YEAR 7 (2021) MONITORING REPORT

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Full Delivery Contract No. 5790 DMS Project No. 96311 NCDWR Project No. 20140336 USACE Action ID No. SAW-2014-01710

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection – January-November 2021

PREPARED FOR:

NC. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

December 2021

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

Response to Monitoring Year 7 (2021) DMS Comments

Abbey Lamm Stream and Wetland Mitigation Site (DMS #96311) Cape Fear River Basin 03030002, Alamance County Contract No. 005790

Comments Received (Black Text) & Responses (Blue Text)

1. Please update the credit table on page 2 based on the altered table below, specifically the Enhancement (Level II) row and the Total SMUs:

Stream Mitigation Type	Perennial Stream Counting Towards Mitigation Credits (linear feet)	Intermittent Stream Counting Towards Mitigation Credits (linear feet)	Ratio	Stream Mitigation Units
Restoration	2625	1775	1:1	4400
Enhancement (Level II)	403	426	2.5:1	331.6
Totals	3034	2200		4731.6

The table was updated accordingly. Additionally, the perennial stream total was updated to **3028** and the intermittent stream total to **2201**.

- 2. Table 1 The Mitigation Credits column have credits based on as-built lengths. Please update the Mitigation Credits column to the credits shown below:
 - 541 146 455 37.2 57.2 76 1084 1030 161.2 1144

Also, please change the total Mitigation Units to 4,731.6 SMUs. Table 1 was updated accordingly.

- Please use the growing season described in the mitigation plan.
 Hydrology data has been updated to reflect the growing season from the mitigation plan.
- 4. Please report the average stem height for each vegetation plot. A column for average stem height was added to Table 7.
- Please submit the veg transect data used for Table 10.
 Vegetation transect data has been included in the digital submittal.
- 6. Ensure that the values reported with the cross section figures are consistent with those reported in Table 12 (e.g. BHR UT2 XS 1 & UT3 XS 8). It looks like these differences are caused by rounding to the nearest 10th decimal place of the Low Bank Height and the Max Depth at Bankfull in table 12. Table 12 was updated with unrounded low bank height and max depth values to match the cross-section figures.
- 7. Please include a figure displaying the monthly rainfall data compared to the 30th 70th percentiles. Figure E-1: 30-70 Percentile Graph for Rainfall was added to Appendix E.

Abbey Lamm Year 7, 2021 Monitoring Summary

General Notes

- No encroachment was identified in Year 7 (2021)
- No evidence of nuisance animal activity (i.e., beaver, heavy deer browsing, etc.) was observed.

Streams

- Stream monitoring measurements indicate minimal changes in the cross sections as compared to asbuilt data. The channel geometry compares favorably with the proposed conditions outlined in the Site's mitigation plan and as constructed.
- All in-stream structures are intact and functioning as designed. No stream areas of concern were identified during Year 7 (2021) monitoring. Tables for Year 7 data and annual quantitative assessments are included in Appendix D.
- One bankfull event was documented during Year 7 (2021) for a total of 18 bankfull events during the monitoring period, with events occurring in each of the 7 monitoring years (Table 14, Appendix E)
- Channel formation was evident in UT 1 and UT 3 throughout the monitoring period. During Year 7 (2021), UT 1 stream flow gauges and trail cameras documented 147 and 157 consecutive days of stream flow, and UT 3 stream flow gauges and trail cameras documented 122 and 94 consecutive days of stream flow. The approximate locations of stream flow gauges are depicted on Figure 2 (Appendix B); channel formation indicators and stream flow gauge data are included in Tables 13A-13B (Appendix E).

Vegetation

• Year 7 (2021) stem count measurements, measured September 30, 2021, indicate an average of 295 planted stems per acre (excluding livestakes) across the Site. Ten of fourteen individual vegetation plots met success criteria based on planted stems alone; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*), plots 6, 7, and 13 are well above success criteria. Additionally, three vegetation transects were measured within the old pond bed along the lower reach of the mainstem. These transects yielded 8 stems each for an average of 324 stems per acre. Vegetation data is located in Appendix C, and permanent and temporary vegetation plots are depicted in Figure 2 (Appendix B).

Wetlands

• Ten of eleven groundwater gauges met success for the Year 7 (2021) monitoring period. Wetland hydrology data is in Appendix D.

Monitoring Period/Hydrology Success Criteria 2021 (Year 7)

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	10 Percent of Monitoring
	Burst Documented	Determining Success	Period
2021 (Year 7)	Bud burst and soil temperatures** documented on March 1, 2021.	March 1-October 22 (236 days)	24 days

* Gauges were installed on April 8 during year 1 (2015), so this date was used as the start of the growing season.

** Based on data collected from a soil temperature data logger located on the Site.

	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)						
Gauge	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)
	February 1	March 30	February 28	March 6	March 1	March 2	March 1
	Growing	Growing	Growing	Growing	Growing	Growing	Growing
	Season Start	Season Start	Season Start	Season Start	Season Start	Season Start	Season Start
1	No*/10 days	Yes/75 days	No/12 days	Yes/68 days	Yes/28 days	Yes/80 days	Yes/88 days
	(3.8 percent)	(36 percent)	(5.1 percent)	(29 percent)	(11.9 percent)	(34 percent)	(37 percent)
1B+				Yes/60 days (26 percent)	Yes/60 days (26 percent)	Yes/42 days (17.9 percent)	Yes/81 days (34 percent)
2	Yes/35 days	Yes/122 days	Yes/82 days	Yes/30 days	No/19 days [#]	Yes/35 days	Yes/37 days
	(13.3 percent)	(59 percent)	(35 percent)	(13 percent)	(8.1 percent)	(15 percent)	(16 percent)
3	No*/14 days	Yes/48 days	Yes/135 days	Yes/66 days	Yes/89 days	Yes/119 days	Yes/87 days
	(5.3 percent)	(23 percent)	(57 percent)	(29 percent)	(38 percent)	(51 percent)	(37 percent)
4	No*/14 days	Yes/100 days	Yes/78 days	Yes/28 days	No/18 days [#]	Yes/32 days	Yes/44 days
	(5.3 percent)	(48 percent)	(33 percent)	(12 percent)	(7.7 percent)	(13.7 percent)	(19 percent)
5	Yes/32 days	Yes/75 days	Yes/48 days	Yes/60 days	No/19 days [#]	Yes/67 days	Yes/43 days
	(12.1 percent)	(36 percent)	(20 percent)	(26 percent)	(8.1 percent)	(29 percent)	(18 percent)
6	No*/9 days	No/7 days	No/5 days	Yes/25 days	No/19 days	No/12 days	Yes/43 days
	(3.4 percent)	(3.4 percent)	(2.1 percent)	(11 percent)	(8.1 percent)	(5.1 percent)	(18 percent)
6B+				Yes/28 days (12 percent)	No/17 days [#] (7.2 percent)	No/19 days (8.1 percent)	No/23 days (9.7 percent)
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)	Yes/103 days (45 percent)	Yes/103 days (44 percent)	Yes/125 days (53 percent)	Yes/81 days (34 percent)
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)	Yes/231 days (100 percent)	Yes/124 days (53 percent)	Yes/235 days (100 percent)	Yes/150 days (64 percent)
9**		Yes/54 days (26 percent)	No [^] /12 days (5.1 percent)	Yes/132 days (57 percent)	Yes/122 days (52 percent)	Yes/91 days (39 percent)	Yes/154 days (65 percent)

* Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

** These gauges were installed on March 8, 2016, to show wetland establishment within the old pond bed.

^ This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.

⁺ These gauges were installed during Year 4 (2018) near two gauges that had not met success criteria in previous monitoring years to verify the groundwater data at these locations.

[#]These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data from March 20 to May 3, 2019. Based on rainfall and hydrology data that was not lost, these gauges would have likely met success criteria had the loss of data not occurred.

Site Maintenance Report (2021)

Invasive Species Work	Maintenance work
05/18/2021	
Microstegium	None
6/29/2021	
Microstegium, Cattail, Privet	

Activity or Deliverable	Stream Monitoring Complete	Vegetation Monitoring Complete	Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
EEP Contract No. 5790				February 2014
Mitigation Plan				September 2014
Construction Plans				September 2014
Construction Earthwork				April 3, 2015
Planting				April 7, 2015
As-Built Documentation	April 14th, 2015	April 9th, 2015	May 2015	July 2015
Year 1 Monitoring	October 20th, 2015	September 23rd, 2015	October 2015	November 2015
Fescue Treatment				March, 2016
Year 2 Monitoring	April 7th, 2016	July 6th, 2016	October 2016	December 2016
Remedial Planting				December 8, 2016
Year 3 Monitoring	March 27, 2017	July 19, 2017	October 2017	November 2017
Year 4 Monitoring	April 15, 2018		October 2018	October 2018
Year 5 Monitoring	March 4, 2019	September 25, 2019	November 2019	January 2020
Year 6 Monitoring	NA	NA	October 2020	December 2020
Year 7 Monitoring	January 14, 2021	September 30, 2021	November 2021	November 2021

Site Permitting/Monitoring Activity and Reporting History

YEAR 7 (2021) MONITORING REPORT

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Full Delivery Contract No. 5790 DMS Project No. 96311 NCDWR Project No. 20140336 USACE Action ID No. SAW-2014-01710

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection – January-November 2021

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

December 2021

Table of Contents

1.0	PROJECT SUMMARY	1
2.0	METHODOLOGY	6
2.1	Streams	6
	Vegetation	
2.3	Wetland Hydrology	7
2.4	Biotic Community Change	8
3.0	REFERENCES	9

Appendices

APPENDIX A. PROJECT BACKGROUND DATA AND MAPS Figure 1. Vicinity Map Table 1. Project Components and Mitigation Credits Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table Table 4. Project Baseline Information and Attributes

APPENDIX B. VISUAL ASSESSMENT DATA

Figures 2. Current Conditions Plan View Tables 5a-e. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Stream Fixed-Station Photographs Vegetation Plot Photographs

APPENDIX C. VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment Table 8. CVS Vegetation Plot Metadata Table 9. Total and Planted Stems by Plot and Species Table 10. Temporary Vegetation Transect Data Historic Temporary Vegetation Transect Data (Figure and Tables)

APPENDIX D. STREAM SURVEY DATA

Table 11a-e. Baseline Stream Data Summary Table 12a-l. Morphology and Hydraulic Summary Data

APPENDIX E. HYDROLOGY DATA

Tables 13a-b. UT1 and UT3 Channel Evidence Stream Gauge Graphs Table 14. Verification of Bankfull Events Table 15. Groundwater Hydrology Data Groundwater Gauge Graphs Figure E-1. 30-70 Percentile Graph for Rainfall

APPENDIX F. MISCELLANEOUS

Figure-2015 Fescue Treatment 2016 Herbicide Application Forms Supplemental Photographs Remedial Planting Plan Figure 2016 Replant Photos 2019 Herbicide Application Forms

APPENDIX G. WETLAND STUDIES & 12/2020 SITE PHOTOS Figures

Soil Profiles Site-wide Photo Log

1.0 PROJECT SUMMARY

The Abbey Lamm Stream and Wetland Mitigation Site (Site) encompasses approximately 17.3 acres located approximately 2.0 miles east of Snow Camp in southern Alamance County within 14-digit Cataloging Unit and Targeted Local Watershed 03030002050050 of the Cape Fear River Basin (Figure 1, Appendix B and Table 4, Appendix A). Before Site construction, the Site consisted of agricultural land used for livestock grazing and hay production. Streams had been cleared of vegetation, dredged of cobble substrate, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock. Further, streamside wetlands had been drained by channel incision, soils were compacted, cleared of forest vegetation, and altered by land uses. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

Positive aspects supporting mitigation activities at the Site included the following.

- Streams have a Best Usage Classification of WS-V, NSW (Nutrient Sensitive Waters)
- Located in a Targeted Local Watershed (TLW)
- According to the *Cape Fear River Basin Restoration Priorities 2009,* benthic ratings in the TLW vary from "Fair" to "Good-Fair" indicating a need for improvement of aquatic conditions in the watershed (NCDMS 2009)
- A Significant Natural Heritage Area is located immediately east of the Site

The Site is not included in a Local Watershed Plan; however, this project meets overall goals of the Local Watershed Plans, including 1) reduce sediment loading, 2) reduce nutrient loading, 3) manage stormwater runoff, 4) reduce toxic inputs, 5) provide and improve instream habitat, 6) provide and improve terrestrial habitat, 7) improve stream stability, and 8) improve hydrologic function. The following table summarizes the project goals/objectives and proposed functional uplift based on Site restoration activities and observations of two reference areas located in the vicinity of the Site.

Project Goal/Objective	How Goal/Objective will be Accomplished	
Improve Hydrology		
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows	
Restore Wooded Riparian Buffer	Planting a woody riparian buffer	
Improve Microtopography	Scarifying soils to reduce compaction and hoof shear due to cattle	
Restore Stream Stability		
Increase Sediment Transport	Building a new channel, planting a woody riparian buffer, and removing cattle	
Improve Stream Geomorphology		
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring	
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation	
Increase Subsurface Storage and Retention	Raising the stream bed elevation	

Project Goals and Objectives

Project Goals and Objectives (continued)

Project Goal/Objective	How Goal/Objective will be Accomplished	
Improve Water Quality		
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer and installing 8 marsh treatment areas	
Increase Thermoregulation	Planting a native, woody riparian buffer	
Reduce Stressors and Sources of Pollution	Removing cattle and installing 8 marsh treatment areas	
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, restoring appropriate inundation/duration, and installing 8 marsh treatment areas	
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, and installing 8 marsh treatment areas	
	Restore Habitat	
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer	
Restore Streamside Habitat	Dianting a woody riparian buffer	
Improve Vegetation Composition and Structure	Planting a woody riparian buffer	

Project construction occurred between January and April 2015. Planting was completed in April 2015. Site activities include the restoration of perennial and intermittent stream channels, enhancement (level II) of perennial and intermittent stream channels, and restoration of riparian wetlands. A total of **4731.6 Stream Mitigation Units (SMUs) and 1.0 Riparian Wetland Mitigation Units (WMUs)** are being generated as depicted in the following tables. These tables were revised after realizing that changes in stream footages due to minor construction changes were not accounted for in the asbuilt document.

Stream Mitigation Type	Perennial Stream Counting Towards Mitigation Credits (linear feet) Intermittent Stream Counting Towards Mitigation Credits (linear feet) Ratio		Stream Mitigation Units	
Restoration	2625	1775	1:1	4400
Enhancement (Level II)	403 426 2.5:1		331.6	
Totals	3028	2201		4731.6

Wetland Mitigation Type	Acreage	Ratio	Riparian Wetland Mitigation Units
Riparian Restoration	1.0	1:1	1.0
Riparian Enhancement*	0.4		
Totals	1.4		1.0

*Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Stream Success Criteria

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Project Goal/Objective	Stream Success Criteria	
Improve Hydrology		
Restore Floodplain Access	Two overbank events will be documented, in separate years, during the monitoring period.	
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.	
Improve Microtopography	Removal of cattle and scarification of soils during construction	
Restore Stream Stability	Cross-sections, monitored annually, will be compared to asbuilt measurements to determine channel stability and maintenance of	
Improve Stream Geomorphology	channel geomorphology	
Increase Surface Storage and Retention	Removal of cattle, installing 8 marsh treatment areas, scarification of soils during construction, documentation of two overbank events	
Restore Appropriate Inundation/Duration	in separate monitoring years, and attaining Wetland and Vegetation Success Criteria	
Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and attaining Wetland Success Criteria	
Increase Sediment Transport	Pebble counts document coarsening of bed material from pre- existing conditions.	
Ir	nprove Water Quality	
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria	
Increase Thermoregulation	Attaining Vegetation Success Criteria	
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas	
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria	
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria	
	Restore Habitat	
Restore In-stream Habitat	Reincorporating natural substrate removed from existing Site streams and stockpiled on-site into proposed stream beds, pebble counts documenting coarsening of bed material from pre-existing conditions and attaining Vegetation Success Criteria (Section 8.3.1)	
Restore Streamside Habitat	Attaining Vegetation Success Criteria	
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria	

Intermittent channels (UT 1 and UT 3) were questioned by IRT members with respect to jurisdictional status. Success criteria in these reaches require surface water flow within the stream channels during years with normal climactic conditions for at least 30 consecutive days. Furthermore, IRT members require these systems to have a discernible ordinary high water mark, which will be evaluated and considered towards project success. Iron-oxidizing bacteria and hydric soils within these reaches will be documented by photograph throughout the monitoring period and considered signs of intermittent channels by IRT members.

Vegetation Success Criteria

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

Wetland Success Criteria

Monitoring and success criteria for wetland restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

Project Goal/Objective	Wetland Success Criteria	
Improve Hydrology		
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria.	
Improve Microtopography	Removal of cattle and scarification of soils during construction	
Increase Surface Storage and Retention	Removal of cattle, scarification of soils during construction,	
Restore Appropriate Inundation/Duration	documentation of two overbank events in separate monitoring years, attaining Vegetation Success Criteria, and	
Increase Subsurface Storage and Retention	documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions	
Improve Water Quality		
Increase Upland Pollutant Filtration	Installation of 8 marsh treatment areas and attaining Wetland and Vegetation Success Criteria	
Reduce Stressors and Sources of Pollution	Removal of cattle and installation of 8 marsh treatment areas	
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Removal of cattle, installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria	
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Installation of 8 marsh treatment areas, documentation of two overbank events in separate monitoring years, and attaining Vegetation Success Criteria	
Restore Habitat		
Restore Streamside Habitat	Attaining Vagatation Success Criteria	
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria.	

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project, gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. Based on growing season information outlined in the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Environmental Laboratory 2012), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22) during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed. The jurisdictional determination will not supersede monitoring data or overturn a failure in meeting success criteria; however, the IRT may use this information at its discretion to make a final determination on Site wetland re-establishment success.

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	10 Percent of Monitoring
	Burst Documented	Determining Success	Period
2015 (Year 1)		April 8 *-October 22 (198 days)	20 days
2016 (Year 2)	Bud burst and soil temperatures documented on March 30, 2016	March 30-October 22 (207 days)	21 days
2017 (Year 3)	Bud burst and soil temperatures documented on February 28, 2017	February 28-October 22 (237 days)	24 days
2018 (Year 4)	Bud burst and soil temperatures documented on March 6, 2018	March 6-October 22 (231 days)	23 days
2019 (Year 5)	March 1 st , 2019**	March 1-October 22 (235 days)	24 days
2020 (Year 6)	Bud burst and soil temperatures** documented on March 2, 2020.	March 2-October 22 (234 days)	23 days
2021 (Year 7)	Bud burst and soil temperatures** documented on March 1, 2021.	March 1-October 22 (236 days)	24 days

Summary of Monitoring Period/Hydrology Success Criteria by Year

* Gauges were installed on April 8 during year 1 (2015), so this date was used as the start of the growing season.

** Based on data collected from a soil temperature data logger located on the Site.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to various project and monitoring elements' performance can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

Monitoring requirements and success criteria outlined in the latest guidance by NCDMS dated November 7, 2011 (*Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data if required explicitly by permit conditions.

Wetland hydrology is proposed to be monitored for seven years (years 1-7). Riparian vegetation and stream morphology will be monitored for seven years, with measurements completed in years 1-3, year 5, and year 7. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected.

2.1 Streams

Annual monitoring will include the development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will consist of 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Post-construction, permanently-monumented cross-sections were installed throughout the Site, at approximately 50-foot intervals. Sixty monitoring cross-sections will be measured annually. Cross-section locations are depicted in Figure 2 (Appendix B); data are included in Appendix C. Longitudinal profiles will not be measured unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in each of the seven years of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area. Morphology data can be found in Tables 11A-E and 12A-L (Appendix D).

Intermittent stream reaches, including UT 1 and UT 3, received priority 1 stream restoration to restore adjacent wetlands and elevate stream function. Priority 1 stream restoration along intermittent stream reaches was discussed by IRT members with regard to adequate base flow once stream restoration is complete. Therefore, stream flow gauges were installed in the upper and lower reaches of UT 1 and UT 3 to catalog flow for 30 consecutive days. Channel formation was evident in both UT 1 and UT 3 in years 1-7 (2015-2021) (Tables 13a-13b, Appendix E). The approximate locations of stream flow gauges are depicted in Figure 2 (Appendix B); gauge data is included in Appendix E.

2.2 Vegetation

After planting was completed in April 2015, an initial evaluation was performed to verify planting methods and determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008).

In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph.

Year 7 (2021) stem count measurements, measured September 30, 2021, indicate an average of 295 planted stems per acre (excluding livestakes) across the Site. Ten of fourteen individual vegetation plots met success criteria based on planted stems alone; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*), plots 6, 7, and 13 are well above success criteria. Additionally, three vegetation transects were measured within the old pond bed along the lower reach of the mainstem. These transects yielded 8 stems each for an average of 324 stems per acre. Vegetation data is located in Appendix C, and locations of permanent and temporary vegetation plots are depicted on Figure 2 (Appendix B).

Heavy herbaceous competition in the first year (2015) growing season affected planted stems; therefore, on March 10, 2016, open areas in the upper 2/3 of the Site were treated with a pre-emergent with grass specific herbicide (Appendix F). The treatment successfully knocked back herbaceous growth; however, the amount of new herbaceous growth was similar to the density observed in prior to treatment efforts by the end of the growing season. RS does not plan to continue this form of treatment.

Working with Carolina Silvics, RS planted 1250 1-gallon pots during the week of December 20, 2016, which included the following species: *Betula nigra, Fraxinus pennsylvanica, Platanus occidentalis, Quercus falcata, Quercus nigra, Quercus palustris, Quercus phellos,* and *Quercus rubra*. A remedial planting plan figure detailing location of planting and density, in addition to photographs, are provided in Appendix E. Of note, no remedial planting was performed within forested areas, i.e., vegetation plot 12. This is an enhancement area within an existing hardwood forest. Given planted species surviving within vegetation plot 12 and the surrounding density of the existing forest, RS did not feel it necessary to replicate this area.

During year 5 (2019), it was observed that Japanese stiltgrass (*Microstegium vimineum*) densities were elevated within the old pond bed and were affecting planted stem survival. In June 2019, RS treated the microstegium with herbicide. Treatments in this area and throughout the site continued through years 6 (2020) and 7 (2021). The treatments appear to have been successful in significantly reducing the density of Japanese stiltgrass.

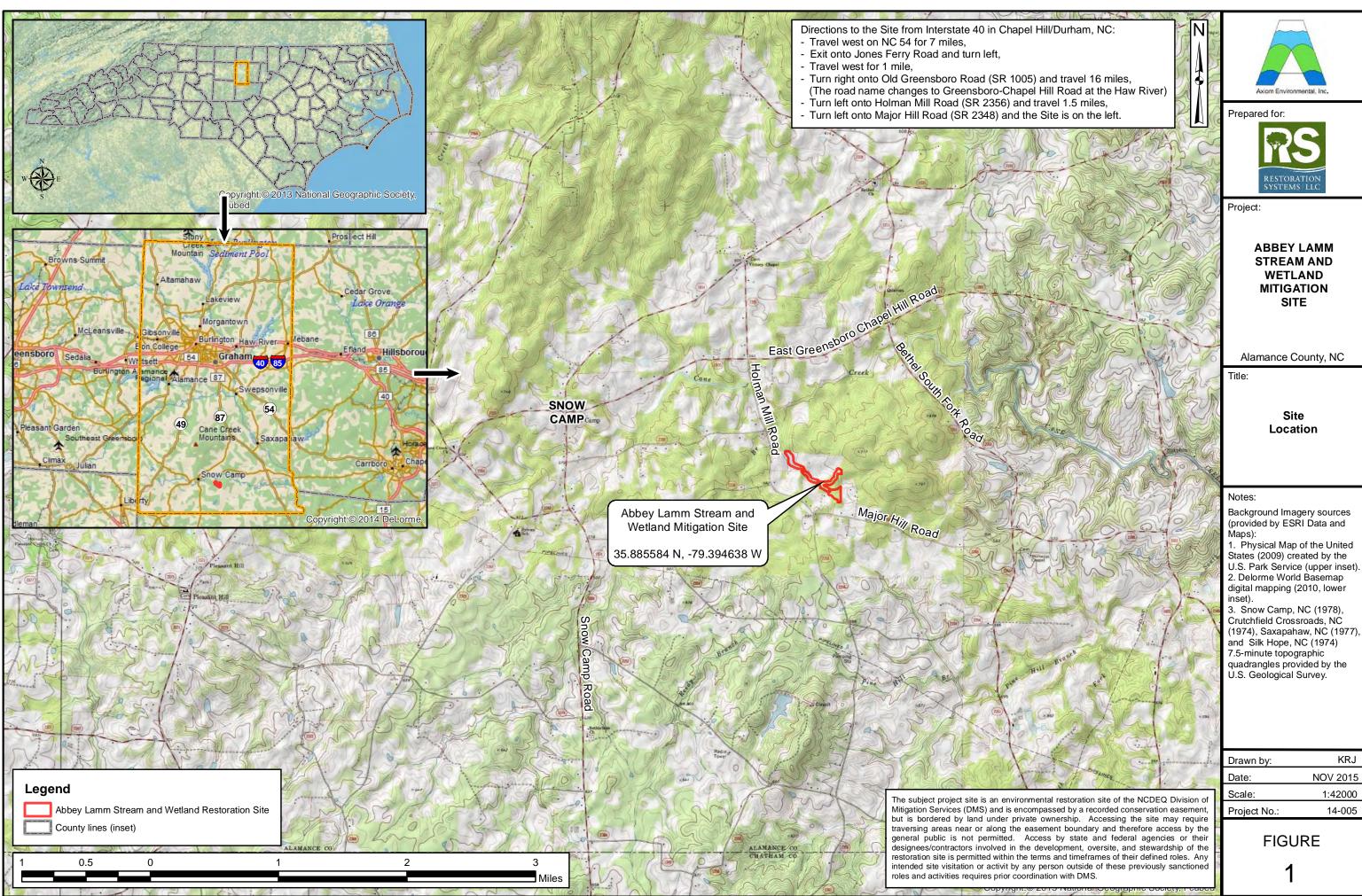
2.3 Wetland Hydrology

Six groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Groundwater gauges were installed in larger wetland sections along UT 1, UT 2, and the main stem channel. Gauges were installed at various elevations within the floodplain to accurately determine the hydrology of wetland re-establishment areas. Approximate locations of wetland groundwater monitoring gauges are depicted in Figure 2 (Appendix B). Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions, and floodplain crest gauges will confirm overbank flooding events.

		Success Criteria	Achieved/Max Co	nsecutive Days Du	uring Growing Seas	son (Percentage)	
Gauge	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)
	February 1	March 30	February 28	March 6	March 1	March 2	March 1
	Growing	Growing	Growing	Growing	Growing	Growing	Growing
	Season Start	Season Start	Season Start	Season Start	Season Start	Season Start	Season Start
1	No*/10 days	Yes/75 days	No/12 days	Yes/68 days	Yes/28 days	Yes/80 days	Yes/88 days
	(3.8 percent)	(36 percent)	(5.1 percent)	(29 percent)	(11.9 percent)	(34 percent)	(37 percent)
1B+				Yes/60 days (26 percent)	Yes/60 days (26 percent)	Yes/42 days (17.9 percent)	Yes/81 days (34 percent)
2	Yes/35 days	Yes/122 days	Yes/82 days	Yes/30 days	No/19 days [#]	Yes/35 days	Yes/37 days
	(13.3 percent)	(59 percent)	(35 percent)	(13 percent)	(8.1 percent)	(15 percent)	(16 percent)
3	No*/14 days	Yes/48 days	Yes/135 days	Yes/66 days	Yes/89 days	Yes/119 days	Yes/87 days
	(5.3 percent)	(23 percent)	(57 percent)	(29 percent)	(38 percent)	(51 percent)	(37 percent)
4	No*/14 days	Yes/100 days	Yes/78 days	Yes/28 days	No/18 days [#]	Yes/32 days	Yes/44 days
	(5.3 percent)	(48 percent)	(33 percent)	(12 percent)	(7.7 percent)	(13.7 percent)	(19 percent)
5	Yes/32 days	Yes/75 days	Yes/48 days	Yes/60 days	No/19 days [#]	Yes/67 days	Yes/43 days
	(12.1 percent)	(36 percent)	(20 percent)	(26 percent)	(8.1 percent)	(29 percent)	(18 percent)
6	No*/9 days	No/7 days	No/5 days	Yes/25 days	No/19 days	No/12 days	Yes/43 days
	(3.4 percent)	(3.4 percent)	(2.1 percent)	(11 percent)	(8.1 percent)	(5.1 percent)	(18 percent)
6B+				Yes/28 days (12 percent)	No/17 days [#] (7.2 percent)	No/19 days (8.1 percent)	No/23 days (9.7 percent)
7**		Yes/116 days (56 percent)	Yes/153 days (65 percent)	Yes/103 days (45 percent)	Yes/103 days (44 percent)	Yes/125 days (53 percent)	Yes/81 days (34 percent)
8**		Yes/206 days (100 percent)	Yes/211 days (89 percent)	Yes/231 days (100 percent)	Yes/124 days (53 percent)	Yes/235 days (100 percent)	Yes/150 days (64 percent)
9**		Yes/54 days (26 percent)	No [^] /12 days (5.1 percent)	Yes/132 days (57 percent)	Yes/122 days (52 percent)	Yes/91 days (39 percent)	Yes/154 days (65 percent)

2.4 Biotic Community Change

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track the changes during the monitoring period. The benthic macroinvertebrate community will be sampled using NCDWR protocols found in the *Standard Operating Procedures for Benthic Macroinvertebrates* (NCDWQ 2006) and *Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects* (NCDWQ 2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with postconstruction restored conditions.


Two benthic macroinvertebrate monitoring locations were established within restoration reaches. Postrestoration collections occur in the approximate location of the prerestoration sampling. Benthic macroinvertebrate samples will be collected from individual reaches using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Preproject biological sampling occurred on June 26, 2014; postproject monitoring occurred in June of monitoring years 2-5, and results were reported in those annual monitoring reports.

3.0 REFERENCES

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, SD. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates. Biological Assessment Unit, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Department of Agriculture (USDA). 2021. Natural Resources Conservation Service National Weather and Climate Center. AgACIS Climate Data. Burlington Regional Airport WETS Station (online). Available: http://agacis.rcc-acis.org/
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

APPENDIX A: PROJECT BACKGROUND DATA AND MAPS

Figure 1. Vicinity Map Table 1. Project Components and Mitigation Credits Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits

				Mitigation Credi	ts				
Stream	Stream	n		Riparian Wetland	ł		Nonri	parian Wetland	
Restoration	Enhancer	nent		Restoration			F	Restoration	
4400	331			1.0					
				Projects Compone	ents				
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoratio Restoratio Equivalen	n Linear Footage/	Mitigation Plan Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits (from Mit Plan)	Comment	
UT 1 Station 00+21 to 05+62	531	PI	Restoratio	n 546	541	1:1	541		
UT 1a Station 00+00 to 01+54	154	PI	Restoratio	n 154-9= 145	154-8= 146	1:1	146	9 If of UT1a located outside of easement is not credit generating	
UT 2 Station 00+22 to 04+75	502	PI	Restoratio	n 453	455	1:1	455		
UT 3a Station 00+00 to 00+93	93		EII	93	93	2.5:1	37.2		
UT 3b Station 00+00 to 01+42	143		EII	142	143	2.5:1	57.2		
UT 3c Station 00+00 to 01+90	190		EII	190	190	2.5:1	76		
UT 3 Station 00+93 to 11+77	1021	PI	Restoratio	n 1084	1084	1:1	1084		
Mainstem Channel Station 04+75 to 16+29	1098	PI	Restoratio	n 1154-61-63= 1030	1154-61-63= 1030	1:1	1030	61 If and 63 If of Mainstem located outside of easement at two crossings are not credit generating	
Mainstem Channel Station 16+29 to 20+57	428		EII	428-19= 409	428-25= 403	2.5:1	161.2	19 If of Mainstem located outside of easement are not credit generating	
Mainstem Channel Station 20+57 to 32+57	NA	PI	Restoratio	n 1201-57= 1142	1199-55= 1144	1:1	1144	57 If of Mainstem located outside of easement are not credit generating	
				Component Summa	ation				
Restoration Level	Stream (inear footage	e)	Riparian Wetlan	d (acreage)		Nonriparia	n Wetland (acreage)	
Restoration		4400*		1.0					
Enhancement (Level 1)									
Enhancement (Level II)		829**							
Enhancement				0.4***	*				
Totals		5229							
Mitigation Units	473	1.6 SMUs		1.0 Riparian WMUs 0.00 Nonriparian V			onriparian WMUs		

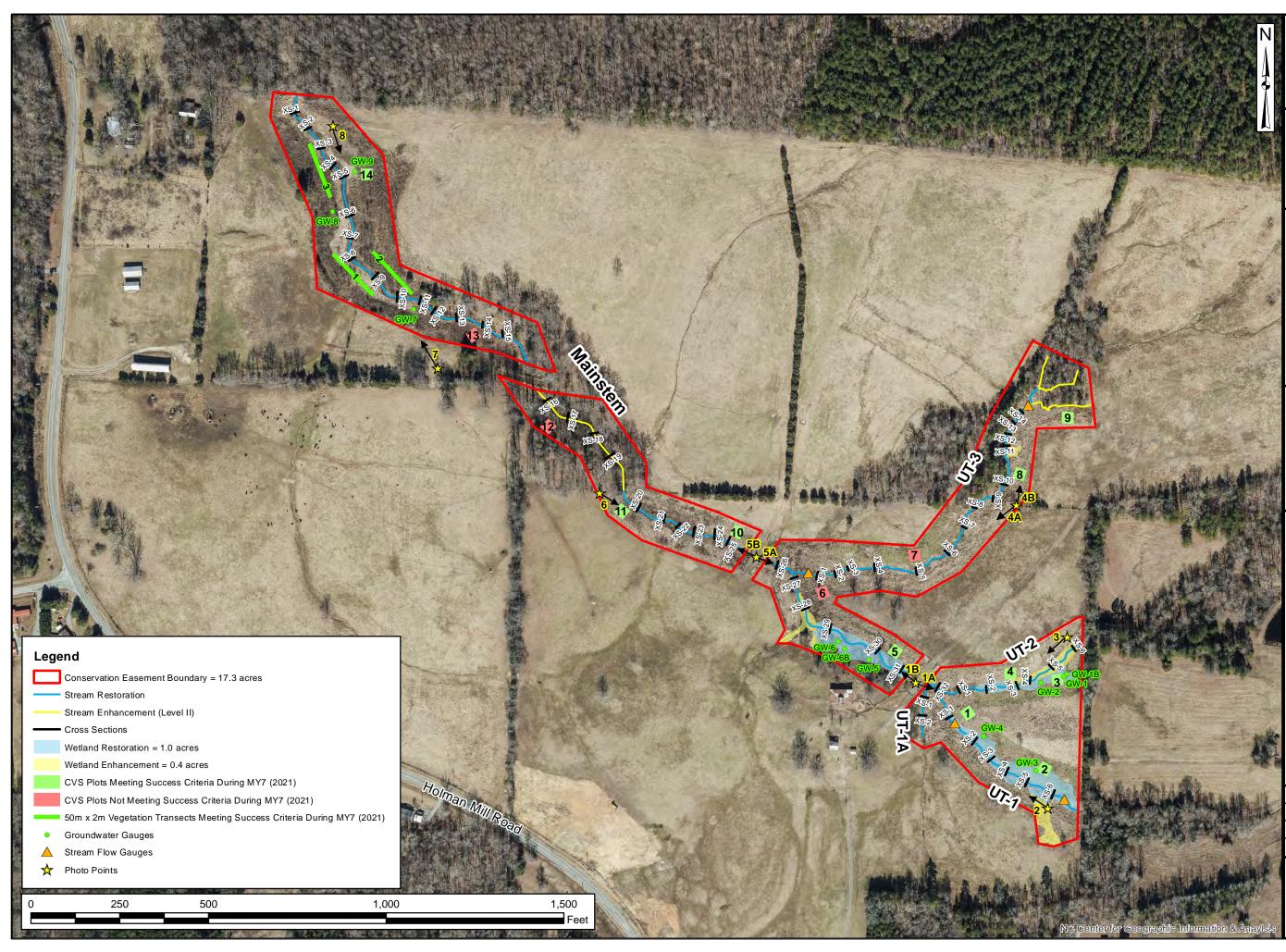
*An additional 190 linear feet of stream restoration is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations.

**An additional 19 linear feet of stream enhancement (level II) is proposed outside of the easement and is therefore not included in this total or in mitigation credit calculations.

***Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

Activity or Deliverable	Stream Monitoring Complete	Vegetation Monitoring Complete	Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-005568)				October 2013
EEP Contract No. 5790				February 2014
Mitigation Plan				September 2014
Construction Plans				September 2014
Construction Earthwork				April 3, 2015
Planting				April 7, 2015
As-Built Documentation	April 14 th , 2015	April 9 th , 2015	May 2015	July 2015
Year 1 Monitoring	October 20 th , 2015	September 23 rd , 2015	October 2015	November 2015
Fescue Treatment				March, 2016
Year 2 Monitoring	April 7 th , 2016	July 6 th , 2016	October 2016	December 2016
Remedial Planting				December 8, 2016
Year 3 Monitoring	March 27, 2017	July 19, 2017	October 2017	November 2017
Year 4 Monitoring	April 15, 2018		October 2018	October 2018
Year 5 Monitoring	March 4, 2019	September 25, 2019	November 2019	January 2020
Year 6 Monitoring	NA	NA	October 2020	December 2020
Year 7 Monitoring	January 14, 2021	September 30, 2021	November 2021	December 2021

Table 2. Project Activity and Reporting History


Table 3. Project Contacts Table

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	Asbuilt Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Project baseline information and Attribute	nformation				
Project Name	Abbey Lamm S	tream and Wetl	and Mitigatio	n Site	
Project County	Alamar	nce County, Nor	th Carolina		
Project Area (acres)		17.3			
Project Coordinates (latitude & latitude)	35.8	85584ºN, 79.39	4638ºW		
Project Watershed	Summary Informat	ion			
Physiographic Province		Piedmont			
Project River Basin		Cape Fear			
USGS HUC for Project (14-digit)		030300020500	50		
NCDWR Sub-basin for Project		03-06-04			
Project Drainage Area (acres)		257			
Percentage of Project Drainage Area that is Impervious		<2%			
Reach Summa	ary Information				
Parameters	Main	UT 1	UT 2	UT 3	
Length of reach (linear feet)	3258	695	455	1510	
Valley Classification		alluvia	al		
Drainage Area (acres)	257	49	56	32	
NCDWR Stream ID Score		29	35.25	28	
NCDWR Water Quality Classification		WS-V, NSW			
Existing Morphological Description (Rosgen 1996)	Eg5/Fc5	E/G 5	C/G 5	Eg5	
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	11/111	IV/III	Ш	
Underlying Mapped Soils		Efland silt loam, Goldston slaty silt loam, Herndon silt loam, Moderately gullied land, Orange silt loam			
Drainage Class		well-drained, we ined, moderate	-	-	
Hydric Soil Status		Nonhyc	lric		
Slope	0.0179	0	.0256-0.0362		
FEMA Classification		NA			
Native Vegetation Community	Piedmont Allu	vial Forest/Dry-	Mesic Oak-Hi	ckory Forest	
Watershed Land Use/Land Cover (Site)		40% forest, 58% agricultural land, <2% low density residential/impervious surface			
Watershed Land Use/Land Cover (Cedarock Reference Channel)		65% forest, 30% agricultural land, <5% low density residential/impervious surface			
Percent Composition of Exotic Invasive Vegetation		<5%			

APPENDIX B: VISUAL ASSESSMENT DATA

Figure 2. Current Conditions Plan View (CCPV) Tables 5a-e. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Stream Station Photographs Vegetation Plot Photographs

Axiom Environmental, Inc.

Prepared for:

Project:

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

Alamance County, NC

Title:

Current Conditions Plan View

Notes:

Background Imagery source: 2018 aerial photogarphy provided by the NC OneMap program (online, provided by the NC Geographic Information Coordination Council)

Drawn by:	KRJ
Date:	NOV 2021
Scale:	1:3000
Project No .:	14-005

FIGURE

2

Table 5AVisual Stream Morphology Stability AssessmentReach IDLamm MainstemAssessed Length2781

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	56	56			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	55	55			100%]		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	55	55			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	55	55			100%			
		2. Thalweg centering at downstream of meander (Glide)	55	55			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-		-	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	14			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	14	14			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	14			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	14	14			100%]		
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	14	14			100%			

Table 5BVisual Stream Morphology Stability AssessmentReach IDLamm UT1-AAssessed Length154

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	-	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	6	6			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	5	5			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	5	5			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	5	5			100%	1		
		2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	4	4			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%]		
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

Table 5CVisual Stream Morphology Stability AssessmentReach IDLamm UT1Assessed Length541

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	-	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	24	24			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	24	24			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	24	24			100%			
		2. Thalweg centering at downstream of meander (Glide)	24	24			100%]		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	10	10			100%]		
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	10	10			100%			

Table 5DVisual Stream Morphology Stability AssessmentReach IDLamm UT2Assessed Length455

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	-	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	23	23			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	22	22			100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	22	22			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	22	22			100%			
		2. Thalweg centering at downstream of meander (Glide)	22	22			100%]		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	-		_	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	12	12			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	12	12			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	12	12			100%]		
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	12	12			100%			

Table 5EVisual Stream Morphology Stability AssessmentReach IDUT3Assessed Length1084

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	-	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	38	38			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	37	37	1		100%	1		
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	37	37			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	37	37	1		100%	1		
		2. Thalweg centering at downstream of meander (Glide)	37	37			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
			_	Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	23	23			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	23	23			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	23	23			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	23	23			100%]		
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	23	23			100%			

Vegetation Condition Assessment

	Abbey Lamm							
Planted Acreage ¹	16.4							
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage		
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%		
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%		
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%		
Total				0	0.00	0.0%		
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%		
Cumulative Total					0.00	0.0%		

Easement Acreage² 17.3 Vegetation Category Definitions 4. Invasive Areas of Concern⁴ None 5. Easement Encroachment Areas³ None

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state will of course be mapped as polygons. The symbolized to describe things invasives polygons, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly ealry in a projects can be listed as a map inset, in legend items if the number of species are limited or in

Table 6

CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
none	0	0.00	0.0%
none	0	0.00	0.0%

Mapping

Threshold

1000 SF

none

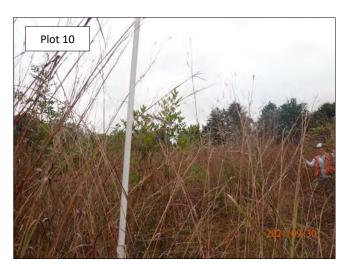
Abbey Lamm Year 7 Fixed Station Photographs Taken September 2021

2021 Year 7 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Abbey Lamm Year 7 Fixed Station Photographs (continued) Taken September 2021

Abbey Lamm Year 7 Vegetation Plot Photographs Taken September 2021

2021 Year 7 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina


Appendices Restoration Systems, LLC

Abbey Lamm Year 7 Vegetation Plot Photographs (continued) Taken September 2021

2021 Year 7 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Appendices Restoration Systems, LLC

Abbey Lamm Year 7 Vegetation Plot Photographs (continued) Taken September 2021

APPENDIX C: VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria AttainmentTable 8. CVS Vegetation Plot MetadataTable 9. Total and Planted Stems by Plot and Species

Table 10. 2021 Temporary Vegetation Transect Data

Historic Temporary Vegetation Transect Data (Figure and Tables)

Vegetation Plot ID	Vegetation Survival Threshold Met?	MY 7 (2021) Planted Stems	MY 7 (2021) All Stems	Average Stem Heigh (ft)	Tract Mean
1	Yes	283	445	5.4 ft	
2	Yes	526	1052	9.6 ft	
3	Yes	445	607	9.1 ft	
4	Yes 324 324	324	6.8 ft		
5		607	8.1 ft		
6	No	202	283	7.7 ft	
7	No	162	809	8 ft	
8	Yes	526	769	10 ft	
9	Yes	324	324	8.5 ft	
10	Yes	243	405	4 ft	76.5%
11	Yes	283	364	9.4 ft	
12	No	41	41	32 ft	
13	No	202	243	32 ft	
14	Yes	283	283	9.9 ft	
T-1	Yes		324	-	
T-2	Yes		324	-	
T-3	Yes		324	-	
	Totals =	295	443	11.5 ft	

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

Table 8. CVS Vegetation Plot Metadata

Report Prepared By	Corri Faquin
Date Prepared	11/3/2021 15:22
database name	RS-Lamm-2021_MY7.mdb
database location	S:\Business\Projects\14\14-005 Abby Lamm Detailed\2021 Year 7 Monitoring\CVS
computer name	KENAN-LT
file size	56627200
DESCRIPTION OF WORKS	SHEETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	14.005
project Name	Lamm
River Basin	Cape Fear
Sampled Plots	14

Table 9. Total and Planted Stems by Plot and Species

Project Code 14.005. Project Name: Abbey Lamm

																Current	Plot D	ata (MY	7 2021)						·	·					
			14	4.005-0	0001	14	1.005-0	002	14	1.005-00	003	14	4.005-000	04	14.00)5-AXE-	0005	14	.005-00	006	14	.005-00	007	14	.005-0	008	14	4.005-00	009	14	1.005-00	10
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	red maple	Tree															3										1			1		í T
Baccharis halimifolia	eastern baccharis	Shrub																														<u> </u>
Betula nigra	river birch	Tree	2	2	2	2			1	1	1	1	L 1	1				1	1	1				2	2	2 2	2 1	. 1	1 1			<u> </u>
Carpinus caroliniana	American hornbeam	Tree													1	1	1															<u> </u>
Carya	hickory	Tree																														í T
Celtis	hackberry	Tree																											1			í T
Celtis laevigata	sugarberry	Tree																											1			í T
Celtis occidentalis	common hackberry	Tree																								2	2		1			í —
Cephalanthus occidentalis	common buttonbush	Shrub																												1		[
Cornus amomum	silky dogwood	Shrub				1	. 1	. 1	. 3	3	3				1	1	1							5	5	5 5	<u>ز</u>			1		[
Diospyros	diospyros	Tree						1																		1	1		1			<u> </u>
Diospyros virginiana	common persimmon	Tree	1	1		1	1	1	1		1	1	1	1				1	1	1						1		<u> </u>	1	1	1	<u> </u>
Fraxinus pennsylvanica	green ash	Tree		1		1 6	6	13	6	6	8				2	2	4			1			16	6	6	ې ز	j		1	4	4	<u> </u>
Juglans	walnut	Tree	1	1									1 1		1	1	1										1	<u> </u>	1			
Juglans nigra	black walnut	Tree																								1	1	<u> </u>	1		1	
Juniperus virginiana	eastern redcedar	Tree				-																				1	1	<u> </u>	1			
Liquidambar	sweetgum	Tree				-																				1	1	<u> </u>	1			
Liquidambar styraciflua	sweetgum	Tree				3		6	5								3			1	-					1	1	<u> </u>	1			
Liriodendron tulipifera	tuliptree	Tree				4	. 4	4									-									+	1	1	1 1		<u> </u>	<u> </u>
Nyssa	tupelo	Tree	3		3	3 2	2	2																		1	1	<u> </u>	1			
Nyssa aquatica	water tupelo	Tree																								+	-	<u> </u>	+			
Nyssa sylvatica	blackgum	Tree													1	1	1									+		<u> </u>	+		<u> </u>	<u> </u>
Pinus taeda	loblolly pine	Tree													_		-									+		<u> </u>	+		<u> </u>	<u> </u>
Platanus occidentalis	American sycamore	Tree							1	1	2	2) 2	2				1	1	1	2	2	2			+	1	1	1 1		<u> </u>	<u> </u>
Quercus	oak	Tree				-			-	-	_	-		-				-	-	-	-	_	-			+		<u> </u>	+		<u> </u>	<u> </u>
Quercus alba	white oak	Tree			-	-						1	1	1	1	1	1									+	<u> </u>	<u> </u>	+	1	1	<u> </u>
Quercus nigra	water oak	Tree				-						2	2 2	2			1	1	1	1						+	2	7	2 7	,	<u> </u>	<u> </u>
Quercus pagoda	cherrybark oak	Tree		-		-								2												+	1				<u> </u>	<u> </u>
Quercus phellos	willow oak	Tree	2	, · · ·	2	2						1	1	1							2	2	2			+				, '	├───	<u> </u>
Quercus rubra	northern red oak	Tree			<u>د</u>	-								1				1	1	1			- 4			+	<u> </u>	<u> </u>	· <u>+</u>	 '	├───	<u> </u>
Ulmus alata	winged elm	Tree				-							+					- 1								+	1	<u> </u>	+	 '	├───	<u> </u>
Ulmus americana	American elm	Tree				-							+													+	1	<u> </u>	+	 '	├───	<u> </u>
	slippery elm	Tree									<u> </u>		╉──╋							<u> </u>						+	╂───	╂────	+	 '	├───	<u> </u>
Ulmus rubra Unknown		Shrub or Tree				-							╉╌╌╂													+	╂───	┼──	+	I '	├	<u> </u>
			-	, .	7 1	1 17	10	26	11	11	4 -	8	2 8	0	-	7	15	5	-	~	4	4	20	13	13	10	9 8	8 8			<u> </u>	<u> </u>
		Stem count			7 1	1 13		26			15	2		8	/	1	15	5	-	/	4		20	13		3 19	8	_	<u>, 8</u>	1	6	
		size (ares)		1		-	1			1			1			1			1			1			1		I	1		1	──	
		size (ACRES)		0.02	-		0.02	-		0.02	-	· · ·	0.02			0.02	~		0.02	_	~	0.02		~	0.02	-	<u>. </u>	0.02		0.02		<u> </u>
		Species count			3		526.1	1053	445.2	4	5	6	, v	5	6	6	8	202.2	202.2	/ /	161.0	2	-	3	•	-	6	6		5	5	404
Color for Density		Stems per ACRE				2 526.1	526.1	1052	445.2	445.2	607	323.7	323.7	323./	283.3	283.3	607	202.3	202.3	283.3	161.9	101.9	809.4	526.1	526.1	. 768.9	323.7	323.7	323.7	242.8	242.8	404

Color for Density Exceeds requirements by 10% PnoLS = Planted excluding livestakes

P-all = Planted including livestakes

T = All planted and natural recruits including livestakes

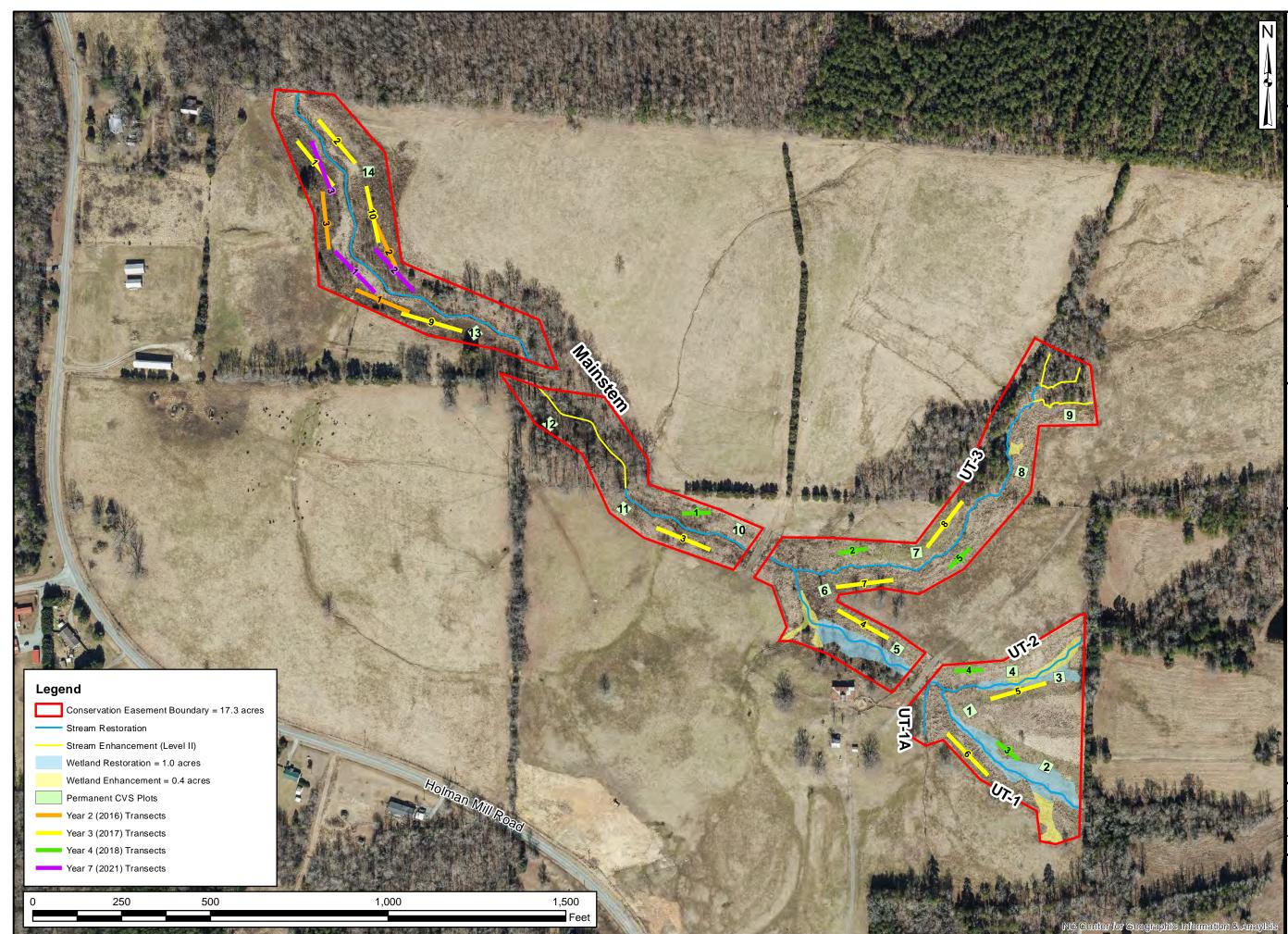
Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (continued)

Project Code 14.005. Project Name: Abbey Lamm

Sace notational Image		
decr margin	MY0 (2015)	
baschantiminifial stars haschand final final <th f<="" th=""><th>DLS P-all T</th></th>	<th>DLS P-all T</th>	DLS P-all T
Betal argan Ince birds Tree Ince birds Tree Ince birds Ince birds <t< th=""><th></th></t<>		
Capus capulana Merican horeban Tree S <		
Carly Indexy Tree Maday Tree Maday Tree Maday Tree Maday Ma	14 14	
Cal: Section (Signature) Tree Signature	5 5	
Curls arealized userbory Tree I<		
Calible controlmabes/less multiported Tree Design of the second sec		
Capha Capha <th< td=""><td>7 7</td></th<>	7 7	
Gama amound Sily dagwood Sind dagwood		
Dispersive signal dispersional and persimant	7 7	
Dispersive signifiana comma persimum. Tree variable in tree variable is a significant sign	28 28	
fraximus pensylvaria green ash Tree 3 3 3 5 5 6 7 7 66 26 26 68 27 27 66 26 26 26 27 27 66 26 26 27 27 26 26 27 27 27 27 66 27 27 27 27 27 26 26 27 <t< td=""><td></td></t<>		
ugans weinut Tree 1 Uniquent stription Tree 1	20 20	
jugians ipra black wainut Tree In	24 24	
unipersytrainana estern metedear Tree I		
improventional symple improventional symp		
Liquidambar weetgum Tree Free <td></td>		
Liquidambar styracification Sevene game Tree Tree<		
Linidendron tulipifea tuliptee Tree i </td <td></td>		
Nysa aquatica water tupelo Tree I	44 44	
Nysa aquatica water tupelo Tree I	9 9	
Pind and a bioling inc	1 1	
Pind and a bioling inc		
Quercus oak Tree I		
Quercus oak Tree i	1 1	
Quercus nigra water oak Tree i <td< td=""><td>27 27</td></td<>	27 27	
Quercus nigrad water oak Tree i <t< td=""><td>3 3</td></t<>	3 3	
Quercus pagoda intervalue of the relationary of th		
Quercus phellos willow oak Tree I		
Querces ruba northern redoak Tree a <td></td>		
Ulmus alatawinged elmTreeii <t< td=""><td>6 6</td></t<>	6 6	
UnusamericanaAmericane mTreeII <td></td>		
Image with the space with the spac		
Unknown Shrub or Tree Image: Constraint or Constrant or Constraint or Constraint or Constraint		
Stem count 7 7 9 1 1 5 5 6 7 7 102 102 101 103	9 9	
size (ares) 1 <th< td=""><td>205 205 2</td></th<>	205 205 2	
size (ACRES) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.035 0.35 0.35 0.35 0.35 Species count 3 3 5 1 1 1 3 3 4 5 5 5 15 15 23 14 14 20 12 16 14 14 16	14	
Species count 3 3 5 1 1 3 3 4 5 5 15 15 20 15 23 14 14 20 12 16 14 14 16	0.35	
	15 15	
Stems per ACRE 283.3 283.3 364.2 40.47 40.47 40.47 40.47 202.3 202.3 242.8 283.3 283.3 283.3 283.3 294.8 294.8 468.3 309.3 583.9 344 344 514.5 294.8 294.8 364.2 427.8 427.8 433.6 5		


Color for Density Exceeds requirements by 10% PnoLS = Planted excluding livestakes

P-all = Planted including livestakes

T = All planted and natural recruits including livestakes

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

Prepared for:

Project:

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE

Alamance County, NC

Title:

Years 0-7 Vegetation Monitoring Summary

Notes:

Background Imagery source: 2018 aerial photogarphy provided by the NC OneMap program (online, provided by the NC Geographic Information Coordination Council)

Drawn by:	KRJ
Date:	NOV 2021
Scale:	1:3000
Project No .:	14-005

FIGURE

3

Scientific Name	Common Name	Species Type	Transect 1 2m x 50m	Transect 2 2m x 50m	Transect 3 2m x 50m
Fraxinus pennsylvanica	Green ash	Tree	2	6	
Betula nigra	River birch	Tree			2
Platanus occidentalis	Sycamore	Tree	5		1
Quercus nigra	Water Oak	Tree			2
Quercus phellos	Willow oak	Tree		1	2
Disospyros virginiana	Persimmon	Tree			1
Cornus amomum	Silky dogwood	Tree	1	1	
		Stem Count	8	8	8
		Size (Ares)	1	1	1
		Size (Acres)	0.02	0.02	0.02
		Species count	3	3	5
		Stems per acre	323.7	323.7	323.7

Table 10. 2021 Temporary Vegetation Transect Data

Scientific Name	Common Name	Species Type	Temporary Plot 1 4m x 25m	Temporary Plot 2 4m x 25m	Temporary Plot 3 4m x 25m
Betula nigra	River birch	Tree			2
Cornus amomum	Silky dogwood	Tree		1	7
Fraxinus pennsylvanica	Green ash	Tree		10	7
Liriodendron tulipifera	Tulip poplar	Tree	4		
<i>Nyssa</i> sp.	Gum	Tree	5		2
Platanus occidentalis	Sycamore	Tree		4	
Quercus nigra	Water oak	Tree		3	
Quercus rubra	Northern red oak	Tree	1	2	
Ulmus americana	American elm	Tree			
		Stem Count	10	20	18
		Size (Ares)	1	1	1
		Size (Acres)	0.0247	0.0247	0.0247
		Species count	3	5	4
		Stems per acre	404.9	809.7	728.7

Table 10A. Supplemental Vegetation Transect Data – March 2018

2018 Year 4 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m	Temporary Plot 6 2m x 50m	Temporary Plot 7 2m x 50m	Temporary Plot 8 2m x 50m	Temporary Plot 9 2m x 50m	Temporary Plot 10 2m x 50m
Betula nigra	River birch	Tree		3		1		2			1	3
Cornus amomum	Silky dogwood	Tree			1		2	1			1	
Fraxinus pennsylvanica	Green ash	Tree	2			3	5		3	52	1	
Liriodendron tulipifera	Tulip poplar	Tree	1	2	11		2		2		1	3
<i>Nyssa</i> sp.	Gum	Tree		2		1	1	1	2			5
Platanus occidentalis	Sycamore	Tree	1	4		2		1	3	3	3	3
<i>Quercus</i> sp.	Oak	Tree						1	1	2		1
Quercus alba	White oak	Tree									2	3
Quercus falcata	Southern red oak	Tree				1						
Quercus nigra	Water oak	Tree	1	1				3	1	1		
Quercus phellos	Willow oak	Tree	4	4		2		2	2	4	1	1
Quercus rubra	Northern red oak	Tree	2	1	5	1	1	2		2		2
Ulmus americana	American elm	Tree	1		2			1				
<i>Carya</i> sp.	Hickory	Tree					1					
	Ste	em Count	12	19	19	11	12	14	14	64	10	21
	Si	ze (Ares)	1	1	1	1	1	1	1	1	1	1
	Siz	e (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247	0.0247
	Spec	ies count	7	7	4	7	6	9	7	6	7	8
	Stems	s per acre	485.8	769.2	769.2	445.3	485.8	566.8	566.8	2591.1	404.9	850.2

Table 10b. Supplemental Vegetation Transect Data – October 2017

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m	Temporary Plot 4 2m x 50m	Temporary Plot 5 2m x 50m
Betula nigra	River birch	Tree		3		1	
Cornus amomum	Silky dogwood	Tree			1		2
Fraxinus pennsylvanica	Green ash	Tree				2	5
Liriodendron tulipifera	Tulip poplar	Tree	1	2	11		2
<i>Nyssa</i> sp.	Gum	Tree		2		2	1
Platanus occidentalis	Sycamore	Tree	1	4		2	
Quercus falcata	Southern red oak	Tree				1	
Quercus nigra	Water oak	Tree	1				
Quercus phellos	Willow oak	Tree	4	4		2	
Quercus rubra	Northern red oak	Tree	2	2	5	1	1
Ulmus americana	American elm	Tree	1		2		
		Stem Count	10	17	19	11	11
		Size (Ares)	1	1	1	1	1
		Size (Acres)	0.0247	0.0247	0.0247	0.0247	0.0247
		Species count	6	6	4	7	5
		Stems per acre	404.9	688.3	769.2	445.3	445.3

Table 10c. Supplemental Vegetation Transect Data – April 2017

Scientific Name	Common Name	Species Type	Temporary Plot 1 2m x 50m	Temporary Plot 2 2m x 50m	Temporary Plot 3 2m x 50m
Fraxinus pennsylvanica	Green ash	Tree	3	2	4
Betula nigra	River birch	Tree	2	0	0
Platanus occidentalis	Sycamore	Tree	0	1	0
Quercus alba	White oak	Tree	1	4	1
Quercus phellos	Willow oak	Tree	0	0	2
Nyssa sp.	Gum	Tree	0	1	0
Liriodendron tulipifera	Tulip poplar	Tree	2	6	0
Diospyros virginiana	Persimmon	Tree	0	0	1
Cornus amomum	Silky dogwood	Tree	2	1	6
		Stem Count	10	15	14
		Size (Ares)	1	1	1
		Size (Acres)	0.02	0.02	0.02
		Species count	6	5	6
		Stems per acre	404.7	607.0	566.6

Table 10d. 2016 Supplemental Vegetation Transect Data

APPENDIX D: STREAM SURVEY DATA

Tables 11a-e. Baseline Stream Data Summary Tables 12a-l. Morphology and Hydraulic Summary Data Cross-section Plots Substrate Plots

Table 11A. Baseline Morphology and Hydraulic Summary

Parameter	USGS Gage Data		re-Exist Conditi	0		ect Refe larock P			ect Refe ausey Fa			Design			As-bui	lt
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)		4	12	6.5	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6	9.1	8.6
Floodprone Width (ft)		6	27	17	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)	project			3.5			8			14.7			3.5	3.6	6.7	4.0
BF Mean Depth (ft)	1	0.3	0.9	0.6	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.5	0.7	0.6
BF Max Depth (ft)		0.7	1.3	1	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.7	1.2	0.9
Width/Depth Ratio		4.4	40	13.8	8	15.1	10.1	8	9	9	12	16	14	10	19	13
Entrenchment Ratio		1	6.8	2.9	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	5.8
Bank Height Ratio		1.3	2.6	1.7	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)				===			===			===				6.3	9.6	8.9
Hydraulic radius (ft)				===			===			===			=	0.4	0.7	0.6
Pattern																
Channel Beltwidth (ft)			attern o		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)			pools c		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)		straigh	ntening	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio					2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																
Riffle length (ft)			attern o				===			===				5	44	15
Riffle slope (ft/ft)			pools c		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	1.10%	9.83%	2.98%
Pool length (ft)		straigh	ntening	activties			===			===				5	12	8
Pool spacing (ft)					25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters	1		-	-	-		-		-	-						
Valley Length (ft)	1			===			===			===			===			466
Channel Length (ft)				===			===			===			==			559
Sinuosity				1.02			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)				2.84%			2.58%			0.53%			2.56% - 3.62%			2.56%
BF slope (ft/ft)																===
Rosgen Classification		 		=== E/G 5			=== E 4/5			=== E 4/5			=== E/C 3/4			=== E/C 3/4
Kosgen Classification				2/0.0			E 4/3			E 4/3			L/C 3/4			E/C 3/4

Lamm UT 1

Table 11B. Baseline Morphology and Hydraulic Summary

Lamm UT 2

Parameter	USG	S Gage	Data		·e-Exist Conditi	0	•	ect Refe larock P		•	ect Refer usey Fa			Design			As-built	^
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	ata is	7.1	15.6	9.7	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	5.9	9.7	7.6
Floodprone Width (ft)	unava	ailable fo	or this	15	40	27	15	25	18	122	140	131	30	90	50			50
BF Cross Sectional Area (ft2)		project				3.8			8			14.7			3.5	2.3	5.5	3.2
BF Mean Depth (ft)				0.2	0.5	0.4	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.4	0.6	0.4
BF Max Depth (ft)				0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.5	1	0.7
Width/Depth Ratio				14.2	78	28.8	8	15.1	10.1	8	9	9	12	16	14	15	21	17
Entrenchment Ratio				1	5.6	3	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	5	9	6.6
Bank Height Ratio				1	3	1.6	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						===			===			===			===	6.1	10.1	7.7
Hydraulic radius (ft)						===			==			===			===	0.3	0.5	0.4
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)					ools due		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)				straigh	ntening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio							2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile																		
Riffle length (ft)						ffles and			===			===			===	5	26	12
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.84%	4.64%	2.94%
Pool length (ft)				straigh	ntening a	activties			===			===			===	4	14	8
Pool spacing (ft)							25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																		
d50 (mm)						===			==			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			387
Channel Length (ft)						===			===			===			===			464
Sinuosity						1.03			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)						3.07% -			2.58%			0.53%			2.56% -		1	3.01%
						4.31%									3.62%			
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						C/G 5			E 4/5			E 4/5			E/C 3/4			E/C 3/4

^Measured as-built numbers do not include D-type reach.

Table 11C. Baseline Morphology and Hydraulic SummaryLamm UT 3

Parameter	USC	GS Gag	ge Data		•e-Exist Conditie	0	•	ect Refe larock P			ect Refe usey Fa			Design			As-bui	lt
Dimension	Min	Max	x Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USC	GS gage	e data is	3.4	12.3	7.2	8	12.1	8.1	10.7	11.3	11	6.5	7.5	7	6.3	8.6	7.3
Floodprone Width (ft)			for this	18	40	26	15	25	18	122	140	131	30	90	50			250
BF Cross Sectional Area (ft2)		proje	ct			2.6			8			14.7			3.5	2	3.1	2.5
BF Mean Depth (ft)				0.2	0.8	0.4	0.8	1	0.8	1.3	1.4	1.4	0.46	0.55	0.5	0.3	0.5	0.3
BF Max Depth (ft)				0.5	1.3	0.8	1.1	1.4	1.4	1.9	2	2	0.6	0.8	0.7	0.4	0.8	0.6
Width/Depth Ratio	,			4.3	61.5	24	8	15.1	10.1	8	9	9	12	16	14	15	27	23
Entrenchment Ratio)			2.4	7	4.1	1.9	2.2	2.1	11	13	12	4.3	12.9	7.1	6	8	6.8
Bank Height Ratio)			1	2	1.4	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						=			===			===			===	6.4	8.8	7.4
Hydraulic radius (ft)									===			===			===	0.3	0.4	0.3
Pattern																		
Channel Beltwidth (ft)					attern o		20	38	22.8	17	36	29.8	21	42	28	21	42	28
Radius of Curvature (ft)					pools d		11	27	16.5	9	113	30.6	14	70	21	14	70	21
Meander Wavelength (ft)				straigh	itening a	activties	44	116	68.4	10	91	62.9	42	84	60	42	84	60
Meander Width ratio)						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	8	4
Profile																		
Riffle length (ft)					attern o				===			===			===	6	66	21
Riffle slope (ft/ft)					pools d		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	3.71%	7.73%	4.94%	0.82%	6.50%	3.13%
Pool length (ft)				straigh	itening a	activties			===			===			===	4	14	7
Pool spacing (ft)							25	69	37.2	2	7.4	4	21	56	28	21	56	28
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			====			===			===			846
Channel Length (ft))					==			===			===			===			1015
Sinuosity	r					1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)						3.34%			2.58%			0.53%			2.56% · 3.62%			3.19%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Fc 5/6			Eg 5			E 4/5			E/C 3/4			C 3/4

Table 11D. Baseline Morphology and Hydraulic Summary

Lamm Main Upstream

Parameter	USG	S Gage l	Data		re-Exist Conditi	0		ect Refe larock P			ect Refe usey Fa			Design	l		As-bu	ilt
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage da	ta is	11.7	26.5	18.5	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.3	13.3	12.7
Floodprone Width (ft)	unava	ailable for	this	29	75	56	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)		project				10.4			8			14.7			10.4	8.8	12.5	10.4
BF Mean Depth (ft)		project			0.9	0.6	0.8	1	0.8	1.3	1.4	1.4	0.8	0.9	0.9	0.7	1	0.85
BF Max Depth (ft)					1.7	1.3	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1	12.6	1.3
Width/Depth Ratio					66.3	31.5	8	15.1	10.1	8	9	9	12	16	14	13	17	15
Entrenchment Ratio				1.9	24	6.2	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	7.05
Bank Height Ratio				1	1.9	1.2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)						====			====			===			===	13	13.9	13.2
Hydraulic radius (ft)						===			===			===			===	0.7	0.9	0.8
Pattern																		
Channel Beltwidth (ft)						ffles and	20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)					ools due		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio							2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																		
Riffle length (ft)						ffles and			===			===			===	9	66	26
Riffle slope (ft/ft)					ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.00%	3.87%	1.86%
Pool length (ft)				straigh	ntening	activties			===			===			===	5	34	12
Pool spacing (ft)							25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters					•													
Valley Length (ft)						===			===			===			===			949
Channel Length (ft)						===			===			===			===			1139
Sinuosity						1.05			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)						1.76%			2.58%			0.53%			1.79%			1.57%
BF slope (ft/ft)						====			===			===			===			===
Rosgen Classification						Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

Table 11E.	Baseline Morphology	and Hydraulic	Summary
Lamm Ma	in Downstream		

Table 11E.	Baseline Morphology and Hydraulic Summary
Lamm Mai	n Downstream

Parameter	USGS	Gage Data		re-Exist Conditio	0		ect Refe larock P			ect Refe iusey Fa			Design	l		As-bu	ilt
Dimension	Min	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	gage data is	8.7	17	13	8	12.1	8.1	10.7	11.3	11	11.2	12.9	12.1	12.8	13.4	13.0
Floodprone Width (ft)	unavai	lable for this	17	24	22	15	25	18	122	140	131	20	90	40			250
BF Cross Sectional Area (ft2)	l p	project			10.4			8			14.7			10.4	9.7	11.8	11.3
BF Mean Depth (ft)			0.6	1.2	0.9	0.8	1	0.8	1.3	1.4	1.4	0.8	0.9	0.9	0.8	0.9	0.8
BF Max Depth (ft)			0.9	1.9	1.4	1.1	1.4	1.4	1.9	2	2	1.1	1.4	1.3	1.1	1.3	1.3
Width/Depth Ratio			7.3	28.3	17.4	8	15.1	10.1	8	9	9	12	16	14	15	17	16
Entrenchment Ratio			1.2	2.6	1.8	1.9	2.2	2.1	11	13	12	1.7	7.4	3.3	7	7	6.9
Bank Height Ratio			1.3	2.7	2	1	1.8	1			1.4	1	1.3	1			1
Wetted Perimeter(ft)					===			===			===				13.2	14.1	13.6
Hydraulic radius (ft)					===			===			===			=	0.7	0.9	0.8
Pattern																	
Channel Beltwidth (ft)					ffles and	20	38	22.8	17	36	29.8	36	73	48	36	73	48
Radius of Curvature (ft)				ools due		11	27	16.5	9	113	30.6	24	121	36	24	121	36
Meander Wavelength (ft)			straig	ntening a	activties	44	116	68.4	10	91	62.9	73	145	103	73	145	103
Meander Width ratio						2.4	4.7	2.8	1.5	3.5	2.7	3	6	4	3	6	4
Profile																	
Riffle length (ft)					iffles and			===			===			===	15	142	59
Riffle slope (ft/ft)				ools due		1.00%	5.76%	3.16%	0.20%	1.20%	0.98%	2.15%	4.48%	2.86%	0.71%	3.22%	1.93%
Pool length (ft)			straig	ntening a	activties			===			===			===	7	40	18
Pool spacing (ft)						25	69	37.2	2	7.4	4	36	97	48	36	97	48
Substrate				-	-		-	-		-	-	-			-		
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			=			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			=			961
Channel Length (ft)					===			===			===						1153
Sinuosity					NA			1.2			1.46			1.2			1.2
Water Surface Slope (ft/ft)					NA			2.58%			0.53%			1.79%			1.72%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Eg5/Fc			E 4/5			E 4/5			E/C 3/4			E/C 3/4

 Table 12A. Morphology and Hydraulic Monitoring Summary

 Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1	Pool (Main I	Down)			XS 2	Riffle (Main I	Down)			XS 3	Riffle ((Main I	Down)			XS 4	Riffle (Main l	Down)			XS 5	Pool (1	Main I	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13	12.2	12.5	11.8	11.4	11.7	12.8	14.4	12.6	13.2	14.2	12.6	13.1	*	12.9	14.3	20	20.7	13	12.7	12.1	12.6	15.1	16.7	14.1	14.8	15.7	17.2	20.3	19.4
Floodprone Width (ft)							90	90	90	90	90	90	90	*	90	90	90	90	90	90	90	90	90	90						
BF Cross Sectional Area (ft2)	11.2	12.2	9.7	9.4	11.2	11.2	9.7	11.1	12.6	9.5	9.7	9.7	11.8	*	9.1	8.1	11.8	11.8	11.3	10.5	10.3	9.4	11.3	11.3	11.8	6.6	7.7	7.6	11.8	11.8
BF Mean Depth (ft)	0.9	1.0	0.8	0.8	1.0	1.0	0.8	0.8	1.0	0.7	0.7	0.8	0.9	*	0.7	0.6	0.6	0.6	0.9	0.8	0.9	0.7	0.7	0.7	0.8	0.4	0.5	0.4	0.6	0.6
BF Max Depth (ft)	1.7	1.5	1.6	1.4	1.7	1.6	1.1	1.1	1.2	1.2	1.1	1.2	1.3	*	1.3	1.2	1.5	1.5	1.3	1.4	1.4	1.2	1.2	1.4	1.7	0.8	0.8	0.8	1	1.3
Width/Depth Ratio							16.9	18.7	12.6	18.3	20.8	16.4	14.5	*	18.3	25.2	33.9	36.3	15.0	15.4	14.2	16.9	20.2	24.7						
Entrenchment Ratio							7.0	6.3	7.1	6.8	6.3	7.1	6.9	*	7.0	6.3	4.5	4.3	6.9	7.1	7.4	7.1	6.0	5.4						
Low Bank Height (ft)	1.7	1.7	1.7	1.7	1.8	1.6	1.1	1.1	1.1	1.1	1.1	1.3	1.3	*	1.3	1.3	1.5	1.6	1.3	1.3	1.3	1.3	1.2	1.5	1.7	1.7	1.7	1.7	1	1.5
Bank Height Ratio**							1	1	1.1	1.1	1	1.0	1.0	*	1	<1	1	1.1	1	1.1	1.1	<1	1	1.1						
Wetted Perimeter (ft)	13.6	12.7	13.2	12.3	12.2	12.5	13.2	14.7	13	13.6	14.3	14.3	13.7	*	13.4	14.7	20.4	20.4	13.6	13.2	12.8	13	15.5	17.2	15	15.1	15.9	17.3	20.5	19.7
Hydraulic Radius (ft)	0.8	0.8	0.7	0.8	0.9	0.9	0.7	0.8	1.0	0.7	0.7	0.7	0.9	*	0.7	0.6	0.6	0.6	0.8	0.8	0.8	0.7	0.7	0.7	0.8	0.4	0.5	0.4	0.6	0.6

Parameter		XS 6	Riffle (Main 1	Down)			XS 7	Riffle (Main l	Down)			XS 8	Riffle ((Main]	Down)			XS 9	Riffle (Main l	Down)			XS 10	Riffle	(Main	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13.4	13.3	13	12.7	12.7	12.1	12.8	11.2	12.2	11.9	12.3	12.9	13.6	13.5	14	14.7	18.1	18.6	12.3	14	12.5	12.1	14.6	13.5	16.1	17.2	17.3	16.9	18	18.3
Floodprone Width (ft)	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
BF Cross Sectional Area (ft2)	11.3	11	13.4	12.1	11.3	11.3	8.7	8.9	9.1	8.8	8.7	8.7	11.6	8.2	7.6	6.8	11.6	11.6	9.8	9.8	8.9	7.3	9.8	9.8	12.4	11.8	12.1	10.1	12.4	12.4
BF Mean Depth (ft)	0.8	0.8	1.0	1.0	0.9	0.9	0.7	0.8	0.7	0.7	0.7	0.7	0.9	0.6	0.5	0.5	0.6	0.6	0.8	0.7	0.7	0.6	0.7	0.7	0.8	0.7	0.7	0.6	0.7	0.7
BF Max Depth (ft)	1.3	1.6	1.8	1.7	1.9	1.8	1.2	1.2	1.3	1.2	1.2	1.2	1.5	0.9	0.8	0.8	1	1.0	1.2	1.3	1.2	1.3	1.2	1.4	1.3	1.1	1.2	1.2	1.2	1.2
Width/Depth Ratio	15.9	16.1	12.6	13.3	14.3	13.0	18.8	14.1	16.4	16.1	17.4	19.1	15.9	22.2	25.8	31.8	28.2	29.8	15.4	20.0	17.6	20.1	21.8	18.6	20.9	25.1	24.7	28.3	26.1	27.0
Entrenchment Ratio	6.7	6.8	6.9	7.1	7.1	7.4	7.0	8.0	7.4	7.6	7.3	7.0	6.6	6.7	6.4	6.1	5.0	4.8	7.3	6.4	7.2	7.4	6.2	6.7	5.6	5.2	5.2	5.3	5.0	4.9
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.4	1.9	1.2	1.2	1.2	1.2	1.2	1.3	1.5	1.5	1.5	1.5	1	1.1	1.2	1.2	1.2	1.2	1.2	1.4	1.3	1.3	1.3	1.3	1.2	1.1
Bank Height Ratio	1	1.2	1.4	1.3	<1	1.1	1	1	1.1	1	1	1.1	1	<1	<1	<1	1	1.0	1	1.1	1	1.1	1.0	1.0	1	<1	<1	<1	1	1.0
Wetted Perimeter (ft)	14.1	13.9	13.9	13.4	13.5	13.5	13.2	11.6	12.8	12.4	12.7	13.5	14.3	13.8	14.4	14.9	18.3	18.9	12.9	14.5	12.8	15.2	14.9	13.9	16.6	17.5	17.6	17.2	18.3	18.7
Hydraulic Radius (ft)	0.8	0.8	1.0	0.9	0.8	0.8	0.7	0.8	0.7	0.7	0.7	0.6	0.8	0.6	0.5	0.5	0.6	0.6	0.8	0.7	0.7	0.5	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.7

* Note: Cross Section 3 was not measured in MY1 due to yellow jacket nest at cross section.

Table 12B. Morphology and Hydraulic Monitoring Summary

Lamm UT-Main (Downstrea	am) -	Strea	m and	Wet	land R	lestor	ation S	Site										
Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-05 (2	019)	MY	-07 (2	021)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48													-	-	
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	15	142	59															
Riffle Slope (ft/ft)	0.71%	3.22%	1.93%															
Pool Length (ft)	7	40	18															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961			961				
Channel Length (ft)		1,153			1,153			1,153			1,153			1,153				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4	Ļ			

Table 12C. Morphology and Hydraulic Monitoring Summary

Lamm UT-Main (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 11	Pool	(Main	Down)			XS 12	Riffle	(Main	Down)			XS 13	Riffle	(Main	Down)			XS 14	Riffle	(Main	Down)			XS 15	5 Pool (Main l	Down)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	13.4	10.5	10.7	11	11.1	11.2	11.9	11.5	11.8	12.5	14.1	14.1	15.4	16	17	15.8	17.6	13.9	13	13.3	12.9	13	12.6	13.7	16.1	13.8	12.6	12.6	16.6	17.1
Floodprone Width (ft)							90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90						
BF Cross Sectional Area (ft2)	9.8	11.3	11.2	11.6	9.8	9.8	7.2	5.1	5.2	5.5	7.2	7.2	8.6	9.2	8.4	7.2	8.6	8.6	12.9	15.6	16	14.2	12.9	12.9	12.7	10.4	10.1	9.1	12.7	12.7
BF Mean Depth (ft)	0.7	1.1	1.0	1.1	0.9	0.9	0.6	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.5	0.5	0.5	0.6	1.0	1.2	1.2	1.1	1.0	0.9	0.8	0.8	0.8	0.7	0.8	0.7
BF Max Depth (ft)	1.4	1.6	1.6	1.6	1.4	1.4	1	1	0.8	0.6	0.8	0.77	0.9	1.5	1.1	1.3	1.1	1.1	1.4	2.2	1.9	1.9	1.7	1.5	1.8	1.6	1.5	1.4	1.5	1.7
Width/Depth Ratio							19.7	25.9	26.8	28.4	27.6	27.6	27.6	27.8	34.4	34.7	36.0	22.5	13.1	11.3	10.4	11.9	12.3	14.5						
Entrenchment Ratio							7.6	7.8	7.6	7.2	6.4	6.4	5.8	5.6	5.3	5.7	5.1	6.5	6.9	6.8	7.0	6.9	7.1	6.6						
Low Bank Height (ft)	1.4	1.4	1.4	1.4	1.4	1.4	1	1	1	1	0.9	0.9	0.9	0.9	0.9	0.9	1.1	1.1	1.4	1.4	1.4	1.4	1.7	1.7	1.8	1.8	1.8	1.8	1.5	1.7
Bank Height Ratio**							1	1	<1	<1	1.2	1.2	1.0	1.7	1.2	1.4	1	1	1	1.6	1.4	1.4	1	1.1						
Wetted Perimeter (ft)	13.9	11.3	11.5	11.9	11.7	12	12.2	11.7	11.7	12.9	14.2	14.2	15.6	16.6	17.5	16.5	17.8	14.3	13.6	14.5	14.4	14.3	13.7	13.7	16.7	14.4	13.4	13.4	17.2	17.8
Hydraulic Radius (ft)	0.7	1	1.0	1.0	0.8	0.8	0.6	0.4	0.4	0.4	0.5	0.5	0.6	0.6	0.5	0.4	0.5	0.6	1	1.1	1.1	1.0	0.9	0.9	0.8	0.7	0.8	0.7	0.7	0.7

Parameter		XS 16	Riffle (Main D)*			XS 17	Riffle (Main I	own)*			XS 18	Riffle (Main D	own)*			XS 19) Pool (1	Main D	own)*	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	16.2	16.0	16.2	16.0	16.9	16.1	14.3	14	13.9	14.4	14.6	15.1	13.2	13.1	13.3	13.5	13.1	12.5	12	12.1	11.8	11.7	12.6	11.6
Floodprone Width (ft)	20.0	20.0	20.0	20.0	20.0	20.0	19	19	19	19	19	19	31	31	31	31	31	31						
BF Cross Sectional Area (ft2)	10.1	9.6	9.8	8.6	10.1	10.1	11.2	12.6	11.5	13.2	11.2	11.2	10.1	11.6	11.9	11.8	10.1	10.1	13.1	14.6	14.6	13.4	13.1	13.1
BF Mean Depth (ft)	0.6	0.6	0.6	0.5	0.6	0.6	0.8	0.9	0.8	0.9	0.8	0.7	0.8	0.9	0.9	0.9	0.8	0.8	1.1	1.2	1.2	1.1	1.0	1.1
BF Max Depth (ft)	0.8	0.9	1.0	0.9	0.9	1.0	1.3	1.4	1.1	1.2	1.3	1.0	1.2	1.4	1.5	1.4	1.1	1.1	1.4	1.9	1.7	1.5	1.4	1.5
Width/Depth Ratio	26.0	26.7	26.8	29.8	28.3	25.7	18.3	15.6	16.8	15.7	19.0	20.4	17.3	14.8	14.9	15.4	17.0	15.5						
Entrenchment Ratio	1.2	1.3	1.2	1.3	1.2	1.2	1.3	1.4	1.4	1.3	1.3	1.3	2.3	2.4	2.3	2.3	2.4	2.5						
Low Bank Height (ft)	1.9	0.8	0.8	0.8	0.9	1.0	1.3	1.3	1.3	1.3	1.3	1.0	1.2	1.2	1.2	1.2	1.1	1.4	1.4	1.4	1.4	1.4	1.5	1.7
Bank Height Ratio	2.4	1.1	1.3	1.1	1	1	1	1.1	<1	<1	1	1	1	1.2	1.3	1.2	1	1.27						
Wetted Perimeter (ft)	16.4	16.2	16.5	16.2	17.1	16.3	15.3	14.9	14.9	15.7	15.8	15.8	14	14.1	14.7	14.8	13.6	13.3	12.9	13	12.8	12.6	13.2	12.4
Hydraulic Radius (ft)	0.6	0.6	0.6	0.5	0.6	0.6	0.7	0.8	0.8	0.8	0.7	0.7	0.7	0.8	0.8	0.8	0.7	0.8	1	1.1	1.1	1.1	1.0	1.1

* Enhancement (Level II) Reach

Table 12D. Morphology and Hydraulic Monitoring Summary Lamm UT Main (Downstream) - Stream and Wetland Restoration Site

Lamm UT-Main (Downstrea	am) -	Strea	m and	Wet	land F	Restor	ation (Site										
Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-05 (2	019)	MY	-07 (20)21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36									-						
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	15	142	59															
Riffle Slope (ft/ft)	0.71%	3.22%	1.93%															
Pool Length (ft)	7	40	18															
Pool Spacing (ft)	36	97	48															
								-										
Additonal Reach Parameters																		
Valley Length (ft)		961			961			961			961			961				
Channel Length (ft)		1,153			1,153			1,153			1,153			1,153				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0172																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		C/E 3/4			C/E 3/4	Ļ		C/E 3/4	Ļ		C/E 3/4			C/E 3/4				

Table 12E. Morphology and Hydraulic Monitoring SummaryLamm Main (Upstream) - Stream and Wetland Restoration Site

Parameter				l (Mai			1.5 13.3 13 12 13 16.9 16.9 12.6 13.4 13 13.3 12.6 13.8 12.3 13.3 11.9 12.8 12.7 90 <th></th> <th></th> <th>XS 2</th> <th>4 Pool</th> <th>l (Main</th> <th>ı Up)</th> <th></th>																XS 2	4 Pool	l (Main	ı Up)				
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.1	8.1	11.8	11.7	11.6	11.5																		11.4	12.8	13.1	12.1	12.9	15.4	15.2
Floodprone Width (ft)							90	90				90		90	90		90	90	90					90						
BF Cross Sectional Area (ft2)	6.7	4.9	5.6	5.6	6.7	6.7	12.5								11.2	11.5	12.5	12.5	8.8				8.8	8.8	13.1	12.9	13.1	12.9	13.1	13.1
BF Mean Depth (ft)	0.9	0.6	0.5	0.5	0.6	0.6	0.9	0.8	0.8	0.7	0.7	0.7	1.0	0.8	0.9	0.9	1.0	0.9	0.7	0.7	0.8	0.7	0.7	0.8	1.0	1.0	1.1	1.0	0.9	0.9
BF Max Depth (ft)	1.3	1	1	1	1.1	1.1	1.4	1.5	1.6	1.6	1.5	1.6	1.4	1.9	1.9	2.2	2.3	2.301	1	1.3	1.5	1.4	1.4	1.304	1.8	1.6	1.7	1.6	1.7	1.7
Width/Depth Ratio							14.2	16.9	14.5	18.6	22.8	22.8	12.7	15.9	15.1	15.4	12.7	15.2	17.2	18.6	15.6	18.6	18.3	14.8						
Entrenchment Ratio							6.8	6.9	7.5	6.9	5.3	5.3	7.1	6.7	6.9	6.8	7.1	6.5	7.3	6.8	7.6	7.0	7.1	7.9						
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.1	1.2	1.4	1.4	1.4	1.4	1.5	1.8	1.4	1.4	1.4	1.4	2.4	2.3	1	1	1	1	1.5	1.3	1.8	1.8	1.8	1.8	1.7	1.8
Bank Height Ratio							1	1.1	1.1	1.1	1	1.1	1	1.4	1.4	1.6	1.0	1.0	1	1.3	1.5	1.4	1.1	1.0						
Wetted Perimeter (ft)	8.4	8.6	12.2	12.2	10.9	11.8	13.9	13.4	12.4	13.7	17.3	17.4	13.3	14.4	13.9	14.7	14.1	15.5	13	13.9	12.6	13.3	13.1	11.8	13.6	13.9	12.9	13.7	16.3	15.8
Hydraulic Radius (ft)	0.8	0.6	0.5	0.5	0.6	0.6	0.9	0.7	0.8	0.7	0.7	0.7	0.9	0.8	0.8	0.8	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.7	1	0.9	1.0	0.9	0.8	0.8
Parameter		XS 2:	5 Riffl	e (Mai	in Up)		Y7 MY 0 MY1 MY2 MY3 MY5 MY7 MY 0 MY1 MY2 MY3 MY5 MY7 MY0 MY1 MY2 MY3 MY5 MY7 MY0 MY1 MY2 MY3 MY5 MY7 MY0 MY1 MY2 MY3 MY5 MY1 MY2 MY3 MY3 MY1 MY2 MY3 MY3 MY1 MY2 MY3 MY3 <td>9 Riffl</td> <td>e (Mai</td> <td>n Up)</td> <td></td>														9 Riffl	e (Mai	n Up)							
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	7 MY 0 MY1 MY2 MY3 MY5 MY7 M												MY 0	MY1	MY2	MY3	MY5	MY7						
BF Width (ft)	13.0	15.4	15.2	15.2	15.8	16.3											1		1	-						1	12.5	12.3	14.2	14.3
Floodprone Width (ft)	90.0	90.0	90.0	90.0	90.0	90.0											90.0				1				90.0	90.0	90.0	90.0	90.0	90.0
BF Cross Sectional Area (ft2)	11.3	11.4	10.8	10.6	11.3	11.3	12.1	11.8	11.6	10.8	12.1	12.1	9.5	9.7	10.8	9.8	9.5	9.5	8.4	8.9	7.6	8.3	8.4	8.4	12.1	12.1	12.0	11.6	12.1	12.1
BF Mean Depth (ft)	0.9	0.7	0.7	0.7	0.7	0.7	0.9	0.9	0.8	0.8	0.8	0.9	0.8	0.8	0.9	0.8	0.7	0.7	0.7	0.8	0.7	0.8	0.6	0.7	0.9	1.0	1.0	0.9	0.9	0.8
BF Max Depth (ft)	1.4	1.2	1.3	1.3	1.3	1.5	1.8	1.6	1.7	1.6	1.6	1.5	1.2	1.2	1.4	1.2	1.2	1.2	1.3	1.5	1.4	1.4	1.3	1.3	1.4	1.5	1.4	1.4	1.4	1.6
Width/Depth Ratio	15.0	20.8	21.4	21.8	22.1	23.5							15.2	16.9	14.0	15.7	18.6	19.2							13.5	13.3	13.0	13.0	16.7	16.9
Entrenchment Ratio	6.9	5.8	5.9	5.9	5.7	5.5							7.5	7.0	7.3	7.3	6.8	6.7							7.0	7.1	7.2	7.3	6.3	6.3
Low Bank Height (ft)	1.4	1.4	1.4	1.4	1.3	1.5	1.8	1.8	1.8	1.8	1.6	1.5	1.2	1.2	1.2	1.2	1.3	1.2	1.3	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.4	1.4	1.6
Bank Height Ratio**	1	<1	<1	<1	1	1.05							1	1	1.167	1	1.083	1.065							1	1.071	1	1	1	1.0
Wetted Perimeter (ft)	13.5	15.8	15.7	15.6	16.1	16.7	14.0	14.0	14.4	14.0	15.0	14.9	12.4	13.1	12.8	12.8	13.5	13.8	11.8	11.7	10.9	11.0	13.8	11.9	13.5	13.4	13.3	12.9	14.7	15.2
Hydraulic Radius (ft)	0.8	0.7	0.7	0.7	0.7	0.7	0.9	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.8	0.8	0.7	0.7	0.7	0.8	0.7	0.8	0.6	0.7	0.9	0.9	0.9	0.9	0.8	0.8
Parameter		XS 3	0 Pool	l (Mai	n Up)			XS 3	1 Riffl	e (Mai	n Up)			XS 32	2 Riffl	e (Mai	in Up)		1											
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MV7												
BF Width (ft)	12.3	12.6	11.7	12.4	15.7	14.2	11.6	11.4	11.6	11.7	12.2	12.2	12.7	13.2	13.9	14.1	14.1	14.5												
Floodprone Width (ft)							90	90	90	90	90	90	25	25	25	25	25	25												
BF Cross Sectional Area (ft2)	11.5	11	10	11.1	11.5	11.5	8.6	8.3	8.1	8.6	8.6	8.6	9	8.7	8.8	8.2	9	9												
BF Mean Depth (ft)	0.9	0.9	0.9	0.9	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6												
BF Max Depth (ft)	1.7	1.8	1.7	1.8	1.7	1.7	1	1.2	1.2	1.2	1.2	1.2	1	0.9	1	0.8	0.8	1.2	1											
Width/Depth Ratio							15.6	15.7	16.6	15.9	17.3	17.3	17.9	20.0	22.0	24.2	22.1	23.4												
Entrenchment Ratio							7.8	7.9	7.8	7.7	7.4	7.4	2.0	1.9	1.8	1.8	1.8	1.7	1											
Low Bank Height (ft)	1.7	1.7	1.7	1.7	1.7	1.8	1	1	1	1	1.4	1.2	1	1.7	1	1	1	1.197												
Bank Height Ratio	1./	1.7		1./	1./	1.0	1	1.2	1.2	1.2	1.4	1.0	1	<1	1	<1	1.25	1.04												
Wetted Perimeter (ft)	12.9	13.2	12.5	13	16.2	14.8	12	11.9	12.3	12.1	12.5	12.6	13	13.6	14.2	14.3	14.4	14.4	1											
· /	0.9	0.8	0.8	0.9	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6												
Hydraulic Radius (ft)	0.9	0.8	0.8	0.9	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	l											

Table 12F. Morphology and Hydraulic Monitoring Summary

Lamm Main (Upstream) - Stream and Wetland Restoration Site

Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-05 (2	019)	MY	-07 (2)21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	36	73	48															
Radius of Curvature (ft)	24	121	36															
Meander Wavelength (ft)	73	145	103															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	10	66	26															
Riffle Slope (ft/ft)	0.00%	3.87%	1.86%															
Pool Length (ft)	5	34	12															
Pool Spacing (ft)	36	97	48															
Additonal Reach Parameters																		
Valley Length (ft)		949			949			949			949			949				
Channel Length (ft)		1,139			1,139			1,139			1,139			1,139				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0157																
BF Slope (ft/ft)																		
D50		16.2			13.6			42.1			40.8			30.6				
D84		60			67			97			99			98				
Rosgen Classification		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Table 12G. Morphology and Hydraulic Monitoring SummaryLamm UT-1 - Stream and Wetland Restoration Site

Parameter		X	S 1 Po	ol (UT	1)			XS	5 2 Rif	fle (Ul	Г 1)			XS	3 Rif	fle (U7	Г 1)			XS	5 4 Poo	ol* (UT	T 1)			XS	5 Riff	le (U	Г 1)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	8.1	8.2	8	8.3	9.5	9.4	8	7.9	8	8.2	8.2	8.9	9.1	8.7	8.8	8.4	8.8	8.8	6	7.9	7	8.8	7.1	6.6	8.7	8.4	9	7.9	9.6	8.8
Floodprone Width (ft)							50	50	50	50	50	50	50	50	50	50	50	50							50	50	50	50	50	50
BF Cross Sectional Area (ft2)	6.4	5.4	5.4	4.5	6.4	6.4	5	4.5	4.3	4.6	5	5	6.7	6.5	6.5	6.4	6.7	6.7	3.6	3.6	3.5	4.1	3.6	3.6	4	4	3.7	3.5	4	4
BF Mean Depth (ft)	0.8	0.7	0.7	0.5	0.7	0.7	0.6	0.6	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.5
BF Max Depth (ft)	1.3	1.2	1.1	1.1	1.2	1.2	1	0.9	1	1	1.1	1.1	1.2	1.3	1.6	2	1.3	1.4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8
Width/Depth Ratio							12.8	13.9	14.9	14.6	13.4	15.8	12.4	11.6	11.9	11.0	11.6	11.6							18.9	17.6	21.9	17.8	23.0	19.4
Entrenchment Ratio							6.3	6.3	6.3	6.1	6.1	5.6	5.5	5.7	5.7	6.0	5.7	5.7							5.7	6.0	5.6	6.3	5.2	5.7
Low Bank Height (ft)	1.3	1.3	1.3	1.3	1.3	1.4	1	1	1	1	1.4	1.1	1.2	1.2	1.2	1.2	1.3	1.6	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	1.1	0.9
Bank Height Ratio**							1	<1	1	1	1.27	1.05	1	1.1	1.3	1.7	1	1.1							1	1	1	<1	1.4	1.2
Wetted Perimeter (ft)	8.6	8.7	8.4	8.8	9.9	10	8.4	8.3	8.4	8.5	8.6	9.2	9.6	9.4	10.2	10.2	9.4	9.4	6.3	8.3	7.6	9.1	7.4	7	9	8.7	9.4	8.1	9.8	9
Hydraulic Radius (ft)	0.7	0.6	0.6	0.5	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.5	0.7	0.7	0.6	0.6	0.7	0.7	0.6	0.4	0.5	0.5	0.5	0.5	0.4	0.5	0.4	0.4	0.4	0.4

Parameter		XS	6 6 Rif	fle (UT	T 1)			XS	1 Riffl	e (UT	1-a)			XS	2 Riffl	e (UT	1-a)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	8.6	8.9	8.3	8.3	8.7	9.8	7.4	8	6.8	7.7	6.6	9	7.8	8.4	8	7.9	7.8	8.4
Floodprone Width (ft)	17	18	17	17	17	17	50	50	50	14	14	14	50	50	50	50	50	50
BF Cross Sectional Area (ft2)	4	3.8	4.2	3.9	4	4	2.5	2.7	1.9	2.1	2.5	2.5	3.4	3.7	3	3.5	3.4	3.4
BF Mean Depth (ft)	0.5	0.4	0.5	0.5	0.5	0.4	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4
BF Max Depth (ft)	0.7	0.8	0.9	0.9	0.8	0.8	0.5	0.7	0.7	0.6	0.8	0.7	0.6	0.8	0.6	0.8	0.7	0.7
Width/Depth Ratio	18.5	20.8	16.4	17.7	18.9	24.0	21.3	23.7	24.3	28.2	17.4	32.4	17.6	19.1	21.3	17.8	17.9	20.8
Entrenchment Ratio	2.0	2.0	2.0	2.0	2.0	1.7	6.8	6.3	7.4	1.8	2.1	1.6	6.4	6.0	6.3	6.3	6.4	6.0
Low Bank Height (ft)	0.7	0.7	0.7	0.7	0.9	1.0	0.5	0.5	0.5	0.5	0.8	0.7	0.6	0.6	0.6	0.6	0.8	0.7
Bank Height Ratio**	1	1.1	1.3	1.3	1.1	1.2	1	1.4	1.4	1.2	1	1.0	1	1.3	1	1.3	1.1	1.0
Wetted Perimeter (ft)	8.9	9.2	8.9	9	8.9	8.9	7.5	8.2	7.2	7.9	6.8	9.2	8	8.6	8.1	8.1	8	8.6
Hydraulic Radius (ft)	0.4	0.4	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4

*XS-4 (UT-1) was determined to be a pool. It was mislabeled as a riffle during previous monitoring years.

Table 12H. Morphology and Hydraulic Monitoring Summary Lamm UT-1 Stream and Wetland Restoration Site

Lamm UT-1 - Stream and V	Vetlaı	id Res	storati	ion Si	te													
Parameter	MY	-00 (2	015)	MY	/-01 (2	015)	MY	/-02 (2	016)	MY	-03 (2	017)	MY	-05 (2	019)	MY	-07 (2	021)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	44	15									-						
Riffle Slope (ft/ft)	1.10%	9.83%	2.98%															
Pool Length (ft)	5	12	8															
Pool Spacing (ft)	21	56	28															
		-												-				
Additonal Reach Parameters																		
Valley Length (ft)		466			466			466			466			466				
Channel Length (ft)		559			559			559			559			559				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0256																
BF Slope (ft/ft)																		
D50		15.2			13.4			11			13.3			7.5				
D84		67			58			73			77			46				
Rosgen Classification		C/E 3/4	Ļ		C/E 3/4			C/E 3/4	Ļ		C/E 3/4			C/E 3/4				

Table 12I. Morphology and Hydraulic Monitoring SummaryLamm UT-2 - Stream and Wetland Restoration Site

Parameter		XS	5 1 Rif	fle (UI	ſ 2)			X	5 2 Rif	fle (UI	Г 2)			X	S 3 Po	ol (UT	2)			XS	5 4 Rif	fle (UT	Г 2)			XS	5 5 Rif	fle (UT	. 2)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.4	7.8	7.3	7.7	6.8	7.4	7.6	6.5	6.5	7.0	6.6	6.4	7.5	7.3	7.2	7.5	7.7	8.1	7.6	8.6	8.1	8.8	9.7	9.7	9.7	7.8	7.9	7.3	7.6	7.9
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
BF Cross Sectional Area (ft2)	3.2	3.8	3.4	3.1	3.2	3.2	2.7	2.6	2.0	2.9	2.7	2.7	7.2	6.3	5.9	6.1	7.2	7.2	3.6	3.4	3.4	3.4	3.6	3.6	5.5	5.6	5.6	5.6	5.5	5.5
BF Mean Depth (ft)	0.4	0.5	0.5	0.4	0.5	0.4	0.4	0.4	0.3	0.4	0.4	0.4	1.0	0.9	0.8	0.8	0.9	0.9	0.5	0.4	0.4	0.4	0.4	0.4	0.6	0.7	0.7	0.8	0.7	0.7
BF Max Depth (ft)	0.7	0.9	0.8	0.8	0.8	0.8	0.5	0.7	0.6	0.6	0.6	0.7	1.4	1.3	1.3	1.3	1.5	1.4	0.7	0.8	0.7	0.7	0.8	1.2	1.0	1.4	1.5	1.3	1.2	1.2
Width/Depth Ratio	17.1	16.0	15.7	19.1	14.5	17.1	21.4	16.3	21.1	16.9	16.1	15.2							16.0	21.8	19.3	22.8	26.1	26.1	17.1	10.9	11.1	9.5	10.5	11.3
Entrenchment Ratio	6.8	6.4	6.8	6.5	7.4	6.8	6.6	7.7	7.7	7.1	7.6	7.8							6.6	5.8	6.2	5.7	5.2	5.2	5.2	6.4	6.3	6.8	6.6	6.3
Low Bank Height (ft)	0.7	0.7	0.7	0.7	0.9	0.9	0.5	0.5	0.5	0.5	0.8	0.8	1.4	1.4	1.4	1.4	1.7	1.5	0.7	0.7	0.7	0.7	0.8	1.4	1	1	1	1	1.4	1.3
Bank Height Ratio**	1	1.3	1.1	1.1	1.1	1.15	1	1.4	1.2	1.2	1.3	1.1							1	1.1	1	1	1	1.2	1	1.4	1.5	1.3	1.167	1.1
Wetted Perimeter (ft)	7.6	8.1	7.6	7.9	7.1	7.8	7.7	6.9	7.3	7.2	6.8	6.7	8.3	8.1	8.0	8.3	8.4	8.8	7.9	8.9	8.4	9.0	9.9	9.9	10.1	8.4	9.5	8.2	8.2	8.2
Hydraulic Radius (ft)	0.4	0.5	0.4	0.4	0.5	0.4	0.3	0.4	0.3	0.4	0.4	0.4	0.9	0.8	0.7	0.7	0.9	0.8	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7	0.6	0.7	0.7	0.7

Parameter		XS	6 6 Rif	fle (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	5.9	5.9	6.3	5.3	5.9	5.6
Floodprone Width (ft)	50	50	50	50	50	50
BF Cross Sectional Area (ft2)	2.3	2.7	2.2	2	2.3	2.3
BF Mean Depth (ft)	0.4	0.5	0.3	0.4	0.4	0.4
BF Max Depth (ft)	0.6	0.8	0.6	0.7	0.7	0.6
Width/Depth Ratio	15.1	12.9	18.0	14.0	15.1	13.6
Entrenchment Ratio	8.5	8.5	7.9	9.4	8.5	8.9
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.7	0.7
Bank Height Ratio**	1	1.333	1	1.2	1	1.1
Wetted Perimeter (ft)	6.1	6.3	6.7	5.5	6	6
Hydraulic Radius (ft)	0.4	0.4	0.3	0.4	0.4	0.4

Table 121 Marphalag and Hydraulic Monitoring Su

D84

Rosgen Classification

110

C/E 3/4

Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	-02 (2	016)	MY	-03 (2	017)	MY	-05 (2	019)	MY	-07 (20)21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	5	26	12															
Riffle Slope (ft/ft)	0.84%	4.64%	2.94%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		387			387			387			387			387				
Channel Length (ft)		464			464			464			464			464				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0301																
BF Slope (ft/ft)																		
D50		16.3			16			45.6			43.9			37.9				

93

C/E 3/4

109

C/E 3/4

103

C/E 3/4

104

C/E 3/4

Table 12K.Morphology and Hydraulic Monitoring SummaryLamm UT-3 -Stream and Wetland Restoration Site

Parameter		XS	51 Rif	fle (U	ſ 3)			X	5 2 Po	ol (UT	3)			XS	3 Rif	fle (U	Г 3)			X	5 4 Poo	ol (UT	· 3)			XS	5 Riff	le (U7	[3)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	7.3	7.1	7.2	7.2	6.3	6.2	9.7	11.6	10.7	10.2	14.4	14.9	7.6	7.6	7.1	6.5	7.2	6.8	10.4	11.2	10.8	11.1	13.6	13.7	6.9	6.0	6.0	5.8	5.3	5.1
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0	50.0	50.0
BF Cross Sectional Area (ft2)	2.4	2.4	2.6	2.6	2.4	2.4	5.9	5.6	5.5	4.8	5.9	5.9	2.5	2.9	2.6	2.0	2.5	2.5	7.5	7.1	6.6	6.2	7.5	7.5	3.1	4.2	4.1	4.0	3.1	3.1
BF Mean Depth (ft)	0.3	0.3	0.4	0.4	0.4	0.4	0.6	0.5	0.5	0.5	0.4	0.4	0.3	0.4	0.4	0.3	0.3	0.4	0.7	0.6	0.6	0.6	0.6	0.5	0.4	0.7	0.7	0.7	0.6	0.6
BF Max Depth (ft)	0.5	0.7	0.7	0.5	0.7	0.8	1.0	1.0	1.1	0.9	0.9	0.9	0.5	0.8	0.7	0.6	0.7	0.7	1.2	1.3	1.4	1.4	1.5	1.5	0.8	1.2	1.2	1.1	0.9	1.0
Width/Depth Ratio	22.2	21.0	19.9	19.9	16.5	16.0							23.1	19.9	19.4	21.1	20.7	18.5							15.4	8.6	8.8	8.4	9.1	8.4
Entrenchment Ratio	6.8	7.0	6.9	6.9	7.9	8.1							6.6	6.6	7.0	7.7	6.9	7.4							7.2	8.3	8.3	8.6	9.4	9.8
Low Bank Height (ft)	0.5	0.5	0.5	0.5	0.8	0.8	1	1	1	1	0.9	0.9	0.5	0.5	0.5	0.5	0.7	0.7	1.2	1.2	1.2	1.2	1.5	1.5	0.8	0.8	0.8	0.8	1	1.0
Bank Height Ratio**	1	1.4	1.4	1	1.1	1.0							1	1.6	1.4	1.2	1.0	1.0				-			1	1.5	1.5	1.4	1.1	1.0
Wetted Perimeter (ft)	7.4	7.3	7.4	7.5	6.5	6.7	10.0	11.9	11.2	10.5	14.7	15.2	7.7	7.8	7.6	7.4	7.5	7.5	10.8	12.1	11.6	11.8	14.3	14.5	7.1	6.9	7.6	6.8	5.7	5.7
Hydraulic Radius (ft)	0.3	0.3	0.4	0.3	0.4	0.4	0.6	0.5	0.5	0.5	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.6	0.5	0.6	0.5	0.5

Parameter		XS	6 Riff	le (Ul	Г 3)			X	S 7 Poo	ol (UT	3)			XS	8 Riff	le (Ul	Г 3)			XS	9 Riff	le (UI	ſ 3)			XS	5 10 Po	ol (U7	. 3)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	6.9	6.8	6.3	6.6	7.7	7.0	6.8	6.7	7.0	6.9	6.1	6.0	6.3	6.0	5.9	7.0	5.8	7.0	7.9	7.3	7.0	4.1	5.6	5.6	7.8	8.4	6.8	5.7	9.2	12.3
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0						
BF Cross Sectional Area (ft2)	2.8	3.0	2.6	2.3	2.8	2.8	7.1	8.7	8.9	9.9	7.1	7.1	2.0	2.3	2.3	2.5	2.0	2.0	2.5	2.6	3.1	1.8	2.5	2.5	5.0	3.7	3.3	3.4	5.0	5.0
BF Mean Depth (ft)	0.4	0.4	0.4	0.3	0.4	0.4	1.0	1.3	1.3	1.4	1.2	1.2	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.6	0.4	0.5	0.6	0.5	0.4
BF Max Depth (ft)	0.6	0.8	0.7	0.5	0.6	0.6	1.7	2.1	2.4	2.3	1.8	1.9	0.4	0.6	0.7	0.6	0.5	0.7	0.5	0.7	0.9	0.8	0.6	0.7	1.0	0.9	0.9	1.0	1.1	1.1
Width/Depth Ratio	17.0	15.4	15.3	18.9	21.2	17.5							19.8	15.7	15.1	19.6	16.8	24.5	25.0	20.5	15.8	9.3	12.5	12.5						
Entrenchment Ratio	7.2	7.4	7.9	7.6	6.5	7.1							7.9	8.3	8.5	7.1	8.6	7.1	6.3	6.8	7.1	12.2	8.9	8.9						
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.6	0.6	1.7	1.7	1.7	1.7	2.3	2.2	0.4	0.4	0.4	0.4	0.7	0.7	0.5	0.5	0.5	0.5	0.8	0.7	1	1	1	1	1.2	1.1
Bank Height Ratio**	1	1.3	1.2	<1	1	1.1							1	1.5	1.75	1.5	1.4	1.06	1	1.4	1.8	1.6	1.3	1.0						
Wetted Perimeter (ft)	7.2	7.1	6.7	6.8	7.9	7.2	7.8	8.4	9.4	8.8	7.4	7.8	6.4	6.2	6.5	7.4	6.0	7.3	8.1	7.5	7.6	4.4	5.9	5.9	8.3	8.7	7.2	6.2	9.8	12.6
Hydraulic Radius (ft)	0.4	0.4	0.4	0.3	0.4	0.4	0.9	1.0	0.9	1.1	1.0	0.9	0.3	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.6	0.4	0.5	0.5	0.5	0.4

Parameter		XS	11 Rif	fle (U	Т 3)			XS	12 Rif	fle (U	Т 3)			XS	13 Po	ol (UT	ſ 3)			XS	14 Rif	fle (U	T 3)	
Dimension	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7	MY 0	MY1	MY2	MY3	MY5	MY7
BF Width (ft)	6.3	7.2	7.0	4.6	5.4	4.8	7.9	6.6	6.7	4.2	6.4	6.8	7.0	5.5	5.4	5.1	6.0	8.5	8.6	8.7	8.0	8.3	9.2	7.0
Floodprone Width (ft)	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0							50.0	50.0	50.0	50.0	50.0	50.0
BF Cross Sectional Area (ft2)	2.5	3.8	3.7	2.3	2.5	2.5	2.6	3.0	2.9	2.7	2.6	2.6	4.1	3.4	2.9	2.6	4.1	4.1	2.8	3.4	3.4	3.0	2.8	2.8
BF Mean Depth (ft)	0.4	0.5	0.5	0.5	0.5	0.5	0.3	0.5	0.4	0.6	0.4	0.4	0.6	0.6	0.5	0.5	0.7	0.5	0.3	0.4	0.4	0.4	0.3	0.4
BF Max Depth (ft)	0.6	1.2	1.1	0.9	0.8	1.1	0.6	0.9	1.1	1.2	0.8	0.8	1.2	0.9	0.8	0.8	1.1	1.3	0.7	0.9	0.9	0.8	0.9	1.2
Width/Depth Ratio	15.9	13.6	13.2	9.2	11.7	9.2	24.0	14.5	15.5	6.5	15.8	17.8							26.4	22.3	18.8	23.0	30.2	17.5
Entrenchment Ratio	7.9	6.9	7.1	10.9	9.3	10.4	6.3	7.6	7.5	11.9	7.8	7.4							5.8	5.7	6.3	6.0	5.4	7.1
Low Bank Height (ft)	0.6	0.6	0.6	0.6	0.9	1.1	0.6	0.6	0.6	0.6	0.9	0.8	1.2	1.2	1.2	1.2	1.1	1.3	0.7	0.7	0.7	0.7	1	1.2
Bank Height Ratio**	1	2	1.8	1.5	1.1	1.0	1.0	1.5	1.8	2.0	1.1	1.0							1	1.3	1.3	1.1	1.1	1.0
Wetted Perimeter (ft)	6.5	7.7	7.7	5.2	5.8	5.8	8.1	6.9	7.6	5.1	6.6	7.2	8.2	5.9	5.8	5.7	6.6	9.2	8.8	9.3	8.3	8.5	9.7	7.9
Hydraulic Radius (ft)	0.4	0.5	0.5	0.4	0.4	0.4	0.3	0.4	0.4	0.5	0.4	0.4	0.5	0.6	0.5	0.5	0.6	0.4	0.3	0.4	0.4	0.4	0.3	0.4

Table 12L. Morphology and Hydraulic Monitoring Summary Lamm UT-3 Stream and Wetland Restoration Site

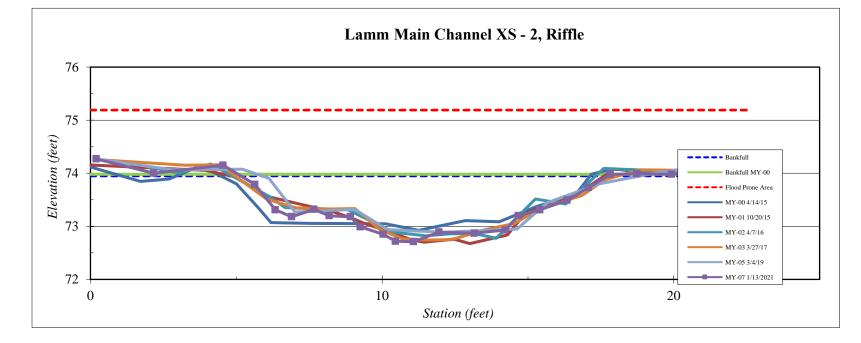
Parameter	MY	-00 (2	015)	MY	-01 (2	015)	MY	/-02 (20	016)	MY	-03 (20	017)	MY	-05 (2	019)	MY	-07 (20	J21)
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	21	42	28															
Radius of Curvature (ft)	14	70	21															
Meander Wavelength (ft)	42	84	60															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	6	66	21															
Riffle Slope (ft/ft)	0.82%	6.50%	3.13%															
Pool Length (ft)	4	14	8															
Pool Spacing (ft)	21	56	28															
Additonal Reach Parameters																		
Valley Length (ft)		846			846			846			846			846				
Channel Length (ft)		1,015			1,015			1,015			1,015			1,015				
Sinuosity		1.2																
Water Surface Slope (ft/ft)		0.0319																
BF Slope (ft/ft)																		
D50		8.7			17.4			6.9			12.2			12.8				
D84		87			95			29			54			60				
Rosgen Classification		C/E 3/4	Ļ		C/E 3/4			C/E 3/4			C/E 3/4			C/E 3/4				

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 1, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.2	74.9
1.8	74.8
3.7	74.0
5.6	73.4
7.4	73.2
8.7	73.2
9.5	72.4
9.9	72.0
10.8	71.6
12.2	71.6
13.0	71.8
14.0	71.8
15.4	71.8
16.0	72.1
16.7	72.2
17.1	72.2
17.4	72.5
17.9	72.6
18.6	72.8
19.4	73.0
20.4	73.1
21.1	73.3
21.8	73.7
23.2	73.8
24.7	73.7

Bankfull Elevation:	73.1
Bankfull Cross-Sectional Area:	11.2
Bankfull Width:	11.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.6
Low Bank Height:	1.6
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

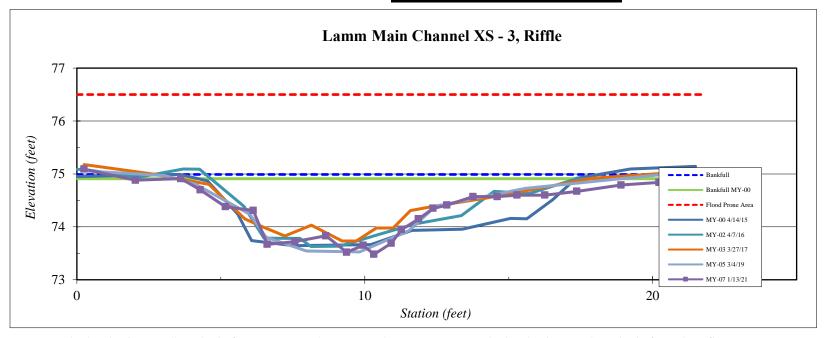
Lamm Main Channel XS - 1, Pool 76 75 Elevation (feet) 74 🗕 🗕 Bankfull Bankfull MY-00 73 Flood Prone Area MY-00 4/14/15 MY-01 10/20/15 72 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 71 MY-07 1/11/21 10 20 30 0 Station (feet)


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 2, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.2	74.27
2.2	74.00
4.5	74.15
5.6	73.79
6.3	73.31
6.9	73.18
7.7	73.32
8.2	73.20
8.9	73.18
9.2	72.99
10.0	72.85
10.5	72.72
11.1	72.71
12.0	72.89
13.2	72.87
14.2	72.93
14.7	73.20
15.4	73.31
16.3	73.49
17.1	73.73
17.8	74.0
18.7	74.0
19.9	74.0
22.6	74.2
L	

SUMMARY DATA	
Bankfull Elevation:	74.0
Bankfull Cross-Sectional Area:	9.7
Bankfull Width:	12.6
Flood Prone Area Elevation:	75.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	16.4
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.0

Stream Type



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 3, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.3	75.09
2.0	74.88
3.6	74.91
4.3	74.70
5.2	74.38
6.1	74.31
6.6	73.67
7.6	73.72
8.7	73.83
9.4	73.52
10.0	73.65
10.3	73.48
10.9	73.69
11.3	73.95
11.9	74.15
12.4	74.35
12.9	74.41
13.8	74.57
14.6	74.57
15.3	74.60
16.3	74.6
17.4	74.7
18.9	74.8
20.2	74.8
21.8	74.9
L	
L	
L	
L	

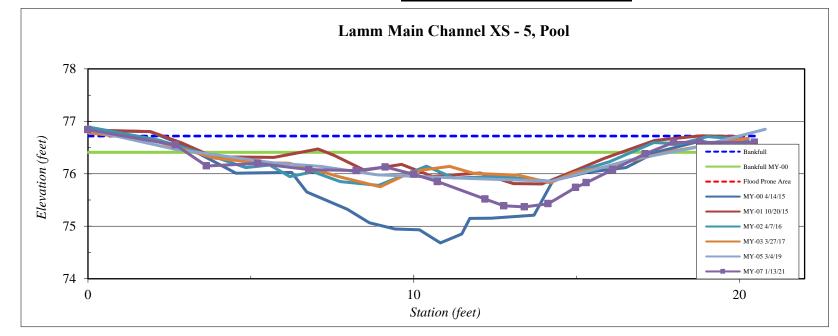
SUMMARY DATA	
Bankfull Elevation:	75.0
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	20.7
Flood Prone Area Elevation:	76.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.5
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.6
W / D Ratio:	36.3
Entrenchment Ratio:	4.3
Bank Height Ratio:	1.1

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Cross section not monitored during year 1 (2015) due to hornets nest at cross section location.

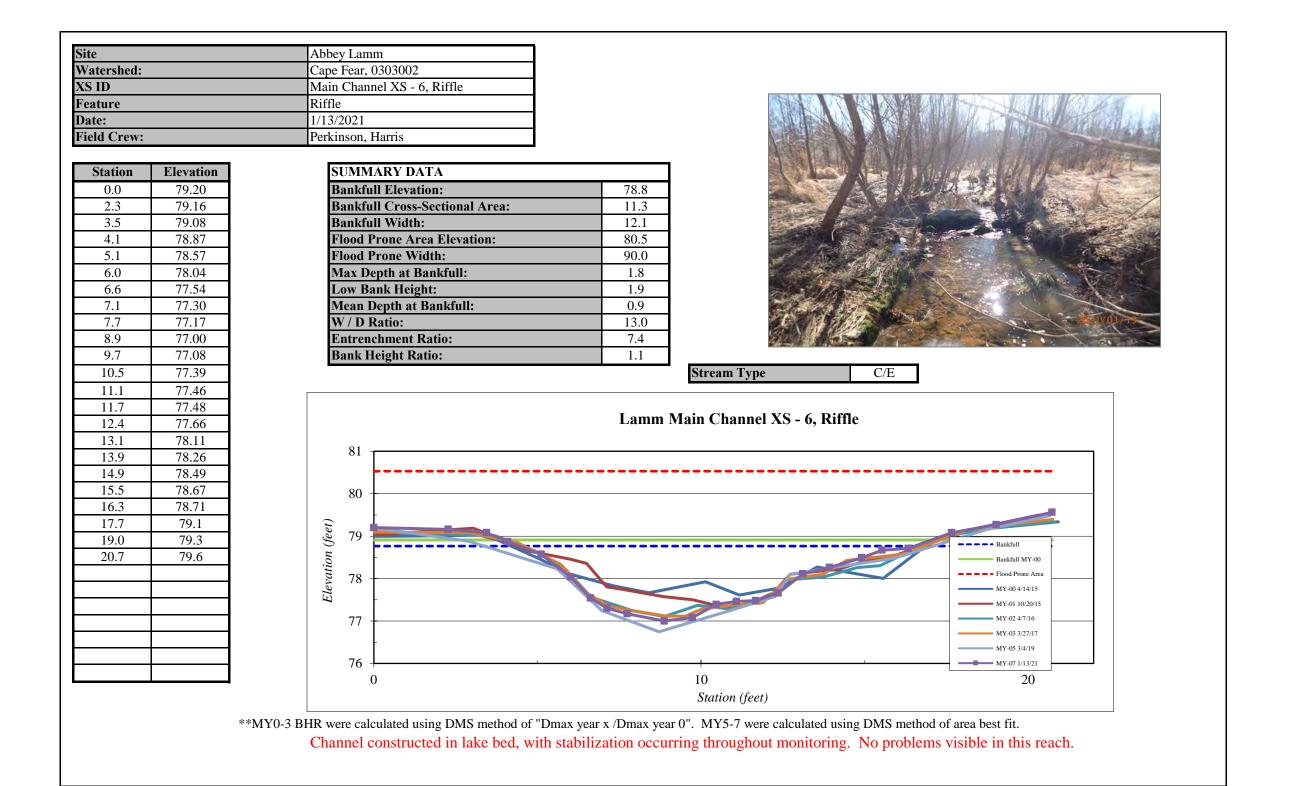
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 4, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.1	76.39
1.9	76.14
3.6	76.11
5.2	75.99
6.6	75.68
7.5	75.43
8.6	75.46
9.2	75.51
9.9	75.27
10.5	75.23
11.1	75.00
11.7	74.86
12.4	74.93
13.1	75.06
13.6	75.26
14.2	75.17
14.9	75.32
15.5	75.45
16.1	75.87
17.2	76.21
18.0	76.4
19.3	76.6
20.4	76.6
22.6	76.7

SUMMARY DATA	
Bankfull Elevation:	76.3
Bankfull Cross-Sectional Area:	11.3
Bankfull Width:	16.7
Flood Prone Area Elevation:	77.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.7
W / D Ratio:	24.7
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.1

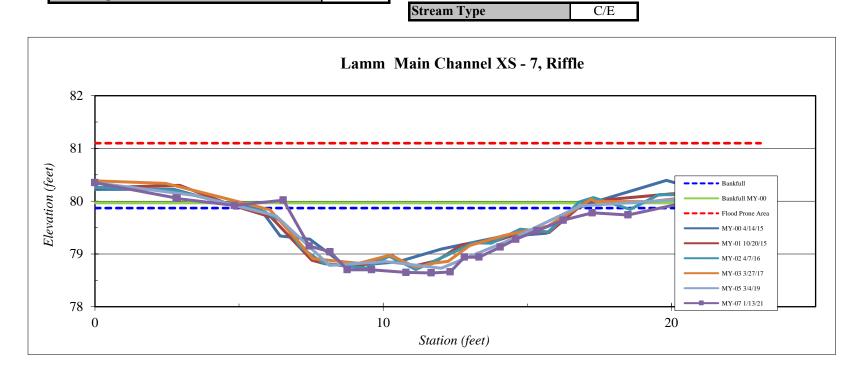

Lamm Main Channel XS - 4, Riffle 78 77 Elevation (feet) Bankful full MY-00 76 Flood Prone Area MY-00 4/14/15 MY-01 10/20/15 75 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 74 10 20 0 Station (feet)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 5, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris


Station	Elevation
0.0	76.8
2.7	76.6
3.6	76.2
5.2	76.2
6.8	76.1
8.2	76.1
9.1	76.1
10.0	76.0
10.7	75.9
12.2	75.5
12.8	75.4
13.4	75.4
14.1	75.4
15.0	75.7
15.3	75.8
16.1	76.1
17.1	76.4
18.0	76.6
18.8	76.6
20.5	76.6

SUMMARY DATA	
Bankfull Elevation:	76.7
Bankfull Cross-Sectional Area:	11.8
Bankfull Width:	19.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

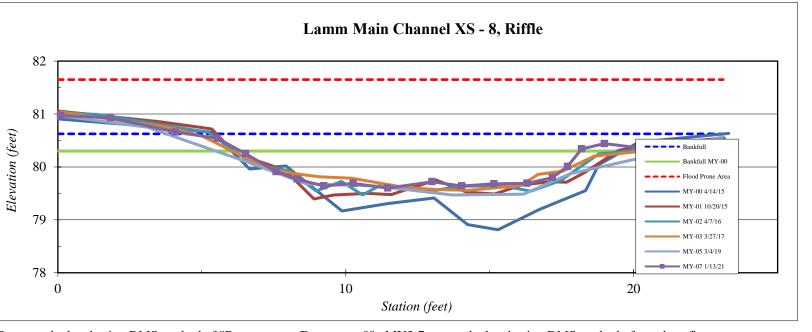
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment deposition in pool appears natural and is not expected to lead to instability.



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 7, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	80.35
2.8	80.06
2.9	80.05
4.8	79.92
6.5	80.02
7.4	79.15
8.2	79.04
8.8	78.70
9.6	78.70
10.8	78.65
11.7	78.64
12.3	78.66
12.8	78.94
13.3	78.94
14.1	79.13
14.6	79.28
15.3	79.44
16.2	79.64
17.3	79.78
18.5	79.74
20.4	80.0
21.6	79.9
23.1	80.0

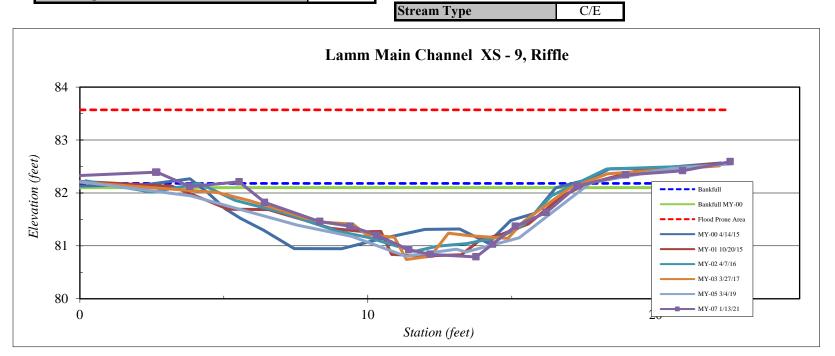
SUMMARY DATA	
Bankfull Elevation:	79.9
Bankfull Cross-Sectional Area:	8.7
Bankfull Width:	12.9
Flood Prone Area Elevation:	81.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	19.1
Entrenchment Ratio:	7.0
Bank Height Ratio:	1.1



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 8, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.1	80.97
1.8	80.93
4.1	80.66
5.5	80.54
6.5	80.25
7.6	79.91
8.3	79.77
9.2	79.64
10.3	79.69
11.5	79.60
13.0	79.72
14.0	79.64
15.2	79.68
16.3	79.69
17.2	79.80
17.7	80.01
18.2	80.34
19.0	80.44
20.6	80.33
23.1	80.45

SUMMARY DATA	
Bankfull Elevation:	80.6
Bankfull Cross-Sectional Area:	11.6
Bankfull Width:	18.6
Flood Prone Area Elevation:	81.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	29.8
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.0


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment transport appears to be natural and has stabilized throughout monitoring. No problems appear to be occurring in this reach.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 9, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

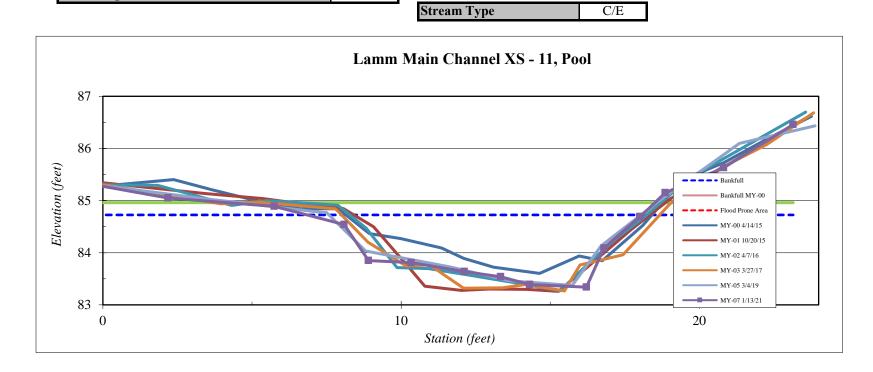
Station	Elevation
-3.5	82.23
-0.8	82.31
2.6	82.39
2.7	82.39
3.8	82.12
5.5	82.21
6.4	81.82
8.3	81.46
9.4	81.37
10.3	81.20
11.4	80.93
12.2	80.84
13.8	80.79
14.3	81.03
15.1	81.37
16.2	81.63
17.3	82.13
19.0	82.34
20.9	82.42
22.6	82.59

SUMMARY DATA	
Bankfull Elevation:	82.2
Bankfull Cross-Sectional Area:	9.8
Bankfull Width:	13.5
Flood Prone Area Elevation:	83.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	18.6
Entrenchment Ratio:	6.7
Bank Height Ratio:	1.0

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 10, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.1	84.58
3.2	84.57
5.4	84.40
6.6	84.15
8.0	83.95
9.4	83.95
10.4	83.56
11.2	83.20
12.6	83.04
14.2	83.09
15.6	83.15
16.5	83.20
17.4	83.19
18.3	83.48
19.9	83.27
20.8	83.60
21.9	83.73
22.9	83.96
24.5	84.18
26.0	84.43
28.2	84.6

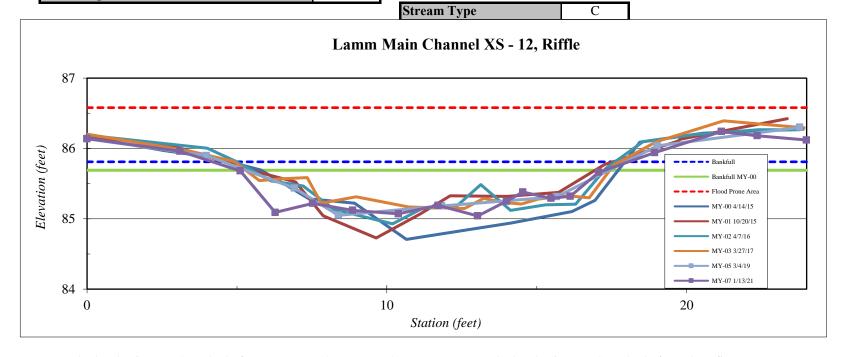
SUMMARY DATA	
Bankfull Elevation:	84.2
Bankfull Cross-Sectional Area:	12.4
Bankfull Width:	18.3
Flood Prone Area Elevation:	85.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.7
W / D Ratio:	27.0
Entrenchment Ratio:	4.9
Bank Height Ratio:	1.0


Lamm Main Channel XS - 10, Riffle 86 85 Elevation (feet) 🗕 🗕 🗕 🗕 Bankfull 84 Bankfull MY-00 - - Flood Prone Area MY-00 4/14/15 83 MY-01 10/20/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 82 MY-07 1/13/21 10 20 30 0 40 Station (feet)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 11, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.3	85.3
2.2	85.1
5.7	84.9
8.1	84.5
8.9	83.9
10.3	83.8
12.1	83.6
13.3	83.5
14.3	83.4
16.2	83.3
16.8	84.1
18.0	84.7
18.0	84.7
18.9	85.2
20.8	85.6
23.1	86.5

SUMMARY DATA	
Bankfull Elevation:	84.7
Bankfull Cross-Sectional Area:	9.8
Bankfull Width:	11.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Some downcutting occurred just after asbuilt but has stabilized throughout monitoring period.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 12, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	86.14
3.1	85.96
5.1	85.68
6.3	85.09
7.5	85.22
8.9	85.12
10.4	85.07
11.7	85.19
13.0	85.04
14.0	85.25
14.5	85.38
15.5	85.29
16.1	85.32
17.1	85.66
18.9	85.94
21.2	86.24
22.4	86.18
24.0	86.12

SUMMARY DATA	
Bankfull Elevation:	85.8
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	13.9
Flood Prone Area Elevation:	86.6
Flood Prone Width:	90.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	26.8
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.2

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Elevated BHR does not indicate instability along this reach.
Minor alterations in aballance does not indicate instability along this reach.

Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 13, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.8	87.72
1.7	87.53
3.9	87.38
5.4	87.35
5.9	87.26
6.5	86.98
7.6	86.84
8.5	86.78
9.2	86.63
10.3	86.46
11.7	86.22
12.9	86.19
13.8	86.14
14.5	86.13
14.9	86.40
15.6	86.56
15.9	86.60
16.9	86.79
18.1	87.15
19.2	87.08
20.1	87.3
21.3	87.6

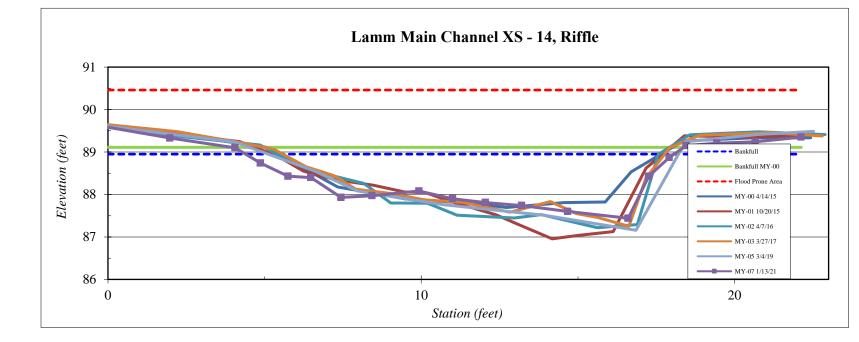
SUMMARY DATA	
Bankfull Elevation:	87.3
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	13.9
Flood Prone Area Elevation:	88.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	22.5
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.0

С

Lamm Main Channel XS - 13, Riffle 89 88 Elevation (feet) nkfull MY-00 87 Flood Prone Area MY-00 4/14/15 MY-01 10/20/15 86 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 85 10 0 20 Station (feet)

Stream Type

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth decreased during MY-01-03 and has stabilized.

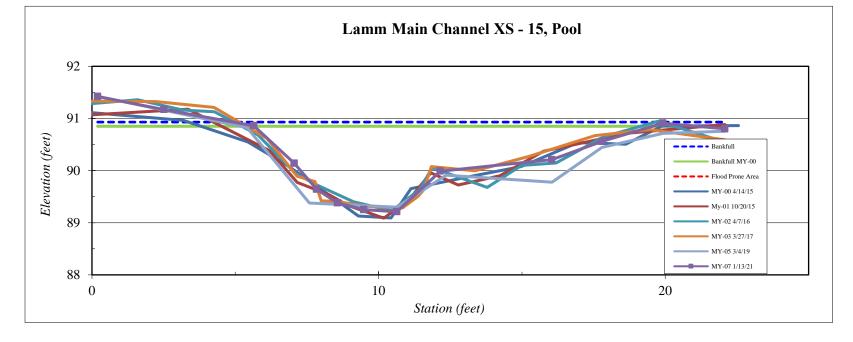

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 14, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.6	89.66
2.0	89.33
4.1	89.10
4.9	88.74
5.7	88.43
6.5	88.40
7.4	87.93
8.4	87.97
9.9	88.08
11.0	87.90
12.1	87.81
13.2	87.74
14.7	87.60
16.6	87.44
17.3	88.43
17.9	88.87
18.5	89.15
19.4	89.21
20.7	89.24
22.1	89.35

SUMMARY DATA	
Bankfull Elevation:	89.0
Bankfull Cross-Sectional Area:	12.9
Bankfull Width:	13.7
Flood Prone Area Elevation:	90.5
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.5
Low Bank Height:	1.7
Mean Depth at Bankfull:	0.9
W / D Ratio:	14.5
Entrenchment Ratio:	6.6
Bank Height Ratio:	1.1

Stream Type C/E

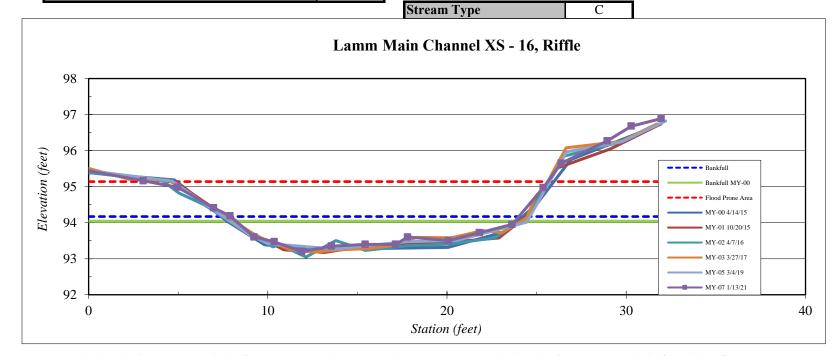
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Channel constructed in lake bed. Unconsolidated materials are forming a new channel within the constructed channel. Depth is decreased between MY-0 and MY-01 and has stabilized since.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 15, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.2	91.4
2.5	91.2
5.6	90.9
7.1	90.1
7.8	89.6
8.6	89.4
9.5	89.3
10.6	89.2
12.2	90.0
16.0	90.2
17.8	90.6
19.9	90.9
22.1	90.8

SUMMARY DATA	
Bankfull Elevation:	90.9
Bankfull Cross-Sectional Area:	12.7
Bankfull Width:	17.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.7
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

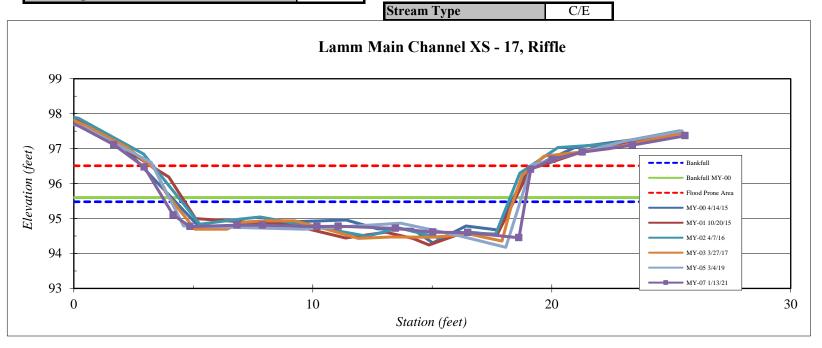
Stream Type C/E



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 16, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.1	95.45
3.1	95.16
5.0	94.98
7.0	94.41
7.9	94.19
9.2	93.60
10.4	93.47
11.9	93.20
13.5	93.35
15.4	93.40
17.1	93.40
17.8	93.60
20.1	93.50
21.8	93.72
23.6	93.95
25.4	94.97
26.4	95.65
28.9	96.27
30.3	96.68
32.0	96.89

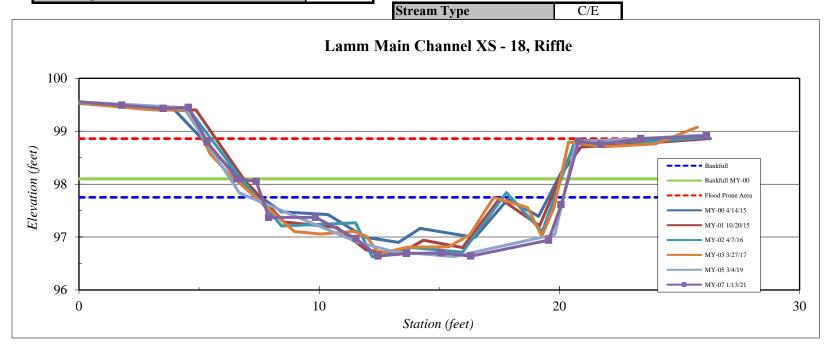
SUMMARY DATA	
Bankfull Elevation:	94.2
Bankfull Cross-Sectional Area:	10.1
Bankfull Width:	16.1
Flood Prone Area Elevation:	95.1
Flood Prone Width:	20.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	25.7
Entrenchment Ratio:	1.2
Bank Height Ratio:	1.0


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

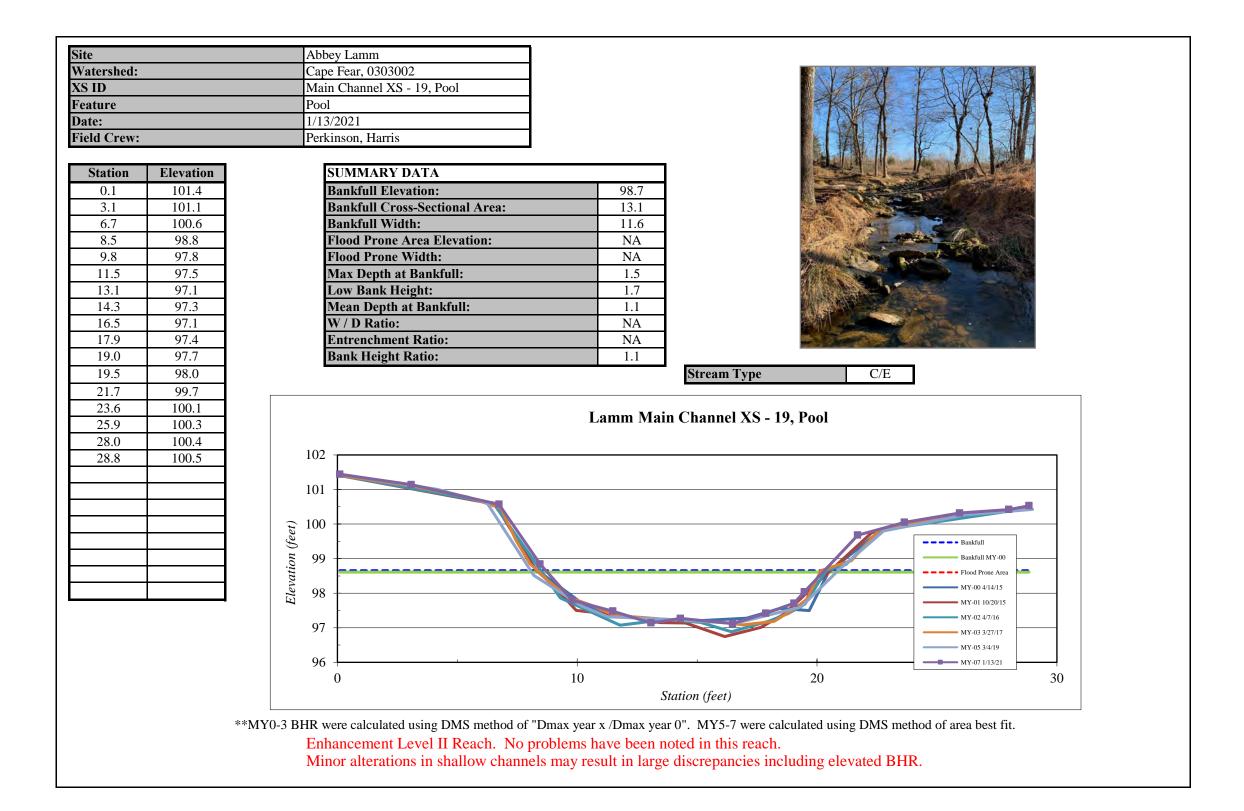
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 17, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-3.3	98.22
-0.3	97.85
1.7	97.11
3.0	96.47
4.2	95.10
4.9	94.77
6.8	94.81
7.9	94.81
10.2	94.77
11.1	94.78
13.5	94.72
15.0	94.61
16.5	94.60
18.6	94.45
19.1	96.41
20.0	96.69
21.3	96.90
23.4	97.10
25.6	97.37
L	
L	

SUMMARY DATA	
Bankfull Elevation:	95.5
Bankfull Cross-Sectional Area:	11.2
Bankfull Width:	15.1
Flood Prone Area Elevation:	96.5
Flood Prone Width:	19.0
Max Depth at Bankfull:	1.0
Low Bank Height:	1.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	20.4
Entrenchment Ratio:	1.3
Bank Height Ratio:	1.0

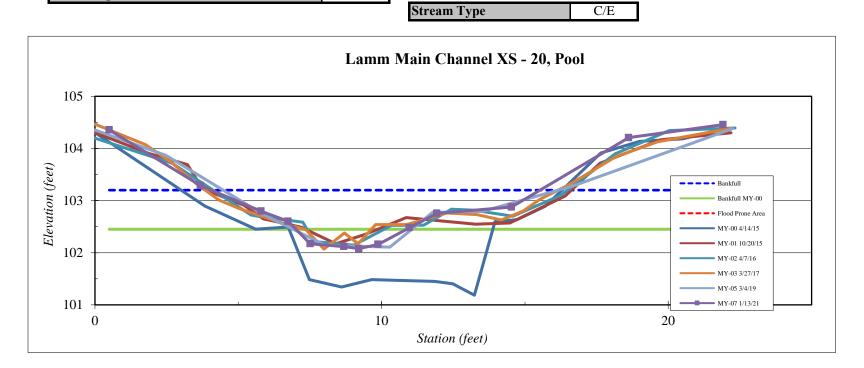

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 18, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris


Station	Elevation
-0.1	99.56
1.8	99.49
3.5	99.43
4.6	99.45
5.3	98.79
6.6	98.10
7.4	98.05
7.9	97.37
9.8	97.37
11.5	96.97
12.5	96.64
13.6	96.69
15.1	96.70
16.3	96.64
19.6	96.94
20.1	97.61
20.8	98.81
21.7	98.75
23.4	98.86
26.1	98.91

SUMMARY DATA	
Bankfull Elevation:	97.8
Bankfull Cross-Sectional Area:	10.1
Bankfull Width:	12.5
Flood Prone Area Elevation:	98.9
Flood Prone Width:	31.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.8
W / D Ratio:	15.5
Entrenchment Ratio:	2.5
Bank Height Ratio:	1.27

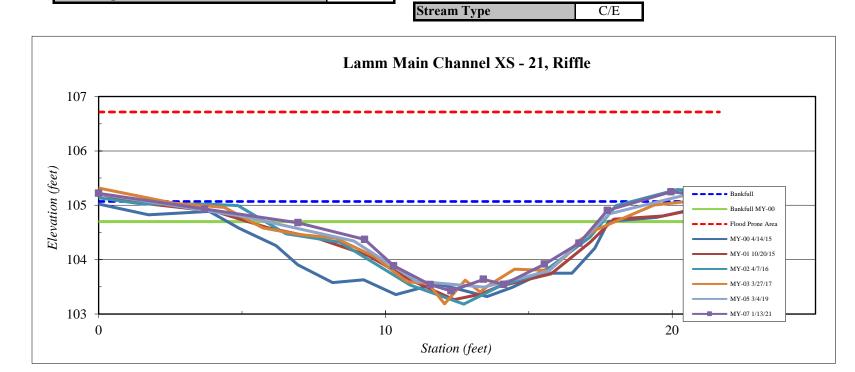
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Enhancement Level II Reach. BHR varies through this reach; however, the reach is stable.



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 20, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.5	104.4
3.7	103.3
5.8	102.8
6.7	102.6
7.5	102.2
8.7	102.1
9.2	102.1
9.9	102.2
11.0	102.5
11.9	102.8
14.5	102.9
18.6	104.2
21.9	104.5

SUMMARY DATA	
Bankfull Elevation:	103.2
Bankfull Cross-Sectional Area:	6.7
Bankfull Width:	11.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.1
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment aggraded behind a bedrock sill after MY-0. Sediment has been stable throughout the monitoring period.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 21, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	105.22
3.7	104.93
7.0	104.68
9.3	104.37
10.3	103.89
11.6	103.54
12.3	103.42
13.4	103.64
14.1	103.54
15.5	103.92
16.8	104.30
17.7	104.91
20.0	105.25
21.7	105.16

SUMMARY DATA	
Bankfull Elevation:	105.1
Bankfull Cross-Sectional Area:	12.5
Bankfull Width:	16.9
Flood Prone Area Elevation:	106.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.6
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.7
W / D Ratio:	22.8
Entrenchment Ratio:	5.3
Bank Height Ratio:	1.1

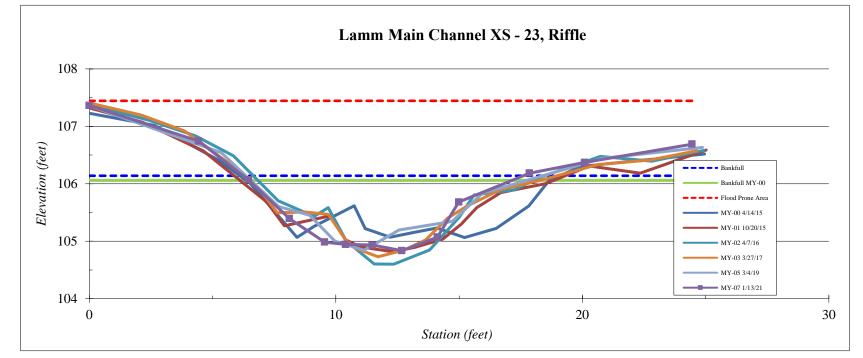
C •4	A11 T
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 22, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.2	106.14
3.3	105.90
4.4	105.53
5.5	104.97
6.1	103.22
7.4	103.35
8.3	103.65
9.1	103.71
11.2	104.76
14.0	105.13
18.1	105.51
22.2	105.96

SUMMARY DATA	
Bankfull Elevation:	105.5
Bankfull Cross-Sectional Area:	12.5
Bankfull Width:	13.8
Flood Prone Area Elevation:	107.8
Flood Prone Width:	90.0
Max Depth at Bankfull:	2.3
Low Bank Height:	2.3
Mean Depth at Bankfull:	0.9
W / D Ratio:	15.2
Entrenchment Ratio:	6.5
Bank Height Ratio:	1.0

Stream Type

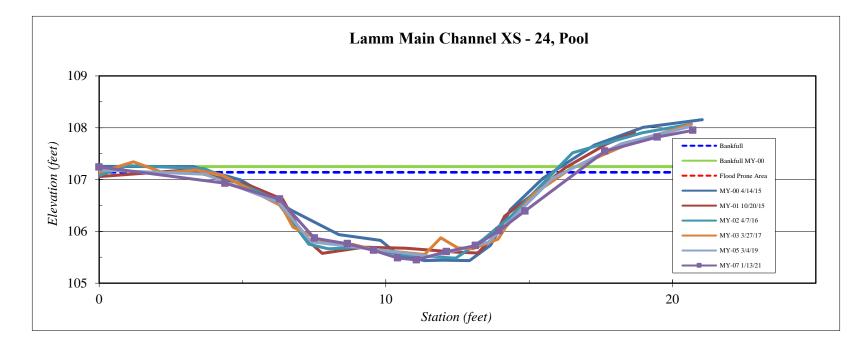
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Overall channel area has decreased. Sediment mobilization has resulted in minor downcutting, which has stabilized over the monitoring period. No problems are visible in this reach.


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 23, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	107.36
4.4	106.74
6.5	106.07
8.1	105.40
9.6	104.98
10.4	104.94
11.5	104.93
12.7	104.84
14.1	105.07
15.0	105.68
17.9	106.19
20.1	106.37
24.5	106.69

SUMMARY DATA	
Bankfull Elevation:	106.1
Bankfull Cross-Sectional Area:	8.8
Bankfull Width:	11.4
Flood Prone Area Elevation:	107.4
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.8
W / D Ratio:	14.8
Entrenchment Ratio:	7.9
Bank Height Ratio:	1.0

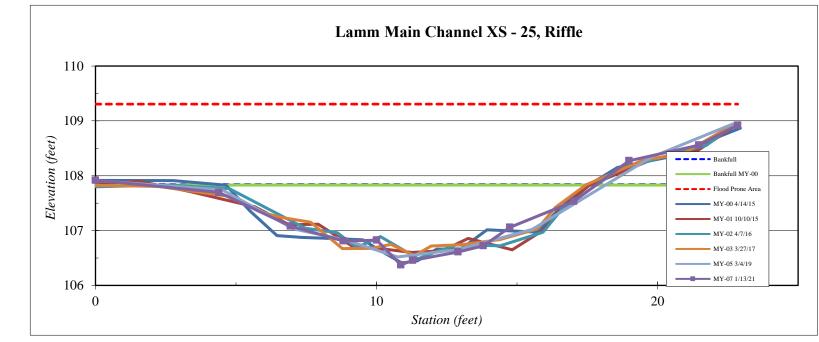
Stream Type	C/E


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the monitoring period. No problems are visible in this reach.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 24, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	107.2
4.4	106.9
6.3	106.6
7.5	105.9
8.7	105.8
9.6	105.6
10.4	105.5
11.1	105.5
12.1	105.6
13.1	105.7
14.0	106.0
14.9	106.4
17.6	107.5
19.5	107.8
20.7	107.9

Bankfull Elevation:	107.1
Bankfull Cross-Sectional Area:	13.1
Bankfull Width:	15.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1


Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 25, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.0	107.92
4.4	107.69
6.9	107.08
8.8	106.81
10.0	106.83
10.9	106.37
11.3	106.46
12.9	106.61
13.8	106.72
14.7	107.06
17.0	107.53
19.0	108.27
21.5	108.56
22.9	108.92
<u>.</u>	1

SUMMARY DATA	
Bankfull Elevation:	107.8
Bankfull Cross-Sectional Area:	11.3
Bankfull Width:	16.3
Flood Prone Area Elevation:	109.3
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.7
W / D Ratio:	23.5
Entrenchment Ratio:	5.5
Bank Height Ratio:	1.05

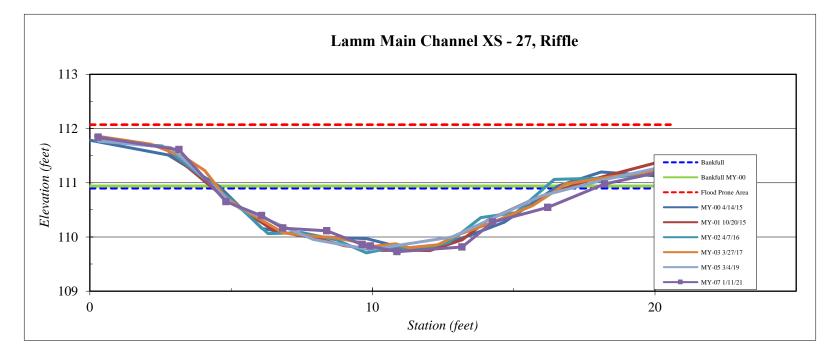
Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 26, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.2	110.6
3.8	110.4
4.8	110.1
5.8	109.7
6.6	109.3
6.8	108.9
8.4	108.8
9.2	108.8
10.3	108.9
11.8	109.1
12.4	109.4
13.6	109.8
15.3	109.7
17.8	110.3
19.8	110.6

Bankfull Elevation:	110.3
Bankfull Cross-Sectional Area:	12.1
Bankfull Width:	14.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.5
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

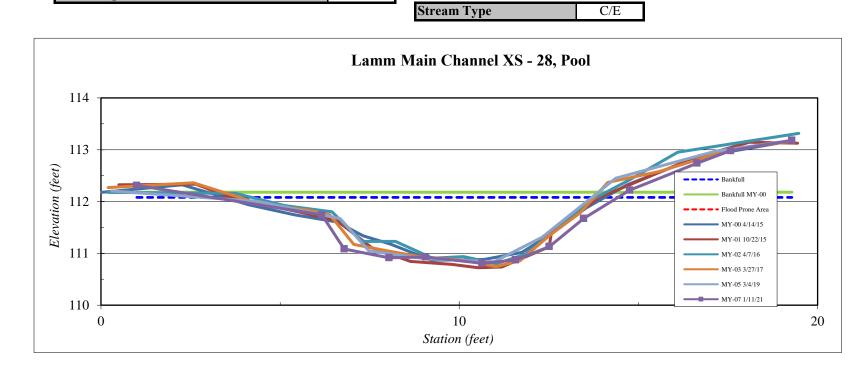
Lamm Main Channel XS - 26, Pool 111 Elevation (feet) 110 🗕 🗕 Bankfull Bankfull MY-00 Flood Prone Area MY-00 4/14/15 MY-01 10/20/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 108 10 0 20 Station (feet)


Stream Type

Site	Abbey Lamm
Watershed:	
	Cape Fear, 0303002
XS ID	Main Channel XS - 27, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.3	111.84
3.2	111.61
4.8	110.65
6.1	110.39
6.8	110.16
8.4	110.11
9.6	109.86
9.9	109.83
10.9	109.73
13.2	109.81
14.3	110.27
16.2	110.54
18.2	110.98
20.6	111.24

SUMMARY DATA	
Bankfull Elevation:	110.9
Bankfull Cross-Sectional Area:	9.5
Bankfull Width:	13.5
Flood Prone Area Elevation:	112.1
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	19.2
Entrenchment Ratio:	6.7
Bank Height Ratio:	1.07


Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 28, Pool
Feature	Pool
Date:	1/11/2021
Field Crew:	Perkinson, Harris

Station	Elevation
1.0	112.3
6.2	111.7
6.8	111.1
8.0	110.9
9.1	110.9
10.6	110.8
11.6	110.9
12.5	111.1
13.5	111.7
14.8	112.2
16.6	112.7
17.6	113.0
19.3	113.2

	110.1
Bankfull Elevation:	112.1
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	11.3
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 29, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Perkinson, Harris

Station	Elevation
0.2	114.83
5.0	114.56
6.6	114.14
7.7	113.41
10.1	113.83
11.1	113.54
12.3	113.36
13.0	112.99
13.6	113.00
14.4	113.33
15.7	113.80
16.5	113.58
18.0	114.56
20.1	114.88
23.8	115.04

SUMMARY DATA	
Bankfull Elevation:	114.6
Bankfull Cross-Sectional Area:	12.1
Bankfull Width:	14.3
Flood Prone Area Elevation:	116.2
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.6
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	16.9
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.0

Lamm Main Channel XS - 29, Riffle 117 116 Elevation (feet) 112 - - - - Bankfull Bankfull MY-00 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 113 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/11/21 112 10 20 0 Station (feet)

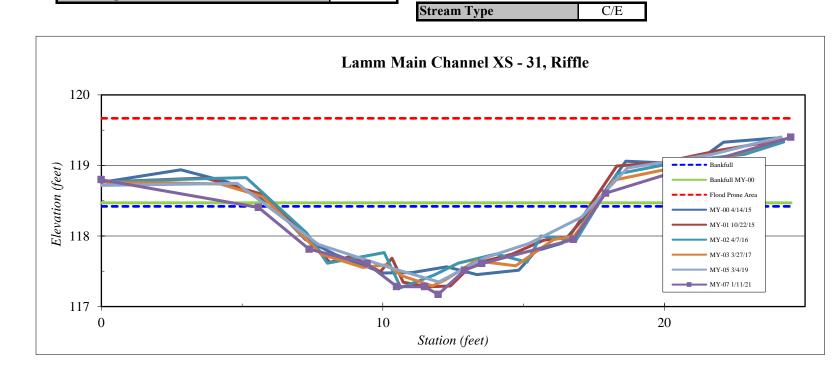
Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Pool
Feature	Pool
Date:	1/11/2021
Field Crew:	Perkinson, Harris

Station	Elevation
-0.1	117.4
5.6	116.9
7.1	116.5
7.8	116.1
8.3	116.1
9.5	116.0
10.3	115.9
10.8	115.7
11.6	115.6
11.9	115.7
13.4	116.2
14.7	116.6
15.9	117.5
18.0	117.8

SUMMARY DATA	
Bankfull Elevation:	117.3
Bankfull Cross-Sectional Area:	11.5
Bankfull Width:	14.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.8
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

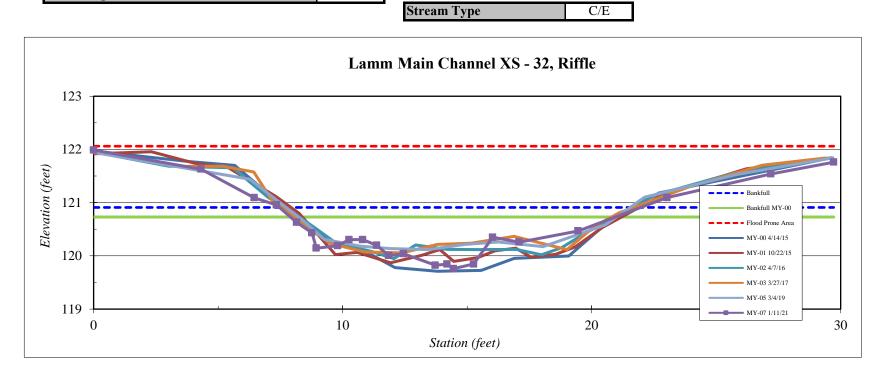
Lamm Main Channel XS - 30, Pool 119 118 Elevation (feet) ankfull MY-00 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 116 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/11/21 115 10 0 20 Station (feet)


Stream Type

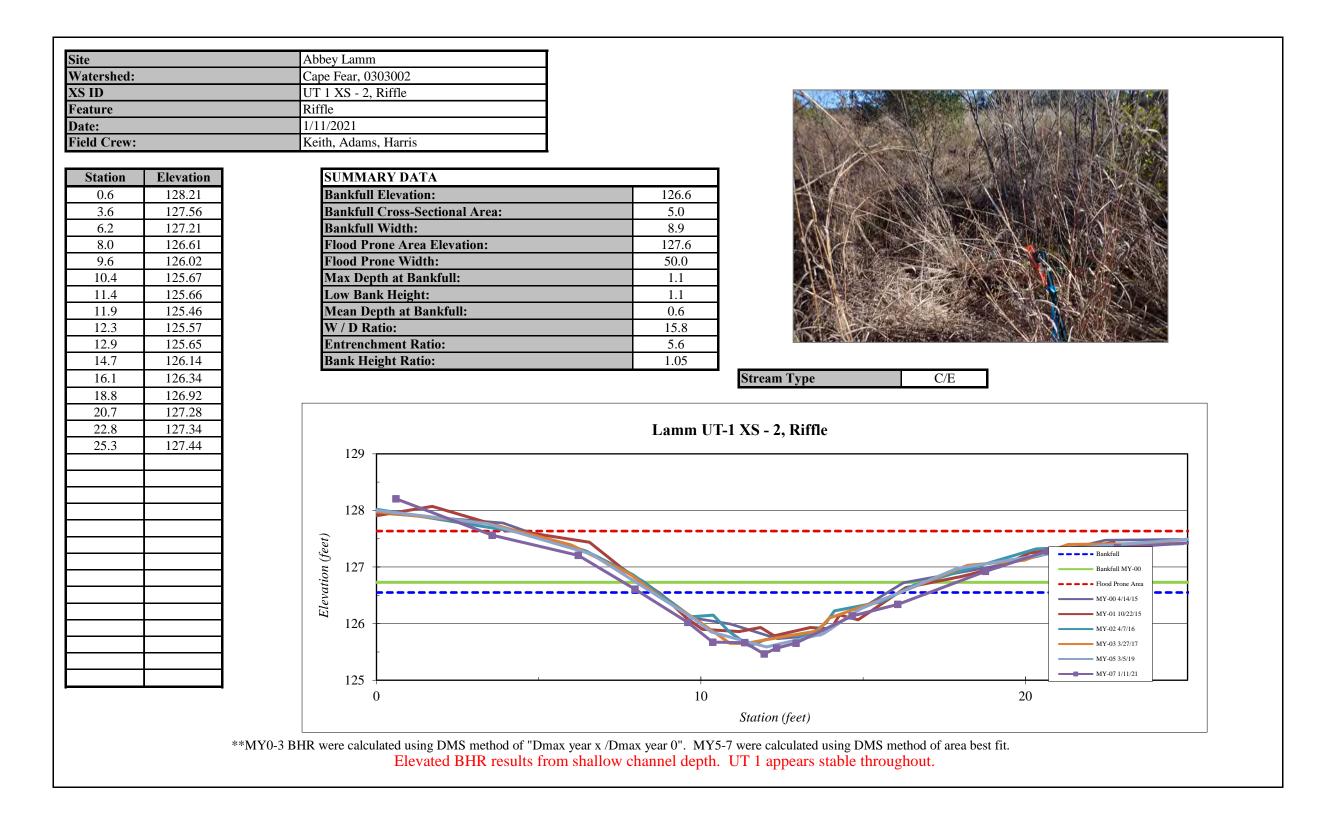
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 30, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Perkinson, Harris

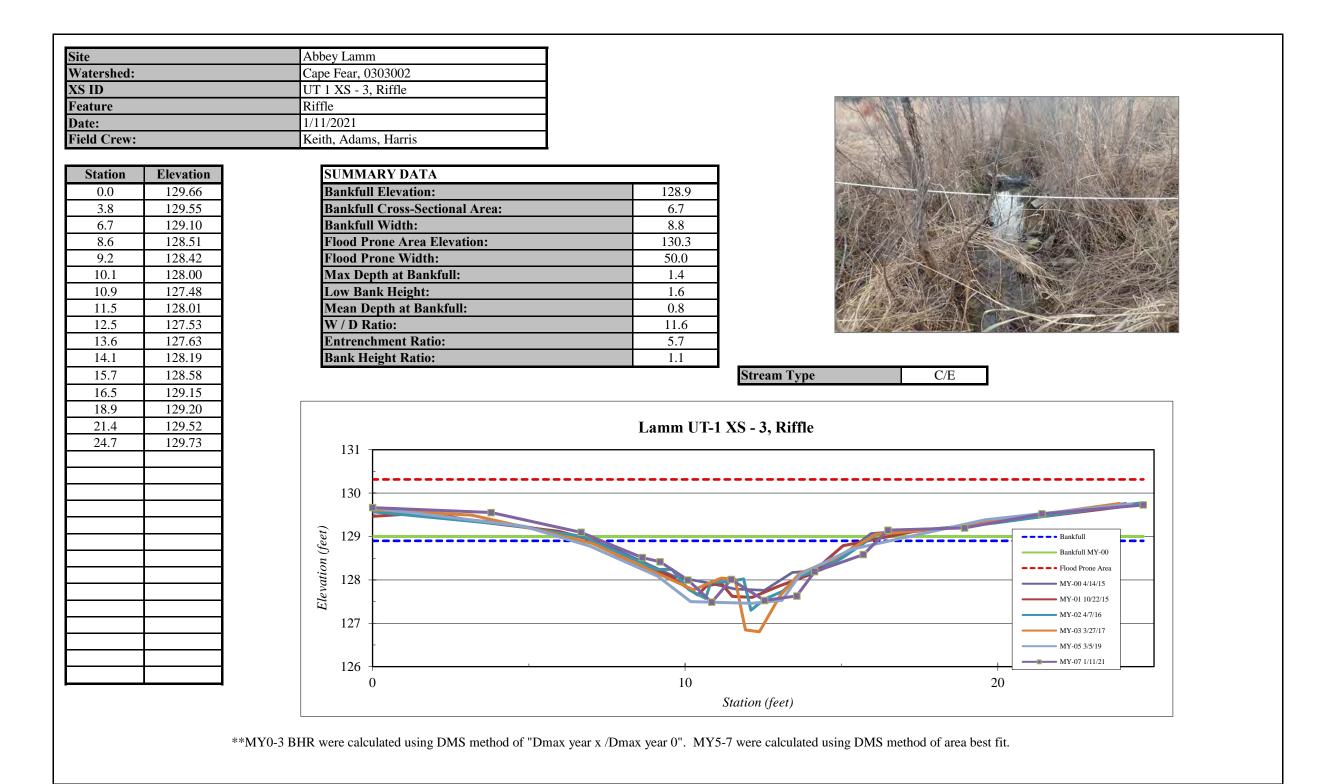
Station	Elevation
0.0	118.80
5.6	118.40
7.4	117.81
9.4	117.61
10.5	117.28
11.5	117.28
12.0	117.17
12.9	117.51
13.5	117.61
16.8	117.95
17.9	118.61
21.4	119.03
24.5	119.40

SUMMARY DATA	
Bankfull Elevation:	118.4
Bankfull Cross-Sectional Area:	8.6
Bankfull Width:	12.2
Flood Prone Area Elevation:	119.7
Flood Prone Width:	90.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.7
W / D Ratio:	17.3
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.0

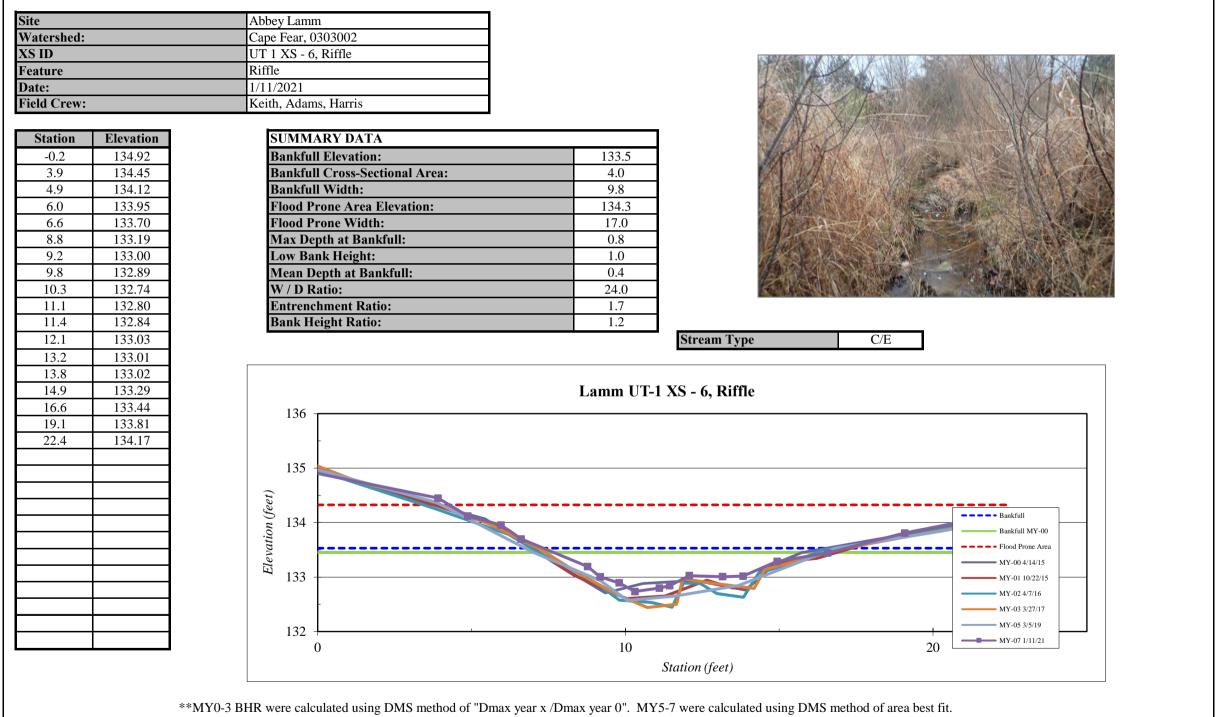


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	Main Channel XS - 32, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Perkinson, Harris


Station	Elevation
0.0	121.99
4.3	121.63
6.5	121.09
7.3	120.96
8.2	120.63
8.8	120.43
8.9	120.15
9.8	120.19
10.3	120.30
10.8	120.30
11.4	120.20
11.9	120.01
12.4	120.04
13.7	119.82
14.2	119.84
14.5	119.76
15.3	119.85
16.0	120.35
17.1	120.26
19.5	120.47
23.0	121.1
27.2	121.5
29.7	121.8


SUMMARY DATA	
Bankfull Elevation:	120.9
Bankfull Cross-Sectional Area:	9.0
Bankfull Width:	14.5
Flood Prone Area Elevation:	122.1
Flood Prone Width:	25.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	23.4
Entrenchment Ratio:	1.7
Bank Height Ratio:	1.04

Site	A bhavi Lamm
Vatershed:	Abbey Lamm Cape Fear, 0303002
S ID	UT 1 XS - 1, Pool
eature	Pool
ate:	1/11/2021
ield Crew:	Keith, Adams, Harris
Station Elevation	SUMMARY DATA
0.0 125.7	Bankfull Elevation: 124.6
4.2 125.4	Bankfull Cross-Sectional Area: 6.4
6.0 124.8	Bankfull Width: 9.4
7.3 124.2	Flood Prone Area Elevation: NA
8.0 123.8	Flood Prone Width: NA
8.3 123.4	Max Depth at Bankfull: 1.2
8.9 123.4	Low Bank Height: 1.4
9.6 123.4	Mean Depth at Bankfull: 0.7
10.2 123.4	W / D Ratio: NA
10.7 123.5	Entrenchment Ratio: NA
10.9 123.5	Bank Height Ratio: 1.1
11.3 123.8	Stream Type C/E
12.2 124.1	
13.0 124.0	
15.0 124.3	Lamm UT-1 XS - 1, Pool
16.6 124.9	126
19.5 125.3	
23.0 125.7	
	125
	Bankfull
	124 Bankfull MY-00 123 Flood Prone Area MY-00 4/14/15 MY-00 4/14/15 MY-01 10/22/15 MY-01 10/22/15 MY-02 47/16 MY-02 47/16
	M1-60-41-41.5
	123
	MY-03 3/27/17
	MY-05 3/5/19
	122 MY-07 1/11/21
	0 10 20
	Station (feet)



$\frac{\overline{Str}}{Varerdet} \underbrace{Cape Far, 08000^{\circ}}{Cape Far, 08000^{\circ}} \underbrace{Cape Far, 08000^{\circ}}{Cape Far, 0400^{\circ}} \underbrace{Cape Far, 0800^{\circ}}{Cape Far, 0800^{\circ}} \underbrace{Cape Far, 0800^{\circ}}$					
St D UT 1 XS - 4. Pool Determe Pool Difference IVI 1/2021 Visition Restance Pool Station Elsevation Number of the station Pool Station Elsevation Number of the station Pool Station Elsevation Elsevation Elsevation Station Station Elsevation Station Station Elsevation Station Elsevation Elsevation Station Elsevation	Site		Abbey Lamm		
Fertine Post Date: 1/11/2021 Field Crow: Keith, Adms, Harris 0.5 100.98 3.5 100.98 3.5 100.98 70 125/35 70 125/35 10.2 128.88 9.2 129.02 11.2 129.43 10.2 128.83 10.2 128.83 11.2 129.43 11.2 129.43 11.2 129.43 11.2 129.43 11.2 129.43 11.2 129.43 11.2 129.43 12.5 129.43 12.5 129.43 13.9 129.82 15.5 180.07 21.7 130.60 12.0 129.43 13.9 129.82 15.5 180.07 21.7 130.60 12.6 129.43 12.6 129.43 12.6 129.43 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
Dete: 1/1/2021 Field Crew: Keith, Aduns, Harris Station Elevation 3.5 10.038 3.5 10.294 7.0 129.34 8.6 128.85 10.2 129.02 9.7 128.85 10.7 129.02 11.2 129.14 12.0 129.24 13.9 129.84 13.9 129.82 13.5 130.07 12.7 130.60 12.7 130.60 13.9 129.44 12.0 129.43 12.0 129.14 12.0 129.02 13.9 129.85 13.9 129.82 13.9 129.82 13.9 129.82 13.9 129.82 13.1 10.00 12.1 130.60 12.1 130.60 12.1 130.60 12.1 130.60 12.1 130.60 12.1 130.60 </th <th>XS ID</th> <th></th> <th>UT 1 XS - 4, Pool</th> <th></th> <th></th>	XS ID		UT 1 XS - 4, Pool		
Field Crew: Keth, Adams, Harris 0.5 130.98 5.5 130.58 5.5 130.29 7.5 122.51 0.2 122.84 9.2 122.01 10.2 122.84 10.2 122.84 10.2 122.84 10.2 122.84 10.2 122.84 10.2 122.84 10.2 122.84 10.2 128.85 10.2 128.85 10.2 129.02 13.5 130.037 12.5 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.8 130.037 13.9 12.8 12.5 13.0 12.6 12.6 12.7 130.60	Feature				
Station 0.5Elevation 130.98 3.5 130.98 3.5 130.29 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.84 9.2 129.02 10.2 128.85 10.2 128.85 10.2 128.85 10.2 128.85 10.2 129.92 11.2 129.14 11.2 129.14 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 12.5 129.34 13.6 130.60 12.5 130.67 13.1 130.37 12.5 130.67 13.1 130.60 13.2 129.82 13.3 130.60 13.4 100 12.5 129.41 12.6 129.82 12.5 129.82 13.6 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82 12.5 129.82<					
0.5 130.88 3.5 130.58 3.5 130.58 3.5 130.29 7.0 129.75 7.0 129.83 10.7 129.02 11.2 129.19 12.5 129.49 130.37 129.83 15.5 130.07 18.1 130.37 19 130 10 129 10 10	Field Crew:		Keith, Adams, Harris		
0.5 130.88 3.5 130.58 3.5 130.29 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.75 7.0 129.83 10.7 129.02 11.2 129.14 12.0 129.83 15.5 130.07 18.1 130.37 12.1 130.67 12.1 130.67 12.1 130.67 12.1 130.67 13.9 129 13.9 130.67 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
3.5 130.29 3.5 130.29 7.5 129.35 8.6 128.84 9.2 129.02 9.7 128.85 10.2 128.85 10.7 129.02 11.2 129.13 11.2 129.14 12.3 129.44 8.6 128.84 9.2 129.02 9.7 128.85 10.7 129.02 11.2 129.14 12.0 129.39 12.2.5 130.07 18.1 130.37 18.1 130.37 19.4 100 19.4 100 10.7 129.04 13.9 129.82 15.5 130.07 18.1 130.37 19.4 10 19.4 10 19.4 10 19.4 10 19.4 10	Station	Elevation	SUMMARY DATA		
5.5 130.29 7.0 129.75 7.5 129.34 8.6 128.84 9.2 129.02 9.7 128.85 10.2 128.85 10.7 129.02 11.2 129.02 11.2 129.02 11.2 129.03 12.5 129.04 12.6 129.43 12.0 129.39 12.5 129.04 13.9 129.88 15.5 130.07 13.9 129.82 15.5 130.07 18.1 130.37 18.1 130.37 19.4 140 19.5 130.07 18.1 130.37 19.4 140 19.4 140 19.4 140.4 19.4 140.4 19.4 140.4 19.4 140.4 19.4 140.4 19.4 140.4 19.4 140.4 19.4 140.	0.5	130.98	Bankfull Elevation:	129.7	
7.0 129.75 7.5 129.34 8.6 128.84 9.2 129.02 9.7 128.85 10.2 128.85 10.2 128.85 10.2 128.93 11.2 129.14 12.0 129.82 15.5 130.07 12.5 129.40 12.5 129.40 12.5 129.40 12.5 129.40 12.5 129.40 12.5 129.40 13.9 129.82 15.5 130.07 21.7 130.60 18.1 10.37 21.7 130.60 18.1 10.37 18.1 10.37 21.7 130.60 18.1 10.37 19.0 10 19.0 10	3.5	130.58	Bankfull Cross-Sectional Area:	3.6	A CONTRACT OF A
7.5 129.34 8.6 128.84 9.7 128.85 10.7 129.02 11.2 129.14 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 10.1 130 12.0 1.0 18.1 130.37 21.7 130.60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 120.0 1.2.5 129.49 13.0 129.082 15.5 130.07 10.1 130.60 10.1 120 12.0 12.0 13.0 12.0 13.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0					
8.6 128.84 9.2 129.02 9.7 128.85 10.2 128.85 10.1 129.02 11.2 129.14 12.0 129.39 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 13.9 129.82 15.5 130.07 18.1 130.37 19.1 12.0 19.2 129.40 13.9 129.82 15.5 130.07 18.1 130.37 19.2 130 12.7 130.60 13.9 129.82 13.9 129.82 13.9 129.82 12.7 130.60 13.9 129.42 13.9 129.42 13.9 129.42 13.9 129.42 13.9 129.42 13.9 129.42 13.9 129.42 13.9		129.75	Flood Prone Area Elevation:		
9.2 129.02 9.7 128.85 10.7 129.02 11.2 129.01 11.2 129.02 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 13.9 129.12 13.9 129.12 11.2 120.12 12.5 130.07 18.1 130.37 21.7 130.60 13.9 129.82 13.9 129.82 13.9 129.82 13.9 129.82 12.1.7 130.60 13.9 129.82 13.9 129.82 13.9 129.82 13.9 129.82 13.9 129.92 13.9 129.92 13.9 129.92 13.9 129.92 13.9 129.92 13.9 129.92 13.9 129.92 13.9 129.92 13			Flood Prone Width:		
9.7 128.85 10.2 128.85 10.2 128.85 11.2 129.14 12.0 129.39 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 10 10 10.1 100 10.1 10.1 10.2 12.5 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 19.0 10 10 10			Max Depth at Bankfull:		
IO.2 128.85 10.7 129.02 11.2 129.14 12.0 129.39 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.60 10 130 11.2 120.129.49 13.9 120.82 15.5 130.07 18.1 130.60 10 130 10 130 11.2 120.82 12.7 130.60 130 120 131 120.37 132 120 133 120 130 120 131 120 132 120 133 120 130 120 131 130 132 120 133 120 134 120 135 120 130 120 131 120 132 120 133 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
IO.7 I29.02 11.2 129.14 12.0 129.39 12.5 129.49 13.9 129.82 15.5 130.07 18.1 130.37 21.7 130.60 13 130 13.0 12 13.0 12 13.1 130.37 21.7 130.60 13.1 130.37 21.7 130.60 13.1 13.0 13.2 12.2 13.3 12.2 13.4 13.0 13.5 13.0 13.0 12.0 13.1 13.0 13.2 13.0 13.3 12.9 13.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 12.9 12.9 12.9 12.9 12.9 12.9 12.8 10 12.8 10 10 20 <th></th> <th></th> <th></th> <th></th> <th></th>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bank Height Ratio:	1.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Stream Type C/E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
18.1 130.37 $21.7 130.60$ 132 132 133 132 134 130 134 134 130 134 134 130 134 13		129.82			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I	Lamm UT-1 XS -	4, Pool
21.7 130.60 131 130 130 131 130 130 130 13					·
Image: Sector of the sector	21.7	130.60			
Image: Sector of the sector					
Image: Sector of the sector			131		
120 MY-02 47/16 128 MY-03 3/27/17 128 MY-05 3/5/19 10 20					
120 MY-02 47/16 128 MY-03 3/27/17 128 MY-05 3/5/19 10 20					Bankfull
120 MY-02 47/16 128 MY-03 3/27/17 128 MY-05 3/5/19 10 20			\$ 130		Bankfull MY-00
Image: My-02 4/7/16 Image: My-02 4/7/16 Image: My-03 3/27/17 My-03 3/5/19 Image: My-05 3/5/19		<u> </u>			Flood Prone Area
Image: My-02 4/7/16 Image: My-02 4/7/16 Image: My-03 3/27/17 My-03 3/5/19 Image: My-05 3/5/19		<u> </u>			
128 10 10 10					
128 128 MY-05 3/5/19 0 10 20		↓↓			
128 128 10 10 NY-07 1/11/21 20		↓ 			
0 10 20		<u>+</u>	128		
		├ ───┤		10	

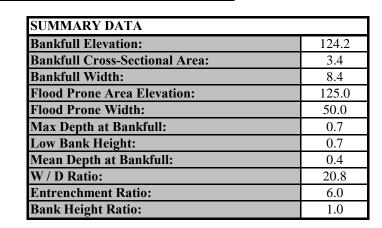
Site		Abbey Lamm		
Vatershed:		Cape Fear, 0303002		
S ID		UT 1 XS - 5, Riffle		
leature		Riffle		
Date:		1/11/2021		
Field Crew:		Keith, Adams, Harris		
			·	The second se
Station	Elevation	SUMMARY DATA		
0.0	133.18	Bankfull Elevation:	131.7	
1.7	133.11	Bankfull Cross-Sectional Area:	4.0	
4.1	132.57	Bankfull Width:	8.8	
6.3	132.24	Flood Prone Area Elevation:	132.4	
7.0	131.90	Flood Prone Width:	50.0	
8.0	131.48	Max Depth at Bankfull:	0.8	
8.8	131.10	Low Bank Height:	0.9	
9.4	131.00	Mean Depth at Bankfull:	0.5	
10.6	130.94	W / D Ratio:	19.4	
11.0	130.94	Entrenchment Ratio:	5.7	
11.9	130.90	Bank Height Ratio:	1.2	
12.8	131.15		Stro	am Type C/E
13.3	131.18			
15.1	131.40			
17.2	131.80		Lamm UT-1 XS	- 5, Riffle
18.3	131.76	134 -		
20.1	131.79			
22.3	131.98			
		133		
		$\hat{\mu}$		
		fee		Bankfull
		ž 132		Bankfull MY-00
				Flood Prone Area
		Elevation (feet)		MT-00/4/14/15 MY-01 10/22/15
		131		MT-01 10/2/13
				MY-03 3/27/17
				MY-05 3/5/19
		130		MY-07 1/11/21
		0	10	20
			Stati	on (feet)

Elevated BHR results from shallow channel depth. UT 1 appears stable throughout.

Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the monitoring period. No problems are visible in this reach.

C •4	
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1a XS - 1, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
0.0	122.63
2.4	122.81
4.4	122.36
6.3	121.94
7.4	121.71
8.9	121.63
9.2	121.28
10.0	121.21
10.3	121.30
10.7	121.41
12.1	121.68
13.6	121.83
16.3	121.99
17.6	122.59

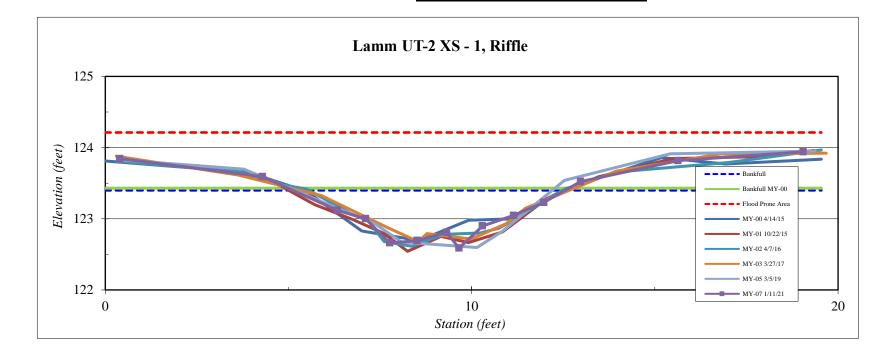

SUMMARY DATA	
Bankfull Elevation:	121.9
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	9.0
Flood Prone Area Elevation:	122.6
Flood Prone Width:	14.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	32.4
Entrenchment Ratio:	1.6
Bank Height Ratio:	1.0

Lamm UT-1a XS - 1, Riffle 124 123 Elevation (feet) Bankfull Bankfull MY-00 ---- Flood Prone Area MY-00 4/14/15 121 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/5/19 120 MY-07 1/11/21 10 20 0 Station (feet)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 1a XS - 2, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
0.0	124.84
2.8	124.85
6.0	124.34
8.0	123.93
8.6	123.80
9.7	123.51
10.2	123.52
11.2	123.58
12.5	123.76
13.1	123.87
14.4	124.22
16.2	124.30
18.3	124.60
20.7	124.65

Lamm UT-1a XS - 2, Riffle 126 (feet) Elevation (feet) 125 ---- Bankfull Bankfull MY-00 - Flood Prone Are MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/5/19 123 MY-07 1/11/21 10 20 0 Station (feet)

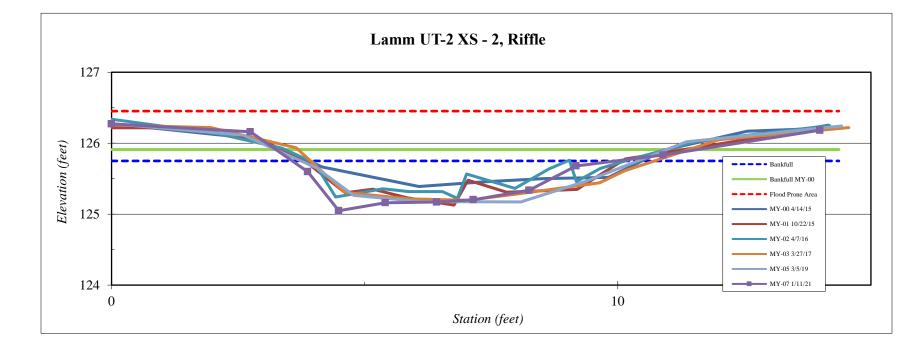

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 1, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation	
0.4	123.84	
4.3	123.59	
6.3	123.12	
7.1	123.00	
7.8	122.66	
8.5	122.69	
9.3	122.81	
9.7	122.59	
10.3	122.90	
11.1	123.05	
12.0	123.23	
13.0	123.52	
15.6	123.82	
19.0	123.94	

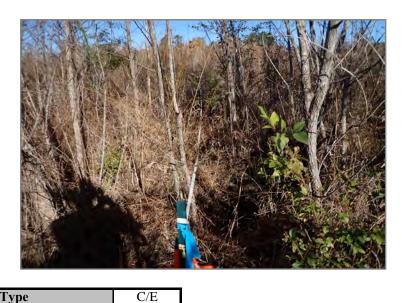
SUMMARY DATA	
Bankfull Elevation:	123.4
Bankfull Cross-Sectional Area:	3.2
Bankfull Width:	7.4
Flood Prone Area Elevation:	124.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.1
Entrenchment Ratio:	6.8
Bank Height Ratio:	1.15

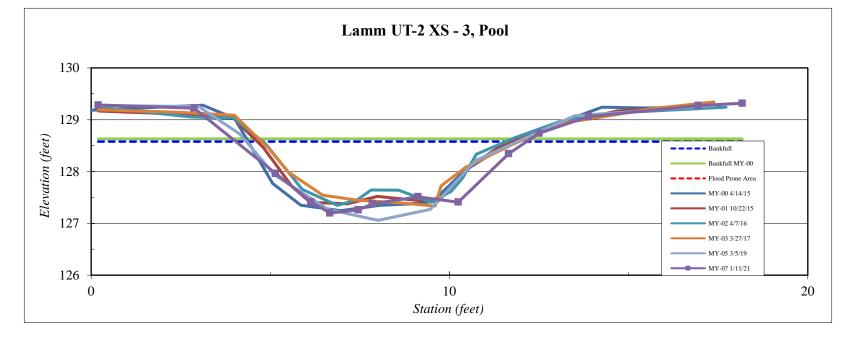
**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.


G•4	
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 2, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
0.0	126.27
2.7	126.16
3.9	125.60
4.5	125.05
5.4	125.16
6.4	125.17
7.1	125.20
8.2	125.34
9.2	125.68
10.9	125.83
14.0	126.18
	1
.	

Bankfull Elevation:	125.8
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	6.4
Flood Prone Area Elevation:	126.5
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	15.2
Entrenchment Ratio:	7.8
Bank Height Ratio:	1.1


С


Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 3, Pool
Feature	Pool
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
0.2	129.3
2.9	129.2
5.1	128.0
6.1	127.4
6.7	127.2
7.5	127.3
7.9	127.4
9.1	127.5
10.2	127.4
11.7	128.3
12.5	128.7
13.9	129.1
16.9	129.3
18.2	129.3

Bankfull Elevation:	128.6
Bankfull Cross-Sectional Area:	7.2
Bankfull Width:	8.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.4
Low Bank Height:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 4, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
0.0	129.77
4.1	129.82
4.9	129.97
5.9	128.74
6.6	128.59
6.7	128.79
7.3	128.87
7.9	129.23
8.7	129.43
9.4	129.42
11.5	129.50
13.0	129.71
15.1	130.16
17.3	130.20

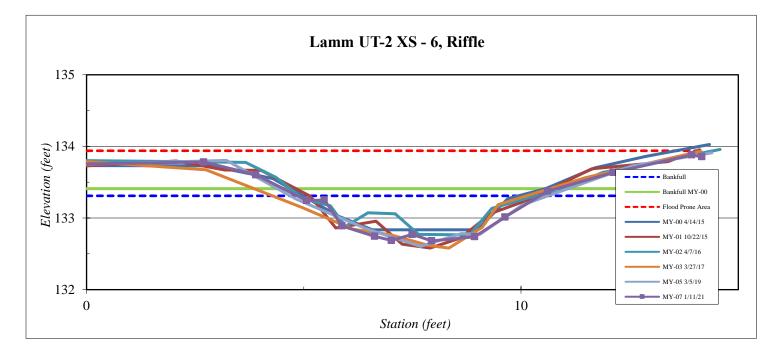
SUMMARY DATA	
Bankfull Elevation:	129.8
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	8.0
Flood Prone Area Elevation:	130.9
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.4
Mean Depth at Bankfull:	0.5
W / D Ratio:	17.8
Entrenchment Ratio:	6.3
Bank Height Ratio:	1.2

Lamm UT-2 XS - 4, Riffle 132 131 Elevation (feet) Bankfull kfull MY-00 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 129 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/5/19 128 MY-07 1/11/21 10 20 0 Station (feet)

**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. No problems have been noted in this reach. Minor alterations in shallow channels may result in large discrepancies including elevated BHR.

Site		Abbey Lamm		
Watershed:		Cape Fear, 0303002		
XS ID		UT 2 XS - 5, Riffle		
Feature		Riffle		
Date:		1/11/2021		
Field Crew:		Keith, Adams, Harris		
Station	Elevation	SUMMARY DATA		
0.0	131.59	Bankfull Elevation:	131.3	
3.8	131.44	Bankfull Cross-Sectional Area:	5.5	
5.3	130.99	Bankfull Width:	7.9	
6.1	130.80	Flood Prone Area Elevation:	132.5	
7.0	130.33	Flood Prone Width:	50.0	
7.5	130.31	Max Depth at Bankfull:	1.2	
8.5	130.17	Low Bank Height:	1.3	
9.0	130.17	Mean Depth at Bankfull:	0.7	
9.8	130.44	W / D Ratio:	11.3	
10.5	130.37	Entrenchment Ratio:	6.3	
11.4	131.00	Bank Height Ratio:	1.1	
12.5	131.53		Stream Type C/E	
14.3	131.80			
15.9	132.04			
17.8	132.24		Lamm UT-2 XS - 5, Riffle	
19.7	132.68		Lamm 01-27X5 - 5, Kink	
		133		
		132		
		131 Flood Prone Area MY-00 4/14/15		
		Bankfull MY-00		
		Flood Prone Area		
		MY-00 4/14/15		
		130 MY-01 10/22/15		
			MY-03 3/27/17	
			MY-05 3/5/19	
		129	MY-07 1/11/21	
		0	10 20	
Station (feet)				

**MY0-3 BHR were calculated using DMS method of "Dmax year x/Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Overall channel area has remained constant. Sediment mobilization has resulted in minor downcutting, which has stabilized over the monitoring period. No problems are visible in this reach.

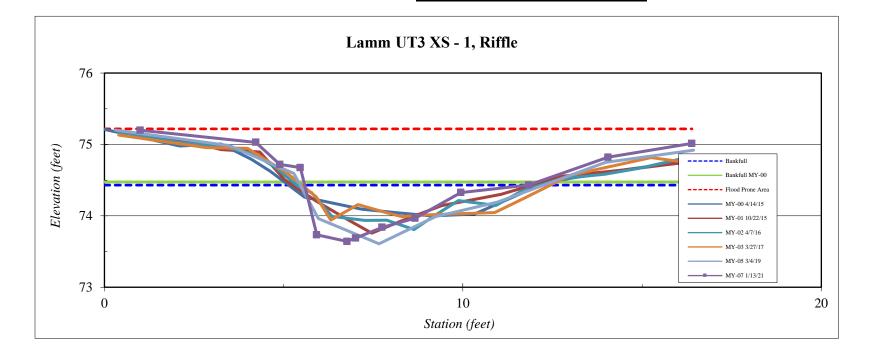

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 2 XS - 6, Riffle
Feature	Riffle
Date:	1/11/2021
Field Crew:	Keith, Adams, Harris

Station	Elevation
-0.1	133.75
2.7	133.78
3.9	133.60
5.1	133.24
5.5	133.25
5.9	132.89
6.6	132.74
7.0	132.69
7.5	132.77
7.9	132.68
8.9	132.74
9.6	133.01
10.6	133.38
12.1	133.64
13.9	133.88
14.2	133.86

SUMMARY DATA	
Bankfull Elevation:	133.3
Bankfull Cross-Sectional Area:	2.3
Bankfull Width:	5.6
Flood Prone Area Elevation:	133.9
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	13.6
Entrenchment Ratio:	8.9
Bank Height Ratio:	1.1

C/E

Stream Type


Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 1, Riffle	
Feature	Riffle	
Date:	1/13/2021	
Field Crew:	Lewis, Harris	

Station	Elevation
1.0	75.20
4.2	75.03
4.9	74.72
5.5	74.67
5.9	73.73
6.8	73.64
7.0	73.69
7.7	73.84
8.7	73.97
9.9	74.33
11.8	74.43
14.0	74.82
16.4	75.01
L	
L	

SUMMARY DATA	
Bankfull Elevation:	74.4
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	6.2
Flood Prone Area Elevation:	75.2
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	16.0
Entrenchment Ratio:	8.1
Bank Height Ratio:	1.0

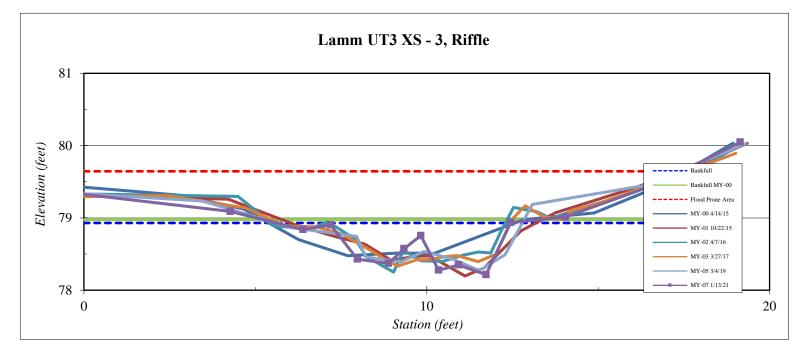
С

Stream Type

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 2, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Lewis, Harris

Station	Elevation
0.1	76.5
2.8	76.4
5.2	75.9
6.0	75.5
8.1	75.5
8.5	75.6
9.0	75.5
9.4	75.4
9.8	75.4
10.3	75.4
10.8	75.3
11.9	75.9
13.1	76.0
15.4	76.2
18.5	76.2

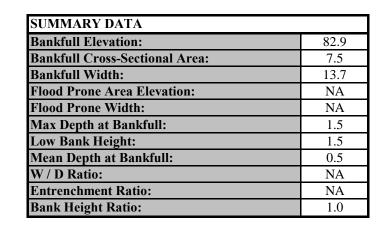
Bankfull Elevation:	76.3
Bankfull Cross-Sectional Area:	5.9
Bankfull Width:	14.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.9
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Lamm UT3 XS - 2, Pool 77 Elevation (feet) Bankfull MY-00 76 ---- Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 75 10 0 20 Station (feet)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 3, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Lewis, Harris

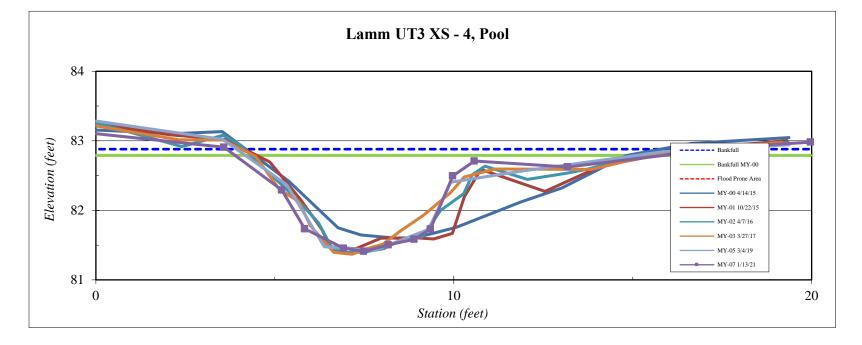
Station	Elevation
-0.3	79.34
4.3	79.09
6.4	78.84
7.2	78.90
8.0	78.43
8.9	78.37
9.3	78.57
9.8	78.75
10.3	78.28
10.9	78.35
11.7	78.22
12.5	78.94
14.0	79.01
16.6	79.46
19.1	80.05

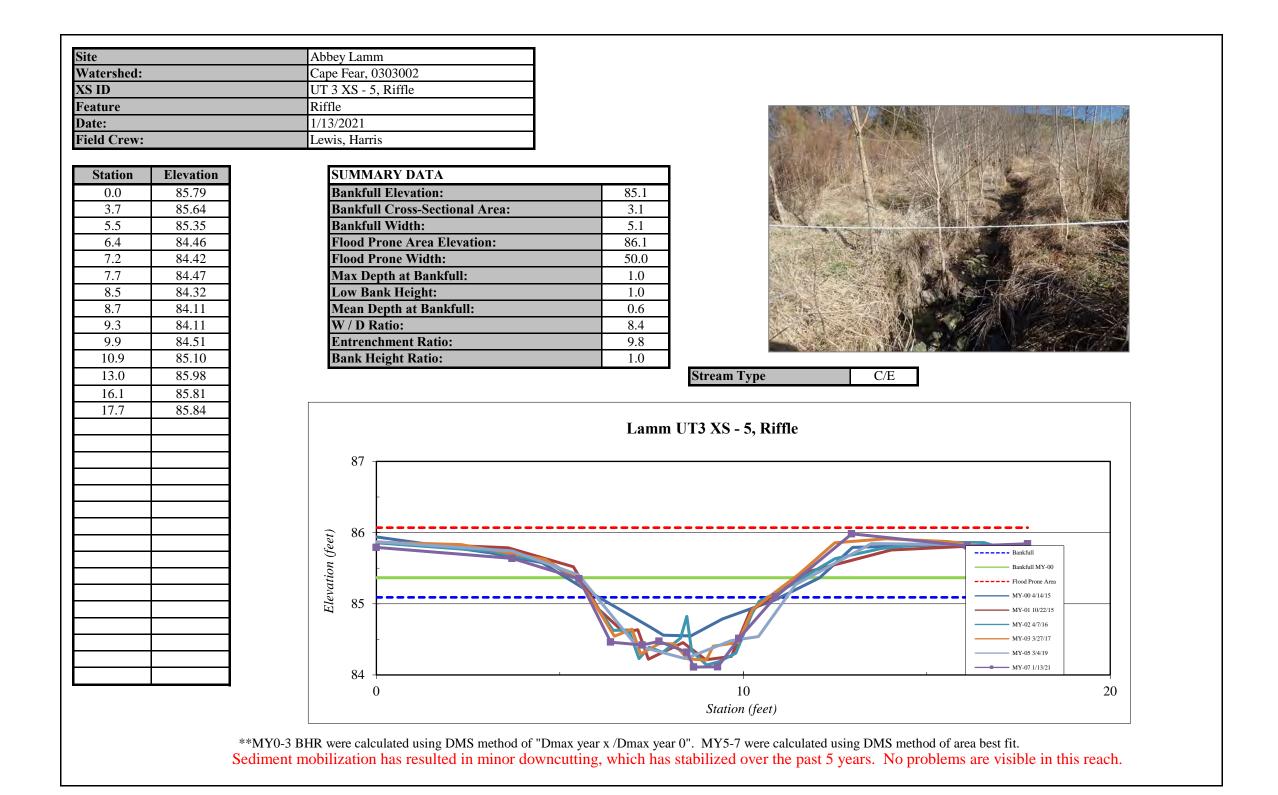
SUMMARY DATA	
Bankfull Elevation:	78.9
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	6.8
Flood Prone Area Elevation:	79.6
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	18.5
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.0



**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. UT 3 has slight resorting of fill material in the channel; however, area has primarily remained constant and no significant erosion is apparent.

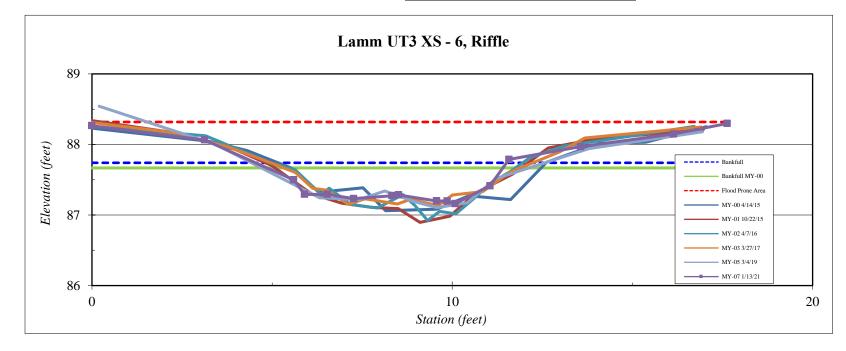
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 4, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Lewis, Harris


Station	Elevation
-0.2	83.1
3.6	82.9
5.2	82.3
5.8	81.7
6.9	81.5
7.5	81.4
8.2	81.5
8.9	81.6
9.3	81.7
10.0	82.5
10.6	82.7
13.2	82.6
17.9	82.9
20.0	83.0



Stream Type

C/E



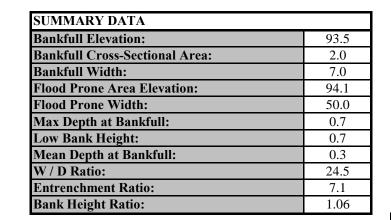
Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 6, Riffle	
Feature	Riffle	
Date:	1/13/2021	
Field Crew:	Lewis, Harris	

Station	Elevation
0.0	88.27
3.1	88.06
5.6	87.50
5.9	87.29
6.5	87.29
7.3	87.23
8.3	87.27
8.5	87.28
9.6	87.20
9.9	87.20
10.1	87.16
11.0	87.41
11.6	87.79
13.6	87.97
16.1	88.15
17.6	88.30

SUMMARY DATA	
Bankfull Elevation:	87.7
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.0
Flood Prone Area Elevation:	88.3
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.6
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.5
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.1

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 7, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Lewis, Harris

Station	Elevation
0.1	91.3
4.0	91.3
4.9	89.6
5.0	88.8
5.6	89.1
6.6	88.9
7.2	89.1
8.3	89.4
9.0	89.6
9.3	89.8
10.1	90.5
10.7	91.0
12.4	91.3
15.7	91.7


Bankfull Elevation:	90.6
Bankfull Cross-Sectional Area:	7.1
Bankfull Width:	6.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.9
Low Bank Height:	2.2
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.2

Lamm UT3 XS - 7, Pool 92 91 Elevation (feet) ---- Bankfull Bankfull MY-00 90 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 89 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 88 10 0 20 Station (feet)

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 8, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Lewis, Harris

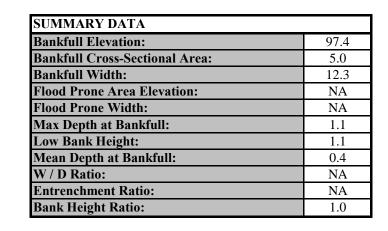
Station	Elevation
0.4	93.60
2.1	93.73
4.3	93.36
5.1	93.08
5.6	92.78
5.9	92.79
6.3	92.98
7.2	93.23
8.0	93.28
8.9	93.06
11.0	93.49
13.5	93.76
16.8	93.81

Lamm UT3 XS - 8, Riffle 95 94 Elevation (feet) --- Bankfull kfull MY-00 Flood Prone Area MY-00 4/14/15 93 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 92 10 0 20 Station (feet)

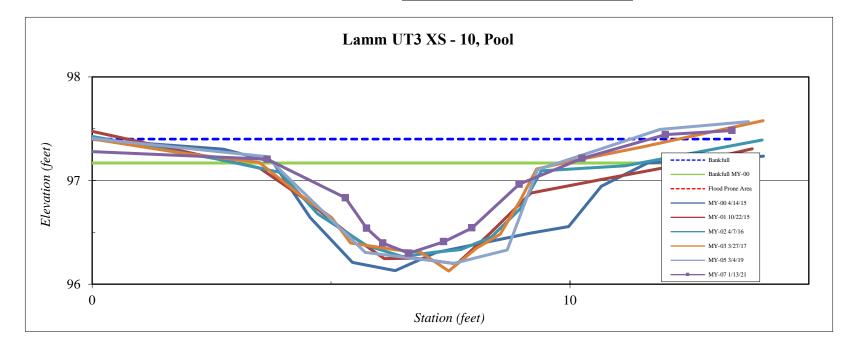
Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 9, Riffle	
Feature	Riffle	
Date:	1/13/2021	
Field Crew:	Lewis, Harris	

Station	Elevation
0.0	95.84
4.0	95.48
5.7	94.98
6.6	94.51
7.0	94.31
7.8	94.34
8.2	94.34
9.1	94.41
9.4	94.61
10.2	94.66
11.8	95.18
14.2	95.33
16.9	95.26

SUMMARY DATA	
Bankfull Elevation:	95.0
Bankfull Cross-Sectional Area:	2.5
Bankfull Width:	5.6
Flood Prone Area Elevation:	95.7
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	12.5
Entrenchment Ratio:	8.9
Bank Height Ratio:	1.0

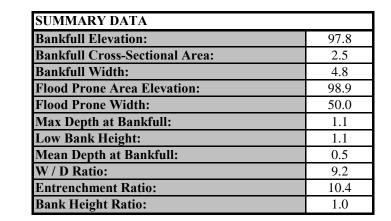


Lamm UT3 XS - 9, Riffle 96 Elevation (feet) Bankful kfull MY-00 95 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 94 10 20 0 Station (feet)


**MY0-3 BHR were calculated using DMS method of "Dmax year x /Dmax year 0". MY5-7 were calculated using DMS method of area best fit. Sediment mobilization has resulted in minor downcutting, which has stabilized over the past 4 years. No problems are visible in this reach.

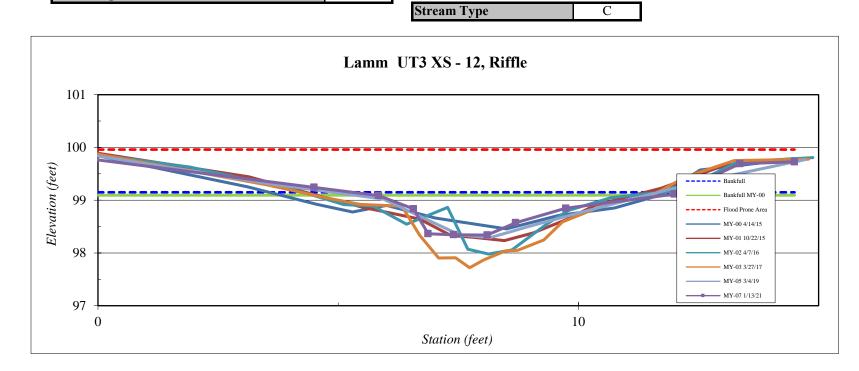
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 10, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Lewis, Harris

Station	Elevation
-0.6	97.3
3.7	97.2
5.3	96.8
5.7	96.5
6.1	96.4
6.6	96.3
7.4	96.4
7.9	96.5
8.9	97.0
10.3	97.2
12.0	97.4
13.4	97.5



Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 11, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Lewis, Harris

Station	Elevation
-0.4	98.21
3.2	98.15
6.4	97.71
7.0	97.54
8.3	97.22
8.7	96.89
9.0	96.85
9.4	96.68
9.8	96.70
10.7	97.77
11.5	98.29
12.9	98.24
14.3	98.31


Lamm UT3 XS - 11, Riffle 100 99 Elevation (feet) Bankfull 98 Bankfull MY-00 Flood Prone Area MY-00 4/14/15 97 MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 96 MY-07 1/13/21 10 0 Station (feet)

Site	Abbey Lamm	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3 XS - 12, Riffle	
Feature	Riffle	
Date:	1/13/2021	
Field Crew:	Lewis, Harris	

Station	Elevation
-0.2	99.79
4.5	99.24
5.8	99.09
6.6	98.84
6.9	98.36
7.4	98.35
8.1	98.34
8.7	98.57
9.7	98.85
12.0	99.11
13.4	99.69
14.5	99.73
L	
L	
L	

SUMMARY DATA	
Bankfull Elevation:	99.2
Bankfull Cross-Sectional Area:	2.6
Bankfull Width:	6.8
Flood Prone Area Elevation:	100.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.8
Entrenchment Ratio:	7.4
Bank Height Ratio:	1.0

Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 13, Pool
Feature	Pool
Date:	1/13/2021
Field Crew:	Lewis, Harris

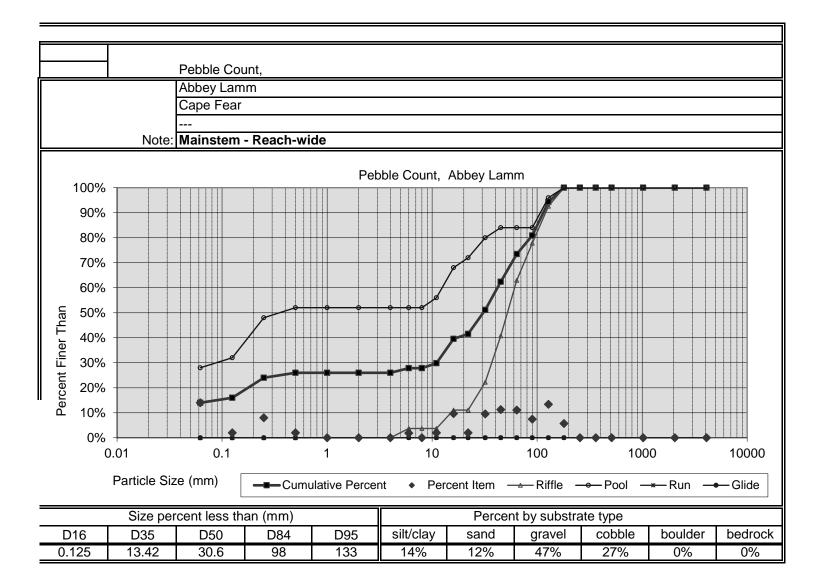
Station	Elevation
0.1	100.4
2.6	100.1
3.1	100.1
3.8	99.9
4.5	99.1
5.1	99.1
6.0	99.0
6.8	99.6
8.4	100.1
11.2	100.3
13.0	100.8

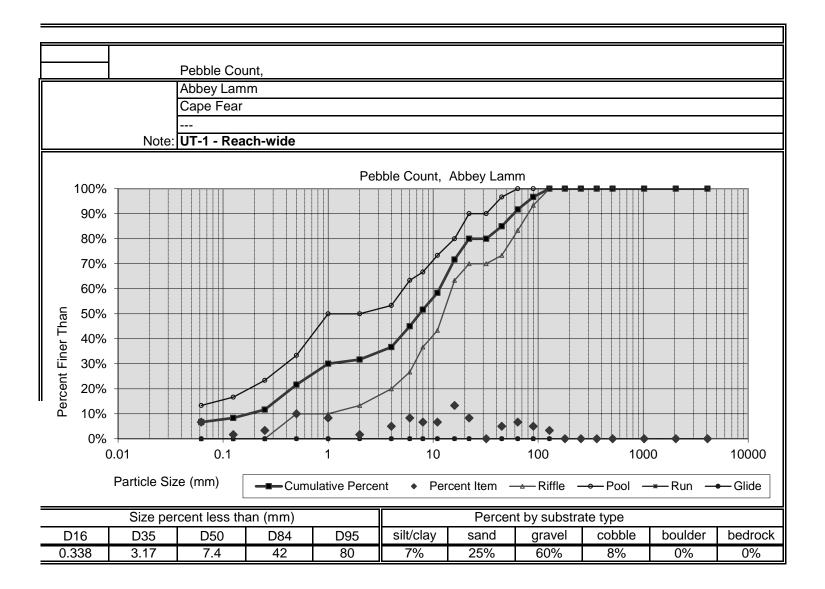
Bankfull Elevation:	100.3
Bankfull Cross-Sectional Area:	4.1
Bankfull Width:	8.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.1

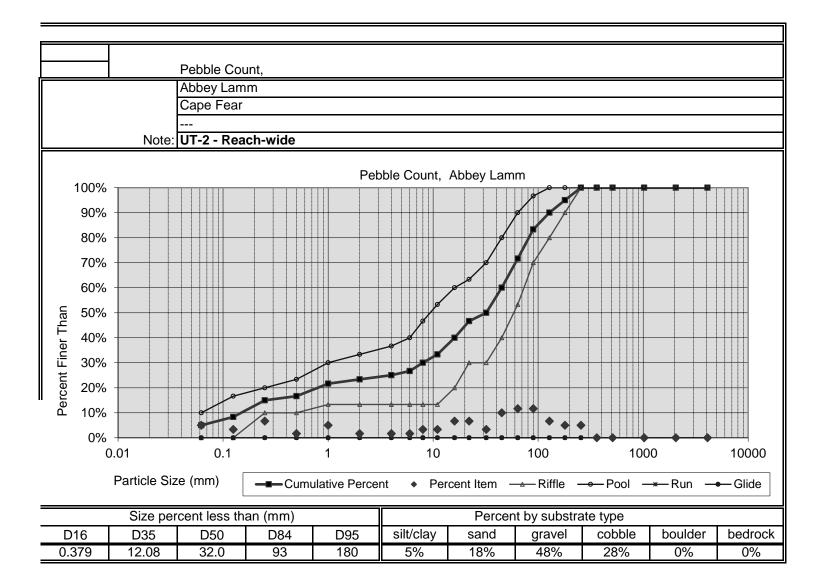
Lamm UT3 XS - 13, Pool 101 Elevation (feet) 66 ---- Bankfull Bankfull MY-00 ---- Flood Prone Area MY-00 4/14/15 • MY-01 10/22/15 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 MY-07 1/13/21 98 10 0 Station (feet)

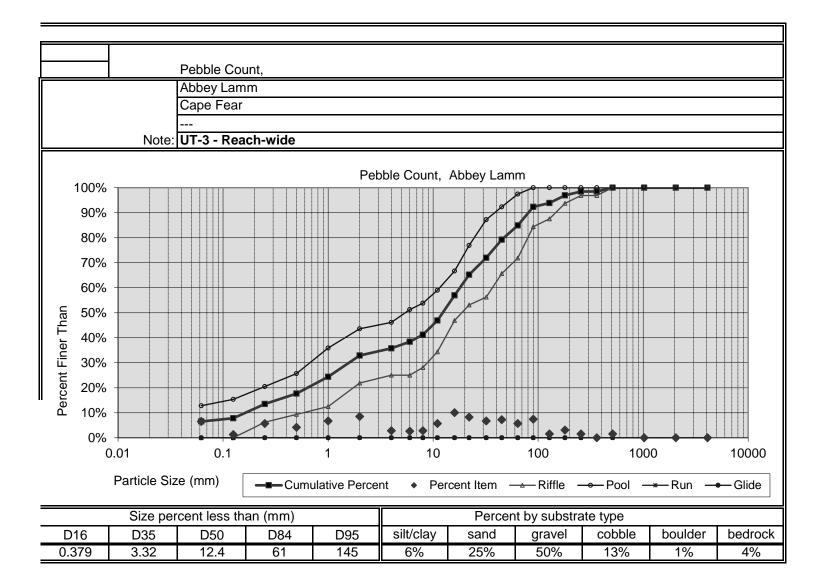
Site	Abbey Lamm
Watershed:	Cape Fear, 0303002
XS ID	UT 3 XS - 14, Riffle
Feature	Riffle
Date:	1/13/2021
Field Crew:	Lewis, Harris

Station	Elevation
-0.1	99.85
4.0	99.75
6.6	99.56
7.4	98.59
7.7	98.53
8.1	98.57
8.5	98.64
9.4	99.71
12.1	99.97
14.0	99.95
L	
L	


SUMMARY DATA	
Bankfull Elevation:	99.8
Bankfull Cross-Sectional Area:	2.8
Bankfull Width:	7.0
Flood Prone Area Elevation:	101.0
Flood Prone Width:	50.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.4
W / D Ratio:	17.5
Entrenchment Ratio:	7.1
Bank Height Ratio:	1.0

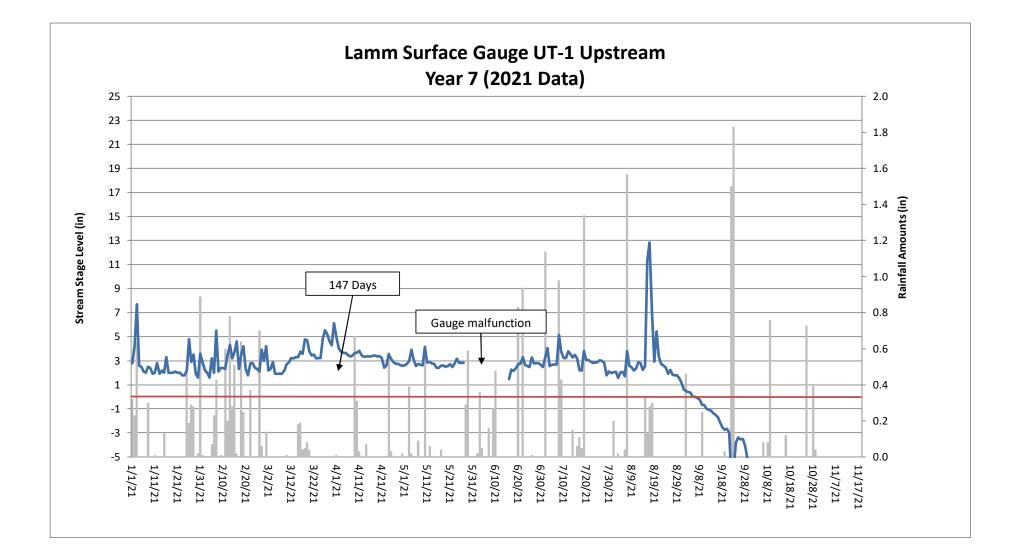


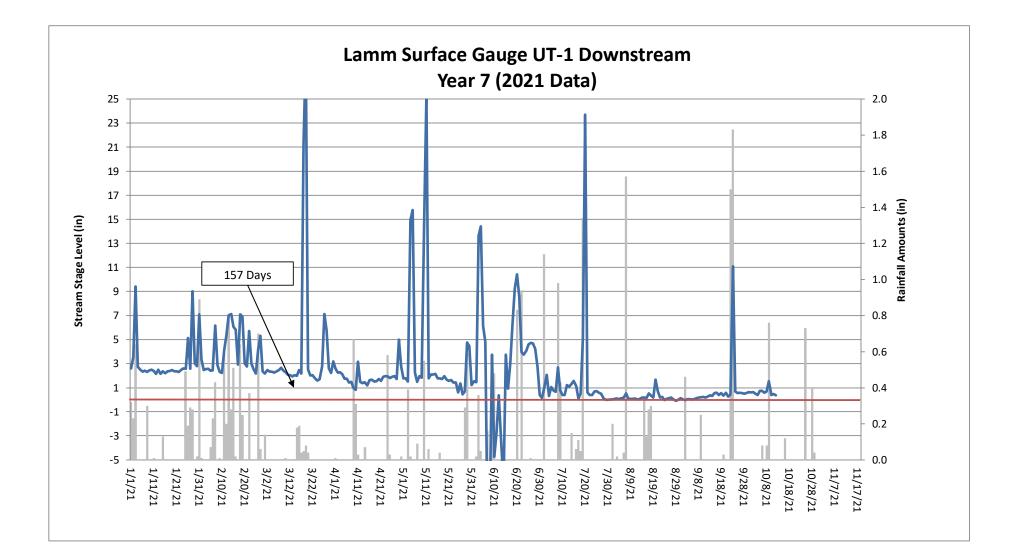

С


Lamm UT3 XS - 14, Riffle 102 101 Elevation (feet) Bankfull ankfull MY-00 Flood Prone Area MY-00 4/14/15 MY-01 10/22/15 99 MY-02 4/7/16 MY-03 3/27/17 MY-05 3/4/19 - MY-07 1/13/21 98 10 0 Station (feet)

Stream Type

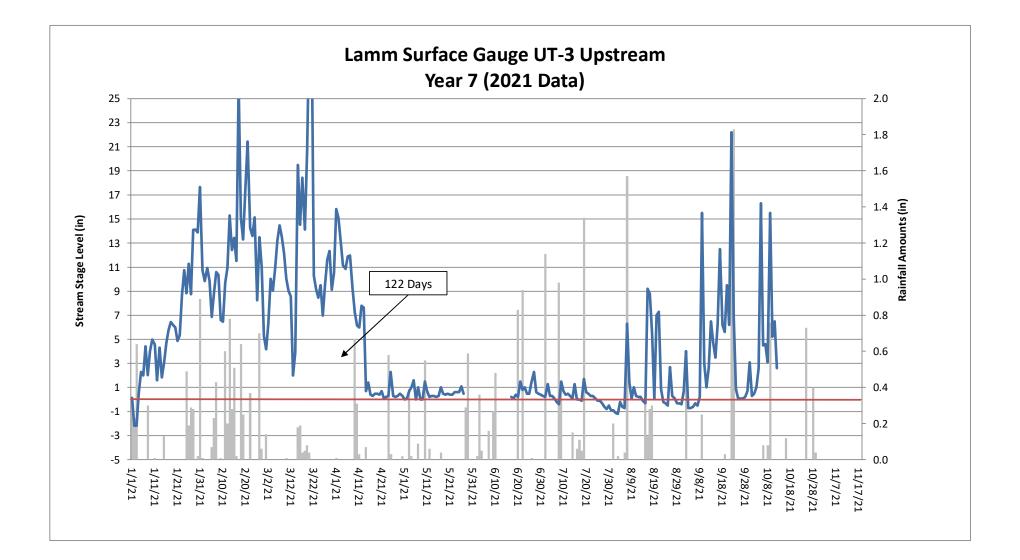



APPENDIX E: HYDROLOGY DATA


Tables 13A-B. UT1 and UT3 Channel Evidence Stream Gauge Graphs Table 14. Verification of Bankfull Events Table 15. Groundwater Hydrology Data Groundwater Gauge Graphs Figure E-1. 30-70 Percentile Graph for Rainfall

UT3 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)
Max consecutive days channel flow	64	101	118	119	247	184	157
Presence of litter and debris (wracking)	Yes						
Leaf litter disturbed or washed away	Yes						
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes						
Sediment deposition and/or scour indicating sediment transport	Yes						
Water staining due to continual presence of water	Yes						
Formation of channel bed and banks	Yes						
Sediment sorting within the primary path of flow	Yes						
Sediment shelving or a natural line impressed on the banks	Yes						
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes						
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes						
Exposure of woody plant roots within the primary path of flow	No						
Other:							

Table 13A. UT1 Channel Evidence



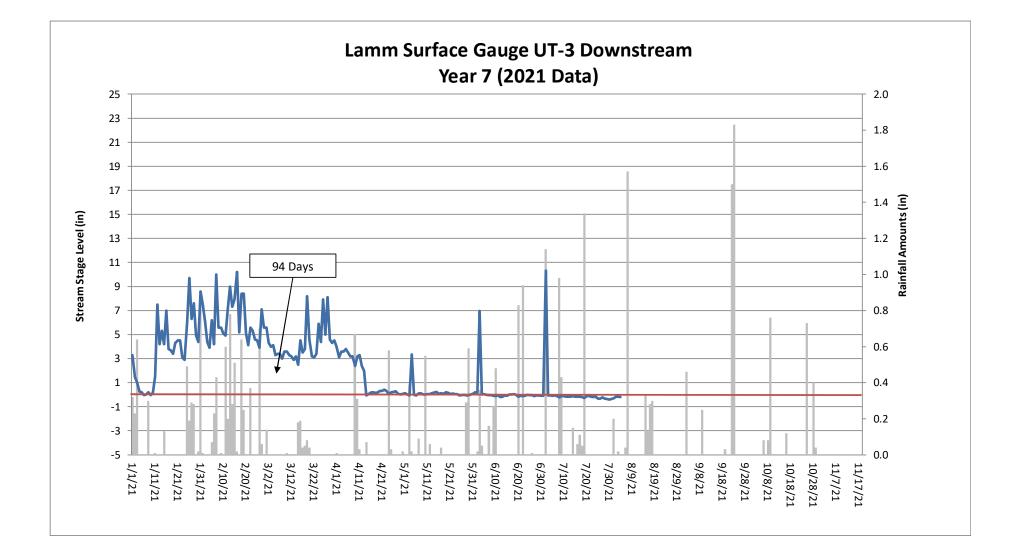


Table 13B. UT3 Channel Evidence								
UT3 Channel Evidence	Year 1 (2015)	Year 2 (2016)	Year 3 (2017)	Year 4 (2018)	Year 5 (2019)	Year 6 (2020)	Year 7 (2021)	
Max consecutive days channel flow	51	100	160	104	90	140	122	
Presence of litter and debris (wracking)	Yes							
Leaf litter disturbed or washed away	Yes							
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes							
Sediment deposition and/or scour indicating sediment transport	Yes							
Water staining due to continual presence of water	Yes							
Formation of channel bed and banks	Yes							
Sediment sorting within the primary path of flow	Yes							
Sediment shelving or a natural line impressed on the banks	Yes							
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes							
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes							
Exposure of woody plant roots within the primary path of flow	No							
Other:								

Table 14.	Verification	of Bankfull	Events
-----------	--------------	-------------	--------

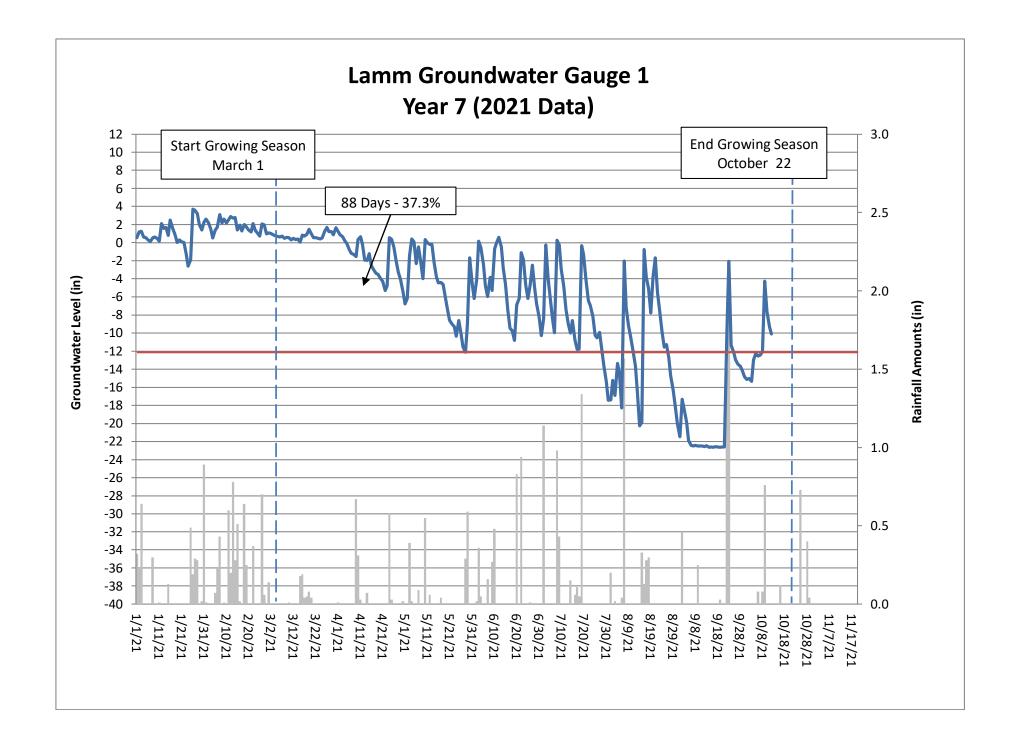
Date of Data Collection	Date of Occurrence	Method					
May 27, 2015	April 30, 2015	1.66 inches of rain documented in one day at an on-site rain gauge.					
June 28, 2015	June 19, 2015	Wrack, sediment, and laid-back vegetation observed in the floodplain after 2.28 inches of rain was recorded in one day at an on-site rain gauge.	1-3				
October 10, 2016	October 8th, 2016	A trail camera installed on the right bank of UT3 documented a bankfull flow after 3.41 inches of rain was recorded in one day at an on-site rain gauge.	4				
April 28, 2017	April 24th, 2017	Wrack and laid-back vegetation observed in the floodplain after 3.41 inches of rain was recorded over two days at an on-site rain gauge.	5				
July 19, 2017	June 19, 2017	2.24 inches of rain documented in one day at an on-site rain gauge.					
June 11, 2018	April 24, 2018	Wrack observed in the floodplain after 2.66 inches of rain documented* between April 23-24, 2018 at an on-site rain gauge.	6				
October 23, 2018	August 21st, 2018	Stream gauge data indicates a bankfull event occurred after 2.60 inches of rain documented* between August 20-21, 2018 at an on-site rain gauge.					
October 23, 2018	September 17, 2018	Stream gauge data indicates a bankfull event occurred after 5.33 inches of rain was recorded between September 15 and 17, 2018 at an on-site rain gauge.					
October 23, 2018	October 11, 2018	Wrack and laid-back vegetation observed in the floodplain after 2.47 inches of rain was recorded on October 11, 2018 at an on-site rain gauge.	7-8				
March 8, 2019	February 23rd, 2019	Stream gauge data indicates a bankfull event occurred after 3.27 inches of rain was recorded between February 22 and 23, 2019 at an on-site rain gauge.					
May 4, 2019	March 20, 2019	Stream gauge data indicates a bankfull event occurred after 1.75 inches of rain was recorded on March 20, 2019 at an on-site rain gauge.					
May 4, 2019	April 13, 2019	Stream gauge data indicates a bankfull event occurred after 2.77 inches of rain was recorded between April 12 and 13, 2019 at an on-site rain gauge.					
September 4, 2019	July 23, 2019	Stream gauge data indicates a bankfull event occurred after 1.92 inches of rain was recorded between July 22 and 23, 2019 at an on-site rain gauge.					
February 15, 2020	February 6, 2020	Wrack and high water visible on a trail camera indicate a bankfull event occurred after 3.06 inches of rain was documented on February 6, 2020 at an on-site rain gauge.	9				
June 10, 2020	April 30th, 2020	Stream gauge data indicates a bankfull event occurred after 2.28 inches of rain was documented on April 30, 2020 at an on-site rain gauge.					
June 10, 2020	May 21, 2020	Stream gauge data indicates a bankfull event occurred after 4.41 inches of rain was documented between May 19 and 21, 2020 at an on-site rain gauge.					
July 21, 2020	June 11, 2020	Wrack in trees in the floodplain indicate a bankfull event occurred after 4.23 inches of rain was documented on June 11, 2020 at an on-site rain gauge.	10				
February 15, 2021	January 31, 2021	Trail cameras captured the main stem and UT-1 at bankfull on January 31, 2021 after 0.89 inches of rain was documented at an on-site rain gauge.	11-12				
-	•						

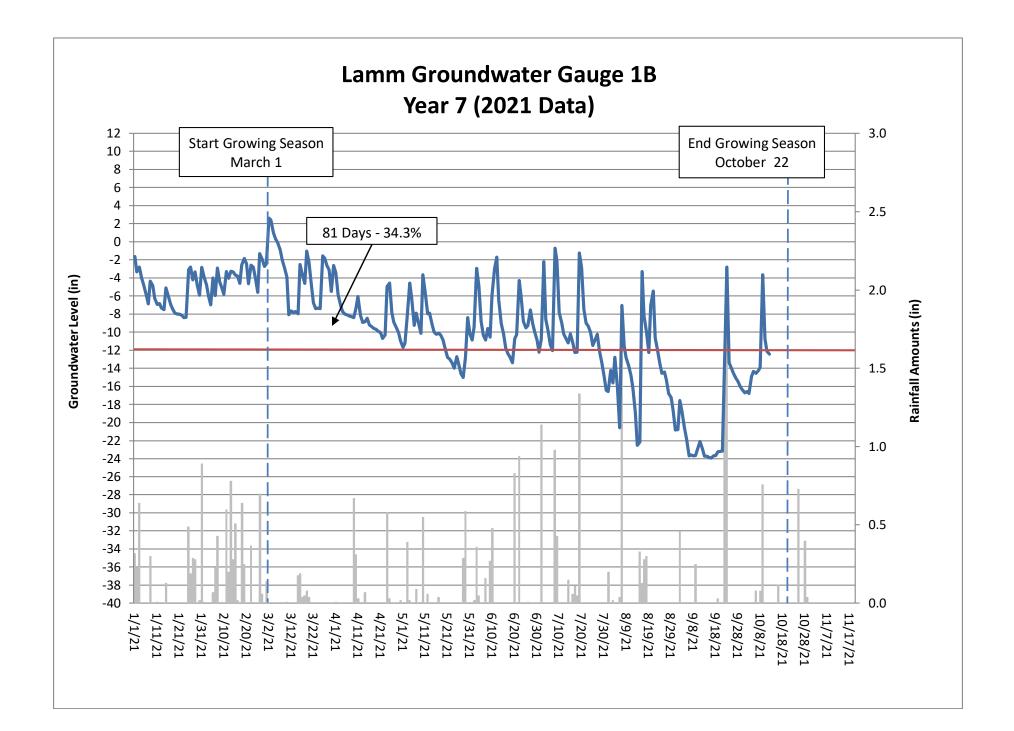


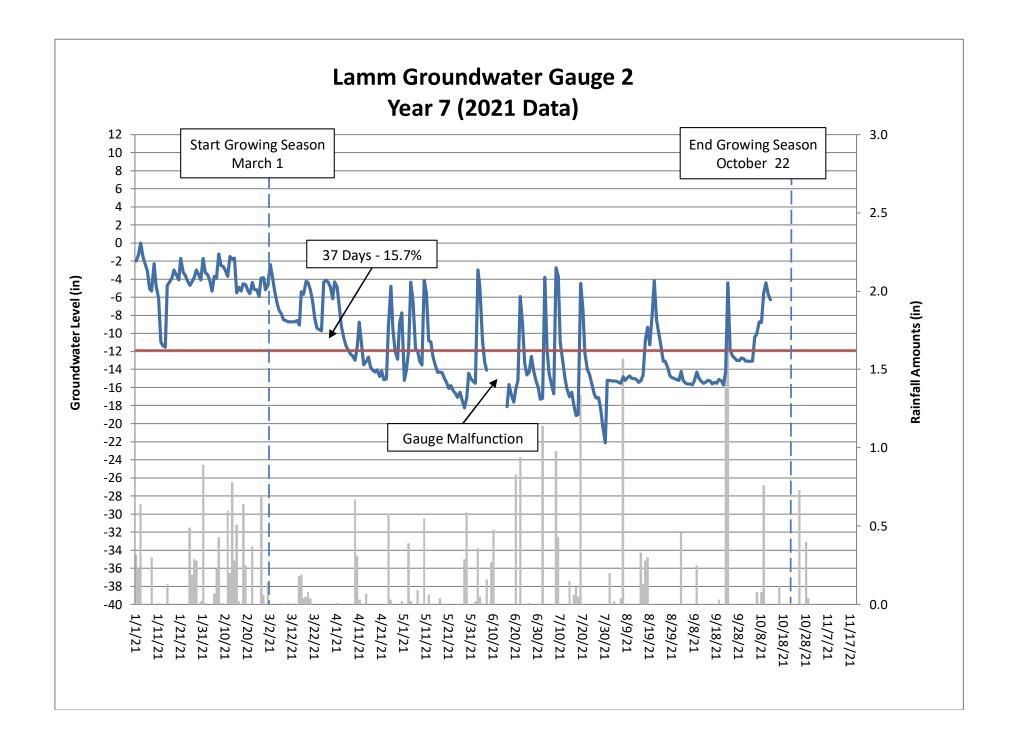
Bankfull Photo 10: Wrack in the floodplain of the mainstem

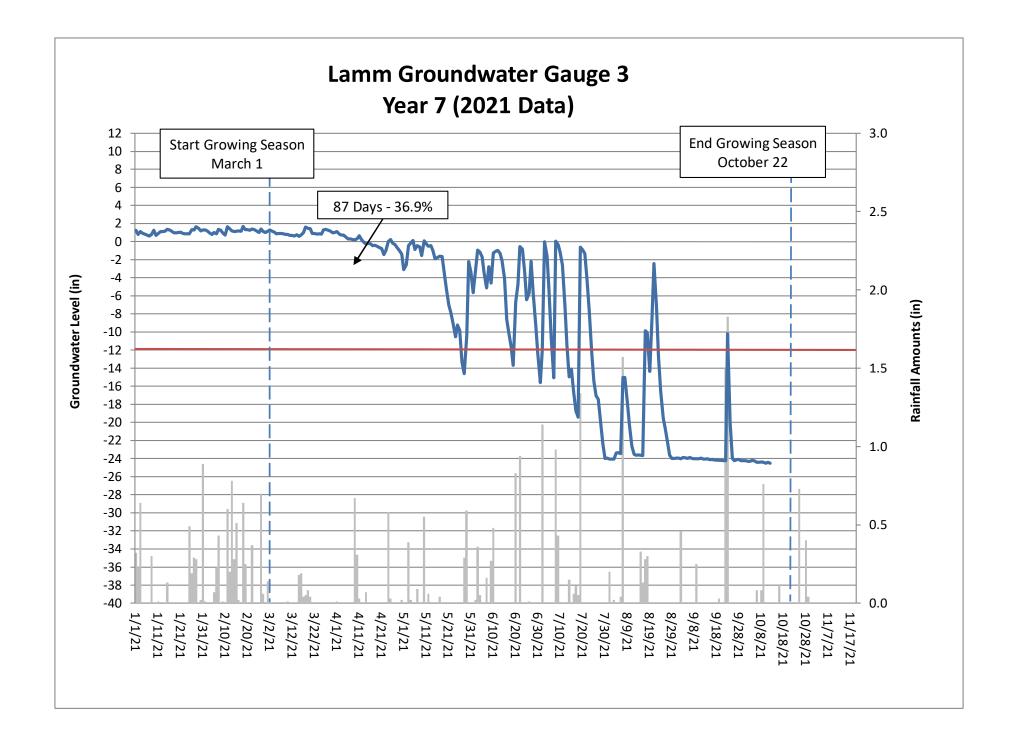
Table 15. Groundwater Hydrology Data

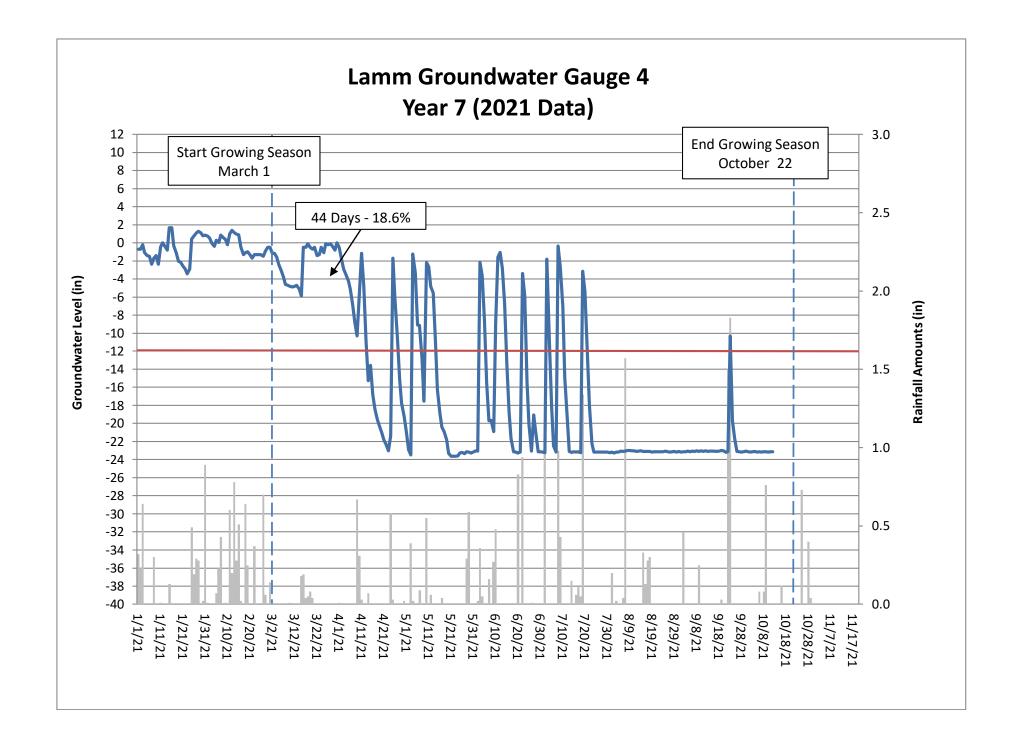
		Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gauge	Year 1 (2015) February 1 Growing Season Start	Year 2 (2016) March 30 Growing Season Start	Year 3 (2017) February 28 Growing Season Start	Year 4 (2018) March 6 Growing Season Start	Year 5 (2019) March 1 Growing Season Start	Year 6 (2020) March 1 Growing Season Start	Year 7 (2021) March 1 Growing Season Start			
1	No*/10 days	Yes/75 days	No/12 days	Yes/68 days	Yes/28 days	Yes/80 days	Yes/88 days			
	(3.8 percent)	(36 percent)	(5.1 percent)	(29 percent)	(11.9 percent)	(34 percent)	(37 percent)			
1B ⁺				Yes/60 days (26 percent)	Yes/60 days (26 percent)	Yes/42 days (17.9 percent)	Yes/81 days (34 percent)			
2	Yes/35 days	Yes/122 days	Yes/82 days	Yes/30 days	No/19 days [#]	Yes/35 days	Yes/37 days			
-	(13.3 percent)	(59 percent)	(35 percent)	(13 percent)	(8.1 percent)	(15 percent)	(16 percent)			
3	No*/14 days	Yes/48 days	Yes/135 days	Yes/66 days	Yes/89 days	Yes/119 days	Yes/87 days			
5	(5.3 percent)	(23 percent)	(57 percent)	(29 percent)	(38 percent)	(51 percent)	(37 percent)			
4	No*/14 days	Yes/100 days	Yes/78 days	Yes/28 days	No/18 days [#]	Yes/32 days	Yes/44 days			
4	(5.3 percent)	(48 percent)	(33 percent)	(12 percent)	(7.7 percent)	(13.7 percent)	(19 percent)			
5	Yes/32 days	Yes/75 days	Yes/48 days	Yes/60 days	No/19 days [#]	Yes/67 days	Yes/43 days			
5	(12.1 percent)	(36 percent)	(20 percent)	(26 percent)	(8.1 percent)	(29 percent)	(18 percent)			
6	No*/9 days	No/7 days	No/5 days	Yes/25 days	No/19 days	No/12 days	Yes/43 days			
0	(3.4 percent)	(3.4 percent)	(2.1 percent)	(11 percent)	(8.1 percent)	(5.1 percent)	(18 percent)			
6B⁺				Yes/28 days	No/17 days [#]	No/19 days	No/23 days			
OB				(12 percent)	(7.2 percent)	(8.1 percent)	(9.7 percent)			
7**		Yes/116 days Yes/153 days		Yes/103 days	Yes/103 days	Yes/125 days	Yes/81 days			
/		(56 percent)	(65 percent)	(45 percent)	(44 percent)	(53 percent)	(34 percent)			
8**		Yes/206 days	Yes/211 days	Yes/231 days	Yes/124 days	Yes/235 days	Yes/150 days			
0		(100 percent)	(89 percent)	(100 percent)	(53 percent)	(100 percent)	(64 percent)			
9**		Yes/54 days	No^/12 days	Yes/132 days	Yes/122 days	Yes/91 days	Yes/154 days			
9		(26 percent)	(5.1 percent)	(57 percent)	(52 percent)	(39 percent)	(65 percent)			

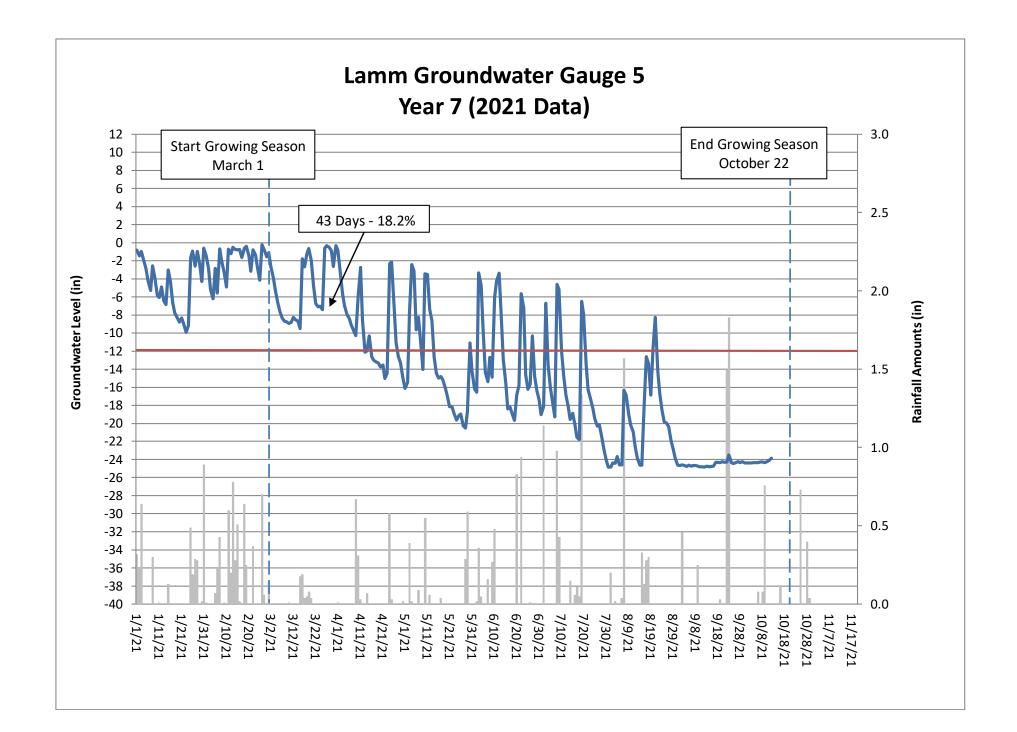

* Due to Site construction activities, groundwater gauges were not installed until April 8, 2015. It is expected that all gauges would meet success criteria at the beginning of the growing season.

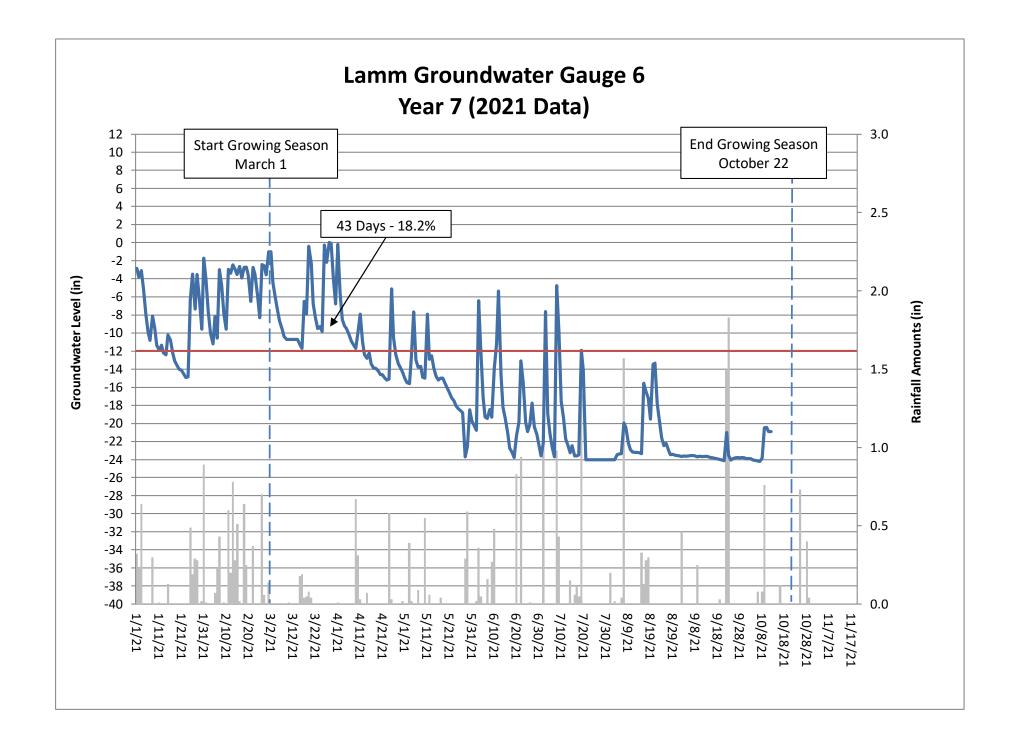

** These gauges were installed on March 8, 2016 to show wetland establishment within the old pond bed.

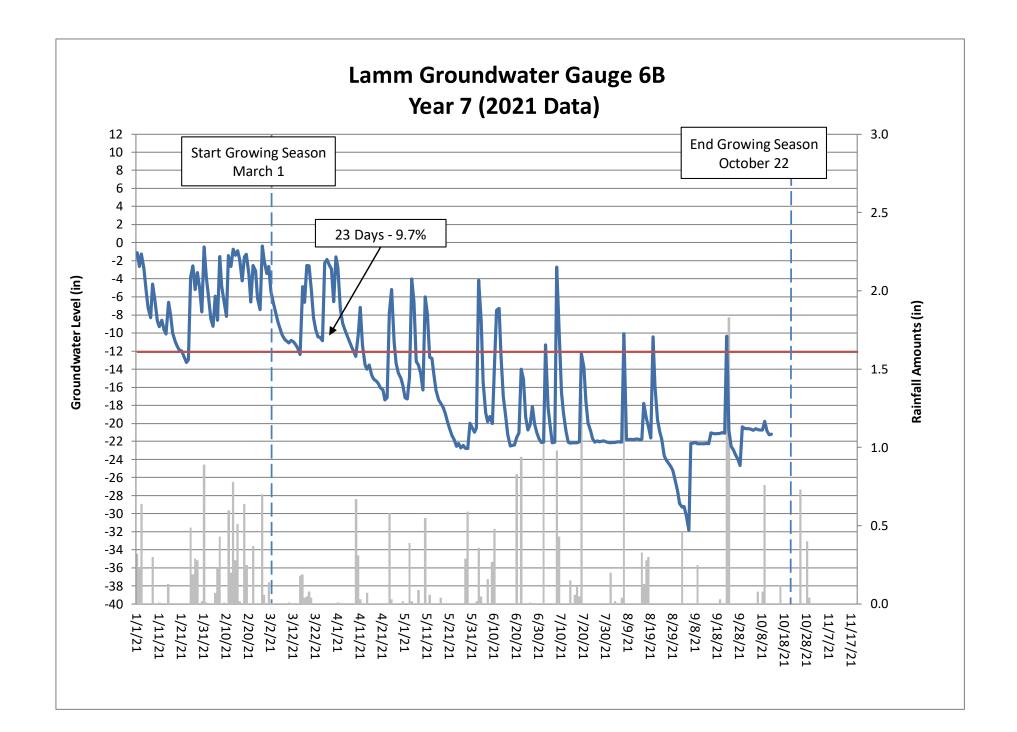

^ This gauge malfunctioned through the majority of the growing season due to continuous inundation. It is expected that this gauge would have met success criteria had it functioned properly.

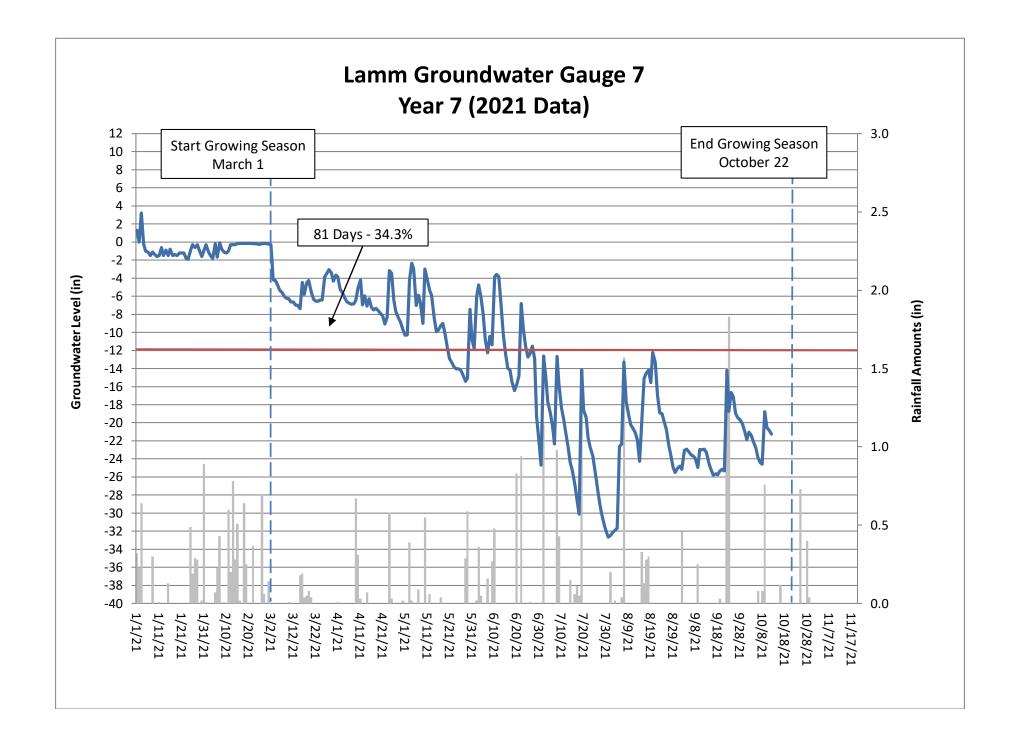

⁺ These gauges were installed during Year 4 (2018) near two gauges that had not met success criteria in previous monitoring years to verify the groundwater data at these locations.

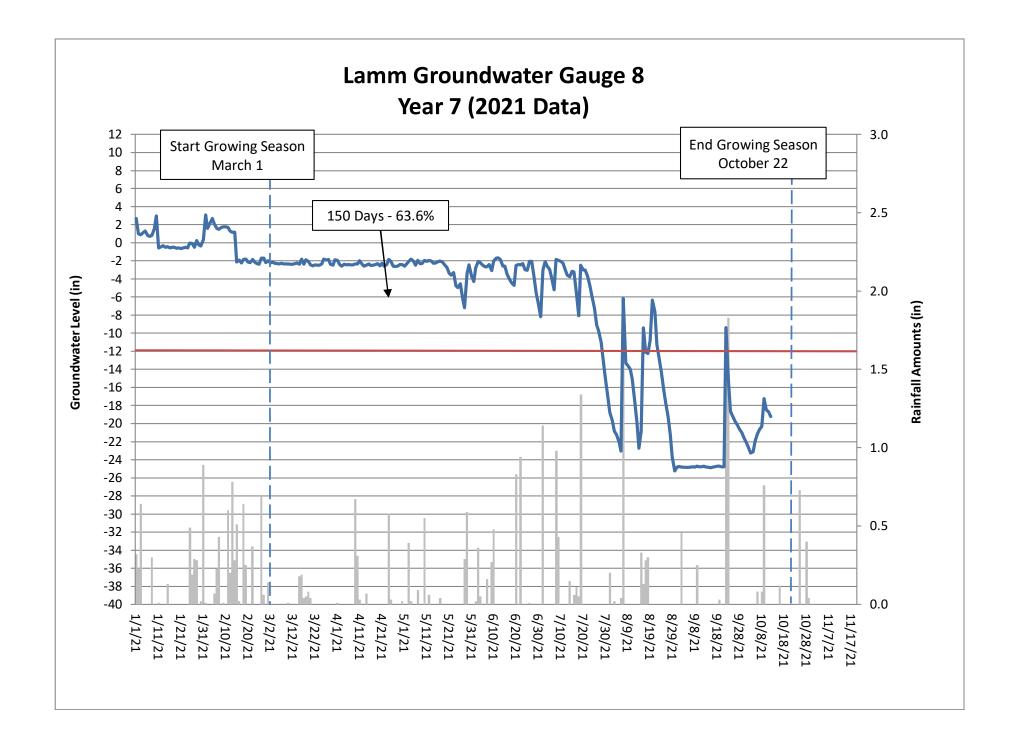

[#] These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data from March 20 to May 3, 2019. Based on rainfall and hydrology data that was not lost, these gauges would have likely met success criteria had the loss of data not occurred.

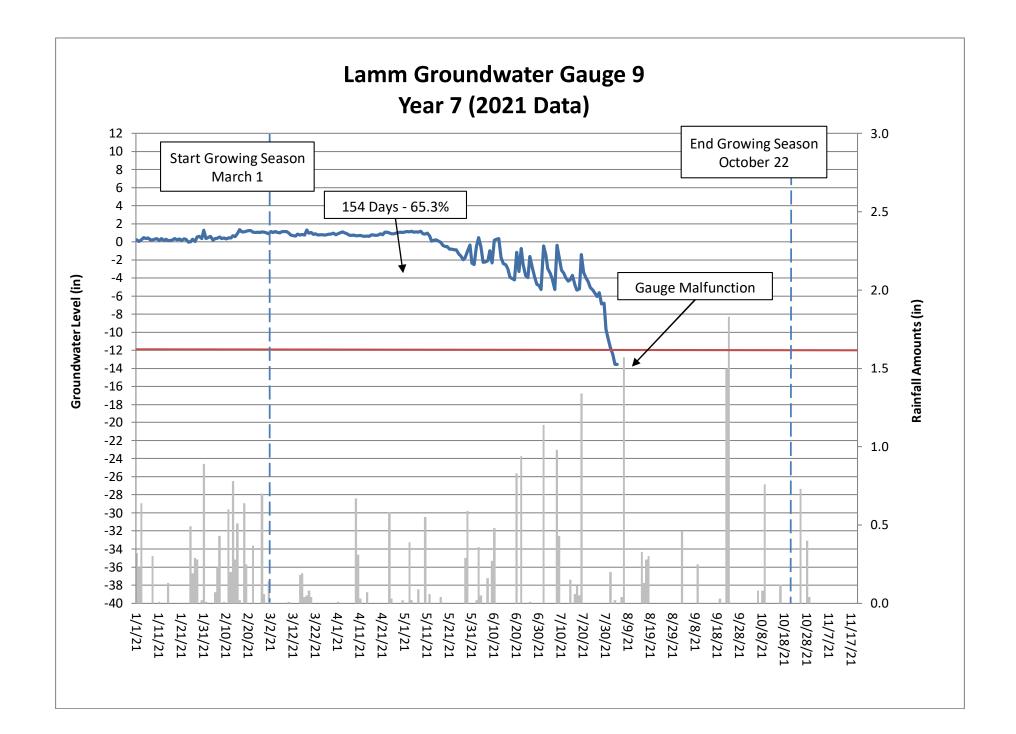


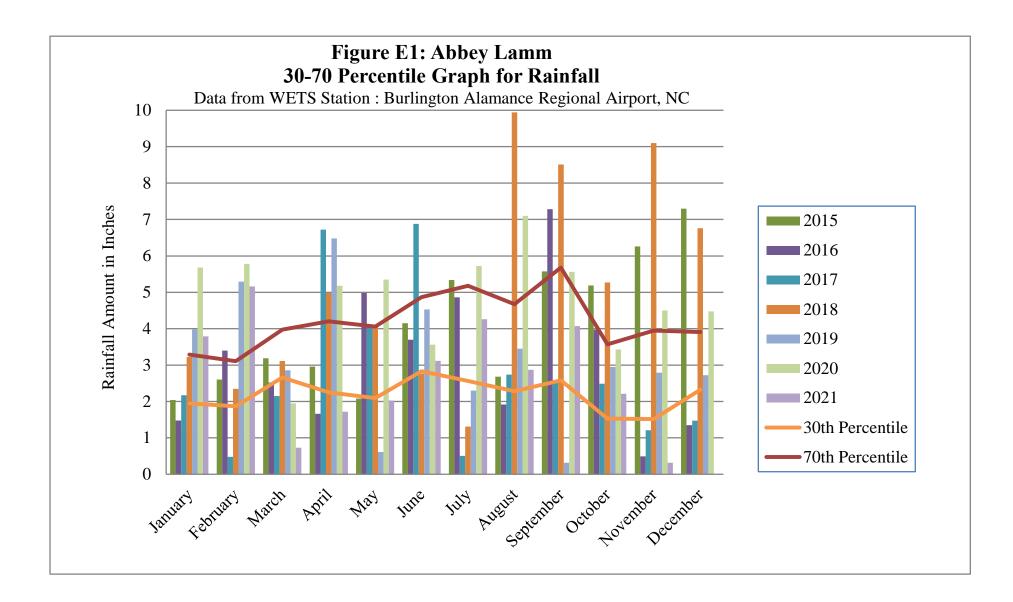


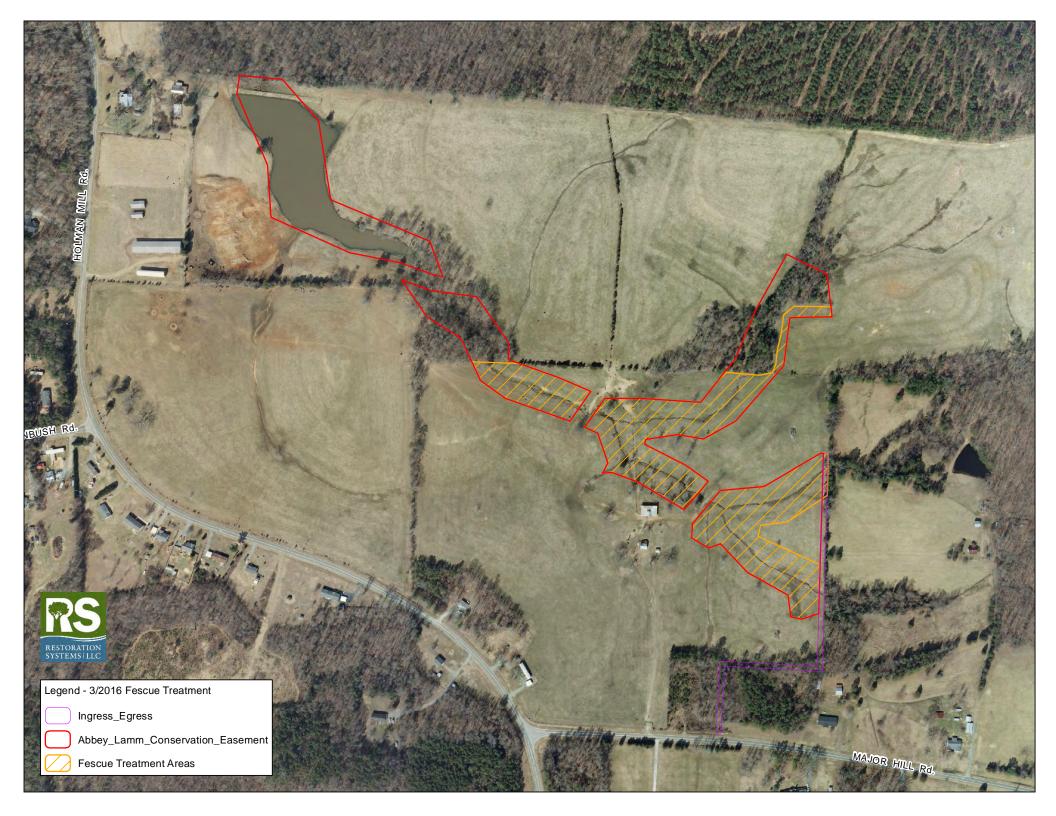












APPENDIX F: MISCELLANEOUS

Figure-March 2016 Fescue Treatment 2016 Herbicide Application Forms Supplemental Photographs Remedial Planting Plan Figure 2016 Replant Photos

Carolina Silvics, Inc. Pesticide Application Log

CarSilv - 0163				
Client	Restoration Systems			
Project Slte	Abbey Lamm			
Date	03-11-2016			
Start Time	8:00		End Time	15:30
Only PAL for Site for This Day?	Yes		If NO, this is PAL # of ##	
Sky Cover	Partly Cloudy		Temp (F)	70
Wind Direction	E		Wind Speed	Calm
Applicators	William A Skinner (NC 026-32003/VA 129456)			
Application Method	Foliar Spray (ATV - Broadcast)			
Herbicide	Oust® XP (sulfometuron methyl)			
Herbicide Rate (%)			Total Concentrate	30oz
Surfactant or Adjuvant (1)				
Surfactant/Adjudivant 1 Rate (%)				
Other		Grounded (deposition agent)		
Other Rate/Amt	8oz/ac			
Diluent	Water			
Total Solution	125 gallon			
Species Controlled	fescue			
Area Description				
Additional Comments	Oust® application rate was 3oz/ac			

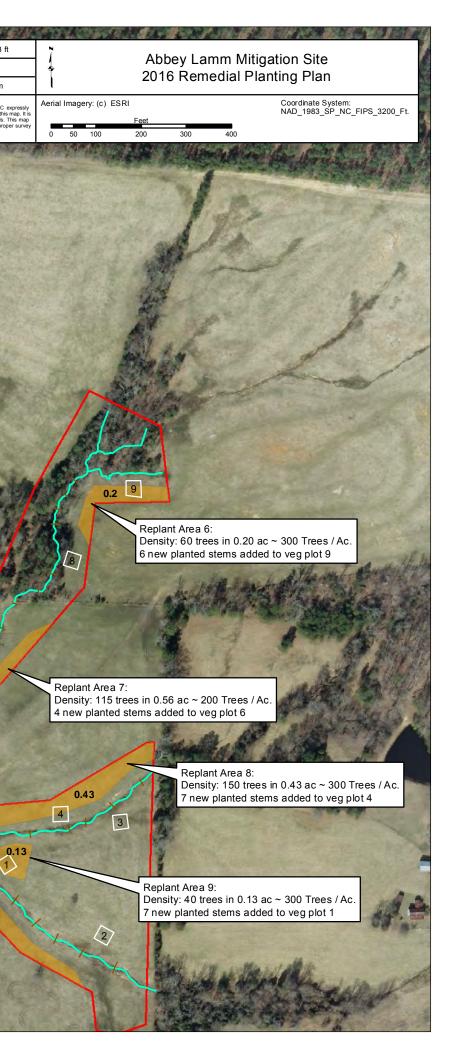
Photo 1: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 3: Downstream end of the Main Stem looking upstream into the old pond bed

Photo 6: middle crossing looking upstream at the Main Stem and UT-3 on the left

Replant Area 3: Density: 30 trees in 0.21 ac ~ 140 Trees / Ac. 3 new planted stems added to veg plot 13

> Replant Area 5: Density: 190 trees in 0.62 ac ~ 300 Trees / Ac. 7 new planted stems added to veg plot 7


> > 0.62

0.56

7

Replant Area 4: Density: 25 trees in 0.15 ac ~ 160 Trees / Ac.

> Replant Area 10: Density: 150 trees in 0.42 ac ~ 350 Trees / Ac.

ABBEY LAMM STREAM AND WETLAND MITIGATION SITE ALAMANCE COUNTY, NORTH CAROLINA FULL DELIVERY CONTRACT NO. 5790

Photographs taken January 13th, 2017

Abbey Lamm– Remedial Action Plan for Vegetation - Update

Carolina Silvics, Inc. Pesticide Application Log

Carolina Silvics, Inc.

Unique ID

CarSilv - 0713

Client

Restoration Systems

Project Site

Abbey Lamm

Date

Tuesday, June 18, 2019

Start Time

9:00

End Time 13:00

Only PAL for Site for This Day?

Yes

Sky Cover

Clear

Temp (F)

85

Wind Direction

ENE

Wind Speed

1-5 mph

Applicators

Joshua G Merritt (NC 026-33717)

Grainger Coughtrey (NC 026-34612)

Application Method

Foliar Spray (Backpack)

Herbicide

Roundup® Custom (glyphosate)

Herbicide Rate (%)

.25

Total Concentrate

3.2 fl oz

Surfactant or Adjuvant (1)

Agri-Dex®

Surfactant/Adjudivant 1 Rate (%)

.75

Diluent

Water

Total Solution 10 gallons

Species Controlled

Microstegium

Area Description

Treated microstegium within the old pond. Microstegium densities were high within this area.

APPENDIX G. WETLAND STUDIES & 12/2020 SITE PHOTOS

Figures Soil Profiles Site-wide Photo Log

To evaluate the wetland restoration credit around gauge 6 and 6B, Raymond Holz and Alex Baldwin (PWS 2221) of Restoration Systems (RS) visited the Site on 12/8/2020 to review the subject area. Site work indicates 0.080 acres around gauge 6 and 6B is not meeting the Site's 10% hydroperiod period success metric.

To further provide an understanding of the Site's wetland mitigation assets, RS mapped the wetland areas within the old pond bed along the "Mainstem" tributary at the western extent of the Site. RS installed three groundwater monitoring gauges in 2016 (Yr. 2 of monitoring) within this area and has collected groundwater data for the last five years. In conjunction with 12-2020 field review, the groundwater data indicates successful wetland reestablishment of 0.862 acres.

Data collected during RS' field investigation is provided in a newly added appendix and supplied in shapefile format within the digital deliverable dataset. RS' position is that although the 0.080 acres around gauge 6 and 6B is not meeting the hydroperiod metric, the Site is providing more than the 1.0 WMU detailed in the Restoration Plan. RS is not asking for additional credit be added to the ledger but that the agreed-upon 1 WMU remains and is not subject to a downward adjustment by the IRT. RS expects to discuss this with the IRT during the 2021 Credit Release Meeting.

NOTES:

Plot 6

2014 QL2 LiDAR data was generated before construction activities were completed. Absent of channel excavation, no floodplain grading occurred within the area of gauges 6, 6B, and 5. Thus, the QL2 LiDAR data is a relatively accurate representation of existing topography.

Poorly performing areas were designated via a preliminary mapping effort and do not constitute a full delineation of the area. This effort is meant for discussion purposes only.

Plot 5

Description 5 GW-6 Boring

Boring GW-6B

Legend

 \bigcirc

 \bigcirc

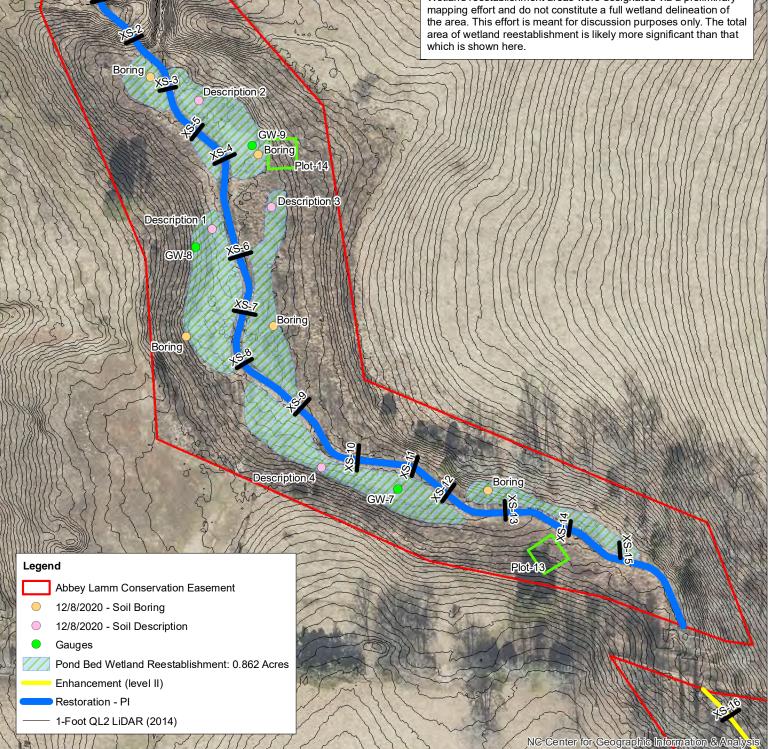
Abbey Lamm Conservation Easement 12/8/2020 - Soil Boring 12/8/2020 - Soil Description Gauges Poorly Trending Gauge 6 Wetland Area: 0.080 Acres Restoration - PI 1-Foot QL2 LiDAR (2014)

Lamm Wetland Assets

Enhancement (non-credit generating)

Restoration

RESTORATION SYSTEMS, LLC 1101 HAYNES ST, SUITE 211 RALEIGH, NC 27604


PHONE : 919.755.9490 FAX : 919.755.9492 SITE: Abbey Lamm This map and all data contained within are supplied as is with no warranty. Restoration Systems, LLC disclaims responsibility for damages or liability from any claims that may arise out of the use or misuse of th the side responsibility of the user to determine if the data on this map is compatible with the user's needs was not created as survey data, nor should it be used as such. It is the user's responsibility to obt ain pr data, prepared by a licensed survey, where required by Jaw.

SCALE: 1 in = 42 ft DATE: 12 - 2020 SITE: Abbey Lamm	1-0-1	202		ey Lamn & 6B We	า etland Study	
nty. Restoration Systems, LLC expressly out of the use or misuse of this map. It is	Aerial Imagery	r: (c) ESRI			Coordinate System: NAD_1983_SP_NC_FIPS	_3200_Ft.
mpatible with the user's needs. This map er's responsibility to obt ain proper survey		-	Feet			
. ,	0 15	30	60	90	120	

NOTES:

2014 QL2 LiDAR data was generated after RS had breached the dam but before construction activities were completed. Absent of channel excavation and removal of the earthen impoundment, no floodplain grading occurred within the old pond bed. Thus, the QL2 LiDAR data is a relatively accurate representation of existing topography within the pond bed.

Wetland reestablishment areas were designated via a preliminary mapping effort and do not constitute a full wetland delineation of area of wetland reestablishment is likely more significant than that which is shown here.

RS	RESTORATION SYSTEMS, LLC 1101 HAYNES ST, SUITE 211 RALEIGH, NC 27604 PHONE: 919.755.9490	SCALE: 1 in = 108 ft DATE: 12 - 2020 SITE: Abbey Lamm	Abbey Lamm 2020 Pond Bed Wetland Stud				
RESTORATION SYSTEMSILLC File and all data contained within are supplied as is with o v disclaims responsibility of damages or liability from any claims that may the side responsibility of the user to determine if the data on this may was not created as survey data, nor should be used as such. It is the data, prepared by a licensed surveyor, where required by law.		out of the use or misuse of this map. It is mpatible with the user's needs. This map		ery: (c) ESRI	Feet 200	Coordinate System: NAD_1983_SP_NC_F	IPS_3200_Ft.

SOIL PROFILE	DESCRIPT	ION FORM		PROFILE ID: 1				
NAME:A	. Baldwin				DATE: D	ecembe	er 8, 2020	
PROJECT NUMBER/NAME: Abbey Lamm Stream & Wetland Mitigation Site								
LOCATION: Alamance County, NC – Left Bank of Main Stem (Restoration Reach, Between Gauges 7 & 8)								
WEATHER:	Sunny 35°F							
LANDSCAPE POS	ITION:	Toe of slope		SLOPE (%):2			
VEGETATION/CR	OP:	Restored Pied	mont Al	luvial Forest (6-years post co	nstruction)			
SOIL MAP UNIT:	HnC – Herno	don silt loam,	6-10%	HYDRIC SOIL FIELD INDICA	TOR: F3 – D	epleted	Matrix	
DEPTH TO WATE	R:11-i	nches		DEPTH TO SHWT:	3-inches			
	DEPTH	MATRI	х	REDOXIMORHPIC FEATURES			TEXTURE	
	(inches)	COLOR	%	TYPE ¹ /LOCATION ²	COLOR	%		
	0-3	10YR 3/3	90	C/PL	10YR 5/8	10	SiCL	
	3-15+	2 57 4/2	75	C/PL	7.5YR 3/4	10	с	
	3-13+	2.5Y 4/2	75	C/M	7.5YR 5/8	15	L	

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ²Location: PL=Pore Lining, M=Matrix.

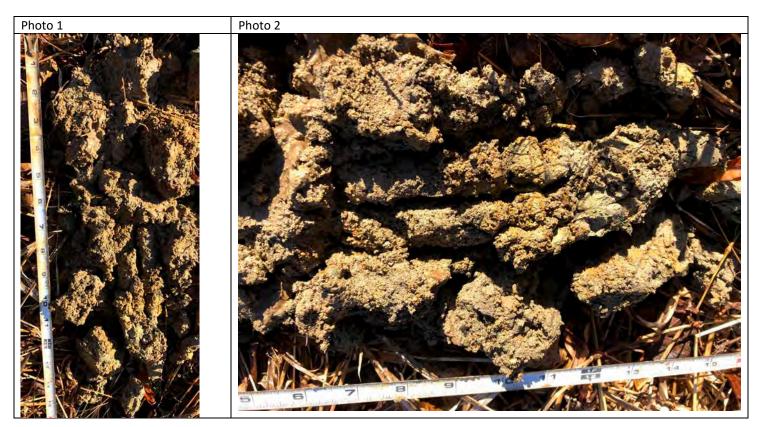
NOTES: Common fine roots in surface horizon and few fine roots in subsurface horizon. Undecomposed woody material in subsurface horizon.

SOIL PROFILE	DESCRIPT	ION FORM		PROFILE ID: 2				
NAME: A	. Baldwin				DATE: D	ecembe	er 8, 2020	
PROJECT NUMB	ER/NAME:	Abbey L	amm St	ream & Wetland Mitigation	Site			
LOCATION:	Alamance C	ounty, NC – R	ight Bar	nk of Main Stem (Restoration	Reach, Down	stream	of Gauge 9)	
WEATHER:	Sunny 35°F							
LANDSCAPE POS	ITION:	Toe of slope		SLOPE (%):2_			
VEGETATION/CR	OP:F	Restored Pied	mont Al	lluvial Forest (6-years post co	nstruction)			
SOIL MAP UNIT:	HnC – Herno	don silt loam,	6-10%	HYDRIC SOIL FIELD INDICA	TOR: F3 – De	epleted	Matrix	
DEPTH TO WATE	:R:3-in	ches		DEPTH TO SHWT:	Surface			
DEPTH MATRIX				REDOXIMORHPIC	REDOXIMORHPIC FEATURES TEXTURE			
	(inches)	COLOR	%	TYPE ¹ /LOCATION ²	COLOR	%		l
	0.2	а гу г /а	85	C/PL	7.5YR 3/4	5	SCI.	l
	0-3	2.5Y 5/2	65	C/M	7.5YR 5/8	10	SCL	l
	3-10	10VR 5/2	2 10 10VP 5/2	10YR 5/2 65 C/M	7.5YR 4/4	10	SCL	l
	5-10	10111 3/2	05	C/M	7.5YR 5/8	25		1
	10.12			C/M	7.5YR 4/4	15	60	1

C/M ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ²Location: PL=Pore Lining, M=Matrix.

30

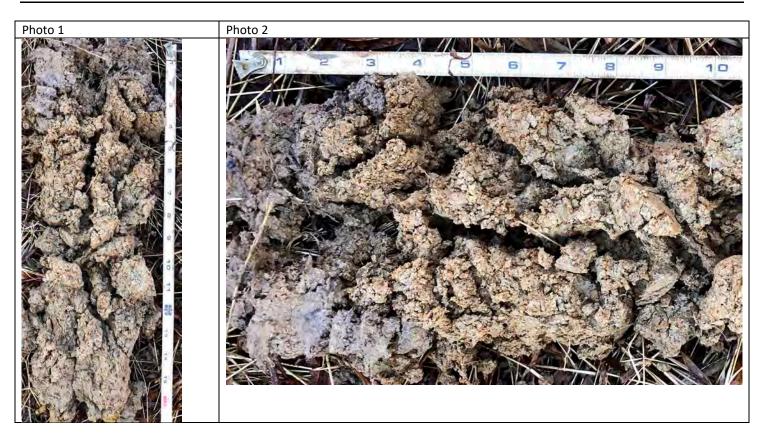
7.5YR 5/8


SCL

NOTES: Common fine roots and few undecomposed woody material in surface horizon.

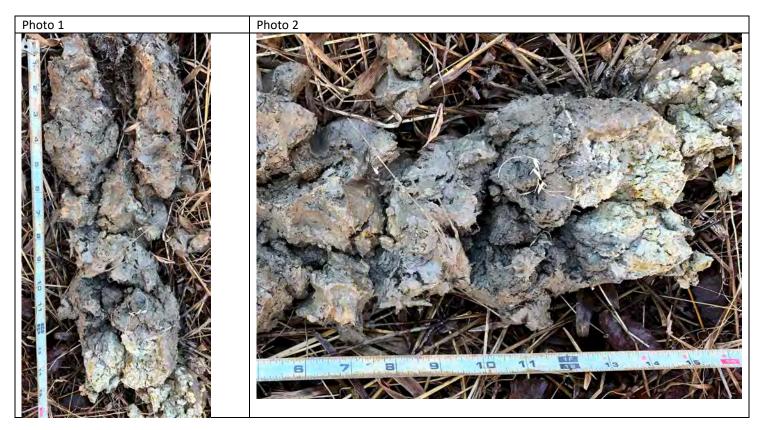
55

10YR 5/2


10-13+

SOIL PROFILE	DESCRIPT	ION FORM							
NAME:A	. Baldwin				DATE:[Decembe	r 8, 2020		
PROJECT NUMB	PROJECT NUMBER/NAME: Abbey Lamm Stream & Wetland Mitigation Site								
LOCATION: Alamance County, NC – Right Bank of Main Stem (Restoration Reach, Near Gauge 9)									
WEATHER:	Sunny 35°F								
LANDSCAPE POSITION: Toe of slope SLOPE (%): 2									
VEGETATION/CR	OP:F	Restored Pied	mont All	uvial Forest (6-years post co	onstruction)				
SOIL MAP UNIT:	HnC – Herno	don silt loam,	6-10%	HYDRIC SOIL FIELD INDICA	ATOR: <u>F8 – R</u>	edox Dep	pressions		
DEPTH TO WATER:11-inches				DEPTH TO SHWT: 3-inches					
	DEPTH MATRIX			REDOXIMORHPIC	REDOXIMORHPIC FEATURES				
	(inches)	COLOR	%	TYPE ¹ /LOCATION ²	COLOR	%			
	0-3	10YR 3/3	100				CL		
	3-14+	10YR 5/3	80	C/M	7.5YR 4/6	20	С		
			_						

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ²Location: PL=Pore Lining, M=Matrix.


NOTES: Common fine roots in surface horizon and few fine roots in subsurface horizon. Undecomposed woody material in subsurface horizon.

SOIL PROFILE	DESCRIPT	ION FORM			PROFILE	ID: <u>4</u>		
NAME:A	. Baldwin				DATE: D	ecembe	er 8, 2020	
PROJECT NUMBE	R/NAME:	Abbey I	.amm St	ream & Wetland Mitigation	Site			
LOCATION:	Alamance C	ounty, NC – L	eft Bank	of Main Stem (Restoration I	Reach, Near G	auge 7)		
WEATHER:	Sunny 35°F							
LANDSCAPE POS	ITION:	Toe of slope		SLOPE (%):2			
VEGETATION/CR	OP:F	Restored Pied	mont Al	luvial Forest (6-years post co	onstruction)			
SOIL MAP UNIT:	HnC – Herno	don silt loam,	6-10%	HYDRIC SOIL FIELD INDICA	TOR: F3 – D	epleted	Matrix	
DEPTH TO WATER:11-inches				DEPTH TO SHWT:	4-inches			
	DEPTH MATRIX			REDOXIMORHPIC FEATURES TEXTU			TEXTURE	
	(inches)	COLOR	%	TYPE ¹ /LOCATION ²	COLOR	%		
	0-4	2.5Y 4/3	100				CL	
	4-12	10YR 4/2	90	C/M	10YR 5/6	10	С	
	12-17+	2.5Y 6/2	75	C/M	10YR 5/8	25	SCL	

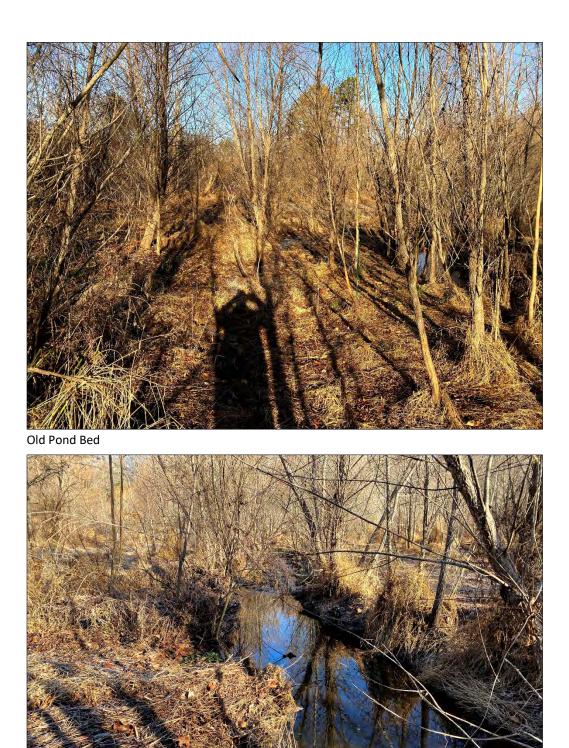
¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ²Location: PL=Pore Lining, M=Matrix.


NOTES: Common fine roots in surface horizon, seep wetland going up adjacent hillslope with strong hydrology indicators.

SOIL PROFILE	DESCRIPT	ION FORM		PROFILE ID: <u>5</u>				
NAME: A	. Baldwin				DATE: D	ecembe	er 8, 2020	
PROJECT NUMB	ER/NAME:	Abbey L	.amm St	ream & Wetland Mitigation	Site			
LOCATION:	Alamance C	ounty, NC – L	eft Bank	of Main Stem (Restoration I	Reach, At Gau	ge 6)		
WEATHER:	Sunny 40°F							
LANDSCAPE POS		Toe of slope		SLOPE ((%):2			
	MaC – Mano	dale/Secrest		lluvial Forest (6-years post co				
DEPTH TO WATE	:R:8-in	ches		DEPTH TO SHWT:	3-inches			
	DEPTH (inches)	MATRI COLOR	X %	REDOXIMORHPIC TYPE ¹ /LOCATION ²		%	TEXTURE	
	0-4	10YR 4/3	90		COLON	70	SiCL	
	4-8	10YR 5/6	40	D/M	10YR 5/2	5	С	
		10YR 5/4	40	C/M	7.5YR 5/8	15	ũ	
	8-10+	10YR 5/2	75	C/M	7.5YR 5/8	5	SCL	
		C/M 75		7 5YR 4/6	20			

 Image: Image:

NOTES: Common 1-2" gravel in subsurface, and auger refusal to rock at 10-inches.



Mainstem – Middle of Old Pond Bed

Old Pond Bed – Soil Profile #1

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Mainstem – Old Pond Bed

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Old Pond Bed – Gauge 8

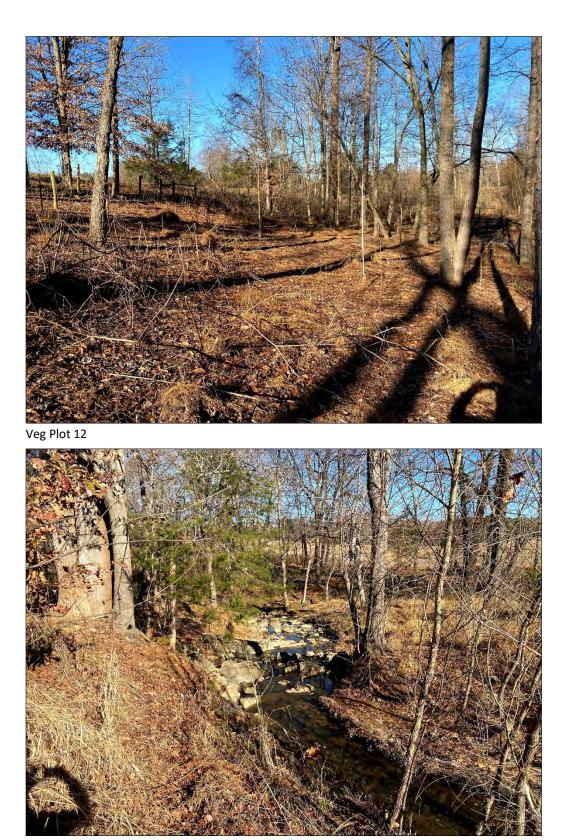
Mainstem – Old Pond Bed Soil Profile 2

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Old Pond Bed – Gauge 9

Old Pond Bed – Gauge 7

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina



Old Pond Bed – Upstream of Gauge 7

Old Pond Bed – Mainstem

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Mainstem Near XC 20, Transition from Restoration to Enhancement 2

Confluence of UT3 and Mainstem

Mainstem Adjacent to Gauge 6

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Gauge 5 (and 6B in Background)

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Mainstem Next To Gauge 6B

Soils adjacent to Gauge 6B

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Soils Next to Gauge 5

Confluence of UT1 and UT2

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Upper Extent of UT2

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Headwaters of UT3 (near Plot 9)

Middle Headwater Branch of UT3

2020 Year 6 Monitoring Report (Contract No. 5790) Abbey Lamm Stream and Wetland Restoration Site Alamance County, North Carolina

Confluence of UT3 Headwaters

Mainstem Looking Downstream of the Most Downstream Crossing (Just Below XS 16)