North Carolina Energy Policy Council

AGENDA
10:00 a.m. Wednesday February 20, 2019
Archdale Building, Ground Floor Hearing Room
512 N Salisbury St, Raleigh, NC 27604
Overview of the Hurricane: Preparation, Response, and Recovery (30 min)
Kinston/RCC-East Energy Resiliency Assessment Study Discussion

Matt Kemnitz, Assistant Director for Administration
Division of Emergency Management, Department of Public Safety
HURRICANE FLORENCE

Matt Kemnitz | Assistant Director – Admin
Josh Modlin | Critical Infrastructure Planner
NC EMERGENCY MANAGEMENT
Fri September 7 – Incident Period Begins
- State of Emergency Declared

Mon September 10
- SEOC (L2), RCC-E, RCC-C activated
- Emergency Declaration Approved (100 counties)
- World Equestrian Games start (RCC-W supports)

Tues September 11
- SEOC elevates to Level I

Thurs September 13
- Governor Cooper requests expedited Major Dec (PA/IA) for 13 counties

Fri September 14
- Hurricane Florence Landfall
- Major Disaster Declaration approved
- IA Registration Begins
- RCC-E loses power, landline communications (voice & IP)
Sat September 15
- Over 21,272 North Carolinians in shelters statewide S/W
- 746,751 power outages reported (snapshot)
- 220 road closures known
- 4 hospitals operating on generator power

Mon September 17
- Rocky, Lumber, Lower Neuse & NE Cape Fear rivers exceed record flooding
- Emergency Declaration Approved (100 counties)
- World Equestrian Games start (RCC-W supports)
- Outages at 450,034

Wed September 19
- President visits affected areas (New Bern & Wilmington)

Sun September 23
- Outages 14,438

Wed September 26
- Joint Field Office Opens in RTP

Fri September 28
- SEOC deactivates

Tues October 2
- Preliminary Damage Assessment begins
35.93” of rain reported in Elizabethtown
FLASH FLOODING POTENTIAL
September 14, 2018 – 5AM

High Risk Days are Rare, Dangerous, Significant, and Impactful

Friday
Saturday
Sunday

5% Marginal 20% Moderate 10% Slight 50% High
River Gages
Currently At Major Flood Stage: 16
Forecast To Rise Above Major Flood Stage: 6 (Additional)

September 17, 2018 – 6:00PM
9-13’ of storm surge inundated portions of the coast and areas along the Neuse River and its tributaries.
Wind gusts of 105 mph were reported at Cape Lookout, Fort Macon, and Wilmington.
County EOCs Activated: 62
Local States of Emergency: 90
Peak Shelter Count (Population): 256 (23,000+)
NCDOT Road Closures: 1,200+
Peak Power Outages: 845,922
Search & Rescue
- 1,600+ personnel with more than 240 boats deployed
- 5,214 people & 1,067 animals rescued [State+EMAC]

Disaster Medical Services
- 4 State Medical Support Shelters (200 patients)
- 102 Nurses deployed through EMAC
- 8 Ambulance buses & 20 Ambulance Strike Teams
- 2 Field Medical Stations (1,000 patients)

Law Enforcement
- 600+ officers deployed for various missions

Air Operations
- 60+ aircraft used (local, state, and federal resources)
- 346 missions flown (1,303 hours of flight time)
- 441 rescues & 685 people transported
FLORENCE RESPONSE

- **EMAC**
 - 97 Missions
 - 1,108 Responders
 - 35 States
 - Incident Management Teams, Swiftwater Rescue, Firefighters, Nurses (Public Health/Shelter), Mental Health, Functional/Access Survey Teams, BEOC support, Agriculture, and others.

- **NC National Guard**
 - 2,800 personnel activated across the state
 - Logistics support, aviation, engineers, military police, transportation, incident management, and others.
 Salvation Army
- Mobile Feeding Units: 37
- Meals Served: 205,714
- Drinks: 154,756
- Snacks: 106,642

 Baptists on Mission
- Kitchens: 10
- Meals Prepared: 1,057,236 [est]
NCEM Logistics
- 1,700+ resource requests
- 775+ purchase orders
- Over 160k “things”
 - MREs, bottled water, generators, shower trailers, laundry trailers, high volume pumps, fire hose, traffic cones, sand bags, earth moving equipment, message boards, tents, tarps, cots, blankets, bathroom trailers, and others.

Emergency Fuel Contract
- High clearance/4wd tankers
- Bobtails
- Fuel boats
 INITIAL LESSONS LEARNED [ESF-12]

- Power restoration happened extremely quickly
 - From peak to under 15k in <7 days

- Value of ESF-12 planning
 - “I enacted my fuel plan and it worked.”

- Need for generators on critical infrastructure

- Mobile fueling for responders

- Impacts of mandatory evacuations on retail markets

- Sharing awareness of state contract resources
HURRICANES MATTHEW AND FLORENCE RECOVERY UPDATE
AFFORDABLE HOUSING #1
UNPRECEDENTED 1-2 PUNCH

HURRICANES MATTHEW AND FLORENCE
HURRICANE MATTHEW DAMAGES

- 31 fatalities
- 50 Counties declared
- Estimated $4.8 billion in damage
- Nearly 100,000 homes impacted
- Over 4,000 evacuees in shelters
- 660+ roads closed
- 20 dams breached
- 815,000+ power outages
- 2 airports closed
- Over 3,000 families stayed in FEMA transitional sheltering. NCEM assumed responsibility for remaining need
HURRICANE FLORENCE DAMAGES

- 35 inches of rain in places and more than 10 trillion gallons across North Carolina, South Carolina, and Virginia
- The storm was a 1,000-year rain event,
- At least 50 people died as a result of Florence
- Damages estimates run as high as $22 billion
- 34 counties in NC designated for Individual Assistance
- 51 counties in NC designated for Public Assistance
HURRICANE FLORENCE UPDATE
HURRICANE FLORENCE
INITIAL RECOVERY ASSISTANCE

FEMA Individual Assistance
- Total registrations: 138,595
- Individual and Households Program:
 - Approved amount: $127.7 million
 - Other Needs Assistance: $22.7 million
 - Housing Assistance: $105 million

Direct Housing
- 640 total units have been placed: 495 travel trailers and 145 mobile units. Housing currently available for 18 months.

Public Assistance
- Estimate ~2,500 projects for a total of $644 million; 112 projects are obligated for $32.2 million.

National Flood Insurance Program
- 15,014 claims filed and $556.3 million paid

Small Business Administration
- $329.3 million in loans approved for over 8,900 homeowners and renters
- $59.4 million in loans approved for 919 business owners

Disaster Unemployment Insurance
- $1.2 million approved for over 3,000 claims

Transitional Sheltering Assistance (TSA)
- 240 households currently in hotels, sheltering 689 family members. Estimated program close is March 12, 2019.
NORTH CAROLINA SHELTERING AND TEMPORARY ESSENTIAL POWER (STEP)

• For eligible homes affected by Hurricane Florence with minor damage.

• Provides rapid, partial repairs that put the home in safe, sanitary and secure condition.

• These are not permanent repairs. They are intended to make the house livable.

• NC STEP allows families to maintain their household routines and allows residents to stay connected to their communities.

• Repairs to flooded homes will be handled by a qualified voluntary disaster relief organization or a contractor, depending on the level of damage to the home. The state will provide the building materials and supplies needed.

• 4,245 Homeowners signed Right of Entries. Estimated Program completion of April 2, 2019.
HURRICANE FLORENCE
HAZARD MITIGATION GRANT PROGRAM

Hazard Mitigation Assistance DR-4393

404/407 Expedited Acquisitions:
- Properties MUST have been Substantially Damaged and/or Condemned
- 18 Counties/Cities/Towns submitted LOIs
- 18 Projects Total
- 443 Properties associated with LOIs
- $77,928,825.53 Requested
- Letter of Interest Review and QC being finalized

404 Hazard Mitigation Program
- Deadline to submit is March 15th
- Project types include:
 - Elevations
 - Acquisitions
 - Mitigation Reconstructions
 - Generators

![Map showing the counties who submitted Letters of Interest for 407 Expedited Acquisition Grants (HMGP) due December 14th, 2018. The numbers shown indicate the number of properties in each county.](image)
RECENTLY LAUNCHED PROGRAMS

- **State Grant Program for Financially Distressed Local Governments** - Provides grants of up to $1,000,000 to eligible local governments to assist with everyday operating expenses and administrative support costs incurred through their local disaster recovery efforts.

- **State Revolving Loan for Temporary Cash Assistance to Local Governments** - Provides 0% interest loans of up to $2,000,000 to assist eligible local governments in paying for disaster-related expenses while awaiting reimbursement from various federal disaster recovery resources or programs.

- Applications will be received on a rolling basis, awardees will have 3 years to expend funds.

- NCORR has awarded $2.3 million in grants and $3.8 million in loans.
HURRICANE MATTHEW UPDATE
SUMMARY OF MATTHEW RECOVERY FUNDS BY PROGRAM

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Federal</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA Individual Assistance</td>
<td>$99 M</td>
</tr>
<tr>
<td>Small Business Administration Loans</td>
<td>$102.5 M</td>
</tr>
<tr>
<td>National Flood Insurance Program</td>
<td>$196 M</td>
</tr>
<tr>
<td>Hazard Mitigation Grant Program</td>
<td>$82 M</td>
</tr>
<tr>
<td>Disaster Case Management</td>
<td>$4.5 M</td>
</tr>
<tr>
<td>Crisis Counseling Assistance and Training Program</td>
<td>$2 M</td>
</tr>
<tr>
<td>US Army Corps of Engineers</td>
<td>$83 M</td>
</tr>
<tr>
<td>US Department of Agriculture</td>
<td>$27.5 M</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>$23 M</td>
</tr>
<tr>
<td>US Department of Labor</td>
<td>$5 M</td>
</tr>
<tr>
<td>FEMA Public Assistance</td>
<td>$382 M</td>
</tr>
<tr>
<td>Community Development Block Grant – Disaster Recovery*</td>
<td>$236 M</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1.25 Billion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State Allocations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRA-16</td>
<td>$201 M</td>
</tr>
<tr>
<td>DRA-17</td>
<td>$100 M</td>
</tr>
<tr>
<td>DRA-18</td>
<td>$25 M</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$326 M</td>
</tr>
</tbody>
</table>

* Anticipate an additional $168 M.
HURRICANE MATTHEW HMGP SUMMARY

APPROVED:
- 63 Total projects totaling $86.5 million across Eastern NC
- 680 properties approved
 - 32 Acquisition Projects 472 structures
 - 21 Elevation Projects 199 structures
 - 10 Mitigation Reconstruction Projects 84 structures

IMPLEMENTATION
Current status at the local level:
- Appraisals, surveys, deed prep and title work underway
- Closings are underway for acquisition in most counties
- $290,285 requested for reimbursement by local government
- NCEM staff working on additional reimbursements
MATTHEW FUNDS ARE ON THE GROUND ACROSS EASTERN NORTH CAROLINA

- More than $850 million back into our communities for public infrastructure repair, small business recovery and direct payments to homeowners, including over $98 million paid out to over 29,000 families
- $86.5 million awarded to 680 homeowners to elevate, reconstruct, or buyout through FEMA’s HMGP program
- Over $10 million awarded from HUD Community Development Block Grant – Disaster Recovery (CDBR-DR) funds to more than 300 applicants
- 50 counties have updated redevelopment plans, making them more resilient for future storm events
A NEW OFFICE WITH A DEDICATED FOCUS

- Certifying to become the grantee for Hurricane Florence and Hurricane Matthew assistance
- Centralized structure for processing and issuing CDBG-DR awards
- Institutionalizing processes for handling federal grants, resulting in quicker, more efficient assistance
- Joint management of two major recoveries
- Congressional leaders have indicated that North Carolina may receive approximately $1 billion of the $1.68 billion included for disaster recovery in a bill passed last year. Until the awards are made, NC can’t predict the total but NCORR is preparing to administer the funds.
 Facility: NCEM Eastern Branch Office/Regional Coordination Center – East (Leased from NC Global TransPark in Kinston, NC)

 Primary coordination and resource management facility for eastern NC (33 counties)

 8,800 sqft interior space

 Recently designated as SEOC COOP Site
 Support up to 100 personnel

 Existing natural gas generator supports <50% of facility

 Facility has lost power during last three major hurricanes
Study – Energy Resiliency
Funded by State Energy Program, Department of Environmental Quality under a U. S. DOE grant

Contract engineers tasked to -
- Evaluate emergency power requirements
- Identify a broad spectrum of options
- Perform cost-benefit analysis
- Develop recommendations
- Study included on-site analysis of existing electrical infrastructure & service
- Demand calculations under all weather conditions
- Catalogued neighboring facilities to identify potential for partnerships
- Evaluated 10-year O&M costs
- Solar, Battery, CHP, Demand Reduction
Table 1-1. Generator Options and Evaluation Criteria Ranking.

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Option 1 One New 125KW Generator + Existing 60kW Generator</th>
<th>Option 2 One New 200KW Generator</th>
<th>Option 3 Two New 200KW Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>3 (Least initial cost)</td>
<td>2</td>
<td>1 (Highest initial cost)</td>
</tr>
<tr>
<td>O&M Cost</td>
<td>2</td>
<td>3 (Least O&M cost due to only one generator)</td>
<td>1 (Highest O&M cost due to two large generators)</td>
</tr>
<tr>
<td>Total 10 Year Cost</td>
<td>3 (Least total cost)</td>
<td>2</td>
<td>1 (Highest total cost)</td>
</tr>
<tr>
<td>Resiliency / Reliability</td>
<td>2 (Partial redundancy)</td>
<td>1 (No redundancy)</td>
<td>3 (Fully redundant)</td>
</tr>
<tr>
<td>Disruption to Existing System</td>
<td>3 (Least disruptive)</td>
<td>2</td>
<td>1 (Most disruptive)</td>
</tr>
<tr>
<td>Construction Period</td>
<td>3 (Shortest installation duration)</td>
<td>2</td>
<td>1 (Longest installation duration)</td>
</tr>
<tr>
<td>Total Score</td>
<td>16</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
Matt Kemnitz
Assistant Director for Administration
North Carolina Emergency Management
919-825-2365
Matthew.Kemnitz@ncdps.gov

Josh Modlin
Critical Infrastructure/Key Resources Planner
North Carolina Emergency Management
919-825-2267
Joshua.Modlin@ncdps.gov
Duke Energy’s Hurricane Preparation, Impacts, and Response (20 min)

RuDon Showers, General Manager
Rufus Jackson, Vice-President
Distribution Construction and Maintenance, Duke Energy
Hurricane Florence and Michael Storm Response

RuDon Showers: General Manager, Emergency Preparedness
Rufus Jackson; Carolinas Incident Commander, Duke Energy Carolinas
- Service Territory
 56,000 Sq. Mi.
- Duke Energy
 North Carolina
 3.4M Customers
- 5 – Zones
- 65 Operation Centers
Combined 2018 Storm Season Florence and Michael

- Two major hurricanes making landfall in our service territory with four weeks.
- A workforce of over 35,000 was assembled and mobilized across the three states for these storms. This included our internal resources along with mutual aid utilities from 25 states and Canada. Florence itself was the largest mobilization in Duke Energy storm history. Over 2,000 corporate volunteers performed storm roles in areas that ranged from the call center, social media, to base camps.
- At the peak 33,595 customers in FL, and 1,159,283 customers in NC and SC lost power across these storms.
- Total outages experienced in FL was 70,612 and in NC and SC was 3,031,406. A total of 3,102,018 outages were restored by Duke Energy during these two storms.
- Flooding and wind damage were unprecedented in any storm to ever hit Duke Energy.
- 92% of the outages (almost 2.9M) were restored within 3 days of the storms passing our service territory. All customers were restored that could receive power in about a week of the storms passing our service territory.
- A system rebuild project began on October 19th in Mexico Beach to restore power to approximately 3,400 customers in the most devastated areas of Florida. The rebuild was completed November 2nd. Special communications and outreach took place with impacted customers until they were able to receive power.
Hurricane Florence projected path put landfall between Wilmington and Jacksonville then traveling NW to the triangle and triad area spending 48 – 60 hours in state.

Expected strength at landfall a Category 4 storm with rainfall upwards of 12” coastal and 6” toward the triangle.

A life-threatening storm surge of 5-10 ft or higher and life-threatening flooding due to rain amounts.
Duke Energy Planning

- Planning team used weather prediction tool determining anticipated number of customers to experience outages given historical modeling
- Customer outages prediction then drove Resource calculations which yielded the personnel requirements to restore power:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Customers_ Low</th>
<th>Customers_ Mid</th>
<th>Customers_ High</th>
<th>Line Resources High</th>
<th>Tree Resources High</th>
<th>DA Resources High</th>
<th>Manage ment Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>17013</td>
<td>50848</td>
<td>204639</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal</td>
<td>324378</td>
<td>500821</td>
<td>841694</td>
<td>238</td>
<td>73</td>
<td>73</td>
<td>22</td>
</tr>
<tr>
<td>Mountains</td>
<td>6961</td>
<td>17685</td>
<td>63691</td>
<td>3421</td>
<td>1027</td>
<td>1027</td>
<td>342</td>
</tr>
<tr>
<td>Palmetto</td>
<td>110971</td>
<td>213093</td>
<td>420998</td>
<td>207</td>
<td>64</td>
<td>64</td>
<td>21</td>
</tr>
<tr>
<td>Triad</td>
<td>16568</td>
<td>49993</td>
<td>248582</td>
<td>1195</td>
<td>357</td>
<td>357</td>
<td>119</td>
</tr>
<tr>
<td>Triangle</td>
<td>339369</td>
<td>604629</td>
<td>1047885</td>
<td>246</td>
<td>74</td>
<td>74</td>
<td>24</td>
</tr>
<tr>
<td>Totals</td>
<td>815260</td>
<td>1437069</td>
<td>2827489</td>
<td>7847</td>
<td>2357</td>
<td>2357</td>
<td>782</td>
</tr>
</tbody>
</table>

- Based on projections, DE acquired resources as of D-3 listed below and staged them prior to Friday’s landfall.
- Support from AL, AR, DC, FL, GA, IL, IN, KS, KY, LA, MD, MI, MN, MS, MO, NJ, OH, OK, PA, RI, TN, TX, WI and Canada

<table>
<thead>
<tr>
<th>Resources</th>
<th>Florence</th>
<th>Mutual Assistance</th>
<th>Non-Duke Contractors</th>
<th>Vegetation Management</th>
<th>Damage Assessors</th>
<th>Support Personnel</th>
<th>Total Dedicated Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke Lineman & Contractors</td>
<td>2255</td>
<td>6100</td>
<td>2293</td>
<td>3707</td>
<td>1992</td>
<td>1000</td>
<td>17347</td>
</tr>
<tr>
<td>Mutual Assistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Duke Contractors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage Assessors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Dedicated Effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17347</td>
</tr>
</tbody>
</table>
Hurricane Florence’s actual path further south than projected, traveling along or south of the NC / SC border. Florence’s forward speed remained less than 3 miles per hour, spending 60 - 72 hours in state.

- Strength at landfall was a CAT 1 storm, but wind field expanded to 150 miles. Actual rainfall amounts of +20” coastal and 6-12” inland

- Multiple Road Closures due to rapidly rising rivers with numerous substations higher flood levels than Matthew
14 – 23 September: Duke Energy Response

- Distributed resources throughout state to respond to an **all-state** event.
- Established multiple base camps and staging areas to support a state wide response.
- Resource calculation was within the low range of the projected count of 1.3 to 3.3M customers out requiring close to 8000 external resources.
- Focused efforts in Morehead, New Bern, Wilmington, Southern Pines and Maxton.
- Continued collapsing resources into those hard hit areas prior to releasing any resources to return home.
- Due to storms change in track and additional damage anticipated, DE acquired resources released by Dominion and SCE&G:

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Florence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke Lineman</td>
<td>2255</td>
</tr>
<tr>
<td>Mutual Assistance</td>
<td>6478</td>
</tr>
<tr>
<td>Contractors</td>
<td>3133</td>
</tr>
<tr>
<td>Vegetation Management</td>
<td>3707</td>
</tr>
<tr>
<td>Damage Assessors</td>
<td>2420</td>
</tr>
<tr>
<td>Support Personnel</td>
<td>2076</td>
</tr>
<tr>
<td>Total Dedicated Effort</td>
<td>20069</td>
</tr>
</tbody>
</table>
Duke Energy Overall Performance: Distribution

Distribution Summary

<table>
<thead>
<tr>
<th>Restored</th>
<th>Events</th>
<th>Outages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>22,604</td>
<td>1,643,762</td>
</tr>
<tr>
<td>SC</td>
<td>3,806</td>
<td>177,984</td>
</tr>
<tr>
<td>Total</td>
<td>26,410</td>
<td>1,821,746</td>
</tr>
<tr>
<td>DEC</td>
<td>5,569</td>
<td>387,791</td>
</tr>
<tr>
<td>DEP</td>
<td>21,878</td>
<td>1,448,718</td>
</tr>
<tr>
<td>Total</td>
<td>27,447</td>
<td>1,836,509</td>
</tr>
</tbody>
</table>

Images:
- Electric poles and transformers with smoke.
- Flooded streets with submerged vehicles.
- Bucket trucks and workers on utility poles.
- Fallen trees and damaged infrastructure.
Duke Energy Overall Performance: Transmission

Transmission Summary

<table>
<thead>
<tr>
<th>DEP System Outage Information</th>
<th>Lines</th>
<th>Substations</th>
<th>Wholesale PODs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Storm [183]</td>
<td>45</td>
<td>90</td>
<td>48</td>
</tr>
</tbody>
</table>

Tiger Dam Deployment

- Standard tubes are 19” in diameter and 50’ long, made from patented fabric welded along the full length and at the ends.
- The weight of one tube(19”) is 69 lbs. when empty and the tube may be filled within 6-9 minutes(utilizing a fire hydrant). When filled with water, one tube weighs about three tons.
- Tiger Dams deployed at:
 - Greenville 230 KV – was not challenged.
 - Lumberton 115 KV – Mitigated flood waters of 46”
 - Grifton 115 KV – System overtaken – Waters higher than Hurricane Matthew.
 - Goldsboro Weil 115 KV – Mitigated flood waters of 28”.
 - Whiteville 115 KV – System overtaken – Waters higher than Hurricane Matthew.
 - Nichols 115 KV – System was undermined by floodwaters – foundation/substrate was sand based.
Customer Support: During Restoration

- Since Hurricanes Matthew and Irma ensured every employee has a dedicated storm role that ensures dedicated support to our customers and restoration
- Utilized over 2000 DE employees as call center representatives to minimize customer wait time if/when they called about their outages.
- Prepared and released 17 News Stories, numerous Twitter and Facebook postings ensuring our customers aware of progress
- Created and daily updated a detailed county level ETR map
- Provided numerous outbound customer call campaigns to keep customers informed of restoration progress
Customer Support

- Provided customers outage forms so they can provide to FEMA for needed assistance.
- Posted High Water alerts and boater notification on lakes and rivers.
Hurricane Michael made landfall on October 10, 2018 near Mexico Beach, Florida as a powerful Category 4 Hurricane, just shy of a Category 5. Michael was the most powerful storm to hit the Florida Panhandle in recorded history with maximum sustained winds of 155mph and life-threatening storm surge. Michael weakened to a tropical storm as it entered the Carolinas on October 11, 2018 with sustained winds between 40 - 60 mph and heavy rainfall.

- The largest number of Carolinas outages occurred in North Carolina, where damage to Duke Energy’s electrical system was widespread and extensive.
- The Triad area of North Carolina took the toughest blow from Tropical Storm Michael, with Guilford, Rockingham, Alamance and Caswell counties among the hardest hit. Rainfall storm totals were between 4 and 8 inches with some areas receiving up to 10 inches from October 10th - 11th.
Storm Response – By The Numbers

<table>
<thead>
<tr>
<th></th>
<th>Peak Outages #</th>
<th>Customers Restored</th>
<th>Resources</th>
<th>Customer Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florence – Carolinas</td>
<td>605,000</td>
<td>> 1.81 million</td>
<td>> 20,000</td>
<td>1.1 million</td>
</tr>
<tr>
<td>Michael – Carolinas</td>
<td>554,000</td>
<td>> 1.12 million</td>
<td>> 10,000</td>
<td>1.6 million</td>
</tr>
<tr>
<td>Michael - Florida</td>
<td>33,600</td>
<td>> 75,000*</td>
<td>> 4,500</td>
<td>170,000</td>
</tr>
<tr>
<td>Totals</td>
<td>> 1.1 million</td>
<td>> 3.01 million</td>
<td>> 34,000</td>
<td>> 2.8 million</td>
</tr>
</tbody>
</table>

*To those that can receive power

More than 90% of customers were restored within three days for both storms.
EEI recognized Duke Energy with the Emergency Recovery Award for efforts to restore power during Hurricane Florence.

Hurricane Florence caused historic flooding in Carolinas coastal communities with more than 1.8 million customers impacted.

Restored power to nearly 1.2 million customers in the first three days after the storm made landfall.
From December 8th through December 13th a winter storm system intensified along the coast and generated snow, sleet, and freezing rain across the Carolinas region.

More than 7,500 resources (linemen, vegetation, damage assessors) were mobilized to begin restoration once conditions supported safe work. The ICS structure was mobilized and fully operational December 7th in Raleigh to support restoration efforts. Crews working in support of Winter Storm Diego were released by December 13th.

At the peak 305,049 customers in NC and SC lost power during the winter storm.

Across the Carolinas service area 307 poles were broken and 102 transformers were damaged. Additionally, over 1,100 spans of wire were repaired or replaced.

Restoration began December 8th once winter conditions supported safe work.

By December 13th more than 99% of customers in the Carolinas who could receive power were restored.
January Winter Storm

- From January 13 through January 15 a fast moving area of low pressure and cold front bringing rain impacted the Mountain and Triad zones in the Carolinas.

- More than 5,500 resources (linemen, vegetation, damage assessors) were mobilized to begin restoration once conditions supported safe work. The ICS structure was mobilized and fully operational to support restoration efforts.

- At the peak 141,663 customers in NC and SC lost power.

- Across the Carolinas service area over 50 poles were broken and 29 transformers/switches/reclosers sustained damaged. Additionally, over 440 spans of wire were repaired or replaced.

- By January 14th more than 98% of customers in the Carolinas who could receive power were restored.
NC Electric Membership Cooperatives’ Hurricane Preparation, Impacts, and Response (20 min)

Overview of the Tideland EMC Microgrid on Ocracoke Island
Lee Ragsdale, Senior Vice President
Grid Infrastructure and Compliance, NCEMC
Hurricane Florence & Tropical Storm Michael

Responding the NC Cooperative Way

S. Lee Ragsdale
Senior Vice President,
Grid Infrastructure and Compliance

NC Electric Cooperatives
Your Touchstone Energy® Cooperatives
Local cooperative line crews are positioned and ready to restore outages as soon as conditions are safe...assisted by hundreds of crews from peer cooperatives across the southeast....
An army...worked tirelessly to restore power... bringing outages from a historic high of 326,000...to 12,700 one week later.

https://drive.google.com/open?id=1gd6ORJ4pkTCAL5n8R8fmo_XGyMrmEOye
Hurricane Michael Outages

North Carolina Electric Cooperatives
Customer Outage Report By County - Hurricane Michael

datetime=11/01/18 13:58:51

NCEMC total outage: 31,549

https://drive.google.com/open?id=1b7tJONJskDQfa1P9Qi4RFhHgMxqDYa
Cooperation Among Cooperatives

Hundreds of crews from states as far away as Minnesota, comprising thousands of additional personnel.
Messaging Matters: Social & Electronic Media

When waters rise, we rise above.
NC Electric Cooperatives' Microgrids
NCEMC System Microgrid Project

- Long, exposed distribution feeder serving the area under normal conditions
- Marine environmental conditions, high wind and storms
- Peak seasonal load coincides with costly demand peaks
- Generation capacity well below peak loads

- Part of NC Coastal Outer Bank Region
- Population: 948
- Area: 9.614 square miles
NCEMC System Microgrid

Member-Consumers

- Carina
- Ecobee

Ocracoke Island

Operations Center

NCEMC

- 200+ Thermostats
- 50 Water Heater Controls
- 3 MW Diesel Generator
- 500 kW / 1 MWh Tesla Battery Storage
- 15 kW Rooftop Solar

member-consumers
We are hoping to build an organization that is industry-changing to rural areas.
Butler Farms Microgrid Components

Resources owned by the farm:

- 20kW solar panels
- 100kW diesel generator
- 185kW biogas generator

NCEMC-owned:

- 250kW/735kWh battery system
- Controller to integrate and manage all components
Liquid Fuels – Preparation, Impacts, and Response (10 min)

David McGowan, Executive Director North Carolina Petroleum Council
Petroleum Industry Preparation, Response & Recovery to Hurricane Florence

David McGowan
Executive Director
North Carolina Petroleum Council
CRITICAL ELEMENTS OF THE FUEL SUPPLY CHAIN

Commercial electricity from the Power Plant is required for all movement of product.
Operable refinery locations and capacity volumes as of January 1, 2012

Source: U.S. Energy Information Administration, Refinery Capacity Report, 2012. Note: Click map for larger image. Refinery locations are approximate, reflecting the coordinates of the refinery’s city, rather than the refinery itself. PADDOs are Petroleum Administration for Defense Districts.

Blue line was added to show pipelines supplying the East coast.

US Statistics
- US Refineries: 144
- US Terminals: 1,100
- US Bulk Storage Plants: 4,226
- US Gas Stations: 157,000
- Pipelines: 100s

Northeast Statistics
- Northeast Refineries – NY = 0, NJ = 3, DE = 1, PA = 2
- NY, Northern New Jersey, Long Island Area
 - Terminals (NY harbor/NJ): 57
 - Bulk Storage Plants: 71
 - Gas Stations: 3,769
 - Pipelines: 3

Footnotes:
1. US Census Bureau 2010
2. NPN 2011 Statistics
3. DOE Situation Report for Hurricane Sandy
• 5,500 Miles of Pipeline stretching from Houston, TX to Linden, NJ
• 900 employees, 3 operating districts, Central Control Center in Alpharetta, GA
• Transports 105 Million Gallons/day of refined petroleum products: Gasoline, Diesel, Jet, Home Heating, U.S. Military Fuels
• Connects Gulf Coast Refiners and East Coast Markets: Serves 29 refineries, approximately 270 marketing terminals, 7 Airports and 5 Military Fuel Depots

Transit time from Houston to Linden is approximately 20 days.
North Carolina Operations (Mainlines)

- Line-1
 - 40" pipe
 - Gasoline
 - 107 miles traversing 7 counties

- Line-2
 - 36" pipe
 - Distillate line (diesel fuel, fuel oil, kerosene, home heating oil)
 - 107 miles traversing 7 counties

- Line-3
 - 36" pipe
 - Mixed fuels
 - 41 miles traversing 2 counties

- Line-4
 - 32" pipe
 - Mixed fuels
 - 41 miles traversing 2 counties
North Carolina Operations (Stublines)

- Line-22 (Apex/Selma)
 - 16" pipe
 - Mixed fuels
 - 107 miles traversing 5 counties

- Line-23 (RDU)
 - 8" pipe
 - Kero
 - 74 miles traversing 4 counties

- Line-24/24F (Fayetteville)
 - 8/6" pipe
 - Mixed fuels
 - 85/45 miles traversing 5 counties
North Carolina Operations

- 2 Tank Farms (CLT, GBJ)
- 5 Delivery Facilities
 - Charlotte
 - Greensboro
 - Apex
 - Selma
 - Fayetteville
- 3 Airport Facilities
 - CLT
 - GSO
 - RDU
- 5 Booster Stations
 - Line 1: Charlotte, Kannapolis, Greensboro
 - Line 2: Gastonia, Charlotte, Kannapolis, Lexington, Greensboro
- 83 Block Valve Sites
 - Facilities and major river crossings
How Product Moves
NC Petroleum System Facts

• 164 million barrels (6.8 billion gallons) of refined petroleum products consumed in NC in 2016; Gasoline, Diesel, Jet A, Av Gas, Kerosene, Heating oil
• Approximately 3% of all US refined petroleum consumption
• NC ranks 7th nationally in total consumption & 9th most populous state
• 2 Refined Product Pipelines:
 - Colonial Pipeline – approximately 70-75% of daily volume
 - Kinder Morgan/Plantation Pipeline – approximately 10-15% of daily volume
• 6 Major Supply Terminal Complexes:
 - Charlotte
 - Greensboro
 - Selma
 - Apex
 - Fayetteville
 - Wilmington
• Approximately 4,550 Filling Stations
<table>
<thead>
<tr>
<th>State</th>
<th>Natural Gas</th>
<th>Pipeline Fuel</th>
<th>Nuclear Power</th>
<th>Residual Fuel</th>
<th>Total</th>
<th>Hydroelectric</th>
<th>Fuel</th>
<th>Wind</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina</td>
<td>52.0</td>
<td>33.7</td>
<td>11.2</td>
<td>9.1</td>
<td>164.6</td>
<td>42.8</td>
<td>10.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>72.9</td>
<td>30.3</td>
<td>2.6</td>
<td>8.3</td>
<td>47.2</td>
<td>12.0</td>
<td>161.6</td>
<td>42.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Oregon</td>
<td>70.9</td>
<td>17.4</td>
<td>1.7</td>
<td>0.7</td>
<td>48.0</td>
<td>1.9</td>
<td>60.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsford/Henderson</td>
<td>33.4</td>
<td>11.0</td>
<td>12.2</td>
<td>17.9</td>
<td>22.0</td>
<td>222.0</td>
<td>52.9</td>
<td>2.3</td>
<td>11.6</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>38.4</td>
<td>12.7</td>
<td>0.9</td>
<td>0.0</td>
<td>5.9</td>
<td>1.5</td>
<td>14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>66.4</td>
<td>3.1</td>
<td>5.1</td>
<td>0.5</td>
<td>7.4</td>
<td>0.3</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>61.7</td>
<td>46.0</td>
<td>2.0</td>
<td>6.1</td>
<td>10.6</td>
<td>3.6</td>
<td>14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>66.8</td>
<td>17.7</td>
<td>12.3</td>
<td>12.5</td>
<td>163.6</td>
<td>42.1</td>
<td>13.7</td>
<td>57.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Utah</td>
<td>32.8</td>
<td>14.3</td>
<td>11.6</td>
<td>4.4</td>
<td>29.0</td>
<td>1.9</td>
<td>58.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>61.2</td>
<td>3.1</td>
<td>4.4</td>
<td>0.0</td>
<td>5.4</td>
<td>0.0</td>
<td>13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>85.3</td>
<td>32.1</td>
<td>5.0</td>
<td>10.8</td>
<td>56.2</td>
<td>3.6</td>
<td>93.1</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Washington</td>
<td>49.3</td>
<td>17.1</td>
<td>2.7</td>
<td>1.4</td>
<td>2.7</td>
<td>1.4</td>
<td>57.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>63.9</td>
<td>28.0</td>
<td>10.8</td>
<td>6.9</td>
<td>157.6</td>
<td>42.1</td>
<td>15.4</td>
<td>57.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Wyoming</td>
<td>35.8</td>
<td>12.4</td>
<td>3.0</td>
<td>0.0</td>
<td>12.6</td>
<td>0.0</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Natural gas is expressed as cubic feet, includes supplemental gaseous fuels that are delivered with natural gas.
2 Hydrocarbon gas includes carbon dioxide and nitrogen.
3 Nuclear power is calculated as the average hourly power input.
4 Includes liquid fuel and natural gas.
5 Includes electric power generated, minus nuclear power.
6 Includes electric power generated, minus nuclear power.
7 Includes biofuels.
8 Includes hydropower.
9 Includes biofuels.
10 Includes biofuels.
11 Includes biofuels.
12 Includes biofuels.
13 Includes biofuels.
14 Includes biofuels.

Table C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2016

<table>
<thead>
<tr>
<th>State</th>
<th>Million Short Tons</th>
<th>Billion Cubic Feet</th>
<th>Million Barrels</th>
<th>Billion Kilowatt Hours</th>
<th>Million Barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina</td>
<td>52.0</td>
<td>33.7</td>
<td>11.2</td>
<td>42.8</td>
<td>10.6</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>72.9</td>
<td>30.3</td>
<td>2.6</td>
<td>8.3</td>
<td>47.2</td>
</tr>
<tr>
<td>Oregon</td>
<td>70.9</td>
<td>17.4</td>
<td>1.7</td>
<td>0.7</td>
<td>48.0</td>
</tr>
<tr>
<td>Pittsford/Henderson</td>
<td>33.4</td>
<td>11.0</td>
<td>12.2</td>
<td>17.9</td>
<td>22.0</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>38.4</td>
<td>12.7</td>
<td>0.9</td>
<td>0.0</td>
<td>5.9</td>
</tr>
<tr>
<td>South Carolina</td>
<td>66.4</td>
<td>3.1</td>
<td>5.1</td>
<td>0.5</td>
<td>7.4</td>
</tr>
<tr>
<td>South Dakota</td>
<td>61.7</td>
<td>46.0</td>
<td>2.0</td>
<td>6.1</td>
<td>10.6</td>
</tr>
<tr>
<td>Tennessee</td>
<td>66.8</td>
<td>17.7</td>
<td>12.3</td>
<td>12.5</td>
<td>163.6</td>
</tr>
<tr>
<td>Utah</td>
<td>32.8</td>
<td>14.3</td>
<td>11.6</td>
<td>4.4</td>
<td>29.0</td>
</tr>
<tr>
<td>Vermont</td>
<td>61.2</td>
<td>3.1</td>
<td>4.4</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Virginia</td>
<td>85.3</td>
<td>32.1</td>
<td>5.0</td>
<td>10.8</td>
<td>56.2</td>
</tr>
<tr>
<td>Washington</td>
<td>49.3</td>
<td>17.1</td>
<td>2.7</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>63.9</td>
<td>28.0</td>
<td>10.8</td>
<td>6.9</td>
<td>157.6</td>
</tr>
<tr>
<td>Wyoming</td>
<td>35.8</td>
<td>12.4</td>
<td>3.0</td>
<td>0.0</td>
<td>12.6</td>
</tr>
</tbody>
</table>

U.S. Energy Information Administration | State Energy Data 2016: Consumption
North Carolina
Waivers Requested and Granted for Hurricane Florence

• Transportation Waivers – weights and hours of service (NC & FMCSA regional waiver)
• Tank trailer vapor tightness waiver (NC specific with No Action Assurance from EPA)
• Reid Vapor Pressure (Waiver from EPA, NCDAQ & NCDACS to allow 11.5# prior to 9/15)
• Terminal vapor recovery unit waiver (NCDAQ & EPA)
• Dyed Diesel (NCDAQ: No Action Assurance from EPA; IRS No Action Assurance)
Other Actions During Hurricane Response & Recovery

- Collaboration with Governor’s office, NC Emergency Management, NCDEQ, NCDACS and other state government officials to facilitate fuel availability for storm preparations, evacuations, response & recovery (waivers, etc.)
- Coordinate with federal agencies (PHMSA, FMCSA, DHS, EPA, IRS) on federal waivers, No Action Assurance decisions, port entry, etc.)
- Work closely with NCDOT and rail operators to maintain transportation corridors to and from regional terminal complexes
- Interface with NC Petroleum & Convenience Marketers Association (wholesalers; distributers; retailers)
- Work directly with electricity providers to ensure power supply at critical infrastructure facilities like Colonial Greensboro Junction and regional terminal complexes
Questions?

David McGowan
Executive Director - NC Petroleum Council
(919) 256-3646 office
mcgowand@api.org

Ivan Urlaub
Executive Director, NC Sustainable Energy Association

Presentation to North Carolina Energy Policy Council, February 20, 2019
(rescheduled from November 2018)

ivan@energync.org (919) 832-7601
www.energync.org
NC Renewable Generation Installed (MW\textsubscript{AC}) Nov 2018

Florence tested NC’s renewables contribution of \textasciitilde9.7\% of generation

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
\textbf{System Type} & \textbf{Distributed} & & \textbf{Utility Scale} & \\
 & \textbf{Capacity (MW)} & \textbf{Number} & \textbf{Capacity (MW)} & \textbf{Number} \\
\hline
Biomass & 22.1 & 30 & 555 & 25 \\
Hydroelectric & 28.6 & 36 & 1,730.90 & 32 \\
Solar & 302.9 & 7,519 & 3,396.10 & 431 \\
Wind & 0.2 & 23 & 208 & 1 \\
\hline
\textbf{Total} & 353.9 & 7,608.00 & 5,890.00 & 489 \\
\hline
\end{tabular}
\end{table}
Solar Energy Largely Unscathed by Hurricane Florence’s Wind and Rain

In North Carolina, the #2 solar state, Florence was the first extreme weather test for much of its renewable energy.

BY DAN GEARINO
SEP 20, 2018

Clean Energy Players Weather Through Florence
But with floods expected through the week, installers and utilities say they’re still determining the storm’s impacts.

Emma Foehringer Merchant September 17, 2018

Hurricane Florence crippled electricity and coal – solar and wind were back the next day

By IRINA IVANOVA MONEYWATCH September 25, 2018, 9:24 AM
Utility Scale Solar

- In first two days, solar production in storm area was around 25% of average due to clouds, while wind production was around 250% of average due to higher sustained wind speeds

- Obtained report outs from six firms (including Duke) covering 403 of NC’s 431 utility scale PV systems in our database
 - 5 systems damaged including 2 by tornadoes (1.2% of systems)
 - Between 0.4 and 4 days production lost at each of these 5 system sites
 - Systems in New Bern area produced throughout Florence and aftermath
 - Some sites required road and fence repair, vegetation clean up, no production impact

- Distribution of systems limited total renewable resource damage, impacts
Rooftop Solar

- Rooftop solar without islanding capability is either tripped offline when grid goes down or proactively taken offline by system owners ahead of an event.

- Obtained report outs from firms representing 9MW of the 37MW installed rooftop PV in NC, including Wilmington:
 - No wind or flood damages
 - Two tree falls on homes
 - Six inverter problems
 - Numerous inquiries about energy storage

- Rooftop systems usually damaged only if the roof is blown off in part or whole:
 - Hearing second hand reports of damaged systems, but none reported to us yet.
Wind Power in NC and Hurricane Florence
Amazon Wind Farm US East

- No flooding, damage, or noticeable water or drainage issues
- Winds were below U.S. DOE’s 55mph cut off speed
- Sep. 14 production: 4,088 MWh vs. 1,344 MWh average day
- National Control Center in Oregon reliably controlled the project for 48 hours as part of hurricane response procedure implementation
Central Station and Grid Impacts

- Duke’s 1,870 MW Brunswick Nuclear plant was operating at 15% of capacity one week after landfall, with one unit still offline as of Nov 28
- Duke’s 625 MW Sutton NGCC plant went offline six days after landfall
 - 7 weeks after landfall, not at full operation, unable to function as a baseload serving facility
- On site fuel did not advantage these facilities and did not improve security
- PV systems ready, waiting for grid to come back up
Key Observations for Renewables

• Since 1996, NC has had four 100-year rain events (NC DPS), but this was first to test broadly deployed renewables
• Renewables mostly back online within a day of site access
• Distributed nature of renewables assets provided greater energy assurance
 – Design of using weather and sun for fuel reduces dependence on on-site fuel storage and central station generation
 – Amount and duration of nuclear and natural gas generating capacity offline greater than renewables
• If storm intensity and frequency continue increasing, greater energy assurance could be achieved through further systemic decentralization of generation, storage, islanding
 – DERs serving critical distribution loads available, costs declining
 – Many customers, if allowed, are willing to bare part of the cost, lowering cost of energy assurance further for all ratepayers
Solution Options Now for Critical Loads

Do NC critical loads have resources in place to stay online to maintain safety, security, and social and economic stability? Loads such as...

- Military *(14-day resilience objective)*
- Hospitals
- First responders
- Shelters
- Cell towers & ATMs
- Gas / Diesel / EV charging stations
Residential Solar PV with Energy Storage
Sandy Grove Elementary School has a 560 kW solar PV system, geothermal ground source heat pump, efficient lighting, and EV charging stations (no storage yet)
Energy Storage and Solar PV

Brunswick EMC and Cypress Creek’s 12 MWh Solar+Storage Project
Microgrids

Tideland EMC’s microgrid on Ocracoke Island has a 15 kW solar PV system and 2 500 kW, 1 MWh Tesla Battery Banks
Energy Storage Deployment Accelerating

Southeastern Energy Storage Facilities

Building Type
- Airport
- Bank
- College Campus
- Commercial Building
- Cruise Terminal
- K-12 School
- Medical Facility
- Military
- Municipal Building
- Recreation
- Religious Facility
- Utility

Technology Type
- (All)
 - Electro-chemical
 - Electro-mechanical
 - Pumped Hydro Storage
 - Thermal Storage
- (All)
 - Chilled Water Thermal Storage
 - Electro-chemical Capacitor
 - Flywheel
 - Heat Thermal Storage
 - Ice Thermal Storage
 - Inground Natural Gas Combustion Co..
 - Lead-acid Battery
 - Lithium Iron Phosphate Battery
 - Lithium Polymer Battery
 - Lithium-ion Battery
 - Open-loop Pumped Hydro Storage
 - Sodium-Ion Battery
 - Zinc Bromide Flow Battery
 - Zinc Iron Flow Battery

Source: www.energync.org, non-residential storage assets, not comprehensive yet, Nov 2018
Key Questions for NC Energy Policy

Renewables passed the Florence test. What did we learn for policy improvement?

• How does the performance of renewables for energy assurance inform beneficial changes to energy policy, regulation, business models?
• Does NC electricity policy incent or discourage distributed generation as an energy assurance solution?
• Should NC start requiring integrated distribution system planning?
• Does the current regulated utility business model make more or less money when renewables are deployed for energy assurance?
• What does this mean for Duke Energy’s recent $13.8B grid plan?
• Given the near zero damage rates for renewables not owned by Duke Energy, should we evolve NC discussion beyond concept of utility ownership and operation of renewables and storage assets as necessary to ensure reliability and energy assurance?
• Can customers directly improve both energy assurance and affordability for all ratepayers by installing renewables, efficiency measures, beneficial electrification, transportation electrification, and storage?
THANK YOU