Year 1 Monitoring Report

FINAL

MATTHEW SITE

NCDMS Project #100043 (Contract #7419) USACE Action ID: SAW-2017-00055 DWR Project #2017-0624

> Johnston County, North Carolina Neuse River Basin HUC 03020201

Provided by:

Resource Environmental Solutions, LLC *for* Environmental Banc & Exchange, LLC

Provided for: NC Department of Environmental Quality Division of Mitigation Services

February 2022

ROY COOPER Governor

ELIZABETH BISER Secretary

Mitigation Services

January 18, 2022

Via email: kwebber@res.us

Katie Webber RES / EBX

Subject: Matthew MY1 Comments, Project ID #100043, DMS Contract #0007419

Katie,

After receiving the Draft MY1 report, DMS offers the following comments:

- 1. Please review DMS Monitoring Report Guidance. This report has a lot of extraneous information that is not necessary, and any condensing of this information is suggested. Examples of things that can be removed are section 1.5, 1.6, and 2.0.
- 2. Section 1.7 "baseline" is typically used and synonymous with MYO. Please update to show describe MY1 monitoring.
- 3. CCPV. This map is typically used in monitoring to describe the current conditions of each monitoring year, and this one is a little confusing because of all the detail. Please write out what ESP stands for on legend. Also, it is very difficult to see which portions of the stream and for credit and not for credit. Please update color coding. You can also turn off the structure layers and fill/spoil removal if desired for clarity.

Electronic comments:

1. Please include figures displaying the stage recorder data for RL1-A and RL2.

Thanks for your work,

HCrocker.

Lindsay Crocker, DMS

MEMORANDUM

3600 Glenwood Avenue, Suite 100 Raleigh, North Carolina 27612 919.770.5573 tel. 919.829.9913 fax

TO:	NCDEQ Division of Mitigation Services
FROM:	Katie Webber – RES
DATE:	February 2, 2022
RE:	Response to Draft MY1 Monitoring Report Comments – Matthew Mitigation Site (DMS #100043) Neuse 03020201; Johnston County, NC; Contract No. 0007419

Comments:

1. Please review DMS Monitoring Report Guidance. This report has a lot of extraneous information that is not necessary, and any condensing of this information is suggested. Examples of things that can be removed are section 1.5, 1.6, and 2.0.

RES understands that the monitoring reports deviate somewhat from the most recent DMS template. However, in order to be consistent with all our DMS projects across the state, we request that the current format remains, at least for established projects. We also find that including the summaries of design, construction, and methodology is helpful to have in each annual report to use as a convenient reference, especially while on site visits with regulators.

2. Section 1.7 "baseline" is typically used and synonymous with MY0. Please update to show describe MY1 monitoring.

Thank you. This was a typo. Language has been updated to Year 1 Monitoring (MY1).

3. CCPV. This map is typically used in monitoring to describe the current conditions of each monitoring year, and this one is a little confusing because of all the detail. Please write out what ESP stands for on legend. Also, it is very difficult to see which portions of the stream and for credit and not for credit. Please update color coding. You can also turn off the structure layers and fill/spoil removal if desired for clarity.

CCPV has been revised. ESP is spelled out as "Engineered Sediment Pack." Colors have been updated for the No Credit stream portions, and to clarify, the only No Credit stream segments are RL1-B at the very bottom of the site where the channel abuts the easement/property boundary and the top of RL1-A, outside of the easement below the NC-96 DOT culvert. Both Structures layer and Fill/Spoil Removal areas layer were removed.

Electronic Comments:

1. Please include figures displaying the stage recorder data for RL1-A and RL2.

Stage recorder hydrographs have been created for both reaches. The charts/figures have been added to Appendix E. As for the electronic submission, the excel spreadsheet "MY1_WellCharts_2021" has been updated to include these as well (in folder 5).

Table of Contents

1.0 Project Summary	1
1.1 Project Location and Description	1
1.2 Project Goals and Objectives	1
1.3 Project Success Criteria	2
Stream Restoration Success Criteria	2
Wetland Hydrology Success Criteria	2
Vegetation Success Criteria	3
1.4 Project Components	3
1.5 Design and Approach	3
Streams.	
Wetlands	4
1.6 Construction and As-Built Conditions	5
1.7 Year 1 Monitoring Performance (MY1)	5
Vegetation	5
Stream Geomorphology	6
Stream Hydrology	
Wetland Hydrology	6
2.0 Methods	7
3.0 References	8

Appendix A: Background Tables

Table 1. Project Mitigation ComponentsTable 2. Project Activity and Reporting HistoryTable 3. Project Contacts TableTable 4. Project Background Information TableFigure 1. Site Location Map

Appendix B: Visual Assessment Data

Figure 2. Current Conditions Plan View Table 5. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Vegetation Plot Photos Monitoring Device Photos General Site Photos

Appendix C: Vegetation Plot Data

Table 7. Planted Species SummaryTable 8. Vegetation Plot Mitigation Success SummaryTable 9. Stem Count Total and Planted by Plot Species

Appendix D: Stream Measurement and Geomorphology Data

Table 10. Baseline Stream Data Summary Table 11. Cross Section Morphology Data Table Cross Section Overlay Plots

Appendix E: Hydrology Data

Table 12. 2021 Rainfall SummaryTable 13. Documentation of Bankfull EventsTable 14. 2021 Max HydroperiodsTable 15. Summary of Groundwater Monitoring ResultsGroundwater HydrographsSoil Characterization Data Forms

1.0 Project Summary

1.1 Project Location and Description

The Matthew Site ("Project") is located within a rural watershed in Johnston County, North Carolina approximately two miles south of Four Oaks. The Project lies within the Neuse River Basin, North Carolina United States Geological Survey (USGS) 8-digit Cataloguing Unit 03020201 and 14-digit hydrologic unit code (HUC) 03020201150020, a Targeted Local Watershed (TLW) and the Division of Water Resources (NCDWR) sub-basin 03-04-04 (Figure 1). The Project restores 3,230 linear feet (LF) and preserves 234 LF of streams as well as restores 12.102 acres and preserves 2.063 acres of wetland that provide water quality benefit for 1,460 acres of drainage area.

The Project area is comprised of a 19.19-acre easement involving two unnamed tributaries within the footprint of a breached pond that drain directly to Juniper Swamp, which eventually drains to Hannah Creek. The Project area also included riparian wetlands that were impounded and filled. The stream and wetland mitigation components are summarized in Table 1. The Project is accessible from state route NC-96. Coordinates for the Project areas are approximately 35.42503, -78.40849 at the NC Department of Transportation (DOT) culvert located just above the Project easement.

1.2 Project Goals and Objectives

Through the comprehensive analysis of the Project's maximum functional uplift using the Stream Functions Pyramid Framework and conclusions based on a Site Hydric Soils Detailed Study, specific, attainable goals and objectives were realized by the Project. These goals clearly address the degraded water quality and nutrient input from agricultural practices that were identified as major watershed stressors in the 2010 Neuse RBRP (amended August 2018). The Project addresses outlined RBRP Goal 2 list in the Mitigation Plan.

The Project goals are:

- Re-establish hydrology to a historical stream/wetland complex that has been impacted by agricultural impoundments for over 113 years.
- To transport water in a stable, non-erosive manner and maintain a stable water table in riparian floodplain wetlands that will also contribute to stream baseflow;
- Improve flood flow attenuation on site and downstream by allowing for overbank flows and connection to the floodplain;
- Create diverse bedforms and stable channels that achieve healthy dynamic equilibrium and provide suitable habitat for life
- Improve in-stream habitat;
- Limit sediment and nutrient inputs into the stream system;
- Re-establish, rehabilitate, and preserve wetlands;
- Restore, enhance, and preserve native wetland and riparian vegetation;
- Indirectly support the goals of the 2010 Neuse RBRP (amended August 2018) to improve water quality and to reduce sediment and nutrient loads; and
- To support the life histories of aquatic and riparian plants and animals through stream restoration activities

The Project objectives carried out to address the goals are:

- Designed and reconstructed stream channels sized to convey bankfull flows that maintain a stable dimension, profile, and planform;
- Added in-stream structures and bank stabilization measures to improve bedform diversity and protect restored streams;

- Installed habitat features such as brush toes, constructed riffles, woody materials, and pools of varying depths to restored streams;
- Removed dams, berms, fill material, spoil piles, and debris to restore wetland hydrology and maintain appropriate hydroperiod for Bibb soil series;
- Increased forested riparian buffers to at least 50 feet on both sides of the channel along the Project reaches with a hardwood riparian plant community;
- Installed approximately 937 linear feet of livestock exclusion fencing along the western easement boundary to ensure livestock will not have stream or wetland access;
- Treated exotic invasive species; and
- Established a permanent conservation easement on the Project that perpetually protects streams, wetlands, and their associated buffers.

1.3 Project Success Criteria

The success criteria for the Project follows the 2016 USACE Wilmington District Stream and Wetland Compensatory Mitigation Update, the Matthew Site Final Mitigation Plan, and subsequent agency guidance. Cross section and vegetation plot monitoring takes place in Years 0, 1, 2, 3, 5, and 7. Hydrology and visual monitoring takes place annually. Specific success criteria components are presented below.

Stream Restoration Success Criteria

Four bankfull flow events must be documented within the seven-year monitoring period. The bankfull events must occur in separate years. Otherwise, the stream monitoring will continue until four bankfull events have been documented in separate years. Stage recorders were installed on RL1-A and RL2 to document bankfull events.

There should be little change in as-built cross sections. If changes do take place, they should be evaluated to determine if they represent a movement toward a less stable condition (for example down-cutting or erosion) or are minor changes that represent an increase in stability (for example settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross sections shall be classified using the Rosgen stream classification method, and all monitored cross sections should fall within the quantitative parameters defined for channels of the design stream type. Bank height ratio shall not exceed 1.2, and the entrenchment ratio shall be above 2.2 within restored riffle cross sections (for C and E streams).

Digital images are used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, and effectiveness of erosion control measures. Longitudinal images should not indicate the absence of developing bars within the channel or an excessive increase in channel depth. Lateral images should not indicate excessive erosion or continuing degradation of the banks over time. A series of images over time should indicate successional maturation of riparian vegetation.

Wetland Hydrology Success Criteria

The Natural Resources Conservation Service (NRCS) has a current WETs table (1989-2018) for Johnston County upon which to base a normal rainfall amount and average growing season. The closest comparable data station was determined to be the WETS station for Smithfield, NC. The growing season for Johnston County is 242 days long, extending from March 18 to November 15, and is based on a daily minimum temperature greater than 28 degrees Fahrenheit occurring in five of ten years.

Based upon field observation across the site, the NRCS mapping units show a good correlation to actual site conditions in areas of the site. Mitigation guidance for soils in the Coastal Plain suggests a hydroperiod

for the Bibb soil of 12-16 percent of the growing season. The hydrology success criterion for the Site is to restore the water table so that it remains continuously within 12 inches of the soil surface for at least 12 percent of the growing season (approximately 29 days) at each groundwater gauge location.

Vegetation Success Criteria

Specific and measurable success criteria for plant density within the riparian buffers on the Project follow IRT Guidance. The interim measures of vegetative success for the Project is the survival of at least 320 planted three-year old trees per acre at the end of Year 3, 260 trees per acre with an average height of seven feet at the end of Year 5, and the final vegetative success criteria is 210 trees per acre with an average height of 10 feet at the end of Year 7. Volunteer trees that are listed on the approved planting list will be counted, identified to species, and included in the yearly monitoring reports, and may be counted towards the success criteria of total planted stems after presence in the plot for two or more growing seasons. Moreover, any single species can only account for up to 50 percent of the required number of stems within any vegetation plot. Any stems in excess of 50 percent will be shown in the monitoring table but will not be used to demonstrate success.

1.4 Project Components

Prior to restoration, the project streams and wetlands were significantly impacted by a large impoundment constructed over a hundred years ago. Improvements to the Project help meet the river basin needs expressed in the 2010 Neuse River Basin Restoration Priorities (RBRP).

Through stream and wetland restoration and preservation, the Project presents 3,253.400 Warm Stream Mitigation Units (SMU) and 7.207 Wetland Mitigation Units (WMU).

Stream Mitigation					
Mitigation Approach	Linear Feet	Ratio	Warm SMU		
Restoration	3,230	1:1	3,230.000		
Preservation	234	10:1	23.400		
Preservation (No Credit)	108	N/A	0.000		
Total	3,572		3,253.400		

Matthew Project Components Summary (Mitigation Plan)

Wetland Mitigation					
Mitigation Approach	Area (acres)	Ratio	WMU		
Rehabilitation (Pond Conversion)	10.202	2:1	5.101		
Re-establishment (Fill Removal)	1.900	1:1	1.900		
Preservation	2.063	10:1	0.206		
Total	14.165		7.207		

1.5 Design and Approach

<u>Streams</u>

The Project includes Restoration and Preservation. Stream restoration incorporates the design of a singlethread meandering channel, with parameters based on data taken from reference site, published empirical relationships, regional curves developed from existing project streams, and NC Regional Curves. Analytical design techniques were also a crucial element of the project and were used to determine the design discharge and to verify the design as a whole.

The Project has been broken into the following design reaches:

Reach RL1-A – Priority I Restoration was performed along this reach for 2,438 linear feet both upstream and downstream of the dam. The upstream end is fed from three perched 54-inch crossline culverts under NC HWY 96, and construction activities included installing a plunge pool to stabilize the existing outfall. The conservation easement begins approximately 125 feet downstream of the culverts. This allows for DOT and public utilities to maintain the crossing and a buried water line, respectively. Additionally, the easement is setback from the road such that the adjacent landowner to the north may access and maintain the existing barn located approximately 25 to 40 feet from the channel.

Restoration activities included constructing a channel sized to provide frequent out of bank flows to allow improved floodplain and wetland connectivity. In-stream structures such as log vanes, log sills, brush toes and constructed riffles were installed for vertical and lateral stability and to improve bedform diversity. Additional work included removing the dam, existing pipes, a bridge, and riprap piles.

The restoration activities on the lower extent of Reach RL1-A impacted existing wetlands WE and WD before transitioning to reach RL1-B as preservation. However, the stream restoration results in net positive wetland area as surrounding riparian areas were restored as wetlands by raising the channel bed elevation, thus raising groundwater elevation, and allowing for more frequent overbank events. Also, the surrounding wetland re-establishment involved with this Project, including removal of the upstream dam, spoil piles, and debris, as well as replanting a bottomland hardwood community, further improves existing wetlands.

Reach RL1-B – Preservation was performed for this reach downstream of RL1-A. This section begins where the channel has stabilized from the hurricane breach and continues flowing to the southwest beyond the Project. Preservation activities consisted of supplemental planting throughout the riparian buffer.

Reach RL2 – Priority I Restoration was performed for this reach. Flowing out of a pond just north of the Project, the channel was constructed beginning at the existing pond outfall (24" CMP) and confluences with RL1-A near stationing 16+50. Restoration activities involved constructing a meandering channel sized to improve floodplain connectivity. In-stream structures such as log vanes, log sills, brush toes and constructed riffles were installed for stability and to improve bedform diversity.

Wetlands

The Matthew Project offers a total ecosystem restoration opportunity. As such, the wetland restoration is closely tied to the stream restoration and pond dam removal. The Project provides 7.207 WMUs through a combination of wetland re-establishment, rehabilitation, and preservation.

Wetland rehabilitation via "pond conversion" was performed within the pond footprint, including wetland, WA, with a credit ratio of 2:1. The construction of the farm pond had altered surface drainage and even since the breach, was partially impounded and flow is constricted. The primary restoration activity was the removal of the pond dam and its associated large berm along the eastern edge. Additionally, stream restoration within this pond footprint re-established stable stream channels that maintain a constant surface-groundwater connection that provides retention and storage within the floodplain, and thus healthy wetland hydroperiods.

Wetland re-establishment via "fill removal," with a credit ratio of 1:1, was performed in the area below the dam that consists of hydric soils surrounding Wetlands WC, WD, and WE that lacked sufficient wetland hydrology. This re-established wetland area is referred to as "WF" (Wetland F). This area lacked hydrology due to the construction of the farm pond that had altered surface drainage and had created constricted flow, inhibiting normal flow volumes parallel to the stream both at the surface and within the subsurface. In addition, fill material from the construction of the pond had filled these pre-existing wetlands and buried hydric soils. Furthermore, a ditch from the old pond outlet along the western edge of the floodplain drained upland overland flow and seepage away from the natural floodplain. This wetland area was re-established by removing the dam, removing fill material below the dam, and aligning a stable stream channel via stream restoration efforts. Additional activities included the removal of dam material debris that was littered throughout the floodplain during the breach of Hurricane Matthew, followed by surface roughening and creation of shallow depressions throughout the area in order to mimic natural conditions and provide an appropriate landscape for diverse habitat.

Preservation with a 10:1 credit ratio was used for jurisdictional wetlands WB, WC, WD, and WE. Some of these areas that were impacted by stream restoration efforts were planted with supplemental, native hardwood trees.

The wetland restoration areas directly connect to the existing high-quality bottomland hardwood wetland preservation area. The resulting wetland functions as a large, contiguous bottomland hardwood wetland community.

1.6 Construction and As-Built Conditions

Site construction was completed on January 4, 2021 and planting was completed on March 2, 2021. The Matthew Site was overall built to design plans and guidelines. Fencing was installed as proposed along the western edge of the easement. A rock swale was added to the left bank of the downstream end of RL1 to address runoff from the wetland and old channel area. The as-built wetlands were 0.03 acres smaller than design due to minor survey differences of the top of bank during as-built. The record drawings are included in **Appendix E**.

A few planting plan changes occurred based on bare root availability at time of planting. Changes included replacing swamp tupelo (*Nyssa biflora*), Atlantic white cedar (*Chamaecyparis thyoides*), overcup oak (*Quercus lyrata*), and water tupelo (*Nyssa aquatica*) with water oak (*Quercus nigra*) and green ash (*Fraxinus pennsylvanica*). Minor monitoring device location changes were made during as-built installation, however, the quantities remained as proposed in the Mitigation Plan.

1.7 Year 1 Monitoring Performance (MY1)

The Matthew Year 1 Monitoring activities were performed in November 2021. All MY1 data is present below and in the appendices. The Site is on track to meeting vegetation, wetland, and stream interim success criteria.

Vegetation

Monitoring of the ten permanent vegetation plots and four random vegetation plots was completed on November 9, 2021. Vegetation data are in **Appendix C**, associated photos are in **Appendix B**, and plot locations are in **Appendix B**. MY1 monitoring data indicates that all plots are exceeding the interim success criteria of 320 planted stems per acre. Planted stem densities ranged from 567 to 1,093 planted stems per acre with a mean of 789 planted stems per acre across all plots. A total of 12 species were documented within the plots. Volunteer species were noted in 7 plots and are expected to establish further in upcoming years. Notably, hazel alder (*Alnus serrulata*), yellow polar (*Liriodendron tulipifera*), and black willow (*Salix nigra*) volunteers are appearing and will likely contribute as a desirable species component to the community. The average stem height in the vegetation plots was 2.6 feet.

Visual assessment of vegetation outside of the monitoring plots indicates that the herbaceous vegetation is becoming well established throughout the project. There is a patch of invasive Chinese privet in the downstream forested area off the left bank of RL1 that is noted in **Table 6** and depicted in **Figure 2**. The area will be treated in 2022.

Stream Geomorphology

Geomorphology data collection for MY1 was collected in November 2021. Summary tables and cross section plots are in **Appendix D**. Overall the current years cross sections closely match the baseline cross sections. The current conditions show that shear stress and velocities are equilibrated for all restoration reaches. All reaches were designed as gravel bed channels and remain classified as gravel bed channels post-construction.

Visual assessment of the stream channel was performed to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. The channel is transporting sediment as designed and will continue to be monitored for aggradation and degradation.

Stream Hydrology

Two stage recorders are currently recording bankfull events on reaches RL1-A and RL2. The stage recorder on RL1-A recorded 15 bankfull events in MY1 with the highest reading being 2.11 feet above the top of bank. The stage recorder on RL2 recorded 11 bankfull events in MY1 with the highest reading being 2.78 feet above the top of bank. Stage recorder locations can be found on **Figure 2**, photos are in **Appendix B**, and hydrology data are in **Appendix E**.

Wetland Hydrology

There are 10 groundwater wells with automatic recording pressure transducers monitoring groundwater hydrology. Six wells are located within wetland rehabilitation areas, two are located within wetland reestablishment areas, and two are located within preservation areas serving as references. These are recording water table depths at a frequency of twice per day. Data recorded in MY1 demonstrates consecutive hydroperiods ranging from two to 69 percent across all wells onsite. GW2, GW3, GW4, and GW7 fell short of the 12 percent success criteria with hydroperiods ranging from two to seven percent. These lower hydroperiods for the year may be due to multiple factors:

- The beginning and end of the growing season for Johnston County was lower than average, with the end of the growing season falling with a moderate drought period according to U.S. Drought Monitor (See **Appendix E** rain data).
- As mentioned in the approved mitigation plan, due to extensive construction, including stream channel construction and dam removal and the associated soil compaction, "there may be a reduced hydroperiod for the first two years after construction."

However, considering these factors, RES identified prevalent hydrophytic wetland vegetation around each of the groundwater wells, including rushes (*Juncus* spp.), sedges (*Carex* spp.) and tearthumb (*Persicaria*

sagittate). Evidence of this vegetation can be seen in photos in **Appendix B**. Being the first year postconstruction, RES anticipates that the restored wetlands will continue to equilibrate, and under normal climate conditions, hydroperiods will increase. All wetland hydrology data can be found in **Appendix E**. Additionally, upon request by the IRT, RES characterized soil at each groundwater well and data forms are included in **Appendix E**.

2.0 Methods

Stream monitoring was conducted using a Topcon GTS-312 Total Station. Three-dimensional coordinates associated with cross-section data were collected in the field (NAD83 State Plane feet FIPS 3200). Morphological data were collected at 16 cross-sections. Survey data were imported into CAD, ArcGIS®, and Microsoft Excel® for data processing and analysis. The stage recorders include an automatic pressure transducer placed in PVC casing in a pool. The elevation of the bed and top of bank at each stage recorder are used to detect bankfull events.

Vegetation success is being monitored at 10 permanent vegetation plots and four random vegetation plots. Vegetation plot monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted species. Data are processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with PVC at the origin and metal conduit at the other corners. Photos of each plot are taken from the origin each monitoring year. The random plots are collected in locations where there are no permanent vegetation plots. Random plots are typically collected in the form of 100 square meter belt transects with variable dimensions. Tree species and height are recorded for each planted stem and the transects are mapped, and new locations will be monitored in subsequent years.

Wetland hydrology is monitored to document success in wetland restoration areas where hydrology was affected. This is accomplished with eight automatic pressure transducer gauges (located in groundwater wells) that record daily groundwater levels. Eight have been installed within the wetland restoration crediting area and two within preservation areas to serve as reference wetlands. One automatic pressure transducer is installed above ground for use as a barometric reference. Gauges are downloaded quarterly and wetland hydroperiods are calculated during the growing season. Gauge installation followed current regulatory guidance. Visual observations of primary and secondary wetland hydrology indicators are also recorded during quarterly site visits. As mentioned earlier, soil was characterized at each groundwater well. In December 2021, soil borings were taken within three feet of each existing groundwater well and characterized in accordance with the Soil Characterization Data Forms provided in the USACE's *Technical Standard for Water-Table Monitoring of Potential Wetland Sites*, and includes parameters of soil horizon depths, texture, colors, redoximorphic features, induration, and roots, as well as a photo of each soil profile (**Appendix E**).

3.0 References

- Griffith, G.E., J.M.Omernik, J.A. Comstock, M.P. Schafale, W.H.McNab, D.R.Lenat, T.F.MacPherson, J.B. Glover, and V.B. Shelburne. (2002). Ecoregions of North Carolina and South Carolina, (color Poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,500,000).
- Lee Michael T., Peet Robert K., Roberts Steven D., and Wentworth Thomas R., 2008. CVS-EEP Protocol for Recording Vegetation Level. Version 4.2
- Peet, R.K., Wentworth, T.S., and White, P.S. (1998). A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262-274

Resource Environmental Solutions (2019). Matthew Site Final Mitigation Plan.

- Schafale, M.P. 2012. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDENR, Raleigh, NC.
- USACE. Wetlands Regulatory Assistance Program. 2005. Technical Standard for Water-Table Monitoring of Potential Wetland Sites.
- USACE. 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. NC: Interagency Review Team (IRT).

Appendix A Background Tables

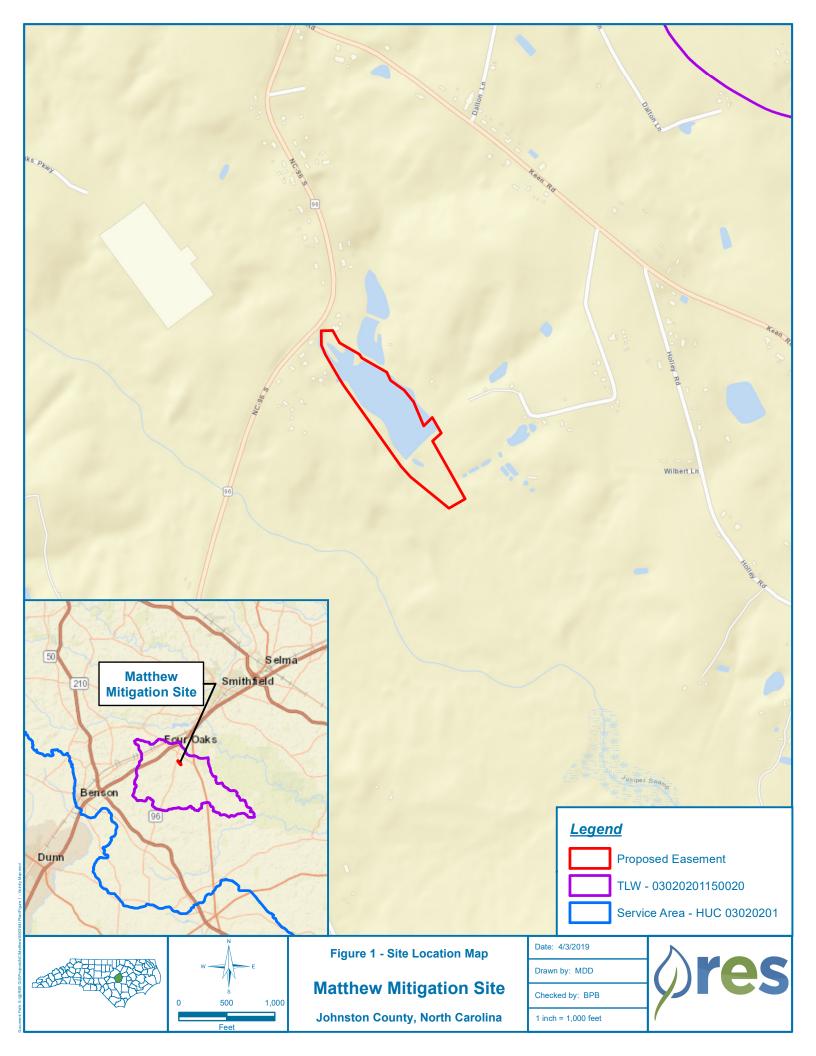
	Existing	Mitigation							
	Footage	Plan					Mitigation	As-Built	
	or	Footage or	Mitigation	Restoration	Priority	Mitigation	Plan	Footage or	
Project Segment	Acreage	Acreage	Category	Level	Level	Ratio (X:1)	Credits	Acreage	Comments
RL1-A	1767	2438	Warm	R	1	1.00000	2438.000	2438	Channel restoration, riparian planting, livestock exclusion
RL1-B	234	234	Warm	Р	NA	10.00000	23.400	234	Supplemental planting, livestock exclusion
RL1-B	108	108	Warm	Р	NA	NA	0.000	108	Channel within easement; however, no credit
RL2	949	792	Warm	R	1	1.00000	792.000	792	Channel restoration, riparian planting, livestock exclusion
WA	10.199	10.202	RR	RH		2.00000	5.101	10.204	Dam and berm removal, stream restoration, native planting
WB	0.429	0.429	RR	Р		10.00000	0.043	0.429	Permanent conservation easement
WC	0.102	0.102	RR	Р		10.00000	0.010	0.102	Permanent conservation easement
WD	0.808	0.807	RR	Р		10.00000	0.081	0.786	Permanent conservation easement
WE	0.758	0.725	RR	Р		10.00000	0.073	0.705	Permanent conservation easement
WF	0.000	1.900	RR	RE		1.00000	1.900	1.903	Dam, fill, spoil, and debris removal; stream restoration native planting

Table 1. Matthew (100043) - Mitigation Assets and Components

Project Credits

		Stream		Riparian	Non-Rip	Coastal
Restoration Level	Warm	Cool	Cold	Wetland	Wetland	Marsh
Restoration	3230.000			7.001		
Re-establishment						
Rehabilitation						
Enhancement						
Enhancement I						
Enhancement II						
Creation						
Preservation	23.400			0.206		
Total	3253.400			7.207		

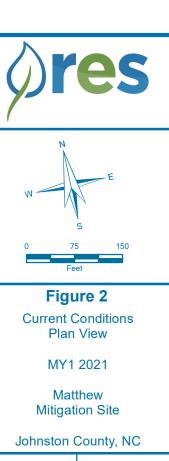
Table 2. Project Activity and Reporting HistoryMatthew Mitigation Site


Elapsed Time Since grading complete:11 monthsElapsed Time Since planting complete:9 monthsNumber of reporting Years¹:1

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	NA	Sep-19
Final Design – Construction Plans	NA	Aug-20
Stream Construction	NA	04-Jan-21
Site Planting	NA	02-Mar-21
As-built (Year 0 Monitoring – baseline)	Mar-21	Jun-21
Year 1 Monitoring	Dec-21	Dec-21
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 6 Monitoring		
Year 7 Monitoring		

1 = The number of reports or data points produced excluding the baseline

Table 3. Project Contacts Table					
	Matthew Mitigation Site				
Designer	RES / 3600 Glenwood Ave., Suite 100, Raleigh, NC 27612				
Designer					
Primary project design POC	Frasier Mullen, PE				
Construction Contractor	KBS Earthwork Inc. / 5616 Coble Church Rd., Julian, NC				
	27283				
Construction contractor POC	Kory Strader				
Survey Contractor	Matrix East, PLLC / 906 N. Queen St., Suite A, Kinston, NC				
	28501				
Survey contractor POC	Chris Paderick, PLS				
, , , , , , , , , , , , , , , , , , ,	Shenandoah Habitats				
Planting Contractor					
Planting contractor POC	David Coleman				
Monitoring Performers	RES / 3600 Glenwood Ave, Suite 100, Raleigh, NC 27612				
Monitoring POC	Ryan Medric (919) 741-6268				


	Table 4. Project Backg	round Inform	nation				
Project Name Ma							
County		Johnston					
Project Area (acres)				19.19			
Project Coordinates (latitude and longitude)			Latitude: 35.	42503 Longitu	de: -78.40849		
Planted Acreage (Acres of Woody Stems Planted)				16.4			
	Project Watershed Sur	mmary Inform	nation				
Level IV Ecoregion			65m -	Rolling Coasta	al Plain		
River Basin				Neuse			
USGS Hydrologic Unit 8-digit	03020201	USGS Hydrold	ogic Unit 14-digit	0	302020115002	0	
DWR Sub-basin				03-04-04			
Project Drainage Area (Acres and Square Miles)			1,4	460 ac (2.28 sq	ımi)		
Project Drainage Area Percentage of Impervious A	rea			7%			
	Reach Summary	Information					
Parameters		RL1-A	RL1-B	RL2			
Length of reach (linear feet)		1767	342	949			
Valley confinement (Confined, moderately confined	d, unconfined)	Unconfined	Unconfined	Unconfined			
Drainage area (Acres and Square Miles)		853 (1.33)	1460 (2.28)	490 (0.77)			
Perennial, Intermittent, Ephemeral		Perennial	Perennial	Perennial			
NCDWR Water Quality Classification		C; NSW	C; NSW	C; NSW			
Stream Classification (existing)		E5	E4	NA			
Stream Classification (proposed)		E4/E5	E4/E5	E4/E5			
Evolutionary trend (Simon)		III	IV/V	III			
FEMA classification		Zone AE	Zone Ae	Zone AE			
	Wetland Summar	y Informatior	1				
Parameters		WA	WB	WC	WD	WE	
Size of Wetland (acres)		10.2	0.429	0.100	0.808	0.758	
Wetland Type	RR	RR	RR	RR	RR		
Mapped Soil Series	Water	Bibb	Bibb	Bibb	Bibb		
Drainage Class		NA	PD	PD	PD	PD	
Soil Hydric Status	NA	PH	PH	PH	PH		
Source of Hydrology		GW, OL	GW, OL	GW, OL	GW, OL	GW, OL	
Restoration or enhancement n	nethod	H, V	V	V	V	V	

Appendix B

Visual Assessment Data

	9 1					
Date: 2/2/2022	Drawn by: RTM					
Lat: 35.424918	Long: -78.408148					
LEG	END					
Groundwater We	lls					
>12% Hydroperiod	d					
S-11% Hydroperio	d					
S<5% Hydroperiod						
Stage Recorder						
O Ambient						
Fixed Vegetation	Plot					
I >320 stems/ac						
MY1 Random Veg	getation Plot					
Previous Random '	Vegetation Plot					
Wetland Mitigation	-					
Rehabilitation (2:1)						
Re-establishment (Preservation	.1:1I)					
Top of Bank						
- Conservation Ease	ment					
Cross Section Engineered Sediment	ent Pack					
K Fence Installation						
Stream Mitigation	n					
- Restoration						
 Preservation Restoration (No creation) 	edit)					
 Preservation (No c 						
Vegetation Con	dition Assessment					
" Tar	get Community					
Presen	t Marginal Absent					
Absent No Fill						
Absent No Fill						
a second						
<u> </u>						

Reach	RL1-A
Assessed Stream Length	2438
Assessed Bank Length	4876

Assessed Dan	K Length	4670				
Major	Channel Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Amount of Unstable Footage	% Stable, Performing as Intended
Bank	Surface Scour/Bare Bank	Bank lacking vegetative cover resulting simply from poor growth and/or surface scour			0	100%
	Toe Erosion	Bank toe eroding to the extent that bank failure appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.		0	100%	
	Bank Failure		0	100%		
		Totals			0	100%
Structure	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	46	46		100%
	Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in DMS monitoring guidance document)	36	36		100%

Visual Stream Reach Assessed Stre Assessed Ban	-	RL2 792 1584				
Major	Channel Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Amount of Unstable Footage	% Stable, Performing as Intended
Bank	Surface Scour/Bare Bank	Bank lacking vegetative cover resulting simply from poor growth and/or surface scour			0	100%
	Toe Erosion	Bank toe eroding to the extent that bank failure appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	100%
	Bank Failure	Fluvial and geotechnical - rotational, slumping, calving, or collapse			0	100%
		Totals			0	100%
Structure	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	19	19		100%
	Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in DMS monitoring guidance document)	17	17		100%

Table 6 Planted Acreage ¹	Vegetation Condition Assessment 16.4					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Red Simple Hatch	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Orange Simple Hatch	0	0.00	0.0%
			Total			0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Orange Simple Hatch	0	0.00	0.0%
		Cu	mulative Total			0.0%

Easement Acreage ²	19.19					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Yellow Crosshatch	1	0.94	4.9%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Red Simple Hatch	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

. . .

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1, 2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens and dense, discreet, dense polygons. The symbology scheme below was one that was found to be helpful for symbolizing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimes and dense, discreet patches. In any case, the point or

Matthew MY1 Vegetation Monitoring Plot Photos

Vegetation Plot 1 (3/4/2021)

Vegetation Plot 3 (11/9/2021)

Vegetation Plot 2 (11/9/2021)

Vegetation Plot 4 (11/9/2021)

Vegetation Plot 5 (11/9/2021)

Vegetation Plot 7 (11/9/2021)

Vegetation Plot 6 (11/9/2021)

Vegetation Plot 8 (11/9/2021)

Vegetation Plot 9 (11/9/2021)

Vegetation Plot 10 (11/9/2021)

Matthew MY1 Random Vegetation Monitoring Plot Photo

Random Vegetation Plot 1 (11/9/2021)

Random Vegetation Plot 3 (11/9/2021)

Random Vegetation Plot 2 (11/9/2021)

Random Vegetation Plot 4 (11/9/2021)

Matthew Monitoring Device Photos (*All taken on 11/9/2021*)

Stage Recorder RL1-A

Groundwater Well 1

Stage Recorder RL2

Groundwater Well 2

Groundwater Well 3

Groundwater Well 5

Groundwater Well 4

Groundwater Well 6

Groundwater Well 7

Groundwater Well Ref 1

Groundwater Well 8

Groundwater Well Ref 2

Matthew General Site Photos

RL1-A looking upstream (11/9/2021)

Plunge pool at the top of RL2 (11/9/2021)

RL2 looking downstream from pond outlet (11/9/2021)

Plunge pool and boulder toe protection below NC-96 culvert on RL1-A (11/9/2021)

Appendix C Vegetation Plot Data

Common Name	Scientific Name	Mit Plan %	As-Built %	Total Stems Planted
River Birch	Betula nigra	10	20	3,500
Swamp Chestnut Oak	Quercus michauxii	5	16	2,700
Buttonbush	Cephalanthus occidentalis	10	15	2,500
Sycamore	Platanus occidentalis	10	14	2,300
Willow Oak	Quercus phellos	10	12	2,200
Bald Cypress	Taxodium distichum	15	9	1,500
Water Oak	Quercus nigra	0	8	1,400
Green Ash	Fraxinus pennsylvanica	0	5	800
Swamp Tupelo	Nyssa biflora	10	0	0
Atlantic White Cedar	Chamaecyparis thyoides	10	0	0
Overcup Oak	Quercus lyrata	10	0	0
Laurel Oak	Quercus laurifolia	5	1	100
Water Tupelo	Nyssa aquatica	5	0	0
			Total	17,000
		F	Planted Area	16.4
	As-	built Planted	Stems/Acre	1,037

Table 7. Planted Species Summary

 Table 8. Vegetation Plot Mitigation Success Summary

Plot #	Planted Stems/Acre	Volunteers Stems/Acre	Total Stems/Acre	Success Criteria Met?	Averaged Planted Stem Height (ft.)
1	769	40	809	Yes	2
2	769	40	809	Yes	2.4
3	769	0	769	Yes	2.3
4	1012	0	1012	Yes	2.7
5	1093	121	1214	Yes	3
6	769	0	769	Yes	3.8
7	728	81	809	Yes	2.6
8	688	0	688	Yes	2.6
9	971	121	1093	Yes	2
10	728	202	931	Yes	1.8
R1	769	0	769	Yes	2.2
R2	486	121	607	Yes	2.8
R3	567	0	567	Yes	3.9
R4	931	0	931	Yes	2.6
Project Avg	789	52	841	Yes	2.6

	Matthew														(Current	Plot D	ata (MY	1 2021)											
			1000	43-01-	0001	1000	00043-01-0002 100043-01-0003 100043-		043-01-0004 100043-01-0005 100043-01-0006 10						5 100043-01-0007 100043-01-0008					8000	3 100043-01-0009			1000	43-01-001					
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all T	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all T
Alnus serrulata	hazel alder	Shrub															2					2								
Betula nigra	river birch	Tree	2	2	2				2	2	2	16	16	16	4	4	4	4	4 4	4 5	5	5	3	3	3	10	10	10	9	9
Cephalanthus occidentalis	common buttonbush	Shrub	3	3	3	6	6	6				3	3	3	2	2	2	1	1 1	L 2	2	2	8	8	8	2	2	2	1	1
Fraxinus pennsylvanica	green ash	Tree	1	1	1										2	2	2	1	1 1	L										
iquidambar styraciflua.	sweetgum	Tree																										1		
iriodendron tulipifera	tuliptree	Tree															1													
Platanus occidentalis	American sycamore	Tree	1	1	1							2	2	2	3	3	3	4	4 4	4 9	9	9	3	3	3	5	5	5		
Quercus michauxii	swamp chestnut oak	Tree	7	7	7	6	6	6	7	7	7	2	2	2	5	5	5	1	1 1	1	1	. 1	1	1	1	3	3	3		
Quercus nigra	water oak	Tree	1	1	1				3	3	3																			
Quercus phellos	willow oak	Tree	3	3	3	4	4	4	6	6	6	2	2	2	2	2	2	5	5 5	5			2	2	2	2	2	2	8	8
Salix nigra	black willow	Tree			1			1																				2		
Faxodium distichum	bald cypress	Tree	1	1	1	3	3	3	1	1	1				9	9	9	3	3 3	3 1	1	. 1				2	2	2		
		Stem count	19	19	20	19	19	20	19	19	19	25	25	25	27	27	30	19	19 19	18	18	20	17	17	17	24	24	27	18	18
		size (ares)		1			1			1			1			1			1		1			1			1			1
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02		0.02			0.02			0.02			0.02
		Species count	8	8	9	4	4	5	5	5	5	5	5	5	7	7	9	7	7 7	7 5	5	6	5	5	5	6	6	8	3	3
	St	ems per ACRE	769	769	809	769	769	809	769	769	769	1012	1012	1012	1093	1093	1214	769	769 769	728	728	809	688	688	688	971	971	1093	728	728

Table 9. Stem Count Total and Planted by Plot Species

	Matthew		Current Plot Data (MY1 2021)														Annual Means							
			100	043-01	-R1	100	043-01	-R2	100	043-01	-R3	100	043-01	l-R4	M	Y1 (202	1)	M	YO (202	1)				
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS P-all T		т	PnoLS	PnoLS P-all		PnoLS	P-all	т	PnoLS	P-all	Т				
Alnus serrulata	hazel alder	Shrub						3									7							
Betula nigra	river birch	Tree	11	11	11	2	2	2	6	6	6	8	8	8	8 82	82	82	81	81	81				
Cephalanthus occidentalis	common buttonbush	Shrub	3	3	3										31	31	31	13	13	13				
Fraxinus pennsylvanica	green ash	Tree													4	4	4	42	42	42				
Liquidambar styraciflua	sweetgum	Tree															1							
Liriodendron tulipifera	tuliptree	Tree															1							
Platanus occidentalis	American sycamore	Tree				2	2	2	4	4	4	3	3	3	36	36	36	49	49	49				
Quercus michauxii	swamp chestnut oak	Tree	4	4	4	4	4	4	2	2	2	3	3	3	46	46	46	49	49	49				
Quercus nigra	water oak	Tree										2	2	2	2 6	6	6	13	13	13				
Quercus phellos	willow oak	Tree										5	5	5	39	39	39	89	89	89				
Salix nigra	black willow	Tree															9							
Taxodium distichum	bald cypress	Tree	1	1	1	4	4	4	2	2	2	2	2	2	2 29	29	29	43	43	43				
		Stem count	19	19	19	12	12	15	14	14	14	23	23	23	273	273	291	379	379	379				
		size (ares)		1			1			1			1			14		14						
		size (ACRES)		0.02		0.02				0.02			0.02		0.35			0.35						
	Species coun				4	4	4	5	4	4	4	6	6	6	i 8	8	12	8	8	8				
	Stems per ACRE					486	486	607	567	567	567	931	931	931	789	789	841	1096	1096	1096				

Appendix D

Stream Measurement and

Geomorphology Data

												ata Sum each RL													
Parameter	Gauge ²	Re	gional Cu	urve		Pr	re-Existin	ig Condit		ugution				each(es)	Data			Design			Ν	Ionitorin	o Baselin	ie	
			<u></u>					<u> </u>															9		
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					8.0	8.2	8.2	8.4		2	11.5					1	11.0	12.2	13.3	8.8	10.8	11.0	12.1	1.3	6
Floodprone Width (ft)					0.0	>15	15.0	>30		2	>30					1	>30	>30	>30	>49.8	>49.9	>49.9	>50	0.1	6
Bankfull Mean Depth (ft))				1.1	1.4	1.4	1.6		2	1.3					1	1.2	1.3	1.3	-	-	-	-	-	-
¹ Bankfull Max Depth (ft))				1.4	2.2	2.2	2.9		2	1.9					1	1.5	1.6	1.7	1.3	1.7	1.7	2.0	0.3	6
Bankfull Cross Sectional Area (ft ²)					8.5	10.9	10.9	13.2		2	15.2					1	13.1	15.5	17.9	8.6	12.5	12.2	16.6	3.4	6
Width/Depth Ratio					5.4	6.5	6.5	7.6		2	8.7					1	9.2	9.5	9.8	-	-		-	-	-
Entrenchment Ratio					2.2	2.2	2.2	2.2		2	2.2					1	2.2	2.2	2.2	1.3	1.7	1.7	2.0	0.3	6
¹ Bank Height Ratio								1.1		2	1.1					1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	6
Profile																									
Riffle Length (ft)											5			35			5.5		23	10	24	23	44	10	45
Riffle Slope (ft/ft)																				0.01	1.04044	0.73	4.04	0.88273	45
Pool Length (ft)											3			12			11		18	14	33	32	60	10	44
Pool Max depth (ft)																									
Pool Spacing (ft))										11			35			39		59.5	26	57	56	91	16	44
Pattern	1		1		1	T	I	T		I	I	I		I	r	r	r		T	T	I			1	
Channel Beltwidth (ft)				<u> </u>							20			59			5.5		23	5.5			23		
Radius of Curvature (ft)				<u> </u>							11			26											
Rc:Bankfull width (ft/ft)											0.9			2.1			11		18	11			18		
Meander Wavelength (ft)											155			177											
Meander Width Ratio											13			14.8			39		59.5	39			59.5		
Transport parameters	1	1									1						ī			T					
Reach Shear Stress (competency) lb/f ²							-															-			
Max part size (mm) mobilized at bankfull							-															-			
Stream Power (transport capacity) W/m ²	2						-															-			
Additional Reach Parameters	-	-															T			T					
Rosgen Classification			1	T			F	4b					E4	4/5				E4/5				E	4		
Bankfull Velocity (fps)													-									-			
Bankfull Discharge (cfs)			<u> </u>																						
Valley length (ft)								94						42				1013				-			
Channel Thalweg length (ft)								62						95				1219				12			
Sinuosity (ft)					1.25							18				1.21				-					
Water Surface Slope (Channel) (ft/ft)									 						ļ			 		-					
Channel slope (ft/ft)					0.002				 		0.0				ļ	0.0025		 		-					
³ Bankfull Floodplain Area (acres)									<u> </u>		-														
⁴ % of Reach with Eroding Banks											-														
Channel Stability or Habitat Metric													-												
Biological or Other Shaded cells indicate that these will typically not be filled in.	ſ												-												

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

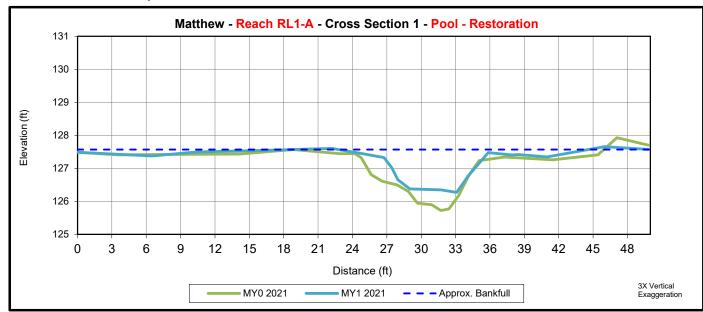
							Tab					ummary Reach R		ued)											
Parameter	Gauge ²	Re	gional Cu	urve		Pr	e-Existin	g Condit		- J				each(es)	Data			Design			Ν	lonitorin	g Baselin	e	
			-					<u> </u>						. ,									<u> </u>		
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)											11.5					1		9.2		8.3	8.8	8.8	9.3	0.5	2
Floodprone Width (ft)											>30					1		>30		>49.8	>49.9	49.9	>50	0.1	2
Bankfull Mean Depth (ft)											1.3					1		1.0		-	-	-	-	-	-
¹ Bankfull Max Depth (ft)											1.9					1		1.3		1.3	1.4	1.4	1.4	0.1	2
Bankfull Cross Sectional Area (ft ²)											15.2					1		9.0		7.7	8.4	8.4	9.0	0.7	2
Width/Depth Ratio											8.7					1		9.4		-	-	-	-	-	-
Entrenchment Ratio											2.2					1		2.2		1.3	1.4	1.4	1.4	0.1	2
¹ Bank Height Ratio											1.1					1		1.0		1.0	1.0	1.0	1.0	0.0	2
Profile																									
Riffle Length (ft)											5			35			4		18	9	15	14	37	7	16
Riffle Slope (ft/ft)																				0.01	1.98875	1.575	5.38	1.68443	16
Pool Length (ft)											3			12			4		14	17	30	26	82	15	15
Pool Max depth (ft)																									
Pool Spacing (ft)											11			35			13		45	33	46	40	119	22	14
Pattern			1	1			I	I	1	I		•	T	1	I	T			I	T .=		r			
Channel Beltwidth (ft)											20			59			15		46	15			46		
Radius of Curvature (ft)											11			26			8		20	8			20		
Rc:Bankfull width (ft/ft)											0.9			2.1			0.9		2.1	0.9			2.1		
Meander Wavelength (ft)											155			177			120		137	120			137		
Meander Width Ratio											13			14.8			13		14.8	13			14.8		
Transport parameters											-						1								_
Reach Shear Stress (competency) lb/f ²																									
Max part size (mm) mobilized at bankfull							-															-			
Stream Power (transport capacity) W/m ²							-															-			
Additional Reach Parameters											1						1						/= =		
Rosgen Classification		-					-							4/5				E4/5					/E5		
Bankfull Velocity (fps)													-									-			
Bankfull Discharge (cfs)														1.0											
Valley length (ft)														42				655				-			
Channel Thalweg length (ft)														95				792		 			92		
Sinuosity (ft)													.18				1.21		 						
Water Surface Slope (Channel) (ft/ft)																<u> </u>									
Channel slope (ft/ft)													027			<u> </u>	0.004								
³ Bankfull Floodplain Area (acres)												-						_			-				
⁴ % of Reach with Eroding Banks												-													
Channel Stability or Habitat Metric													-												
Biological or Other Shaded cells indicate that these will typically not be filled in.							-						-												

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3


					Арр	endix	D. Tal	ble 11 -	Moni	toring	Data	- Dim	ension	al Mo	orphol	ogy Su	mmar	y (Dir	nensio	onal Pa	arame	eters –	Cross	Sectio	ons)										
											F	Projec	t Nam	e/Nun	nber: I	Matthe	ew #10	00043																	
			Cross S	Section 1	(Pool)				(Cross Se	ection 2	(Riffle)					Cross Se	ection 3	(Riffle))				Cross S	ection 4	(Pool)					Cross S	ection 5	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Elevation (ft) - Based on AB-XSA ¹	127.2	127.6						127.1	127.7						126.2	126.3						126.0	126.0						125.5	125.6					
Bankfull Width (ft) ¹	10.1	9.1						10.0	9.9						8.8	10.5						9.8	10.1						9.7	11.4					
Floodprone Width (ft) ¹	-	-						>49.9	>49.9						>50.0	>50						-	-						-	-					
Bankfull Max Depth (ft) ²	1.5	1.2						1.3	1.2						1.6	1.6						2.0	2.2						2.9	2.8					
Low Bank Elevation (ft)	-	-						127.1	127.4						126.2	126.2						-	-						-	-					
Bankfull Cross Sectional Area $(ft^2)^2$	9.0	7.4						8.6	6.1						9.9	9.3						12.1	12.3						15.3	14.7					
Bankfull Entrenchment Ratio ¹	-	-						>5.0	>5.0						>5.7	>4.8						-	-						-	-					
Bankfull Bank Height Ratio ¹	-	-						1.0	0.8						1.0	1.0						-	-						-	-					
		(Cross Se	ection 6	(Riffle)				(Cross Se	ection 7	(Riffle)	1				Cross S	Section 8	B (Pool)					Cross Se	ection 9	(Riffle)				(Cross Se	ection 10) (Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	М
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.4	125.6						124.0	124.1				 		123.4	123.2						123.5	123.5						122.9	21.6					
Bankfull Width (ft) ¹	8.9	8.8			ł			11.9	12.8						11.2	11.3						12.0	13.1						13.4	13.5					
Floodprone Width (ft) ¹	>49.9	>50			ł			>49.9	>49.9						-	-						>50	>49.9						-	-					-
Bankfull Max Depth (ft) ²	1.4	1.2			ł			2.0	1.9						2.8	3.0						2.0	1.9						2.7	2.9					
Low Bank Elevation (ft)	125.4	125.2			ł			124.0	124.0						-	-							123.4						-	-					
Bankfull Cross Sectional Area $(ft^2)^2$	8.8	6.1						16.6	15.0						19.9	22.0						16.5	15.9						21.6	23.9					
Bankfull Entrenchment Ratio ¹	>5.6	>5.7				1		>4.2	>3.9				1		-	-						>4.2	>3.8						-	-					
Bankfull Bank Height Ratio ¹	1.0	0.8	1	1				1.0	0.9						-	-						1.0	1.0						-	-					
		(Cross Se	ection 1	1 (Pool)		-			ross Se	ction 12	(Riffle)	1			Cross S	ection 1	3 (Pool))	<u></u>	<u> </u>	(Cross Se	ction 14	(Riffle)			(ross Se	ction 15	(Riffle))	8
	Base	1	MY2	MY3	MY5	MY7	MY+	Base		MY2	MY3	MY5	MY7	MY+	Base		MY2	MY3	MY5	MY7	MY+	Base		MY2	MY3	MY5	MY7	MY+			MY2	MY3	MY5	MY7	Μ
Bankfull Elevation (ft) - Based on AB-XSA ¹	122.3	122.2						122.2	122.2						126.4	126.3						126.7	126.8						125.4	125.4					
Bankfull Width (ft) ¹	11.5	11.1						12.1	13.3						9.4	10.0						9.3	10.1						8.3	8.5					
Floodprone Width (ft) ¹	-	-						>49.8	>49.9						-	-						>49.8	>50						>50	>50					
Bankfull Max Depth (ft) ²	3.2	3.2						1.7	1.8						2.3	2.5						1.4	1.3						1.3	1.4					
Low Bank Elevation (ft)	-	-						122.2	122.2						-	-						126.7	126.8						125.4	125.4					
Bankfull Cross Sectional Area (ft ²) ²	19.8	21.8						14.4	14.6						13.9	16.1						9.0	9.0						7.7	8.5					
Bankfull Entrenchment Ratio ¹	-	-						>4.1	>3.7						-	-						>5.4	>4.9						>6.0	>5.9					
Bankfull Bank Height Ratio ¹	-	-						1.0	1.0						-	-						1.0	1.0						1.0	1.1					
		1		ection 10	<u>, </u>	1																													
	Base	MY1	MY2	MY3	MY5	MY7	MY+																												
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.2	125.3																																	
Bankfull Width (ft) ¹	9.2	9.6																																	
Floodprone Width (ft) ¹	-	-																																	
Bankfull Max Depth (ft) ²	2.4	2.1																																	
Low Bank Elevation (ft)	-	-																																	
Bankfull Cross Sectional Area (ft ²) ²	12.6	11.3																																	
Bankfull Entrenchment Ratio ¹	-	-																																	

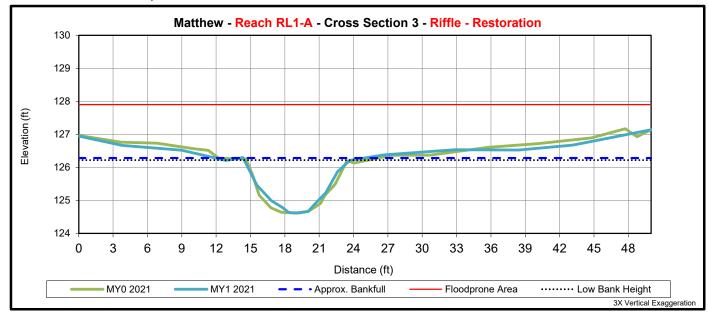
Upstream

Downstream

			Cros	s Section 1 ((Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	127.2	127.6					
Bankfull Width (ft) ¹	10.1	9.1					
Floodprone Width (ft) ¹	-	-					
Bankfull Max Depth (ft) ²	1.5	1.2					
Low Bank Elevation (ft)	-	-					
Bankfull Cross Sectional Area (ft ²) ²	9.0	7.4					
Bankfull Entrenchment Ratio ¹	-	-					
Bankfull Bank Height Ratio ¹	-	-					

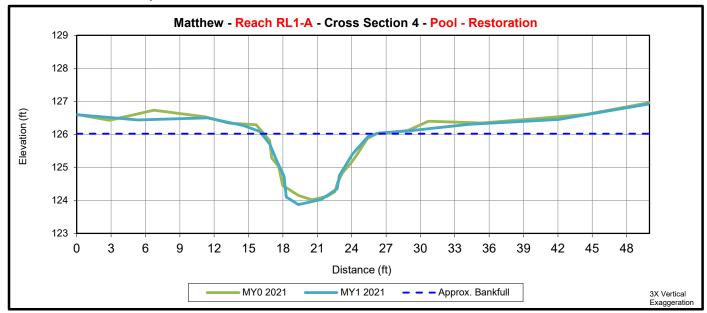
1 - Uses the as-built cross sectional area as the basis for adjusting each subsequent years bankfull elevation

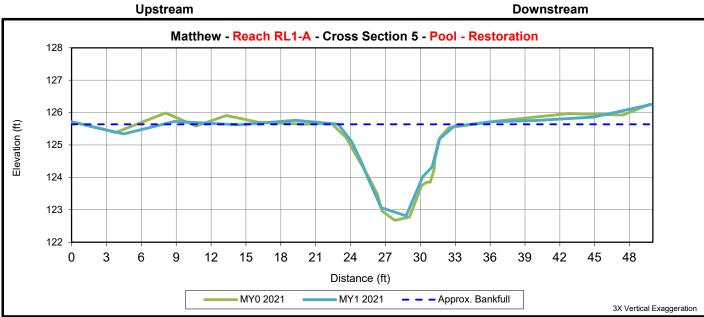
Upstream Downstream Matthew - Reach RL1-A - Cross Section 2 - Riffle - Restoration Elevation (ft) Distance (ft) MY0 2021 MY1 2021 - - - Approx. Bankfull Floodprone Area ······ Low Bank Height 3X Vertical Exaggeration


			Cross	Section 2	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	127.1	127.7					
Bankfull Width (ft) ¹	10.0	9.9					
Floodprone Width (ft) ¹	>49.9	>49.9					
Bankfull Max Depth (ft) ²	1.3	1.2					
Low Bank Elevation (ft)	127.1	127.4					
Bankfull Cross Sectional Area (ft ²) ²	8.6	6.1					
Bankfull Entrenchment Ratio ¹	>5.0	>5.0					
Bankfull Bank Height Ratio ¹	1.0	0.8					

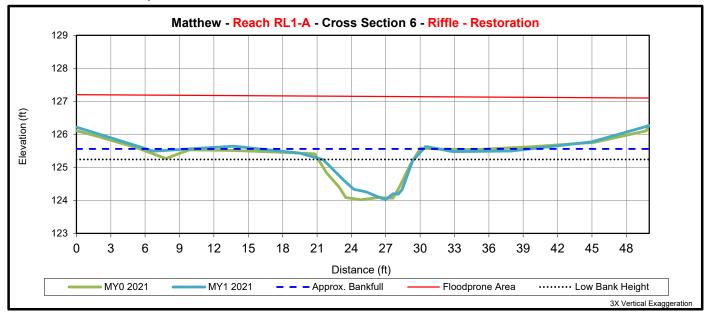
Upstream

Downstream


			Cross	Section 3 (Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.2	126.3					
Bankfull Width (ft) ¹	8.8	10.5					
Floodprone Width (ft) ¹	>50.0	>50					
Bankfull Max Depth (ft) ²	1.6	1.6					
Low Bank Elevation (ft)	126.2	126.2					
Bankfull Cross Sectional Area (ft ²) ²	9.9	9.3					
Bankfull Entrenchment Ratio ¹	>5.7	>4.8					
Bankfull Bank Height Ratio ¹	1.0	1.0					


Downstream

			Cross	Section 4	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bank full Elevation (ft) - Based on AB-XSA ¹	126.0	126.0					
Bankfull Width (ft) ¹	9.8	10.1					
Floodprone Width (ft) ¹	-	-					
Bankfull Max Depth (ft) ²	2.0	2.2					
Low Bank Elevation (ft)	-	-					
Bankfull Cross Sectional Area (ft ²) ²	12.1	12.3					
Bankfull Entrenchment Ratio ¹	-	-					
Bankfull Bank Height Ratio ¹	-	-					


			Cross	Section 5	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	125.5	125.6					
Bankfull Width (ft) ¹	9.7	11.4					
Floodprone Width (ft) ¹	-	-					
Bankfull Max Depth (ft) ²	2.9	2.8					
Low Bank Elevation (ft)	-	-					
Bankfull Cross Sectional Area $(ft^2)^2$	15.3	14.7					
Bankfull Entrenchment Ratio ¹	-	-					
Bankfull Bank Height Ratio ¹	-	-					

Upstream

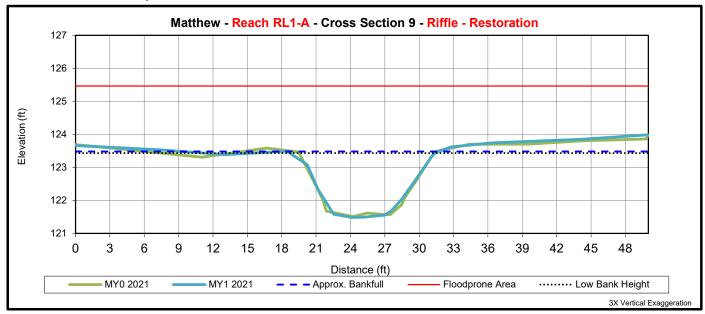
			Cross	Section 6	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bank full Elevation (ft) - Based on AB-XSA ¹	125.4	125.6					
Bankfull Width (ft) ¹	8.9	8.8					
Floodprone Width (ft) ¹	>49.9	>50					
Bankfull Max Depth (ft) ²	1.4	1.2					
Low Bank Elevation (ft)	125.4	125.2					
Bankfull Cross Sectional Area (ft ²) ²	8.8	6.1					
Bankfull Entrenchment Ratio ¹	>5.6	>5.7					
Bankfull Bank Height Ratio ¹	1.0	0.8					

Upstream Downstream Matthew - Reach RL1-A - Cross Section 7 - Riffle - Restoration Elevation (ft) Distance (ft) MY0 2021 MY1 2021 - - - Approx. Bankfull Floodprone Area Low Bank Elevation 3X Vertical Exaggeration

			Cross	Section 7 (Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bank full Elevation (ft) - Based on AB-XSA ¹	124.0	124.1					
Bankfull Width (ft) ¹	11.9	12.8					
Floodprone Width (ft) ¹	>49.9	>49.9					
Bankfull Max Depth (ft) ²	2.0	1.9					
Low Bank Elevation (ft)	124.0	124.0					
Bankfull Cross Sectional Area (ft ²) ²	16.6	15.0					
Bankfull Entrenchment Ratio ¹	>4.2	>3.9					
Bankfull Bank Height Ratio ¹	1.0	0.9					

<image>

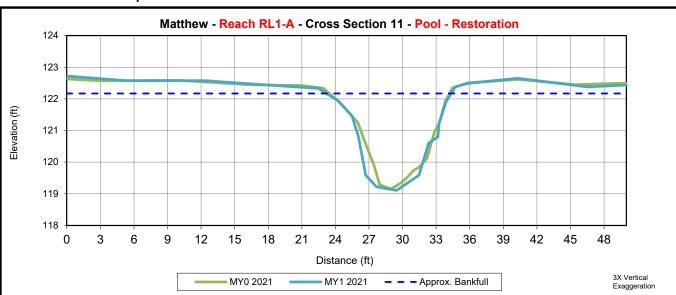
Matthew - Reach RL1-A - Cross Section 8 - Pool - Restoration Elevation (ft) Distance (ft) – – – Approx. Bankfull MY1 2021 MY0 2021 3X Vertical Exaggeration


			Cross	Section 8	(Pool)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	123.4	123.2					
Bankfull Width (ft) ¹	11.2	11.3					
Floodprone Width (ft) ¹	-	-					
Bankfull Max Depth (ft) ²	2.8	3.0					
Low Bank Elevation (ft)	-	-					
Bankfull Cross Sectional Area $(ft^2)^2$	19.9	22.0					
Bankfull Entrenchment Ratio ¹	-	-					
Bankfull Bank Height Ratio ¹	-	-					

Upstream

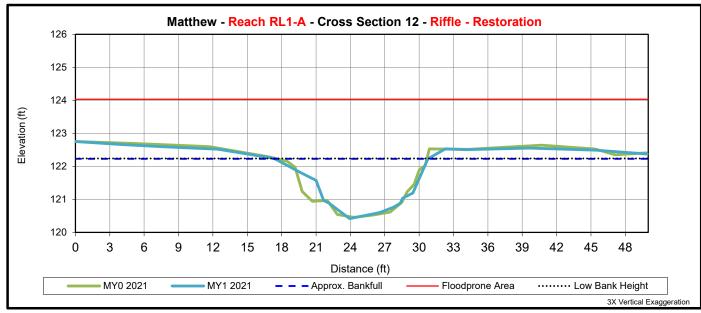
			Cross	Section 9	(Riffle)		
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bank full Elevation (ft) - Based on AB-XSA ¹	123.5	123.5					
Bankfull Width (ft) ¹	12.0	13.1					
Floodprone Width (ft) ¹	>50	>49.9					
Bankfull Max Depth (ft) ²	2.0	1.9					
Low Bank Elevation (ft)	123.5	123.4					
Bankfull Cross Sectional Area $(ft^2)^2$	16.5	15.9					
Bankfull Entrenchment Ratio ¹	>4.2	>3.8					
Bankfull Bank Height Ratio ¹	1.0	1.0					

Upstream


Matthew - Reach RL1-A - Cross Section 10 - Pool - Restoration Elevation (ft) Distance (ft) – – – Approx. Bankfull MY1 2021 MY0 2021 3X Vertical Exaggeration

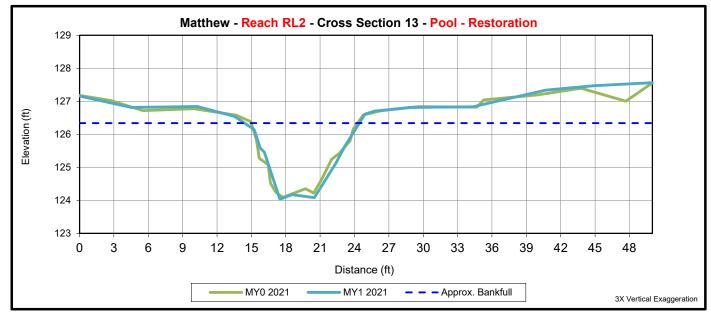
			Cross	Section 10	(Pool)	·	
	Base	MY1	MY2	MY3	MY5	MY7	MY+
Bankfull Elevation (ft) - Based on AB-XSA ¹	122.9	21.6					
Bankfull Width (ft) ¹	13.4	13.5					
Floodprone Width (ft) ¹	-	-					
Bankfull Max Depth (ft) ²	2.7	2.9					
Low Bank Elevation (ft)	-	-					
Bankfull Cross Sectional Area (ft ²) ²	21.6	23.9					
Bankfull Entrenchment Ratio ¹	-	-					
Bankfull Bank Height Ratio ¹	-	-					

Upstream

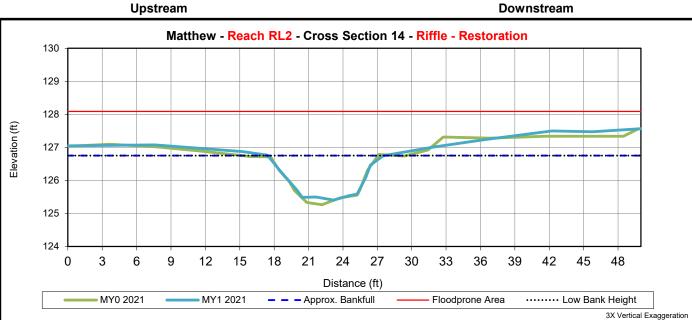

	Cross Section 11 (Pool)							
	Base	MY1	MY2	MY3	MY5	MY7	MY+	
Bank full Elevation (ft) - Based on AB-XSA ¹	122.3	122.2						
Bankfull Width (ft) ¹	11.5	11.1						
Floodprone Width (ft) ¹	-	-						
Bankfull Max Depth (ft) ²	3.2	3.2						
Low Bank Elevation (ft)	-	-						
Bankfull Cross Sectional Area $(ft^2)^2$	19.8	21.8						
Bankfull Entrenchment Ratio ¹	-	-						
Bankfull Bank Height Ratio ¹	-	-						

Upstream

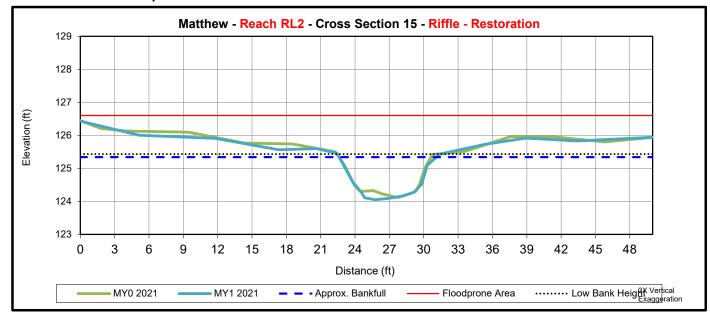
Downstream


	Cross Section 12 (Riffle)								
	Base	MY1	MY2	MY3	MY5	MY7	MY+		
Bank full Elevation (ft) - Based on AB-XSA ¹	122.2	122.2							
Bankfull Width (ft) ¹	12.1	13.3							
Floodprone Width (ft) ¹	>49.8	>49.9							
Bankfull Max Depth (ft) ²	1.7	1.8							
Low Bank Elevation (ft)	122.2	122.2							
Bankfull Cross Sectional Area $(ft^2)^2$	14.4	14.6							
Bankfull Entrenchment Ratio ¹	>4.1	>3.7							
Bankfull Bank Height Ratio ¹	1.0	1.0							

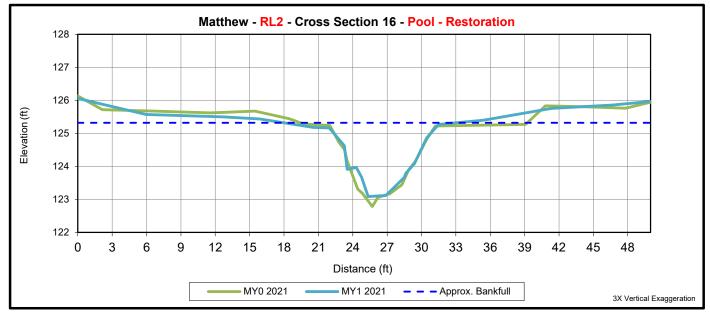
Upstream


Downstream

	Cross Section 13 (Pool)							
	Base	MY1	MY2	MY3	MY5	MY7	MY+	
Bank full Elevation (ft) - Based on AB-XSA ¹	126.4	126.3						
Bankfull Width (ft) ¹	9.4	10.0						
Floodprone Width (ft) ¹	-	-						
Bankfull Max Depth (ft) ²	2.3	2.5						
Low Bank Elevation (ft)	-	-						
Bankfull Cross Sectional Area $(ff^2)^2$	13.9	16.1						
Bankfull Entrenchment Ratio ¹	-	-						
Bankfull Bank Height Ratio ¹	-	-						


	Cross Section 14 (Riffle)							
	Base	MY1	MY2	MY3	MY5	MY7	MY+	
Bankfull Elevation (ft) - Based on AB-XSA ¹	126.7	126.8						
Bankfull Width (ft) ¹	9.3	10.1						
Floodprone Width (ft) ¹	>49.8	>50						
Bankfull Max Depth (ft) ²	1.4	1.3						
Low Bank Elevation (ft)	126.7	126.8						
Bankfull Cross Sectional Area $(ft^2)^2$	9.0	9.0						
Bankfull Entrenchment Ratio ¹	>5.4	>4.9						
Bankfull Bank Height Ratio ¹	1.0	1.0						

Downstream


	Cross Section 15 (Riffle)							
	Base	MY1	MY2	MY3	MY5	MY7	MY+	
Bank full Elevation (ft) - Based on AB-XSA ¹	125.4	125.4						
Bankfull Width (ft) ¹	8.3	8.5						
Floodprone Width (ft) ¹	>50	>50						
Bankfull Max Depth (ft) ²	1.3	1.4						
Low Bank Elevation (ft)	125.4	125.4						
Bankfull Cross Sectional Area $(ft^2)^2$	7.7	8.5						
Bankfull Entrenchment Ratio ¹	>6.0	>5.9						
Bankfull Bank Height Ratio ¹	1.0	1.1						

Upstream

Downstream

	Cross Section 16 (Pool)							
	Base	MY1	MY2	MY3	MY5	MY7	MY+	
Bank full Elevation (ft) - Based on AB-XSA ¹	125.2	125.3						
Bankfull Width (ft) ¹	9.2	9.6						
Floodprone Width (ft) ¹	-	-						
Bankfull Max Depth (ft) ²	2.4	2.1						
Low Bank Elevation (ft)	-	-						
Bankfull Cross Sectional Area $(ft^2)^2$	12.6	11.3						
Bankfull Entrenchment Ratio ¹	-	-						
Bankfull Bank Height Ratio ¹	-	-						

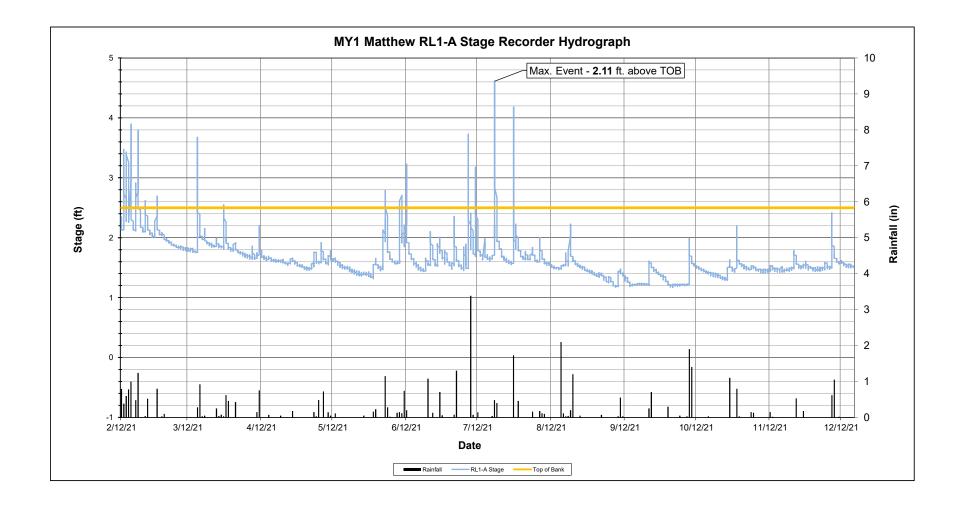
Appendix E

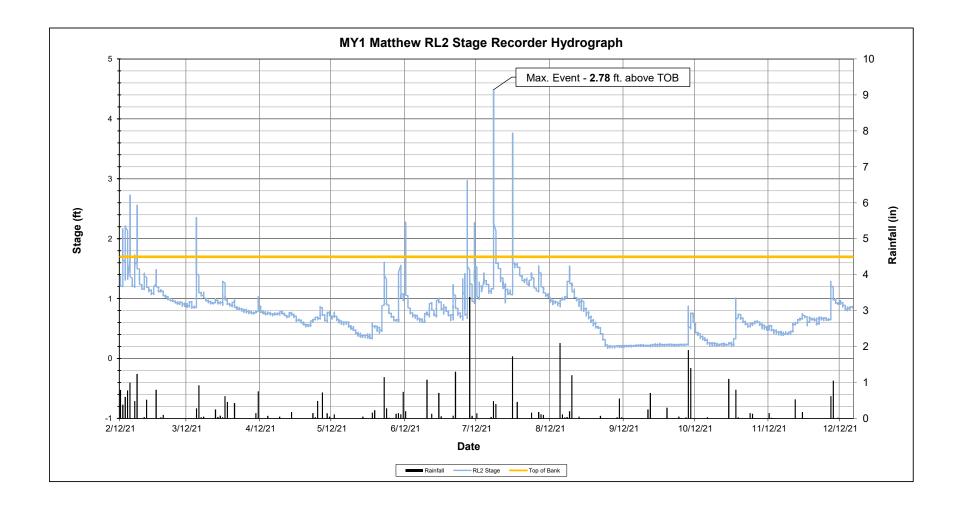
Hydrology Data

&

Soil Characterization

		Norma	l Limits	Project Location
Month	Average	30 Percent	70 Percent	Precipitation*
January	3.37	2.39	3.99	5.66
February	3.25	2.10	3.92	8.87
March	4.23	3.10	4.98	2.89
April	3.71	2.38	4.47	1.63
May	4.25	2.93	5.06	2.13
June	4.60	2.99	5.54	4.76
July	5.56	4.24	6.47	8.08
August	5.10	3.61	6.04	4.29
September	5.02	2.98	6.09	1.94
October	3.32	2.21	3.98	5.36
November	3.24	1.87	3.94	1.16
December	3.28	2.24	3.91	2.41 [†]
Total Annual **	48.93	44.37	52.62	49.20
Above Normal Limits	Within Normal Limits	Below Normal Limits		

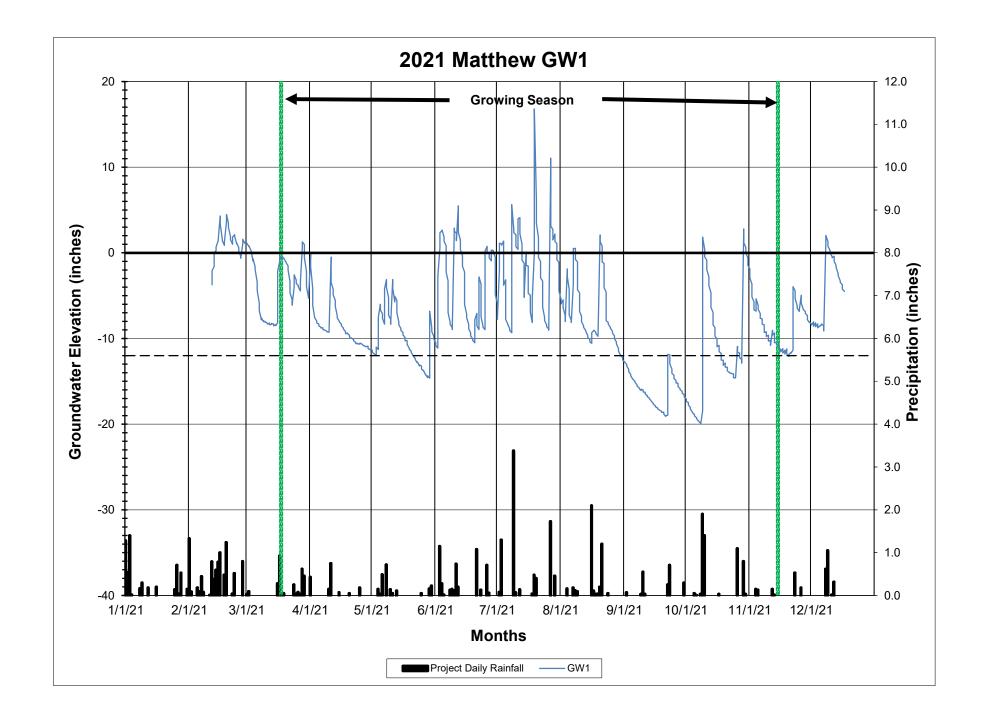

Table 12. 2021 Rainfall Summary

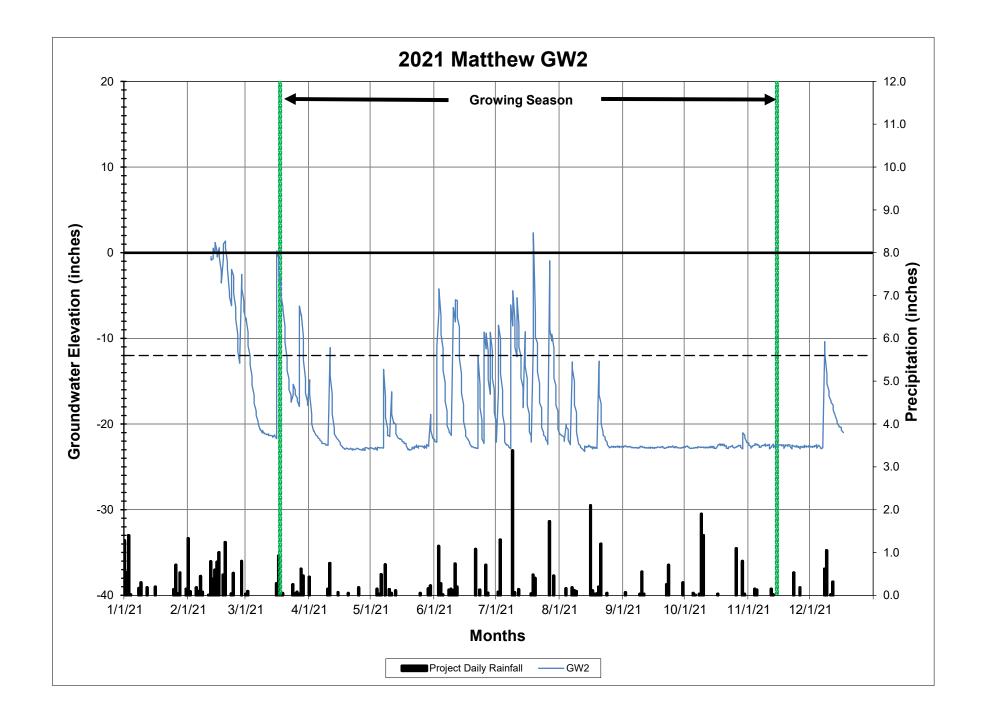

*Project Location Precipitation is a location-weighted average of surrounding gauged data retrieved by the USACE Antecedent Precipitation Tool. Gauges used include Benson 7.5 ESE, Clayton 5.7 SSE, Clayton WTP, Smithfield 2.8 SE, and Smithfield

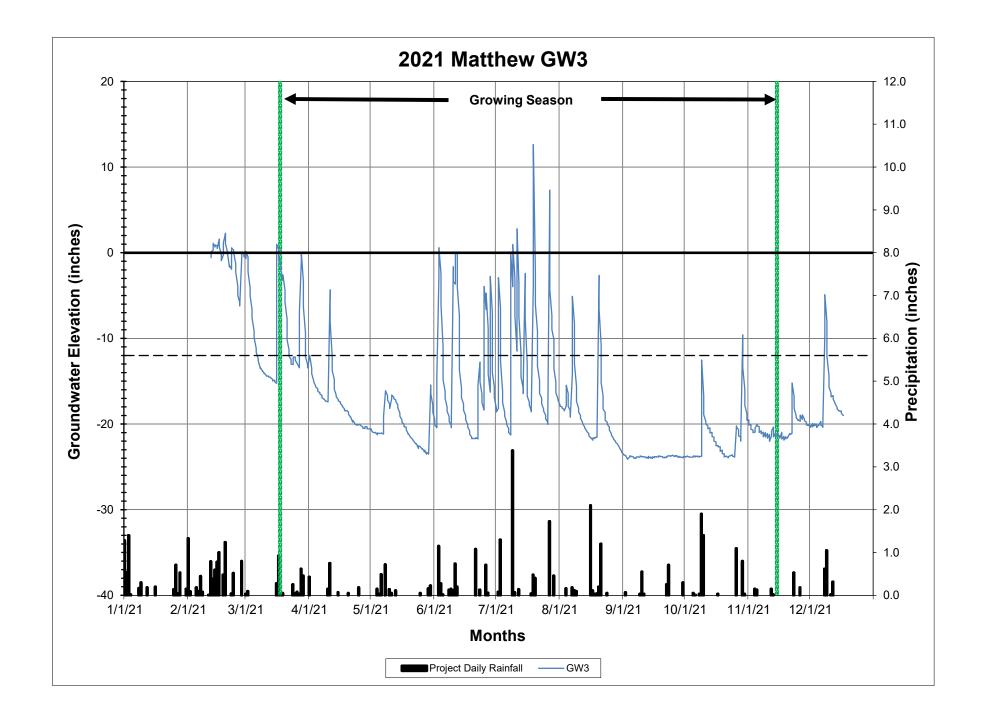
**Total Annual represents the average total precipitation, annually, as calculated by the 30-year period. [†]Only represents data collected through 12/19

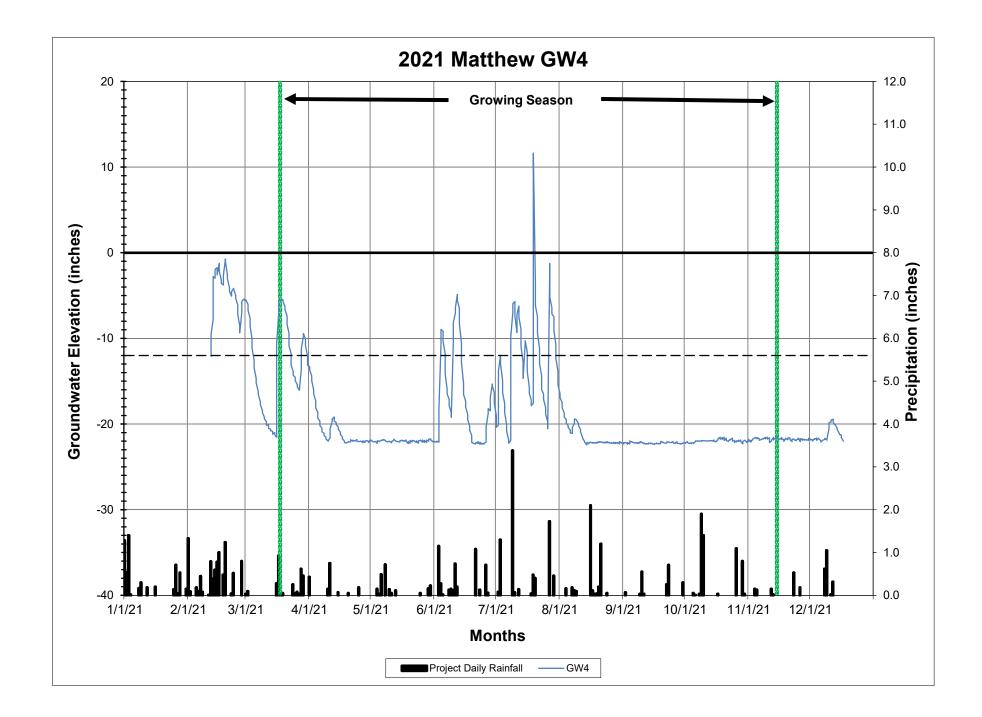
Table 13. Documentation of Geomorphically Significant Flow Events

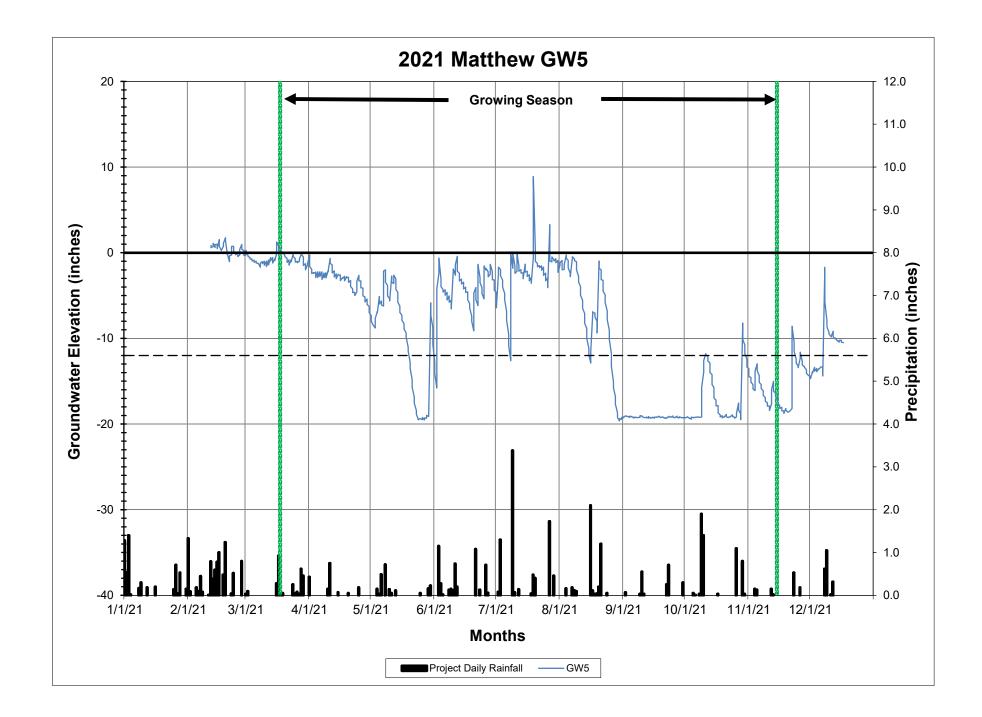
Year	Number of Bankfull Events	Maximum Bankfull Height (ft)	Date of Maximum Bankfull Event							
Stage Record	Stage Recorder RL1-A									
MY1 2021	15	2.11	7/20/2021							
Stage Record	Stage Recorder RL2									
MY1 2021	11	11 2.78								

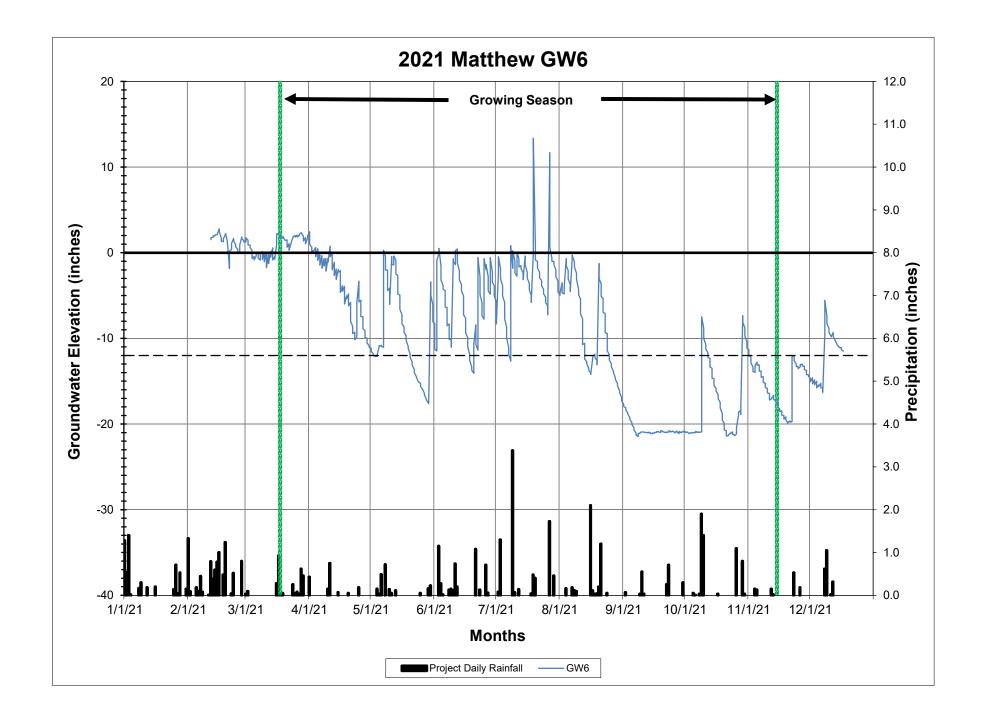


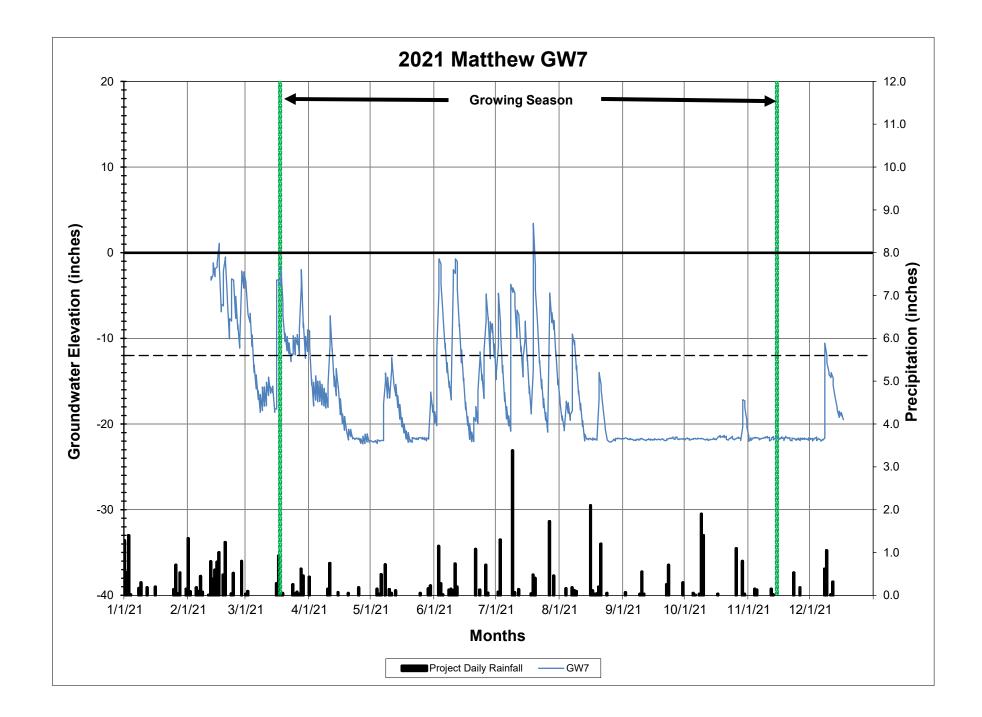

Table 14. 2021 Max Hydroperiod

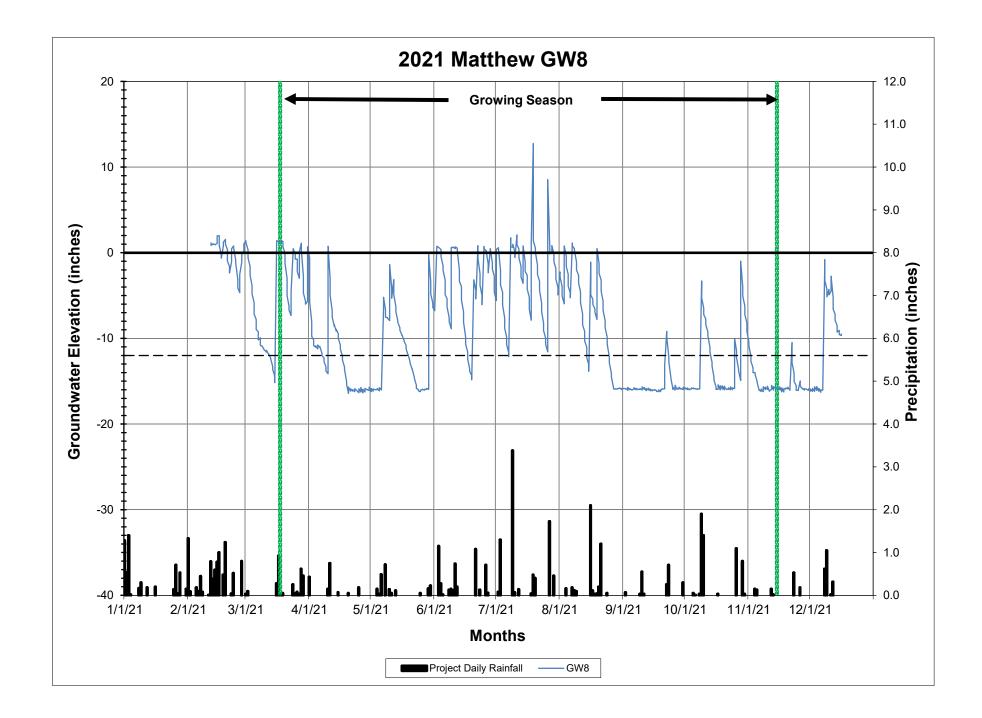

Well ID -	Cor	secutive	Cur		
	Days	Hydroperiod (%)	Days	Hydroperiod (%)	Occurrences
GW1	94	39	188	78	6
GW2	5	2	27	11	12
GW3	5	2	32	13	16
GW4	6	2	31	13	9
GW5	85	35	153	63	5
GW6	54	22	149	62	8
GW7	16	7	49	20	16
GW8	55	23	137	57	10
REF GW1	167	69	208	86	5
REF GW2	91	38	193	80	4

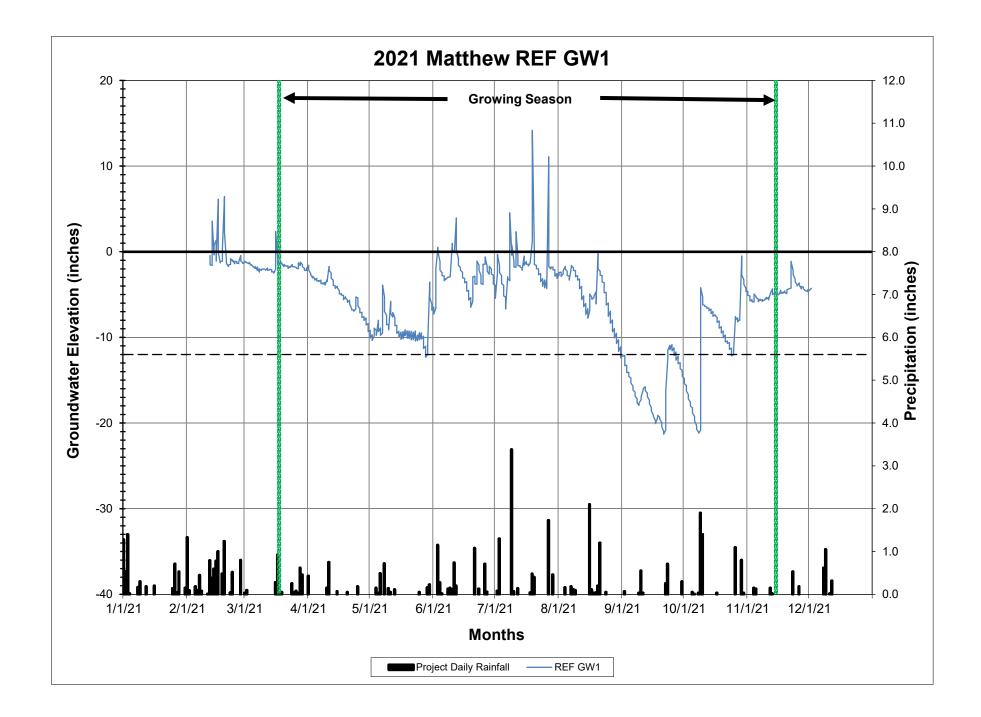

Table 15. Summary of Groundwater Monitoring Results

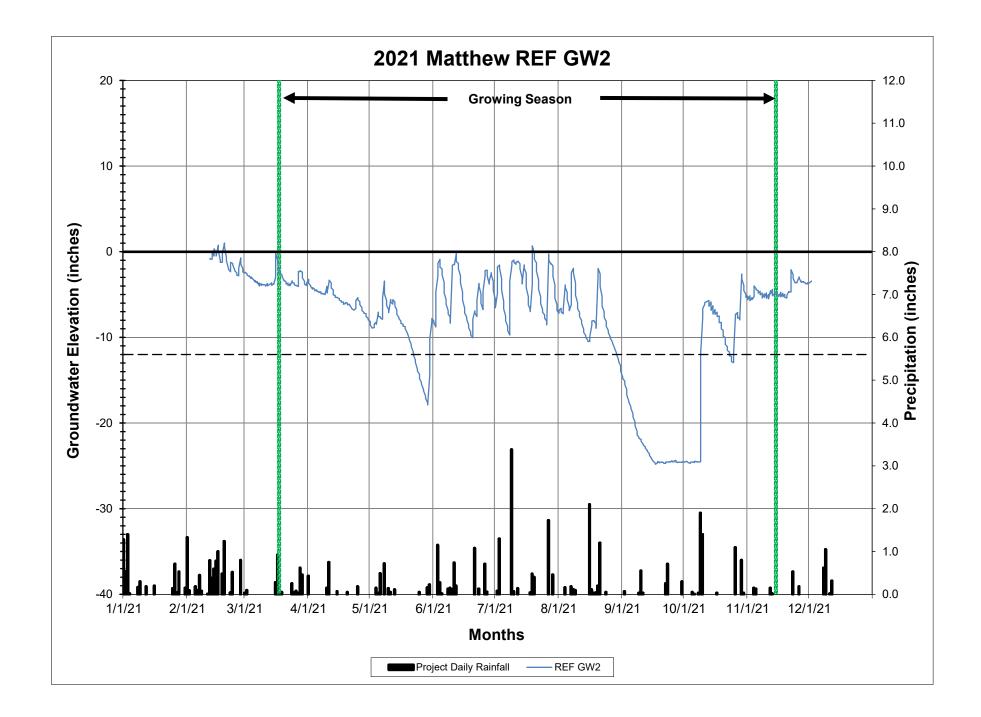

		Summa	ry of Gro	undwater Matthev		ng Results			
		Ground		wrattnew		lroperiod	(%)		
Well ID	Wetland ID	Elevation (ft)	Year 1 (2021)	Year 2 (2022)	Year 3 (2023)	Year 4 (2024)	Year 5 (2025)	Year 6 (2026)	Year 7 (2027)
GW1	WA	126.92	39						
GW2	WA	127.43	2						
GW3	WA	126.70	2						
GW4	WA	126.31	2						
GW5	WA	124.95	35						
GW6	WA	123.89	22						
GW7	WF	123.88	7						
GW8	WF	123.58	23						
REF GW1	WE	N/A	69						
REF GW2	WB	N/A	38						











Soil Characterization Data Forms

			GW1				
Horizon		Matrix Calar	Redox F	eatures	Indunation	Deete	
Depths (in.)	Texture	Matrix Color	Color	Abundance	Induration	Roots	
0-6	Loamy sand	10YR 4/1	2.5YR 4/6	15%	None	Common	
6-13	Sand	10YR 6/1	2.5YR 4/6	10%	None	Few	
13-18	Loamy sand	10YR 4/1	-	-	None	None	
18-24	Sandy loam	10YR 3/1	-	-	None	None	
Comment	ts: Old pond bed						

GW2								
Horizon	T 4	Matria Calar	Redox F	eatures	I	Desta		
Depths (in.)	Texture	Matrix Color	Color	Abundance	Induration	Roots		
0-9	Loam	10YR 4/1	5YR 4/6	10%	None	Common		
9-15	Sandy loam	Gley 1 5/N	2.5YR 3/6	10%	None	None		
15-24	Sandy loam	Gley 1 4/N	2.5 YR 4/6	2%	None	None		
Comment	ts: Old pond bed			1		1		

GW3								
Horizon Depths (in.)		Matrix Color	Redox Features					
	Texture		Color	Abundance	Induration	Roots		
0-4	Silt loam	10YR 4/1	5YR 4/6	10%	None	Common		
4-5	Silt loam	10YR 7/1	10YR 5/6	15%	None	Common		
5-8	Loam	10YR 3/1	5YR 5/6	2%	None	Common		
8-24	Loam	Gley 1 5/N	-	-	None	Few		
Comments	s: Old pond bed	<u> </u>		•		1		

GW4								
Horizon Depths (in.)	Texture		Redox Features					
		Matrix Color	Color	Abundance	Induration	Roots		
0-3	Silt loam	10YR 4/2	10YR 4/6	5%	Weak	Common		
3-10	Silt loam	10YR 4/1	10YR 4/6	5%	Weak	Few		
10-16	Sandy loam	Gley 1 4/N	10YR 4/6	3%	None	None		
16-27	Loamy sand	10YR 6/1	-	-	None	None		
Comment	ts: Old pond bed,	micro-high, large	surface soil crad	cks				

GW5								
Horizon			Redox Features					
Depths (in.)	Texture	Matrix Color	Color	Abundance	Induration	Roots		
0-4	Clay loam	10YR 4/2	5YR 4/6	20%	None	Common		
4-8	Clay loam	10 YR 5/2	5YR 4/6	15%	None	Common		
8-12	Clay loam	10 YR 5/1	5YR 4/6	5%	None	Few		
12-22	Sand	10YR 7/2	10YR 5/6	20%	None	None		
Comment	s: Old pond bed							

GW6								
Horizon Depths (in.)	Texture	Matrix Color	Redox Features			_		
			Color	Abundance	Induration	Roots		
0-10	Sandy loam	10YR 4/2	5YR 4/6	10%	None	Many		
10-16	Loamy sand	10YR 6/2	10YR 5/8	20%	None	Few		
16-29	Clay loam	10YR 5/1	5YR 4/6	15%	None	None		
Commen	ts: Old pond bed							

GW7								
Horizon	Texture	Matrix Color	Redox F	eatures	Induration	Roots		
Depths (in.)			Color	Abundance				
0-18	Loamy sand	10YR 4/1	5YR 5/8	15%	None	None		
18-30	Loamy sand	10YR 4/2	10YR4/6	5%	None	None		
Comment	ts: Old damn foot	print, likely histor	ric compacted fil	11				

Horizon	Texture		Redox Features			D
Depths (in.)		Matrix Color	Color	Abundance	Induration	Roots
0-16	Sandy loam	10YR 5/1	5YR 5/8	15%	None	Few
16-28	Sandy loam	10YR 4/1	10 YR 4/6	5%	None	None

RGW1								
Horizon Depths (in.)		Matrix	Redox Features					
	Texture	Color	Color	Abundance	Induration	Roots		
0-10	Mucky clay loam	10YR 5/1	5YR 5/6	20%	None	Many		
10-14	Sandy clay loam	10YR 4/1	5YR 5/6	10%	None	Few		
14-16	Loamy sand	10YR 6/1	-	-	None	None		
16-24	Sandy clay loam	10YR 3/1	-	-	None	None		
Commen	ts:							

RGW2								
Horizon		Matrix	Redox Features					
Depths (in.)	Texture	Color	Color	Abundance	Induration	Roots		
0-6	Mucky loam	10YR 4/1	5YR 4/6	5%	None	Many		
6-12	Mucky loam	10YR 5/1	-	-	None	Common		
12-18	Sandy clay loam	10YR 5/1	-	-	None	Few		
18-22	Sandy clay loam (gravelly)	10YR 7/1	10YR 5/8	15%	None	None		
Commen	ts:							

