             |               |              |                  |
| NITROGEN OXIDES (NOx)                   |                        |                       | SEE A          | PPENDIX B,      | Table 15A   |               |              |                  |
| CARBON MONOXIDE (CO)                    |                        |                       |                |                 |             |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS              | (VOC)                  |                       |                |                 |             |               |              |                  |
| LEAD                                    |                        |                       |                |                 |             |               |              |                  |
| OTHER                                   |                        |                       |                |                 |             |               |              |                  |
| HAZARDOUS                               | AIR POLLU              | TANT EMISSI           | ONS INF        | ORMATIO         | N FOR T     | HIS SOU       | RCE          |                  |
|                                         |                        | SOURCE OF             | EXPECT         | D ACTUAL        |             | POTENTIA      | L EMISSIC    | NS               |
|                                         |                        | EMISSION              | (AFTER CON     | FROLS / LIMITS) | BEFORE CONT | ROLS / LIMITS | (AFTER COM   | ITROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                 | CAS NO.                | FACTOR                | lb/hr          | tons/yr         | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       | SEE A          | PPENDIX B,      | Table 15A   |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
| TOXIC AII                               | R POLLUTAI             | NT EMISSIONS          | S INFORI       | /ATION F        | OR THIS     | SOURC         | E            |                  |
|                                         |                        | SOURCE OF<br>EMISSION | EXPECTE        | D ACTUAL I      | EMISSIONS   | AFTER CO      | ONTROLS /    | LIMITATION       |
| TOXIC AIR POLLUTANT                     | CAS NO.                | FACTOR                |                | o/hr            | lb/o        | day           |              | lb/yr            |
|                                         |                        |                       |                |                 |             |               |              |                  |
|                                         |                        | Ī                     |                |                 |             |               |              |                  |
|                                         |                        | Ī                     |                |                 |             |               |              |                  |
|                                         |                        | 1                     | SEE AP         | PENDIX B, T     | Table 15A   |               |              |                  |
|                                         |                        | 1                     |                | ,               |             |               |              |                  |
|                                         |                        | 1                     |                |                 |             |               |              |                  |
|                                         |                        |                       | 1              |                 | 1           |               |              |                  |
|                                         |                        |                       |                |                 |             |               |              |                  |
| REVISED 09/22/16 NCDEQ/Division of Air Quality - Ap                                                      | plication for | Air Permit to Construct/Operate     |                           | B9                  |
|----------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|---------------------------|---------------------|
| EMISSION SOURCE DESCRIPTION: Crusher                                                                     |               | EMISSION SOURCE ID NO: ES           | -40A                      |                     |
|                                                                                                          |               | CONTROL DEVICE ID NO(S): N          | I/A                       |                     |
| OPERATING SCENARIO:1 OF1                                                                                 |               | EMISSION POINT (STACK) ID N         | NO(S): EP-40              |                     |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Fly ash will more fine and free flowing feedstock. | be processed  | further by passing through a crushe | er to remove larger parti | cles and to produce |
| MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS                                                          |               | MAX. DESIGN                         | REQUEST                   | ED CAPACITY         |
| ТҮРЕ                                                                                                     | UNITS         | CAPACITY (UNIT/HR)                  | LIMITATIC                 | N(UNIT/HR)          |
| Capacity                                                                                                 | ton           | 165 ton/day                         | 165 ton/day               |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
| MATERIALS ENTERING PROCESS - BATCH OPERATION                                                             | 1             | MAX. DESIGN                         | REQUEST                   | ED CAPACITY         |
| ТҮРЕ                                                                                                     | UNITS         | CAPACITY (UNIT/BATCH)               | LIMITATION                | (UNIT/BATCH)        |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |
| MAXIMUM DESIGN (BATCHES / HOUR):                                                                         |               |                                     |                           |                     |
| REQUESTED LIMITATION (BATCHES / HOUR):                                                                   | (BATCHES/     | r(R):                               |                           |                     |
| FUEL USED: N/A                                                                                           |               | IMUM FIRING RATE (MILLION BT        | U/HR): N/A                |                     |
| MAX. CAPACITY HOURLY FUEL USE: N/A                                                                       |               | D CAPACITY ANNUAL FUEL USE          | ,                         |                     |
| COMMENTS:                                                                                                |               |                                     |                           |                     |
|                                                                                                          |               |                                     |                           |                     |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCI                                                | DEQ/Division of          | Air Quality - Applica | ation for Air | Permit to (   | Construct/C     | )perate       |              | В                |
|--------------------------------------------------------------------|--------------------------|-----------------------|---------------|---------------|-----------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION                                        | : Crusher-Diesel         | Engine                |               | EMISSION      | SOURCE          | ID NO: ES-4   | 40B          |                  |
|                                                                    |                          |                       |               | CONTROL       | DEVICE ID       | ) NO(S): N/   | A            |                  |
| OPERATING SCENARIO                                                 | 1OF                      | 1                     |               | EMISSION      | I POINT (ST     | ACK) ID N     | O(S): EP-4   | 0                |
| DESCRIBE IN DETAILTHE EMISSIO<br>Diesel Engine to run the Crusher. | IN SOURCE PRO            | DCESS (ATTACH FL      | OW DIAGRA     | AM):          |                 |               |              |                  |
| TYPE OF EMISSION SO                                                | URCE (CHECK              | AND COMPLETE AP       | PROPRIATI     | E FORM B1     | -B9 ON TH       | E FOLLOW      | ING PAGE     | S):              |
| Coal,wood,oil, gas, other burner (                                 | Form B1)                 | □ Woodworking (F      | orm B4)       |               | 🗆 Manu          | uf. of chemi  | cals/coating | gs/inks (Form    |
| ☑ Int.combustion engine/generator (                                | (Form B2)                | Coating/finishing     | /printing (Fo | orm B5)       | 🗌 Incin         | eration (For  | m B8)        |                  |
| Liquid storage tanks (Form B3)                                     |                          | Storage silos/bin     | is (Form B6)  |               | □ Othe          | r (Form B9)   | 1            |                  |
| START CONSTRUCTION DATE: TBI                                       | D                        |                       | DATE MA       | NUFACTUF      | RED: TBD        |               |              |                  |
| MANUFACTURER / MODEL NO.: TB                                       | D                        |                       | EXPECTE       | D OP. SCH     | EDULE: 36       | 5 hours/yea   | r            |                  |
| IS THIS SOURCE SUBJECT                                             | NSPS (SUBPAR             | TS?):                 |               |               | SHAP (SUB       | PARTS?):      |              |                  |
| PERCENTAGE ANNUAL THROUGH                                          |                          |                       | MAY 25        |               |                 |               | SEP-NOV      | 25               |
|                                                                    | ( )                      | TANT EMISSION         |               | MATION I      |                 |               | E            | -                |
|                                                                    |                          | SOURCE OF             |               |               | 1               | POTENTIA      |              | ONS              |
|                                                                    |                          | EMISSION              |               |               |                 | -             |              | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                              |                          | FACTOR                | lb/hr         | tons/yr       | lb/hr           | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                            |                          | Therefore             | 10/111        | torio/yi      | 10/11           | tor10/ y1     | 10/11        | torio/ yr        |
| PARTICULATE MATTER (1 M)                                           | S(DM)                    |                       |               |               |                 |               |              |                  |
| PARTICULATE MATTER<2.5 MICRON                                      | ( 10)                    |                       |               |               |                 |               |              |                  |
| SULFUR DIOXIDE (SO2)                                               | 10 (1 M <sub>2.5</sub> ) |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       |               |               | Table 45D       |               |              |                  |
|                                                                    |                          |                       | SEE AP        | PENDIX B,     |                 |               |              |                  |
|                                                                    | (1)(2)(2)                |                       |               |               |                 |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                         | (VOC)                    |                       | -             |               |                 |               |              |                  |
| LEAD                                                               |                          |                       | _             |               |                 |               |              |                  |
| OTHER                                                              |                          |                       |               |               |                 |               |              |                  |
| HAZARDOU                                                           | IS AIR POLL              | UTANT EMISSIO         |               |               |                 |               |              |                  |
|                                                                    |                          | SOURCE OF             |               | D ACTUAL      |                 | POTENTIA      |              | ONS              |
|                                                                    |                          | EMISSION              |               | ROLS / LIMITS | BEFORE CONT     | ROLS / LIMITS |              | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                            | CAS NO.                  | FACTOR                | lb/hr         | tons/yr       | lb/hr           | tons/yr       | lb/hr        | tons/yr          |
|                                                                    |                          |                       |               |               |                 |               |              | Ļ                |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       | SEE AP        | PENDIX B,     | Table 15B       |               |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
| TOXIC A                                                            | IR POLLUTA               | NT EMISSIONS          | INFORMA       | ATION FO      | OR THIS S       | SOURCE        |              |                  |
|                                                                    |                          |                       | EXPECTE       | D ACTUAL      | EMISSIONS       | S AFTER C     | ONTROLS      | / LIMITATION     |
|                                                                    |                          | SOURCE OF             |               |               |                 |               |              |                  |
| TOXIC AIR POLLUTANT                                                | CAS NO.                  | EMISSION FACTOR       | R Ib          | o/hr          | lb/day          |               |              | lb/yr            |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       | SE            |               | I<br>X B, Table | 15B           |              |                  |
|                                                                    |                          |                       |               |               | ,               | -             |              |                  |
|                                                                    |                          |                       |               |               |                 |               |              |                  |
|                                                                    |                          |                       | 1             |               | 1               |               |              |                  |
|                                                                    |                          | 1                     | 1             |               | I               |               |              |                  |

MPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOUR Attach Additional Sheets As Necessary

#### EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/TURBINES/GENERATORS)

| REVISED 09/22/16               | NCDEQ/Division of Air Qua  | ity - Application for Air Perm | it to Construct/Ope | erate                    | B2         |
|--------------------------------|----------------------------|--------------------------------|---------------------|--------------------------|------------|
| EMISSION SOURCE DESCRIPTION: 0 | Crusher-Diesel Engine      |                                | EMISSION SOURC      | E ID NO: ES-40B          |            |
|                                |                            |                                | CONTROL DEVICE      | ID NO(S): N/A            |            |
| OPERATING SCENARIO:            | 10F1                       |                                |                     | STACK) ID NO(S): EP-40   |            |
|                                | EMERGENCY                  | SPACE HEAT                     | ·                   |                          |            |
| (CHECK ALL THAT APPLY)         | PEAK SHAVER                | OTHER (DESCRIBE): To o         |                     |                          |            |
| GENERATOR OUTPUT (KW):         |                            | PATED ACTUAL HOURS OF          | •                   | YR): 365                 |            |
| ENGINE OUTPUT (HP): 300        | ///////                    |                                |                     | 11().000                 |            |
|                                | E 🔽 DIESEL ENGINE UI       | P TO 600 HP 🔲 DIESE            | L ENGINE GREATE     | R THAN 600 HP 🔲 DUAL F   | UEL ENGINE |
|                                |                            |                                | (complete be        |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            | RETARD D PREIG                 | NITION CHAMBER      |                          | ξ          |
| OR 🗌 STATIONARY GAS TURB       |                            |                                |                     |                          |            |
| FUEL: A NATURAL GAS            |                            |                                |                     | 4-CYCLE LEAN TURBIN      | VE         |
|                                |                            |                                |                     | OTHER (DESCRIBE):        |            |
| CYCLE: COGENERATION            |                            |                                |                     | DESCRIBE):               |            |
|                                |                            | NSELECTIVE CATALYTIC R         |                     | SELECTIVE CATALYTIC REDU | JCTION     |
|                                |                            | EAN BURN AND PRECOMBL          | _                   |                          |            |
|                                | LEAN-PREMIX                |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                | FUEL USAGE                 | INCLUDE STARTUP/B              | ACKUP FUEL)         |                          |            |
|                                |                            | MAXIMUM DESIGN                 |                     | REQUESTED CAPACITY       |            |
| FUEL TYPE                      | UNITS                      | CAPACITY (UNIT/HF              | R)                  | LIMITATION (UNIT/HR)     |            |
| Diesel                         | gallons                    | 11.71 @ 75% load               |                     | 365 hr/yr                |            |
|                                | galions                    | 11.71 @ 707010dd               |                     | 000 11/91                |            |
|                                |                            |                                |                     |                          |            |
|                                | FUEL CHARACTERISTIC        | S (COMPLETE ALL TH             |                     | CABLE)                   |            |
|                                |                            |                                |                     | SULFUR CONTENT           |            |
| FUEL TYPE                      | BTU/UNIT                   | UNITS                          |                     | (% BY WEIGHT)            |            |
| Diesel                         | 2.10E+(                    |                                |                     |                          | 0.0015%    |
| Diesei                         | 2.10E+0                    |                                |                     |                          | 0.0015%    |
|                                |                            |                                |                     |                          |            |
|                                | MANUFACTURER'S SP          | ECIFIC EMISSION FAC            | TORS (IF AVAIL      |                          |            |
| POLLUTANT                      | NOX                        | CO PM                          | PM10                |                          | OTHER      |
| EMISSION FACTOR LB/UNIT        |                            |                                | 1 1110              |                          |            |
| UNIT                           |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
| DESCRIBE METHODS TO MINIMIZE \ | ISIBLE EMISSIONS DURING ID | LING, OR LOW LOAD OPERA        | ATIONS:             |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
| COMMENTS:                      |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |
|                                |                            |                                |                     |                          |            |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q/Division of A      | Air Quality - Applic    | ation for A   | r Permit to    | Construct/     | Operate         |                | В                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|---------------|----------------|----------------|-----------------|----------------|-------------------|
| EMISSION SOURCE DESCRIPTION: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vet Ash Receiv       | ing-Transfer to She     | ed            | EMISSION       | SOURCE I       | D NO: F-1       |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               | CONTROL        | DEVICE ID      | NO(S): N/       | A              |                   |
| OPERATING SCENARIO1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OF                   | 1                       |               | EMISSION       | POINT (ST      | ACK) ID N       | O(S): FUGI     | TIVE FEP-1        |
| DESCRIBE IN DETAILTHE EMISSION<br>Transfer of materials to storage shed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOURCE PRC           | OCESS (ATTACH F         | LOW DIAG      | RAM):          |                |                 |                |                   |
| TYPE OF EMISSION SOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CE (CHECK A          | ND COMPLETE A           | PPROPRIA      | TE FORM B      | 1-B9 ON TH     | HE FOLLO        | WING PAG       | ES):              |
| Coal,wood,oil, gas, other burner (Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orm B1)              | Woodworking             | (Form B4)     |                | 🗆 Manı         | uf. of chemi    | icals/coating  | gs/inks (Form E   |
| Int.combustion engine/generator (For a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | orm B2)              | Coating/finish          | ning/printing | (Form B5)      | 🗌 Incin        | eration (Fo     | rm B8)         |                   |
| Liquid storage tanks (Form B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Storage silos           | /bins (Form   | B6)            | 🚽 Othe         | r (Form B9)     | )              |                   |
| START CONSTRUCTION DATE: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         | DATE MAI      | NUFACTUR       | ED: TBD        |                 |                |                   |
| MANUFACTURER / MODEL NO.: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                         | EXPECTE       | D OP. SCH      | EDULE: 24      | HR/DAY 7        | DAY/WK 5       | 52 WK/YR          |
| IS THIS SOURCE SUBJECT $\Box$ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPS (SUBPAR          | TS?):                   |               |                | SHAP (SUB      | PARTS?):_       |                |                   |
| PERCENTAGE ANNUAL THROUGHPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . ,                  |                         | R-MAY 2       |                | UN-AUG         | 25              | SEP-NO         | V 25              |
| CRITERIA AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R POLLUTA            | ANT EMISSION            | IS INFOR      | <b>MATION</b>  | FOR TH         | IS SOUR         | CE             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | SOURCE OF               | EXPECTE       | D ACTUAL       |                | POTENTIA        | AL EMISSIC     | DNS               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | EMISSION                | AFTER CONT    | ROLS / LIMITS) | SEFORE CONT    | ROLS / LIMITS   | (AFTER CO      | NTROLS / LIMITS)  |
| AIR POLLUTANT EMITTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | FACTOR                  | lb/hr         | tons/yr        | lb/hr          | tons/yr         | lb/hr          | tons/yr           |
| PARTICULATE MATTER (PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                         |               |                |                |                 |                |                   |
| PARTICULATE MATTER<10 MICRONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (PM <sub>10</sub> )  |                         |               |                |                |                 |                |                   |
| PARTICULATE MATTER<2.5 MICRONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (PM <sub>2.5</sub> ) |                         |               |                |                |                 |                |                   |
| SULFUR DIOXIDE (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                         |               |                |                |                 |                |                   |
| NITROGEN OXIDES (NOx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                         | SEE A         | PPENDIX E      | 3, Table 8A    |                 |                |                   |
| CARBON MONOXIDE (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                         |               |                |                |                 |                |                   |
| VOLATILE ORGANIC COMPOUNDS (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /OC)                 |                         |               |                |                |                 |                |                   |
| LEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                         |               |                |                |                 |                |                   |
| OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                         |               |                |                |                 |                |                   |
| HAZARDOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AIR POLLU            | TANT EMISSIO            | ONS INFO      | ORMATIO        | N FOR T        | 'HIS SOL        | IRCE           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | SOURCE OF               | EXPECTE       | D ACTUAL       |                | POTENTIA        | AL EMISSIC     | DNS               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | EMISSION                | AFTER CONT    | ROLS / LIMITS) | EFORE CONT     | ROLS / LIMITS   | (AFTER CO      | NTROLS / LIMITS)  |
| HAZARDOUS AIR POLLUTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAS NO.              | FACTOR                  | lb/hr         | tons/yr        | lb/hr          | tons/yr         | lb/hr          | tons/yr           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         | SEE A         | PPENDIX E      | 3, Table 8A    |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
| TOXIC AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POLLUTAN             | IT EMISSIONS            | <b>INFORM</b> | IATION F       | OR THIS        | SOURC           | E              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | SOURCE OF<br>EMISSION   | EXPECTE       | D ACTUAL       | EMISSIONS      | S AFTER C       | ONTROLS        | / LIMITATIONS     |
| TOXIC AIR POLLUTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAS NO.              | FACTOR                  | lb            | /hr            | lb/o           | day             |                | lb/yr             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         | 1             |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         | SEE AP        | PENDIX B,      | Table 8A       |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 | İ              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |               |                |                |                 |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         | 1             |                |                |                 | 1              |                   |
| Attachments: (1) emissions calculations and s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | supporting docum     | nentation: (2) indicate | all requested | state and fee  | leral enforcea | able permit lir | mits (e.a. hou | urs of operation. |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

 IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

| REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate |                |                                |                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------|--------------------------------|-------------------------|--|--|--|--|
| EMISSION SOURCE DESCRIPTION: Wet Ash Receiving-Tra                                               | insfer to Shed | EMISSION SOURCE ID NO: F-1     |                         |  |  |  |  |
|                                                                                                  |                | CONTROL DEVICE ID NO(S): N/A   | A                       |  |  |  |  |
| OPERATING SCENARIO:1 OF1                                                                         | l              | EMISSION POINT (STACK) ID NO   | D(S): FUGITIVE FEP-1    |  |  |  |  |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIA                                                  |                | nais to storage sneu.          |                         |  |  |  |  |
| MATERIALS ENTERING PROCESS - CONTINUC                                                            | DUS PROCESS    | MAX. DESIGN                    | REQUESTED CAPACITY      |  |  |  |  |
| TYPE                                                                                             | UNITS          | CAPACITY (UNIT/HR)             | LIMITATION(UNIT/HR)     |  |  |  |  |
| Transfer                                                                                         | Tons           | 70                             | 70                      |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
| MATERIALS ENTERING PROCESS - BATCH                                                               | OPERATION      | MAX. DESIGN                    | REQUESTED CAPACITY      |  |  |  |  |
| ТҮРЕ                                                                                             | UNITS          | CAPACITY (UNIT/BATCH)          | LIMITATION (UNIT/BATCH) |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
|                                                                                                  |                |                                |                         |  |  |  |  |
| MAXIMUM DESIGN (BATCHES / HOUR):                                                                 |                |                                |                         |  |  |  |  |
| REQUESTED LIMITATION (BATCHES / HOUR):                                                           | (BATCHES/      | YR):                           |                         |  |  |  |  |
| FUEL USED: N/A                                                                                   | TOTAL MAX      | (IMUM FIRING RATE (MILLION BTU | /HR): N/A               |  |  |  |  |
| MAX. CAPACITY HOURLY FUEL USE: N/A                                                               |                | D CAPACITY ANNUAL FUEL USE: N  |                         |  |  |  |  |
| COMMENTS:                                                                                        |                |                                |                         |  |  |  |  |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                                   | Q/Division of        | Air Quality - Applic  | ation for Ai             | r Permit to    | Construct/0                    | Operate       |              | В                |  |
|----------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------|----------------|--------------------------------|---------------|--------------|------------------|--|
| EMISSION SOURCE DESCRIPTION: V                                                         | Vet Ash Receiv       | ing-Transfer to Hop   | ber                      | EMISSION       | SOURCE I                       | D NO: F-2     |              |                  |  |
|                                                                                        |                      |                       |                          | CONTROL        |                                | NO(S): N/     | 4            |                  |  |
| OPERATING SCENARIO                                                                     | 1OF                  | 11                    |                          |                |                                | ( )           |              | TIVE FEP-2       |  |
| DESCRIBE IN DETAILTHE EMISSION<br>Transfer of materials to feed hopper.                | SOURCE PRC           | CESS (ATTACH FL       | OW DIAGF                 | RAM):          |                                | ,             |              |                  |  |
| TYPE OF EMISSION SOU                                                                   | RCE (CHECK A         |                       | PROPRIAT                 | TE FORM B1     | I-B9 ON TH                     | E FOLLOW      | ING PAGE     | S):              |  |
| Coal,wood,oil, gas, other burner (Fe                                                   | orm B1)              |                       | (Form B4)                |                | 🗆 Man                          | uf. of chemi  | cals/coating | gs/inks (Form I  |  |
| □ Int.combustion engine/generator (F                                                   | orm B2)              | Coating/finishi       | ng/printing (            | Form B5)       | 🗌 Incin                        | eration (For  | rm B8)       |                  |  |
| Liquid storage tanks (Form B3)                                                         |                      | Storage silos/b       | oins (Form B             | 86)            | 🗸 Othe                         | r (Form B9)   |              |                  |  |
| START CONSTRUCTION DATE: TBD                                                           |                      |                       | DATE MA                  | NUFACTUR       | ED: TBD                        |               |              |                  |  |
| MANUFACTURER / MODEL NO.: TBD                                                          |                      |                       | EXPECTE                  | D OP. SCH      | EDULE: 24                      | HR/DAY 7      | DAY/WK 8     | 52 WK/YR         |  |
| IS THIS SOURCE SUBJECT                                                                 | SPS (SUBPAR          | TS?):                 |                          |                | SHAP (SUB                      | PARTS?):_     |              |                  |  |
| PERCENTAGE ANNUAL THROUGHP                                                             | JT (%): DEC-F        | EB 25 MAR             | -MAY 25                  | JU             | N-AUG                          | 25            | SEP-NOV      | 25               |  |
| CRITERIA A                                                                             | IR POLLUT            | ANT EMISSION          | S INFOR                  | MATION         | FOR THI                        | S SOUR        | CE           |                  |  |
|                                                                                        |                      | SOURCE OF             | EXPECTE                  | D ACTUAL       |                                | POTENTIA      | L EMISSIC    | DNS              |  |
|                                                                                        |                      | EMISSION              | AFTER CONT               | ROLS / LIMITS) | EFORE CONT                     | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |  |
| AIR POLLUTANT EMITTED                                                                  |                      | FACTOR                | lb/hr                    | tons/yr        | lb/hr                          | tons/yr       | lb/hr        | tons/yr          |  |
| PARTICULATE MATTER (PM)                                                                |                      |                       |                          |                |                                |               |              |                  |  |
| PARTICULATE MATTER<10 MICRONS                                                          | (PM <sub>10</sub> )  |                       |                          |                |                                |               |              |                  |  |
| PARTICULATE MATTER<2.5 MICRONS                                                         | (PM <sub>2.5</sub> ) |                       |                          |                |                                |               |              |                  |  |
| SULFUR DIOXIDE (SO2)                                                                   |                      |                       |                          |                |                                |               |              |                  |  |
| NITROGEN OXIDES (NOx)                                                                  |                      |                       | SEE A                    | PPENDIX E      | , Table 8B                     |               |              |                  |  |
| CARBON MONOXIDE (CO)                                                                   |                      |                       |                          |                |                                |               |              |                  |  |
| VOLATILE ORGANIC COMPOUNDS (                                                           | /OC)                 |                       |                          |                |                                |               |              |                  |  |
| LEAD                                                                                   |                      |                       |                          |                |                                |               |              |                  |  |
| OTHER                                                                                  |                      |                       |                          |                |                                |               |              |                  |  |
| HAZARDOUS                                                                              | AIR POLLU            | TANT EMISSIC          | ONS INFO                 | RMATIO         | N FOR T                        | HIS SOU       | RCE          |                  |  |
|                                                                                        |                      | SOURCE OF             | EXPECTE                  | D ACTUAL       |                                | POTENTIA      | L EMISSIC    | SSIONS           |  |
|                                                                                        |                      | EMISSION              | AFTER CONTROLS / LIMITS) |                | EFORE CONTROLS / LIMITS (AFTER |               | (AFTER CO    | NTROLS / LIMITS) |  |
| HAZARDOUS AIR POLLUTANT                                                                | CAS NO.              | FACTOR                | lb/hr                    | tons/yr        | lb/hr                          | tons/yr       | lb/hr        | tons/yr          |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       | SEE A                    | PPENDIX E      | , Table 8B                     |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
| TOXIC AIR                                                                              | POLLUTA              | NT EMISSIONS          | INFORM                   | ATION F        | OR THIS                        | SOURCE        | -            |                  |  |
|                                                                                        |                      | SOURCE OF<br>EMISSION | EXPECTE                  | D ACTUAL       | EMISSION                       | S AFTER C     | ONTROLS      | / LIMITATION     |  |
| TOXIC AIR POLLUTANT                                                                    | CAS NO.              | FACTOR                | lk                       | o/hr           | lb/d                           | day           |              | lb/yr            |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       | SEE AP                   | PENDIX B,      | Table 8B                       |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
|                                                                                        |                      |                       |                          |                |                                |               |              |                  |  |
| Attachments: (1) emissions calculations and emission rates) and describe how these are |                      |                       |                          |                |                                |               |              |                  |  |

WPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

| REVISED 09/22/16                 | NCDEQ/Division of Air Quality   | - Application                                   | for Air Permit to Construct/Operate | e B9                    |  |  |
|----------------------------------|---------------------------------|-------------------------------------------------|-------------------------------------|-------------------------|--|--|
| EMISSION SOURCE DESCRIPTION: We  | et Ash Receiving-Transfer to Ho | opper                                           | EMISSION SOURCE ID NO: F-2          |                         |  |  |
|                                  |                                 |                                                 | CONTROL DEVICE ID NO(S): N/A        |                         |  |  |
| OPERATING SCENARIO:1             |                                 |                                                 | EMISSION POINT (STACK) ID NO        | (S): FUGITIVE FEP-2     |  |  |
| DESCRIBE IN DETAIL THE PROCESS ( |                                 |                                                 |                                     |                         |  |  |
| MATERIALS ENTERING PR            | OCESS - CONTINUOUS PROC         | ESS                                             | MAX. DESIGN                         | REQUESTED CAPACITY      |  |  |
| TYPE                             |                                 |                                                 |                                     | LIMITATION(UNIT/HR)     |  |  |
| Transfer                         |                                 | Tons                                            | 70                                  | 70                      |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  | ROCESS - BATCH OPERATION        | ON                                              | MAX. DESIGN                         | REQUESTED CAPACITY      |  |  |
| TYPE                             |                                 | UNITS                                           | CAPACITY (UNIT/BATCH)               | LIMITATION (UNIT/BATCH) |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
|                                  |                                 |                                                 |                                     |                         |  |  |
| MAXIMUM DESIGN (BATCHES / HOUR)  |                                 |                                                 |                                     |                         |  |  |
| REQUESTED LIMITATION (BATCHES /  | HOUR):                          | (BATCHES/\                                      | /R):                                |                         |  |  |
|                                  |                                 | TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A |                                     |                         |  |  |
| FUEL USED: N/A                   |                                 | TOTAL MAX                                       | INION FIRING RATE (MILLION BTO)     | HR): N/A                |  |  |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDE                                                    | Q/Division of A      | ir Quality - Applic   | ation for A  | ir Permit to   | Construct      | /Operate       |               | В                |
|-------------------------------------------------------------------------|----------------------|-----------------------|--------------|----------------|----------------|----------------|---------------|------------------|
| EMISSION SOURCE DESCRIPTION: V                                          | Vet Ash Receivi      | ng-Unloading Pile     |              | EMISSION       | SOURCE I       | D NO: F-3      |               |                  |
|                                                                         |                      |                       |              | CONTROL        |                | ) NO(S): N/    | A             |                  |
| OPERATING SCENARIO                                                      | OF                   | 1                     |              |                |                | . ,            | O(S): FUGI    | TIVE FEP-3       |
| DESCRIBE IN DETAILTHE EMISSION<br>Unloading Pile Windblown Fugitive Dus |                      | CESS (ATTACH F        | LOW DIAG     | RAM):          |                |                |               |                  |
| TYPE OF EMISSION SOUR                                                   | CE (CHECK AN         | ID COMPLETE A         | PPROPRIA     | TE FORM B      | 1-B9 ON T      | HE FOLLO       | WING PAG      | ES):             |
| Coal,wood,oil, gas, other burner (Fo                                    | orm B1)              |                       | (Form B4)    |                | 🗆 Man          | uf. of chemi   | icals/coating | gs/inks (Form B  |
| Int.combustion engine/generator (Fellow)                                | orm B2)              | Coating/finish        | ing/printing | (Form B5)      |                | eration (Fo    |               |                  |
| Liquid storage tanks (Form B3)                                          |                      | Storage silos,        | /bins (Form  | B6)            | ⊡ Othe         | er (Form B9)   | )             |                  |
| START CONSTRUCTION DATE: TBD                                            |                      |                       | DATE MA      | NUFACTUR       | ED: TBD        |                |               |                  |
| MANUFACTURER / MODEL NO.: TBD                                           |                      |                       | EXPECTE      | D OP. SCHI     | EDULE: 24      | HR/DAY 7       | DAY/WK 5      | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                  | SPS (SUBPAR          | ГS?):                 |              | □ NES          | SHAP (SUB      | PARTS?):_      |               |                  |
| PERCENTAGE ANNUAL THROUGHPU                                             | JT (%): DEC-FI       | EB 25 MA              | R-MAY 2      | 5 J            | UN-AUG         | 25             | SEP-NO        | V 25             |
| CRITERIA AI                                                             | R POLLUTA            | NT EMISSION           | IS INFOR     | RMATION        | FOR TH         | IS SOUR        | RCE           |                  |
|                                                                         |                      | SOURCE OF             | EXPECTE      | D ACTUAL       |                | POTENTIA       | AL EMISSIC    | DNS              |
|                                                                         |                      | EMISSION              | AFTER CONT   | ROLS / LIMITS) | SEFORE CONT    | FROLS / LIMITS | (AFTER CO     | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                   |                      | FACTOR                | lb/hr        | tons/yr        | lb/hr          | tons/yr        | lb/hr         | tons/yr          |
| PARTICULATE MATTER (PM)                                                 |                      |                       |              |                |                |                |               |                  |
| PARTICULATE MATTER<10 MICRONS                                           | (PM <sub>10</sub> )  |                       |              |                |                |                |               |                  |
| PARTICULATE MATTER<2.5 MICRONS                                          | (PM <sub>2.5</sub> ) |                       |              |                |                |                |               |                  |
| SULFUR DIOXIDE (SO2)                                                    |                      |                       |              |                |                |                |               |                  |
| NITROGEN OXIDES (NOx)                                                   |                      |                       | SEE A        | APPENDIX E     | 3, Table 10    |                |               |                  |
| CARBON MONOXIDE (CO)                                                    |                      |                       |              |                |                |                |               |                  |
| VOLATILE ORGANIC COMPOUNDS (\                                           | /OC)                 |                       |              |                |                |                |               |                  |
| LEAD                                                                    |                      |                       |              |                |                |                |               |                  |
| OTHER                                                                   |                      |                       |              |                |                |                |               |                  |
| HAZARDOUS                                                               | AIR POLLUT           | TANT EMISSIO          | ONS INFO     | ORMATIO        | N FOR T        | THIS SOL       | JRCE          |                  |
|                                                                         |                      | SOURCE OF             | EXPECTE      | D ACTUAL       |                | POTENTIA       | AL EMISSIC    | DNS              |
|                                                                         |                      | EMISSION              | AFTER CONT   | ROLS / LIMITS) | SEFORE CONT    | FROLS / LIMITS | (AFTER CO     | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                 | CAS NO.              | FACTOR                | lb/hr        | tons/yr        | lb/hr          | tons/yr        | lb/hr         | tons/yr          |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       | SEE A        | APPENDIX E     | 3, Table 10    |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       |              |                |                |                |               |                  |
| TOXIC AIR                                                               | POLLUTAN             | T EMISSIONS           | INFORM       | IATION F       | OR THIS        | SOURC          | E             |                  |
|                                                                         |                      | SOURCE OF<br>EMISSION | EXPECTE      | D ACTUAL       | EMISSION       | S AFTER C      | ONTROLS       | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                     | CAS NO.              | FACTOR                | lb           | )/hr           | lb/            | day            |               | lb/yr            |
|                                                                         |                      |                       |              |                |                |                |               |                  |
|                                                                         |                      |                       | SEE AP       | PENDIX B.      | Table 10       |                |               |                  |
|                                                                         |                      |                       |              | 2,             |                |                |               |                  |
|                                                                         |                      |                       | <u> </u>     |                |                |                |               |                  |
|                                                                         |                      |                       |              |                | deral enforcea |                | L             |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

| REVISED 09/22/16 NCDE<br>EMISSION SOURCE DESCRIPTION: Wet Ast |                           | tion for Air Permit to Construct/Op             |                           |  |  |  |
|---------------------------------------------------------------|---------------------------|-------------------------------------------------|---------------------------|--|--|--|
| ENISSION SOURCE DESCRIPTION. WE ASI                           | TReceiving-Onioading Pile | EMISSION SOURCE ID NO:                          | F-3                       |  |  |  |
|                                                               |                           | CONTROL DEVICE ID NO(S                          | ): N/A                    |  |  |  |
| OPERATING SCENARIO:1<br>DESCRIBE IN DETAIL THE PROCESS (ATTA  |                           | EMISSION POINT (STACK) I                        |                           |  |  |  |
|                                                               |                           | , , , , , , , , , , , , , , , , , , ,           |                           |  |  |  |
| MATERIALS ENTERING PROCES                                     | SS - CONTINUOUS PROCESS   | MAX. DESIGN                                     | REQUESTED CAPACITY        |  |  |  |
| TYPE                                                          | UNIT                      | UNITS CAPACITY (UNIT/HR) LIMITAT                |                           |  |  |  |
| Area                                                          | Acres                     | 0.33 Acres                                      | N/A                       |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
| MATERIALS ENTERING PROCI                                      | ESS - BATCH OPERATION     | MAX. DESIGN                                     | REQUESTED CAPACITY        |  |  |  |
| TYPE                                                          | UNITS                     | S CAPACITY (UNIT/BATCH                          | ) LIMITATION (UNIT/BATCH) |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
|                                                               |                           |                                                 |                           |  |  |  |
| MAXIMUM DESIGN (BATCHES / HOUR):                              |                           |                                                 |                           |  |  |  |
| REQUESTED LIMITATION (BATCHES / HOU                           | R): (BATCH                | IES/YR):                                        |                           |  |  |  |
|                                                               |                           | TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A |                           |  |  |  |
| FUEL USED: N/A                                                | TOTAL                     | MAXIMUM FIRING RATE (MILLION                    | BIU/HR): N/A              |  |  |  |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCD                                                   | EQ/Division of A       | Air Quality - Applic  | ation for A  | ir Permit to   | Construct/0 | Operate       |              | В                |
|-----------------------------------------------------------------------|------------------------|-----------------------|--------------|----------------|-------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                          | Ash Basin              |                       |              | EMISSION       | SOURCE I    | D NO: F-4     |              |                  |
|                                                                       |                        |                       |              | CONTROL        | DEVICE ID   | NO(S): N/     | 4            |                  |
| OPERATING SCENARIO                                                    | _1OF _                 | 1                     |              | EMISSION       | POINT (ST   | ACK) ID N     | D(S): FUGI   | TIVE FEP-4       |
| DESCRIBE IN DETAILTHE EMISSIO<br>Dust may be generated by wind erosic |                        | •                     |              | RAM):          |             |               |              |                  |
| TYPE OF EMISSION SOL                                                  | JRCE (CHECK A          |                       | PROPRIA      | TE FORM B      | _           |               |              |                  |
| Coal,wood,oil, gas, other burner (I                                   | Form B1)               | Woodworking           | (Form B4)    |                | 🗆 Manı      | uf. of chemi  | cals/coating | gs/inks (Form I  |
| Int.combustion engine/generator (                                     | Form B2)               | Coating/finishi       | 0. 0         | . ,            |             | eration (Fo   | ,            |                  |
| Liquid storage tanks (Form B3)                                        |                        | Storage silos/b       | oins (Form E | 36)            | ✓ Othe      | r (Form B9)   |              |                  |
| START CONSTRUCTION DATE: N/A                                          |                        |                       | 1            | NUFACTUR       |             |               |              |                  |
| MANUFACTURER / MODEL NO.: N/A                                         | L .                    |                       | EXPECTE      | D OP. SCH      | EDULE: 24   | HR/DAY 7      | DAY/WK 8     | 52 WK/YR         |
| IS THIS SOURCE SUBJECT                                                | NSPS (SUBPAR           | TS?):                 |              |                | SHAP (SUBI  | PARTS?):_     |              |                  |
| PERCENTAGE ANNUAL THROUGH                                             | ( )                    |                       | R-MAY 25     |                | N-AUG       | 25            | SEP-NOV      | 25               |
| CRITERIA                                                              | AIR POLLUTA            | ANT EMISSION          | IS INFOR     | RMATION        | FOR THI     | S SOUR        | CE           |                  |
|                                                                       |                        | SOURCE OF             | EXPECTE      | ED ACTUAL      |             | POTENTIA      | L EMISSIC    | DNS              |
|                                                                       |                        | EMISSION              | AFTER CON    | TROLS / LIMITS | SEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                 |                        | FACTOR                | lb/hr        | tons/yr        | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                               |                        |                       |              |                |             |               |              |                  |
| PARTICULATE MATTER<10 MICRON                                          | S (PM <sub>10</sub> )  |                       |              |                |             |               |              |                  |
| PARTICULATE MATTER<2.5 MICRON                                         | S (PM <sub>2.5</sub> ) |                       |              |                |             |               |              |                  |
| SULFUR DIOXIDE (SO2)                                                  |                        |                       |              |                |             |               |              |                  |
| NITROGEN OXIDES (NOx)                                                 |                        |                       | SEE          | APPENDIX I     | B, Table 11 |               |              |                  |
| CARBON MONOXIDE (CO)                                                  |                        |                       |              |                |             |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                            | (VOC)                  |                       |              |                |             |               |              |                  |
| LEAD                                                                  |                        |                       |              |                |             |               |              |                  |
| OTHER                                                                 |                        |                       |              |                |             |               |              |                  |
| HAZARDOUS                                                             | S AIR POLLU            | TANT EMISSIC          | ONS INFO     | ORMATIO        | N FOR TI    | HIS SOU       | RCE          |                  |
|                                                                       |                        | SOURCE OF             | EXPECTE      | ED ACTUAL      |             | POTENTIA      | L EMISSIC    | DNS              |
|                                                                       |                        | EMISSION              | AFTER CON    | TROLS / LIMITS | SEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                               | CAS NO.                | FACTOR                | lb/hr        | tons/yr        | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       | SEE          | APPENDIX I     | B, Table 11 |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
| TOXIC AI                                                              | R POLLUTAN             | NT EMISSIONS          | INFORM       | ATION F        | OR THIS     | SOURCI        |              |                  |
|                                                                       |                        | SOURCE OF<br>EMISSION | EXPECTE      | D ACTUAL       | EMISSIONS   | S AFTER C     | ONTROLS      | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                   | CAS NO.                | FACTOR                | l            | o/hr           | lb/c        | day           |              | lb/yr            |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                | Table 11    |               |              |                  |
|                                                                       |                        |                       | SEE AF       | PPENDIX B,     | rapie 11    |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       |                        |                       |              |                |             |               |              |                  |
|                                                                       | 1                      |                       | 1            |                |             |               |              |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

 WPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

| REVISED 09/22/16         |                                                   |                     | ty - Application | for Air Permit to Construct/Ope    | rate                      | B9           |
|--------------------------|---------------------------------------------------|---------------------|------------------|------------------------------------|---------------------------|--------------|
| EMISSION SOURCE DESCRI   | PTION: Ash Ba                                     | sin                 |                  | EMISSION SOURCE ID NO: F-          | 4                         |              |
|                          |                                                   |                     |                  | CONTROL DEVICE ID NO(S): I         | N/A                       |              |
| OPERATING SCENARIO:      |                                                   |                     | _                | EMISSION POINT (STACK) ID          | NO(S): FUGITIVE FEP-      | 4            |
| DESCRIBE IN DETAIL THE P | OCESS (ATTA                                       | CH FLOW DIAGRAM):   | Dust may be ger  | nerated by wind erosion of exposed | d area within an industri | ai taciiity. |
| MATERIALS ENTE           |                                                   | SS - CONTINUOUS PRO | CESS             | MAX. DESIGN                        | REQUESTED                 |              |
|                          | MATERIALS ENTERING PROCESS - CONTINUOUS P<br>TYPE |                     | UNITS            | CAPACITY (UNIT/HR)                 | LIMITATION                |              |
| Active Basin Area        |                                                   |                     | Acres            | 321 Acres                          | N/A                       | 0            |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
| MATERIALS EN             | FERING PROC                                       | ESS - BATCH OPERAT  | TION             | MAX. DESIGN                        | REQUESTED                 | CAPACITY     |
|                          | TYPE                                              |                     | UNITS            | CAPACITY (UNIT/BATCH)              | LIMITATION (U             | NIT/BATCH)   |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
|                          |                                                   |                     |                  |                                    |                           |              |
| MAXIMUM DESIGN (BATCHE   |                                                   |                     |                  |                                    |                           |              |
| REQUESTED LIMITATION (BA | ATCHES / HOU                                      | R):                 | (BATCHES/        | YR):                               |                           |              |
| FUEL USED: N/A           |                                                   |                     | TOTAL MAX        | IMUM FIRING RATE (MILLION B        | TU/HR): N/A               |              |
| MAX. CAPACITY HOURLY FU  |                                                   |                     | REQUESTE         | D CAPACITY ANNUAL FUEL USE         | E: N/A                    |              |
| COMMENTS: Maximum ash t  | nroughput = 43                                    | U,UUU ton/yr        |                  |                                    |                           |              |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCD                                                    | EQ/Division of A        | ir Quality - Applic   | ation for A   | ir Permit to  | Construct/  | Operate       |              | В                |
|------------------------------------------------------------------------|-------------------------|-----------------------|---------------|---------------|-------------|---------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION:                                           | Ash Handling            |                       |               | EMISSION      | SOURCE I    | D NO: F-5     |              |                  |
|                                                                        |                         |                       |               | CONTROL       | DEVICE ID   | 0 NO(S): N/   | Ą            |                  |
| OPERATING SCENARIO                                                     | _1OF _                  | 1                     |               | EMISSION      | POINT (ST   | ACK) ID NO    | D(S): FUGI   | TIVE FEP-4       |
| DESCRIBE IN DETAILTHE EMISSIO<br>Emissions from the handling of materi |                         | •                     | LOW DIAG      | RAM):         |             |               |              |                  |
| TYPE OF EMISSION SOU                                                   | RCE (CHECK A            | ND COMPLETE A         | PPROPRIA      | TE FORM B     | 1-B9 ON TI  | HE FOLLO      | WING PAG     | ES):             |
| Coal,wood,oil, gas, other burner (                                     | Form B1)                | U Woodworking         | (Form B4)     |               | 🗆 Man       | uf. of chemi  | cals/coating | gs/inks (Form I  |
| Int.combustion engine/generator (                                      | Form B2)                | Coating/finish        | ning/printing | (Form B5)     | 🗌 Incin     | eration (Fo   | rm B8)       |                  |
| Liquid storage tanks (Form B3)                                         |                         | Storage silos         | /bins (Form   | B6)           | 🗸 Othe      | er (Form B9)  | )            |                  |
| START CONSTRUCTION DATE: N/A                                           |                         |                       | DATE MA       | NUFACTUR      | ED: N/A     |               |              |                  |
| MANUFACTURER / MODEL NO.: N/A                                          | A                       |                       | EXPECTE       | D OP. SCH     | EDULE: 24   | HR/DAY 7      | DAY/WK 5     | 52 WK/YR         |
| IS THIS SOURCE SUBJECT $\Box$                                          | NSPS (SUBPAR            | TS?):                 |               |               | SHAP (SUB   | PARTS?):_     |              |                  |
| PERCENTAGE ANNUAL THROUGH                                              | PUT (%): DEC-F          | EB 25 MA              | R-MAY 2       | 5 J           | UN-AUG      | 25            | SEP-NO       | V 25             |
| CRITERIA A                                                             | IR POLLUTA              | NT EMISSION           | NS INFOR      | RMATION       | FOR TH      | IS SOUR       | CE           |                  |
|                                                                        |                         | SOURCE OF             | EXPECTE       | D ACTUAL      |             | POTENTIA      | L EMISSIC    | ONS              |
|                                                                        |                         | EMISSION              | AFTER CONT    | ROLS / LIMITS | SEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                  |                         | FACTOR                | lb/hr         | tons/yr       | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                                |                         |                       |               |               |             |               |              |                  |
| PARTICULATE MATTER<10 MICRON                                           | S (PM <sub>10</sub> )   |                       |               |               |             |               |              |                  |
| PARTICULATE MATTER<2.5 MICRON                                          | IS (PM <sub>2.5</sub> ) |                       |               |               |             |               |              |                  |
| SULFUR DIOXIDE (SO2)                                                   |                         |                       |               |               |             |               |              |                  |
| NITROGEN OXIDES (NOx)                                                  |                         |                       | SEE /         |               | 3, Table 12 |               |              |                  |
| CARBON MONOXIDE (CO)                                                   |                         |                       |               |               |             |               |              |                  |
| VOLATILE ORGANIC COMPOUNDS                                             | (VOC)                   |                       |               |               |             |               |              |                  |
| LEAD                                                                   | × ,                     |                       |               |               |             |               |              |                  |
| OTHER                                                                  |                         |                       |               |               |             |               |              |                  |
| HAZARDOUS                                                              | AIR POLLU               | TANT EMISSIO          | ONS INFO      | ORMATIC       | N FOR T     | THIS SOL      | IRCE         |                  |
|                                                                        |                         | SOURCE OF             | EXPECTE       | D ACTUAL      |             | POTENTIA      |              | ONS              |
|                                                                        |                         | EMISSION              | AFTER CONT    | ROLS / LIMITS | SEFORE CONT | ROLS / LIMITS | (AFTER CO    | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                | CAS NO.                 | FACTOR                | lb/hr         | tons/yr       | lb/hr       | tons/yr       | lb/hr        | tons/yr          |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       | SEE A         |               | B, Table 12 |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       | 1             |               |             |               |              | 1                |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         | 1                     |               |               |             |               |              |                  |
| TOXIC AII                                                              | R POLLUTAN              | IT EMISSIONS          | INFORM        | ATION F       | OR THIS     | SOURC         | E            |                  |
|                                                                        |                         | SOURCE OF<br>EMISSION | EXPECTE       | D ACTUAL      | EMISSION    | S AFTER C     | ONTROLS      | / LIMITATION     |
| TOXIC AIR POLLUTANT                                                    | CAS NO.                 | FACTOR                | lk            | /hr           | lb/o        | day           |              | lb/yr            |
|                                                                        |                         |                       |               |               |             | ,             |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       | SEE AP        | PENDIX B,     | Table 12    |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         |                       |               |               |             |               |              |                  |
|                                                                        |                         | I                     | 1             |               | 1           |               |              |                  |

emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

 IPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOU

 Attach Additional Sheets As Necessary

|                                                          | - Application f  | or Air Permit to Construct/Opera      | te             | B9         |
|----------------------------------------------------------|------------------|---------------------------------------|----------------|------------|
| EMISSION SOURCE DESCRIPTION: Ash Handling                |                  | EMISSION SOURCE ID NO: F-5            |                |            |
|                                                          |                  | CONTROL DEVICE ID NO(S): N/           | A              |            |
| OPERATING SCENARIO:1 OF1                                 |                  | EMISSION POINT (STACK) ID NO          |                | 4          |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): En | nissions from th | ne handling of material at an industr | ial site.      |            |
| MATERIALS ENTERING PROCESS - CONTINUOUS PROCE            | SS               | MAX. DESIGN                           | REQUESTED      | CAPACITY   |
| ТҮРЕ                                                     | UNITS            | CAPACITY (UNIT/HR)                    | LIMITATION     |            |
| Ash throughput                                           | Tons             | 49.09                                 |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
| MATERIALS ENTERING PROCESS - BATCH OPERATIO              | N N              | MAX. DESIGN                           | REQUESTED      | CAPACITY   |
| TYPE                                                     | UNITS            | CAPACITY (UNIT/BATCH)                 | LIMITATION (UI | NIT/BATCH) |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
|                                                          |                  |                                       |                |            |
| MAXIMUM DESIGN (BATCHES / HOUR):                         | •                |                                       |                |            |
| REQUESTED LIMITATION (BATCHES / HOUR):                   | (BATCHES/Y       | R):                                   |                |            |
| FUEL USED: N/A                                           | TOTAL MAXI       | MUM FIRING RATE (MILLION BTU          | J/HR): N/A     |            |
| MAX. CAPACITY HOURLY FUEL USE: N/A                       | T                | CAPACITY ANNUAL FUEL USE:             |                |            |
| COMMENTS: Maximum ash throughput = 430,000 ton/yr        |                  |                                       |                |            |

#### SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

| REVISED 09/22/1 NCDEQ/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Division of Air                      | Quality - Appl                         | ication for                | Air Permit                               | to Constru   | ct/Operate                   |              | В                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------|------------------------------------------|--------------|------------------------------|--------------|------------------|
| EMISSION SOURCE DESCRIPTION: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | laul Roads                           |                                        |                            | EMISSION                                 | SOURCE       | D NO: F-6                    |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              | 0 NO(S): N/                  | 4            |                  |
| OPERATING SCENARIO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OF                                   | 1                                      |                            |                                          |              | . ,                          |              | TIVE FEP-4       |
| DESCRIBE IN DETAILTHE EMISSION<br>A portion of the ash will be moved by tru<br>wheels on the road surface. This force of<br>wheels and the road surface is exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ick to an offsite<br>causes pulveriz | e location. Parti<br>zation of the sur | culate emis<br>face materi | IAGRAM):<br>sions are ge<br>al. The part | enerated fro | m the haul i<br>ted and drop | roads from   | the force of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                    | _                                      |                            |                                          |              |                              |              | •                |
| └ Coal,wood,oil, gas, other burner (Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rm B1)                               |                                        | ing (Form E                | 34)                                      | 🗆 Man        | uf. of chemi                 | cals/coating | gs/inks (Form B  |
| □ Int.combustion engine/generator (Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orm B2)                              | -                                      | • •                        | ing (Form B                              |              | eration (For                 | ,            |                  |
| Liquid storage tanks (Form B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | Storage si                             | los/bins (Fo               | rm B6)                                   | 🔽 Othe       | r (Form B9)                  |              |                  |
| START CONSTRUCTION DATE: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                        | DATE MAN                   | NUFACTUR                                 | ED: N/A      |                              |              |                  |
| MANUFACTURER / MODEL NO.: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                        | EXPECTE                    | D OP. SCHI                               | EDULE: 24    | HR/DAY 7                     | DAY/WK 5     | 52 WK/YR         |
| IS THIS SOURCE SUBJECT 🛛 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SPS (SUBPAR                          | TS?):                                  |                            |                                          | SHAP (SUB    | PARTS?):_                    |              |                  |
| PERCENTAGE ANNUAL THROUGHPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( )                                  |                                        | MAR-MAY                    | 25                                       | JUN-AU       |                              |              | -NOV 25          |
| CRITERIA AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POLLUTAI                             | NT EMISSIO                             | NS INFO                    | RMATIO                                   | N FOR T      | HIS SOU                      | RCE          |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | SOURCE OF                              | EXPECTE                    | D ACTUAL                                 |              | POTENTIA                     | L EMISSIC    | ONS              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | EMISSION                               | AFTER CONT                 | ROLS / LIMITS)                           | BEFORE CON   | FROLS / LIMITS               | (AFTER CO    | NTROLS / LIMITS) |
| AIR POLLUTANT EMITTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | FACTOR                                 | lb/hr                      | tons/yr                                  | lb/hr        | tons/yr                      | lb/hr        | tons/yr          |
| PARTICULATE MATTER (PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                        |                            |                                          |              |                              |              |                  |
| PARTICULATE MATTER<10 MICRONS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM <sub>10</sub> )                   |                                        |                            |                                          |              |                              |              |                  |
| PARTICULATE MATTER<2.5 MICRONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PM <sub>2.5</sub> )                 |                                        |                            |                                          |              |                              |              |                  |
| SULFUR DIOXIDE (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | SEI                                    |                            | X B, Table                               | 13B & 13C    |                              |              |                  |
| NITROGEN OXIDES (NOx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                        |                            |                                          |              |                              |              |                  |
| CARBON MONOXIDE (CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                        |                            |                                          |              |                              |              |                  |
| VOLATILE ORGANIC COMPOUNDS (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (OC)                                 |                                        |                            |                                          |              |                              | -            |                  |
| LEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                    |                                        |                            |                                          |              |                              | -            |                  |
| OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                        |                            |                                          |              |                              | -            |                  |
| HAZARDOUS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IR POLLUT                            | ANT EMISS                              | IONS INF                   | ORMATI                                   | ON FOR       | THIS SO                      | URCE         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                    | SOURCE OF                              |                            |                                          |              | POTENTIA                     |              | ONS              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          | REFORE CON   | ROLS / LIMITS                |              | NTROLS / LIMITS) |
| HAZARDOUS AIR POLLUTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAS NO.                              | FACTOR                                 | lb/hr                      | tons/yr                                  | lb/hr        | tons/yr                      | lb/hr        | tons/yr          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        | 12711                      | torio, yr                                |              | tono, j.                     |              | tono, yi         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                    |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
| TOXIC AIR P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | FMISSION                               |                            | MATION                                   | FOR TH       | S SOUR                       | CF           | I                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | SOURCE OF<br>EMISSION                  |                            |                                          |              |                              |              | / LIMITATIONS    |
| TOXIC AIR POLLUTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAS NO.                              | FACTOR                                 | lb                         | /hr                                      | lb/          | day                          |              | lb/yr            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                        |                            |                                          |              |                              |              | ,                |
| Attachments: (1) emissions calculations and s<br>operation, emission rates) and describe how the temperature of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                                      | ,                                      |                            |                                          |              | •                            |              |                  |
| source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                        | ,, ar                      | (-,                                      | . ,          | J . 1.1500, g                | ,            |                  |

PLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SO Attach Additional Sheets As Necessary

| REVISED 09/22/16 NCDEQ/Division of Air Quality                                                                                                                                                                   | - Application f  | or Air Permit to Construct/Opera     | te                     | B9         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|------------------------|------------|--|
| EMISSION SOURCE DESCRIPTION: Haul Roads                                                                                                                                                                          |                  | EMISSION SOURCE ID NO: F-6           |                        |            |  |
|                                                                                                                                                                                                                  |                  | CONTROL DEVICE ID NO(S): N/          | A                      |            |  |
| OPERATING SCENARIO:1 OF1                                                                                                                                                                                         |                  | EMISSION POINT (STACK) ID NO         | D(S): FUGITIVE FEP     | -4         |  |
| DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): A<br>generated from the haul roads from the force of the wheels on the road su<br>and dropped from the rolling wheels and the road surface is exposed to s | urface. This for | ce causes pulverization of the surfa | ace material. The part |            |  |
| MATERIALS ENTERING PROCESS - CONTINUOUS PROC                                                                                                                                                                     | ESS              | MAX. DESIGN                          | REQUESTED              | CAPACITY   |  |
| TYPE                                                                                                                                                                                                             | UNITS            | CAPACITY (UNIT/HR)                   | LIMITATION             | (UNIT/HR)  |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
| MATERIALS ENTERING PROCESS - BATCH OPERATIO                                                                                                                                                                      | N                | MAX. DESIGN                          | REQUESTED              | CAPACITY   |  |
| ТҮРЕ                                                                                                                                                                                                             | UNITS            | CAPACITY (UNIT/BATCH)                | LIMITATION (U          | NIT/BATCH) |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
|                                                                                                                                                                                                                  |                  |                                      |                        |            |  |
| MAXIMUM DESIGN (BATCHES / HOUR):                                                                                                                                                                                 |                  |                                      |                        |            |  |
| REQUESTED LIMITATION (BATCHES / HOUR):                                                                                                                                                                           | (BATCHES/Y       | R):                                  |                        |            |  |
| FUEL USED: N/A                                                                                                                                                                                                   | TOTAL MAXI       | MUM FIRING RATE (MILLION BTU         | J/HR): N/A             |            |  |
| MAX. CAPACITY HOURLY FUEL USE: N/A                                                                                                                                                                               |                  | CAPACITY ANNUAL FUEL USE:            | N/A                    |            |  |
| COMMENTS: Loaded truck weight 50 tons and unloaded truck weight 25                                                                                                                                               | ions.            |                                      |                        |            |  |

#### FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

|                                                      | FACILITY-W           |              |                                  |               |           | l             |               |
|------------------------------------------------------|----------------------|--------------|----------------------------------|---------------|-----------|---------------|---------------|
|                                                      | Division of Air Qual |              |                                  |               | -         |               | D1            |
| CRITERI                                              | A AIR POLLUTAN       |              |                                  | UN - FACILIT' | r-WIDE    |               |               |
|                                                      |                      |              | D ACTUAL<br>SIONS                | ροτεντιαι     | EMISSIONS | POTENTIAL     | EMISSION      |
|                                                      |                      | (AFTER CO    |                                  |               | ONTROLS / |               | ONTROLS /     |
|                                                      |                      | LIMITA       | TIONS)                           | ,             | TIONS)    |               | TIONS)        |
| AIR POLLUTANT EMITTED                                |                      | ton          | s/yr                             | ton           | s/yr      | ton           | s/yr          |
| PARTICULATE MATTER (PM)                              |                      | 330.27       |                                  | N             | /A        | 330           | ).27          |
| PARTICULATE MATTER < 10 MICRONS (PM <sub>10</sub> )  |                      | 322.27       |                                  | N             | /A        | 322           | 2.27          |
| ARTICULATE MATTER < 2.5 MICRONS (PM <sub>2.5</sub> ) |                      | 322.06       |                                  | N             | /A        | 322           | 2.06          |
| SULFUR DIOXIDE (SO <sub>2</sub> )                    |                      | 15,183.29    |                                  | N             | /A        | 15,1          | 83.29         |
| NITROGEN OXIDES (NOx)                                |                      | 5,258.45     |                                  | N             | /A        | 5,25          | 58.45         |
| CARBON MONOXIDE (CO)                                 |                      | 1,186.54     |                                  | N             | /A        | 1,18          | 86.54         |
| VOLATILE ORGANIC COMPOUNDS (VOC)                     |                      | 128.34       |                                  | N             | /A        | 128           | 3.34          |
| LEAD                                                 |                      | 0.771        |                                  | N             | /A        | 0.7           | 771           |
| GREENHOUSE GASES (GHG) (SHORT TONS)                  |                      | 116,604.15   |                                  | N             | /A        | 116,6         | 604.15        |
| OTHER                                                |                      |              |                                  |               |           |               |               |
| HAZARDO                                              | US AIR POLLUTA       |              |                                  | TION - FACILI | TY-WIDE   |               |               |
|                                                      |                      |              |                                  | DOTENTIAL     | EMISSIONS | DOTENTIAL     | EMISSION      |
|                                                      |                      |              | SIONS<br>ONTROLS /               |               | ONTROLS / | (AFTER C      | ONTROLS /     |
|                                                      |                      | LIMITA       |                                  |               | TIONS)    |               | TIONS)        |
| HAZARDOUS AIR POLLUTANT EMITTED                      | CAS NO.              |              | s/yr                             |               | is/yr     |               | is/yr         |
| Benzene                                              | 71-43-2              |              | •                                |               | /A        |               | 5.30          |
| Formaldehyde                                         | 50-00-0              |              |                                  |               | /A        |               | 30.20         |
| Hexane                                               | 110-54-3             | ,            |                                  |               |           |               | 03.13         |
| Naphthalene                                          | 91-20-3              |              | 25,303.13 N/A                    |               |           | E-03          |               |
| Toluene                                              | 108-88-3             |              | 5.69E-03 N/A<br>4.211.520.32 N/A |               |           |               | 520.32        |
| Arsenic                                              | 7440-38-2            |              |                                  |               |           |               | 520.32<br>19  |
|                                                      | 7440-36-0            |              |                                  | N/A<br>N/A    |           |               | E-04          |
| Antimony<br>Beryllium                                | 7440-36-0            |              |                                  | N/A<br>N/A    |           |               | 11            |
| Cadmium                                              | 7440-41-7            |              |                                  |               | /A<br>/A  |               | 14            |
| Chromium                                             | 7440-43-9            |              | 4.84E-03                         |               | /A<br>//A |               | E-03          |
| Chromium VI                                          | 18540-29-9           |              |                                  |               | /A<br>//A |               | 2.49          |
| Cobalt                                               | 7440-48-4            |              |                                  |               | /A<br>//A |               | 2.49<br>E-03  |
| Manganese                                            | 7439-96-5            |              |                                  |               | /A        |               | 43.34         |
| × ·                                                  | 7439-90-5            |              | 11,443.34                        |               | /A<br>//A |               | 43.34<br>9.79 |
| Mercury<br>Nickel                                    | 7440-02-0            |              |                                  |               | /A        |               |               |
| Selenium                                             | 7782-49-2            |              |                                  |               | /A        |               | E-03          |
| Xylene                                               | 1330-20-7            |              |                                  |               | /A        |               | .68           |
| 1,3-Butadiene                                        | 106-99-0             |              |                                  |               | //A       |               | 61            |
| Acetaldehyde                                         | 75-07-0              |              |                                  |               | //A       |               | 49            |
| Acrolein                                             | 107-02-8             |              |                                  |               | /A        |               | 84            |
| Total PAH (including Naphthalene)                    |                      | 2.04E-04     |                                  |               | /A        |               | E-04          |
|                                                      | AIR POLLUTANT        |              |                                  |               |           |               |               |
| NDICATE REQUESTED ACTUAL EMISSIONS AF                |                      |              |                                  |               |           | SION RATE (TP | ER) IN 15A    |
| NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION             | MODELING. USE 1      | NETTING FORM | 1 D2 IF NECESS                   | SARY.         | Modeling  | Required ?    | ]             |
| TOXIC AIR POLLUTANT EMITTED                          | CAS NO.              | lb/hr        | lb/day                           | lb/year       | Yes       | No            |               |
| Sulfuric Acid Mist                                   | 7664-93-9            |              | 10,781.10                        |               | X         |               |               |
| Benzene                                              | 71-43-2              |              |                                  | 510,598.49    | Х         |               |               |
| Formaldehyde                                         | 50-00-0              |              | İ                                |               | X         |               |               |
| Hexane                                               | 110-54-3             |              | 138,647.28                       |               | X         |               |               |
| Toluene                                              | 108-88-3             |              | 11,593,642.41                    | 1             | X         |               |               |
| Arsenic                                              | 7440-38-2            |              |                                  | 387.55        | X         | 1             |               |
| Beryllium                                            | 7440-41-7            |              |                                  | 212.67        | X         |               |               |
| Cadmium                                              | 7440-43-9            |              |                                  | 14,274.49     | X         |               |               |
| Chromium VI                                          | 18540-29-9           |              | 616.41                           | ,             | X         |               |               |
|                                                      |                      |              |                                  |               |           | 1             | 1             |

| Chromium VI | 18540-29-9 |
|-------------|------------|
| Manganese   | 7439-96-5  |
| Mercury     | 7439-97-6  |
| Nickel      | 7440-02-0  |
| COMMENTO    |            |

COMMENTS:

For modeling purposes toxic air pollutant facility wide emissions include emissions from the STAR facility and the Steam Electric Plant. Proposed emission rates of HAPs and TAPs that are modeled are optimized rates, proposed emission rate for all other pollutants are potential emissions. Diesel engines (ES-39B and ES-40B) were not modeled in the TPER analysis per 15A NCAC 2Q.0702 (a)(27).

62,703.25

1,204.33

232.17

Х

Х

Х

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                      | NCDEQ/Division of Air Quality - A                                                           | pplication for Air Permit to Construct   | /Operate D2                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|
| PURPOSE OF NETTING: AIR TO            | DXICS                                                                                       |                                          |                                                 |
| TOXIC AIR POLLUTANT:                  | Sulfuric Acid Mist                                                                          | CAS NO.: 7664-93-9                       |                                                 |
| EMISSION SOURCE ID NOS .:             | ES-31, ES-10, ES-11, ES-12, ES-13, E                                                        | ES-14, ES-1A, ES-1B and ES-1C            |                                                 |
| SECTIO                                | ON A - EMISSION OFFSETTING                                                                  | G ANALYSIS FOR MODIFIED/                 | NEW SOURCES                                     |
| Summarize in this section             | EMI                                                                                         | ISSIONS - USE APPROPRIATE COLUN          | VINS ONLY                                       |
| using the B forms                     | LB/YEAR                                                                                     | LB/DAY                                   | LB/HR                                           |
| MODIFICATION                          | N/A                                                                                         |                                          |                                                 |
| INCREASE                              |                                                                                             |                                          |                                                 |
| - MINUS -                             | - MINUS -                                                                                   | - MINUS -                                | - MINUS -                                       |
| MODIFICATION                          | N/A                                                                                         |                                          |                                                 |
| DECREASE                              | ГWА                                                                                         |                                          |                                                 |
| = EQUALS =                            | = EQUALS =                                                                                  | = EQUALS =                               | = EQUALS =                                      |
| NET CHANGE                            | N/A                                                                                         |                                          |                                                 |
| FROM MODIFICATION                     |                                                                                             |                                          |                                                 |
|                                       | SECTION B - FACILITY-WI                                                                     | DE EMISSION NETTING ANAL                 | YSIS                                            |
| CREDITABLE                            |                                                                                             |                                          |                                                 |
| INCREASE                              |                                                                                             |                                          |                                                 |
| - MINUS -                             | - MINUS -                                                                                   | - MINUS -                                | - MINUS -                                       |
| CREDITABLE                            |                                                                                             |                                          |                                                 |
| DECREASE                              |                                                                                             |                                          |                                                 |
| = EQUALS =                            | = EQUALS =                                                                                  | = EQUALS =                               | = EQUALS =                                      |
| NET CREDITABLE                        |                                                                                             |                                          |                                                 |
| CHANGE                                |                                                                                             |                                          |                                                 |
|                                       | SECTION C - FA                                                                              | CILITY-WIDE EMISSIONS                    |                                                 |
| TOTAL FACILITY                        | N/A                                                                                         | 10,781                                   | 947.13                                          |
| EMISSIONS                             |                                                                                             |                                          | 347.13                                          |
| TPER LEVELS (2Q .0711)                | N/A                                                                                         | 0.25                                     | 0.25                                            |
| Are the total facility-wide emissions | s less than the TPER levels?:                                                               | YES 7                                    | ] NO                                            |
| If YES, no further analysis is requir |                                                                                             |                                          |                                                 |
|                                       | required if the total facility-wide emissio<br>the toxic air pollutant is not exempted by 1 |                                          | xic Air Pollutant Permitting Emissions Rate s". |
| CHECK HERE IF AN AIR DISPER           | RSION MODELING ANALYSIS IS REQU                                                             | JIRED 🔽                                  |                                                 |
|                                       | is required, complete the stack paramet                                                     | ters section of Form D3-1 for each emiss | sion source that emits this TAP. Review the     |
| modeling plan requirements.           |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |
|                                       |                                                                                             |                                          |                                                 |

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                         | NCDEQ/Division of Air Quality - A    | pplication for Air Permit to Construct/O                                              | perate D2                                |
|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|
| PURPOSE OF NETTING: AIR TOX              | ICS                                  |                                                                                       |                                          |
| TOXIC AIR POLLUTANT: E                   | enzene                               | CAS NO.: 71-43-2                                                                      |                                          |
| EMISSION SOURCE ID NOS.: E               | S-31, ES-10, ES-11, ES-12, ES-13, I  | ES-14, ES-1A, ES-1B, ES-1C and Existing                                               | J Aux Equip                              |
| SECTION                                  | A - EMISSION OFFSETTIN               | G ANALYSIS FOR MODIFIED/NE                                                            | EW SOURCES                               |
| Summarize in this section                | EMI                                  | ISSIONS - USE APPROPRIATE COLUMN                                                      | IS ONLY                                  |
| using the B forms                        | LB/YEAR                              | LB/DAY                                                                                | LB/HR                                    |
| MODIFICATION                             |                                      | N/A                                                                                   | N/A                                      |
| INCREASE                                 |                                      | N/A                                                                                   | N/A                                      |
| - MINUS -                                | - MINUS -                            | - MINUS -                                                                             | - MINUS -                                |
| MODIFICATION                             |                                      | N/A                                                                                   | N/A                                      |
| DECREASE                                 |                                      | N/A                                                                                   | IV/A                                     |
| = EQUALS =                               | = EQUALS =                           | = EQUALS =                                                                            | = EQUALS =                               |
| NET CHANGE                               |                                      | N/A                                                                                   | N/A                                      |
| FROM MODIFICATION                        |                                      | N/A                                                                                   | IN/A                                     |
|                                          | <b>SECTION B - FACILITY-WI</b>       | DE EMISSION NETTING ANALY                                                             | SIS                                      |
| CREDITABLE                               |                                      |                                                                                       |                                          |
| INCREASE                                 |                                      |                                                                                       |                                          |
| - MINUS -                                | - MINUS -                            | - MINUS -                                                                             | - MINUS -                                |
| CREDITABLE                               |                                      |                                                                                       |                                          |
| DECREASE                                 |                                      |                                                                                       |                                          |
| = EQUALS =                               | = EQUALS =                           | = EQUALS =                                                                            | = EQUALS =                               |
| NET CREDITABLE                           |                                      |                                                                                       |                                          |
| CHANGE                                   |                                      |                                                                                       |                                          |
|                                          | SECTION C - FA                       | CILITY-WIDE EMISSIONS                                                                 |                                          |
| TOTAL FACILITY                           | E10 E09                              | N/A                                                                                   | N/A                                      |
| EMISSIONS                                | 510,598                              | N/A                                                                                   | N/A                                      |
| TPER LEVELS (2Q .0711)                   | 8.1                                  | N/A                                                                                   | N/A                                      |
| Are the total facility-wide emissions le | ess than the TPER levels?:           | YES 🗸                                                                                 | NO                                       |
| If YES, no further analysis is required  | ł.                                   |                                                                                       |                                          |
|                                          |                                      | on level is greater than the 2Q .0711 Toxic<br>15A NCAC 2Q .0702(a)(27) "Exemptions". | Air Pollutant Permitting Emissions Rate  |
| CHECK HERE IF AN AIR DISPERSI            | ON MODELING ANALYSIS IS REQU         | JIRED 🗹                                                                               |                                          |
|                                          | required, complete the stack paramet | ters section of Form D3-1 for each emissio                                            | n source that emits this TAP. Review the |
| modeling plan requirements.<br>COMMENTS: |                                      |                                                                                       |                                          |
| COMMENTS.                                |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |
|                                          |                                      |                                                                                       |                                          |

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                                                  | NCDEQ/Division of Air Quality - Ap                                                         | oplication for Air Permit to Construct  | t/Operate D2                                    |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|
| PURPOSE OF NETTING: AIR TO                                        | XICS                                                                                       |                                         |                                                 |
| TOXIC AIR POLLUTANT:                                              | Formaldehyde                                                                               | CAS NO.: 50-00-0                        |                                                 |
| EMISSION SOURCE ID NOS .:                                         | ES-31, ES-10, ES-11, ES-12, ES-13, E                                                       | ES-14, ES-1A, ES-1B, ES-1C and Exist    | ing Aux Equip                                   |
| SECTIO                                                            | ON A - EMISSION OFFSETTING                                                                 | GANALYSIS FOR MODIFIED/I                | NEW SOURCES                                     |
| Summarize in this section                                         | EMIS                                                                                       | SSIONS - USE APPROPRIATE COLUI          | MNS ONLY                                        |
| using the B forms                                                 | LB/YEAR                                                                                    | LB/DAY                                  | LB/HR                                           |
| MODIFICATION                                                      | N/A                                                                                        | N/A                                     |                                                 |
| INCREASE                                                          |                                                                                            |                                         |                                                 |
| - MINUS -                                                         | - MINUS -                                                                                  | - MINUS -                               | - MINUS -                                       |
| MODIFICATION                                                      | N/A                                                                                        | N/A                                     |                                                 |
| DECREASE                                                          |                                                                                            |                                         |                                                 |
| = EQUALS =                                                        | = EQUALS =                                                                                 | = EQUALS =                              | = EQUALS =                                      |
| NET CHANGE                                                        | N/A                                                                                        | N/A                                     |                                                 |
| FROM MODIFICATION                                                 |                                                                                            |                                         |                                                 |
|                                                                   | SECTION B - FACILITY-WI                                                                    | DE EMISSION NETTING ANAL                | YSIS                                            |
| CREDITABLE                                                        |                                                                                            |                                         |                                                 |
| INCREASE                                                          |                                                                                            |                                         |                                                 |
| - MINUS -                                                         | - MINUS -                                                                                  | - MINUS -                               | - MINUS -                                       |
| CREDITABLE                                                        |                                                                                            | 1                                       |                                                 |
| DECREASE                                                          |                                                                                            |                                         |                                                 |
| = EQUALS =                                                        | = EQUALS =                                                                                 | = EQUALS =                              | = EQUALS =                                      |
| NET CREDITABLE                                                    |                                                                                            |                                         |                                                 |
| CHANGE                                                            |                                                                                            |                                         |                                                 |
|                                                                   | SECTION C - FAC                                                                            | CILITY-WIDE EMISSIONS                   |                                                 |
| TOTAL FACILITY                                                    | N/A                                                                                        | N/A                                     | 1776.30                                         |
| EMISSIONS                                                         |                                                                                            |                                         | 1770.30                                         |
| TPER LEVELS (2Q .0711)                                            | N/A                                                                                        | N/A                                     | 0.04                                            |
| Are the total facility-wide emissions                             | s less than the TPER levels?:                                                              | YES 🗸                                   | NO NO                                           |
| If YES, no further analysis is requir                             |                                                                                            |                                         |                                                 |
|                                                                   | required if the total facility-wide emission<br>e toxic air pollutant is not exempted by 1 |                                         | xic Air Pollutant Permitting Emissions Rate s". |
|                                                                   | SION MODELING ANALYSIS IS REQU                                                             |                                         |                                                 |
| If air dispersion modeling analysis i modeling plan requirements. | s required, complete the stack parameter                                                   | ers section of Form D3-1 for each emiss | sion source that emits this TAP. Review the     |
| COMMENTS:                                                         |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |
|                                                                   |                                                                                            |                                         |                                                 |

### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| PURPOSE OF NETTING: AIR TOXICS         TOXIC AIR POLLUTANT: Hexane       CAS NO.: 110-54-3         EMISSION SOURCE ID NOS.: ES-31, ES-1A, ES-1B, ES-1C and Existing Aux Equip         SECTION A - EMISSION OFFSETTING ANALYSIS FOR MODIFIED/NEW SOURCES         Summarize in this section         USINS - USE APPROPRIATE COLUMNS ONLY         USING - USE APPROPRIATE COLUMNS ONLY         USING - USE APPROPRIATE COLUMNS ONLY         Using the B forms       LB/YEAR       LB/DAY       LB/HR         MODIFICATION       N/A       N/A       N/A         - MINUS -       - MINUS -       - MINUS -       - MINUS -         MODIFICATION       N/A       N/A       - MINUS -         - MINUS -       - MINUS -       - MINUS -       - MINUS -         MODIFICATION       N/A       N/A       - MINUS -         - MODIFICATION       N/A       N/A       -         - EQUALS =       = EQUALS =       = EQUALS =       = EQUALS =       = EQUALS = |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMISSION SOURCE ID NOS.: ES-31, ES-1A, ES-1B, ES-1C and Existing Aux Equip         SECTION A - EMISSION OFFSETTING ANALYSIS FOR MODIFIED/NEW SOURCES         Summarize in this section<br>using the B forms       EMISSIONS - USE APPROPRIATE COLUMNS ONLY         MODIFICATION<br>INCREASE       LB/YEAR       LB/DAY       LB/HR         - MINUS -       - MINUS -       - MINUS -       - MINUS -         MODIFICATION<br>DECREASE       N/A       N/A       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SECTION A - EMISSION OFFSETTING ANALYSIS FOR MODIFIED/NEW SOURCES           Summarize in this section         EMISSIONS - USE APPROPRIATE COLUMNS ONLY           using the B forms         LB/YEAR         LB/DAY         LB/HR           MODIFICATION         N/A         N/A         N/A           - MINUS -         - MINUS -         - MINUS -         - MINUS -           MODIFICATION         N/A         N/A         - MINUS -           - MINUS -         - MINUS -         - MINUS -         - MINUS -           MODIFICATION         N/A         N/A         - MINUS -                                                                                                                                                                                                                                                                                                                                                                     |
| Summarize in this section         EMISSIONS - USE APPROPRIATE COLUMNS ONLY           using the B forms         LB/YEAR         LB/DAY         LB/HR           MODIFICATION         N/A         N/A         N/A           INCREASE         - MINUS -         - MINUS -         - MINUS -           MODIFICATION         N/A         N/A         - MINUS -           - MINUS -         - MINUS -         - MINUS -         - MINUS -           MODIFICATION         N/A         N/A         - MINUS -           MODIFICATION         N/A         N/A         - MINUS -                                                                                                                                                                                                                                                                                                                                                                                 |
| using the B forms     LB/YEAR     LB/DAY     LB/HR       MODIFICATION     N/A     N/A     N/A       INCREASE     - MINUS -     - MINUS -     - MINUS -       MODIFICATION     N/A     N/A     - MINUS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MODIFICATION<br>INCREASE     N/A     N/A       - MINUS -     - MINUS -     - MINUS -       MODIFICATION<br>DECREASE     N/A     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INCREASE         N/A         N/A           - MINUS -         - MINUS -         - MINUS -           MODIFICATION         N/A         N/A           DECREASE         -         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INCREASE     INCREASE       - MINUS -     - MINUS -       MODIFICATION     N/A       DECREASE     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MODIFICATION N/A N/A DECREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DECREASE N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DECREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NET CHANGE N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FROM MODIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SECTION B - FACILITY-WIDE EMISSION NETTING ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CREDITABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INCREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - MINUS MINUS MINUS MINUS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CREDITABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DECREASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = EQUALS = = EQUALS = = EQUALS = = EQUALS =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NET CREDITABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SECTION C - FACILITY-WIDE EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOTAL FACILITY N/A 138,647 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TPER LEVELS (2Q .0711)     N/A     23     N/A       Are the total facility-wide emissions less than the TPER levels?:     YES     NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| If YES, no further analysis is required.<br>Air dispersion modeling analysis is required if the total facility-wide emission level is greater than the 2Q .0711 Toxic Air Pollutant Permitting Emissions Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (TPER) and the source emitting the toxic air pollutant is not exempted by 15A NCAC 2Q .0702(a)(27) "Exemptions".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CHECK HERE IF AN AIR DISPERSION MODELING ANALYSIS IS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If air dispersion modeling analysis is required, complete the stack parameters section of Form D3-1 for each emission source that emits this TAP. Review the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| modeling plan requirements.<br>COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                         | NCDEQ/Division of Air Quality - A       | pplication for Air Permit to Construct/C                                              | Operate D2                                |
|------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|
| PURPOSE OF NETTING: AIR TO               | )XICS                                   |                                                                                       |                                           |
| TOXIC AIR POLLUTANT:                     | Toluene                                 | CAS NO.: 108-88-3                                                                     |                                           |
| EMISSION SOURCE ID NOS .:                | ES-31, ES-10, ES-11, ES-12, ES-13, E    | ES-14, ES-1A, ES-1B, ES-1C and Existing                                               | g Aux Equip                               |
| SECTIO                                   | ON A - EMISSION OFFSETTING              | G ANALYSIS FOR MODIFIED/NI                                                            | EW SOURCES                                |
| Summarize in this section                | EMI                                     | ISSIONS - USE APPROPRIATE COLUM                                                       | NS ONLY                                   |
| using the B forms                        | LB/YEAR                                 | LB/DAY                                                                                | LB/HR                                     |
| MODIFICATION                             | N/A                                     | N/A                                                                                   |                                           |
| INCREASE                                 |                                         |                                                                                       |                                           |
| - MINUS -                                | - MINUS -                               | - MINUS -                                                                             | - MINUS -                                 |
| MODIFICATION                             | N/A                                     | N/A                                                                                   | T                                         |
| DECREASE                                 | 1973                                    | 19/7 \                                                                                |                                           |
| = EQUALS =                               | = EQUALS =                              | = EQUALS =                                                                            | = EQUALS =                                |
| NET CHANGE                               | N/A                                     | N/A                                                                                   |                                           |
| FROM MODIFICATION                        | 1973                                    |                                                                                       |                                           |
|                                          | SECTION B - FACILITY-WI                 | DE EMISSION NETTING ANALY                                                             | 'SIS                                      |
| CREDITABLE                               |                                         |                                                                                       |                                           |
| INCREASE                                 |                                         |                                                                                       |                                           |
| - MINUS -                                | - MINUS -                               | - MINUS -                                                                             | - MINUS -                                 |
| CREDITABLE                               |                                         | T                                                                                     | T                                         |
| DECREASE                                 |                                         |                                                                                       |                                           |
| = EQUALS =                               | = EQUALS =                              | = EQUALS =                                                                            | = EQUALS =                                |
| NET CREDITABLE                           |                                         | T                                                                                     | T                                         |
| CHANGE                                   |                                         |                                                                                       |                                           |
|                                          | SECTION C - FA                          | CILITY-WIDE EMISSIONS                                                                 |                                           |
| TOTAL FACILITY                           | N/A                                     | 11,593,642                                                                            | 961,534                                   |
| EMISSIONS                                |                                         | ,                                                                                     |                                           |
| TPER LEVELS (2Q .0711)                   | N/A                                     | 98                                                                                    | 14.4                                      |
| Are the total facility-wide emissions    | s less than the TPER levels?:           | YES 🗹                                                                                 | NO                                        |
| If YES, no further analysis is requir    |                                         |                                                                                       |                                           |
|                                          |                                         | on level is greater than the 2Q .0711 Toxic<br>15A NCAC 2Q .0702(a)(27) "Exemptions". |                                           |
|                                          | SION MODELING ANALYSIS IS REQU          |                                                                                       |                                           |
|                                          | is required, complete the stack paramet | ters section of Form D3-1 for each emission                                           | on source that emits this TAP. Review the |
| modeling plan requirements.<br>COMMENTS: |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |
|                                          |                                         |                                                                                       |                                           |

| REVISED 09/22/16                     | NCDEQ/Division of Air Quality - A       | Application for Air Permit to Construct/O                                               | perate E                              | )2      |
|--------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------|
| PURPOSE OF NETTING: AIR TO           | OXICS                                   |                                                                                         |                                       |         |
| TOXIC AIR POLLUTANT:                 | Arsenic                                 | CAS NO.: 7440-38-2                                                                      |                                       |         |
| EMISSION SOURCE ID NOS.:             |                                         | 35, ES-36A, ES-36B, ES-37A, ES-37B, ES<br>-12, ES-13, ES-14, ES-1A, ES-1B, ES-1C a      |                                       | A, F-1, |
| SECT                                 | <b>FION A - EMISSION OFFSETTI</b>       | NG ANALYSIS FOR MODIFIED/N                                                              | EW SOURCES                            |         |
| Summarize in this section            | E                                       | MISSIONS - USE APPROPRIATE COLUM                                                        | INS ONLY                              |         |
| using the B forms                    | LB/YEAR                                 | LB/DAY                                                                                  | LB/HR                                 |         |
| MODIFICATION                         |                                         | N/A                                                                                     | N/A                                   |         |
| INCREASE                             |                                         | IN/A                                                                                    | IV/A                                  |         |
| - MINUS -                            | - MINUS -                               | - MINUS -                                                                               | - MINUS -                             |         |
| MODIFICATION                         |                                         | N/A                                                                                     | N/A                                   |         |
| DECREASE                             |                                         | IN/A                                                                                    | IV/A                                  |         |
| = EQUALS =                           | = EQUALS =                              | = EQUALS =                                                                              | = EQUALS =                            |         |
| NET CHANGE                           |                                         | N/A                                                                                     | N/A                                   |         |
| FROM MODIFICATION                    |                                         | IN/A                                                                                    | N/A                                   |         |
|                                      | SECTION B - FACILITY-                   | WIDE EMISSION NETTING ANAL                                                              | YSIS                                  |         |
| CREDITABLE                           |                                         |                                                                                         |                                       |         |
| INCREASE                             |                                         |                                                                                         |                                       |         |
| - MINUS -                            | - MINUS -                               | - MINUS -                                                                               | - MINUS -                             |         |
| CREDITABLE                           |                                         |                                                                                         |                                       |         |
| DECREASE                             |                                         |                                                                                         |                                       |         |
| = EQUALS =                           | = EQUALS =                              | = EQUALS =                                                                              | = EQUALS =                            |         |
| NET CREDITABLE                       |                                         |                                                                                         |                                       |         |
| CHANGE                               |                                         |                                                                                         |                                       |         |
|                                      | SECTION C - F                           | ACILITY-WIDE EMISSIONS                                                                  |                                       |         |
| TOTAL FACILITY                       | 207 55                                  | N/A                                                                                     | N/A                                   |         |
| EMISSIONS                            | 387.55                                  | IN/A                                                                                    | N/A                                   |         |
| TPER LEVELS (2Q .0711)               | 0.053                                   | N/A                                                                                     | N/A                                   |         |
| Are the total facility-wide emission | ns less than the TPER levels?:          | S YES S                                                                                 | NO                                    |         |
| If YES, no further analysis is requ  | iired.                                  |                                                                                         |                                       |         |
|                                      |                                         | sion level is greater than the 2Q .0711 Toxi<br>/ 15A NCAC 2Q .0702(a)(27) "Exemptions' |                                       | ate     |
| CHECK HERE IF AN AIR DISPER          | RSION MODELING ANALYSIS IS REQ          | UIRED 🗹                                                                                 |                                       |         |
|                                      | s is required, complete the stack param | eters section of Form D3-1 for each emiss                                               | on source that emits this TAP. Review | w the   |
| modeling plan requirements.          |                                         |                                                                                         |                                       |         |
| COMMENTS.                            |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |
|                                      |                                         |                                                                                         |                                       |         |

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                                                | NCDEQ/Division of Air Quality -         | Application for Air Permit to Construe                                         | ct/Operate                          | D2             |  |
|-----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|----------------|--|
| PURPOSE OF NETTING: AIR TO                                      | OXICS                                   |                                                                                |                                     |                |  |
| TOXIC AIR POLLUTANT:                                            | Beryllium                               | CAS NO.: 7440-41-7                                                             |                                     |                |  |
| EMISSION SOURCE ID NOS.:                                        |                                         | -35, ES-36A, ES-36B, ES-37A, ES-37B,<br>-12, ES-13, ES-14, ES-1A, ES-1B, ES-   |                                     | , ES-40A, F-1, |  |
| SEC                                                             | TION A - EMISSION OFFSETT               | ING ANALYSIS FOR MODIFIE                                                       | D/NEW SOURCES                       |                |  |
| Summarize in this section                                       |                                         | EMISSIONS - USE APPROPRIATE CO                                                 | LUMNS ONLY                          |                |  |
| using the B forms                                               | LB/YEAR                                 | LB/DAY                                                                         | LB/HR                               |                |  |
| MODIFICATION                                                    |                                         | N/A                                                                            | N/A                                 |                |  |
| INCREASE                                                        |                                         | N/A                                                                            | IN/A                                |                |  |
| - MINUS -                                                       | - MINUS -                               | - MINUS -                                                                      | - MINUS -                           |                |  |
| MODIFICATION                                                    |                                         | N/A                                                                            | N/A                                 |                |  |
| DECREASE                                                        |                                         | N/A                                                                            | IN/A                                |                |  |
| = EQUALS =                                                      | = EQUALS =                              | = EQUALS =                                                                     | = EQUALS =                          | :              |  |
| NET CHANGE                                                      |                                         | N/A                                                                            | N/A                                 |                |  |
| FROM MODIFICATION                                               |                                         | N/A                                                                            | IN/A                                |                |  |
| SECTION B - FACILITY-WIDE EMISSION NETTING ANALYSIS             |                                         |                                                                                |                                     |                |  |
| CREDITABLE                                                      |                                         |                                                                                |                                     |                |  |
| INCREASE                                                        |                                         |                                                                                |                                     |                |  |
| - MINUS -                                                       | - MINUS -                               | - MINUS -                                                                      | - MINUS -                           |                |  |
| CREDITABLE                                                      |                                         |                                                                                |                                     |                |  |
| DECREASE                                                        |                                         |                                                                                |                                     |                |  |
| = EQUALS =                                                      | = EQUALS =                              | = EQUALS =                                                                     | = EQUALS =                          | :              |  |
| NET CREDITABLE                                                  |                                         |                                                                                |                                     |                |  |
| CHANGE                                                          |                                         |                                                                                |                                     |                |  |
|                                                                 | SECTION C - I                           | FACILITY-WIDE EMISSIONS                                                        |                                     |                |  |
| TOTAL FACILITY                                                  | 212.67                                  | N/A                                                                            | N/A                                 |                |  |
| EMISSIONS                                                       | 212.01                                  | 1077                                                                           | 14/74                               |                |  |
| TPER LEVELS (2Q .0711)                                          | 0.28                                    | N/A                                                                            | N/A                                 |                |  |
| Are the total facility-wide emission                            | ns less than the TPER levels?:          | YES [                                                                          | NO NO                               |                |  |
| If YES, no further analysis is requ                             |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         | sion level is greater than the 2Q .0711<br>y 15A NCAC 2Q .0702(a)(27) "Exempti |                                     | sions Rate     |  |
|                                                                 | RSION MODELING ANALYSIS IS REC          |                                                                                |                                     |                |  |
| If air dispersion modeling analysis modeling plan requirements. | s is required, complete the stack paran | neters section of Form D3-1 for each er                                        | nission source that emits this TAP. | Review the     |  |
| COMMENTS:                                                       |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |
|                                                                 |                                         |                                                                                |                                     |                |  |

| AIR POLLUT                                                               | ANT NETTING WORKSHE                                                                            | ET AND FACILITY-WIDE E                                                              | MISSION SUMMARY                                                   |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| REVISED 09/22/16                                                         | NCDEQ/Division of Air Quality - App                                                            | blication for Air Permit to Construct/Op                                            | Derate D2                                                         |
| PURPOSE OF NETTING: AIR TO                                               | DXICS                                                                                          |                                                                                     |                                                                   |
| TOXIC AIR POLLUTANT:                                                     | Cadmium                                                                                        | CAS NO.: 7440-43-9                                                                  |                                                                   |
| EMISSION SOURCE ID NOS.:                                                 |                                                                                                | ES-36A, ES-36B, ES-37A, ES-37B, ES-<br>, ES-13, ES-14, ES-1A, ES-1B, ES-1C a        | 38, ES-38A, ES-38B, ES-39A, ES-40A, F-1,<br>nd Existing Aux Equip |
| SECT                                                                     | TION A - EMISSION OFFSETTING                                                                   | G ANALYSIS FOR MODIFIED/N                                                           | EW SOURCES                                                        |
| Summarize in this section                                                | EMI                                                                                            | SSIONS - USE APPROPRIATE COLUM                                                      | NS ONLY                                                           |
| using the B forms                                                        | LB/YEAR                                                                                        | LB/DAY                                                                              | LB/HR                                                             |
| MODIFICATION                                                             |                                                                                                | N/A                                                                                 | N/A                                                               |
| INCREASE                                                                 |                                                                                                | N/A                                                                                 | 17/2                                                              |
| - MINUS -                                                                | - MINUS -                                                                                      | - MINUS -                                                                           | - MINUS -                                                         |
| MODIFICATION                                                             |                                                                                                | N/A                                                                                 | N/A                                                               |
| DECREASE                                                                 |                                                                                                |                                                                                     |                                                                   |
| = EQUALS =                                                               | = EQUALS =                                                                                     | = EQUALS =                                                                          | = EQUALS =                                                        |
| NET CHANGE                                                               |                                                                                                | N/A                                                                                 | N/A                                                               |
| FROM MODIFICATION                                                        |                                                                                                |                                                                                     |                                                                   |
|                                                                          | SECTION B - FACILITY-WI                                                                        | DE EMISSION NETTING ANAL                                                            | /SIS                                                              |
| CREDITABLE                                                               |                                                                                                |                                                                                     |                                                                   |
| INCREASE                                                                 |                                                                                                |                                                                                     |                                                                   |
| - MINUS -                                                                | - MINUS -                                                                                      | - MINUS -                                                                           | - MINUS -                                                         |
| CREDITABLE                                                               |                                                                                                |                                                                                     |                                                                   |
| DECREASE                                                                 |                                                                                                |                                                                                     |                                                                   |
| = EQUALS =                                                               | = EQUALS =                                                                                     | = EQUALS =                                                                          | = EQUALS =                                                        |
| NET CREDITABLE                                                           |                                                                                                |                                                                                     |                                                                   |
| CHANGE                                                                   |                                                                                                |                                                                                     |                                                                   |
|                                                                          | SECTION C - FA                                                                                 | CILITY-WIDE EMISSIONS                                                               |                                                                   |
| TOTAL FACILITY                                                           | 14,274.49                                                                                      | N/A                                                                                 | N/A                                                               |
| EMISSIONS                                                                |                                                                                                |                                                                                     |                                                                   |
| TPER LEVELS (2Q .0711)                                                   | 0.37                                                                                           | N/A                                                                                 | N/A                                                               |
| Are the total facility-wide emission                                     | ns less than the TPER levels?:                                                                 | 🗆 YES 🗹                                                                             | NO                                                                |
| If YES, no further analysis is requ                                      | ired.                                                                                          |                                                                                     |                                                                   |
| Air dispersion modeling analysis i<br>(TPER) and the source emitting the | s required if the total facility-wide emission<br>ne toxic air pollutant is not exempted by 15 | n level is greater than the 2Q .0711 Toxic<br>5A NCAC 2Q .0702(a)(27) "Exemptions". | c Air Pollutant Permitting Emissions Rate                         |
| CHECK HERE IF AN AIR DISPER                                              | RSION MODELING ANALYSIS IS REQUI                                                               | RED 🗹                                                                               |                                                                   |
| modeling plan requirements.                                              | s is required, complete the stack paramete                                                     | ers section of Form D3-1 for each emission                                          | on source that emits this TAP. Review the                         |
| COMMENTS:                                                                |                                                                                                |                                                                                     |                                                                   |

#### AIR POLLUTANT NETTING WORKSHEET AND FACILITY-WIDE EMISSION SUMMARY

| REVISED 09/22/16                     | NCDEQ/Division of Air Quality -         | Application for Air Permit to Construct/Op                                                  | erate                          | D2              |
|--------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| PURPOSE OF NETTING: AIR TO           | DXICS                                   |                                                                                             |                                |                 |
| TOXIC AIR POLLUTANT:                 | Chromium VI                             | CAS NO.: 18540-29-9                                                                         |                                |                 |
| EMISSION SOURCE ID NOS.:             |                                         | 3-35, ES-36A, ES-36B, ES-37A, ES-37B, ES-<br>12, ES-13, ES-14, ES-1A, ES-1B, ES-1C and      |                                | ES-40A, F-1, F- |
| SECT                                 | TION A - EMISSION OFFSET                | TING ANALYSIS FOR MODIFIED/N                                                                | EW SOURCES                     |                 |
| Summarize in this section            |                                         | EMISSIONS - USE APPROPRIATE COLUM                                                           | NS ONLY                        |                 |
| using the B forms                    | LB/YEAR                                 | LB/DAY                                                                                      | LB/HR                          |                 |
| MODIFICATION                         | N/A                                     |                                                                                             | N/A                            |                 |
| INCREASE                             |                                         |                                                                                             |                                |                 |
| - MINUS -                            | - MINUS -                               | - MINUS -                                                                                   | - MINUS -                      |                 |
| MODIFICATION                         | N/A                                     |                                                                                             | N/A                            |                 |
| DECREASE                             |                                         |                                                                                             |                                |                 |
| = EQUALS =                           | = EQUALS =                              | = EQUALS =                                                                                  | = EQUALS =                     |                 |
| NET CHANGE                           | N/A                                     |                                                                                             | N/A                            |                 |
| FROM MODIFICATION                    |                                         |                                                                                             |                                |                 |
|                                      | SECTION B - FACILITY                    | -WIDE EMISSION NETTING ANAL                                                                 | (SIS                           |                 |
| CREDITABLE                           |                                         |                                                                                             |                                |                 |
| INCREASE                             |                                         |                                                                                             |                                |                 |
| - MINUS -                            | - MINUS -                               | - MINUS -                                                                                   | - MINUS -                      |                 |
| CREDITABLE                           |                                         |                                                                                             |                                |                 |
| DECREASE                             |                                         |                                                                                             |                                |                 |
| = EQUALS =                           | = EQUALS =                              | = EQUALS =                                                                                  | = EQUALS =                     |                 |
| NET CREDITABLE                       |                                         |                                                                                             |                                |                 |
| CHANGE                               |                                         |                                                                                             |                                |                 |
|                                      | SECTION C -                             | FACILITY-WIDE EMISSIONS                                                                     | -                              |                 |
| TOTAL FACILITY<br>EMISSIONS          | N/A                                     | 616.410                                                                                     | N/A                            |                 |
| TPER LEVELS (2Q .0711)               | N/A                                     | 0.013                                                                                       | N/A                            |                 |
| Are the total facility-wide emission | is less than the TPER levels?:          | YES 🗹                                                                                       | NO                             |                 |
| If YES, no further analysis is requi | ired.                                   |                                                                                             |                                |                 |
|                                      |                                         | ssion level is greater than the 2Q .0711 Toxic<br>by 15A NCAC 2Q .0702(a)(27) "Exemptions". | Air Pollutant Permitting Emiss | sions Rate      |
| CHECK HERE IF AN AIR DISPER          | RSION MODELING ANALYSIS IS REC          | QUIRED 🔽                                                                                    |                                |                 |
|                                      | s is required, complete the stack parar | meters section of Form D3-1 for each emission                                               | on source that emits this TAP. | Review the      |
| modeling plan requirements.          |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |
|                                      |                                         |                                                                                             |                                |                 |

| REVISED 09/22/16                     | NCDEQ/Division of Air Quality - A | opplication for Air Permit to Construct/                                          | Operate                         | D2             |
|--------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|---------------------------------|----------------|
| PURPOSE OF NETTING: AIR TO           | OXICS                             |                                                                                   |                                 |                |
| TOXIC AIR POLLUTANT:                 | Manganese                         | CAS NO.: 7439-96-5                                                                |                                 |                |
|                                      |                                   | 35, ES-36A, ES-36B, ES-37A, ES-37B, E<br>12, ES-13, ES-14, ES-1A, ES-1B, ES-1C    |                                 | , ES-40A, F-1, |
| EMISSION SOURCE ID NOS.:             |                                   | NG ANALYSIS FOR MODIFIED/                                                         |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
| Summarize in this section            |                                   | MISSIONS - USE APPROPRIATE COLU<br>LB/DAY                                         | MNS ONLY<br>LB/HR               |                |
| using the B forms                    | LB/YEAR                           | EB/DAT                                                                            | LD/NK                           |                |
| MODIFICATION                         | N/A                               |                                                                                   | N/A                             |                |
| - MINUS -                            | - MINUS -                         | - MINUS -                                                                         | - MINUS -                       |                |
|                                      | - MINUS -                         | - MINOS -                                                                         | - MINUS -                       |                |
| MODIFICATION                         | N/A                               |                                                                                   | N/A                             |                |
| DECREASE                             | 501410                            | FOUND                                                                             | 501141.0                        |                |
| = EQUALS =                           | = EQUALS =                        | = EQUALS =                                                                        | = EQUALS =                      |                |
| NET CHANGE                           | N/A                               |                                                                                   | N/A                             |                |
| FROM MODIFICATION                    |                                   |                                                                                   | Vala                            |                |
|                                      | SECTION B - FACILITY-V            | VIDE EMISSION NETTING ANA                                                         | _1515                           |                |
| CREDITABLE                           |                                   |                                                                                   |                                 |                |
| INCREASE                             |                                   |                                                                                   |                                 |                |
| - MINUS -                            | - MINUS -                         | - MINUS -                                                                         | - MINUS -                       |                |
| CREDITABLE                           |                                   |                                                                                   |                                 |                |
| DECREASE                             |                                   |                                                                                   |                                 |                |
| = EQUALS =                           | = EQUALS =                        | = EQUALS =                                                                        | = EQUALS =                      | :              |
| NET CREDITABLE                       |                                   |                                                                                   |                                 |                |
| CHANGE                               |                                   |                                                                                   |                                 |                |
|                                      | SECTION C - F                     | ACILITY-WIDE EMISSIONS                                                            |                                 |                |
| TOTAL FACILITY                       | N/A                               | 62,703.249                                                                        | N/A                             |                |
| EMISSIONS                            | 10/1                              | 02,100.210                                                                        | 10/7                            |                |
| TPER LEVELS (2Q .0711)               | N/A                               | 0.63                                                                              | N/A                             |                |
| Are the total facility-wide emission | ns less than the TPER levels?:    | 🗆 YES 🗹                                                                           | NO                              |                |
| If YES, no further analysis is requ  |                                   |                                                                                   |                                 |                |
|                                      |                                   | sion level is greater than the 2Q .0711 To<br>15A NCAC 2Q .0702(a)(27) "Exemption |                                 | sions Rate     |
|                                      | RSION MODELING ANALYSIS IS REQ    |                                                                                   | 5 .                             |                |
|                                      |                                   | eters section of Form D3-1 for each emis                                          | sion source that emits this TAP | Review the     |
| modeling plan requirements.          |                                   |                                                                                   |                                 |                |
| COMMENTS:                            |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
|                                      |                                   |                                                                                   |                                 |                |
| L                                    |                                   | nal Shoots As Nocossary                                                           |                                 |                |

| REVISED 09/22/16                                                   | NCDEQ/Division of Air Quality - A       | Application for Air Permit to Construct/                                             | Operate                          | D2             |
|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|----------------|
| PURPOSE OF NETTING: AIR TO                                         | OXICS                                   |                                                                                      |                                  | -              |
| TOXIC AIR POLLUTANT:                                               | Mercury                                 | CAS NO.: 7439-97-6                                                                   |                                  |                |
| EMISSION SOURCE ID NOS.:                                           |                                         | 35, ES-36A, ES-36B, ES-37A, ES-37B, E<br>-12, ES-13, ES-14, ES-1A, ES-1B, ES-1C      |                                  | , ES-40A, F-1, |
| SEC                                                                | TION A - EMISSION OFFSETT               | ING ANALYSIS FOR MODIFIED/                                                           | NEW SOURCES                      |                |
| Summarize in this section                                          | E                                       | EMISSIONS - USE APPROPRIATE COLU                                                     | IMNS ONLY                        |                |
| using the B forms                                                  | LB/YEAR                                 | LB/DAY                                                                               | LB/HR                            |                |
| MODIFICATION                                                       | N/A                                     |                                                                                      | N/A                              |                |
| INCREASE                                                           | N/A                                     |                                                                                      | IN/A                             |                |
| - MINUS -                                                          | - MINUS -                               | - MINUS -                                                                            | - MINUS -                        |                |
| MODIFICATION                                                       | N/A                                     |                                                                                      | N/A                              |                |
| DECREASE                                                           | N/A                                     |                                                                                      | IN/A                             |                |
| = EQUALS =                                                         | = EQUALS =                              | = EQUALS =                                                                           | = EQUALS =                       | =              |
| NET CHANGE                                                         | N/A                                     |                                                                                      | N/A                              |                |
| FROM MODIFICATION                                                  | N/A                                     |                                                                                      | IN/A                             |                |
|                                                                    | SECTION B - FACILITY-                   | WIDE EMISSION NETTING ANAI                                                           | LYSIS                            |                |
| CREDITABLE                                                         |                                         |                                                                                      |                                  |                |
| INCREASE                                                           |                                         |                                                                                      |                                  |                |
| - MINUS -                                                          | - MINUS -                               | - MINUS -                                                                            | - MINUS -                        |                |
| CREDITABLE                                                         |                                         |                                                                                      |                                  |                |
| DECREASE                                                           |                                         |                                                                                      |                                  |                |
| = EQUALS =                                                         | = EQUALS =                              | = EQUALS =                                                                           | = EQUALS =                       | =              |
| NET CREDITABLE                                                     |                                         |                                                                                      |                                  |                |
| CHANGE                                                             |                                         |                                                                                      |                                  |                |
|                                                                    | SECTION C - F                           | FACILITY-WIDE EMISSIONS                                                              |                                  |                |
| TOTAL FACILITY                                                     | N/A                                     | 1,204.327                                                                            | N/A                              |                |
| EMISSIONS                                                          | N/A                                     | 1,204.327                                                                            | IN/A                             |                |
| TPER LEVELS (2Q .0711)                                             | N/A                                     | 0.0013                                                                               | N/A                              |                |
| Are the total facility-wide emission                               | ns less than the TPER levels?:          | 🗆 YES 🔽                                                                              | NO                               |                |
| If YES, no further analysis is requ                                | iired.                                  |                                                                                      |                                  |                |
|                                                                    |                                         | sion level is greater than the 2Q .0711 To<br>y 15A NCAC 2Q .0702(a)(27) "Exemptions |                                  | sions Rate     |
| CHECK HERE IF AN AIR DISPEI                                        | RSION MODELING ANALYSIS IS REQ          | UIRED 🗹                                                                              |                                  |                |
| If air dispersion modeling analysis<br>modeling plan requirements. | s is required, complete the stack param | neters section of Form D3-1 for each emis                                            | sion source that emits this TAP. | . Review the   |
| COMMENTS:                                                          |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         |                                                                                      |                                  |                |
|                                                                    |                                         | nal Shoota Ac Nacasany                                                               |                                  |                |

| REVISED 09/22/16                     | NCDEQ/Division of Air Quality - A        | opplication for Air Permit to Construct/                                           | Operate                         | D2                |
|--------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-------------------|
| PURPOSE OF NETTING: AIR T            | OXICS                                    |                                                                                    |                                 |                   |
| TOXIC AIR POLLUTANT:                 | Nickel                                   | CAS NO.: 7440-02-0                                                                 |                                 |                   |
| EMISSION SOURCE ID NOS.:             |                                          | 35, ES-36A, ES-36B, ES-37A, ES-37B, E<br>2, ES-13, ES-14, ES-1A, ES-1B, ES-1C a    |                                 | A, ES-40A, F-1, F |
| SEC                                  | TION A - EMISSION OFFSETTI               | NG ANALYSIS FOR MODIFIED/                                                          | NEW SOURCES                     |                   |
| Summarize in this section            | E                                        | MISSIONS - USE APPROPRIATE COLL                                                    | IMNS ONLY                       |                   |
| using the B forms                    | LB/YEAR                                  | LB/DAY                                                                             | LB/HR                           |                   |
| MODIFICATION                         | N/A                                      |                                                                                    | N/A                             |                   |
| INCREASE                             |                                          |                                                                                    |                                 |                   |
| - MINUS -                            | - MINUS -                                | - MINUS -                                                                          | - MINUS -                       |                   |
| MODIFICATION                         | N/A                                      |                                                                                    | N/A                             |                   |
| DECREASE                             |                                          |                                                                                    | N// X                           |                   |
| = EQUALS =                           | = EQUALS =                               | = EQUALS =                                                                         | = EQUALS                        | =                 |
| NET CHANGE                           | N/A                                      |                                                                                    | N/A                             |                   |
| FROM MODIFICATION                    | IN/A                                     |                                                                                    | N/A                             |                   |
|                                      | SECTION B - FACILITY-V                   | VIDE EMISSION NETTING ANA                                                          | LYSIS                           |                   |
| CREDITABLE                           |                                          |                                                                                    |                                 |                   |
| INCREASE                             |                                          |                                                                                    |                                 |                   |
| - MINUS -                            | - MINUS -                                | - MINUS -                                                                          | - MINUS -                       |                   |
| CREDITABLE                           |                                          |                                                                                    |                                 |                   |
| DECREASE                             |                                          |                                                                                    |                                 |                   |
| = EQUALS =                           | = EQUALS =                               | = EQUALS =                                                                         | = EQUALS                        | =                 |
| NET CREDITABLE                       |                                          |                                                                                    |                                 |                   |
| CHANGE                               |                                          |                                                                                    |                                 |                   |
|                                      | SECTION C - F                            | ACILITY-WIDE EMISSIONS                                                             |                                 |                   |
| TOTAL FACILITY                       | N1/A                                     | 000.470                                                                            | N1/A                            |                   |
| EMISSIONS                            | N/A                                      | 232.172                                                                            | N/A                             |                   |
| TPER LEVELS (2Q .0711)               | N/A                                      | 0.13                                                                               | N/A                             |                   |
| Are the total facility-wide emission | ns less than the TPER levels?:           | YES 🗹                                                                              | NO                              |                   |
| If YES, no further analysis is requ  | uired.                                   |                                                                                    |                                 |                   |
|                                      |                                          | sion level is greater than the 2Q .0711 To<br>15A NCAC 2Q .0702(a)(27) "Exemption: |                                 | ssions Rate       |
| CHECK HERE IF AN AIR DISPE           | RSION MODELING ANALYSIS IS REQ           | UIRED 🗹                                                                            |                                 |                   |
|                                      | s is required, complete the stack parame | eters section of Form D3-1 for each emis                                           | sion source that emits this TAP | . Review the      |
| modeling plan requirements.          |                                          |                                                                                    |                                 |                   |
| COMMENTS:                            |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      |                                          |                                                                                    |                                 |                   |
|                                      | Attack Additio                           | nal Shoote Ac Nacassany                                                            |                                 |                   |

#### FORM D5 TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

| RE | VISED 09/22/16                    |                                                                | uality - Application for Air Pe    | -                                                                                                                            | D5          |
|----|-----------------------------------|----------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |                                   |                                                                |                                    | T ALL EMISSION, CONTROL, AND REGULATORY                                                                                      |             |
|    | DEMON                             |                                                                |                                    | OMPREHENSIVE PROCESS FLOW DIAGRAM AS<br>NS AND ASSUMPTIONS. ADDRESS THE                                                      |             |
|    |                                   |                                                                | ING SPECIFIC ISSUES ON             |                                                                                                                              |             |
| •  |                                   |                                                                |                                    |                                                                                                                              |             |
|    |                                   |                                                                |                                    | <b>B9)</b> - SHOW CALCULATIONS USED, INCLUDING EMISSIC<br>DLUTANT EMISSION RATES IN THIS APPLICATION WERE                    |             |
|    |                                   |                                                                |                                    | CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MAD                                                                                  | DE AND      |
|    | PROVIDE ANY REFE                  | RENCES AS NEEDED TO SUPPOR                                     | MATERIAL BALANCE CALCI             | JLA HONS.                                                                                                                    |             |
| в  | SPECIFIC EMISSION                 | SOURCE (REGULATORY INFORM                                      | ATION)(FORM E2 - TITLE V O         | NLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS AF                                                                             | PPLICABLE   |
|    |                                   |                                                                |                                    | N OUTING METHODS (e.g. FOR TESTING AND/OR MONIT<br>RLY THOSE REGULATIONS LIMITING EMISSIONS BASED                            |             |
|    | ,                                 |                                                                | ,                                  | ON FOR AVOIDANCE OF ANY FEDERAL REGULATIONS                                                                                  |             |
|    |                                   |                                                                |                                    | NCE STANDARDS (NSPS), NATIONAL EMISSION STANDAI<br>DM THE FEDERAL REGULATIONS WHICH WOULD OTHER                              |             |
|    | APPLICABLE TO THIS                | S FACILITY. SUBMIT ANY REQUIRE                                 | ED INFORMATION TO DOCUM            | IENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE                                                                                |             |
|    | RATES CALCULATE                   | D IN ITEM "A" ABOVE, DATES OF M                                | ANUFACTURE, CONTROL EQ             | UIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.                                                                                 |             |
| с  | CONTROL DEVICE A                  | NALYSIS (FORM C and C1 through                                 | C9) - PROVIDE A TECHNICA           | L EVALUATION WITH SUPPORTING REFERENCES FOR A                                                                                | NY          |
|    | CONTROL EFFICIEN                  | CIES LISTED ON SECTION C FORM                                  | IS, OR USED TO REDUCE EM           | ISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOV                                                                             | /E. INCLUDE |
|    |                                   |                                                                |                                    | URING RECOMMENDATIONS, AND PARAMETERS AS APF<br>ITROL DEVICES). INCLUDE AND LIMITATIONS OR MALFU                             |             |
|    | POTENTIAL FOR THE                 | E PARTICULAR CONTROL DEVICES                                   | S AS EMPLOYED AT THIS FAC          | CILITY. DETAIL PROCEDURES FOR ASSURING PROPER (                                                                              |             |
|    | OF THE CONTROL D                  | EVICE INCLUDING MONITORING S                                   | YSTEMS AND MAINTENANCE             | TO BE PERFORMED.                                                                                                             |             |
| D  | PROCESS AND OPE                   | RATIONAL COMPLIANCE ANALYSI                                    | S - (FORM E3 - TITLE V ONL'        | () - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WI                                                                              | HEN USING   |
|    | PROCESS, OPERATI                  | ONAL, OR OTHER DATA TO DEMO                                    | NSTRATE COMPLIANCE. REF            | ER TO COMPLIANCE REQUIREMENTS IN THE REGULAT                                                                                 |             |
|    |                                   | 3" WHERE APPROPRIATE. LIST AN<br>/IPLIANCE WITH THE APPLICABLE |                                    | TERS THAT CAN BE MONITORED AND REPORTED TO                                                                                   |             |
|    |                                   |                                                                |                                    |                                                                                                                              |             |
| Е  | PROFESSIONAL ENG                  |                                                                |                                    | APPLICATION REQUIRING A PROFESSIONAL ENGINEERI                                                                               | ,           |
|    |                                   |                                                                |                                    | IRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICAT<br>NS FOR FURTHER APPLICABILITY).                                           | IUNFUR      |
|    |                                   |                                                                |                                    |                                                                                                                              |             |
|    | <i>I,</i>                         | Thomas O. Pritcher                                             | attest that this application fo    |                                                                                                                              | c Plant     |
|    | in the <del>engineering pla</del> |                                                                |                                    | te, complete and consistent with the information supplied<br>of my knowledge. I further attest that to the best of my knowle | edge the    |
|    | proposed design con               | cept has been prepared in accordar                             | nce with the applicable regulation | ons. Although certain portions of this submittal package may l                                                               | have been   |
|    |                                   |                                                                |                                    | I have reviewed this material and have judged it to be consist<br>and 143-215.6B, any person who knowingly makes any false s |             |
|    | representation, or cert           | ification in any application shall be gu                       |                                    | which may include a fine not to exceed \$10,000 as well as civ                                                               |             |
|    | up to \$25,000 per viol           | ation.                                                         |                                    |                                                                                                                              |             |
|    |                                   |                                                                |                                    |                                                                                                                              |             |
|    | (PLEASE USE BLUE                  | INK TO COMPLETE THE FOLLOWI                                    | NG)                                | PLACE NORTH CAROLINA SEAL HEF                                                                                                | RE          |
|    | NAME:                             |                                                                |                                    |                                                                                                                              |             |
|    | DATE:                             |                                                                |                                    |                                                                                                                              |             |
|    | COMPANY:                          | Environmental Consulting & Techno                              |                                    |                                                                                                                              |             |
|    | ADDRESS:                          | 7208 Falls of Neuse Road, Suite 10                             | 2, Raleigh, NC                     |                                                                                                                              |             |
|    | TELEPHONE:                        | 919-861-8888                                                   |                                    |                                                                                                                              |             |
|    | SIGNATURE:                        |                                                                |                                    |                                                                                                                              |             |
|    | PAGES CERTIFIED:                  | Appendix A & Appendix B                                        |                                    |                                                                                                                              |             |
|    |                                   |                                                                |                                    |                                                                                                                              |             |
|    |                                   |                                                                |                                    |                                                                                                                              |             |
|    | (ID                               | ENTIFY ABOVE EACH PERMIT FOR                                   | RM AND ATTACHMENT                  |                                                                                                                              |             |
|    |                                   | THAT IS BEING CERTIFIED E                                      | Y THIS SEAL)                       |                                                                                                                              |             |

#### NORTH CAROLINA MODELING PROTOCOL CHECKLIST (2 Pages)

REVISED 09/22/16

#### NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

D6-1

The North Carolina Modeling Protocol Checklist may be used in lieu of developing the traditional written modeling plan for North Carolina toxics and criteria pollutant modeling. The protocol checklist is designed to provide the same level of information as requested in a modeling protocol as discussed in Chapter 2 of the *Guideline for Evaluating the Air Quality Impacts of Toxic Pollutants in North Carolina*. The modeling protocol checklist is submitted with the modeling analysis. The above referenced *Guideline* can be found at the following web link:

https://ncdenr.s3.amazonaws.com/s3fs-public/Air%20Quality/permits/mets/Guidance.pdf

Although most of the information requested in the modeling protocol checklist is self-explanatory, additional comments are provided, where applicable, and are discussed in greater detail in the toxics modeling *Guideline* referenced above. References to sections, tables, figures, appendices, etc., in the protocol checklist are found in the toxics modeling *Guideline*.

**INSTRUCTIONS:** The modeling report supporting the compliance demonstration should include most of the information listed below. As appropriate, answer the following questions or indicate by check mark the information provided or action taken is reflected in your report.

|                | FACI                          | LITY INFORMATIO    | N                                                    |
|----------------|-------------------------------|--------------------|------------------------------------------------------|
| Facility Name: | H.F. Lee Steam Electric Plant | Consultant (if app | plicable):                                           |
|                |                               | Environme          | ntal Consulting & Technology of North Carolina, PLLC |
| Facility ID:   | 9600017                       |                    |                                                      |
| Address:       | 1199 Black Jack Church Road   | 7208 Falls         | Of Neuse Road                                        |
|                | Goldsboro, NC, 27530          | Suite 102          |                                                      |
|                |                               | Raleigh, N         | C 27615                                              |
|                |                               |                    |                                                      |
| Contact Name:  | Erin Wallace                  | Contact Name:      | Thomas Pritcher                                      |
|                |                               |                    |                                                      |
| Phone Number:  | 919-546-5797                  | Phone Number:      | 919-861-8888                                         |
| Email Address: | erin.wallace@duke-energy.com  | Email Address:     | tpritcher@ectinc.com                                 |

| GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| <b>Description of New Source or Source/Process Modification: P</b> rovide a short description of the new or modified source(s) and a brief discussion of how this change affects facility production or process operation.                                                                                                                                                                                               |              | Included<br>N/A |
| Source/Pollutant Identification: Provide a table of the affected pollutants, by source, which identifies the source type (point, area, or volume), maximum pollutant emission rates over the applicable averaging period(s), and, for point sources, indicate if the stack is capped or non-vertical (C/N).                                                                                                              | 7            | Included        |
| Pollutant Emission Rate Calculations: Indicate how the pollutant emission rates were derived (e.g. AP-42 emission factors, mass balance, etc.) and where applicable, provide the calculations                                                                                                                                                                                                                            | 7            | Included<br>N/A |
| Site/Facility Diagram: Provide a diagram or drawing showing the location of all existing and proposed emission sources, buildings or structures, public right-of-ways, and the facility property (toxics)/fence line (criteria pollutants) boundaries. The diagram should also include a scale, true north indicator, and the UTM or latitude/longitude of at least one point.                                           | 1            | Included        |
| <b>Certified Plat or Signed Survey:</b> a certified plat (map) from the County Register of Deeds or a signed survey must be submitted to validate property boundaries modeled.                                                                                                                                                                                                                                           | V            | Included        |
| <b>Topographic Map:</b> a topographic map covering approximately 5 km around the facility must be submitted. The facility boundaries should be annotated on the map as accurately as possible.                                                                                                                                                                                                                           | 7            | Included<br>N/A |
| Cavity Impact Analysis: no cavity analysis is required if using AERMOD. See Section 4.2                                                                                                                                                                                                                                                                                                                                  |              | Included<br>N/A |
| Background Concentrations (criteria Pollutant analyses only): Background concentrations must be determined for each pollutant for each averaging period evaluated. The averaged background value used (e.g. high, high-second-high, high-third-high, etc.) is based on the                                                                                                                                               |              | Included        |
| pollutant and averaging period evaluated. The background concentrations are added to the modeled concentrations, which are then compared to the applicable air quality standard to determine compliance.                                                                                                                                                                                                                 | 7            | N/A             |
| Offsite Source Inventories (criteria pollutant analyses only): Offsite source inventories must be developed and modeled for all pollutants for which onsite source emissions are modeled in excess of the specific pollutant significant impact levels (SILs) as defined in the PSD New Source Review Workshop Manual. The DAQ AQAB must approve the inventories. An initial working inventory can be requested from the |              | Included        |
| AQAB.                                                                                                                                                                                                                                                                                                                                                                                                                    | $\checkmark$ | N/A             |
| Attach Additional Sheets as Necessary                                                                                                                                                                                                                                                                                                                                                                                    | Pac          | e 1 of 2        |

| SCREEN LEVEL MODELING                                                                                                                                                                                                                                                                                                                                                        |        | D6-2              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|
| <b>Model:</b> The latest version of the AERSCREEN model must be used. The use of other screening models should be approved by NCDAQ prior to submitting the modeling report.                                                                                                                                                                                                 | AERSCF | REEN Version      |
| <b>Source/Source Emission Parameters:</b> Provide a table listing the sources modeled and the applicable source emission parameters. See NC Form 3 - Appendix A.                                                                                                                                                                                                             |        | NA                |
| Merged Sources: Identify merged sources and show all appropriate calculations. See Section 3.3                                                                                                                                                                                                                                                                               |        | NA                |
| GEP Analysis: See Section 3.2 and NC Form 1 - Appendix A                                                                                                                                                                                                                                                                                                                     |        | NA                |
| <b>Terrain:</b> Indicate the terrain modeled: simple (Section 4.4), and complex (Section 4.5 and NC Form 4 Appendix A). If complex terrain is within 5 kilometers of the facility, complex terrain must be evaluated. Simple terrain must include terrain elevations if any terrain is greater than the stack base of any source modeled. Mark the appropriate terrain type. |        | Simple<br>Complex |
| Meteorology: Refer to Section 4.1 for AERSCREEN inputs.                                                                                                                                                                                                                                                                                                                      |        | ••••              |
| <b>Receptors:</b> AERSCREEN - use shortest distance to property boundary for each source modeled and use sufficient range to find maximum [See Section 4.1(i) and (j)]. Terrain above stack base must be evaluated.                                                                                                                                                          |        | NA                |
| Modeling Results: For each affected pollutant, modeling results should be summarized, converted to the applicable averaging period (See                                                                                                                                                                                                                                      |        | NA                |
| Table 3), and presented in tabular format indicating compliance status with the applicable AAL, SIL, or NAAQS. See NC Form S5 - Appendix A.                                                                                                                                                                                                                                  |        | NA                |
|                                                                                                                                                                                                                                                                                                                                                                              |        | Electronic        |
| Modeling Files: Either electronic or hard copies of AERSCREEN output must be submitted.                                                                                                                                                                                                                                                                                      |        | Hard Copy         |

| REFINED LEVEL MODELING                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <b>Model:</b> The latest version of AERMOD should be used. The use of other refined models must be approved by NCDAQ prior to submitting the modeling report.                                                                                                                                                                                                                            | AERMOD Version                                              |
| The latest version of AERMOD may be found at the following web address: <u>http://www.epa.gov/scram001/dispersion_prefrec.htm</u>                                                                                                                                                                                                                                                        | 16216r                                                      |
| Source/Source Emission Parameters: Provide a table listing the sources modeled and the applicable source emission parameters. See NC Form 3 - Appendix A.                                                                                                                                                                                                                                | Y                                                           |
| GEP Analysis: Use BPIP-Prime with AERMOD.                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Cavity Impact Analysis: No separate cavity analysis is required when using AERMOD as long as receptors are placed in cavity susceptible areas. See Section 4.2 and 5.2.                                                                                                                                                                                                                  | NA                                                          |
| Terrain: Use digital elevation data from the USGS NED database. Use of other sources of terrain elevations or the non-regulatory Flat Terrain option will require prior approval from DAQ AQAB.                                                                                                                                                                                          | USGS NED                                                    |
| The USGS NED database can be found at the following web address: <u>http://viewer.nationalmap.gov/launch/</u>                                                                                                                                                                                                                                                                            |                                                             |
| <b>Coordinate System:</b> Specify the coordinate system used (e.g. NAD27, NAD83, etc.) to identify the source, building, and receptor locations.<br>Note: Be sure to specify in the AERMAP input file the correct base datum (NADA) to be used for identifying source input data locations.<br>Clearly note in both the protocol checklist and the modeling report which datum was used. | Coordinate System:<br>NAD83                                 |
| Receptors: The receptor grid should be of sufficient size and resolution to identify the maximum pollutant impact. See Section 5.3.                                                                                                                                                                                                                                                      | Y                                                           |
| Meteorology: Indicate the AQAB, pre-processed, 5-year data set used in the modeling demonstration: See Section 5.5 and Appendix B)                                                                                                                                                                                                                                                       | Data Set Used: Rocky<br>Mount-Wilson<br>(surface) / Newport |
| AERMOD Version:                                                                                                                                                                                                                                                                                                                                                                          | NA                                                          |
| If processing your own raw meteorology, then pre-approval from AQAB is required. Additional documentation files (e.g. AERMET state processing files) will also be necessary. For NC toxics, the modeling demonstration requires only the last year of the standard 5-year data set (e.g. 2005) provided the maximum impacts are less than 50% of the applicable AAL(s).                  | NA                                                          |
| <b>Modeling Results:</b> For each affected pollutant and averaging period, modeling results should be summarized and presented in tabular format indicating compliance status with the applicable AAL, SIL, or NAAQS. See NC Form R5 - Appendix A.                                                                                                                                       | Y                                                           |
| <b>Modeling Files:</b> Submit input and output files for AERMOD. Also include BPIP-Prime files, AERMAP files, DEM files, and any AERMET input and output files, including raw meteorological data.                                                                                                                                                                                       | Y                                                           |
| Attack Additional Chaste as Nassasswi                                                                                                                                                                                                                                                                                                                                                    |                                                             |

Attach Additional Sheets as Necessary

Page 2 of 2

**APPENDIX B** 

# SUPPORTING EMISSION CALCULATIONS



Table 1A - Toxic Permitting Emission Rate (TPER) Analysis based on Potential Emissions from the Existing and Proposed Sources

|                    | Existin  | ng Turbines | s 10-1 <del>3</del> | Existing Turbine 14 |          |          | Existing Turbines 1A, 1B, 1C |          |          | Existing | Auxiliary E | quipment | STAR Facility |          |          |        | Total   |         | TPER  |        |       | Mode  | ling Requi | red?  |
|--------------------|----------|-------------|---------------------|---------------------|----------|----------|------------------------------|----------|----------|----------|-------------|----------|---------------|----------|----------|--------|---------|---------|-------|--------|-------|-------|------------|-------|
| Pollutants         | lb/hr    | lb/day      | lb/yr               | lb/hr               | lb/day   | lb/yr    | lb/hr                        | lb/day   | lb/yr    | lb/hr    | lb/day      | lb/yr    | lb/hr         | lb/day   | lb/yr    | lb/hr  | lb/day  | lb/yr   | lb/hr | lb/day | lb/yr | lb/hr | lb/day     | lb/yr |
| Sulfuric Acid Mist | 3.24E+01 | 7.78E+02    |                     | 8.01E+00            | 1.92E+02 |          | 2.30E+02                     | 5.52E+03 |          | 0.00E+00 | 0.00E+00    |          | 1.00E-01      | 2.40E+00 |          | 270.61 | 6494.64 |         | 0.025 | 0.25   |       | YES   | YES        |       |
| Benzene            |          |             | 8.23E+02            |                     |          | 2.23E+02 |                              |          | 7.33E+02 |          |             | 4.16E+00 |               |          | 3.34E+00 |        |         | 1787.54 |       |        | 8.1   |       |            | YES   |
| Formaldehyde       | 5.32E+00 |             |                     | 1.38E+00            |          |          | 4.89E+00                     |          |          | 1.22E-02 |             |          | 7.64E-03      |          |          | 11.61  |         |         | 0.04  |        |       | YES   |            | [     |
| Hexane             |          |             |                     |                     |          |          | 2.40E+00                     | 5.75E+01 |          | 1.71E-01 | 4.11E+00    |          |               | 2.54E+00 |          |        | 64.18   |         |       | 23.0   |       |       | YES        |       |
| Toluene            | 2.78E+00 | 6.68E+01    |                     | 7.54E-01            | 1.81E+01 |          | 8.82E-01                     | 2.12E+01 |          | 1.95E-03 | 4.69E-02    |          | 1.32E-03      | 3.17E-02 |          | 4.42   | 106.11  |         | 14.4  | 98.0   |       | NO    | YES        |       |
| Arsenic            |          |             | 1.65E+02            |                     |          | 4.47E+01 |                              |          | 7.10E+01 |          |             | 2.08E-01 |               |          | 8.60E+00 |        |         | 289.30  |       |        | 0.053 |       |            | YES   |
| Beryllium          |          |             | 4.64E+00            |                     |          | 1.26E+00 |                              |          | 2.00E+00 |          |             | 1.25E-02 |               |          | 9.42E-01 |        |         | 8.86    |       |        | 0.28  |       |            | YES   |
| Cadmium            |          |             | 7.18E+01            |                     |          | 1.95E+01 |                              |          | 3.10E+01 |          |             | 1.14E+00 |               |          | 6.07E-01 |        |         | 124.13  |       |        | 0.37  |       |            | YES   |
| Chromium VI        | 1.34E-02 | 3.21E-01    |                     | 3.63E-03            | 8.71E-02 |          | 7.11E-02                     | 1.71E+00 |          | 1.33E-04 | 3.20E-03    |          |               | 4.05E-04 |          |        | 2.12    |         |       | 0.013  |       |       | YES        |       |
| Manganese          | 5.92E+00 | 1.42E+02    |                     | 1.60E+00            | 3.84E+01 |          | 5.10E+00                     | 1.22E+02 |          | 3.62E-05 | 8.68E-04    |          |               | 3.34E-02 |          |        | 302.91  |         |       | 0.630  |       |       | YES        | [     |
| Mercury            | 8.98E-03 | 2.16E-01    |                     | 2.44E-03            | 5.86E-02 |          | 7.74E-03                     | 1.86E-01 |          | 2.48E-05 | 5.94E-04    |          |               | 4.64E-04 |          |        | 0.46    |         |       | 0.013  |       |       | YES        |       |
| Nickel             | 3.45E-02 | 8.27E-01    |                     | 9.34E-03            | 2.24E-01 |          | 2.97E-02                     | 7.13E-01 |          | 2.00E-04 | 4.79E-03    |          |               | 1.71E-02 |          |        | 1.79    |         |       | 0.013  |       |       | YES        |       |

Existing Equipment: Emissions from Tables 3-2 through 3-4 (November 2010) and Tables 4-7 through 4-9 and 4-13 (April 2011). Tables provided in Appendix C.

Table 1B - Toxic Permitting Emission Rate (TPER) Analysis based on Optimized Emissions from the Existing and Proposed Sources

|                    | Existi   | ng Turbines | 10-13    | Exis     | ting Turbin | e 14     | Existing | Turbines 1/ | A, 1B, 1C | Existing | Existing Auxiliary Equipment |          | STAR Facility |          |          |            |               | TPER       |       | Modeling Required? |       |       |        |                                         |
|--------------------|----------|-------------|----------|----------|-------------|----------|----------|-------------|-----------|----------|------------------------------|----------|---------------|----------|----------|------------|---------------|------------|-------|--------------------|-------|-------|--------|-----------------------------------------|
| Pollutants         | lb/hr    | lb/day      | lb/yr    | lb/hr    | lb/day      | lb/yr    | lb/hr    | lb/day      | lb/yr     | lb/hr    | lb/day                       | lb/yr    | lb/hr         | lb/day   | lb/yr    | lb/hr      | lb/day        | lb/yr      | lb/hr | lb/day             | lb/yr | lb/hr | lb/day | lb/yr                                   |
| Sulfuric Acid Mist | 1.13E+02 | 1.29E+03    |          | 2.80E+01 | 3.19E+02    |          | 8.05E+02 | 9.17E+03    |           | 0.00E+00 | 0.00E+00                     |          | 3.50E-01      | 3.98E+00 |          | 947.13     | 10,781.10     |            | 0.025 | 0.25               |       | YES   | YES    |                                         |
| Benzene            |          |             | 2.47E+05 |          |             | 6.70E+04 |          |             | 1.94E+05  |          |                              | 1.25E+03 |               |          | 1.00E+03 |            |               | 510,598.49 |       |                    | 8.1   |       |        | YES                                     |
| Formaldehyde       | 8.14E+02 |             |          | 2.11E+02 |             |          | 7.48E+02 |             |           | 1.86E+00 |                              |          | 1.17E+00      |          |          | 1,776.30   |               |            | 0.04  |                    |       | YES   |        | í – – – – – – – – – – – – – – – – – – – |
| Hexane             |          |             |          |          |             |          | 5.42E+03 | 1.30E+05    |           | 1.71E-01 |                              |          |               | 8.58E+03 |          |            | 138,647.28    |            |       | 23.0               |       |       | YES    | [                                       |
| Toluene            | 6.05E+05 | 7.30E+06    |          | 1.64E+05 | 1.98E+06    |          | 1.92E+05 | 2.31E+06    |           | 4.25E+02 | 5.13E+03                     |          | 2.87E+02      | 3.46E+03 |          | 961,534.32 | 11,593,642.41 |            | 14.4  | 98.0               |       | YES   | YES    | í – – – – – – – – – – – – – – – – – – – |
| Arsenic            |          |             | 2.23E+02 |          |             | 6.03E+01 |          |             | 9.58E+01  |          |                              | 2.81E-01 |               |          | 8.60E+00 |            |               | 387.55     |       |                    | 0.053 |       |        | YES                                     |
| Beryllium          |          |             | 1.11E+02 |          |             | 3.03E+01 |          |             | 4.81E+01  |          |                              | 2.99E-01 |               |          | 2.26E+01 |            |               | 212.67     |       |                    | 0.28  |       |        | YES                                     |
| Cadmium            |          |             | 8.26E+03 |          |             | 2.25E+03 |          |             | 3.57E+03  |          |                              | 1.31E+02 |               |          | 6.97E+01 |            |               | 14,274.49  |       |                    | 0.37  |       |        | YES                                     |
| Chromium VI        | 3.89E+00 | 9.34E+01    |          | 1.06E+00 | 2.54E+01    |          | 2.07E+01 | 4.97E+02    |           | 3.88E-02 | 9.32E-01                     |          |               | 1.18E-01 |          |            | 616.41        |            |       | 0.013              |       |       | YES    | í – – – – – – – – – – – – – – – – – – – |
| Manganese          | 1.23E+03 | 2.94E+04    |          | 3.31E+02 | 7.95E+03    |          | 1.06E+03 | 2.53E+04    |           | 7.49E-03 | 1.80E-01                     |          |               | 6.91E+00 |          |            | 62,703.25     |            |       | 0.630              |       |       | YES    | í – – – – – – – – – – – – – – – – – – – |
| Mercury            | 2.35E+01 | 5.63E+02    |          | 6.38E+00 | 1.53E+02    |          | 2.02E+01 | 4.85E+02    |           | 6.47E-02 | 1.55E+00                     |          |               | 1.21E+00 |          |            | 1,204.33      |            |       | 0.013              |       |       | YES    |                                         |
| Nickel             | 4.48E+00 | 1.08E+02    |          | 1.21E+00 | 2.91E+01    |          | 3.86E+00 | 9.27E+01    |           | 2.60E-02 | 6.23E-01                     |          |               | 2.23E+00 |          |            | 232.17        |            |       | 0.013              |       |       | YES    |                                         |

# Duke Energy H.F. Lee Plant Table 2A - Facility-wide Emissions Summary - Shortterm

|                                  | STAR <sup>®</sup> Fly Ash +<br>Worst-Case Fuel<br>Controlled Emissions |        | EHE Emissions        |        | Pre STAR Unit Si<br>nissions Emissions |        |                      |        |       |        | ilo Wet Ash Receiving<br>Emissions |        | Storage Pile         | Storage Pile Emissions Ash E |                      | Basin  | Ash Ha               | ndling | Haul F   | Roads  | Scre                 | ener Crusher |                      | isher  |                      | r/Crusher<br>gines | Facility Total<br>Controlled<br>Emissions |        | Facility Total<br>Permitted<br>Emissions |  |
|----------------------------------|------------------------------------------------------------------------|--------|----------------------|--------|----------------------------------------|--------|----------------------|--------|-------|--------|------------------------------------|--------|----------------------|------------------------------|----------------------|--------|----------------------|--------|----------|--------|----------------------|--------------|----------------------|--------|----------------------|--------------------|-------------------------------------------|--------|------------------------------------------|--|
| Pollutant                        | lb/hr                                                                  | ton/yr | lb/hr                | ton/yr | lb/hr                                  | ton/yr | lb/hr                | ton/yr | lb/hr | ton/yr | lb/hr                              | ton/yr | lb/hr                | ton/yr                       | lb/hr                | ton/yr | lb/hr                | ton/yr | lb/hr    | ton/yr | lb/hr                | ton/yr       | lb/hr                | ton/yr | lb/hr                | ton/yr             | lb/hr                                     | ton/yr | lb/hr ton/y                              |  |
| PM                               | 16.61                                                                  |        | 6.86                 |        | 0.02                                   |        | 0.04                 |        | 0.11  |        | 4.50E-03                           |        | 3.14E-03             |                              | 1.61E+00             |        | 3.22E-02             |        | 3.49E-01 |        | 0.02                 |              | 0.01                 |        | 0.86                 |                    | 26.52                                     |        | 26.52                                    |  |
| PM <sub>10</sub>                 | 15.28                                                                  |        | 6.31                 |        | 0.01                                   |        | 0.02                 |        | 0.10  |        | 2.13E-03                           |        | 1.57E-03             |                              | 8.05E-01             |        | 1.52E-02             |        | 9.02E-02 |        | 0.01                 |              | 0.004                |        | 0.86                 |                    | 23.50                                     |        | 23.50                                    |  |
| PM <sub>2.5</sub>                | 8.80                                                                   |        | 3.63                 |        | 0.01                                   |        | 0.02                 |        | 0.06  |        | 3.22E-04                           |        | 2.35E-04             |                              | 1.21E-01             |        | 2.30E-03             |        | 9.03E-03 |        | 0.0003               |              | 0.001                |        | 0.86                 |                    | 13.52                                     |        | 13.52                                    |  |
| SO <sub>2</sub>                  | 24.14                                                                  |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 0.80                 |                    | 24.94                                     |        | 24.94                                    |  |
| 10 <sub>4</sub>                  | 47.60                                                                  |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 12.12                |                    | 59.72                                     |        | 59.72                                    |  |
| <u>;0</u>                        | 22.40                                                                  |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 2.61                 |                    | 25.01                                     |        | 25.01                                    |  |
| /0C                              | 2.24                                                                   |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 0.97                 |                    | 3.21                                      |        | 3.21                                     |  |
| GHG (Mass Basis)*                |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        |                      |                    |                                           |        |                                          |  |
| GHG (CO <sub>2</sub> e Basis)*   |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        |                      |                    |                                           |        |                                          |  |
| Sulfuric Acid Mist <sup>§</sup>  | 0.10                                                                   |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        |                      |                    | 0.10                                      |        | 0.10                                     |  |
| .ead                             | 3.59E-04                                                               |        | 1.36E-04             |        | 3.87E-07                               |        | 8.22E-07             |        |       |        | 8.93E-08                           |        | 6.22E-08             |                              | 3.20E-05             |        | 6.38E-07             |        |          |        | 3.00E-07             |              | 1.64E-07             |        |                      |                    | 5.30E-04                                  |        | 5.30E-04                                 |  |
| Benzene                          | 1.24E-04                                                               |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        | 0.002 01             |        |          |        |                      |              |                      |        | 2.55E-03             |                    | 2.68E-03                                  |        | 2.68E-03                                 |  |
| Formaldehyde                     | 4.41E-03                                                               |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 3.23E-03             |                    | 7.64E-03                                  |        | 7.64E-03                                 |  |
| lexane                           | 1.06E-01                                                               |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        |                      |                    | 1.06E-01                                  |        | 1.06E-01                                 |  |
| oluene                           | 2.00E-04                                                               |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.12E-03             |                    | 1.32E-03                                  |        | 1.32E-03                                 |  |
| Arsenic                          | 6.53E-04                                                               |        | 2.64E-04             |        | 7.51E-07                               |        | 1.60E-06             |        |       |        | 1.73E-07                           |        | 1.21E-07             |                              | 6.21E-05             |        | 1.24E-06             |        |          |        | 5.83E-07             |              | 3.18E-07             |        |                      |                    | 9.84E-04                                  |        | 9.84E-04                                 |  |
| Antimony                         | 2.13E-05                                                               |        | 8.78E-06             |        | 2.49E-08                               |        | 5.31E-08             |        |       |        | 5.76E-09                           |        | 4.01E-09             |                              | 2.06E-06             |        | 4.12E-08             |        |          |        | 1.94E-08             |              | 1.06E-08             |        |                      |                    | 3.23E-05                                  |        | 3.23E-05                                 |  |
| Beryllium                        | 7.13E-05                                                               |        | 2.91E-05             |        | 8.28E-08                               |        | 1.76E-07             |        |       |        | 1.91E-08                           |        | 1.33E-08             |                              | 6.84E-06             |        | 1.37E-07             |        |          |        | 6.43E-08             |              | 3.51E-08             |        |                      |                    | 1.08E-04                                  |        | 1.08E-04                                 |  |
| Cadmium                          | 6.77E-05                                                               |        | 1.23E-06             |        | 3.51E-09                               |        | 7.47E-09             |        |       |        | 8.10E-10                           |        | 5.64E-10             |                              | 2.90E-07             |        | 5.79E-09             |        |          |        | 2.72E-09             |              | 1.49E-09             |        |                      |                    | 6.92E-05                                  |        | 6.92E-05                                 |  |
| Chromium                         | 5.01E-04                                                               |        | 1.73E-04             |        | 4.91E-07                               |        | 1.04E-06             |        |       |        | 1.13E-07                           |        | 7.90E-08             |                              | 4.06E-05             |        | 8.10E-07             |        |          |        | 3.81E-07             |              | 2.08E-07             |        |                      |                    | 7.17E-04                                  |        | 7.17E-04                                 |  |
| Chromium VI                      | 1.11E-05                                                               |        | 4.59E-06             |        | 1.31E-08                               |        | 2.77E-08             |        |       |        | 3.01E-09                           |        | 2.10E-09             |                              | 1.08E-06             |        | 2.15E-08             |        |          |        | 1.01E-08             |              | 5.53E-09             |        | _                    |                    | 1.69E-05                                  |        | 1.69E-05                                 |  |
| Cobalt                           | 2.16E-04                                                               |        | 8.69E-05             |        | 2.47E-07                               |        | 5.25E-07             |        |       |        | 5.71E-08                           |        | 3.98E-08             |                              | 2.04E-05             |        | 4.08E-07             |        |          |        | 1.92E-07             |              | 1.05E-07             |        |                      |                    | 3.24E-04                                  |        | 3.24E-04                                 |  |
| Aanganese                        | 9.24E-04<br>1.80E-05                                                   |        | 3.72E-04<br>1.10E-06 |        | 1.06E-06<br>3.12E-09                   |        | 2.25E-06<br>6.62E-09 |        |       |        | 2.44E-07<br>7.20E-10               |        | 1.70E-07<br>5.02E-10 |                              | 8.74E-05<br>2.58E-07 |        | 1.75E-06<br>5.15E-09 |        |          |        | 8.21E-07<br>2.42E-09 |              | 4.48E-07<br>1.32E-09 |        |                      |                    | 1.39E-03<br>1.93E-05                      |        | 1.39E-03<br>1.93E-05                     |  |
| /lercury                         | 5.11E-04                                                               |        | 1.60E-06             |        | 4.54E-07                               |        | 9.66E-07             |        |       |        | 1.05E-07                           |        | 7.32E-08             |                              | 2.56E-07<br>3.76E-05 |        | 5.15E-09<br>7.50E-07 |        |          |        | 2.42E-09<br>3.53E-07 |              | 1.92E-09             |        |                      |                    | 7.12E-04                                  |        | 7.12E-04                                 |  |
| Selenium                         | 1.41E-04                                                               |        | 5.71E-05             |        | 4.54E-07                               |        | 3.49E-07             |        |       |        | 3.74E-08                           |        | 2.61E-08             |                              | 1.34E-05             |        | 2.68E-07             |        |          |        | 1.26E-07             |              | 6.86E-08             |        |                      |                    | 2.13E-04                                  |        | 2.13E-04                                 |  |
| (ylenes                          | 1.412-04                                                               |        | 5.7 TE-05            |        | 1.022-07                               |        | 5.45L-07             |        |       |        | 5.74L-00                           |        | 2.012-00             |                              | 1.042-00             |        | 2.000-07             |        |          |        | 1.202-07             |              | 0.002-00             |        | 7.80E-04             |                    | 7.80E-04                                  |        | 7.80E-04                                 |  |
| .3-Butadiene                     |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.07E-04             |                    | 1.07E-04                                  |        | 1.07E-04                                 |  |
| Acetaldehyde                     |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 2.10E-03             |                    | 2.10E-03                                  |        | 2.10E-03                                 |  |
| Acrolein                         |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 2.53E-04             |                    | 2.53E-04                                  |        | 2.53E-04                                 |  |
| otal PAH                         |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 4.60E-04             |                    | 4.60E-04                                  |        | 4.60E-04                                 |  |
| Naphthalene                      | 3.59E-05                                                               |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 2.32E-04             |                    | 2.68E-04                                  |        | 2.68E-04                                 |  |
| Acenaphthalene                   |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.38E-05             |                    | 1.38E-05                                  |        | 1.38E-05                                 |  |
| Acenaphthene                     |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 3.89E-06             |                    | 3.89E-06                                  |        | 3.89E-06                                 |  |
| Fluorene                         |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 7.99E-05             |                    | 7.99E-05                                  |        | 7.99E-05                                 |  |
| Phenanthrene                     |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        | ļ                    |              |                      |        | 8.05E-05             |                    | 8.05E-05                                  |        | 8.05E-05                                 |  |
| Anthracene                       |                                                                        |        |                      |        |                                        |        | ╡────┤               |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 5.12E-06             |                    | 5.12E-06                                  |        | 5.12E-06                                 |  |
| Fluoranthene                     |                                                                        |        |                      |        |                                        |        | ╡───┤                |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 2.08E-05             |                    | 2.08E-05                                  |        | 2.08E-05                                 |  |
| Pyrene<br>Denze (a) anthropped   |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.31E-05             |                    | 1.31E-05                                  |        | 1.31E-05                                 |  |
| Benzo(a)anthracene               |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        | +                    |                              |                      |        |                      |        |          |        |                      |              |                      |        | 4.60E-06             |                    | 4.60E-06                                  |        | 4.60E-06                                 |  |
| Chrysene<br>Benzo(b)fluoranthene |                                                                        |        | <u> </u>             |        | +                                      |        | +                    |        |       |        |                                    |        | +                    |                              | ├                    |        |                      |        |          |        |                      |              |                      | +      | 9.66E-07<br>2.71E-07 |                    | 9.66E-07<br>2.71E-07                      |        | 9.66E-07<br>2.71E-07                     |  |
| Benzo(k)fluoranthene             |                                                                        |        |                      |        |                                        |        | +                    |        |       |        |                                    |        | +                    |                              |                      |        |                      |        |          |        |                      |              |                      |        | 4.24E-07             |                    | 4.24E-07                                  |        | 4.24E-07                                 |  |
| Benzo(a)pyrene                   |                                                                        |        |                      |        |                                        |        | + +                  |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 4.24E-07<br>5.15E-07 |                    | 4.24E-07<br>5.15E-07                      |        | 5.15E-07                                 |  |
| Indeno(1,2,3-cd)pyrene           |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.03E-07             |                    | 1.03E-06                                  |        | 1.03E-06                                 |  |
| Dibenz(a,h)anthracene            | + +                                                                    |        |                      |        | 1                                      |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.60E-06             |                    | 1.60E-06                                  |        | 1.60E-06                                 |  |
| Benzo(g,h,l)perylene             | + +                                                                    |        |                      |        | 1                                      |        | 1 1                  |        | 1     |        |                                    |        | 1                    |                              |                      |        |                      |        |          |        |                      |              |                      |        | 1.34E-06             |                    | 1.34E-06                                  |        | 1.34E-06                                 |  |
| laximum HAP                      |                                                                        |        | 1                    |        |                                        |        |                      |        | •     |        | •                                  | I      |                      | •                            |                      |        | I I                  |        |          |        |                      |              | •                    | •      |                      |                    | 1.06E-01                                  |        | 1.06E-01                                 |  |
|                                  |                                                                        |        |                      |        |                                        |        |                      |        |       |        |                                    |        |                      |                              |                      |        |                      |        |          |        |                      |              |                      |        |                      |                    | 1.26E-01                                  | +      | 1.26E-01                                 |  |

Note: Duke Energy expects 6%-15% LOI. LOI will affect throughput. Duke Energy wont go above 400,000 tpy.

<sup>§</sup> Based on SEFA stack test performed September 2016. Sulfuric Acid Mist was 0.05 lb/hr for contingency ECT doubled the number to 0.1 lb/hr.

NC15A NCAC 02Q .0711 EMISSION RATES REQUIRING A PERMIT

| Pollutant          | Facility Total<br>Controlled Emissions |          |  |  |  |  |  |  |  |
|--------------------|----------------------------------------|----------|--|--|--|--|--|--|--|
|                    | lb/hr                                  | lb/day   |  |  |  |  |  |  |  |
| Sulfuric Acid Mist | 0.10                                   | 2.40     |  |  |  |  |  |  |  |
| Benzene            |                                        |          |  |  |  |  |  |  |  |
| Formaldehyde       | 7.64E-03                               |          |  |  |  |  |  |  |  |
| Hexane             |                                        | 2.54     |  |  |  |  |  |  |  |
| Toluene            | 1.32E-03                               | 3.17E-02 |  |  |  |  |  |  |  |
| Arsenic            |                                        |          |  |  |  |  |  |  |  |
| Beryllium          |                                        |          |  |  |  |  |  |  |  |
| Cadmium            |                                        |          |  |  |  |  |  |  |  |
| Chromium VI        | 1.69E-05                               | 4.05E-04 |  |  |  |  |  |  |  |
| Manganese          |                                        | 3.34E-02 |  |  |  |  |  |  |  |
| Mercury            |                                        | 4.64E-04 |  |  |  |  |  |  |  |
| Nickel             |                                        | 1.71E-02 |  |  |  |  |  |  |  |

# Duke Energy H.F. Lee Plant Table 2B - Facility-wide Emissions Summary - Annual

|                                 | STAR <sup>®</sup> Fly Ash +<br>Worst-Case Fuel<br>Controlled Emissions |          | EHE Emissions |          | Pre STAR Unit Silo<br>Emissions |          | Post STAR Unit<br>Silo/Dome Emissions |          |       |        | Wet Ash Receiving<br>Emissions |          | Storage Pile Emissions |          | Ash Basin |          | Ash H | landling | Haul  | Roads    | Scre  | Screener  |       | ısher    |       | er/Crusher<br>gines  | Con   | Facility Total<br>Controlled<br>Emissions |       | Facility Total<br>Permitted<br>Emissions |  |
|---------------------------------|------------------------------------------------------------------------|----------|---------------|----------|---------------------------------|----------|---------------------------------------|----------|-------|--------|--------------------------------|----------|------------------------|----------|-----------|----------|-------|----------|-------|----------|-------|-----------|-------|----------|-------|----------------------|-------|-------------------------------------------|-------|------------------------------------------|--|
| Pollutant                       | lb/hr                                                                  | ton/yr   | lb/hr         | ton/yr   | lb/hr                           | ton/yr   | lb/hr                                 | ton/yr   | lb/hr | ton/yr | lb/hr                          | ton/yr   | lb/hr                  | ton/yr   | lb/hr     | ton/yr   | lb/hr | ton/yr   | lb/hr | ton/yr   | lb/hr | ton/yr    | lb/hr | ton/yr   | lb/hr | ton/yr               | lb/hr | ton/yr                                    | lb/hr |                                          |  |
| PM                              |                                                                        | 72.74    |               | 30.03    |                                 | 0.04     |                                       | 0.04     |       | 0.49   |                                | 1.29E-02 |                        | 1.37E-02 |           | 7.05E+00 |       | 1.41E-01 |       | 1.53E+00 |       | 1.97E-02  |       | 1.51E-03 |       | 3.81E-01             |       | 112.49                                    |       | 112.49                                   |  |
| PM <sub>10</sub>                |                                                                        | 66.92    |               | 27.63    |                                 | 0.02     |                                       | 0.02     |       | 0.45   |                                | 6.08E-03 |                        | 6.87E-03 |           | 3.53E+00 |       | 6.66E-02 |       | 3.95E-01 |       | 6.61E-03  |       | 6.78E-04 |       | 3.81E-01             |       | 99.43                                     |       | 99.43                                    |  |
| PM <sub>o</sub> c               |                                                                        | 38.55    |               | 15.92    |                                 | 0.02     |                                       | 0.02     |       | 0.26   |                                | 9.21E-04 |                        | 1.03E-03 |           | 5.29E-01 |       | 1.01E-02 |       | 3.95E-02 |       | 4.47E-04  |       | 1.25E-04 |       | 3.81E-01             |       | 55.73                                     |       | 55.73                                    |  |
| 20                              |                                                                        | 98.18    |               | 10.02    |                                 | 0.02     |                                       | 0.02     |       | 0.20   |                                | 0.212 04 |                        | 1.002 00 |           | 0.202 01 |       | 1.012 02 |       | 0.002 02 |       | 4.47 - 04 |       | 1.202 04 |       | 0.35                 |       | 98.53                                     |       | 98.53                                    |  |
|                                 |                                                                        |          |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       |                      |       |                                           |       |                                          |  |
| NO <sub>X</sub>                 |                                                                        | 193.60   |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 5.36                 |       | 198.96                                    |       | 198.96                                   |  |
| 0                               |                                                                        | 91.10    |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 1.16                 |       | 92.26                                     |       | 92.26                                    |  |
|                                 |                                                                        | 9.11     |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 0.43                 |       | 9.54                                      |       | 9.54                                     |  |
| GHG (Mass Basis)*               |                                                                        | 116,401  |               | -        |                                 | -        |                                       | -        |       |        |                                | + +      |                        | -        |           |          |       | -        |       |          |       |           |       |          |       | 198.14               |       | 116598.85                                 |       | 116,599                                  |  |
| GHG (CO <sub>2</sub> e Basis)*  |                                                                        | 116,406  |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 198.14               |       | 116604.15                                 |       | 116,604                                  |  |
| Sulfuric Acid Mist <sup>§</sup> |                                                                        | 0.44     |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       |                      |       | 0.44                                      |       | 0.44                                     |  |
| _ead                            |                                                                        | 1.57E-03 |               | 5.96E-04 |                                 | 7.73E-07 |                                       | 7.73E-07 |       |        |                                | 2.55E-07 |                        | 2.73E-07 |           | 1.40E-04 |       | 2.80E-06 |       |          |       | 3.90E-07  |       | 2.99E-08 |       |                      |       | 2.31E-03                                  |       | 2.31E-03                                 |  |
| Benzene                         |                                                                        | 5.41E-04 |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 1.13E-03             |       | 1.67E-03                                  |       | 1.67E-03                                 |  |
| Formaldehyde                    |                                                                        | 1.93E-02 |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 1.43E-03             |       | 2.08E-02                                  |       | 2.08E-02                                 |  |
| Hexane                          |                                                                        | 4.64E-01 |               |          |                                 | 1        |                                       |          |       |        |                                |          |                        |          |           |          |       | 1        |       |          |       |           |       |          |       | <b> </b>             |       | 4.64E-01                                  |       | 4.64E-01                                 |  |
| Foluene                         |                                                                        | 8.76E-04 |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 4.95E-04             |       | 1.37E-03                                  |       | 1.37E-03                                 |  |
| Arsenic                         |                                                                        | 2.86E-03 |               | 1.16E-03 |                                 | 1.50E-06 |                                       | 1.50E-06 |       |        |                                | 4.96E-07 |                        | 5.29E-07 |           | 2.72E-04 |       | 5.43E-06 |       |          |       | 7.58E-07  |       | 5.80E-08 |       | ļ                    |       | 4.30E-03                                  |       | 4.30E-03                                 |  |
| Antimony                        |                                                                        | 9.34E-05 |               | 3.84E-05 |                                 | 4.99E-08 |                                       | 5.00E-08 |       |        |                                | 1.65E-08 |                        | 1.76E-08 |           | 9.03E-06 |       | 1.80E-07 |       |          |       | 2.52E-08  |       | 1.93E-09 |       |                      |       | 1.41E-04                                  |       | 1.41E-04                                 |  |
| Beryllium                       |                                                                        | 3.12E-04 |               | 1.28E-04 |                                 | 1.66E-07 |                                       | 1.66E-07 |       |        |                                | 5.46E-08 |                        | 5.84E-08 |           | 3.00E-05 |       | 5.99E-07 |       |          |       | 8.36E-08  |       | 6.40E-09 |       |                      |       | 4.71E-04                                  |       | 4.71E-04                                 |  |
| Cadmium                         |                                                                        | 2.97E-04 |               | 5.41E-06 |                                 | 7.01E-09 |                                       | 7.03E-09 |       |        |                                | 2.31E-09 |                        | 2.47E-09 |           | 1.27E-06 |       | 2.54E-08 |       |          |       | 3.54E-09  |       | 2.71E-10 |       |                      |       | 3.03E-04                                  |       | 3.03E-04                                 |  |
| Chromium                        |                                                                        | 2.19E-03 |               | 7.57E-04 |                                 | 9.82E-07 |                                       | 9.82E-07 |       |        |                                | 3.24E-07 |                        | 3.46E-07 |           | 1.78E-04 |       | 3.55E-06 |       |          |       | 4.95E-07  |       | 3.79E-08 |       |                      |       | 3.14E-03                                  |       | 3.14E-03                                 |  |
| Chromium VI                     |                                                                        | 4.87E-05 |               | 2.01E-05 |                                 | 2.61E-08 |                                       | 2.61E-08 |       |        |                                | 8.61E-09 |                        | 9.20E-09 |           | 4.73E-06 |       | 9.44E-08 |       |          |       | 1.32E-08  |       | 1.01E-09 |       |                      |       | 7.38E-05                                  |       | 7.38E-05                                 |  |
| Cobalt                          |                                                                        | 9.44E-04 |               | 3.81E-04 |                                 | 4.94E-07 |                                       | 4.94E-07 |       |        |                                | 1.63E-07 |                        | 1.74E-07 |           | 8.94E-05 |       | 1.79E-06 |       |          |       | 2.49E-07  |       | 1.91E-08 |       |                      |       | 1.42E-03                                  |       | 1.42E-03                                 |  |
| Vanganese                       |                                                                        | 4.05E-03 |               | 1.63E-03 |                                 | 2.12E-06 |                                       | 2.12E-06 |       |        |                                | 6.98E-07 |                        | 7.46E-07 |           | 3.83E-04 |       | 7.65E-06 |       |          |       | 1.07E-06  |       | 8.17E-08 |       |                      |       | 6.08E-03                                  |       | 6.08E-03                                 |  |
| Mercury                         |                                                                        | 7.86E-05 |               | 4.81E-06 |                                 | 6.23E-09 |                                       | 6.23E-09 |       |        |                                | 2.06E-09 |                        | 2.20E-09 |           | 1.13E-06 |       | 2.25E-08 |       |          |       | 3.15E-09  |       | 2.41E-10 |       |                      |       | 8.46E-05                                  |       | 8.46E-05                                 |  |
| Nickel                          |                                                                        | 2.24E-03 |               | 7.01E-04 |                                 | 9.09E-07 |                                       | 9.09E-07 |       |        |                                | 3.00E-07 |                        | 3.20E-07 |           | 1.65E-04 |       | 3.29E-06 |       |          |       | 4.59E-07  |       | 3.51E-08 |       |                      |       | 3.11E-03                                  |       | 3.11E-03                                 |  |
| Selenium                        |                                                                        | 6.19E-04 |               | 2.50E-04 |                                 | 3.24E-07 |                                       | 3.28E-07 |       |        |                                | 1.07E-07 |                        | 1.14E-07 |           | 5.87E-05 |       | 1.17E-06 |       |          |       | 1.64E-07  |       | 1.25E-08 |       |                      |       | 9.30E-04                                  |       | 9.30E-04                                 |  |
| Kylenes                         |                                                                        | _        |               |          |                                 |          |                                       |          |       | _      |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 3.45E-04             |       | 3.45E-04                                  |       | 3.45E-04                                 |  |
| 1,3-Butadiene                   |                                                                        |          |               |          |                                 |          |                                       |          |       | _      |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 4.74E-05             |       | 4.74E-05                                  |       | 4.74E-05                                 |  |
| Acetaldehyde                    |                                                                        |          |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 9.29E-04             |       | 9.29E-04                                  |       | 9.29E-04                                 |  |
| Acrolein                        |                                                                        |          |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 1.12E-04             |       | 1.12E-04                                  |       | 1.12E-04                                 |  |
| Total PAH                       |                                                                        | 4.575.04 |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 2.04E-04             |       | 2.04E-04                                  |       | 2.04E-04                                 |  |
| Naphthalene                     |                                                                        | 1.57E-04 |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       | 1.03E-04             |       | 2.60E-04                                  |       | 2.60E-04                                 |  |
| Acenaphthalene                  |                                                                        | +        |               |          |                                 |          |                                       |          |       |        |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 6.13E-06             |       | 6.13E-06                                  |       | 6.13E-06                                 |  |
| Acenaphthene                    |                                                                        | +        |               | +        |                                 | +        |                                       | +        |       |        |                                | + +      |                        | +        |           |          |       | +        |       |          |       |           |       |          |       | 1.72E-06<br>3.54E-05 |       | 1.72E-06<br>3.54E-05                      |       | 1.72E-06<br>3.54E-05                     |  |
| Fluorene<br>Phenanthrene        |                                                                        | +        |               | +        |                                 | +        |                                       |          |       |        |                                | + +      |                        | +        |           |          |       | +        |       |          |       |           |       |          |       | 3.54E-05<br>3.56E-05 |       | 3.54E-05<br>3.56E-05                      |       | 3.54E-05<br>3.56E-05                     |  |
|                                 |                                                                        | +        |               | +        |                                 | +        |                                       | +        |       |        |                                | + +      |                        | +        |           |          |       | +        |       |          |       |           |       | +        |       | 2.27E-06             |       | 2.27E-06                                  |       | 2.27E-06                                 |  |
| Anthracene<br>Fluoranthene      |                                                                        | +        |               | +        |                                 | +        |                                       | +        |       |        |                                | + +      |                        | +        |           |          |       | +        |       |          |       |           |       | +        |       | 9.22F-06             |       | 9.22F-06                                  |       | 9.227E-06                                |  |
| Pyrene                          |                                                                        | +        |               | +        |                                 | +        |                                       | +        |       |        |                                | + +      |                        | +        |           |          |       | +        |       |          |       |           |       | +        |       | 9.22E-06<br>5.79E-06 |       | 9.22E-06<br>5.79E-06                      |       | 9.22E-06<br>5.79E-06                     |  |
| Benzo(a)anthracene              |                                                                        | +        |               |          |                                 |          |                                       | +        |       | +      |                                | +        |                        | +        |           |          |       |          |       |          |       |           |       | +        |       | 2.04E-06             |       | 2.04E-06                                  |       | 2.04E-06                                 |  |
| Chrysene                        |                                                                        | +        |               |          |                                 |          |                                       | +        |       | +      |                                | +        |                        | +        |           |          |       | +        |       |          |       |           |       | +        |       | 4.28E-07             |       | 4.28E-07                                  |       | 4.28E-07                                 |  |
| Benzo(b)fluoranthene            |                                                                        | +        |               |          |                                 |          |                                       |          |       | +      |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 4.20E-07<br>1.20E-07 |       | 4.28E-07<br>1.20E-07                      |       | 4.28E-07<br>1.20E-07                     |  |
| Benzo(k)fluoranthene            |                                                                        | +        |               |          |                                 | +        |                                       |          |       |        |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 1.88E-07             |       | 1.88E-07                                  |       | 1.88E-07                                 |  |
| Benzo(a)pyrene                  |                                                                        | +        |               |          |                                 |          |                                       |          |       |        |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 2.28E-07             |       | 2.28E-07                                  |       | 2.28E-07                                 |  |
| Indeno(1,2,3-cd)pyrene          |                                                                        | +        |               |          |                                 | +        |                                       |          |       |        |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 4.54E-07             |       | 4.54E-07                                  |       | 4.54E-07                                 |  |
| Dibenz(a,h)anthracene           |                                                                        | +        |               |          |                                 | 1        |                                       |          |       |        |                                | +        |                        |          |           |          |       | +        |       |          |       |           |       |          |       | 7.06E-07             |       | 7.06E-07                                  |       | 7.06E-07                                 |  |
| Benzo(g,h,l)perylene            |                                                                        | +        |               |          |                                 |          |                                       |          |       |        |                                | + +      |                        |          |           |          |       |          |       |          |       |           |       |          |       | 5.92E-07             |       | 5.92E-07                                  |       | 5.92E-07                                 |  |
|                                 |                                                                        |          |               |          | 1                               |          | I                                     | 1        |       |        |                                |          |                        |          |           | I I      |       |          | 1     |          |       |           |       |          |       | 0.022 07             |       | 4.64E-01                                  |       | 4.64E-01                                 |  |
| laximum HAP                     |                                                                        |          |               |          |                                 |          |                                       |          |       |        |                                |          |                        |          |           |          |       |          |       |          |       |           |       |          |       |                      |       |                                           |       |                                          |  |

Note: Duke Energy expects 6%-15% LOI. LOI will affect throughput. Duke Energy wont go above 400,000 tpy.

<sup>§</sup> Based on SEFA stack test performed September 2016. Sulfuric Acid Mist was 0.05 lb/hr for contingency ECT doubled the number to 0.1 lb/hr.

NC15A NCAC 02Q .0711 EMISSION RATES REQUIRING A PERMIT

| Pollutant          | Facility Total<br>Controlled<br>Emissions<br>Ib/yr |
|--------------------|----------------------------------------------------|
| Sulfuric Acid Mist |                                                    |
| Benzene            | 3.34                                               |
| Formaldehyde       |                                                    |
| Hexane             |                                                    |
| Toluene            |                                                    |
| Arsenic            | 8.60                                               |
| Beryllium          | 0.94                                               |
| Cadmium            | 0.61                                               |
| Chromium VI        |                                                    |
| Manganese          |                                                    |
| Mercury            |                                                    |
| Nickel             |                                                    |
#### Natural Gas Emissions

|                                        | Emission |          |            |        | Emis     | sions    |                                |
|----------------------------------------|----------|----------|------------|--------|----------|----------|--------------------------------|
| Pollutant                              | Factor   | Units    | Throughput | Units  | lb/hr    | ton/yr   | Reference                      |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 7.6      | lb/MMscf | 58,824     | scf/hr | 0.45     | 1.96     | EPA AP-42, Table 1.4-2 (07/98) |
| SO <sub>2</sub>                        | 0.6      | lb/MMscf | 58,824     | scf/hr | 0.04     | 0.15     | EPA AP-42, Table 1.4-2 (07/98) |
| NO <sub>X</sub>                        | 140      | lb/MMscf | 58,824     | scf/hr | 8.24     | 36.07    | EPA AP-42, Table 1.4-1 (07/98) |
| со                                     | 84       | lb/MMscf | 58,824     | scf/hr | 4.94     | 21.64    | EPA AP-42, Table 1.4-1 (07/98) |
| VOC                                    | 5.5      | lb/MMscf | 58,824     | scf/hr | 0.32     | 1.42     | EPA AP-42, Table 1.4-2 (07/98) |
| Lead                                   | 0.0005   | lb/MMscf | 58,824     | scf/hr | 2.94E-05 | 1.29E-04 | EPA AP-42, Table 1.4-2 (07/98) |
| Benzene                                | 0.0021   | lb/MMscf | 58,824     | scf/hr | 1.24E-04 | 5.41E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Formaldehyde                           | 0.075    | lb/MMscf | 58,824     | scf/hr | 4.41E-03 | 1.93E-02 | EPA AP-42, Table 1.4-3 (07/98) |
| Hexane                                 | 1.8      | lb/MMscf | 58,824     | scf/hr | 1.06E-01 | 4.64E-01 | EPA AP-42, Table 1.4-3 (07/98) |
| Naphthalene                            | 0.00061  | lb/MMscf | 58,824     | scf/hr | 3.59E-05 | 1.57E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Toluene                                | 0.0034   | lb/MMscf | 58,824     | scf/hr | 2.00E-04 | 8.76E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Arsenic                                | 0.0002   | lb/MMscf | 58,824     | scf/hr | 1.18E-05 | 5.15E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Beryllium                              | 0.000012 | lb/MMscf | 58,824     | scf/hr | 7.06E-07 | 3.09E-06 | EPA AP-42, Table 1.4-4 (07/98) |
| Cadmium                                | 0.0011   | lb/MMscf | 58,824     | scf/hr | 6.47E-05 | 2.83E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Chromium                               | 0.0014   | lb/MMscf | 58,824     | scf/hr | 8.24E-05 | 3.61E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Cobalt                                 | 0.000084 | lb/MMscf | 58,824     | scf/hr | 4.94E-06 | 2.16E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Manganese                              | 0.00038  | lb/MMscf | 58,824     | scf/hr | 2.24E-05 | 9.79E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Mercury                                | 0.00026  | lb/MMscf | 58,824     | scf/hr | 1.53E-05 | 6.70E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Nickel                                 | 0.0021   | lb/MMscf | 58,824     | scf/hr | 1.24E-04 | 5.41E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Selenium                               | 0.000024 | lb/MMscf | 58,824     | scf/hr | 1.41E-06 | 6.18E-06 | EPA AP-42, Table 1.4-4 (07/98) |

#### Sample Calculations

| Natural Gas Flow = | 60 MMBtu                | 10 <sup>6</sup> Btu | scf Nat. Gas | = | 58,824 | scf/hr Natural Gas    |
|--------------------|-------------------------|---------------------|--------------|---|--------|-----------------------|
|                    | hr                      | MMBtu               | 1020 Btu     |   |        |                       |
|                    |                         |                     |              |   |        |                       |
|                    |                         |                     |              |   |        |                       |
| $NO_x$ Emissions = | 58824 scf               | MMscf               | 140 lb NOx   | = | 8.24   | lb/hr NO <sub>x</sub> |
|                    | hr                      | 10 <sup>6</sup> scf | MMscf        |   |        |                       |
|                    |                         |                     |              |   |        |                       |
|                    | 8.24 lb NO <sub>x</sub> | 8760 hr             | ton          | = | 36.07  | tpy NO <sub>x</sub>   |
|                    | hr                      | yr                  | 2000 lb      |   |        |                       |
|                    |                         |                     |              |   |        |                       |
| CO Emissions =     | 58824 scf               | MMscf               | 84 lb CO     | = | 4.94   | lb/hr CO              |
|                    | hr                      | 10 <sup>6</sup> scf | MMscf        |   |        |                       |
|                    |                         |                     |              |   |        |                       |
|                    | 4.94 lb CO              | 8760 hr             | ton          | = | 21.64  | tpy CO                |
|                    | hr                      | yr                  | 2000 lb      |   |        |                       |
|                    |                         |                     |              |   |        |                       |

Annual Natural Gas usage provided by SEFA

Page 5 of 40

#### Propane Emissions

|                                        | Emission |                        |            |        | Emis  | sions  |                                | ]                                      |
|----------------------------------------|----------|------------------------|------------|--------|-------|--------|--------------------------------|----------------------------------------|
| Pollutant                              | Factor   | Units                  | Throughput | Units  | lb/hr | ton/yr | Reference                      |                                        |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.7      | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.46  | 2.03   | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| SO <sub>2</sub>                        | 0.018    | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.01  | 0.05   | EPA AP-42, Table 1.5-1 (07/08) | Propane sulfur content 0.18 gr/100 ft3 |
| NO <sub>X</sub>                        | 13       | lb/10 <sup>3</sup> gal | 663        | gal/hr | 8.62  | 37.75  | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| СО                                     | 7.5      | lb/10 <sup>3</sup> gal | 663        | gal/hr | 4.97  | 21.78  | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| VOC                                    | 1        | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.66  | 2.90   | EPA AP-42, Table 1.5-1 (07/08) |                                        |

#### Sample Calculations

| Propane Flow =     | 60 MMBtu       | 10 <sup>6</sup> Btu | gal Propane         | = | 663 gal/hr Propane         |
|--------------------|----------------|---------------------|---------------------|---|----------------------------|
|                    | hr             | MMBtu               | 90,500 Btu          |   |                            |
|                    |                |                     |                     |   |                            |
|                    |                |                     |                     |   |                            |
| $NO_x$ Emissions = | 663 gal        | 10 <sup>3</sup> gal | 13 lb NOx           | = | 8.62 lb/hr NO <sub>x</sub> |
|                    | hr             | 1000 gal            | 10 <sup>3</sup> gal |   |                            |
|                    |                |                     |                     |   |                            |
|                    | 8.62 lb $NO_x$ | 8760 hr             | ton                 | = | 37.75 tpy NO <sub>x</sub>  |
|                    | hr             | yr                  | 2000 lb             |   |                            |
|                    |                |                     |                     |   |                            |
| CO Emissions =     | 663 gal        | 10 <sup>3</sup> gal | 7.5 lb CO           | = | 4.97 lb/hr CO              |
|                    | hr             | 1000 gal            | 10 <sup>3</sup> gal |   |                            |
|                    |                |                     |                     |   |                            |
|                    | 4.97 lb CO     | 8760 hr             | ton                 | = | 21.78 tpy CO               |
|                    | hr             | yr                  | 2000 lb             |   |                            |
|                    |                |                     |                     |   |                            |

Annual Propane usage provided by SEFA

Page 6 of 40

### Flyash Emissions

|                 | Emission |          |            |          | Uncontrolle | d Emissions | Controlled | Emissions |                                                                                                                             |
|-----------------|----------|----------|------------|----------|-------------|-------------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| Pollutant       | Factor   | Units    | Throughput | Units    | lb/hr       | ton/yr      | lb/hr      | ton/yr    | Reference                                                                                                                   |
| NO <sub>X</sub> | 0.34     | lb/MMBtu | 140        | MMBtu/hr | 47.60       | 208.49      | 47.60      | 208.49    | Based on SEFA operation experience                                                                                          |
| СО              | 0.16     | lb/MMBtu | 140        | MMBtu/hr | 22.40       | 98.11       | 22.40      | 98.11     | Based on SEFA operation experience                                                                                          |
| VOC             | 0.016    | lb/MMBtu | 140        | MMBtu/hr | 2.24        | 9.81        | 2.24       | 9.81      | Based on stack test performed at a different STAR facility, CO emissions are expected to be 10% (or less) of VOC emissions. |
| Lead            | 19.85    | ppmw     |            |          | 3.30E-04    | 1.44E-03    | 3.30E-04   | 1.44E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Arsenic         | 38.58    | ppmw     |            |          | 6.41E-04    | 2.81E-03    | 6.41E-04   | 2.81E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Antimony        | 1.28     | ppmw     |            |          | 2.13E-05    | 9.34E-05    | 2.13E-05   | 9.34E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Beryllium       | 4.25     | ppmw     |            |          | 7.06E-05    | 3.09E-04    | 7.06E-05   | 3.09E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Cadmium         | 0.18     | ppmw     |            |          | 3.00E-06    | 1.31E-05    | 3.00E-06   | 1.31E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Chromium        | 25.20    | ppmw     |            |          | 4.19E-04    | 1.83E-03    | 4.19E-04   | 1.83E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Chromium VI     | 0.67     | ppmw     |            |          | 1.11E-05    | 4.87E-05    | 1.11E-05   | 4.87E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Cobalt          | 12.68    | ppmw     |            |          | 2.11E-04    | 9.22E-04    | 2.11E-04   | 9.22E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Manganese       | 54.31    | ppmw     |            |          | 9.02E-04    | 3.95E-03    | 9.02E-04   | 3.95E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Mercury         | 0.16     | ppmw     |            |          | 2.66E-06    | 1.16E-05    | 2.66E-06   | 1.16E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Nickel          | 23.34    | ppmw     |            |          | 3.88E-04    | 1.70E-03    | 3.88E-04   | 1.70E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Selenium        | 8.43     | ppmw     |            |          | 1.40E-04    | 6.13E-04    | 1.40E-04   | 6.13E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |

HAP/TAP emission factors from the STAR unit are based on site-specific ash analysis with the addition of metals in the water used for water injection

#### Sample Calculations

| $NO_x$ Emissions =                    | 0.34 lb NO <sub>x</sub>           | 140 M             | MBtu | =           | 47.60 lb/hr NO <sub>x</sub> |
|---------------------------------------|-----------------------------------|-------------------|------|-------------|-----------------------------|
|                                       | MMBtu                             | hou               | ur   |             |                             |
| Arsenic Emissions =<br>(Uncontrolled) | 38.58 lb As<br>10 <sup>6</sup> lb | 17.79 lb PM<br>hr | =    | 6.86E-04 lk | o/hr Arsenic                |

Page 7 of 40

# Worst-Case STAR® Reactor Unit Emissions

|                   |             |           |           |                            |          | -        | ctor Fly Ash<br>+ | STAR® Re<br>Ast       | י<br>ו+                                |        |
|-------------------|-------------|-----------|-----------|----------------------------|----------|----------|-------------------|-----------------------|----------------------------------------|--------|
|                   | Natural Gas | Emissions | Propane E | Emissions Fly Ash Emission |          | missions |                   | ase Fuel<br>Emissions | Worst-Case Fuel<br>Permitted Emissions |        |
| Pollutant         | lb/hr       | ton/yr    | lb/hr     | ton/yr                     | lb/hr    | ton/yr   | lb/hr             | ton/yr                | lb/hr                                  | ton/yr |
| PM                |             |           |           |                            |          |          | 16.61             |                       | 16.61                                  |        |
| PM <sub>10</sub>  |             |           |           |                            |          |          | 15.28             |                       | 15.28                                  |        |
| PM <sub>2.5</sub> |             |           |           |                            |          |          | 8.80              |                       | 8.80                                   |        |
| SO <sub>2</sub>   |             |           |           |                            |          |          | 24.14             |                       | 24.14                                  |        |
| NO <sub>X</sub>   | 8.24        | 36.07     | 8.62      | 37.75                      | 47.60    | 208.49   | 35.82             |                       | 47.60                                  |        |
| СО                | 4.94        | 21.64     | 4.97      | 21.78                      | 22.40    | 98.11    | 17.77             |                       | 22.40                                  |        |
| VOC               | 0.32        | 1.42      | 0.66      | 2.90                       | 2.24     | 9.81     | 1.94              |                       | 2.24                                   |        |
| Lead              | 2.94E-05    | 1.29E-04  |           |                            | 3.30E-04 | 1.44E-03 | 3.59E-04          |                       | 3.59E-04                               |        |
| Benzene           | 1.24E-04    | 5.41E-04  |           |                            |          |          | 1.24E-04          |                       | 1.24E-04                               |        |
| Formaldehyde      | 4.41E-03    | 1.93E-02  |           |                            |          |          | 4.41E-03          |                       | 4.41E-03                               |        |
| Hexane            | 1.06E-01    | 4.64E-01  |           |                            |          |          | 1.06E-01          |                       | 1.06E-01                               |        |
| Naphthalene       | 3.59E-05    | 1.57E-04  |           |                            |          |          | 3.59E-05          |                       | 3.59E-05                               |        |
| Toluene           | 2.00E-04    | 8.76E-04  |           |                            |          |          | 2.00E-04          |                       | 2.00E-04                               |        |
| Arsenic           | 1.18E-05    | 5.15E-05  |           |                            | 6.41E-04 | 2.81E-03 | 6.53E-04          |                       | 6.53E-04                               |        |
| Antimony          |             |           |           |                            | 2.13E-05 | 9.34E-05 | 2.13E-05          |                       | 2.13E-05                               |        |
| Beryllium         | 7.06E-07    |           |           |                            | 7.06E-05 | 3.09E-04 | 7.13E-05          |                       | 7.13E-05                               |        |
| Cadmium           | 6.47E-05    | 2.83E-04  |           |                            | 3.00E-06 | 1.31E-05 | 6.77E-05          |                       | 6.77E-05                               |        |
| Chromium          | 8.24E-05    | 3.61E-04  |           |                            | 4.19E-04 | 1.83E-03 | 5.01E-04          |                       | 5.01E-04                               |        |
| Chromium VI       |             |           |           |                            | 1.11E-05 | 4.87E-05 | 1.11E-05          |                       | 1.11E-05                               |        |
| Cobalt            | 4.94E-06    | 2.16E-05  |           |                            | 2.11E-04 | 9.22E-04 | 2.16E-04          |                       | 2.16E-04                               |        |
| Manganese         | 2.24E-05    | 9.79E-05  |           |                            | 9.02E-04 | 3.95E-03 | 9.24E-04          |                       | 9.24E-04                               |        |
| Mercury           | 1.53E-05    | 6.70E-05  |           |                            | 2.66E-06 | 1.16E-05 | 1.80E-05          |                       | 1.80E-05                               |        |
| Nickel            | 1.24E-04    | 5.41E-04  |           |                            | 3.88E-04 | 1.70E-03 | 5.11E-04          |                       | 5.11E-04                               |        |
| Selenium          | 1.41E-06    | 6.18E-06  |           |                            | 1.40E-04 | 6.13E-04 | 1.41E-04          |                       | 1.41E-04                               |        |

Page 8 of 40

# Natural Gas Emissions

|                                        | Emission |          |            |        | Emis     | sions    |                                |
|----------------------------------------|----------|----------|------------|--------|----------|----------|--------------------------------|
| Pollutant                              | Factor   | Units    | Throughput | Units  | lb/hr    | ton/yr   | Reference                      |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 7.6      | lb/MMscf | 58,824     | scf/hr | 0.45     | 1.96     | EPA AP-42, Table 1.4-2 (07/98) |
| SO <sub>2</sub>                        | 0.6      | lb/MMscf | 58,824     | scf/hr | 0.04     | 0.15     | EPA AP-42, Table 1.4-2 (07/98) |
| NO <sub>X</sub>                        | 140      | lb/MMscf | 58,824     | scf/hr | 8.24     | 36.07    | EPA AP-42, Table 1.4-1 (07/98) |
| со                                     | 84       | lb/MMscf | 58,824     | scf/hr | 4.94     | 21.64    | EPA AP-42, Table 1.4-1 (07/98) |
| VOC                                    | 5.5      | lb/MMscf | 58,824     | scf/hr | 0.32     | 1.42     | EPA AP-42, Table 1.4-2 (07/98) |
| Lead                                   | 0.0005   | lb/MMscf | 58,824     | scf/hr | 2.94E-05 | 1.29E-04 | EPA AP-42, Table 1.4-2 (07/98) |
| Benzene                                | 0.0021   | lb/MMscf | 58,824     | scf/hr | 1.24E-04 | 5.41E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Formaldehyde                           | 0.075    | lb/MMscf | 58,824     | scf/hr | 4.41E-03 | 1.93E-02 | EPA AP-42, Table 1.4-3 (07/98) |
| Hexane                                 | 1.8      | lb/MMscf | 58,824     | scf/hr | 1.06E-01 | 4.64E-01 | EPA AP-42, Table 1.4-3 (07/98) |
| Naphthalene                            | 0.00061  | lb/MMscf | 58,824     | scf/hr | 3.59E-05 | 1.57E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Toluene                                | 0.0034   | lb/MMscf | 58,824     | scf/hr | 2.00E-04 | 8.76E-04 | EPA AP-42, Table 1.4-3 (07/98) |
| Arsenic                                | 0.0002   | lb/MMscf | 58,824     | scf/hr | 1.18E-05 | 5.15E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Beryllium                              | 0.000012 | lb/MMscf | 58,824     | scf/hr | 7.06E-07 | 3.09E-06 | EPA AP-42, Table 1.4-4 (07/98) |
| Cadmium                                | 0.0011   | lb/MMscf | 58,824     | scf/hr | 6.47E-05 | 2.83E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Chromium                               | 0.0014   | lb/MMscf | 58,824     | scf/hr | 8.24E-05 | 3.61E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Cobalt                                 | 0.000084 | lb/MMscf | 58,824     | scf/hr | 4.94E-06 | 2.16E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Manganese                              | 0.00038  | lb/MMscf | 58,824     | scf/hr | 2.24E-05 | 9.79E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Mercury                                | 0.00026  | lb/MMscf | 58,824     | scf/hr | 1.53E-05 | 6.70E-05 | EPA AP-42, Table 1.4-4 (07/98) |
| Nickel                                 | 0.0021   | lb/MMscf | 58,824     | scf/hr | 1.24E-04 | 5.41E-04 | EPA AP-42, Table 1.4-4 (07/98) |
| Selenium                               | 0.000024 | lb/MMscf | 58,824     | scf/hr | 1.41E-06 | 6.18E-06 | EPA AP-42, Table 1.4-4 (07/98) |

#### Sample Calculations

| Natural Gas Flow =          | 60 MMBtu                 | 10 <sup>6</sup> Btu | scf Nat. Gas | = | 58,824 | scf/hr Natural Gas    |
|-----------------------------|--------------------------|---------------------|--------------|---|--------|-----------------------|
|                             | hr                       | MMBtu               | 1020 Btu     |   |        |                       |
|                             |                          |                     |              |   |        |                       |
|                             |                          |                     |              |   |        |                       |
| NO <sub>x</sub> Emissions = | 58824 scf                | MMscf               | 140 lb NOx   | = | 8.24   | lb/hr NO <sub>x</sub> |
|                             | hr                       | 10 <sup>6</sup> scf | MMscf        |   |        |                       |
|                             |                          |                     | •            |   |        |                       |
|                             | $8.24 \text{ lb NO}_{x}$ | 8760 hr             | ton          | = | 36.07  | tpy NO <sub>x</sub>   |
|                             | hr                       | yr                  | 2000 lb      |   |        |                       |
|                             | 50004                    |                     |              |   |        |                       |
| CO Emissions =              | 58824 scf                | MMscf               | 84 lb CO     | = | 4.94   | lb/hr CO              |
|                             | hr                       | 10 <sup>6</sup> scf | MMscf        |   |        |                       |
|                             |                          |                     | I .          |   |        |                       |
|                             | 4.94 lb CO               | 8760 hr             | ton          | = | 21.64  | tpy CO                |
|                             | hr                       | yr                  | 2000 lb      |   |        |                       |
|                             | hr                       | yr                  | 2000 lb      |   |        |                       |

Anuual Natural Gas usage provided by SEFA

Page 9 of 40

### Propane Emissions

|                                        | Emission |                        |            |        | Emis  | sions  |                                |                                        |
|----------------------------------------|----------|------------------------|------------|--------|-------|--------|--------------------------------|----------------------------------------|
| Pollutant                              | Factor   | Units                  | Throughput | Units  | lb/hr | ton/yr | Reference                      |                                        |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0.7      | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.46  | 2.03   | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| SO <sub>2</sub>                        | 0.018    | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.01  | 0.05   | EPA AP-42, Table 1.5-1 (07/08) | Propane sulfur content 0.18 gr/100 ft3 |
| NO <sub>X</sub>                        | 13       | lb/10 <sup>3</sup> gal | 663        | gal/hr | 8.62  | 37.75  | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| СО                                     | 7.5      | lb/10 <sup>3</sup> gal | 663        | gal/hr | 4.97  | 21.78  | EPA AP-42, Table 1.5-1 (07/08) |                                        |
| VOC                                    | 1        | lb/10 <sup>3</sup> gal | 663        | gal/hr | 0.66  | 2.90   | EPA AP-42, Table 1.5-1 (07/08) |                                        |

### Sample Calculations

| Propane Flow =     | 60 MMBtu       | 10 <sup>6</sup> Btu | gal Propane         | = | 663 gal/hr Propane         |
|--------------------|----------------|---------------------|---------------------|---|----------------------------|
|                    | hr             | MMBtu               | 90,500 Btu          |   |                            |
|                    |                |                     |                     |   |                            |
|                    |                |                     |                     |   |                            |
| $NO_x$ Emissions = | 663 gal        | 10 <sup>3</sup> gal | 13 lb NOx           | = | 8.62 lb/hr NO <sub>x</sub> |
|                    | hr             | 1000 gal            | 10 <sup>3</sup> gal |   |                            |
|                    |                |                     |                     |   |                            |
|                    | 8.62 lb $NO_x$ | 8760 hr             | ton                 | = | 37.75 tpy NO <sub>x</sub>  |
|                    | hr             | yr                  | 2000 lb             |   |                            |
|                    |                |                     |                     |   |                            |
| CO Emissions =     | 663 gal        | 10 <sup>3</sup> gal | 7.5 lb CO           | = | 4.97 lb/hr CO              |
|                    | hr             | 1000 gal            | 10 <sup>3</sup> gal |   |                            |
|                    |                |                     |                     |   |                            |
|                    | 4.97 lb CO     | 8760 hr             | ton                 | = | 21.78 tpy CO               |
|                    | hr             | yr                  | 2000 lb             |   |                            |
|                    |                |                     |                     |   |                            |

Anuual Propane usage provided by SEFA

Page 10 of 40

# Flyash Emissions

|                 | Emission |          |            |          | Uncontrolle | d Emissions | Controlled | Emissions |                                                                                                                             |
|-----------------|----------|----------|------------|----------|-------------|-------------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| Pollutant       | Factor   | Units    | Throughput | Units    | lb/hr       | ton/yr      | lb/hr      | ton/yr    | Reference                                                                                                                   |
| NO <sub>X</sub> | 0.34     | lb/MMBtu | 130        | MMBtu/hr | 44.20       | 193.60      | 44.20      | 193.60    | Based on SEFA operation experience                                                                                          |
| со              | 0.16     | lb/MMBtu | 130        | MMBtu/hr | 20.80       | 91.10       | 20.80      | 91.10     | Based on SEFA operation experience                                                                                          |
| VOC             | 0.016    | lb/MMBtu | 130        | MMBtu/hr | 2.08        | 9.11        | 2.08       | 9.11      | Based on stack test performed at a different STAR facility, CO emissions are expected to be 10% (or less) of VOC emissions. |
| Lead            | 19.85    | ppmw     |            |          | 3.30E-04    | 1.44E-03    | 3.30E-04   | 1.44E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Arsenic         | 38.58    | ppmw     |            |          | 6.41E-04    | 2.81E-03    | 6.41E-04   | 2.81E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Antimony        | 1.28     | ppmw     |            |          | 2.13E-05    | 9.34E-05    | 2.13E-05   | 9.34E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Beryllium       | 4.25     | ppmw     |            |          | 7.06E-05    | 3.09E-04    | 7.06E-05   | 3.09E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Cadmium         | 0.18     | ppmw     |            |          | 3.00E-06    | 1.31E-05    | 3.00E-06   | 1.31E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Chromium        | 25.20    | ppmw     |            |          | 4.19E-04    | 1.83E-03    | 4.19E-04   | 1.83E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Chromium VI     | 0.67     | ppmw     |            |          | 1.11E-05    | 4.87E-05    | 1.11E-05   | 4.87E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Cobalt          | 12.68    | ppmw     |            |          | 2.11E-04    | 9.22E-04    | 2.11E-04   | 9.22E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Manganese       | 54.31    | ppmw     |            |          | 9.02E-04    | 3.95E-03    | 9.02E-04   | 3.95E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Mercury         | 0.16     | ppmw     |            |          | 2.66E-06    | 1.16E-05    | 2.66E-06   | 1.16E-05  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Nickel          | 23.34    | ppmw     |            |          | 3.88E-04    | 1.70E-03    | 3.88E-04   | 1.70E-03  | Duke Energy Average Ash Analysis and Water Injection                                                                        |
| Selenium        | 8.43     | ppmw     |            |          | 1.40E-04    | 6.13E-04    | 1.40E-04   | 6.13E-04  | Duke Energy Average Ash Analysis and Water Injection                                                                        |

HAP/TAP emission factors from the STAR unit are based on site-specific ash analysis with the addition of metals in the water used for water injection

#### Sample Calculations

| $NO_x$ Emissions =                    | 0.34 lb NO <sub>x</sub>           | 130 M             | MBtu | =           | 44.20 lb/hr NO <sub>x</sub> |
|---------------------------------------|-----------------------------------|-------------------|------|-------------|-----------------------------|
|                                       | MMBtu                             | ho                | ur   |             |                             |
| Arsenic Emissions =<br>(Uncontrolled) | 38.58 lb As<br>10 <sup>6</sup> lb | 17.79 lb PM<br>hr | =    | 6.86E-04 lb | o/hr Arsenic                |

Page 11 of 40

# Worst-Case STAR® Reactor Unit Emissions

|                   | Natural Gas | - <b>F</b> inite in the | Propane E |        |          | Emissions | Worst-C | ctor Fly Ash<br>+<br>ase Fuel<br>Emissions | STAR® Reactor Fly<br>Ash +<br>Worst-Case Fuel<br>Permitted Emissions |          |
|-------------------|-------------|-------------------------|-----------|--------|----------|-----------|---------|--------------------------------------------|----------------------------------------------------------------------|----------|
| Pollutant         | lb/hr       | ton/yr                  | lb/hr     | ton/yr | lb/hr    | ton/yr    | lb/hr   | ton/yr                                     | Ib/hr                                                                | ton/yr   |
| PM                |             |                         |           |        |          |           |         | 72.74                                      |                                                                      | 72.74    |
| PM <sub>10</sub>  |             |                         |           |        |          |           |         | 66.92                                      |                                                                      | 66.92    |
| PM <sub>2.5</sub> |             |                         |           |        |          |           |         | 38.55                                      |                                                                      | 38.55    |
| SO <sub>2</sub>   |             |                         |           |        |          |           |         | 98.18                                      |                                                                      | 98.18    |
| NO <sub>X</sub>   | 8.24        | 36.07                   | 8.62      | 37.75  | 44.20    | 193.60    |         | 141.99                                     |                                                                      | 193.60   |
| со                | 4.94        | 21.64                   | 4.97      | 21.78  | 20.80    | 91.10     |         | 70.84                                      |                                                                      | 91.10    |
| VOC               | 0.32        | 1.42                    | 0.66      | 2.90   | 2.08     | 9.11      |         | 7.81                                       |                                                                      | 9.11     |
| Lead              | 2.94E-05    | 1.29E-04                |           |        | 3.30E-04 | 1.44E-03  |         | 1.57E-03                                   |                                                                      | 1.57E-03 |
| Benzene           | 1.24E-04    | 5.41E-04                |           |        |          |           |         | 5.41E-04                                   | -                                                                    | 5.41E-04 |
| Formaldehyde      | 4.41E-03    | 1.93E-02                |           |        |          |           |         | 1.93E-02                                   | -                                                                    | 1.93E-02 |
| Hexane            | 1.06E-01    | 4.64E-01                |           |        |          |           |         | 4.64E-01                                   |                                                                      | 4.64E-01 |
| Naphthalene       | 3.59E-05    | 1.57E-04                |           |        |          |           |         | 1.57E-04                                   |                                                                      | 1.57E-04 |
| Toluene           | 2.00E-04    | 8.76E-04                |           |        |          |           |         | 8.76E-04                                   |                                                                      | 8.76E-04 |
| Arsenic           | 1.18E-05    | 5.15E-05                |           |        | 6.41E-04 | 2.81E-03  |         | 2.86E-03                                   |                                                                      | 2.86E-03 |
| Antimony          |             |                         |           |        | 2.13E-05 | 9.34E-05  |         | 9.34E-05                                   |                                                                      | 9.34E-05 |
| Beryllium         | 7.06E-07    | 3.09E-06                |           |        | 7.06E-05 | 3.09E-04  |         | 3.12E-04                                   |                                                                      | 3.12E-04 |
| Cadmium           | 6.47E-05    | 2.83E-04                |           |        | 3.00E-06 | 1.31E-05  |         | 2.97E-04                                   |                                                                      | 2.97E-04 |
| Chromium          | 8.24E-05    | 3.61E-04                |           |        | 4.19E-04 | 1.83E-03  |         | 2.19E-03                                   |                                                                      | 2.19E-03 |
| Chromium VI       |             |                         |           |        | 1.11E-05 | 4.87E-05  |         | 4.87E-05                                   |                                                                      | 4.87E-05 |
| Cobalt            | 4.94E-06    | 2.16E-05                |           |        | 2.11E-04 | 9.22E-04  |         | 9.44E-04                                   |                                                                      | 9.44E-04 |
| Manganese         | 2.24E-05    | 9.79E-05                |           |        | 9.02E-04 | 3.95E-03  |         | 4.05E-03                                   |                                                                      | 4.05E-03 |
| Mercury           | 1.53E-05    | 6.70E-05                |           |        | 2.66E-06 | 1.16E-05  |         | 7.86E-05                                   |                                                                      | 7.86E-05 |
| Nickel            | 1.24E-04    | 5.41E-04                |           |        | 3.88E-04 | 1.70E-03  |         | 2.24E-03                                   |                                                                      | 2.24E-03 |
| Selenium          | 1.41E-06    | 6.18E-06                |           |        | 1.40E-04 | 6.13E-04  |         | 6.19E-04                                   |                                                                      | 6.19E-04 |

Page 12 of 40

| Est. Gas Flow, acfm      |                            | 77,500    |
|--------------------------|----------------------------|-----------|
|                          |                            |           |
| PM Emission Rate, gr/acf |                            | 0.025     |
|                          |                            |           |
|                          |                            |           |
| Estimated Emissions      |                            |           |
| PM (lb/hr)               |                            | 16.61     |
| PM (TPY)                 |                            | 72.74     |
| (                        |                            |           |
|                          |                            |           |
|                          |                            |           |
|                          |                            | lle /le r |
|                          | I                          | lb/hr     |
|                          | PM                         | 16.61     |
|                          | PM <sub>10</sub> (Note 2)  | 15.28     |
|                          | PM <sub>2.5</sub> (Note 3) | 8.80      |

Notes:

- 1. PM Emission Factor (grains/acf)
- 2. PM<sub>10</sub> = 3. PM<sub>2.5</sub> =
  - 92% 53%

of Total PM (From AP-42 Table 1.1-6 (09/98)) of Total PM (From AP-42 Table 1.1-6 (09/98))

4. TPY = Tons per Year

# Duke Energy H.F. Lee Plant Table 3D - STAR<sup>®</sup> Emissions - SO<sub>2</sub> - Shortterm (ES-31)

| Process Throughput                                  |        |        |        |        |        |        |   |
|-----------------------------------------------------|--------|--------|--------|--------|--------|--------|---|
| Raw Feed LOI (%)                                    | 6.0%   | 7.0%   | 8.0%   | 9.0%   | 10.0%  | 11.0%  |   |
| Max Heat Input (MMBtu/hr)                           | 140    | 140    | 140    | 140    | 140    | 140    |   |
| Carbon (Btu/lb)                                     | 14,500 | 14,500 | 14,500 | 14,500 | 14,500 | 14,500 | 1 |
| Carbon (lb/hr)                                      | 9,655  | 9,655  | 9,655  | 9,655  | 9,655  | 9,655  |   |
| Raw Feed Rate (TPH)                                 | 80.46  | 68.97  | 60.34  | 53.64  | 48.28  | 43.89  |   |
| Feed Ash Sulfur %                                   | 0.15%  | 0.15%  | 0.15%  | 0.15%  | 0.15%  | 0.15%  | ( |
| Estimated Emissions                                 |        |        |        |        |        |        |   |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - Ash        | 482.76 | 413.79 | 362.07 | 321.84 | 289.66 | 263.32 | 2 |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - NG/Propane | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   |   |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - Total      | 482.79 | 413.83 | 362.10 | 321.87 | 289.69 | 263.36 | 2 |
| SO <sub>2</sub> (lb/hr) - Controlled                |        |        |        |        |        |        |   |
| 95.00%                                              | 24.14  | 20.69  | 18.11  | 16.09  | 14.48  | 13.17  |   |
|                                                     |        |        |        |        |        |        |   |

| 12.0%  | 13.0%  | 14.0%  | 15.0%  |
|--------|--------|--------|--------|
| 140    | 140    | 140    | 140    |
| 14,500 | 14,500 | 14,500 | 14,500 |
| 9,655  | 9,655  | 9,655  | 9,655  |
| 40.23  | 37.14  | 34.48  | 32.18  |
| 0.15%  | 0.15%  | 0.15%  | 0.15%  |
|        |        |        |        |
|        |        |        |        |
|        |        |        |        |
| 241.38 | 222.81 | 206.90 | 193.10 |
| 0.04   | 0.04   | 0.04   | 0.04   |
| 241.41 | 222.85 | 206.93 | 193.14 |
|        |        |        |        |
| 12.07  | 11.14  | 10.35  | 9.66   |
| 12.07  | 11.14  | 10.35  | 9.00   |
|        |        |        |        |

# Duke Energy H.F. Lee Plant

Table 3E - STAR<sup>®</sup> Emissions - SO<sub>2</sub> - Annual (ES-31)

| Process Throughput                                  |        |        |        |        |        |        |   |
|-----------------------------------------------------|--------|--------|--------|--------|--------|--------|---|
| Raw Feed LOI (%)                                    | 6.0%   | 7.0%   | 8.0%   | 9.0%   | 10.0%  | 11.0%  | 1 |
| Max Heat Input (MMBtu/hr)                           | 130    | 130    | 130    | 130    | 130    | 130    |   |
| Carbon (Btu/lb)                                     | 14,500 | 14,500 | 14,500 | 14,500 | 14,500 | 14,500 | 1 |
| Carbon (lb/hr)                                      | 8,966  | 8,966  | 8,966  | 8,966  | 8,966  | 8,966  | 8 |
| Raw Feed Rate (TPH)                                 | 74.71  | 64.04  | 56.03  | 49.81  | 44.83  | 40.75  | ; |
| Feed Ash Sulfur %                                   | 0.15%  | 0.15%  | 0.15%  | 0.15%  | 0.15%  | 0.15%  | C |
| Estimated Emissions                                 |        |        |        |        |        |        |   |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - Ash        | 448.28 | 384.24 | 336.21 | 298.85 | 268.97 | 244.51 | 2 |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - NG/Propane | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   |   |
| SO <sub>2</sub> (lb/hr) - Uncontrolled - Total      | 448.31 | 384.27 | 336.24 | 298.89 | 269.00 | 244.55 | 2 |
| SO <sub>2</sub> (lb/hr) - Controlled                |        |        |        |        |        |        |   |
| 95.00%                                              | 22.42  | 19.21  | 16.81  | 14.94  | 13.45  | 12.23  |   |
|                                                     |        |        |        |        |        |        |   |

| 12.0%  | 13.0%  | 14.0%  | 15.0%  |
|--------|--------|--------|--------|
| 130    | 130    | 130    | 130    |
| 14,500 | 14,500 | 14,500 | 14,500 |
| 8,966  | 8,966  | 8,966  | 8,966  |
| 37.36  | 34.48  | 32.02  | 29.89  |
| 0.15%  | 0.15%  | 0.15%  | 0.15%  |
|        |        |        |        |
|        |        |        |        |
|        |        |        |        |
| 224.14 | 206.90 | 192.12 | 179.31 |
|        |        |        |        |
| 0.04   | 0.04   | 0.04   | 0.04   |
| 224.17 | 206.93 | 192.15 | 179.35 |
| 227.17 | 200.00 | 102.10 | 170.00 |
|        |        |        |        |
| 11.21  | 10.35  | 9.61   | 8.97   |
|        |        |        |        |

# Duke Energy H.F. Lee Plant Table 4 - EHE Emissions Unit 1 and Unit 2 (ES-34 and ES-35)

Maximum annual emissions are based on the lb/hr of a single unit \* 8760 hours per year.

| -                          |                |             |  |  |  |  |
|----------------------------|----------------|-------------|--|--|--|--|
|                            | Est. En        | nissions    |  |  |  |  |
|                            |                |             |  |  |  |  |
|                            |                | TPY         |  |  |  |  |
|                            | lb/hr (Total f |             |  |  |  |  |
|                            | (per unit)     | both units) |  |  |  |  |
| PM (Note 2)                | 6.86           | 30.03       |  |  |  |  |
| PM <sub>10</sub> (Note 3)  | 6.31           | 27.63       |  |  |  |  |
| PM <sub>2.5</sub> (Note 4) | 3.63           | 15.92       |  |  |  |  |

|             |                    |       | Emis                      | sions    |                                                 |
|-------------|--------------------|-------|---------------------------|----------|-------------------------------------------------|
| Pollutant   | Emission<br>Factor | Units | lb/hr<br>Units (per unit) |          | Reference                                       |
|             |                    |       |                           |          |                                                 |
| Lead        | 19.85              | ppmw  | 1.36E-04                  | 5.96E-04 | Duke Energy Average Ash Analysis                |
| Arsenic     | 38.55              | ppmw  | 2.64E-04                  | 1.16E-03 | Duke Energy Average Ash Analysis                |
| Antimony    | 1.28               | ppmw  | 8.78E-06                  | 3.84E-05 | Duke Energy Average Ash Analysis                |
| Beryllium   | 4.25               | ppmw  | 2.91E-05                  | 1.28E-04 | Duke Energy Average Ash Analysis                |
| Cadmium     | 0.18               | ppmw  | 1.23E-06                  | 5.41E-06 | Duke Energy Average Ash Analysis                |
| Chromium    | 25.20              | ppmw  | 1.73E-04                  | 7.57E-04 | Duke Energy Average Ash Analysis                |
| Chromium VI | 0.67               | ppmw  | 4.59E-06                  | 2.01E-05 | Duke Energy Average Ash Analysis                |
| Cobalt      | 12.68              | ppmw  | 8.69E-05                  | 3.81E-04 | Duke Energy Average Ash Analysis                |
| Manganese   | 54.29              | ppmw  | 3.72E-04                  | 1.63E-03 | Duke Energy Average Ash Analysis                |
| Mercury     | 0.16               | ppmw  | 1.10E-06                  | 4.81E-06 | Duke Energy Average Ash Analysis                |
| Nickel      | 23.33              | ppmw  | 1.60E-04                  | 7.01E-04 | Duke Energy Average Ash Analysis                |
| Selenium    | 8.32               | ppmw  | 5.71E-05                  | 2.50E-04 | Duke Energy Average Ash Analysis                |
|             |                    |       |                           |          | f metals in the water used for water injection. |

Notes:

1. Exhaust Flow (dSCFM):

32,000 2. PM Emission Factor (grains/dSCF) 0.025

 3. PM<sub>10</sub> =
 92%
 of Total PM (From AP-42 Table 1.1-6 (09/98))

 4. PM<sub>2.5</sub> =
 53%
 of Total PM (From AP-42 Table 1.1-6 (09/98))

5. TPY = Tons per Year

Vendor Guarantee

# Duke Energy H.F. Lee Plant Table 5 - Pre STAR Unit Silo Emissions

# Potential Emissions

|                   | Emission  |        |          | ed Silo Filling<br>400,000 tpy) |          | Silo Unloading<br>00,000 tpy) |          | fer Silo Filling<br>00,000 tpy) | ES-36B Transfer Silo Unloading<br>(75 tph, 400,000 tpy) |          | Total Silo Emissions |          |                                                   |
|-------------------|-----------|--------|----------|---------------------------------|----------|-------------------------------|----------|---------------------------------|---------------------------------------------------------|----------|----------------------|----------|---------------------------------------------------|
| Pollutant         | Factor    | Units  | lb/hr    | ton/yr                          | lb/hr    | ton/yr                        | lb/hr    | ton/yr                          | lb/hr                                                   | ton/yr   | lb/hr                | ton/yr   | Reference                                         |
| РМ                | 0.0000487 | lb/ton | 6.09E-03 | 9.74E-03                        | 3.65E-03 | 9.74E-03                      | 6.09E-03 | 9.74E-03                        | 3.65E-03                                                | 9.74E-03 | 1.95E-02             | 3.90E-02 | SEFA Winyah Generating Station Permit Application |
| PM <sub>10</sub>  | 0.000023  | lb/ton | 2.88E-03 | 4.60E-03                        | 1.73E-03 | 4.60E-03                      | 2.88E-03 | 4.60E-03                        | 1.73E-03                                                | 4.60E-03 | 9.20E-03             | 1.84E-02 | SEFA Winyah Generating Station Permit Application |
| PM <sub>2.5</sub> | 0.000023  | lb/ton | 2.88E-03 | 4.60E-03                        | 1.73E-03 | 4.60E-03                      | 2.88E-03 | 4.60E-03                        | 1.73E-03                                                | 4.60E-03 | 9.20E-03             | 1.84E-02 | SEFA Winyah Generating Station Permit Application |
| Lead              | 19.85     | ppmw   | 1.21E-07 | 1.93E-07                        | 7.25E-08 | 1.93E-07                      | 1.21E-07 | 1.93E-07                        | 7.25E-08                                                | 1.93E-07 | 3.87E-07             | 7.73E-07 | Duke Energy Average Ash Analysis                  |
| Arsenic           | 38.55     | ppmw   | 2.35E-07 | 3.75E-07                        | 1.41E-07 | 3.75E-07                      | 2.35E-07 | 3.75E-07                        | 1.41E-07                                                | 3.75E-07 | 7.51E-07             | 1.50E-06 | Duke Energy Average Ash Analysis                  |
| Antimony          | 1.28      | ppmw   | 7.79E-09 | 1.25E-08                        | 4.68E-09 | 1.25E-08                      | 7.79E-09 | 1.25E-08                        | 4.68E-09                                                | 1.25E-08 | 2.49E-08             | 4.99E-08 | Duke Energy Average Ash Analysis                  |
| Beryllium         | 4.25      | ppmw   | 2.59E-08 | 4.14E-08                        | 1.55E-08 | 4.14E-08                      | 2.59E-08 | 4.14E-08                        | 1.55E-08                                                | 4.14E-08 | 8.28E-08             | 1.66E-07 | Duke Energy Average Ash Analysis                  |
| Cadmium           | 0.18      | ppmw   | 1.10E-09 | 1.75E-09                        | 6.57E-10 | 1.75E-09                      | 1.10E-09 | 1.75E-09                        | 6.57E-10                                                | 1.75E-09 | 3.51E-09             | 7.01E-09 | Duke Energy Average Ash Analysis                  |
| Chromium          | 25.20     | ppmw   | 1.53E-07 | 2.45E-07                        | 9.20E-08 | 2.45E-07                      | 1.53E-07 | 2.45E-07                        | 9.20E-08                                                | 2.45E-07 | 4.91E-07             | 9.82E-07 | Duke Energy Average Ash Analysis                  |
| Chromium VI       | 0.67      | ppmw   | 4.08E-09 | 6.53E-09                        | 2.45E-09 | 6.53E-09                      | 4.08E-09 | 6.53E-09                        | 2.45E-09                                                | 6.53E-09 | 1.31E-08             | 2.61E-08 | Duke Energy Average Ash Analysis                  |
| Cobalt            | 12.68     | ppmw   | 7.72E-08 | 1.24E-07                        | 4.63E-08 | 1.24E-07                      | 7.72E-08 | 1.24E-07                        | 4.63E-08                                                | 1.24E-07 | 2.47E-07             | 4.94E-07 | Duke Energy Average Ash Analysis                  |
| Manganese         | 54.29     | ppmw   | 3.30E-07 | 5.29E-07                        | 1.98E-07 | 5.29E-07                      | 3.30E-07 | 5.29E-07                        | 1.98E-07                                                | 5.29E-07 | 1.06E-06             | 2.12E-06 | Duke Energy Average Ash Analysis                  |
| Mercury           | 0.16      | ppmw   | 9.74E-10 | 1.56E-09                        | 5.84E-10 | 1.56E-09                      | 9.74E-10 | 1.56E-09                        | 5.84E-10                                                | 1.56E-09 | 3.12E-09             | 6.23E-09 | Duke Energy Average Ash Analysis                  |
| Nickel            | 23.33     | ppmw   | 1.42E-07 | 2.27E-07                        | 8.52E-08 | 2.27E-07                      | 1.42E-07 | 2.27E-07                        | 8.52E-08                                                | 2.27E-07 | 4.54E-07             | 9.09E-07 | Duke Energy Average Ash Analysis                  |
| Selenium          |           | ppmw   | 5.06E-08 | 8.10E-08                        | 3.04E-08 | 8.10E-08                      | 5.06E-08 | 8.10E-08                        | 3.04E-08                                                | 8.10E-08 | 1.62E-07             | 3.24E-07 | Duke Energy Average Ash Analysis                  |

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

#### Sample Calculations

| PM <sub>10</sub> Emissions = | 0.000023 lb PM <sub>10</sub><br>ton ash | 125 ton ash =<br>hour    | 2.88E-03       | lb/hr PM <sub>10</sub> |          |                      |
|------------------------------|-----------------------------------------|--------------------------|----------------|------------------------|----------|----------------------|
| $PM_{10}$ Emissions =        | 0.000023 lb PM <sub>10</sub><br>ton ash | 400,000 tons ash<br>year | ton<br>2000 lb | _ =                    | 4.60E-03 | tpy PM <sub>10</sub> |
| Arsenic Emissions =          | 38.55 lb As<br>10 <sup>6</sup> lb       | 0.00609 lb PM =<br>hr    | 2.35E-07       | 7 lb/hr Arsenic        |          |                      |

Duke Energy H.F. Lee Plant Table 6 - Post STAR Unit Silos and Dome Emissions

#### Potential Emissions

|                   | Emission  |        |          | oadout Silo<br>400,000 tpy) |          | dout Silo Chute 1A<br>n, 200,000 tpy) |          | .oadout Silo Chute 1B ES-37A Storage Dome Filling<br>tph, 200,000 tpy) (75 tph, 400,000 tpy) |          | ES-37B Storage Dome<br>Unloading<br>(275 tph, 400,000 tpy) |          | Total Silo Emissions |          |          |                                                      |
|-------------------|-----------|--------|----------|-----------------------------|----------|---------------------------------------|----------|----------------------------------------------------------------------------------------------|----------|------------------------------------------------------------|----------|----------------------|----------|----------|------------------------------------------------------|
| Pollutant         | Factor    | Units  | lb/hr    | ton/yr                      | lb/hr    | ton/yr                                | lb/hr    | ton/yr                                                                                       | lb/hr    | ton/yr                                                     | lb/hr    | ton/yr               | lb/hr    | ton/yr   | Reference                                            |
| РМ                | 0.0000487 | lb/ton | 1.46E-02 | 9.74E-03                    | 4.87E-03 | 4.87E-03                              | 4.87E-03 | 4.87E-03                                                                                     | 3.65E-03 | 9.74E-03                                                   | 1.34E-02 | 9.74E-03             | 4.14E-02 | 3.90E-02 | SEFA Winyah Generating Station Permit Application    |
| PM <sub>10</sub>  | 0.000023  | lb/ton | 6.90E-03 | 4.60E-03                    | 2.30E-03 | 2.30E-03                              | 2.30E-03 | 2.30E-03                                                                                     | 1.73E-03 | 4.60E-03                                                   | 6.33E-03 | 4.60E-03             | 1.96E-02 | 1.84E-02 | SEFA Winyah Generating Station Permit Application    |
| PM <sub>2.5</sub> | 0.000023  | lb/ton | 6.90E-03 | 4.60E-03                    | 2.30E-03 | 2.30E-03                              | 2.30E-03 | 2.30E-03                                                                                     | 1.73E-03 | 4.60E-03                                                   | 6.33E-03 | 4.60E-03             | 1.96E-02 | 1.84E-02 | SEFA Winyah Generating Station Permit Application    |
| Lead              | 19.85     | ppmw   | 2.90E-07 | 1.93E-07                    | 9.67E-08 | 9.67E-08                              | 9.67E-08 | 9.67E-08                                                                                     | 7.25E-08 | 1.93E-07                                                   | 2.66E-07 | 1.93E-07             | 8.22E-07 | 7.73E-07 | Duke Energy Average Ash Analysis and Water Injection |
| Arsenic           | 38.58     | ppmw   | 5.64E-07 | 3.76E-07                    | 1.88E-07 | 1.88E-07                              | 1.88E-07 | 1.88E-07                                                                                     | 1.41E-07 | 3.76E-07                                                   | 5.17E-07 | 3.76E-07             | 1.60E-06 | 1.50E-06 | Duke Energy Average Ash Analysis and Water Injection |
| Antimony          | 1.28      | ppmw   | 1.88E-08 | 1.25E-08                    | 6.25E-09 | 6.25E-09                              | 6.25E-09 | 6.25E-09                                                                                     | 4.69E-09 | 1.25E-08                                                   | 1.72E-08 | 1.25E-08             | 5.31E-08 | 5.00E-08 | Duke Energy Average Ash Analysis and Water Injection |
| Beryllium         | 4.25      | ppmw   | 6.21E-08 | 4.14E-08                    | 2.07E-08 | 2.07E-08                              | 2.07E-08 | 2.07E-08                                                                                     | 1.55E-08 | 4.14E-08                                                   | 5.69E-08 | 4.14E-08             | 1.76E-07 | 1.66E-07 | Duke Energy Average Ash Analysis and Water Injection |
| Cadmium           | 0.18      | ppmw   | 2.64E-09 | 1.76E-09                    | 8.79E-10 | 8.79E-10                              | 8.79E-10 | 8.79E-10                                                                                     | 6.59E-10 | 1.76E-09                                                   | 2.42E-09 | 1.76E-09             | 7.47E-09 | 7.03E-09 | Duke Energy Average Ash Analysis and Water Injection |
| Chromium          | 25.20     | ppmw   | 3.68E-07 | 2.45E-07                    | 1.23E-07 | 1.23E-07                              | 1.23E-07 | 1.23E-07                                                                                     | 9.21E-08 | 2.45E-07                                                   | 3.38E-07 | 2.45E-07             | 1.04E-06 | 9.82E-07 | Duke Energy Average Ash Analysis and Water Injection |
| Chromium VI       | 0.67      | ppmw   | 9.79E-09 | 6.53E-09                    | 3.26E-09 | 3.26E-09                              | 3.26E-09 | 3.26E-09                                                                                     | 2.45E-09 | 6.53E-09                                                   | 8.97E-09 | 6.53E-09             | 2.77E-08 | 2.61E-08 | Duke Energy Average Ash Analysis and Water Injection |
| Cobalt            | 12.68     | ppmw   | 1.85E-07 | 1.24E-07                    | 6.18E-08 | 6.18E-08                              | 6.18E-08 | 6.18E-08                                                                                     | 4.63E-08 | 1.24E-07                                                   | 1.70E-07 | 1.24E-07             | 5.25E-07 | 4.94E-07 | Duke Energy Average Ash Analysis and Water Injection |
| Manganese         | 54.31     | ppmw   | 7.93E-07 | 5.29E-07                    | 2.64E-07 | 2.64E-07                              | 2.64E-07 | 2.64E-07                                                                                     | 1.98E-07 | 5.29E-07                                                   | 7.27E-07 | 5.29E-07             | 2.25E-06 | 2.12E-06 | Duke Energy Average Ash Analysis and Water Injection |
| Mercury           | 0.16      | ppmw   | 2.34E-09 | 1.56E-09                    | 7.79E-10 | 7.79E-10                              | 7.79E-10 | 7.79E-10                                                                                     | 5.84E-10 | 1.56E-09                                                   | 2.14E-09 | 1.56E-09             | 6.62E-09 | 6.23E-09 | Duke Energy Average Ash Analysis and Water Injection |
| Nickel            | 23.34     | ppmw   | 3.41E-07 | 2.27E-07                    | 1.14E-07 | 1.14E-07                              | 1.14E-07 | 1.14E-07                                                                                     | 8.52E-08 | 2.27E-07                                                   | 3.13E-07 | 2.27E-07             | 9.66E-07 | 9.09E-07 | Duke Energy Average Ash Analysis and Water Injection |
| Selenium          | 8.43      | ppmw   | 1.23E-07 | 8.21E-08                    | 4.10E-08 | 4.10E-08                              | 4.10E-08 | 4.10E-08                                                                                     | 3.08E-08 | 8.21E-08                                                   | 1.13E-07 | 8.21E-08             | 3.49E-07 | 3.28E-07 | Duke Energy Average Ash Analysis and Water Injection |

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis with the addition of metals in the water used for water injection.

#### Sample Calculations

| $PM_{10}$ Emissions = | 0.000023 lb PM <sub>10</sub><br>ton ash | 300 ton ash<br>hour | = | 6.90E-03       | lb/hr PM <sub>10</sub>     |          |                      |
|-----------------------|-----------------------------------------|---------------------|---|----------------|----------------------------|----------|----------------------|
| $PM_{10}$ Emissions = | 0.000023 lb PM <sub>1</sub><br>ton ash  | 400,000 to<br>yea   |   | ton<br>2000 lb | _ =                        | 4.60E-03 | tpy PM <sub>10</sub> |
| Arsenic Emissions =   | 38.58 lb As<br>10 <sup>6</sup> lb       | 0.0146 lb PM<br>hr  | = | 5.64E-07       | <sup>7</sup> Ib/hr Arsenic |          |                      |

# Duke Energy H.F. Lee Plant Table 7 - Pollution Control Silos

|                            | Est. Gas Flow, | PM loading Rate, | ES-32 FGD B | yproduct Silo | ES-33 FGD A | bsorbent Silo | То    | tal  |
|----------------------------|----------------|------------------|-------------|---------------|-------------|---------------|-------|------|
| Pollutant                  | acfm           | gr/acf           | lb/hr       | tpy           | lb/hr       | tpy           | lb/hr | tpy  |
| PM                         | 1300           | 0.005            | 0.06        | 0.24          | 0.06        | 0.24          | 0.11  | 0.49 |
| PM <sub>10</sub> (Note 2)  | 1300           | 0.005            | 0.05        | 0.22          | 0.05        | 0.22          | 0.10  | 0.45 |
| PM <sub>2.5</sub> (Note 3) | 1300           | 0.005            | 0.03        | 0.13          | 0.03        | 0.13          | 0.06  | 0.26 |

Notes:

1. PM Emission Factor (grains/acf)

 2. PM<sub>10</sub> =
 92%
 of Total PM (From AP-42 Table 1.1-6 (09/98))

 3. PM<sub>2.5</sub> =
 53%
 of Total PM (From AP-42 Table 1.1-6 (09/98))

4. lb/hr = pounds per hour; tpy = Tons per Year

# Duke Energy H.F. Lee Plant Wet Ash Receiving Emissions (F-1 and F-2)

### Table 8A - Transfer of material to storage shed (F-1)

Section 13.2-4 Aggregate Handling and Storage Piles, Ap-42 Fifth Edition November 2006

| E= k*(     | 0.0032 * (((U/5)^1.3)/ | ((M/2)^1.4))                       |                                                                                                                         |
|------------|------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| E =<br>k = | lb/ton                 | ze multiplier (dimensionless)      |                                                                                                                         |
|            | PM                     | 0.74                               |                                                                                                                         |
|            | PM <sub>10</sub>       | 0.35                               |                                                                                                                         |
|            | PM <sub>2.5</sub>      | 0.053                              |                                                                                                                         |
| U =        | mean wind              | d speed, miles per hour (mph)<br>2 | Average wind speed for 2016 Rosewood Weather Station approximately 1 mile from the site. Source: weatherunderground.com |
| M =        | material m             | noisture content<br>15             | 15% moisture content is an conservatively low estimate typical moisture is 20%                                          |
|            | 70 tph<br>400,000 tpy  | Based on Air Data Tracking Si      | heet, Item 13                                                                                                           |
|            | lb/br                  | tov                                |                                                                                                                         |

|                   | lb/hr    | tpy      |
|-------------------|----------|----------|
| PM                | 1.50E-03 | 4.29E-03 |
| PM <sub>10</sub>  | 7.09E-04 | 2.03E-03 |
| PM <sub>2.5</sub> | 1.07E-04 | 3.07E-04 |

Note: assumed 50% control as a result of the shed having three side to enclose pile

|             |                    |       | Emis     | sions    |                                  |
|-------------|--------------------|-------|----------|----------|----------------------------------|
| Pollutant   | Emission<br>Factor | Units | lb/hr    | ton/yr   | Reference                        |
| Lead        | 19.85              | ppmw  | 2.98E-08 | 8.51E-08 | Duke Energy Average Ash Analysis |
| Arsenic     | 38.55              | ppmw  | 5.78E-08 | 1.65E-07 | Duke Energy Average Ash Analysis |
| Antimony    | 1.28               | ppmw  | 1.92E-09 | 5.49E-09 | Duke Energy Average Ash Analysis |
| Beryllium   | 4.25               | ppmw  | 6.37E-09 | 1.82E-08 | Duke Energy Average Ash Analysis |
| Cadmium     | 0.18               | ppmw  | 2.70E-10 | 7.71E-10 | Duke Energy Average Ash Analysis |
| Chromium    | 25.20              | ppmw  | 3.78E-08 | 1.08E-07 | Duke Energy Average Ash Analysis |
| Chromium VI | 0.67               | ppmw  | 1.00E-09 | 2.87E-09 | Duke Energy Average Ash Analysis |
| Cobalt      | 12.68              | ppmw  | 1.90E-08 | 5.43E-08 | Duke Energy Average Ash Analysis |
| Manganese   | 54.29              | ppmw  | 8.14E-08 | 2.33E-07 | Duke Energy Average Ash Analysis |
| Mercury     | 0.16               | ppmw  | 2.40E-10 | 6.86E-10 | Duke Energy Average Ash Analysis |
| Nickel      | 23.33              | ppmw  | 3.50E-08 | 1.00E-07 | Duke Energy Average Ash Analysis |
| Selenium    | 8.32               | ppmw  |          | 3.57E-08 | Duke Energy Average Ash Analysis |

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

# Duke Energy H.F. Lee Plant Wet Ash Receiving Emissions (F-1 and F-2)

#### Table 8B - Transfer of material to hopper (F-2)

Section 13.2-4 Aggregate Handling and Storage Piles, Ap-42 Fifth Edition November 2006

E= k\*0.0032 \* (((U/5)^1.3)/((M/2)^1.4))

| E = | lb/ton            |                                    |                                                                                                                         |
|-----|-------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| k = | particle s        | ze multiplier (dimensionless)      |                                                                                                                         |
|     | PM                | 0.74                               |                                                                                                                         |
|     | PM <sub>10</sub>  | 0.35                               |                                                                                                                         |
|     | PM <sub>2.5</sub> | 0.053                              |                                                                                                                         |
| U = | mean win          | d speed, miles per hour (mph)<br>2 | Average wind speed for 2016 Rosewood Weather Station approximately 1 mile from the site. Source: weatherunderground.com |
| M = | material r        | noisture content                   | 15% moisture content is an conservatively low estimate typical moisture is 20%                                          |
|     |                   | 15                                 |                                                                                                                         |
|     | 70 tph            | Based on Air Data Tracking S       | Cheet. Item 13                                                                                                          |

400,000 tpy

Based on Air Data Tracking Sheet, Item 13

|                   | lb/hr    | tpy      |
|-------------------|----------|----------|
| PM                | 3.00E-03 | 8.57E-03 |
| PM <sub>10</sub>  | 1.42E-03 | 4.05E-03 |
| PM <sub>2.5</sub> | 2.15E-04 | 6.14E-04 |

|             |                    |       | Emis     | sions    |                                  |
|-------------|--------------------|-------|----------|----------|----------------------------------|
| Pollutant   | Emission<br>Factor | Units | lb/hr    | ton/yr   | Reference                        |
| Lead        | 19.85              | ppmw  | 5.95E-08 | 1.70E-07 | Duke Energy Average Ash Analysis |
| Arsenic     | 38.55              | ppmw  | 1.16E-07 | 3.30E-07 | Duke Energy Average Ash Analysis |
| Antimony    | 1.28               | ppmw  | 3.84E-09 | 1.10E-08 | Duke Energy Average Ash Analysis |
| Beryllium   | 4.25               | ppmw  | 1.27E-08 | 3.64E-08 | Duke Energy Average Ash Analysis |
| Cadmium     | 0.18               | ppmw  | 5.40E-10 | 1.54E-09 | Duke Energy Average Ash Analysis |
| Chromium    | 25.20              | ppmw  | 7.56E-08 | 2.16E-07 | Duke Energy Average Ash Analysis |
| Chromium VI | 0.67               | ppmw  | 2.01E-09 | 5.74E-09 | Duke Energy Average Ash Analysis |
| Cobalt      | 12.68              | ppmw  | 3.80E-08 | 1.09E-07 | Duke Energy Average Ash Analysis |
| Manganese   | 54.29              | ppmw  | 1.63E-07 | 4.65E-07 | Duke Energy Average Ash Analysis |
| Mercury     | 0.16               | ppmw  | 4.80E-10 | 1.37E-09 | Duke Energy Average Ash Analysis |
| Nickel      | 23.33              | ppmw  | 7.00E-08 | 2.00E-07 | Duke Energy Average Ash Analysis |
| Selenium    | 8.32               | ppmw  | 2.50E-08 |          | Duke Energy Average Ash Analysis |

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

# Duke Energy H.F. Lee Plant Wet Ash Receiving Emissions (F-1 and F-2)

### **Total Emissions**

| Pollutant         | lb/hr    | tpy      |
|-------------------|----------|----------|
| PM                | 4.50E-03 | 1.29E-02 |
| PM <sub>10</sub>  | 2.13E-03 | 6.08E-03 |
| PM <sub>2.5</sub> | 3.22E-04 | 9.21E-04 |
| Lead              | 8.93E-08 | 2.55E-07 |
| Arsenic           | 1.73E-07 | 4.96E-07 |
| Antimony          | 5.76E-09 | 1.65E-08 |
| Beryllium         | 1.91E-08 | 5.46E-08 |
| Cadmium           | 8.10E-10 | 2.31E-09 |
| Chromium          | 1.13E-07 | 3.24E-07 |
| Chromium VI       | 3.01E-09 | 8.61E-09 |
| Cobalt            | 5.71E-08 | 1.63E-07 |
| Manganese         | 2.44E-07 | 6.98E-07 |
| Mercury           | 7.20E-10 | 2.06E-09 |
| Nickel            | 1.05E-07 | 3.00E-07 |
| Selenium          | 3.74E-08 | 1.07E-07 |

# Duke Energy H.F. Lee Plant Table 9 - GHG Emissions

| Heating Value of Natural Gas | 1,028       | btu/scf                   | Table C-1 to subpart C of 40 CFR Part 98 (natural gas)                                                                           |
|------------------------------|-------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Heat Input                   | 15,840      | MMBtu/yr                  | Total Supplemental / Auxiliary Fuel = 12 months x 3 cold starts x 400 MM Btu = 14,400 MM Btu's + 10% = 15,840 MM Btu's per year. |
| Operation Hours              | 24<br>8,760 | hrs/day<br>hrs/year       |                                                                                                                                  |
| Emission Factors             |             |                           |                                                                                                                                  |
| CO <sub>2</sub>              | 53.06       | kg CO <sub>2</sub> /MMBtu | Table C-1 to subpart C of 40 CFR Part 98 (natural gas)                                                                           |
| CH <sub>4</sub>              | 1.00E-03    | kg CH₄/MMBtu              | Table C-2 to subpart C of 40 CFR Part 98 (natural gas)                                                                           |
| N <sub>2</sub> O             | 1.00E-04    | kg N <sub>2</sub> O/MMBtu | Table C-2 to subpart C of 40 CFR Part 98 (natural gas)                                                                           |
|                              | 2.20462     | lb/kg                     | Table A-2 to subpart A of 40 CFR Part 98                                                                                         |
| CO <sub>2</sub>              | 116.98      | lb/MMBtu                  |                                                                                                                                  |
| CH <sub>4</sub>              | 2.20E-03    | lb/MMBtu                  |                                                                                                                                  |
| N <sub>2</sub> O             | 2.20E-04    | lb/MMBtu                  |                                                                                                                                  |
|                              |             |                           |                                                                                                                                  |

| Global Warming Potential |     |                                          |
|--------------------------|-----|------------------------------------------|
| CO <sub>2</sub>          | 1   | Table A-1 to subpart A of 40 CFR Part 98 |
| CH <sub>4</sub>          | 25  | Table A-1 to subpart A of 40 CFR Part 98 |
| N <sub>2</sub> O         | 298 | Table A-1 to subpart A of 40 CFR Part 98 |

### Emission Rates - GHG (CO2e)

|                                    | lb/yr        | tpy    |
|------------------------------------|--------------|--------|
| CO <sub>2</sub>                    | 1,852,917.85 | 926.46 |
| $CH_4(CO_2e)$                      | 873.03       | 0.44   |
| N <sub>2</sub> O (CO2e)            | 1,040.65     | 0.52   |
| GHG (CO <sub>2</sub> e)            |              | 927.42 |
|                                    | lb/yr        | tpy    |
|                                    |              | 473    |
| CO <sub>2</sub>                    | 1,852,917.85 | 926.46 |
| CO <sub>2</sub><br>CH <sub>4</sub> | •            |        |
| -                                  | 1,852,917.85 | 926.46 |

# Duke Energy H.F. Lee Plant Table 9 - GHG Emissions

| Heating Value of Propane | 0.091    | MMBtu/gal                 | Table C-1 to subpart C of 40 CFR Part 98 (petroleum products)           |
|--------------------------|----------|---------------------------|-------------------------------------------------------------------------|
| Heat Input               | 15,840   | MMBtu/yr                  |                                                                         |
| Emission Factors         |          |                           |                                                                         |
| CO <sub>2</sub>          | 61.46    | kg CO <sub>2</sub> /MMBtu | Table C-1 to subpart C of 40 CFR Part 98 (propane - petroleum products) |
| CH <sub>4</sub>          | 3.00E-03 | kg CH <sub>4</sub> /MMBtu | Table C-2 to subpart C of 40 CFR Part 98 (petroleum)                    |
| N <sub>2</sub> O         | 6.00E-04 | kg N <sub>2</sub> O/MMBtu | Table C-2 to subpart C of 40 CFR Part 98 (petroleum)                    |
|                          | 2.20462  | lb/kg                     | Table A-2 to subpart A of 40 CFR Part 98                                |
| CO <sub>2</sub>          | 135.50   | lb/MMBtu                  |                                                                         |
| CH <sub>4</sub>          | 6.61E-03 | lb/MMBtu                  |                                                                         |
| N <sub>2</sub> O         | 1.32E-03 | lb/MMBtu                  |                                                                         |
| N <sub>2</sub> O         | 1.322-03 | ID/IVIIVIDLU              |                                                                         |

| Global Warming Potential |     |                                          |
|--------------------------|-----|------------------------------------------|
| CO <sub>2</sub>          | 1   | Table A-1 to subpart A of 40 CFR Part 98 |
| CH <sub>4</sub>          | 25  | Table A-1 to subpart A of 40 CFR Part 98 |
| N <sub>2</sub> O         | 298 | Table A-1 to subpart A of 40 CFR Part 98 |

Emission Rates - GHG (CO2e)

|                                     | lb/yr        | tpy      |
|-------------------------------------|--------------|----------|
| CO <sub>2</sub>                     | 2,146,255.77 | 1,073.13 |
| CH <sub>4</sub> (CO <sub>2</sub> e) | 2,619.09     | 1.31     |
| N <sub>2</sub> O (CO2e)             | 6,243.91     | 3.12     |
| GHG (CO <sub>2</sub> e)             |              | 1,077.56 |
|                                     | lb/yr        | tpy      |
| CO <sub>2</sub>                     | 2,146,255.77 | 1,073.13 |
| CH <sub>4</sub>                     | 104.76       | 0.05     |
| N <sub>2</sub> O                    | 20.95        | 0.01     |
|                                     |              |          |

#### STAR CO<sub>2</sub> Production

| Yearly Feed Rate (TPY)<br>Average Feed LOI<br>Availability | 400,000<br>7.80%<br>80.00% |                                       |
|------------------------------------------------------------|----------------------------|---------------------------------------|
| Avg. Feed Rate (TPH)                                       | 57.08                      | 400,000/ (8760*80%)                   |
| Avg. Fuel Input (MMBtu/hr)                                 | 129.11                     | 57.08*2000*7.80%*14500/1000000        |
| Max. CO <sub>2</sub> Production (TPY)                      | 114,401                    | 57.08*2000*7.80%*3.6667*8760*80%/2000 |

| Expected GHG Emission Range |             |          |         |            |
|-----------------------------|-------------|----------|---------|------------|
| _                           | Natural Gas | Propane  | Fly Ash | Total      |
| CO <sub>2</sub>             | 926.46      | 1,073.13 | 114,401 | 116,400.63 |
| $CH_4$ ( $CO_2e$ )          | 0.44        | 1.31     |         | 1.75       |
| N <sub>2</sub> O (CO2e)     | 0.52        | 3.12     |         | 3.64       |
| GHG (CO <sub>2</sub> e)     |             |          |         | 116,406.02 |
| CO <sub>2</sub>             | 926.46      | 1,073.13 | 114,401 | 116,400.63 |
| CH <sub>4</sub>             | 0.02        | 0.05     |         | 0.07       |
| N <sub>2</sub> O            | 0.00        | 0.01     |         | 0.01       |
| GHG (Mass Basis)            |             |          |         | 116,400.71 |

# Duke Energy H.F. Lee Plant Table 10 - Unloading Pile Windblown Fugitive Dust Emissions (F-3)

Section 13.2.5 of the U.S. EPA's AP-42 document was used to estimate emissions.

The first step is to calculate a height-to-base ratio to determine if Equation (4) can be used to determine the friction velocity (u\*):

| 0.33    | acres, Acreage of Fly Ash Pile          |
|---------|-----------------------------------------|
| 4,046.9 | m <sup>2</sup> /acre, Conversion Factor |
| 1,335.5 | m <sup>2</sup> , Typical Active Area    |

Assuming a square area, this active area yields an approximate length as follows:

| 36.5  | m, Linear Dimension of Active Area  |
|-------|-------------------------------------|
|       | ft/m, Conversion Factor             |
| 119.9 | ft, Linear Dimension of Active Area |

4 ft, Approximate Mean Elevation of the Active Area (Above Grade)

Per page 13.2.5-5 of AP-42, if the height to base ratio is less than 0.2 then Equation (4) can be used to calculate the friction velocity (u\*).

0.033 Calculated Height to Base Ratio

Therefore equation (4) from AP-42 13.2.5 can be used for calculation of the friction velocity.

Per the following website: http://www.nc-climate.ncsu.edu/dynamic\_scripts/cronos/query.php (maintained by the North Carolina State Climate Office), the anemometer height for the fastest mile data is:

10 m, Anemometer Height

Since the reported fastest wind speeds are from an anemometer of height 10 m, using equation (5) on page 13.2.5-6 is not necessary:

When the calculated friction velocity ( $u^*$ ) exceeds the threshold friction velocity ( $u_t^*$ ), emissions from wind erosion occur. As shown in Equation 3 of AP-42, if  $u^* \le u_t^*$ , emissions are zero.

From Table 13.2.5-1 threshold friction velocity (ut\*) is as follows. The most conservative value presented in AP-42 has been used.

0.43 m/s, ut\* Threshold Friction Velocity

Therefore, in order to generate emissions, the following wind speed must be exceeded.

3,600 sec/hr, Conversion Factor 1,609.3 m/mile, Conversion Factor

18.15 mph, u<sub>10</sub><sup>+</sup> 8.11 m/s, u<sub>10</sub><sup>+</sup> 0.43 m/s, u\*

# Duke Energy H.F. Lee Plant Table 10 - Unloading Pile Windblown Fugitive Dust Emissions (F-3)

AERMOD allows users to account for the variability of wind speed when determining offsite impacts. The scalars below are used based on the respective wind speed range. (AERMOD User Guide 3.3.4. Using Variable Emission Rates). There are zero wind based emissions in classes 1 thru 4 because the threshold friction velocity is not exceeded (ut\*). The scalar for Class 5 is determined as the ratio of emission factors for Class 5 and Class 6. Emission factor derivation follows.

| Wind Speed Range Class | 1                        | 2        | 3 | 4 | 5    | 6    |
|------------------------|--------------------------|----------|---|---|------|------|
| Scalar                 | 0                        | 0        | 0 | 0 | 0.77 | 1.00 |
| where:                 |                          |          |   |   |      |      |
| Class 1 =              | 0 - 3.4 mph              |          |   |   |      |      |
| Class 2 =              | 3.4 - 6.8 mph            |          |   |   |      |      |
| Class 3 =              | Class 3 = 6.8 - 11.3 mph |          |   |   |      |      |
| Class 4 =              | 11.3 - 18.1 m            | oh       |   |   |      |      |
| Class 5 =              | 18.1 - 23.8 m            | oh       |   |   |      |      |
| Class 6 =              | greater than             | 23.8 mph |   |   |      |      |

The emissions rate (which is dependent on the friction velocity (u<sup>\*</sup>)) varies linearly with wind speed. For Class 5, emissions will increase linearly as wind speed increases. AERMOD does not facilitate the variable emission rates based on wind speed. Therefore, the friction velocity for Class 5 is determined using the upper end wind speed of 23.8 mph. Using Equation (4) on page 13.2.5-5, the equivalent friction velocity (u<sup>\*</sup>) may be calculated.

 $u^* = 0.053u_{10}^+$ 23.8 mph,  $u_{10}^+$ 23.8 m/s,  $u_{10}^+$ Class 5 0.56 m/s, u\*, Class 5 Wind Speed Range

The friction velocity for Class 6 is determined using the average of the maximum daily wind gusts for each month.



Emission factors for Class 5 and Class 6 are determined using AP-42 Section 13.2.5 Equation (3) which is shown below:

$$PM\left(\frac{g}{m^2}\right) = 58(u^* - u^*)^2 + 25(u^* - u^*)$$

Equation (3) from AP-42 13.2.5

Where:

 $u^*$  is the friction velocity (m/s)  $u^*_t$  is the threshold friction velocity (m/s)

Class 54.39g/m² (of Disturbed Area), Class 5 Wind Speed RangeClass 65.67g/m² (of Disturbed Area), Class 6 Wind Speed Range

# Duke Energy H.F. Lee Plant

# Table 10 - Unloading Pile Windblown Fugitive Dust Emissions (F-3)

As stated in AP-42, on page 13.2.5-2, emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. Only a fraction of the active area is disturbed each day. This disturbed area is used to calculate the potential daily emission rate.

| 0.33 acres, Working Area<br>100% Fraction of Active Area Disturbed Daily<br>1,335.47 m <sup>2</sup> , Average Area Disturbed Daily | 0% Fraction of Inactive Area<br>0.00 m <sup>2</sup> , Average Inactive Area |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 453.6 g/lb, Conversion Factor                                                                                                      | 453.6 g/lb, Conversion Factor                                               |
| Class 5 12.9 lb/day<br>Class 6 16.7 lb/day                                                                                         | Class 5 0.0 lb/day<br>Class 6 0.0 lb/day                                    |

The facility will implement mitigation to suppress dust emissions. Control efficiencies are based on engineering judgment and supported by *WRAP Fugitive Dust Handbook, September 7, 2006.* The controlled emission rates for Class 5 and Class 6 emissions are as follows:

|           | 61% Apply Water every 3.2 h | ours to disturbed areas | 80% | Inherent Moisture and Watering |
|-----------|-----------------------------|-------------------------|-----|--------------------------------|
| Class 5** | 5.0 lb/day                  | Class 5                 | 0.0 | lb/day                         |
| Class 6** | 6.5 lb/day                  | Class 6                 | 0.0 | lb/day                         |

For the purposes of determining potential emissions for permitting, wind data has been applied as shown below.

| Total Class 5 Emissions | 5.0 lb/day |
|-------------------------|------------|
| Total Class 6 Emissions | 6.5 lb/day |

Fraction of time in Class 50.0120 (approximately 105 hours in Class 5)Fraction of time in Class 60.0023 (approximately 20 hours in Class 6)

Time fraction spent in Class 5 and Class 6 determined by analyzing hourly wind speeds for the 5 year period required to be modeled 2012-2016 from DAQ Approved Met Data. The worst case year (year with the most hours) was used to determine the time fraction. For Class 5 it was 2016 and for Class 6 it was 2015.

Total emissions per day 0.08 lb/day

Emissions from the unloading pile will only occur when Class 5 and Class 6 wind speed conditions are met. AERMOD will utilize meteorological data to determine when these conditions occur. For the purposes of the PSD analysis, permitting, and TPER evaluation, it is conservatively assumed that Class 6 condition occur year round.

| Compound          | Avg Ash<br>Analysis<br>(ppm) | Emissions<br>(Ib/hr) | Emissions<br>(Ib/day) | Emissions<br>(Ib/yr) | Emissions<br>(ton/yr) |
|-------------------|------------------------------|----------------------|-----------------------|----------------------|-----------------------|
| PM                | 1.00 **                      | 0.003                | 0.08                  | 27.47                | 0.01                  |
| PM <sub>10</sub>  | 0.50 **                      | 0.002                | 0.04                  | 13.73                | 0.007                 |
| PM <sub>2.5</sub> | 0.08 **                      | 0.0002               | 0.006                 | 2.06                 | 0.001                 |
| Lead              | 19.85                        | 6.22E-08             | 1.49E-06              | 5.45E-04             | 2.73E-07              |
| Arsenic           | 38.55                        | 1.21E-07             | 2.90E-06              | 1.06E-03             | 5.29E-07              |
| Antimony          | 1.28                         | 4.01E-09             | 9.63E-08              | 3.52E-05             | 1.76E-08              |
| Beryllium         | 4.25                         | 1.33E-08             | 3.20E-07              | 1.17E-04             | 5.84E-08              |
| Cadmium           | 0.18                         | 5.64E-10             | 1.35E-08              | 4.94E-06             | 2.47E-09              |
| Chromium          | 25.20                        | 7.90E-08             | 1.90E-06              | 6.92E-04             | 3.46E-07              |
| Chromium VI       | 0.67                         | 2.10E-09             | 5.04E-08              | 1.84E-05             | 9.20E-09              |
| Cobalt            | 12.68                        | 3.98E-08             | 9.54E-07              | 3.48E-04             | 1.74E-07              |
| Manganese         | 54.29                        | 1.70E-07             | 4.09E-06              | 1.49E-03             | 7.46E-07              |
| Mercury           | 0.16                         | 5.02E-10             | 1.20E-08              | 4.39E-06             | 2.20E-09              |
| Nickel            | 23.33                        | 7.32E-08             | 1.76E-06              | 6.41E-04             | 3.20E-07              |
| Selenium          | 8.32                         | 2.61E-08             | 6.26E-07              | 2.29E-04             | 1.14E-07              |

HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

\*\* PM distribution factors (k value) taken from AP-42 Page 13.2.5-3 All other values in ppm.

# **Duke Energy H.F. Lee Plant** Table 11 - Emissions Estimate: Wind Erosion at the Ash Basin (F-4)

Dust may be generated by wind erosion of exposed area within an industrial facility. Section 13.2.5 of the U.S. EPA's AP-42 document was used to estimate emissions.

The first step is to calculate a height-to-base ratio to determine if Equation (4) can be used to determine the friction velocity (u\*):

| 321         | acres, Typical Active Area of Ash Pond  |
|-------------|-----------------------------------------|
| 4,046.9     | m <sup>2</sup> /acre, Conversion Factor |
| 1,299,045.3 | m <sup>2</sup> , Typical Active Area    |

Assuming a square area, this active area yields an approximate length as follows:

| 3.3 | m, Linear Dimension of Active Area<br>ft/m, Conversion Factor                                          |
|-----|--------------------------------------------------------------------------------------------------------|
|     | ft, Linear Dimension of Active Area<br>ft, Approximate Mean Elevation of the Active Area (Above Grade) |

Per page 13.2.5-5 of AP-42, if the height to base ratio is less than 0.2 then Equation (4) can be used to calculate the friction velocity (u\*).

0.004 Calculated Height to Base Ratio

Therefore equation (4) from AP-42 13.2.5 can be used for calculation of the friction velocity.

Per the following website: http://www.nc-climate.ncsu.edu/dynamic\_scripts/cronos/query.php (maintained by the North Carolina State Climate Office), the anemometer height for the fastest mile data is:

10 m, Anemometer Height

Since the reported fastest wind speeds are from an anemometer of height 10 m, using equation (5) on page 13.2.5-6 is not necessary:

When the calculated friction velocity ( $u^*$ ) exceeds the threshold friction velocity ( $u_t^*$ ), emissions from wind erosion occur. As shown in Equation 3 of AP-42, if  $u^* \le u_t^*$ , emissions are zero.

From Table 13.2.5-1 threshold friction velocity (ut\*) is as follows. The most conservative value presented in AP-42 has been used.

0.43 m/s, ut\* Threshold Friction Velocity

Therefore, in order to generate emissions, the following wind speed must be exceeded.

3,600 sec/hr, Conversion Factor 1,609.3 m/mile, Conversion Factor



# Duke Energy H.F. Lee Plant Table 11 - Emissions Estimate: Wind Erosion at the Ash Basin (F-4)

AERMOD allows users to account for the variability of wind speed when determining offsite impacts. The scalars below are used based on the respective wind speed range. (AERMOD User Guide 3.3.4. Using Variable Emission Rates). There are zero wind based emissions in classes 1 thru 4 because the threshold friction velocity is not exceeded (ut\*). The scalar for Class 5 is determined as the ratio of emission factors for Class 5 and Class 6. Emission factor derivation follows.

| Wind Speed Range Class    | 1                                 | 2 | 3 | 4 | 5    | 6    |  |  |
|---------------------------|-----------------------------------|---|---|---|------|------|--|--|
| Scalar                    | 0                                 | 0 | 0 | 0 | 0.77 | 1.00 |  |  |
| where:                    |                                   |   |   |   |      |      |  |  |
| Class 1 = 0 - 3.4 mph     |                                   |   |   |   |      |      |  |  |
| Class $2 = 3.4 - 6.8$ mph |                                   |   |   |   |      |      |  |  |
| Class 3 = 6.8 - 11.3 mph  |                                   |   |   |   |      |      |  |  |
| Class 4 =                 | Class 4 = 11.3 - 18.1 mph         |   |   |   |      |      |  |  |
| Class 5 = 18.1 - 23.8 mph |                                   |   |   |   |      |      |  |  |
| Class 6 =                 | Class $6 =$ greater than 23.8 mph |   |   |   |      |      |  |  |

The emissions rate (which is dependent on the friction velocity (u\*)) varies linearly with wind speed. For Class 5, emissions will increase linearly as wind speed increases. AERMOD does not facilitate the variable emission rates based on wind speed. Therefore, the friction velocity for Class 5 is determined using the upper end wind speed of 23.8 mph. Using Equation (4) on page 13.2.5-5, the equivalent friction velocity (u\*) may be calculated.

 $u^* = 0.053u_{10}^+$ 23.8 mph,  $u_{10}^+$ 23.8 m/s,  $u_{10}^+$ Class 5 0.56 m/s, u\*, Class 5 Wind Speed Range

The friction velocity for Class 6 is determined using the average of the maximum daily wind gusts for each month.



Emission factors for Class 5 and Class 6 are determined using AP-42 Section 13.2.5 Equation (3) which is shown below:

$$PM\left(\frac{g}{m^2}\right) = 58(u^* - u^*)^2 + 25(u^* - u^*)$$

Equation (3) from AP-42 13.2.5

Where:

 $u^*$  is the friction velocity (m/s)  $u^*_t$  is the threshold friction velocity (m/s)

Class 54.39g/m² (of Disturbed Area), Class 5 Wind Speed RangeClass 65.67g/m² (of Disturbed Area), Class 6 Wind Speed Range

# Duke Energy H.F. Lee Plant

# Table 11 - Emissions Estimate: Wind Erosion at the Ash Basin (F-4)

As stated in AP-42, on page 13.2.5-2, emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. Only a fraction of the active area is disturbed each day. This disturbed area is used to calculate the potential daily emission rate.

| 10acres, Working Area3%Fraction of Active Area Disturbed Daily40,468.70m², Average Area Disturbed Daily | 97% Fraction of Inactive Area<br>1,258,576.57 m <sup>2</sup> , Average Inactive Area |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 453.6 g/lb, Conversion Factor                                                                           | 453.6 g/lb, Conversion Factor                                                        |
| Class 5         391.4         lb/day           Class 6         506.2         lb/day                     | Class 5 12173.0 lb/day<br>Class 6 15741.3 lb/day                                     |

The facility will implement mitigation to suppress dust emissions. Control efficiencies are based on engineering judgment and supported by *WRAP Fugitive Dust Handbook, September 7, 2006.* The controlled emission rates for Class 5 and Class 6 emissions are as follows:

|           | 61% Apply Water every 3.2 ho | urs to disturbed areas | 80% Inherent Moisture and Watering |
|-----------|------------------------------|------------------------|------------------------------------|
| Class 5** | 152.7 lb/day                 | Class 5                | 2434.6 lb/day                      |
| Class 6** | 197.4 lb/day                 | Class 6                | 3148.3 lb/day                      |

For the purposes of determining potential emissions for permitting, wind data has been applied as shown below.

| Total Class 5 Emissions | 2587.3 lb/day |
|-------------------------|---------------|
| Total Class 6 Emissions | 3345.7 lb/day |

Fraction of time in Class 50.0120 (approximately 105 hours in Class 5)Fraction of time in Class 60.0023 (approximately 20 hours in Class 6)

Time fraction spent in Class 5 and Class 6 determined by analyzing hourly wind speeds for the 5 year period required to be modeled 2012-2016 from DAQ Approved Met Data. The worst case year (year with the most hours) was used to determine the time fraction. For Class 5 it was 2016 and for Class 6 it was 2015.

Total emissions per day 38.65 lb/day

Emissions from the ash pond will only occur when Class 5 and Class 6 wind speed conditions are met. AERMOD will utilize meteorological data to determine when these conditions occur. For the purposes of the PSD analysis, permitting, and TPER evaluation, it is conservatively assumed that Class 6 condition occur year round.

| Compound          | Avg Ash<br>Analysis<br>(ppm) | Emissions<br>(Ib/hr) | Emissions<br>(Ib/day) | Emissions<br>(lb/yr) | Emissions<br>(ton/yr) |
|-------------------|------------------------------|----------------------|-----------------------|----------------------|-----------------------|
| PM                | 1.00 **                      | 1.61                 | 38.65                 | 14,107.30            | 7.05                  |
| PM <sub>10</sub>  | 0.50 **                      | 0.81                 | 19.33                 | 7,053.65             | 3.53                  |
| PM <sub>2.5</sub> | 0.08 **                      | 0.12                 | 2.90                  | 1,058.05             | 0.53                  |
| Lead              | 19.85                        | 3.20E-05             | 7.67E-04              | 2.80E-01             | 1.40E-04              |
| Arsenic           | 38.55                        | 6.21E-05             | 1.49E-03              | 5.44E-01             | 2.72E-04              |
| Antimony          | 1.28                         | 2.06E-06             | 4.95E-05              | 1.81E-02             | 9.03E-06              |
| Beryllium         | 4.25                         | 6.84E-06             | 1.64E-04              | 6.00E-02             | 3.00E-05              |
| Cadmium           | 0.18                         | 2.90E-07             | 6.96E-06              | 2.54E-03             | 1.27E-06              |
| Chromium          | 25.20                        | 4.06E-05             | 9.74E-04              | 3.56E-01             | 1.78E-04              |
| Chromium VI       | 0.67                         | 1.08E-06             | 2.59E-05              | 9.45E-03             | 4.73E-06              |
| Cobalt            | 12.68                        | 2.04E-05             | 4.90E-04              | 1.79E-01             | 8.94E-05              |
| Manganese         | 54.29                        | 8.74E-05             | 2.10E-03              | 7.66E-01             | 3.83E-04              |
| Mercury           | 0.16                         | 2.58E-07             | 6.18E-06              | 2.26E-03             | 1.13E-06              |
| Nickel            | 23.33                        | 3.76E-05             | 9.02E-04              | 3.29E-01             | 1.65E-04              |
| Selenium          | 8.32                         | 1.34E-05             | 3.22E-04              | 1.17E-01             | 5.87E-05              |

HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

\*\* PM distribution factors (k value) taken from AP-42 Page 13.2.5-3 All other values in ppm.

# **Duke Energy H.F. Lee Plant** Table 12 - Emissions Estimate: Ash Handling Operations (F-5)

Where:

Section 13.2.4 (Aggregate Handling and Storage Piles) of U.S. EPA's AP-42 document is used to estimate emissions from the handling of material at an industrial site. The "Drop Equation" is shown below:



E is the emission factor in [lb/ton]

K is the particle size multiplier [dimensionless] U is the average wind speed [mph]

M is the average moisture content [%]



 Constant
 PM<sub>2.5</sub>
 PM<sub>10</sub>
 PM

 k
 0.053
 0.35
 0.74

 Wind data from Rocky Mount - Wilson Airport 2012-2016

The HAP and TAP emissions are derived from the PM estimate based on the average trace element analysis: Emissions are calculated assuming a maximum throughput of ash:



|                   |               |          |          |          | Total    |
|-------------------|---------------|----------|----------|----------|----------|
| Ash Trace Element | Average       | Emission | Annual   | Annual   | Annual   |
| Analysis          | Concentration | Factor   | PTE      | PTE      | PTE      |
|                   | (ppm)         | (lb/ton) | (lb/yr)  | (lb/hr)  | (ton/yr) |
| PM                |               | 2.18E-04 | 281.74   | 0.03     | 0.14     |
| PM <sub>10</sub>  |               | 1.03E-04 | 133.26   | 0.02     | 0.07     |
| PM <sub>2.5</sub> |               | 1.56E-05 | 20.18    | 0.002    | 0.01     |
| Lead              | 19.85         | 4.34E-09 | 5.59E-03 | 6.38E-07 | 2.80E-06 |
| Arsenic           | 38.55         | 8.42E-09 | 1.09E-02 | 1.24E-06 | 5.43E-06 |
| Antimony          | 1.28          | 2.80E-10 | 3.61E-04 | 4.12E-08 | 1.80E-07 |
| Beryllium         | 4.25          | 9.28E-10 | 1.20E-03 | 1.37E-07 | 5.99E-07 |
| Cadmium           | 0.18          | 3.93E-11 | 5.07E-05 | 5.79E-09 | 2.54E-08 |
| Chromium          | 25.20         | 5.50E-09 | 7.10E-03 | 8.10E-07 | 3.55E-06 |
| Chromium VI       | 0.67          | 1.46E-10 | 1.89E-04 | 2.15E-08 | 9.44E-08 |
| Cobalt            | 12.68         | 2.77E-09 | 3.57E-03 | 4.08E-07 | 1.79E-06 |
| Manganese         | 54.29         | 1.19E-08 | 1.53E-02 | 1.75E-06 | 7.65E-06 |
| Mercury           | 0.16          | 3.49E-11 | 4.51E-05 | 5.15E-09 | 2.25E-08 |
| Nickel            | 23.33         | 5.10E-09 | 6.57E-03 | 7.50E-07 | 3.29E-06 |
| Selenium          | 8.32          | 1.82E-09 | 2.34E-03 | 2.68E-07 | 1.17E-06 |

Note: HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

# Duke Energy H.F. Lee Plant Table 13A - Truck Traffic VMT Estimates

|                              | Ash<br>Trucked<br>Offsite<br>(ton/yr) | Truck<br>Capacity<br>(ton/truck) | Truck<br>Loads/Year | Route<br>Distance<br>(miles) | Total Miles<br>Traveled<br>VMT/yr | Total<br>VMT/yr |
|------------------------------|---------------------------------------|----------------------------------|---------------------|------------------------------|-----------------------------------|-----------------|
| Empty Trucks to Loading Area | 430,000                               | 25.00                            | 17,200              | 2.33                         | 40,076.00                         | 80,152,00       |
| Loaded Trucks to Offsite     | 430,000                               | 23.00                            | 17,200              | 2.33                         | 40,076.00                         | 00,132.00       |

# H. F. Lee Approximate Haul Routes



| • Override 1                   | Lay of Land Area                        |
|--------------------------------|-----------------------------------------|
| CCP Site Contacts              | Unknown, Eng. Wetlands, Landfill, Other |
| <all other="" values=""></all> | <all other="" values=""></all>          |
| Active Basin                   | Active Basin                            |
| Currently Being Excavated      | Currently Being Excavated               |
| Inactive                       | Inactive                                |

|     | Lay of Land Area                        |
|-----|-----------------------------------------|
|     | Unknown, Eng. Wetlands, Landfill, Other |
|     | Duke Energy                             |
|     | Piedmont Natural Gas                    |
| []] | Counties                                |
|     |                                         |

0 0.175 0.35 0.7 km Image courtesy of USGS © 2017 Microsoft Corporation © 2017 HERE © AND

> Duke Energy Copyright 2015

#### **Duke Energy H.F. Lee Plant** Table 13B - Additional Haul Roads Supporting the Movement of Ash Offsite - Loaded Trucks (F-6)

A portion of the ash will be moved by truck to an offsite location. Particulate emissions are generated from the haul roads from the force of the wheels on the road surface. This force causes pulverization of the surface material. The particles are lifted and dropped from the rolling wheels and the road surface is exposed to strong air currents, which generate airborne particulate emissions.

The methodology presented below is taken from Section 13.2.2 (Unpaved Roads) of the U.S. EPA's AP-42 document and is based on the vehicle miles traveled (VMT) at the site.



Where: E is the size-specific emission factor (lb/VMT) s is the surface material silt content (%) W is the mean vehicle weight (tons) k, a, and b are empirical constants

Equation 1a of AP-42 Section 13.2.2 for vehicles traveling on unpaved surfaces at industrial sites

| Constant | Ind               | Industrial Roads        |      |  |  |
|----------|-------------------|-------------------------|------|--|--|
| Constant | PM <sub>2.5</sub> | <b>PM</b> <sub>10</sub> | PM   |  |  |
| k        | 0.15              | 1.5                     | 4.9  |  |  |
| а        | 0.9               | 0.9                     | 0.7  |  |  |
| b        | 0.45              | 0.45                    | 0.45 |  |  |

5.1 %, Average Silt Content of Plant Roads at a Coal Mining Site (Table 13.2.2-1) 50 tons, Mean Vehicle Loaded Weight (Fleet Average)

| 0.25 | Ib/VMT, Calculated PM <sub>2.5</sub> Emission Factor (Road Silt Portion) |
|------|--------------------------------------------------------------------------|
| 2.46 | lb/VMT, Calculated PM <sub>10</sub> Emission Factor (Road Silt Portion)  |
| 9.55 | Ib/VMT, Calculated PM Emission Factor (Road Silt Portion)                |

Emissions associated with the exhaust, brake wear, and tire wear must be added to the values calculated above. The values shown below were taken from Table 13.2.2-4.

| Particle Size  | PM <sub>2.5</sub>                                                                  | <b>PM</b> <sub>10</sub> | PM                       |                                         |  |
|----------------|------------------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------------------------|--|
| lb/VMT "adder" | 0.00036                                                                            | 0.00047                 | 0.00047                  |                                         |  |
|                | _                                                                                  |                         |                          |                                         |  |
| 0.25           | lb/VMT, Ca                                                                         | alculated Pl            | M <sub>2.5</sub> Emissio | on Factor (Total, No natural mitigation |  |
| 2.46           | Ib/VMT, Calculated PM <sub>10</sub> Emission Factor (Total, No natural mitigation) |                         |                          |                                         |  |
| 0.55           | Ib//MT. Calculated DM Emission Easter (Total, No natural mitigation)               |                         |                          |                                         |  |

9.55 Ib/VMT, Calculated PM Emission Factor (Total, No natural mitigation)

All roads are subject to natural mitigation because of rainfall and other precipitation. The following equation accounts for reductions in the emission factor due to natural mitigation.

| $E_{EXT} = E\left[\frac{(365 - P)}{365}\right]$ | Where:          | E <sub>EXT</sub> is the adjusted emission factor accounting for natural mitigation<br>E is emission factor from Equation 1a<br>P is the number of days per year with at least 0.01 inches of precipitation |
|-------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120 days, F                                     | Precipitation G | reater than 0.01 inches at Plant Location (Figure 13.2.2-1)                                                                                                                                                |

| 0.17 | lb/VMT, Calculated PM <sub>2.5</sub> Emission Factor (Total, With natural mitigation) |
|------|---------------------------------------------------------------------------------------|
| 1.65 | Ib/VMT, Calculated PM <sub>10</sub> Emission Factor (Total, With natural mitigation)  |
| 6.41 | Ib/VMT, Calculated PM Emission Factor (Total, With natural mitigation)                |

In addition to natural mitigation, the following mitigation will be implemented at the site. Control efficiencies taken from the WRAP Fugitive Dust Handbook, September 7, 2006.

| <b>F7</b> 0/ |                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------|
|              | Limit on-site vehicle speeds (on unpaved roads) to 15 mph.                                              |
|              | Application of Gravel on Dirt Surfaces                                                                  |
| 90%          | Implement watering for industrial unpaved road.                                                         |
|              |                                                                                                         |
| 0.04         | Ib/VMT, Calculated PM Emission Factor (Total, With natural mitigation, and water sprays)                |
| 0.01         | Ib/VMT, Calculated PM <sub>10</sub> Emission Factor (Total, With natural mitigation, and water sprays)  |
| 0.001        | Ib/VMT, Calculated PM <sub>2.5</sub> Emission Factor (Total, With natural mitigation, and water sprays) |
|              |                                                                                                         |
| 40,076       | miles/year, "Loaded Truck VMT"                                                                          |
| 2000         | Ib/ton, Conversion Factor                                                                               |
|              |                                                                                                         |
| 8.84E-01     | tpy, PM Emissions                                                                                       |
| 2.28E-01     | tpy, PM <sub>10</sub> Emissions                                                                         |
| 2.28E-02     | tpy, PM <sub>2.5</sub> Emissions                                                                        |
|              |                                                                                                         |
| 2.02E-01     | Ib/hr, PM Emissions                                                                                     |
| 5.20E-02     | lb/hr, PM <sub>10</sub> Emissions                                                                       |
| 5.21E-03     | lb/hr, PM <sub>2.5</sub> Emissions                                                                      |

### **Duke Energy H.F. Lee Plant** Table 13C - Additional Haul Roads Supporting the Movement of Ash Offsite - Unloaded Trucks (F-6)

A portion of the ash will be trucked to an offsite location. Particulate emissions are generated from the haul roads from the force of the wheels on the road surface. This force causes pulverization of the surface material. The particles are lifted and dropped from the rolling wheels and the road surface is exposed to strong air currents, which generate airborne particulate emissions.

The methodology presented below is taken from Section 13.2.2 (Unpaved Roads) of the U.S. EPA's AP-42 document and is based on the vehicle miles traveled (VMT) at the site.

$$E = k \left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$$
 Where:

E is the size-specific emission factor (lb/VMT) s is the surface material silt content (%) W is the mean vehicle weight (tons) k, a, and b are empirical constants

Equation 1a of AP-42 Section 13.2.2 for vehicles traveling on unpaved surfaces at industrial sites

| Constant | Industrial Roads  |                  |      |  |
|----------|-------------------|------------------|------|--|
| Constant | PM <sub>2.5</sub> | PM <sub>10</sub> | PM   |  |
| k        | 0.15              | 1.5              | 4.9  |  |
| а        | 0.9               | 0.9              | 0.7  |  |
| b        | 0.45              | 0.45             | 0.45 |  |

5.1 %, Average Silt Content of Plant Roads at a Coal Mining Site (Table 13.2.2-1) 25 tons, Mean Vehicle Empty Weight (Fleet Average)

0.18 lb/VMT, Calculated PM<sub>2.5</sub> Emission Factor (Road Silt Portion) 1.80 lb/VMT, Calculated PM<sub>10</sub> Emission Factor (Road Silt Portion) 6.99 lb/VMT, Calculated PM Emission Factor (Road Silt Portion)

Emissions associated with the exhaust, brake wear, and tire wear must be added to the values calculated above. The values shown below were taken from Table 13.2.2-4.

| Particle Size  | PM <sub>2.5</sub> | <b>PM</b> <sub>10</sub> | PM      |
|----------------|-------------------|-------------------------|---------|
| lb/VMT "adder" | 0.00036           | 0.00047                 | 0.00047 |

Where:

0.18 lb/VMT, Calculated PM<sub>2.5</sub> Emission Factor (Total, No natural mitigation) 1.80 lb/VMT, Calculated PM<sub>10</sub> Emission Factor (Total, No natural mitigation) 6.99 lb/VMT, Calculated PM Emission Factor (Total, No natural mitigation)

All roads are subject to natural mitigation because of rainfall and other precipitation. The following equation accounts for reductions in the emission factor due to natural mitigation.

| $E_{FYT} = E$ | $\left[ (365 - P) \right]$ |
|---------------|----------------------------|
| $L_{EXT} - L$ | 365                        |

 $E_{EXT}$  is the adjusted emission factor accounting for natural mitigation E is emission factor from Equation 1a P is the number of days per year with at least 0.01 inches of precipitation

120 days, Precipitation Greater than 0.1 inches at Plant Location (Figure 13.2.2-1)

0.12 lb/VMT, Calculated PM<sub>2.5</sub> Emission Factor (Total, With natural mitigation) 1.21 lb/VMT, Calculated PM<sub>10</sub> Emission Factor (Total, With natural mitigation) 4.69 lb/VMT, Calculated PM Emission Factor (Total, With natural mitigation)

In addition to natural mitigation, the following mitigation will be implemented at the site. Control efficiencies taken from the WRAP Fugitive Dust Handbook, September 7, 2006.

57% Limit on-site vehicle speeds (on unpaved roads) to 15 mph. 84% Application of Gravel on Dirt Surfaces 90% Implement watering for industrial unpaved road.

0.03 lb/VMT, Calculated PM Emission Factor (Total, With natural mitigation, and water sprays) 0.008 lb/VMT, Calculated PM<sub>10</sub> Emission Factor (Total, With natural mitigation, and water sprays) 0.0008 lb/VMT, Calculated PM<sub>2.5</sub> Emission Factor (Total, With natural mitigation, and water sprays)

40,076 miles/day, One-way Vehicle Distance from Source to Offsite 2000 lb/ton, Conversion Factor

|          | tpy, PM Emissions                |
|----------|----------------------------------|
| 1.67E-01 | tpy, PM <sub>10</sub> Emissions  |
| 1.67E-02 | tpy, PM <sub>2.5</sub> Emissions |

1.48E-01 lb/hr, PM Emissions 3.81E-02 lb/hr, PM<sub>10</sub> Emissions 3.82E-03 lb/hr, PM<sub>2.5</sub> Emissions

# Duke Energy H.F. Lee Plant Table 14A - Screener Emissions (ES-39A) Spyder 514TS Double Deck

| Capacity, ton/yr          | 430,000 | Duke Energy        |
|---------------------------|---------|--------------------|
| Hours of operation, hr/yr | 2600    | Based on 50/wk M-F |
| Capacity, ton/hr          | 165     | Duke Energy        |

| Pollutant         | Emission Factor <sup>1</sup> | Potential Emission Rates |        |
|-------------------|------------------------------|--------------------------|--------|
| i ondtant         | lb/ton                       | (lb/hr)                  | (tpy)  |
| PM                | 0.0022                       | 0.015                    | 0.020  |
| PM <sub>10</sub>  | 0.00074                      | 0.005                    | 0.007  |
| PM <sub>2.5</sub> | 0.00005                      | 0.0003                   | 0.0004 |

| Lead        | 19.85 | 3.00E-07 | 3.90E-07 | Duke Energy Average Ash Analysis |
|-------------|-------|----------|----------|----------------------------------|
| Arsenic     | 38.55 | 5.83E-07 | 7.58E-07 | Duke Energy Average Ash Analysis |
| Antimony    | 1.28  | 1.94E-08 | 2.52E-08 | Duke Energy Average Ash Analysis |
| Beryllium   | 4.25  | 6.43E-08 | 8.36E-08 | Duke Energy Average Ash Analysis |
| Cadmium     | 0.18  | 2.72E-09 | 3.54E-09 | Duke Energy Average Ash Analysis |
| Chromium    | 25.20 | 3.81E-07 | 4.95E-07 | Duke Energy Average Ash Analysis |
| Chromium VI | 0.67  | 1.01E-08 | 1.32E-08 | Duke Energy Average Ash Analysis |
| Cobalt      | 12.68 | 1.92E-07 | 2.49E-07 | Duke Energy Average Ash Analysis |
| Manganese   | 54.29 | 8.21E-07 | 1.07E-06 | Duke Energy Average Ash Analysis |
| Mercury     | 0.16  | 2.42E-09 | 3.15E-09 | Duke Energy Average Ash Analysis |
| Nickel      | 23.33 | 3.53E-07 | 4.59E-07 | Duke Energy Average Ash Analysis |
| Selenium    | 8.32  | 1.26E-07 | 1.64E-07 | Duke Energy Average Ash Analysis |

Notes:

1. Emission Factor for Screening operation from AP-42, Table 11.19.2-2

2. HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

| Engine rating     | 91              |                                 |       |                            |                        |                          |           |
|-------------------|-----------------|---------------------------------|-------|----------------------------|------------------------|--------------------------|-----------|
| Permitted Hours:  | 2,600           | hrs/yr                          |       |                            |                        |                          |           |
| No. of Engines:   | 1               |                                 |       |                            | Diesel Sulfur Content: |                          | weight %  |
| Heat Input:       | 0.64            | MMBtu/hr (F                     | IHV)  |                            | Diesel Heat Content:   | 7,000                    | Btu/hp-hr |
| Pollutant         | Emission Factor | Factor Potential Emission Rates |       | HAP Pollutant <sup>1</sup> | Emission Factor        | Potential Emission Rates |           |
|                   | lb/hp-hr        | (lb/hr)                         | (tpy) |                            | (Ib/MMBtu)             | (lb/hr)                  | (tpy)     |
| NO <sub>x</sub>   | 0.031           | 2.82                            | 3.667 | Benzene                    | 9.33E-04               | 5.94E-04                 | 7.73E-04  |
| CO                | 6.68E-03        | 0.61                            | 0.790 | Toluene                    | 4.09E-04               | 2.61E-04                 | 3.39E-04  |
| VOC               | 2.47E-03        | 0.22                            | 0.292 | Xylenes                    | 2.85E-04               | 1.82E-04                 | 2.36E-04  |
| SO <sub>2</sub>   | 2.05E-03        | 0.19                            | 0.243 | 1,3-Butadiene              | 3.91E-05               | 2.49E-05                 | 3.24E-05  |
| PM                | 2.20E-03        | 0.20                            | 0.260 | Formaldehyde               | 1.18E-03               | 7.52E-04                 | 9.77E-04  |
| PM <sub>10</sub>  | 2.20E-03        | 0.20                            | 0.260 | Acetaldehyde               | 7.67E-04               | 4.89E-04                 | 6.35E-04  |
| PM <sub>2.5</sub> | 2.20E-03        | 0.20                            | 0.260 | Acrolein                   | 9.25E-05               | 5.89E-05                 | 7.66E-05  |
|                   |                 |                                 |       | Total PAH                  | 1.68E-04               | 1.07E-04                 | 1.39E-04  |
|                   |                 |                                 |       | Naphthalene                | 8.48E-05               | 5.40E-05                 | 7.02E-05  |
|                   |                 |                                 |       | Acenaphthalene             | 5.06E-06               | 3.22E-06                 | 4.19E-06  |
|                   |                 |                                 |       | Acenaphthene               | 1.42E-06               | 9.05E-07                 | 1.18E-06  |
|                   |                 |                                 |       | Fluorene                   | 2.92E-05               | 1.86E-05                 | 2.42E-05  |
|                   |                 |                                 |       | Phenanthrene               | 2.94E-05               | 1.87E-05                 | 2.43E-05  |
|                   |                 |                                 |       | Anthracene                 | 1.87E-06               | 1.19E-06                 | 1.55E-06  |
|                   |                 |                                 |       | Fluoranthene               | 7.61E-06               | 4.85E-06                 | 6.30E-06  |
|                   |                 |                                 |       | Pyrene                     | 4.78E-06               | 3.04E-06                 | 3.96E-06  |
|                   |                 |                                 |       | Benzo(a)anthracene         | 1.68E-06               | 1.07E-06                 | 1.39E-06  |
|                   |                 |                                 |       | Chrysene                   | 3.53E-07               | 2.25E-07                 | 2.92E-07  |
|                   |                 |                                 |       | Benzo(b)fluoranthene       | 9.91E-08               | 6.31E-08                 | 8.21E-08  |
|                   |                 |                                 |       | Benzo(k)fluoranthene       | 1.55E-07               | 9.87E-08                 | 1.28E-07  |
|                   |                 |                                 |       | Benzo(a)pyrene             | 1.88E-07               | 1.20E-07                 | 1.56E-07  |
|                   |                 |                                 |       | Indeno(1,2,3-cd)pyrene     | 3.75E-07               | 2.39E-07                 | 3.11E-07  |
|                   |                 |                                 |       | Dibenz(a,h)anthracene      | 5.83E-07               | 3.71E-07                 | 4.83E-07  |
|                   |                 |                                 |       | Benzo(g,h,l)perylene       | 4.89E-07               | 3.11E-07                 | 4.05E-07  |

#### Summary of GHG Emissions:

|                  |                         | Emissions             | Emissions |
|------------------|-------------------------|-----------------------|-----------|
|                  | <b>Emission Factor</b>  | (metric (US           |           |
| Pollutant        | (kg/MMBtu) <sup>2</sup> | tons/yr) <sup>3</sup> | tons/yr)⁴ |
| CO2              | 73.96                   | 122.5                 | 134.99    |
| CH₄              | 3.0E-03                 | 0.005                 | 0.005     |
| N <sub>2</sub> O | 6.0E-04                 | 0.001                 | 0.001     |
| CO₂e⁵            |                         | 122.91                | 135.45    |

-

Notes

Assume PM = PM10 = PM2.5

Emission Factor based on Table 3.3 1, EPA AP 42, Chapter 3.3 Gasoline & Diesel Industrial Engines

-

-

1. HAPs Emission Factor based on Table 3.3 2, Chapter 3.3 Gasoline & Diesel Industrial Engines. Per 15A NCAC 2Q.0702 (a)(27) these emissions were not included in the TPER analysis. 2. Based on EPA default factors in Subpart C Tables C-1 and C-2 for Distillate Fuel Oil No. 2.

3. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO<sub>2</sub> e based on Subpart A Table A-1 factors.

 $CO_2$ ,  $CH_4$ , or  $N_2O$  (metric tpy) = 1E-03 \* Gas (MMBtu/yr) \* Emission Factor (kg/MMBtu)

4. 1 metric ton = 1.102 US ton

5.  $CO_2 e = CO_2$ ,  $CH_4$ , or  $N_2 O$  (tpy) \* Global Warming Potential factor (GWP)

| CO <sub>2</sub> GWP | 1   |
|---------------------|-----|
| $CH_4$ GWP          | 25  |
| $N_2 O GWP$         | 298 |

37 of 40

# Duke Energy H.F. Lee Plant Table 15A - Crusher Emissions (ES-40A) 4043T Impact Crusher

| Capacity, ton/yr               | 43,000 | Duke Energy                     |
|--------------------------------|--------|---------------------------------|
| Max Hours of operation, hr/day | 1      | Duke Energy                     |
| Hours of operation, hr/yr      | 365    | Based on 1 hr/day 365 days/year |
| Capacity, ton/day              | 165    | Duke Energy                     |

| Pollutant         | Emission Factor <sup>1</sup> | Potential Emission Rates |        |  |  |
|-------------------|------------------------------|--------------------------|--------|--|--|
| ronutant          | lb/ton                       | (lb/hr)                  | (tpy)  |  |  |
| PM                | 0.0012                       | 0.008                    | 0.002  |  |  |
| PM <sub>10</sub>  | 0.00054                      | 0.004                    | 0.001  |  |  |
| PM <sub>2.5</sub> | 0.0001                       | 0.001                    | 0.0001 |  |  |

| Lead        | 19.85 | 1.64E-07 | 2.99E-08 | Duke Energy Average Ash Analysis |
|-------------|-------|----------|----------|----------------------------------|
| Arsenic     | 38.55 | 3.18E-07 | 5.80E-08 | Duke Energy Average Ash Analysis |
| Antimony    | 1.28  | 1.06E-08 | 1.93E-09 | Duke Energy Average Ash Analysis |
| Beryllium   | 4.25  | 3.51E-08 | 6.40E-09 | Duke Energy Average Ash Analysis |
| Cadmium     | 0.18  | 1.49E-09 | 2.71E-10 | Duke Energy Average Ash Analysis |
| Chromium    | 25.20 | 2.08E-07 | 3.79E-08 | Duke Energy Average Ash Analysis |
| Chromium VI | 0.67  | 5.53E-09 | 1.01E-09 | Duke Energy Average Ash Analysis |
| Cobalt      | 12.68 | 1.05E-07 | 1.91E-08 | Duke Energy Average Ash Analysis |
| Manganese   | 54.29 | 4.48E-07 | 8.17E-08 | Duke Energy Average Ash Analysis |
| Mercury     | 0.16  | 1.32E-09 | 2.41E-10 | Duke Energy Average Ash Analysis |
| Nickel      | 23.33 | 1.92E-07 | 3.51E-08 | Duke Energy Average Ash Analysis |
| Selenium    | 8.32  | 6.86E-08 | 1.25E-08 | Duke Energy Average Ash Analysis |

Notes:

1. Emission Factor for Crushing operation from AP-42, Table 11.19.2-2

2. HAP/TAP emission factors for the fly ash is based on site-specific ash analysis without the addition of metals in the water used for water injection.

| Engine rating     | 300             | hp           |              |                            |                        |                          |           |
|-------------------|-----------------|--------------|--------------|----------------------------|------------------------|--------------------------|-----------|
| Permitted Hours:  | 365             | ,<br>hrs/yr  |              |                            |                        |                          |           |
| No. of Engines:   | 1               |              |              |                            | Diesel Sulfur Content: | 0.0015                   | weight %  |
| Heat Input:       | 2.10            | MMBtu/hr (H  | IHV)         |                            | Diesel Heat Content:   | 7,000                    | Btu/hp-hr |
| Pollutant         | Emission Factor | Potential Em | ission Rates | HAP Pollutant <sup>1</sup> | Emission Factor        | Potential Emission Rates |           |
| ronatant          | lb/hp-hr        | (lb/hr)      | (tpy)        | HAF Follutant              | (lb/MMBtu)             | (lb/hr)                  | (tpy)     |
| NO <sub>x</sub>   | 0.031           | 9.30         | 1.697        | Benzene                    | 9.33E-04               | 1.96E-03                 | 3.58E-04  |
| CO                | 6.68E-03        | 2.00         | 0.366        | Toluene                    | 4.09E-04               | 8.59E-04                 | 1.57E-04  |
| VOC               | 2.47E-03        | 0.74         | 0.135        | Xylenes                    | 2.85E-04               | 5.99E-04                 | 1.09E-04  |
| SO <sub>2</sub>   | 2.05E-03        | 0.62         | 0.112        | 1,3-Butadiene              | 3.91E-05               | 8.21E-05                 | 1.50E-05  |
| PM                | 2.20E-03        | 0.66         | 0.120        | Formaldehyde               | 1.18E-03               | 2.48E-03                 | 4.52E-04  |
| PM <sub>10</sub>  | 2.20E-03        | 0.66         | 0.120        | Acetaldehyde               | 7.67E-04               | 1.61E-03                 | 2.94E-04  |
| PM <sub>2.5</sub> | 2.20E-03        | 0.66         | 0.120        | Acrolein                   | 9.25E-05               | 1.94E-04                 | 3.55E-05  |
|                   |                 |              | ,            | Total PAH                  | 1.68E-04               | 3.53E-04                 | 6.44E-05  |
|                   |                 |              |              | Naphthalene                | 8.48E-05               | 1.78E-04                 | 3.25E-05  |
|                   |                 |              |              | Acenaphthalene             | 5.06E-06               | 1.06E-05                 | 1.94E-06  |
|                   |                 |              |              | Acenaphthene               | 1.42E-06               | 2.98E-06                 | 5.44E-07  |
|                   |                 |              |              | Fluorene                   | 2.92E-05               | 6.13E-05                 | 1.12E-05  |
|                   |                 |              |              | Phenanthrene               | 2.94E-05               | 6.17E-05                 | 1.13E-05  |
|                   |                 |              |              | Anthracene                 | 1.87E-06               | 3.93E-06                 | 7.17E-07  |
|                   |                 |              |              | Fluoranthene               | 7.61E-06               | 1.60E-05                 | 2.92E-06  |
|                   |                 |              |              | Pyrene                     | 4.78E-06               | 1.00E-05                 | 1.83E-06  |
|                   |                 |              |              | Benzo(a)anthracene         | 1.68E-06               | 3.53E-06                 | 6.44E-07  |
|                   |                 |              |              | Chrysene                   | 3.53E-07               | 7.41E-07                 | 1.35E-07  |
|                   |                 |              |              | Benzo(b)fluoranthene       | 9.91E-08               | 2.08E-07                 | 3.80E-08  |
|                   |                 |              |              | Benzo(k)fluoranthene       | 1.55E-07               | 3.26E-07                 | 5.94E-08  |
|                   |                 |              |              | Benzo(a)pyrene             | 1.88E-07               | 3.95E-07                 | 7.21E-08  |
|                   |                 |              |              | Indeno(1,2,3-cd)pyrene     | 3.75E-07               | 7.88E-07                 | 1.44E-07  |
|                   |                 |              |              | Dibenz(a,h)anthracene      | 5.83E-07               | 1.22E-06                 | 2.23E-07  |
|                   |                 |              |              | Benzo(g,h,l)perylene       | 4.89E-07               | 1.03E-06                 | 1.87E-07  |

#### Summary of GHG Emissions:

|                        |                         | Emissions             | Emissions             |
|------------------------|-------------------------|-----------------------|-----------------------|
|                        | <b>Emission Factor</b>  |                       |                       |
| Pollutant              | (kg/MMBtu) <sup>2</sup> | tons/yr) <sup>3</sup> | tons/yr) <sup>4</sup> |
| <b>CO</b> <sub>2</sub> | 73.96                   | 56.7                  | 62.47                 |
| $CH_4$                 | 3.0E-03                 | 0.002                 | 0.003                 |
| N <sub>2</sub> O       | 6.0E-04                 | 0.0005                | 0.0005                |
| CO₂e <sup>5</sup>      |                         | 56.88                 | 62.69                 |

-

Notes

Assume PM = PM10 = PM2.5

Emission Factor based on Table 3.3 1, EPA AP 42, Chapter 3.3 Gasoline & Diesel Industrial Engines

-

1. HAPs Emission Factor based on Table 3.3 2, Chapter 3.3 Gasoline & Diesel Industrial Engines. Per 15A NCAC 2Q.0702 (a)(27) these emissions were not included in the TPER analysis. 2. Based on EPA default factors in Subpart C Tables C-1 and C-2 for Distillate Fuel Oil No. 2.

3. Calculated based on the heat input, emission factors, and equations C-1b and C-8b of Subpart C. CO<sub>2</sub>e based on Subpart A Table A-1 factors.

 $CO_2$ ,  $CH_4$ , or  $N_2O$  (metric tpy) = 1E-03 \* Gas (MMBtu/yr) \* Emission Factor (kg/MMBtu)

-

4. 1 metric ton = 1.102 US ton

5.  $CO_2e = CO_2$ ,  $CH_4$ , or  $N_2O$  (tpy) \* Global Warming Potential factor (GWP)

| $CO_2 GWP$      | 1   |
|-----------------|-----|
| <i>CH</i> ₄ GWP | 25  |
| $N_2$ O GWP     | 298 |

39 of 40

Duke Energy H.F. Lee PlantGoldsboro, North CarolinaWayne CountyTable 16 - Fly Ash and water sprayReactor water spray flow rate

GPM

130

| Parameter   | Compound<br>Category | Injection<br>Concentration<br>(mg/L) <sup>1</sup> | Injection<br>Concentration<br>(PPM) <sup>2</sup> | Injection<br>Concentration<br>(Ib/hr) | Fly Ash<br>Speciation (PPM) | Fly Ash<br>Speciation <sup>3</sup><br>(lb/hr) | Injection<br>Concentration<br>+ Fly ash<br>(lb/hr) | Injection<br>Concentration +<br>Fly ash<br>concentration<br>(PPM) |
|-------------|----------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|
| Aluminum    |                      | 3.2                                               | 3.2                                              | 0.208                                 | NA                          | NA                                            | NA                                                 | NA                                                                |
| Antimony    | HAP                  | 0.0079                                            | 0.0079                                           | 0.001                                 | 1.28                        | 0.19                                          | 0.193                                              | 1.283                                                             |
| Arsenic     | HAP, TAP             | 0.08                                              | 0.08                                             | 0.005                                 | 38.55                       | 5.78                                          | 5.788                                              | 38.585                                                            |
| Barium      |                      | 0.17                                              | 0.17                                             | 0.011                                 | 548.00                      | 82.20                                         | 82.211                                             | 548.074                                                           |
| Beryllium   | HAP, TAP             | ND                                                | ND                                               | ND                                    | 4.25                        | 0.64                                          | 0.638                                              | 4.250                                                             |
| Cadmium     | HAP, TAP             | 0.0009                                            | 0.0009                                           | 0.000                                 | 0.18                        | 0.03                                          | 0.027                                              | 0.180                                                             |
| Calcium     |                      | 440.0                                             | 440.0                                            | 28.638                                | NA                          | NA                                            | NA                                                 | NA                                                                |
| Chromium    | HAP, TAP             | 0.0064                                            | 0.0064                                           | 0.000                                 | 25.20                       | 3.78                                          | 3.780                                              | 25.203                                                            |
| Chromium VI | HAP, TAP             | ND                                                | ND                                               | ND                                    | 0.67                        | 0.10                                          | 0.101                                              | 0.670                                                             |
| Cobalt      | HAP                  | 0.0035                                            | 0.0035                                           | 0.000                                 | 12.68                       | 1.90                                          | 1.902                                              | 12.682                                                            |
| Copper      |                      | ND                                                | ND                                               | ND                                    | 46.18                       | 6.93                                          | 6.927                                              | 46.180                                                            |
| Iron        |                      | 1.5                                               | 1.5                                              | 0.098                                 | NA                          | NA                                            | NA                                                 | NA                                                                |
| Lead        | HAP                  | 0.0048                                            | 0.0048                                           | 0.000                                 | 19.85                       | 2.98                                          | 2.978                                              | 19.852                                                            |
| Magnesium   |                      | 60.0                                              | 60.0                                             | 3.905                                 | NA                          | NA                                            | NA                                                 | NA                                                                |
| Manganese   | HAP, TAP             | 0.047                                             | 0.047                                            | 0.003                                 | 54.29                       | 8.14                                          | 8.147                                              | 54.310                                                            |
| Mercury     | HAP, TAP             | 0.000047                                          | 0.000047                                         | 0.000                                 | 0.16                        | 0.02                                          | 0.024                                              | 0.160                                                             |
| Molybdenum  |                      | ND                                                | ND                                               | ND                                    | 2.58                        | 0.39                                          | 0.387                                              | 2.580                                                             |
| Nickel      | HAP, TAP             | 0.012                                             | 0.012                                            | 0.001                                 | 23.33                       | 3.50                                          | 3.500                                              | 23.335                                                            |
| Potassium   |                      | 17.0                                              | 17.0                                             | 1.106                                 | NA                          | NA                                            | NA                                                 | NA                                                                |
| Selenium    | HAP                  | 0.25                                              | 0.25                                             | 0.016                                 | 8.32                        | 1.25                                          | 1.264                                              | 8.428                                                             |
| Silver      |                      | ND                                                | ND                                               | ND                                    | 0.72                        | 0.11                                          | 0.108                                              | 0.720                                                             |
| Sodium      |                      | 120.0                                             | 120.0                                            | 7.810                                 | NA                          | NA                                            | NA                                                 | NA                                                                |
| Thallium    |                      | ND                                                | ND                                               | ND                                    | 1.30                        | 0.20                                          | 0.195                                              | 1.300                                                             |
| Vanadium    |                      | 0.056                                             | 0.056                                            | 0.004                                 | 65.12                       | 9.77                                          | 9.772                                              | 65.144                                                            |
| Zinc        |                      | 0.036                                             | 0.036                                            | 0.002                                 | 23.41                       | 3.51                                          | 3.514                                              | 23.426                                                            |

Winyah wash water sample analysis
 mg/L = PPM
 STAR Reactor hourly throughput = 75 tph

ND - Not Determined in sample analysis NA - Not in the Fly Ash speciation

Page 40 of 40
### **APPENDIX C**

### EMISSION CALCULATIONS SUPPORT DOCUMENATION



|             | HF Lee Average | EPRI Basis     |
|-------------|----------------|----------------|
| Compound    | Lab Ash        | Average Ash    |
|             | Analysis (ppm) | Analysis (ppm) |
| Antimony    | 1.28           | 19.47          |
| Arsenic     | 38.55          | 118.52         |
| Barium      | 548.00         | 1007.45        |
| Beryllium   | 4.25           | 24.55          |
| Cadmium     | 0.18           | 21.16          |
| Chromium    | 25.20          | 143.92         |
| Chromium VI | 0.67           | 15.83          |
| Cobalt      | 12.68          | 57.57          |
| Copper      | 46.18          | 160.85         |
| Lead        | 19.85          | 126.99         |
| Manganese   | 54.29          | 253.98         |
| Mercury     | 0.16           | 0.76           |
| Molybdenum  | 2.58           | 55.03          |
| Nickel      | 23.33          | 143.92         |
| Selenium    | 8.32           | 38.94          |
| Silver      | 0.72           | 2.46           |
| Thallium    | 1.30           | 14.39          |
| Vanadium    | 65.12          | 279.38         |
| Zinc        | 23.41          | 296.31         |

| Compound | HF Lee Average | HF Lee Range    |
|----------|----------------|-----------------|
| Sulfur   | 0.03%          | 0.013 to 0.065% |
| LOI      | 9.65%          | 1.71 to 21.9%   |

(ID Nos. Lee IC Unit 1A, Lee IC Unit 1B and Lee IC Unit 1C) shall not exceed the following limits.

| Regulated<br>Pollutant            | Limits/Standards<br>(tons per year) | Applicable Regulation                      |
|-----------------------------------|-------------------------------------|--------------------------------------------|
| nitrogen oxides                   | 3,414.6                             | 15A NCAC 02Q.0317(a)(1)<br>(PSD avoidance) |
| sulfur dioxide                    | 14,663.1                            | (FSD avoidance)                            |
| particulate matter/ PM-10/ PM-2.5 | 218.2                               |                                            |
| carbon monoxide                   | 829.3                               | -                                          |
| VOCs                              | 65.1                                |                                            |
| sulfuric acid                     | 64.3                                | -                                          |
| lead                              | 0.77                                |                                            |

#### Monitoring/Recordkeeping [15A NCAC 02Q .0508(f)]

b. The Permittee shall keep records of the monthly emissions from each source (ID Nos. Lee IC Unit 1A, Lee IC Unit 1B and Lee IC Unit 1C), in a logbook (written or in electronic format). The Permittee shall be deemed in noncompliance with 15A NCAC 02D .0530(g) if these records are not kept or if any of the above limits are exceeded. Emissions shall be determined as follows:

$$Total \ Emissions \ = \sum \ Lee \ IC \ Unit \ 1A + Lee \ IC \ Unit \ 1B + Lee \ IC \ Unit \ 1C$$

#### Nitrogen Oxides

Emissions of nitrogen oxides shall be determined using a continuous emissions monitoring (CEM) system meeting the requirements of 15A NCAC 02D .0613 - 40 CFR Part 60 Appendix B "Performance Specifications" and Appendix F "Quality Assurance Procedures." If the owner or operator has installed a nitrogen oxides CEMS to meet the requirements of 40 CFR Part 75 and is continuing to meet the ongoing requirements of 40 CFR Part 75, that CEMS may be used to meet the requirements of this section, and used to calculate total nitrogen oxide emissions in accordance with the following equation. Data reported to meet the requirements of this section shall include data substituted using the missing data procedures in subpart D of 40 CFR Part 75 and may be bias adjusted according to the procedures of 40 CFR Part 75.

 $Total \ Emissions \ (NOx) = Lee \ IC \ Unit \ IA \ CEMS + Lee \ IC \ Unit \ IB \ CEMS + Lee \ IC \ Unit \ IC \ CEMS \ \leq \ 3414.6 \frac{tons}{12 \ months}$ 

| Source                                 | Emission Rates | Acrolein<br>(lb/hr) | Ammonia<br>(lb/hr) | Formaldehyde<br>(lb/hr) | Sulfuric Acid<br>(lb/hr) |
|----------------------------------------|----------------|---------------------|--------------------|-------------------------|--------------------------|
| Coal-fired Boiler 1 and 2*             | Potential      | 3.73E-03            |                    | 3.53E-02†               | 2.48E+01                 |
|                                        | Optimized      | 3.73E-03            |                    | 3.53E-02†               | 2.48E+01                 |
| Coal-fired Boiler 3*                   | Potential      | 4.88E-03            | 2.50E+00           | 4.62E-02†               | 1.35E+00                 |
|                                        | Optimized      | 4.88E-03            | 2.50E+00           | 4.62E-02†               | 1.35E+00                 |
| Lee IC Turbine 4                       | Potential      | 1.70E-02            |                    | 7.50E-02                | 3.49E+00                 |
|                                        | Optimized      | 1.55E+01            | _                  | 1.16E+01                | 2.09E+01                 |
| Lee IC Turbine 5                       | Potential      | 2.89E-02            |                    | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            | —                  | 1.97E+01                | 3.55E+01                 |
| Lee IC Turbine 6                       | Potential      | 2.89E-02            |                    | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            |                    | 1.97E+01                | 3.55E+01                 |
| Lee IC Turbine 7                       | Potential      | 2.89E-02            |                    | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            |                    | 1.97E+01                | 3.55E+01                 |
| Lee IC Turbine 10 and 11 (fuel oil)    | Potential      | 1.22E-01            |                    | 5.39E-01                | 3.71/3.77                |
|                                        | Optimized      | 1.11E+02            |                    | 8.35E+01                | 1.86E+01/2.26E+01        |
| Lee IC Turbine 10 and 11(natural gas)  | Potential      | 1.23E-02            |                    | 1.37E+00                |                          |
|                                        | Optimized      | 1.12E+01            |                    | 2.12E+02                | _                        |
| Lee IC Turbine 12 and 13 (fuel oil)    | Potential      | 1.16E-01            | <u> </u>           | 5.09E-01                | 3.54/3.59                |
|                                        | Optimized      | 1.06E+02            |                    | 7.89E+01                | 2.12E+01/2.15E+01        |
| Lee IC Turbine 12 and 13 (natural gas) | Potential      | 1.16E-02            |                    | 1.29E+00                |                          |
|                                        | Optimized      | 1.06E+01            |                    | 2.00E+02                | _                        |
| Lee IC Turbine 14 (fuel oil)           | Potential      | 1.29E-01            |                    | 5.69E-01                | 3.96E+00                 |
|                                        | Optimized      | 1.17E+02            | —                  | 8.82E+01                | 2.38E+01                 |
| Lee IC Turbine 14 (natural gas)        | Potential      | 1.24E-02            | <u> </u>           | 1.38E+00                | <u> </u>                 |
|                                        | Optimized      | 1.13E+01            | —                  | 2.14E+02                | —                        |
| Fuel gas heater                        | Potential      |                     | 1.08E-06           | 4.04E-04                |                          |
| C                                      | Optimized      | _                   | 1.46E-04           | 6.26E-02                | _                        |
| Black start engine generator           | Potential      | 1.52E-04            |                    | 1.94E-04                |                          |
|                                        | Optimized      | 1.38E-01            | _                  | 3.01E-02                | _                        |
| Fire water pump                        | Potential      | 1.86E-04            |                    | 2.73E-03                |                          |
| 1 1                                    | Optimized      | 1.69E-01            | _                  | 4.23E-01                | _                        |
| Coal handling activities*              | Potential      |                     |                    |                         |                          |
| C                                      | Optimized      |                     | _                  | _                       | _                        |

Table 3-2. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for 1-Hour TAPs

| Source                                     | Emission Rates | Acrolein<br>(lb/hr) | Ammonia<br>(lb/hr) | Formaldehyde<br>(lb/hr) | Sulfuric Acid<br>(lb/hr) |
|--------------------------------------------|----------------|---------------------|--------------------|-------------------------|--------------------------|
| Gasoline Storage Tank                      | Potential      |                     |                    |                         |                          |
|                                            | Optimized      | _                   | _                  | _                       |                          |
| Proposed combined-cycle firing natural gas | Potential      | 1.44E-02            | 3.62E+01           | 1.63E+00                | 1.03E+00                 |
|                                            | Optimized      | 1.31E+01            | 4.89E+03           | 2.53E+02                | 6.18E+00                 |
| Proposed combined-cycle firing fuel oil    | Potential      | 0.00E+00            | 2.93E+01           | 6.03E-01                | 2.30E+00                 |
|                                            | Optimized      | 0.00E+00            | 3.96E+03           | 9.35E+01                | 1.38E+01                 |
| Proposed simple-cycle firing natural gas   | Potential      | 1.42E-02            |                    | 1.58E+00                | 1.90E-01                 |
|                                            | Optimized      | 1.29E+01            | _                  | 2.45E+02                | 1.14E+00                 |
| Proposed simple-cycle firing fuel oil      | Potential      |                     |                    | 6.03E-01                | 5.00E-01                 |
|                                            | Optimized      | _                   |                    | 9.35E+01                | 3.00E+00                 |
| Proposed auxiliary boiler                  | Potential      |                     |                    | 3.86E-03                |                          |
|                                            | Optimized      |                     |                    | 5.98E-01                |                          |
| Proposed fuel gas heater                   | Potential      |                     |                    | 3.31E-04                |                          |
|                                            | Optimized      | _                   |                    | 5.13E-02                |                          |
| Proposed dew point heater                  | Potential      |                     |                    | 5.74E-04                |                          |
|                                            | Optimized      |                     | —                  | 8.90E-02                |                          |
| Proposed firewater pump                    | Potential      | 1.72E-04            |                    | 2.19E-03                |                          |
|                                            | Optimized      | 1.57E-01            | _                  | 3.39E-01                |                          |

# Table 3-2. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for 1-Hour TAPs (Continued, Page 2 of 2)

\*Emissions for existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion

Source: ECT Calculations – Appendix A

Table 3-3. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Daily TAPs

| Source                                 | Emission<br>Rates | Chromic<br>Acid<br>(lb/hr) | Hexane<br>(lb/hr) | Manganese<br>(lb/hr) | Mercury<br>(lb/hr)   | Nickel<br>(lb/hr) | Sulfuric<br>Acid<br>(lb/hr) | Toluene<br>(lb/hr)   | Xylene<br>(lb/hr)    |
|----------------------------------------|-------------------|----------------------------|-------------------|----------------------|----------------------|-------------------|-----------------------------|----------------------|----------------------|
| Coal-fired Boiler 1 and 2*             | Potential         | 2.98E-03                   | 9.62E-04          | 3.85E-02             | 1.04E-02             | 8.48E-01†         | 2.48E+01                    | 2.36E-02†            | 3.04E-03†            |
|                                        | Optimized         | 2.98E-03                   | 9.62E-04          | 3.85E-02             | 1.04E-02             | 8.48E-01†         | 2.48E+01                    | 2.36E-02†            | 3.04E-03†            |
| Coal-fired Boiler 3*                   | Potential         | 3.49E-03                   | 1.26E-03          | 4.40E-02             | 1.14E-02             | 1.11E+00†         | 1.35E+00                    | 3.08E-02†            | 3.98E-03†            |
|                                        | Optimized         | 3.49E-03                   | 1.26E-03          | 4.40E-02             | 1.14E-02             | 1.11E+00†         | 1.35E+00                    | 3.08E-02†            | 3.98E-03†            |
| Lee IC Turbine 4                       | Potential         | 4.79E-04                   | —                 | 2.12E-01             | 3.22E-04             | 1.23E-03          | 3.49E+00                    | 9.95E-02             | 6.93E-02             |
|                                        | Optimized         | 1.65E-01                   |                   | 3.88E+01             | 7.37E-01             | 7.13E-01          | 2.09E+01                    | 4.34E+03             | 2.53E+03             |
| Lee IC Turbine 5                       | Potential         | 8.13E-04                   | —                 | 3.59E-01             | 5.46E-04             | 2.09E-03          | 5.92E+00                    | 1.69E-01             | 1.18E-01             |
|                                        | Optimized         | 2.80E-01                   |                   | 6.57E+01             | 1.25E+00             | 1.21E+00          | 3.55E+01                    | 7.38E+03             | 4.30E+03             |
| Lee IC Turbine 6                       | Potential         | 8.13E-04                   | —                 | 3.59E-01             | 5.46E-04             | 2.09E-03          | 5.92E+00                    | 1.69E-01             | 1.18E-01             |
|                                        | Optimized         | 2.80E-01                   |                   | 6.57E+01             | 1.25E+00             | 1.21E+00          | 3.55E+01                    | 7.38E+03             | 4.30E+03             |
| Lee IC Turbine 7                       | Potential         | 8.13E-04                   | —                 | 3.59E-01             | 5.46E-04             | 2.09E-03          | 5.92E+00                    | 1.69E-01             | 1.18E-01             |
|                                        | Optimized         | 2.80E-01                   | —                 | 6.57E+01             | 1.25E+00             | 1.21E+00          | 3.55E+01                    | 7.38E+03             | 4.30E+03             |
| Lee IC Turbine 10 and 11 (fuel oil)    | Potential         | 3.44E-03                   | —                 | 1.52E+00             | 2.31E-03             | 8.86E-03          | 3.71/3.77                   | 7.15E-01             | 4.98E-01             |
|                                        | Optimized         | 1.19E+00                   | —                 | 2.78E+02             | 5.29E+00             | 5.14E+00          | 1.86E+01/<br>2.26E+01       | 3.12E+04             | 1.81E+04             |
| Lee IC Turbine 10 and 11(natural gas)  | Potential         |                            |                   |                      |                      |                   |                             | 2.50E-01             | 1.23E-01             |
| Lee IC Turbine 10 and 11(natural gas)  | Optimized         | _                          | _                 | _                    |                      |                   | 6.55E+00<br>3.93E+01        | 2.50E-01<br>1.09E+04 | 4.48E+03             |
| Lee IC Turbine 12 and 13 (fuel oil)    | Potential         | 3.25E-03                   |                   | <br>1.44E+00         | 2.18E-03             |                   | 3.54/3.59                   | 6.76E-01             | 4.48E+03<br>4.70E-01 |
| Lee IC Turbline 12 and 13 (luer on)    | Optimized         | 1.12E+00                   |                   | 2.64E+02             | 2.18E-03<br>4.99E+00 | 4.85E+00          | 2.12E+01/                   | 2.95E+04             | 4.70E-01<br>1.71E+04 |
|                                        | Optimized         | 1.12E+00                   | _                 | 2.04L+02             | 4.99E+00             | 4.83E+00          | 2.12E+01/<br>2.15E+01       | 2.95E+04             | 1./1E+04             |
| Lee IC Turbine 12 and 13 (natural gas) | Potential         |                            |                   |                      |                      |                   | 6.19E+00                    | 2.36E-01             | 1.16E-01             |
|                                        | Optimized         | _                          | _                 | _                    | _                    | _                 | 3.71E+01                    | 1.03E+04             | 4.23E+03             |
| Lee IC Turbine 14 (fuel oil)           | Potential         | 3.63E-03                   |                   | 1.60E+00             | 2.44E-03             | 9.34E-03          | 3.96E+00                    | 7.54E-01             | 5.25E-01             |
|                                        | Optimized         | 1.25E+00                   |                   | 2.93E+02             | 5.58E+00             | 5.42E+00          | 2.38E+01                    | 3.29E+04             | 1.91E+04             |
| Lee IC Turbine 14 (natural gas)        | Potential         |                            |                   |                      |                      |                   | 6.60E+00                    | 2.52E-01             | 1.24E-01             |
| (                                      | Optimized         |                            |                   |                      |                      |                   | 3.96E+01                    | 1.10E+04             | 4.52E+03             |
| Fuel gas heater                        | Potential         | 7.55E-06                   | 9.71E-03          | 2.05E-06             | 1.40E-06             | 1.13E-05          |                             | 1.83E-05             |                      |
|                                        | Optimized         | 2.60E-03                   | 4.11E+01          | 3.75E-04             | 3.20E-03             | 6.55E-03          |                             | 7.99E-01             |                      |
| Black start engine generator           | Potential         |                            |                   |                      |                      |                   |                             | 6.72E-04             | 4.68E-04             |
| 5 5                                    | Optimized         |                            |                   |                      |                      |                   |                             | 2.93E+01             | 1.71E+01             |
| Firewater pump                         | Potential         |                            |                   |                      |                      |                   |                             | 8.22E-04             | 5.73E-04             |
| 1 1                                    | Optimized         | _                          |                   | _                    | _                    |                   | _                           | 3.59E+01             | 2.09E+01             |
| Coal handling activities*              | Potential         | 1.08E-05                   |                   | 1.90E-05             | 6.96E-08             | 1.08E-05          |                             |                      |                      |
|                                        | Optimized         | 3.73E-03                   |                   | 3.48E-03             | 1.59E-04             | 6.26E-03          | _                           | _                    | _                    |
| Gasoline Storage Tank                  | Potential         |                            | 1.01E-03          |                      |                      |                   |                             | 4.77E-03             | 1.64E-03             |
|                                        | Optimized         |                            | 4.28E+00          |                      |                      |                   |                             | 2.08E+02             | 5.98E+01             |

Table 3-3. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Daily TAPs (Continued, Page 2 of 2)

| Source                                     | Emission<br>Rates      | Chromic<br>Acid<br>(lb/hr) | Hexane<br>(lb/hr)    | Manganese<br>(lb/hr) | Mercury<br>(lb/hr)   | Nickel<br>(lb/hr)    | Sulfuric<br>Acid<br>(lb/hr) | Toluene<br>(lb/hr)   | Xylene<br>(lb/hr)    |
|--------------------------------------------|------------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------|----------------------|
| Proposed combined-cycle firing natural gas | Potential<br>Optimized | 6.22E-04<br>2.15E-01       | 7.99E-01<br>3.38E+03 | 1.69E-04<br>3.09E-02 | 1.15E-04<br>2.63E-01 | 9.33E-04<br>5.41E-01 | 1.03E+00<br>6.18E+00        | 2.94E-01<br>1.28E+04 | 1.44E-01<br>5.25E+03 |
| Proposed combined-cycle firing fuel oil    | Potential<br>Optimized | 2.37E-02<br>8.18E+00       |                      | 1.70E+00<br>3.11E+02 | 2.58E-03<br>5.90E+00 | 9.90E-03<br>5.74E+00 | 2.30E+00<br>1.38E+01        |                      |                      |
| Proposed simple-cycle firing natural gas   | Potential<br>Optimized |                            |                      |                      |                      |                      | 1.90E-01<br>1.14E+00        | 2.89E-01<br>1.26E+04 | 1.42E-01<br>5.18E+03 |
| Proposed simple-cycle firing fuel oil      | Potential<br>Optimized | 2.37E-02<br>8.18E+00       |                      | 1.70E+00<br>3.11E+02 | 2.58E-03<br>5.90E+00 | 9.90E-03<br>5.74E+00 | 5.00E-01<br>3.00E+00        |                      |                      |
| Proposed auxiliary boiler                  | Potential<br>Optimized | 7.20E-05<br>2.48E-02       | 9.26E-02<br>3.92E+02 | 1.95E-05<br>3.57E-03 | 1.34E-05<br>3.07E-02 | 1.08E-04<br>6.26E-02 |                             | 1.75E-04<br>7.64E+00 |                      |
| Proposed fuel gas heater                   | Potential<br>Optimized | 6.18E-06<br>2.13E-03       | 7.94E-03<br>3.36E+01 | 1.68E-06<br>3.07E-04 | 1.15E-06<br>2.63E-03 | 9.26E-06<br>5.37E-03 |                             | 1.50E-05<br>6.55E-01 |                      |
| Proposed dew point heater                  | Potential<br>Optimized | 1.07E-05<br>3.69E-03       | 1.38E-02<br>5.84E+01 | 2.91E-06<br>5.33E-04 | 1.99E-06<br>4.55E-03 | 1.61E-05<br>9.34E-03 |                             | 2.60E-05<br>1.14E+00 |                      |
| Proposed firewater pump                    | Potential<br>Optimized |                            |                      |                      |                      |                      |                             | 7.59E-04<br>3.31E+01 | 5.29E-04<br>1.93E+01 |

\*Emissions for existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion.

Source: ECT Calculations – Appendix A

| Source                                | Emission Rates | 1,3-Butadiene<br>(lb/hr) | Arsenic<br>(lb/hr) | Benzene<br>(lb/hr) | Beryllium<br>(lb/hr) | Cadmium<br>(lb/hr) |
|---------------------------------------|----------------|--------------------------|--------------------|--------------------|----------------------|--------------------|
| Coal-fired Boiler 1 and 2*            | Actual         | 1.01E-07                 | 2.61E-06           | 5.45E-07           | 3.04E-07             | 5.59E-07           |
|                                       | Potential      | 2.08E-01*                | 3.25E-02           | 7.66E-03           | 3.65E-03             | 7.34E-03           |
|                                       | Optimized      | 2.08E-01*                | 3.25E-02           | 7.66E-03           | 3.65E-03             | 7.34E-03           |
| Coal-fired Boiler 3*                  | Actual         | 7.49E-08                 | 3.22E-06           | 7.35E-07           | 3.67E-07             | 7.14E-07           |
|                                       | Potential      | 2.71E-01*                | 3.52E-02           | 1.00E-02           | 3.72E-03             | 8.57E-03           |
|                                       | Optimized      | 2.71E-01*                | 3.52E-02           | 1.00E-02           | 3.72E-03             | 8.57E-03           |
| Lee IC Turbine 4                      | Actual         | 3.60E-07                 | 2.02E-07           | 1.10E-06           | 6.35E-09             | 9.83E-08           |
|                                       | Potential      | 9.79E-04                 | 6.73E-04           | 3.37E-03           | 1.90E-05             | 2.94E-04           |
|                                       | Optimized      | 2.56E+00                 | 1.08E-03           | 1.31E-01           | 6.34E-02             | 5.88E-02           |
| Lee IC Turbine 5                      | Actual         | 3.92E-07                 | 2.66E-07           | 1.40E-06           | 7.81E-09             | 1.26E-07           |
|                                       | Potential      | 1.66E-03                 | 1.14E-03           | 5.71E-03           | 3.22E-05             | 4.99E-04           |
|                                       | Optimized      | 4.34E+00                 | 1.82E-03           | 2.23E-01           | 1.08E-01             | 9.98E-02           |
| Lee IC Turbine 6                      | Actual         | 3.92E-07                 | 2.66E-07           | 1.33E-06           | 7.64E-09             | 1.26E-07           |
|                                       | Potential      | 1.66E-03                 | 1.14E-03           | 5.71E-03           | 3.22E-05             | 4.99E-04           |
|                                       | Optimized      | 4.34E+00                 | 1.82E-03           | 2.23E-01           | 1.08E-01             | 9.98E-02           |
| Lee IC Turbine 7                      | Actual         | 3.43E-07                 | 2.96E-07           | 1.48E-06           | 8.43E-09             | 1.31E-07           |
|                                       | Potential      | 1.66E-03                 | 1.14E-03           | 5.71E-03           | 3.22E-05             | 4.99E-04           |
|                                       | Optimized      | 4.34E+00                 | 1.82E-03           | 2.23E-01           | 1.08E-01             | 9.98E-02           |
| Lee IC Turbine 10 and 11 (fuel oil)   | Actual         | 1.49E-06/                | 1.04E-06/          | 5.15E-06/          | 2.77E-08/            | 4.51E-07/          |
|                                       |                | 7.17E-07                 | 5.00E-07           | 2.49E-06           | 1.32E-08             | 2.17E-07           |
|                                       | Potential      | 7.03E-03                 | 4.84E-03           | 2.42E-02           | 1.36E-04             | 2.11E-03           |
|                                       | Optimized      | 1.84E+01                 | 7.74E-03           | 9.44E-01           | 4.54E-01             | 4.22E-01           |
| Lee IC Turbine 10 and 11(natural gas) | Actual         | 7.94E-08/                |                    | 2.06E-06/          |                      |                    |
|                                       |                | 3.15E-08                 |                    | 8.78E-07           | —                    |                    |
|                                       | Potential      | 1.89E-04                 | _                  | 5.27E-03           | _                    | _                  |
|                                       | Optimized      | 4.95E-01                 | _                  | 2.06E-01           | _                    | _                  |
| Lee IC Turbine 12 and 13 (fuel oil)   | Actual         | 7.55E-07/                | 5.19E-07/          | 2.59E-06/          | 1.87E-08/            | 2.27E-07/          |
| × ,                                   |                | 8.92E-07                 | 6.13E-07           | 3.07E-06           | 2.20E-08             | 2.68E-07           |
|                                       | Potential      | 6.65E-03                 | 4.57E-03           | 2.28E-02           | 1.29E-04             | 1.99E-03           |
|                                       | Optimized      | 1.74E+01                 | 7.31E-03           | 8.89E-01           | 4.31E-01             | 3.98E-01           |

Table 3-4. Worst-Case Emission Rates (Actual, Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs

| Source                                     | Emission Rates | 1,3-Butadiene<br>(lb/hr) | Arsenic<br>(lb/hr) | Benzene<br>(lb/hr) | Beryllium<br>(lb/hr) | Cadmium<br>(lb/hr) |
|--------------------------------------------|----------------|--------------------------|--------------------|--------------------|----------------------|--------------------|
| Lee IC Turbine 12 and 13 (natural gas)     | Actual         | 5.47E-08/                |                    | 1.53E-06/          |                      |                    |
| te le l'ulonie 12 and 15 (natural gas)     |                | 5.90E-08                 | —                  | 1.64E-06           | —                    | —                  |
|                                            | Potential      | 1.79E-04                 | _                  | 4.98E-03           | _                    |                    |
|                                            | Optimized      | 4.68E-01                 | _                  | 1.94E-01           | _                    |                    |
| Lee IC Turbine 14 (fuel oil)               | Actual         | 7.42E-03                 | 5.10E-03           | 2.55E-02           | 1.44E-04             | 2.23E-03           |
|                                            | Potential      | 7.42E-03                 | 5.10E-03           | 2.55E-02           | 1.44E-04             | 2.23E-03           |
|                                            | Optimized      | 1.94E+01                 | 8.16E-03           | 9.95E-01           | 4.81E-01             | 4.46E-01           |
| Lee IC Turbine 14 (natural gas)            | Actual         | 1.90E-04                 |                    | 5.32E-03           |                      |                    |
|                                            | Potential      | 1.90E-04                 | _                  | 5.32E-03           | _                    |                    |
|                                            | Optimized      | 4.97E-01                 | _                  | 2.07E-01           | _                    |                    |
| Fuel gas heater                            | Actual         |                          |                    | 3.60E-09           | 2.06E-11             | 1.89E-09           |
| 8                                          | Potential      |                          | _                  | 2.59E-06           | 1.48E-08             | 1.35E-06           |
|                                            | Optimized      |                          | _                  | 1.01E-04           | 4.94E-05             | 2.70E-04           |
| Black start engine generator               | Actual         | 3.67E-06                 |                    | 8.75E-05           |                      |                    |
| 0 0                                        | Potential      | 3.67E-06                 | _                  | 8.75E-05           | _                    |                    |
|                                            | Optimized      | 9.60E-03                 | _                  | 3.41E-03           | —                    |                    |
| Firewater pump                             | Actual         | 4.48E-06                 |                    | 1.07E-04           |                      |                    |
| 1 1                                        | Potential      | 4.48E-06                 | _                  | 1.07E-04           | _                    |                    |
|                                            | Optimized      | 1.17E-02                 | _                  | 4.17E-03           | —                    |                    |
| Coal handling activities*                  | Actual         |                          | 8.86E-06           |                    | 1.83E-06             | 1.58E-06           |
| C                                          | Potential      | —                        | 8.86E-06           | —                  | 1.83E-06             | 1.58E-06           |
|                                            | Optimized      | _                        | 8.86E-06           | —                  | 1.83E-06             | 1.58E-06           |
| Gasoline Storage Tank                      | Actual         | <u> </u>                 |                    | 1.27E-03           |                      |                    |
| C                                          | Potential      |                          | _                  | 1.27E-03           | _                    |                    |
|                                            | Optimized      | _                        | _                  | 4.96E-02           | —                    |                    |
| Proposed combined-cycle firing natural gas | Actual         | 9.67E-04                 | 8.88E-05           | 2.79E-02           | 5.33E-06             | 4.89E-04           |
|                                            | Potential      | 9.67E-04                 | 8.88E-05           | 2.79E-02           | 5.33E-06             | 4.89E-04           |
|                                            | Optimized      | 2.53E+00                 | 1.42E-04           | 1.09E+00           | 1.78E-02             | 9.78E-02           |
| Proposed combined-cycle firing fuel oil    | Actual         | 3.93E-03                 | 2.70E-03           | 1.35E-02           | 7.62E-05             | 1.18E-03           |
|                                            | Potential      | 3.93E-03                 | 2.70E-03           | 1.35E-02           | 7.62E-05             | 1.18E-03           |
|                                            | Optimized      | 1.03E+01                 | 4.32E-03           | 5.27E-01           | 2.54E-01             | 2.36E-01           |

# Table 3-4. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs (Continued, Page 2 of 3)

| Source                                   | Emission Rates | 1,3-Butadiene<br>(lb/hr) | Arsenic<br>(lb/hr) | Benzene<br>(lb/hr) | Beryllium<br>(lb/hr) | Cadmium<br>(lb/hr) |
|------------------------------------------|----------------|--------------------------|--------------------|--------------------|----------------------|--------------------|
| Proposed simple-cycle firing natural gas | Actual         | 2.18E-04                 |                    | 6.09E-03           |                      |                    |
|                                          | Potential      | 2.18E-04                 | _                  | 6.09E-03           |                      |                    |
|                                          | Optimized      | 5.71E-01                 | _                  | 2.38E-01           | _                    |                    |
| Proposed simple-cycle firing fuel oil    | Actual         | 3.93E-03                 | 2.70E-03           | 1.35E-02           | 7.62E-05             | 1.18E-03           |
|                                          | Potential      | 3.93E-03                 | 2.70E-03           | 1.35E-02           | 7.62E-05             | 1.18E-03           |
|                                          | Optimized      | 1.03E+01                 | 4.32E-03           | 5.27E-01           | 2.54E-01             | 2.36E-01           |
| Proposed auxiliary boiler                | Actual         |                          | 1.03E-05           | 1.08E-04           | 6.17E-07             | 5.66E-05           |
|                                          | Potential      | —                        | 1.03E-05           | 1.08E-04           | 6.17E-07             | 5.66E-05           |
|                                          | Optimized      | —                        | 1.65E-05           | 4.21E-03           | 2.06E-03             | 1.13E-02           |
| Proposed fuel gas heater                 | Actual         |                          | 8.82E-07           | 9.26E-06           | 5.29E-08             | 4.85E-06           |
|                                          | Potential      | —                        | 8.82E-07           | 9.26E-06           | 5.29E-08             | 4.85E-06           |
|                                          | Optimized      | —                        | 1.41E-06           | 3.61E-04           | 1.77E-04             | 9.70E-04           |
| Proposed dew point heater                | Actual         |                          | 1.53E-06           | 1.61E-05           | 9.18E-08             | 8.41E-06           |
|                                          | Potential      | —                        | 1.53E-06           | 1.61E-05           | 9.18E-08             | 8.41E-06           |
|                                          | Optimized      | —                        | 2.45E-06           | 6.28E-04           | 3.07E-04             | 1.68E-03           |
| Proposed firewater pump                  | Actual         | 4.14E-06                 |                    | 9.88E-05           |                      |                    |
|                                          | Potential      | 4.14E-06                 | —                  | 9.88E-05           | _                    |                    |
|                                          | Optimized      | 1.08E-02                 | _                  | 3.85E-03           | _                    |                    |

# Table 3-4. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs (Continued, Page 3 of 3)

\*Emissions for the existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion.

Source: ECT Calculations – Appendix A

| Source                                 | Emission Rates | Acrolein<br>(lb/hr) | Ammonia<br>(lb/hr) | Formaldehyde<br>(lb/hr) | Sulfuric Acid<br>(lb/hr) |
|----------------------------------------|----------------|---------------------|--------------------|-------------------------|--------------------------|
| Coal-fired Boiler 1 and 2*             | Potential      | 3.73E-03            |                    | 3.53E-02†               | 2.48E+01                 |
|                                        | Optimized      | 3.73E-03            |                    | 3.53E-02†               | 2.48E+01                 |
| Coal-fired Boiler 3*                   | Potential      | 4.88E-03            | 2.50E+00           | 4.62E-02†               | 1.35E+00                 |
|                                        | Optimized      | 4.88E-03            | 2.50E+00           | 4.62E-02†               | 1.35E+00                 |
| Lee IC Turbine 4                       | Potential      | 1.70E-02            | _                  | 7.50E-02                | 3.49E+00                 |
|                                        | Optimized      | 1.55E+01            |                    | 1.16E+01                | 1.15E+01                 |
| Lee IC Turbine 5                       | Potential      | 2.89E-02            |                    | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            | _                  | 1.97E+01                | 1.95E+01                 |
| Lee IC Turbine 6                       | Potential      | 2.89E-02            |                    | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            | —                  | 1.97E+01                | 1.95E+01                 |
| Lee IC Turbine 7                       | Potential      | 2.89E-02            | —                  | 1.27E-01                | 5.92E+00                 |
|                                        | Optimized      | 2.63E+01            | —                  | 1.97E+01                | 1.95E+01                 |
| Lee IC Turbine 10 and 11 (fuel oil)    | Potential      | 1.22E-01            |                    | 5.39E-01                | 8.11E+00                 |
|                                        | Optimized      | 1.11E+02            | _                  | 8.36E+01                | 2.68E+01                 |
| Lee IC Turbine 10 and 11(natural gas)  | Potential      | 1.23E-02            | —                  | 1.37E+00                | 9.10E-01                 |
|                                        | Optimized      | 1.12E+01            | —                  | 2.12E+02                | 3.00E+00                 |
| Lee IC Turbine 12 and 13 (fuel oil)    | Potential      | 1.16E-01            |                    | 5.09E-01                | 8.09E+00                 |
|                                        | Optimized      | 1.05E+02            | —                  | 7.89E+01                | 2.67E+01                 |
| Lee IC Turbine 12 and 13 (natural gas) | Potential      | 1.16E-02            |                    | 1.29E+00                | 8.30E-01                 |
|                                        | Optimized      | 1.06E+01            | —                  | 2.00E+02                | 2.74E+00                 |
| Lee IC Turbine 14 (fuel oil)           | Potential      | 1.29E-01            |                    | 5.69E-01                | 8.01E+00                 |
|                                        | Optimized      | 1.17E+02            | —                  | 8.81E+01                | 2.64E+01                 |
| Lee IC Turbine 14 (natural gas)        | Potential      | 1.24E-02            | —                  | 1.38E+00                | 8.30E-01                 |
|                                        | Optimized      | 1.13E+01            | _                  | 2.14E+02                | 2.74E+00                 |
| Black start engine generator           | Potential      | 1.52E-04            |                    | 1.94E-03                |                          |
| 0 0                                    | Optimized      | 1.38E-01            | _                  | 3.01E-01                | _                        |
| Fire water pump                        | Potential      | 1.86E-04            | —                  | 2.37E-03                |                          |
| A A                                    | Optimized      | 1.69E-01            | _                  | 3.67E-01                | —                        |

Table 4-7. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for 1-Hour TAPs

Table 4-7. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for 1-Hour TAPs (Continued, Page 2 of 2)

| Source                                     | Emission Rates | Acrolein<br>(lb/hr) | Ammonia<br>(lb/hr) | Formaldehyde<br>(lb/hr) | Sulfuric Acid<br>(lb/hr) |
|--------------------------------------------|----------------|---------------------|--------------------|-------------------------|--------------------------|
| Coal handling activities*                  | Potential      |                     |                    |                         |                          |
| C                                          | Optimized      | _                   | _                  | _                       |                          |
| Gasoline storage tank                      | Potential      | —                   |                    | —                       | —                        |
| 2                                          | Optimized      | _                   | _                  | _                       | _                        |
| Proposed combined-cycle firing natural gas | Potential      | 1.44E-02            | 3.62E+01           | 1.63E+00                | 1.03E+00                 |
|                                            | Optimized      | 1.31E+01            | 4.89E+03           | 2.53E+02                | 3.40E+00                 |
| Proposed combined-cycle firing fuel oil    | Potential      |                     | 2.93E+01           | 6.03E-01                | 7.67E+01                 |
|                                            | Optimized      |                     | 3.96E+03           | 9.34E+01                | 2.53E+02                 |
| Proposed simple-cycle firing natural gas   | Potential      | 1.42E-02            |                    | 1.58E+00                | 1.90E-01                 |
|                                            | Optimized      | 1.30E+01            | —                  | 2.45E+02                | 6.27E-01                 |
| Proposed simple-cycle firing fuel oil      | Potential      | —                   |                    | 6.03E-01                | 1.67E-01                 |
|                                            | Optimized      |                     | —                  | 9.34E+01                | 5.50E+01                 |
| Proposed auxiliary boiler                  | Potential      | —                   |                    | 6.25E-03                |                          |
|                                            | Optimized      | <u> </u>            | <u> </u>           | 9.69E-01                |                          |
| Proposed dew point heater                  | Potential      | —                   |                    | 8.82E-04                |                          |
|                                            | Optimized      | <u> </u>            | <u> </u>           | 1.27E-01                |                          |
| Proposed firewater pump                    | Potential      | 3.93E-04            | _                  | 5.02E-03                | —                        |
| ~ ^ <b>^</b>                               | Optimized      | 3.58E-01            | —                  | 7.78E-01                |                          |

\*Emissions for existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion

Source: ECT, 2011.

Table 4-8. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Daily TAPs

| Source                                 | Emission<br>Rates      | Chromic<br>Acid<br>(lb/hr) | Hexane<br>(lb/hr)    | Manganese<br>(lb/hr) | Mercury<br>(lb/hr)   | Nickel<br>(lb/hr)      | Sulfuric<br>Acid<br>(lb/hr) | Toluene<br>(lb/hr)     | Xylene<br>(lb/hr)      |
|----------------------------------------|------------------------|----------------------------|----------------------|----------------------|----------------------|------------------------|-----------------------------|------------------------|------------------------|
| Coal-fired Boiler 1 and 2*             | Potential              | 2.98E-03                   | 9.62E-04             | 3.85E-02             | 1.04E-02             | 8.48E-01†              | 2.48E+01                    | 2.36E-02†              | 3.04E-03†              |
|                                        | Optimized              | 2.98E-03                   | 9.62E-04             | 3.85E-02             | 1.04E-02             | 8.48E-01†              | 2.48E+01                    | 2.36E-02†              | 3.04E-03†              |
| Coal-fired Boiler 3*                   | Potential<br>Optimized | 3.49E-03<br>3.49E-03       | 1.26E-03<br>1.26E-03 | 4.40E-02<br>4.40E-02 | 1.14E-02<br>1.14E-02 | 1.11E+00†<br>1.11E+00† | 1.35E+00<br>1.35E+00        | 3.08E-02†<br>3.08E-02† | 3.98E-03†<br>3.98E-03† |
| Lee IC Turbine 4                       | Potential              | 4.79E-03                   | 1.20E-03             | 2.12E-01             | 3.22E-04             | 1.23E-03               | 3.49E+00                    | 9.95E-02               | 6.93E-03               |
| Lee IC Turbine 4                       | Optimized              | 4.79E-04<br>1.48E-01       | _                    | 3.79E+01             | 7.24E-04             | 7.25E-03               | 6.98E+00                    | 1.98E+03               | 2.07E+03               |
| Lee IC Turbine 5                       | Potential              | 8.13E-01                   |                      | 3.59E-01             | 5.46E-04             | 2.09E-03               | 5.92E+00                    | 1.69E-01               | 1.18E-01               |
| Lee le Turbine 5                       | Optimized              | 2.52E-01                   | —                    | 6.43E+01             | 1.23E+00             | 1.23E+00               | 1.18E+01                    | 3.36E+03               | 3.51E+03               |
| Lee IC Turbine 6                       | Potential              | 8.13E-04                   |                      | 3.59E-01             | 5.46E-04             | 2.09E-03               | 5.92E+00                    | 1.69E-01               | 1.18E-01               |
|                                        | Optimized              | 2.52E-01                   |                      | 6.43E+01             | 1.23E+00             | 1.23E+00               | 1.18E+01                    | 3.36E+03               | 3.51E+03               |
| Lee IC Turbine 7                       | Potential              | 8.13E-04                   |                      | 3.59E-01             | 5.46E-04             | 2.09E-03               | 5.92E+00                    | 1.69E-01               | 1.18E-01               |
|                                        | Optimized              | 2.52E-01                   | <u> </u>             | 6.43E+01             | 1.23E+00             | 1.23E+00               | 1.18E+01                    | 3.36E+03               | 3.51E+03               |
| Lee IC Turbine 10 and 11 (fuel oil)    | Potential              | 3.44E-03                   |                      | 1.52E+00             | 2.31E-03             | 8.86E-03               | 8.11E+00                    | 7.15E-01               | 4.98E-01               |
|                                        | Optimized              | 1.07E+00                   |                      | 2.72E+02             | 5.20E+00             | 5.21E+00               | 1.62E+01                    | 1.42E+04               | 1.49E+04               |
| Lee IC Turbine 10 and 11(natural gas)  | Potential              |                            |                      |                      |                      |                        | 9.10E-01                    | 2.50E-01               | 1.23E-01               |
|                                        | Optimized              |                            | _                    | _                    |                      | _                      | 1.82E+00                    | 4.98E+03               | 3.68E+03               |
| Lee IC Turbine 12 and 13 (fuel oil)    | Potential              | 3.25E-03                   |                      | 1.44E+00             | 2.18E-03             | 8.37E-03               | 8.09E+00                    | 6.76E-01               | 4.70E-01               |
|                                        | Optimized              | 1.01E+00                   |                      | 2.57E+02             | 4.91E+00             | 4.92E+00               | 1.62E+01                    | 1.34E+04               | 1.41E+04               |
| Lee IC Turbine 12 and 13 (natural gas) | Potential              | _                          |                      | _                    |                      | _                      | 8.30E-01                    | 2.36E-01               | 1.16E-01               |
|                                        | Optimized              | <u> </u>                   |                      | <u> </u>             |                      |                        | 1.66E+00                    | 4.70E+03               | 3.48E+03               |
| Lee IC Turbine 14 (fuel oil)           | Potential              | 3.63E-03                   | —                    | 1.60E+00             | 2.44E-03             | 9.34E-03               | 8.01E+00                    | 7.54E-01               | 5.25E-01               |
|                                        | Optimized              | 1.12E+00                   |                      | 2.87E+02             | 5.48E+00             | 5.49E+00               | 1.60E+01                    | 1.50E+04               | 1.57E+04               |
| Lee IC Turbine 14 (natural gas)        | Potential              |                            | —                    | _                    |                      |                        | 8.30E-01                    | 2.52E-01               | 1.24E-01               |
|                                        | Optimized              |                            |                      |                      | <u></u>              |                        | 1.66E+00                    | 5.01E+03               | 3.71E+03               |
| Black start engine generator           | Potential              |                            | —                    | _                    |                      | _                      | —                           | 6.72E-04               | 4.68E-04               |
|                                        | Optimized              |                            |                      | <del></del>          | <del></del>          |                        |                             | 1.34E+01               | 1.40E+01               |
| Firewater pump                         | Potential              | —                          |                      | —                    | —                    | —                      |                             | 8.22E-04               | 5.73E-04               |
|                                        | Optimized              |                            | <del></del>          |                      |                      |                        | <del></del>                 | 1.63E+01               | 1.71E+01               |
| Coal handling activities*              | Potential              | 1.08E-05                   |                      | 1.90E-05             | 6.96E-08             | 1.08E-05               |                             | —                      | —                      |
|                                        | Optimized              | 1.08E-05                   |                      | 1.90E-05             | 6.96E-08             | 1.08E-05               | <u></u>                     |                        |                        |
| Gasoline storage tank                  | Potential              | —                          | 1.01E-03             | _                    | _                    | _                      | —                           | 4.77E-03               | 1.64E-03               |
|                                        | Optimized              |                            | 5.96E+00             |                      |                      |                        | —                           | 9.48E+01               | 4.90E+01               |

Table 4-8. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Daily TAPs (Continued, Page 2 of 2)

| Source                                     | Emission<br>Rates | Chromic<br>Acid<br>(lb/hr) | Hexane<br>(lb/hr) | Manganese<br>(lb/hr) | Mercury<br>(lb/hr) | Nickel<br>(lb/hr) | Sulfuric<br>Acid<br>(lb/hr) | Toluene<br>(lb/hr) | Xylene<br>(lb/hr) |
|--------------------------------------------|-------------------|----------------------------|-------------------|----------------------|--------------------|-------------------|-----------------------------|--------------------|-------------------|
| Proposed combined-cycle firing natural gas | Potential         | 6.22E-04                   | 7.99E-01          | 1.69E-04             | 1.15E-04           | 9.33E-04          | 1.03E+00                    | 2.94E-01           | 1.44E-01          |
|                                            | Optimized         | 1.93E-01                   | 4.72E+03          | 3.02E-02             | 2.60E-01           | 5.48E-01          | 2.06E+00                    | 5.84E+03           | 5.25E+03          |
| Proposed combined-cycle firing fuel oil    | Potential         | 2.37E-02                   |                   | 1.70E+00             | 2.58E-03           | 9.90E-03          | 7.67E+01                    |                    |                   |
|                                            | Optimized         | 7.34E+00                   | _                 | 3.04E+02             | 5.81E+00           | 5.82E+00          | 1.53E+02                    | _                  |                   |
| Proposed simple-cycle firing natural gas   | Potential         |                            |                   |                      |                    |                   | 1.90E-01                    | 2.89E-01           | 1.42E-01          |
|                                            | Optimized         | —                          |                   |                      |                    |                   | 3.80E+00                    | 5.75E+03           | 5.18E+03          |
| Proposed simple-cycle firing fuel oil      | Potential         | 2.37E-02                   |                   | 1.70E+00             | 2.58E-03           | 9.90E-03          | 1.67E+01                    |                    |                   |
|                                            | Optimized         | 7.34E+00                   |                   | 3.04E+02             | 5.80E+00           | 5.82E+00          | 3.33E+01                    |                    |                   |
| Proposed auxiliary boiler                  | Potential         | 7.20E-05                   | 9.26E-02          | 1.95E-05             | 1.34E-05           | 1.08E-04          | —                           | 1.75E-04           |                   |
|                                            | Optimized         | 2.23E-02                   | 5.46E+02          | 3.50E-03             | 3.01E-02           | 6.35E-02          |                             | 3.48E+00           |                   |
| Proposed dew point heater                  | Potential         | 5.49E-06                   | 7.06E-03          | 1.49E-06             | 1.02E-06           | 8.24E-06          | _                           | 1.33E-05           |                   |
|                                            | Optimized         | 1.70E-03                   | 4.17E+01          | 2.67E-04             | 2.30E-03           | 4.83E-03          | —                           | 2.64E-01           |                   |
| Proposed firewater pump                    | Potential         | —                          |                   | —                    |                    |                   | —                           | 1.74E-03           | 1.21E-03          |
|                                            | Optimized         | _                          | _                 | _                    | _                  | _                 | _                           | 3.46E+01           | 1.93E+01          |

\*Emissions for existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion.

Source: ECT, 2011.

| Source                                | Emission               | 1,3-Butadiene                     | Benzene                           | Beryllium                         | Cadmium                           |
|---------------------------------------|------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
|                                       | Rates                  | (lb/hr)                           | (lb/hr)                           | (lb/hr)                           | (lb/hr)                           |
| Coal-fired Boiler 1 and 2*            | Actual                 | 1.01E-07                          | 5.45E-07                          | 3.04E-07                          | 5.59E-07                          |
|                                       | Potential              | 2.08E-01†                         | 7.66E-03                          | 3.65E-03                          | 7.34E-03                          |
|                                       | Optimized              | 2.08E-01†                         | 7.66E-03                          | 3.65E-03                          | 7.34E-03                          |
| Coal-fired Boiler 3*                  | Actual                 | 7.49E-08                          | 7.35E-07                          | 3.67E-07                          | 7.14E-07                          |
|                                       | Potential              | 2.71E-01†                         | 1.00E-02                          | 3.72E-03                          | 8.57E-03                          |
|                                       | Optimized              | 2.71E-01†                         | 1.00E-02                          | 3.72E-03                          | 8.57E-03                          |
| Lee IC Turbine 4                      | Actual                 | 3.60E-07                          | 1.10E-06                          | 6.35E-09                          | 9.83E-08                          |
|                                       | Potential              | 4.29E-03                          | 1.47E-02                          | 8.31E-05                          | 1.29E-03                          |
|                                       | Optimized              | 5.28E+00                          | 2.75E-01                          | 5.32E-02                          | 6.71E-02                          |
| Lee IC Turbine 5                      | Actual                 | 3.92E-07                          | 1.40E-06                          | 7.81E-09                          | 1.26E-07                          |
|                                       | Potential              | 7.28E-03                          | 2.50E-02                          | 1.41E-04                          | 2.18E-03                          |
|                                       | Optimized              | 8.95E+00                          | 4.68E-01                          | 9.02E-02                          | 1.13E-02                          |
| Lee IC Turbine 6                      | Actual                 | 3.92E-07                          | 1.40E-06                          | 7.81E-09                          | 1.26E-07                          |
|                                       | Potential              | 7.28E-03                          | 2.50E-02                          | 1.41E-04                          | 2.18E-03                          |
|                                       | Optimized              | 8.95E+00                          | 4.68E-01                          | 9.02E-02                          | 1.13E-02                          |
| Lee IC Turbine 7                      | Actual                 | 3.92E-07                          | 1.40E-06                          | 7.81E-09                          | 1.26E-07                          |
|                                       | Potential              | 7.28E-03                          | 2.50E-02                          | 1.41E-04                          | 2.18E-03                          |
|                                       | Optimized              | 8.95+00                           | 4.68E-01                          | 9.02E-02                          | 1.13E-02                          |
| Lee IC Turbine 10 and 11 (fuel oil)   | Actual                 | 1.49E-06/<br>7.17E-07<br>7.03E-03 | 5.15E-06/<br>2.49E-06<br>2.42E-02 | 2.77E-08/<br>1.32E-08<br>1.36E-04 | 4.51E-07/<br>2.17E-07<br>2.11E-03 |
| Lee IC Turbine 10 and 11(natural gas) | Optimized<br>Actual    | 8.65E+00<br>7.94E-08/             | 4.53E-01<br>2.06E-06/             | 8.72E-02                          | 2.11E-03<br>1.10E-01              |
|                                       | Potential<br>Optimized | 3.15E-08<br>1.89E-04<br>2.32E-01  | 8.78E-07<br>5.27E-03<br>9.86E-02  |                                   |                                   |

Table 4-9. Worst-Case Emission Rates (Actual, Potential, and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs

| Source                                 | Emission<br>Rates | 1,3-Butadiene | Benzene   | Beryllium | Cadmium   |
|----------------------------------------|-------------------|---------------|-----------|-----------|-----------|
| Lee IC Turbine 12 and 13 (fuel oil)    | Actual            | 7.55E-07/     | 2.59E-06/ | 1.87E-08/ | 2.27E-07/ |
|                                        |                   | 8.92E-07      | 3.07E-06  | 2.20E-08  | 2.68E-07  |
|                                        | Potential         | 6.65E-03      | 2.28E-02  | 1.29E-04  | 1.99E-03  |
|                                        | Optimized         | 8.17E+00      | 4.27E-01  | 8.24E-02  | 1.04E-01  |
| Lee IC Turbine 12 and 13 (natural gas) | Actual            | 5.47E-08/     | 1.53E-06/ |           |           |
|                                        |                   | 5.90E-08      | 1.64E-06  |           |           |
|                                        | Potential         | 1.79E-04      | 4.98E-03  |           |           |
|                                        | Optimized         | 2.20E-01      | 9.31E-02  |           | —         |
| Lee IC Turbine 14 (fuel oil)           | Actual            | 7.42E-03      | 2.55E-02  | 1.44E-04  | 2.23E-03  |
|                                        | Potential         | 7.42E-03      | 2.55E-02  | 1.44E-04  | 2.23E-03  |
|                                        | Optimized         | 9.13E+00      | 4.78E-01  | 9.21E-02  | 1.16E-01  |
| Lee IC Turbine 14 (natural gas)        | Actual            | 1.90E-04      | 5.32E-03  |           |           |
|                                        | Potential         | 1.90E-04      | 5.32E-03  | _         |           |
|                                        | Optimized         | 2.34E-01      | 9.95E-02  |           |           |
| Black start engine generator           | Actual            | 3.67E-06      | 8.75E-05  | —         |           |
| 0                                      | Potential         | 3.67E-06      | 8.75E-05  | _         |           |
|                                        | Optimized         | 4.51E-03      | 1.64E-03  | _         |           |
| Firewater pump                         | Actual            | 4.48E-06      | 1.07E-04  | —         |           |
|                                        | Potential         | 4.48E-06      | 1.07E-04  |           |           |
|                                        | Optimized         | 5.51E-03      | 2.00E-03  | _         |           |
| Coal handling activities*              | Actual            |               |           | 1.83E-06  | 1.58E-06  |
| C                                      | Potential         |               | —         | 1.83E-06  | 1.58E-06  |
|                                        | Optimized         |               | —         | 1.83E-06  | 1.58E-06  |
| Gasoline storage tank                  | Actual            |               | 1.27E-03  |           |           |
| č                                      | Potential         |               | 1.27E-03  |           | _         |
|                                        | Optimized         |               | 2.37E-02  |           |           |

Table 4-9. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs (Continued, Page 2 of 3)

| Table 4-9. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Annual TAPs (Con- |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| tinued, Page 3 of 3)                                                                                                                         |  |

| Source                                     | Emission<br>Rates | 1,3-Butadiene | Benzene  | Beryllium | Cadmium  |
|--------------------------------------------|-------------------|---------------|----------|-----------|----------|
| Proposed combined-cycle firing natural gas | Actual            | 9.67E-04      | 2.79E-02 | 5.33E-06  | 4.89E-04 |
|                                            | Potential         | 9.67E-04      | 2.79E-02 | 5.33E-06  | 4.89E-04 |
|                                            | Optimized         | 1.19E+00      | 5.22E-01 | 3.41E-03  | 2.54E-02 |
| Proposed combined-cycle firing fuel oil    | Actual            | 3.44E-02      | 1.18E-01 | 6.67E-04  | 1.03E-02 |
|                                            | Potential         | 3.44E-02      | 1.18E-01 | 6.67E-04  | 1.03E-02 |
|                                            | Optimized         | 4.23E+01      | 2.21E+00 | 4.27E-01  | 5.36E-01 |
| Proposed simple-cycle firing natural gas   | Actual            | 9.56E-04      | 2.67E-02 | —         |          |
|                                            | Potential         | 9.56E-04      | 2.67E-02 |           |          |
|                                            | Optimized         | 1.18E+00      | 4.99E-01 | _         |          |
| Proposed simple-cycle firing fuel oil      | Actual            | 3.44E-02      | 1.18E-01 | 6.67E-04  | 1.03E-02 |
|                                            | Potential         | 3.44E-02      | 1.18E-01 | 6.67E-04  | 1.03E-02 |
|                                            | Optimized         | 4.23E+01      | 2.21E+00 | 4.27E-01  | 5.36E-01 |
| Proposed auxiliary boiler                  | Actual            |               | 1.75E-04 | 1.00E-06  | 9.17E-05 |
| 1 2                                        | Potential         |               | 1.75E-04 | 1.00E-06  | 9.17E-05 |
|                                            | Optimized         |               | 3.27E-03 | 6.40E-04  | 4.77E-03 |
| Proposed dew point heater                  | Actual            | _             | 2.47E-05 | 1.41E-07  | 1.29E-05 |
| * *                                        | Potential         |               | 2.47E-05 | 1.41E-07  | 1.29E-05 |
|                                            | Optimized         | _             | 4.62E-04 | 9.02E-05  | 6.71E-04 |
| Proposed firewater pump                    | Actual            | 9.48E-06      | 2.26E-04 | —         | —        |
| * * * *                                    | Potential         | 9.48E-06      | 2.26E-04 | _         |          |
|                                            | Optimized         | 1.17E-02      | 4.23E-03 |           |          |

\*Emissions for the existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion.

Source: ECT, 2011.

| Source                                | Emission<br>Rates | Scenario 1<br>(lb/hr) | Scenario 2<br>(lb/hr) |
|---------------------------------------|-------------------|-----------------------|-----------------------|
| Coal-fired Boiler 1 and 2*            | Actual            | 2.61E-06              |                       |
|                                       | Potential         | 3.25E-02              | _                     |
|                                       | Optimized         | 3.25E-02              | _                     |
| Coal-fired Boiler 3*                  | Actual            | 3.22E-06              |                       |
|                                       | Potential         | 3.52E-02              | _                     |
|                                       | Optimized         | 3.52E-02              | —                     |
| Lee IC Turbine 4                      | Actual            | 2.02E-07              | 2.02E-07              |
|                                       | Potential         | 2.95E-03              | 6.73E-04              |
|                                       | Optimized         | 2.95E-03              | 1.08E-03              |
| Lee IC Turbine 5                      | Actual            | 2.66E-07              | 2.66E-07              |
|                                       | Potential         | 5.01E-03              | 1.14E-03              |
|                                       | Optimized         | 1.82E-03              | 1.82E-03              |
| Lee IC Turbine 6                      | Actual            | 2.66E-07              | 2.66E-07              |
|                                       | Potential         | 5.01E-03              | 5.01E-03              |
|                                       | Optimized         | 1.82E-03              | 1.82E-03              |
| Lee IC Turbine 7                      | Actual            | 2.96E-07              | 2.96E-07              |
|                                       | Potential         | 5.01E-03              | 5.01E-03              |
|                                       | Optimized         | 1.82E-03              | 1.82E-03              |
| Lee IC Turbine 10 and 11 (fuel oil)   | Actual            | 1.04E-06/             | 1.04E-06/             |
|                                       |                   | 5.00E-07              | 5.00E-07              |
|                                       | Potential         | 4.84E-03              | 4.84E-03              |
|                                       | Optimized         | 4.84E-03              | 4.84E-03              |
| Lee IC Turbine 10 and 11(natural gas) | Actual            | —                     | —                     |
|                                       | Potential         | —                     | —                     |
|                                       | Optimized         | —                     | —                     |
|                                       |                   |                       |                       |

Table 4-13. Worst-Case Emission Rates (Actual, Potential, and Optimized) for Existing and Proposed Equipment at the Lee Facility for Arsenic

| Source                                 | Emission<br>Rates | Scenario 1<br>(lb/hr) | Scenario 2<br>(lb/hr) |
|----------------------------------------|-------------------|-----------------------|-----------------------|
| Lee IC Turbine 12 and 13 (fuel oil)    | Actual            | 5.19E-07/<br>6.13E-07 | 5.19E-07/<br>6.13E-07 |
|                                        | Potential         | 4.57E-03              | 4.57E-03              |
|                                        | Optimized         | 4.57E-03              | 4.57E-03              |
| Lee IC Turbine 12 and 13 (natural gas) | Actual            | —                     | —                     |
|                                        | Potential         | —                     | —                     |
|                                        | Optimized         |                       |                       |
| Lee IC Turbine 14 (fuel oil)           | Actual            | 5.10E-03              | 5.10E-03              |
|                                        | Potential         | 5.10E-03              | 5.10E-03              |
|                                        | Optimized         | 5.10E-03              | 5.10E-03              |
| Lee IC Turbine 14 (natural gas)        | Actual            | —                     |                       |
|                                        | Potential         | _                     |                       |
|                                        | Optimized         | —                     | —                     |
| Black start engine generator           | Actual            | —                     | —                     |
|                                        | Potential         | _                     |                       |
|                                        | Optimized         | _                     |                       |
| Firewater pump                         | Actual            | _                     | —                     |
|                                        | Potential         |                       |                       |
|                                        | Optimized         | —                     | —                     |
| Coal handling activities*              | Actual            | 8.86E-06              |                       |
| -                                      | Potential         | 8.86E-06              |                       |
|                                        | Optimized         | 8.86E-06              | <u> </u>              |
| Gasoline storage tank                  | Actual            |                       |                       |
| -                                      | Potential         | _                     |                       |
|                                        | Optimized         | —                     | —                     |

Table 4-13. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Arsenic (Continued, Page 2 of 3)

#### Table 4-13. Worst-Case Emission Rates (Potential and Optimized) for Existing and Proposed Equipment at the Lee Facility for Arsenic (Continued, Page 3 of 3)

| Source                                     | Emission<br>Rates | Scenario 1<br>(lb/hr) | Scenario 2<br>(lb/hr) |
|--------------------------------------------|-------------------|-----------------------|-----------------------|
| Proposed combined-cycle firing natural gas | Actual            | 8.88E-05              | 8.88E-05              |
|                                            | Potential         | 8.88E-05              | 8.88E-05              |
|                                            | Optimized         | 1.42E-04              | 1.42E-04              |
| Proposed combined-cycle firing fuel oil    | Actual            | 1.89E-02              | 2.37E-02              |
|                                            | Potential         | 1.89E-02              | 2.37E-02              |
|                                            | Optimized         | 4.32E-03              | 4.32E-03              |
| Proposed simple-cycle firing natural gas   | Actual            | —                     |                       |
|                                            | Potential         |                       |                       |
|                                            | Optimized         |                       |                       |
| Proposed simple-cycle firing fuel oil      | Actual            | 1.89E-02              | 2.37E-02              |
|                                            | Potential         | 1.89E-02              | 2.37E-02              |
|                                            | Optimized         | 4.32E-03              | 4.32E-03              |
| Proposed auxiliary boiler                  | Actual            | 1.67E-05              | 1.67E-05              |
| 1 2                                        | Potential         | 1.67E-05              | 1.67E-05              |
|                                            | Optimized         | 1.65E-05              | 1.65E-05              |
| Proposed dew point heater                  | Actual            | 2.35E-06              | 2.35E-06              |
|                                            | Potential         | 2.35E-06              | 2.35E-06              |
|                                            | Optimized         | 8.16E-07              | 8.16E-07              |
| Proposed firewater pump                    | Actual            | —                     |                       |
|                                            | Potential         | _                     | _                     |
|                                            | Optimized         |                       |                       |
|                                            | *                 |                       |                       |

\*Emissions for the existing coal-fired boilers and associated coal handling activities were not optimized. †Emissions represent the fuel oil combustion.

Source: ECT, 2011.

### **APPENDIX D**

### FACILITY DRAWINGS



| FEED SILO EHE SILO DUST<br>COLLECTOR(S) POND ASH<br>RECATM<br>STORAGE   ASH<br>STORAGE<br>DOME FIN Image: Collector (S) Image: Collector (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POLLUTION<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONTROL<br>CONT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|               | the second second second second second second second second second second second second second second second se |                               |                   |          |                                  |
|---------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|----------|----------------------------------|
|               | FUGITIVE I                                                                                                      | EMISSIONS/EMISS               | SIONS POINT L     | OCATIONS |                                  |
| LOCATION<br># | DESCRIPTION                                                                                                     | APPROX.<br>DIMENSIONS         | BASE<br>ELEVATION | HEIGHT   | COORDINATES<br>(UTM ZONE 17)     |
| FEP1          | WET ASH RECEIVING -<br>TRANSFER TO SHED                                                                         | 133'-0" X 121'-0"             | 100'-0"           | 5'-0"    | 763602.00 m E,<br>3918135.00 m N |
| FEP2          | WET ASH RECEIVING -<br>TRANSFER TO HOPPER                                                                       | 36'-0" X 70'-0"               | 100'-0"           | 10'-0"   | 763612.40m E,<br>3918127.49 m N  |
| FEP3          | UNLOADING PILE                                                                                                  | 13'-0" x 45'-0"               | 100'-0"           | 4'-0"    | 763614.14 m E,<br>3918149.15 m N |
| EP30          | FEED SILO (1500 TON)                                                                                            | 40'-0" Ø                      | 96'-0"            | 111'-0"  | 763692.00 m E,<br>3918059.00 m N |
| EP31          | STAR REACTOR (EXHAUST<br>STACK)                                                                                 | 10'-0" Ø                      | 97'-0"            | 110"-0"  | 763708.58 m E,<br>3918096.09 m N |
| EP32          | FGD BYPRODUCT SILO                                                                                              | N/A                           | 97'-0"            | 65'-0"   | 763723.30 m E,<br>3918081.52 m N |
| EP33          | FGD ABSORBENT SILO                                                                                              | 37'-0" X 42'-0"               | 96'-0"            | 100'-0"  | 763734.05 m E,<br>3918073.42 m N |
| EP34          | EHE 1 (DUST COLLECTOR)                                                                                          | 17'-0" x 30'-0"               | 98'-0"            | 65'-0"   | 763670.00 m E,<br>3918093.00 m N |
| EP35          | EHE 2 (DUST COLLECTOR)                                                                                          | 17'-0" x 30'-0"               | 98'-0"            | 65'-0"   | 763662.00 m E,<br>3918083.00 m N |
| EP36          | TRANSFER SILO (300 TON)                                                                                         | 14'-0" Ø                      | 97'-0"            | 100'-0"  | 763674.00 m E,<br>3918075.00 m N |
| EP37          | STORAGE DOME (ASH)                                                                                              | 120'-0" Ø                     | 95'-0"            | 125'-0"  | 763774.00 m E,<br>3918011.00 m N |
| EP38          | LOADOUT SILO (1500 TON)                                                                                         | 40'-0" Ø                      | 96'-0"            | 111'-0"  | 763792.00 m E,<br>3918037.00 m N |
| EP38A         | LOAD OUT SILO CHUTE 1A                                                                                          | 77'-0" X 84'-0"<br>(COMBINED) | 96'-0"            | 111'-0"  | 763789.00 m E,<br>3918033.00 m N |
| EP38B         | LOADOUT SILO CHUTE 1B                                                                                           | 77'-0" X 84'-0"<br>(COMBINED) | 96'-0"            | 111'-0"  | 763795.00 m E,<br>3918041.00 m N |
|               | FIN FANS                                                                                                        | 75'-0" X 30'-0"               | 0'-0"             | 45'-0"   |                                  |
|               | BAG HOUSE                                                                                                       | 15'-0" X 32'-0"               | 0'-0"             | 60'-0"   |                                  |
|               | CONTROL                                                                                                         | 80'-0" X 100'-0"              | 0'-0"             | 20'-0"   |                                  |
|               | PROPANE STATION                                                                                                 | 30'-0" X 30'-0"               | 0'-0"             | N/A      |                                  |



NOTES: - BASE ELEVATION IS TAKEN FROM SEA LEVEL AND TO BE CONSIDERED PRELIMINARY. - HEIGHTS ARE FROM BASE ELEVATION AND CONSIDERED APPROXIMATE. - COORDINATES ARE TO BE CONSIDERED APPROXIMATE.

60 0 25 50

| REV. | DESCRIPTION | CHK. | DATE | AP |
|------|-------------|------|------|----|
| REV. | DESCRIPTION | CHK. | DATE |    |





**APPENDIX E** 

AIR DISPERSION MODELING







### **APPENDIX F**

### NHSM DETERMINATION



#### North Carolina Department of Environment and Natural Resources

Pat McCrory Governor Donald R. van der Vaart Secretary

June 10, 2015

Mr. Jim Clayton The SEFA Group 217 Cedar Road Lexington, SC 29073

#### SUBJECT: Applicability Determination No. 2501 The SEFA Group Lexington, SC

Dear Mr. Clayton:

The North Carolina Division of Air Quality (DAQ) received your letter dated September 5, 2014, requesting the DAQ's concurrence with its determination of regulatory status of certain coal combustion residues, when used in its Staged Turbulent Air Reactor (STAR Reactor), in accordance with 40 CFR 241 "Solid Wastes Used As Fuels or Ingredients in Combustion Units" ("Solid Waste Definition Rule" or "Rule" hereinafter).

Specifically, SEFA Group (SEFA) requests the confirmation that coal ash obtained from the following specific sources meets the requirements in §241: flyash received directly from coal-fired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse), and processed flyash received from landfills and ash ponds.

Unless exempt, combustion of "non-hazardous secondary material (NHSM), as defined in §241.2 would subject the emissions unit (such as STAR reactor) to requirements in 40 CFR 60 Subpart CCCC "Standards of Performance for Commercial and Industrial Solid Waste Incineration Units" or, Subpart DDDD "Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units". These regulations are commonly known as CISWI ("Commercial and Industrial Solid Waste Incineration").

The DAQ has determined that the coal ash received directly from the coal-fired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse) is a NHSM and an "ingredient", as defined in §241.2. DAQ has further determined that this flyash meets the legitimacy criteria included in §241.3(d)(2) and thus, concludes that it is not a solid waste. Therefore, the STAR Reactor is not subject to the requirements in CISWI.

Moreover, the processed flyash received from landfills or ash ponds is a NHSM and an ingredient, and DAQ has determined that this flyash also meets the legitimacy criteria included in 241.3(d)(2), and thus, concludes that it is not a solid waste. Therefore, the STAR Reactor is not subject to the requirements in CISWI.

1641 Mail Service Center, Raleigh, North Carolina 27699-1641 Phone: 919-707-8400 / Internet: www.ncdenr.gov

The following includes discussion on STAR Reactor, and technical and regulatory analysis supporting these conclusions for each of the above types of flyash:

#### **STAR Reactor**

The STAR Reactor is a patented technology developed by SEFA for thermal beneficiation / processing of either a low or high-Btu value fine particulate matter, such as the above described flyash [hereinafter "feedstock"], along with other ingredient materials (gas, solids, and liquids) into a variety of commercial products. These products are used not only for application as a partial cement replacement but for many other commercial and industrial applications. There are several products which SEFA is currently capable of producing because of the flexibility embodied in this reactor. For example, STAR<sup>®</sup> RP, Ultrix<sup>®</sup>, Spherix<sup>®</sup>, Fortimix<sup>®</sup>, and Permanix<sup>TM</sup>.

The STAR Reactor process is inherently flexible in that operating parameters can be varied and different ingredients can be added to produce a desired product. The primary component of the STAR Reactor is a cylindrical refractory-lined vessel in which the majority of the process reactions take place. These reactions can include a range of both chemical and physical reactions. Air is required for pneumatic uplift of the solids and for the process reactions enters through the floor of the STAR Reactor as well as through the walls at multiple locations. The raw feedstock and any other ingredients are introduced through the walls of the STAR Reactor. All of the solids and gases exit together at the top of the reactor. The gas/solids mixture enters a hot cyclone where the majority of solids are separated from the gas and recycled back to the STAR Reactor. The very high rate of hot recycle solids increases the operating flexibility of the process. The process reactions can occur through this reactor/hot cyclone loop. Due to the high gas velocity, the multiple injection points, and the recycle solids, there is a significant amount of turbulence created which enhances the mixing of the ingredients and optimizes the reactions. The gas and remaining solids not collected by the hot cyclone are passed over a heat exchanger which can be designed to preheat the process air, used in heat recovery, or to simply cool the gas/solids mixture. Once cooled, the solids are separated from the gas in a fabric filter recovery device. Solids can also exit the STAR Reactor at the bottom or from the recycle loop. These solids can be combined with the solids/gas stream before the heat recovery equipment or, since they have different characteristics as compared to the solids exiting the hot cyclone, they can be processed separately for a particular application. By design the STAR Reactor operates under a wide range of process parameters.

#### **Technical and Regulatory Analysis**

Flyash Received Directly from Coal-fired Power Plant's Particulate Collection Infrastructure (i.e., Electrostatic precipitator or Baghouse)

As described above, the STAR Reactor is capable of utilizing flyash, received directly from coal-fired power plant's particulate emissions controls, as its primary ingredient along with other select ingredients in order to produce a variety of products for markets.

§241.2(b)(3) of the rule defines NHSM as "a secondary material that, when discarded, would not be identified as a hazardous waste under Part 261 of this chapter". Further the same section defines secondary material as "any material that is not the primary product of a manufacturing or commercial process, and can include post-consumer material, off-specification commercial chemical products or manufacturing chemical intermediates, post-industrial material, and scrap."

It is indisputable that flyash generated from combustion of coal is not a "primary product of a manufacturing" facility (such as electric generating facility) and this product can be deemed as "post-industrial material". Moreover, coal flyash is not regulated as a hazardous waste as per Part 261 of 40 CFR "Identification and Listing of Hazardous Waste". In fact, EPA has promulgated a rule on April 17, 2015 (80 FR 21302) to regulate disposal of coal combustion residues (fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers) [CCR] as solid waste under Subtitle D "State or Regional Solid Waste Plans" of the Resource Conservation Act (RCRA) [administrative regulations included in 40 CFR 257) and not under the Subtitle C of the RCRA "Hazardous Waste Management" [administrative regulations included in 40 CFR 261]. In addition, the beneficial uses (e.g., use of flyash in concrete manufacturing replacing traditional product cement) of CCR is exempt from this regulation.

Based, on the above discussion, it is concluded that the flyash generated from the coal combustion and received directly from coal-fired power plant's particulate emissions control devices, is a NHSM.

§241.3(b)(3) of the Solid Waste Definition Rule provides that NHSMs are not solid waste when "used as an ingredient in a combustion unit that meet the legitimacy criteria specified in paragraph (d)(2) of this section." §241.2 of the Solid Waste Definition Rule defines "ingredient" as "a non-hazardous secondary material that is a component in a compound, process or product." The feedstock is merely one component among a number of variables which are introduced to the STAR Reactor to produce many different products. Therefore, feedstock processed in the STAR Reactor is an ingredient under the Solid Waste Definition Rule.

#### Legitimacy Criteria

For a non-hazardous secondary material used as an ingredient to be excluded from the definition of solid waste under 241.3 of the Solid Waste Definition Rule, the material must satisfy the following legitimacy criteria under Subsection (d)(2):

- (i) The non-hazardous secondary material must be managed as a valuable commodity;
- (ii) The non-hazardous secondary material must provide a useful contribution to the production or manufacturing process.
- (iii) The non-hazardous secondary material must be used to produce a valuable product or intermediate.

(iv) The non-hazardous secondary material must result in products that contain contaminants at levels that are comparable in concentration to or lower than those found in traditional products that are manufactured without the non-hazardous secondary material.

#### Managed as a Valuable Commodity - §241.3(d)(2)(i)

SEFA stores its feedstock in silos and or covered shelters prior to using it as an ingredient in the STAR Reactor and conveys the material to the process equipment pneumatically. As per 241.3(d)(2)(i), the Solid Waste Definition Rule identifies the following three factors to be considered in determining whether a material is managed as a valuable commodity:

- (A) The storage of the non-hazardous secondary material prior to use must not exceed reasonable time frames;
- (B) Where there is an analogous ingredient, the non-hazardous secondary material must be managed in a manner consistent with the analogous ingredient or otherwise be adequately contained to prevent releases to the environment;
- (C) If there is no analogous ingredient, the non-hazardous secondary material must be adequately contained to prevent releases to the environment;

As per SEFA, in a previously permitted design, the storage capacity of the silos and partially enclosed storage bins for incoming feedstock ranges from 800-2000 tons and could accommodate approximately three to ten days of production when the STAR Reactor is operating on SEFA's normal production schedule. As such, under normal operations, the incoming feedstock is typically stored no more than three days prior to introduction into the STAR Reactor process. However, during shutdown of the STAR Reactor or when off-specification feedstock is received from a supplier, the feedstock may be stored for longer periods of time, but usually no more than sixty days. In the past, as per SEFA, shutdown of the STAR Reactor has generally not exceeded twenty days. With respect to the management of off-specification feedstock, SEFA has indicated that if this off-specification material can be blended with other feedstock at ratios which ensure that processing in the STAR Reactor produces an end product which meets SEFA's quality control standards, it will attempt to do so. Depending on the nature and amount of the material's deviation from SEFA's feedstock specifications, if it cannot be blended, the offspecification feedstock will have to be rejected and returned to the supplier. If it is capable of being blended, the blending process may require storage of the off-specification feedstock for as long as 60 days depending upon the quantity involved. Accordingly, even outside of the normal three-day processing scheduling for incoming feedstock, SEFA's storage of incoming feedstock does not exceed a reasonable time frame.

Additionally, SEFA manages the incoming feedstock as a valuable commodity and takes measures to prevent loss of material during off-loading and storage. In the preamble to the rule, EPA explains that "If on the other hand, a company does not manage the non-hazardous secondary material as it would traditional ingredients, that behavior may indicate that the non-

hazardous secondary material is being discarded." Refer to 76 FR 15543. The material must be "stored in a manner that both adequately prevents releases or other hazards to human health and the environment, considering the nature and toxicity of the non-hazardous secondary material." *Id.* In most cases, this requirement is satisfied if the material is in some manner "contained." *Id.* As noted, SEFA stores its feedstock in enclosed silos or covered and partially enclosed storage bins and therefore meets this criterion. Additionally, at all times prior to processing, SEFA handles the material in a manner consistent with this criterion. Feedstock is transferred from its suppliers (typically, coal-fired power plants) to SEFA either (i) directly by pneumatic conveyor into the silos or (ii) by truck to the SEFA facility. All bin vents within the pneumatic conveyer system are equipped with fabric filter recovery devices to minimize loss of this valuable material. Thus, SEFA believes that it unquestionably manages its feedstock as a valuable commodity.

#### Useful Contribution to the Production or Manufacturing Process - §241.3(d)(2)(ii)

SEFA believes that there is no question that the feedstock processed in the STAR Reactor provides a useful contribution to its production of the various end products marketed by SEFA. In the preamble to the Solid Waste Definition Rule, at 76 FR 15543, EPA explains the rationale behind this criterion for legitimacy:

A non-hazardous secondary material used as an ingredient in combustion systems provides a useful contribution if it contributes valuable ingredients to the production/manufacturing process or to the product or intermediate of the production/manufacturing process. This criterion is an essential component in the determination of legitimacy because legitimate use is not occurring if the nonhazardous secondary material doesn't add anything to the process, such that the non-hazardous secondary material is basically being disposed of or discarded. This criterion is intended to prevent the practice of "sham" recycling by adding non-hazardous secondary materials to a manufacturing operation simply as a means of disposing of them.

SEFA states that the feedstock processed in the STAR Reactor is clearly not added to dispose of that material and the processing of the feedstock in the STAR Reactor can in no manner be characterized as "sham" recycling. Additionally, the fact that some of the constituents of the feedstock are not needed or desirable for the STAR Process does not affect the status of the "useful contribution" of the feedstock:

For purposes of satisfying this criterion, not every constituent or component of the non-hazardous secondary material has to make a contribution to the production/manufacturing activity. For example, non-hazardous secondary materials used as ingredients may contain some constituents that are needed in the manufacturing process, such as, for example, zinc in non-hazardous secondary materials that are used to produce zinc-containing micronutrient fertilizers, while other constituents in the non-hazardous secondary material, such as lead, do not provide a useful contribution. Provided the zinc is at levels that provides a useful contribution, we believe the non-hazardous

secondary material would satisfy this criterion, although we would note that the constituents not directly contributing to the manufacturing process could still result in the non-hazardous secondary material not meeting the contaminant part of the legitimacy criteria. The Agency is not quantitatively defining how much of the non-hazardous secondary material needs to provide a useful contribution for this criterion to be met, since we believe that defining such a level would be difficult and is likely to be different, depending on the non-hazardous secondary material. The Agency recognizes that this could be an issue if persons argue that a non-hazardous secondary material is being legitimately used as an ingredient, but in fact, only a small amount or percentage of the non-hazardous secondary material is used.

#### 76 FR 15543-44 (emphasis added).

The fact that reactions in the STAR Reactor eliminate certain undesirable constituents of the feedstock material does not preclude a determination that the feedstock meets the legitimacy criteria as an ingredient. As described above, the STAR Reactor has the capability to control the chemical and physical reactions in the process to produce marketable materials with a broad range of characteristics. The constituents and characteristics of each STAR Reactor product are tailored to the intended market and vary depending on the needs of that market. The elimination of certain constituents does not affect the determination that the feedstock is an ingredient which makes a useful contribution to the products produced in the STAR Reactor.

#### Produces a Valuable Product or Intermediate - §241.3(d)(2)(iii)

As per SEFA, it is undisputed that feedstock material is used in the STAR Reactor to make valuable products. "The product or intermediate is valuable if it is (i) sold to a third party or (ii) used as an effective substitute for a commercial product or as an ingredient or intermediate in an industrial process." Refer to 76 FR 15544. Also, as discussed above, the STAR Reactor has the capability to process its fly ash and other materials to produce a broad range of products. All of the products currently produced in the STAR Reactor have application as both substitutes for commercial products and as ingredients in an industrial process. Ultrix<sup>®</sup> and STAR RP<sup>®</sup> are sold for use as partial replacement for Portland cement. Fortimix<sup>®</sup> is sold for use as an additive for rubber compounds. Permanix<sup>TM</sup> is designed for use as a broad-spectrum UV blocker. Accordingly, in all respects, SEFA's feedstock processed in the STAR Reactor satisfies this criterion for legitimacy as an ingredient.

#### Comparable Contaminants Concentration of End Product - § 241.3(d)(2)(iv)

Again, as discussed above, the STAR Reactor has the capability to process its feedstock to reduce or eliminate some undesirable constituents and to alter the chemical and physical characteristics of others in its various end products. The Solid Waste Definition Rules provides as follows:

> The non-hazardous secondary material must result in products that contain contaminants at levels that are comparable in concentration to or lower than those found in traditional products that are manufactured without the non-hazardous secondary material.

Refer to §241.3(d)(2)(iv).

The preamble to the Rule includes the following:

The assessment of whether the products produced from the use of nonhazardous secondary materials that have contaminants that are comparable to (or lower) in concentration can be made by a comparison of contaminant levels in the ingredients themselves to the traditional ingredients they are replacing, or by comparing the contaminant levels in the product itself with and without the use of the nonhazardous secondary material.

Refer to 76 FR 15544.

As applied to the use of the feedstock as an ingredient in the STAR Reactor, the relevant comparison is a comparison of the various STAR Reactor end products to comparable products in the industries in which each is used. For example, Ultrix<sup>®</sup> and STAR RP<sup>®</sup> are both used as supplementary cementitious materials in concrete, but, due to the unique processing regime of the STAR Reactor, neither has varying quantities of adsorptive unburned carbon, which characterize by-product fly ashes typically used in the marketplace. In fact, the air-entraining characteristics of Ultrix<sup>®</sup> and STAR RP<sup>®</sup> are tailored by STAR Reactor to exactly match the air-entraining characteristics of plain cement concrete.

The preamble to the proposed rule for the Solid Waste Definition Rule explains the rationale for and purpose of the comparison of contaminants in the legitimacy criteria for use of a non-hazardous secondary material as an ingredient:

The Agency recognizes that there may be instances where the contaminant levels in the products manufactured from non-hazardous secondary material ingredients may be somewhat higher than found in the traditional products that are manufactured without the non-hazardous secondary material, but the resulting concentrations would not be an indication of discard and would not pose a risk to human health and the environment.

Refer to 75 FR 31844, 31885 (Jun. 4, 2010).

In addition, EPA has recognized that contaminant levels in the products made from NHSM can have contaminant levels within a "small acceptable range" at 76 FR 15523 (March 21, 2011).

The above discussion clearly provides that it may be allowable under (241.3(d)(2)(iv)) for certain contaminants in the end product made with non-hazardous secondary materials ingredients to be "somewhat higher" or within a "small acceptable range" than those in traditional products. Thus, SEFA's fly ash feedstock satisfies the legitimacy criterion in (241.3(d)(2)(iv)) despite the slightly higher concentrations of arsenic and beryllium in the STAR RP<sup>®</sup> as compared to Portland Cement, as included in Attachment A to the SEFA's September 2014 letter. Also, using additional analytical data received from SEFA<sup>1</sup>, it can be said that the contaminant levels in the SEFA product are within the range of contaminants levels or within a "small acceptable range" for Portland Cement (traditional product).

Additionally, as stated in the preamble to the proposed rule above, the purpose of the contaminant comparison criterion is to demonstrate that the use of the non-hazardous secondary material ingredient is not indicative of discard and does not pose a risk to human health and the environment. Expanding of the "indication of discard" aspect of this component of the legitimacy criteria, EPA further explains:

Based on our assessment of all of the comments, we believe it appropriate to include contaminant levels as a legitimacy criterion. Thus, we do not agree with those commenters that assert that contaminant comparisons are not appropriate to require as part of the legitimacy criteria. The Agency believes the criterion is necessary because non-hazardous secondary materials that contain contaminants that are not comparable in concentration to those contained in traditional fuel products or ingredients would suggest that these contaminants are being combusted as a means of discarding them, and thus the non-hazardous secondary material should be classified as a solid waste. In some cases, this can also be an indicator of sham recycling.

Refer to 75 FR 31871-72 (emphasis added).

As such, the primary purpose of the comparison on contaminants in an end product using the non-hazardous secondary material ingredient to that of traditional products made without the non-hazardous secondary material ingredient is to demonstrate that such use is not a means of discarding the non-hazardous secondary material or indicative of sham recycling.

With respect to the additional industrial uses for products produced by using fly ash feedstock as an ingredient in the STAR Reactor, a direct comparison of SEFA's end product to a traditional product which is manufactured without fly ash feedstock is not feasible for many of the end products produced in the STAR Reactor. However, based on the detailed comparison of the STAR<sup>®</sup> RP to Portland Cement and the various markets for SEFA's other STAR Reactor products as included in the above referenced submittal, it is clear that SEFA is not processing the fly ash feedstock as a means of discarding the fly ash or any of its constituents.

<sup>&</sup>lt;sup>1</sup> Email dated 5/12/2015 from Thomas Pritcher, Environmental Consulting & Technology, Inc., to Rahul Thaker, NCDAQ.

To the extent that the purpose of the contaminant comparison is to demonstrate that these products do not pose a risk to human health and the environment, SEFA has provided additional information as well as copies of the material safety data sheets for these products to demonstrate that no such risk is posed in the various industrial uses of STAR Reactor end products. For example, the material safety data sheets for Spherix<sup>®</sup> and Fortimix<sup>®</sup> included in Attachment B to the SEFA's September 2014 letter. As per SEFA, in many cases, the STAR<sup>®</sup> Reactor end products provide a safe alternative to traditional products which may pose a potential risk to human health and the environment.

#### Flyash Received from Landfill or Ash Pond

\$241.3(b)(4) of the rule provides that NHSMs are not solid waste when "fuel or ingredient products that are used in a combustion unit, and that are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria specified in paragraph (d)(1) of this section, with respect to fuels, and paragraph (d)(2) of this section, with respect to ingredients."

As discussed above, the coal flyash disposed off in a landfill or an ash pond can be deemed as a NHSM. Prior to being used as an acceptable ingredient (feedstock) in the STAR Reactor, any flyash received from landfills or ash ponds must be "processed," as that term is defined in the rule. As discussed below, any commercial agreement between a supplier and SEFA will specify the acceptable criteria (i.e., specifications) for a feedstock that can be used in the STAR Reactor as a condition for supplying processed flyash to SEFA.

Pursuant to §241.2, "processing" means any operations that transform discarded nonhazardous secondary material into a non-waste fuel or non-waste ingredient product. Processing includes, but is not limited to, operations necessary to: remove or destroy contaminants; significantly improve fuel characteristics of the material, *e.g.* sizing or drying the material in combination with other operations; or chemically improve the as-fired energy content. Minimal operations that result only in modifying the size of the material by shredding do not constitute processing for purposes of this definition. Under the same section of the Rule, "Secondary material" is defined as any material that is not the primary product of a manufacturing or commercial process, and can include post-consumer material, off-specification commercial chemical products or manufacturing chemical intermediates, post-industrial material, and scrap.

While it is recognized that coal flyash which was initially placed into a landfill may be considered to have been "previously discarded" by custom and practice, coal-fired utilities also collect this coal ash in permitted wastewater treatment ponds. This coal ash has not historically been considered "discarded" as it was merely solids settling within a permitted wastewater unit. SEFA believes that the processing of these materials as required to satisfy SEFA's specifications for its feedstock would meet the requirements for processing of "previously discarded" materials under the Solid Waste Definition Rule as applied to CISWI. As such, the requisite processing of materials to be used as feedstock in the STAR Reactor would be sufficient to transform them to an ingredient.

The Solid Waste Definition Rule provides that a previously discarded material may be processed to transform the waste to a non-waste ingredient. Specifically, §241.3(b)(4) of the Solid Waste Definition Rule provides as follows:

Fuel or ingredient products that are used in a combustion unit, and are produced from the processing of discarded non-hazardous secondary materials and that meet the legitimacy criteria specified in paragraph (d)(1) of this section, with respect to fuels, and paragraph (d)(2) of this section, with respect to ingredients. The legitimacy criteria apply after the non-hazardous secondary material is processed to produce a fuel or ingredient product. Until the discarded nonhazardous secondary material is processed to produce a non-waste fuel or ingredient, the discarded non-hazardous secondary material is considered a solid waste and would be subject to all appropriate federal, state, and local requirements.

As per SEFA, any processing of materials from landfills or from ash ponds to meet SEFA's feedstock specifications will be undertaken under the control of the supplier prior to being received by SEFA for use an ingredient in its STAR Reactor. Accordingly, this feedstock when received by SEFA or used in the STAR Reactor would meet the legitimacy criteria for direct use as an ingredient and therefore would not be a solid waste under the Solid Waste Definition Rule. All feedstock shipped to SEFA for use as an ingredient in the STAR Reactor will first be required to undergo processing by the supplier to be:

- A. Free of all, but minimal contaminants (e.g., organic debris, slag);
- B. Finely-divided and free-flowing,
- C. Have consistent moisture content of  $\leq 25\%$ ; and
- D. Have a consistent chemical composition, including organic content as measured by loss on ignition.

The above are SEFA specifications for acceptance of any coal flyash (discarded in landfills or ash ponds).

As per SEFA, the specific processing steps that may be needed to meet the SEFA specifications (as described above) and produce a suitable feedstock for the STAR Reactor will vary depend upon the specific characteristics of each source of coal flyash. Generally speaking, one or more of the following four processing steps will be necessary to produce a suitable feedstock for the STAR Reactor:

- 1) Dewatering,
- 2) Screening/Separation,
- 3) Milling, and
- 4) Blending.

For use as a feedstock in the STAR Reactor, coal ash from an ash pond having higher moisture content will likely need to be processed using most, if not all, of these steps. Coal ash
Mr. Jim Clayton June 10, 2015 Page 11

from a landfill may not require every step. For example, it may be unnecessary to dewater coal ash from landfills if the material has consistent and acceptable moisture content.

Depending on the source of the ash, the general steps described above can require sub processes. For example, feedstock appropriate for the STAR Reactor, it may be necessary to remove larger particles or other materials found with the ash. In addition, to meet SEFA's specifications, some coal ash may require further processing through a separate loop that includes equipment (e.g., roll crusher) needed to produce a more finely-divided, free-flowing feedstock. For others, it may be necessary to utilize a magnetic separator to remove metal constituents. Also, materials such as coal, pyrites, or other more coarse materials may need to be screened. The Screening/Separation step will occur routinely to produce a free-flowing, finely-divided feedstock suitable for the STAR Reactor. Depending on the source of coal ash, milling may not be necessary to achieve a finely-divided and free-flowing material.

As emphasized by SEFA, the specific processing steps and the specific processing equipment cited above are typical examples for how these materials might be processed to produce a suitable feedstock. Those performing the actual work (i.e., suppliers) will elect to use different techniques and/or equipment. SEFA states that as long as the processed coal ash conforms to SEFA's general specifications outlined above, the coal flyash received from landfills or ash ponds will have been sufficiently "processed" and will be a suitable feedstock as an ingredient in the STAR Reactor.

It needs to be noted here that the EPA has recognized similar processing steps (similar to SEFA suggested processing steps as above to meet the SEFA specifications) are "likely to meet our definition of processing, as it appears that these processes in fact remove contaminants and improve the ingredient characteristics of these recovered CCRs (i.e., ash from ponds and landfills)". Refer to 76 FR 15518, March 21, 2011 (emphasis added).

With respect to the requirement for meeting the legitimacy criteria in §241.3(d)(2), pursuant to §241.3(b)(4), for flyash received from landfill or ash pond, SEFA emphasizes that after completion of "processing", it will become similar to the flyash received directly from coal-fired plant's particulate collection infrastructure (i.e., Electrostatic precipitator or Baghouse), and thus, will meet all legitimacy criteria as discussed above for it.

Finally, with respect to the particular criterion for comparable contaminants concentration of end product (traditional products) in 241.3(d)(2)(iv), SEFA analyzed each of these materials for semi-volatile organic compounds, organo-chlorine pesticides, PCBs, chlorides, metals and sulfur content, during engineering studies to assess the suitability of coal ash previously placed in water treatment ponds (pond ash) or previously placed in landfills (landfill ash). A comparison of the constituents in dry source feedstock, pond ash and landfill ash from SCE&G's<sup>2</sup> Wateree facility is provided in Attachment C to the SEFA's September 2014 submittal. In comparison to the dry collection feedstock, the landfill ash is comparable with slightly higher results for a few constituents. The sampling results on pond ash indicate that all constituents detected were lower

<sup>&</sup>lt;sup>2</sup> www.sceg.com

Mr. Jim Clayton June 10, 2015 Page 12

than those for the dry collection feedstock and the landfill ash. Despite certain variables in the manner in which coal ash were previously placed in ponds or landfills, as per SEFA, these sampling results are sufficient to demonstrate that contaminants in coal flyash previously placed in ponds and landfills are comparable to or lower than those in dry collection coal flyash processed as feedstock (that is, flyash received directly from the coal-fired power plant's particulate emissions control) for the STAR Reactor. Furthermore, the metals and sulfur levels of the landfill ash are comparable to those of the dry collection feedstock, and the metals and sulfur levels of the pond ash are significantly lower than those of the dry collection feedstock. Finally, more recent sampling data (March-April 2015) for dry ash and pond ash, provided by SEFA, indicates that the contaminants in pond ash as are lower than the dry ash received directly from electric utility plant.<sup>3</sup> Therefore, SEFA concludes that there will be no increase in emissions as a result of the use of pond ash and landfill ash as a feedstock for the STAR Reactor.

#### Conclusions

In summary, the DAQ has determined that the fly ash received directly from the coalfired power plant's particulate collection infrastructure (i.e., electrostatic precipitator or baghouse) is a NHSM and an "ingredient", as defined in §241.2. DAQ has further determined that this flyash meets the legitimacy criteria included in §241.3(d)(2). Thus, it concludes that it is not a solid waste and therefore, STAR Reactor is not subject to the requirements in CISWI.

Moreover, the processed flyash received from ash landfills or ash ponds meets the definition of "processing" in §241.2, and is also a NHSM and an ingredient. DAQ has further determined that this flyash also meets the legitimacy criteria included in §241.3(d)(2). Thus, it concludes that it is not a solid waste and therefore, STAR Reactor is not subject to the requirements in CISWI.

It needs to be emphasized here that this letter includes only the "non-waste" determination, which is specific to the materials discussed herein. Further, the determination does not give any permission to SEFA to burn or process flyash in the STAR Reactor. SEFA will need to evaluate and submit a permit application for an air permit, as needed, for burning / processing flyash, as discussed herein, in the STAR Reactor at any location in NC.

If you have any questions regarding this determination, please contact Rahul P. Thaker, P.E., QEP, at (919) 707-8470.

<sup>&</sup>lt;sup>3</sup> Email dated 5/12/2015 from Thomas Pritcher, Environmental Consulting & Technology, Inc., to Rahul Thaker, NCDAQ.

Mr. Jim Clayton June 10, 2015 Page 13

Sincerely,

With With \_\_\_\_

William D. Willets, P.E., Chief, Permitting Section Division of Air Quality, NCDENR

c: Central Files

**APPENDIX G** 

CAM PLAN



# COMPLIANCE ASSURANCE MONITORING PLAN

for

Sulfur Dioxide (SO<sub>2</sub>) Emissions from STAR® Unit Duke Energy Progress, LLC – H. F. Lee Steam Electric Plant Goldsboro, Wayne County, North Carolina

# I. Background

 $SO_2$ :

| A. | . Emissions Unit and Control Device                         |                                                                                                                                                                                                        |  |  |
|----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | EU ID:                                                      | ES-31                                                                                                                                                                                                  |  |  |
|    | Description:                                                | STAR® (Staged Turbulent Air Reactor) system with a 140 million Btu/hour total heat rate input that processes feed-stock (fly ash and other ingredient materials) into a variety of commercial products |  |  |
|    | Control Device                                              | Dry Flue Gas Desulfurization (FGD) scrubber and bagfilter for SO <sub>2</sub> emissions control                                                                                                        |  |  |
| B. | <u>Applicable Emissions Limits and Monitoring Practices</u> |                                                                                                                                                                                                        |  |  |
|    | Emissions Limits:                                           |                                                                                                                                                                                                        |  |  |

2.3 pounds of sulfur dioxide per million BTU input per 15A NCAC 02D .0516 Sulfur Dioxide Emission From Combustion

| Compliance Demonstration Requirements: |                                                                                      |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| SO <sub>2</sub>                        | Initial performance tests will be conducted.                                         |  |  |  |
| Lime-to-Sulfur Ratio                   | XXX establish compliance demonstration procedures for parametric monitoring systems. |  |  |  |
| Baghouse $\Delta P$                    | XXX establish compliance demonstration procedures for parametric monitoring systems. |  |  |  |
| Periodic Monitoring                    | Requirements:                                                                        |  |  |  |
| $SO_2$                                 | TBD                                                                                  |  |  |  |
| Lime-to-Sulfur Ratio                   | TBD                                                                                  |  |  |  |

Baghouse  $\Delta P$  TBD

#### C. Control Technology

Dry FGD scrubber and bagfilter for SO<sub>2</sub> emissions control

#### D. Potential Emission Rates

Pre-control SO<sub>2</sub>: XXX tons/year Post-control SO<sub>2</sub>: XXX tons/year (assumes 95% control)

### II. Monitoring Approach

#### A. <u>Background</u>

For emissions of sulfur dioxide (SO<sub>2</sub>) from the STAR® system, Duke Energy is subject to Compliance Assurance Monitoring (CAM) requirements for the state SO<sub>2</sub> standard, i.e., 2.3 lb/MMBtu per 15A NCAC 02D .0516.

Duke Energy selected Lime-to-Sulfur Ratio and Pressure drop across the baghouse (Baghouse  $\Delta P$ ) as indicators for the CAM Plan for SO<sub>2</sub> emissions from the STAR® system. Duke Energy conducted testing for SO<sub>2</sub> emissions to derive a relationship between the Lime-to-Sulfur Ratio and SO<sub>2</sub> emissions of the STAR® system. This relationship was then used to determine a Lime-to-Sulfur Ratio value for the applicable SO<sub>2</sub> limit, such that as long as the Lime-to-Sulfur Ratio is at or above the value during normal operation, there is a reasonable assurance that the STAR® system will also comply with the respective applicable SO<sub>2</sub> emission limit. This relationship was used to determine appropriate Lime-to-Sulfur Ratio value for the state standard of 2.3 lb/mmBtu. In addition, Duke Energy established an appropriate Baghouse  $\Delta P$  range based on manufacturer's specifications and recommendations. It is assumed as long as the Baghouse  $\Delta P$  is within the established range during normal operation, there is a reasonable assurance that the dry FGD baghouse is operating as designed and the STAR® system will also comply with the respective applicable SO<sub>2</sub> emission limit.

### B. <u>CAM SO<sub>2</sub> Testing</u>

SO<sub>2</sub> testing was conducted to derive a relationship between the Lime-to-Sulfur Ratio and SO<sub>2</sub> emissions of the STAR® system. The SO<sub>2</sub> testing was conducted for operating conditions of the dry FGD system resulting in High-Ash Sulfur Content, Mid- Ash Sulfur Content and Low- Ash Sulfur Content.

The table below provides a summary of the test results for CAM testing completed on XXXX. Each test consisted of at least three runs using USEPA Test Method XXX for XXX. For the operating conditions tested, all SO<sub>2</sub> emission test results were less than XX percent of the applicable state SO<sub>2</sub> emission limitation (2.3 lb/mmBtu).

## Insert Table of Results

Baghouse  $\Delta P$  was monitored and recorded during the testing to verify that the operating range of ..... is appropriate for the baghouse

# C. <u>CAM Averaging Period</u>

The CAM Rule does not provide specific averaging periods to be used in the development of monitoring approaches. However, 40 CFR 64.3(d)(3)(i) implies that the appropriate averaging period is the averaging period of the underlying emissions standard. Since emissions testing for SO<sub>2</sub> includes at least three test runs, each nominally one-hour in duration, this indicates that a three-hour averaging period is an appropriate averaging time for purposes of CAM for the state rule.

# D. <u>CAM Excursion</u>

During "normal operation", (i.e., periods other than startup, shutdown or malfunction), an excursion is a rolling three-hour period Lime-to-Sulfur Ratio is less than the establish value during testing. Each excursion must be investigated by the source to determine the monitoring status and operating conditions responsible for the excursion.

## E. <u>CAM Excursion Corrective Action</u>

Upon detecting an excursion, Duke Energy will implement corrective action to restore the indicator to the appropriate indicator range. Corrective action should begin with an evaluation of the monitoring system to determine if the excursion is related to the monitoring system or the control device. Individual unit process and control device operating parameters will be reviewed to determine the cause of the excursion. To the extent possible, any corrective action should reduce the potential of similar excursions from recurring.

## F. <u>CAM Reporting Requirements</u>

All excursions must be reported in the facility's semi-annual report. As required by the CAM Rule, the Permittee shall include summary information on the number, duration and cause of excursions and the corrective actions taken. It is not necessary to report SO<sub>2</sub> control equipment malfunctions that do not cause an excursion. Duke Energy will also include summary information on the number, duration, and cause of monitor downtime incidents.

# G. <u>Summary of Proposed CAM for SO<sub>2</sub></u>

Continuous monitoring of Lime-to-Sulfur Ratio is required. If the Lime-to-Sulfur Ratio does not fall below the level established during initial compliance testing and the Baghouse  $\Delta P$  is within the established range provided by manufacturer's specifications and recommendations, then compliance will be reasonably assured. The minimum Lime-to-Sulfur Ratio will not apply during periods of startup, shutdown, or malfunction. A summary of the CAM plan is provided in Table 1.

# Table 1 SO<sub>2</sub> CAM Plan Summary – H. F. Lee Steam Electric Plant

STAR® Unit (ES-31)

| A. Indicator                                                                                                  | Lime-to-Sulfur Ratio and Baghouse ΔP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement Approach                                                                                          | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B. Indicator Range                                                                                            | An excursion is defined as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                               | The Lime-to-Sulfur Ratio to be determined during the initial performance testing will provide reasonable assurance of compliance with limits to be contained in the Title V air permit. Excursions will trigger an inspection of the Lime injection system to determine the cause and necessary corrective action.<br>If the Lime-to-Sulfur Ratio falls below acceptable levels (e.g. an excursion) for more than XX consecutive unit operating hours, a test will be performed to re-establish the SO <sub>2</sub> emission rate and lime injection correlation for the ash sulfur content range.<br>Baghouse $\Delta P \dots$ . |
| <b>C. Performance Criteria</b><br>1. Data Representativeness                                                  | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>Verification of Operational<br/>Status</li> <li>QA/QC Practices and Criteria</li> </ol>              | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>GA/QC Practices and Criteria</li> <li>Monitoring Frequency</li> <li>Data Averaging Period</li> </ol> | TBD<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. Data Collection                                                                                            | Automated data acquisition system (DAHS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# III. Monitoring Approach Justification

A. <u>Explanation of Applicability</u>Justification will be added based on final vendor design data

B. <u>Rationale for Selection of Indicator Ranges</u> To be determined...

NC DEQ will be provided copies of test results from all required tests.

C. Rationale for Selection of Corrective Actions

To be determined...

**APPENDIX H** 

# ZONING COMMISSION DOCUMENTATION





October 27, 2017

### SENT VIA EMAIL

Mr. Chip Crumpler Director of Planning Wayne County 224 E. Walnut Street Goldsboro, NC 27530

Dear Mr. Crumpler,

On behalf of Duke Energy, I am writing to inform you that we intend to construct and an ash beneficiation plant at 1199 Black Jack Church Road in Goldsboro and Wayne County. I hereby certify that to the best of my knowledge, Wayne County is the only local government having jurisdiction over any part of the land on which the facility and its appurtenances are to be located.

In accordance with § 143-215.108(f) of the North Carolina General Statutes, we hereby request that you issue a determination as to whether your municipality has in effect a zoning or subdivision ordinance that is applicable to the proposed facility. Additionally, please issue a determination as to whether the proposed use would be consistent with applicable zoning or subdivision ordinances. For your convenience, I have included a form with which you may remit your determination and a copy of the draft air permit application. As a means of demonstrating proof of transmittal, please sign, title, stamp, and date the enclosed form and mail to the facility mailing address, my address, listed on the form, and the checked air quality office at your earliest convenience.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at 919-546-5797

Sincerely,

In Juda

Erin E. Wallace Duke Energy Environmental Services

Attachments: Zoning Consistency Determination Form Draft Air Permit Application

# **Zoning Consistency Determination**

O

0

| Facility Name                                                                                                                                             | Duke Energy Progress, LLC – HF Lee Steam Electric Plant |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Facility Street Address                                                                                                                                   | 1199 Black Jack Church Road                             |  |  |  |
| Facility City                                                                                                                                             | Goldsboro                                               |  |  |  |
| Description of Process                                                                                                                                    | Generation of electricity for sale                      |  |  |  |
| SIC/NAICS Code                                                                                                                                            | 4911                                                    |  |  |  |
| Facility Contact                                                                                                                                          | Erin Wallace                                            |  |  |  |
| Phone Number                                                                                                                                              | 919-546-5797                                            |  |  |  |
| Mailing Address                                                                                                                                           | 410 S. Wilmington Street                                |  |  |  |
| Mailing City, State Zip                                                                                                                                   | Raleigh, NC 27601                                       |  |  |  |
| Based on the information given above:                                                                                                                     |                                                         |  |  |  |
| V I have received a copy of the air permit application (draft or final) AND                                                                               |                                                         |  |  |  |
| There are no applicable zoning ordinances for this facility at this time                                                                                  |                                                         |  |  |  |
|                                                                                                                                                           | nsistent with applicable zoning ordinances              |  |  |  |
|                                                                                                                                                           | OT consistent with applicable zoning ordinances         |  |  |  |
| (please include a copy of the rules in the package sent to the air quality office)                                                                        |                                                         |  |  |  |
| The determination is pending further information and can not be made at this time                                                                         |                                                         |  |  |  |
| └── Other:                                                                                                                                                |                                                         |  |  |  |
| Agency                                                                                                                                                    | WAYNE COUNTY PLANNING                                   |  |  |  |
| Name of Designated Official                                                                                                                               | CHIP CRUMPLER                                           |  |  |  |
| Title of Designated Official                                                                                                                              | PLANNING DIRECTOR                                       |  |  |  |
| Signature                                                                                                                                                 | Ch XC                                                   |  |  |  |
| Date                                                                                                                                                      | 10/30/2017                                              |  |  |  |
| Please forward to the facility mailing address listed above and the air quality office<br>at the appropriate address as checked on the back of this form. |                                                         |  |  |  |

Courtesy of the Small Business Environmental Assistance Program sb.ncdenr.gov 877-623-6748

## All PSD and Title V Applications

Attn: William Willets, PE
 DAQ – Permitting Section
 1641 Mail Service Center
 Raleigh, NC 27699-1641

#### **Local Programs**

- Attn: David Brigman
   Western NC Regional Air Quality Agency
   49 Mount Carmel Road
   Asheville, NC 28806
   (828) 250-6777
- Attn: Leslie Rhodes
   Mecklenburg County Air Quality
   700 N. Tryon Street, Suite 205
   Charlotte, NC 28202-2236
   (704) 336-5430

#### **Division of Air Quality Regional Offices**

- Attn: Paul Muller
   Asheville Regional Office
   2090 U.S. Highway 70
   Swannanoa, NC 28778
   (828) 296-4500
- Attn: Steven Vozzo
   Fayetteville Regional Office
   225 Green Street, Suite 714
   Fayetteville, NC 28301
   (910) 433-3300
- Attn: Ron Slack
   Mooresville Regional Office
   610 East Center Avenue, Suite 301
   Mooresville, NC 28115
   (704) 663-1699
- Attn: Patrick Butler, PE Raleigh Regional Office 1628 Mail Service Center Raleigh, NC 27699-1628 (919) 791-4200

 Attn: William Minor Barnette
 Forsyth County Office of Environmental Assistance and Protection
 201 N. Chestnut Street
 Winston-Salem, NC 27101-4120
 (336) 703-2440

- Attn: Robert Fisher
   Washington Regional Office
   943 Washington Square Mall
   Washington, NC 27889
   (252) 946-6481
- Attn: Brad Newland
   Wilmington Regional Office
   127 Cardinal Drive Extension
   Wilmington, NC 28405
   (910) 796-7215
- Attn: Lisa Edwards, PE
   Winston-Salem Regional Office
   450 West Hanes Mill Road, Suite 300
   Winston-Salem, NC 27105
   (336) 776-9800