2001 Ambient Air Quality Report

State of North Carolina Michael F. Easley, Governor

Department of Environment and Natural Resoures William G. Ross, Jr., Secretary

Division of Air Quality B. Keith Overcash, P.E., Director

Ambient Monitoring Section Hoke P. Kimball, Chief

> Published June 2008

2001 Ambient Air Quality Report

STATE OF NORTH CAROLINA Michael F. Easley, Governor

DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES William G. Ross, Jr., Secretary

DIVISION OF AIR QUALITY **B. Keith Overcash, P.E., Director**

AMBIENT MONITORING SECTION Hoke P. Kimball, Chief

> PUBLISHED June 2008

2001 Ambient Air Quality Report

Ambient Monitoring Section Report # 2008.01

Acknowledgements:

Primary Author: Wayne Cornelius Additional Assistance: Lucyna Kozek

Public Sources of Data: North Carolina Division of Air Quality	http://daq.state.nc.us/
Forsyth County Environmental Affairs Department	http://www.co.forsyth.nc.us/EnvAffairs/weathereport.htm
EPA/AIRS Air Quality Subsystem	http://www.epa.gov/airsweb
National Atmospheric Deposition Program	http://nadp.sws.uiuc.edu

Published: June 2008 Not copyrighted.

Copies of this public document will be printed only by special request

Preface

This report is issued by the Division of Air Quality of the Department of Environment and Natural Resources to inform the public of air pollution levels throughout the state of North Carolina. It describes the sources and effects of the following pollutants for which the U.S. Environmental Protection Agency and the State of North Carolina have established ambient air quality standards:

Particulate Matter	Nitrogen Dioxide
Carbon Monoxide	Ozone
Sulfur Dioxide	Lead

A brief discussion of the ambient air monitoring program, including a description of the monitoring network, is provided. Detailed results are presented of monitoring that was conducted in 2001 to measure the outdoor concentrations. The data are presented graphically and as statistical summaries, including comparisons to the ambient air quality standards. The report discusses the recorded data, and the seasonal variability of some pollutants. Data and areas exceeding the ambient air quality standards are identified. Factors that have contributed to those exceedances are described also.

Acid rain data from the National Atmospheric Deposition Program/National Trends Network for North Carolina also are included for 2001. Data collected after 2001 will be discussed in later reports.

Current air pollution information is available for the Charlotte area 24 hours a day through the use of the air quality index telephone numbers listed below:

Charlotte area

704-333-SMOG

Additional copies of this report and previous annual reports are available from:

Division of Air Quality Department of Environment and Natural Resources 1641 Mail Service Center Raleigh, North Carolina 27699-1641

and on the Division of Air Quality's website http://daq.state.nc.us/monitor/reports/ .

Comments regarding this report or suggestions for improving future reports are welcomed. Comments may be sent to Dr. Wayne L. Cornelius, at the above address.

B. Keith Overcash, P.E., Director Division of Air Quality

Executive Summary

In 2001, the North Carolina Division of Air Quality (DAQ), the three local program agencies and one tribal agency (listed in Appendix A) collected 451,032 air quality samples. These samples included measurements of the U.S. Environmental Protection Agency's (EPA) criteria air pollutants: particulate matter, carbon monoxide, ozone, sulfur dioxide, nitrogen dioxide and lead. This report discusses each pollutant and presents summary tables, maps, charts and explanations of the data.

The report also includes data from weekly acid rain samples collected by the National Atmospheric Deposition Program/National Trends Network (NADP) at seven North Carolina sites and one Tennessee site very close to the North Carolina border. It discusses acid rain and presents summary tables, maps, charts and explanations of the data.

Three different types of **particulate matter** were sampled in North Carolina during 2001. Total Suspended Particulate (TSP), considered to be particles having an aerodynamic diameter of 100 micrometers or less, is regulated by North Carolina standards. Particulate matter (PM_{10}) with a mean aerodynamic diameter less than or equal to a nominal 10 micrometers (0.00004 inches) is regulated by both EPA and N.C. standards. Fine particulate matter ($PM_{2.5}$) with a mean aerodynamic diameter less than or equal to a nominal 2.5 micrometers (0.00001 inches) has been regulated by EPA since 1997.

TSP was not sampled in 2001, but we report the most recent sampling within three years. In 2000 TSP was sampled at 2 sites, yielding 92 daily samples. No exceedances of the state TSP ambient air quality standard for 24-hour samples ($150 \mu g/m^3$) were observed in 2000.

 PM_{10} was sampled at 31 sites, yielding 2376 daily samples. There were no exceedances of the National Ambient Air Quality Standards for PM_{10} (150 µg/m³ for 24-hour samples and 50 µg/m³ for the annual arithmetic mean). Mean 24-hour concentrations have decreased about 30 percent since 1985.

 $PM_{2.5}$ was sampled at 38 sites yielding 5375 daily samples. There was one exceedance of the ambient air quality standards for $PM_{2.5}$ (65 µg/m³ for 24-hour samples). The value of 93.3 was observed at the Bingham Road site in Asheville. Four of the 38 sites exceeded the annual arithmetic mean standard of 15 µg/m³.

Carbon monoxide (CO), the most common air pollutant, largely results from fuel combustion. The most likely areas to have excessive CO concentrations are larger cities where there are more cars and congested streets.

CO was sampled at 11 sites, yielding 57,473 valid hourly averages. The National Ambient Air Quality Standards for CO are 35 ppm for the maximum one-hour average and 9 ppm for the maximum eight-hour average. There were no exceedances of the standards. The

highest one-hour concentration of 9.3 was observed at the Tryon site in Charlotte. The highest eight hour concentration of 4.4 ppm was observed at the Oleander and College site in Wilmington and the Person Street site in Raleigh. Both the mean one-hour average and the mean eight-hour average have been decreasing by about 4 percent per year. The combined effects of newer cars in the vehicle fleet, traffic control strategies, and the Inspection and Maintenance program in Durham, Orange, Wake, Forsyth, Guilford, Cabarrus, Gaston, Mecklenburg, and Union Counties have helped reduce the number and intensity of CO exceedances from previous years.

Ozone (O_3) forms in the lower atmosphere when hydrocarbons (or volatile organic compounds) and nitrogen oxides chemically react in the presence of sunlight and high temperatures. The main emphases in control of ozone has been to limit hydrocarbon and nitrogen oxide emissions.

 O_3 was sampled at 46 sites, yielding 233,160 valid hourly averages. The National Ambient Air Quality Standard for O_3 is 0.08 ppm for the maximum eight-hour average and 0.12 ppm for the maximum one-hour average.

In 2001, there were 6 exceedances of the one-hour standard, all of which occurred on two days in August. Eight exceedances occurred in North Carolina in 2000, and 20 occurred in 1999. Mecklenburg, Rowan and Wake Counties met or exceeded the criteria for nonattainment of the one-hour ozone standard with eleven, five and six exceedances respectively over a three-year period, however EPA had rescinded the one-hour standard during that time period. Mecklenburg County was redesignated as in attainment for ozone in July 1995. Hydrocarbon control strategies continue to be used there to help reduce ozone concentrations.

In 2001, the 8-hour standard was exceeded 182 times, on 37 different days, with six counties having 10 or more exceedances at individual sites. The site at 246 West Street and Gold Hill Avenue, Rockwell in Rowan County had the highest number, 17.

Sulfur dioxide (SO_2) is mainly produced by combustion of fossil fuels containing sulfur compounds and the manufacture of sulfuric acid.

SO₂ was sampled at 17 sites, yielding 136,344 valid hourly averages. There were no exceedances of the National Ambient Air Quality Standards (365 μ g/m³ or 0.14 ppm for a 24-hour average, 1300 μ g/m³ or 0.50 ppm for a three-hour average, 80 μ g/m³ or 0.03 ppm for the annual arithmetic mean) at network monitoring sites.

Nitrogen oxides (NO_x) are produced primarily from the burning of fossil fuels such as coal, oil and gasoline, due to the oxidation of atmospheric nitrogen and nitrogen compounds in the fuel. The primary combustion product is NO, which reacts with hydrocarbons, ozone and other atmospheric compounds to form NO₂. NO_x compounds play an important role in the formation of ozone. Reactive nitrogen species (NO_y) were monitored in Charlotte and Winston-Salem to gather data for the development of control strategies for ozone non-attainment areas. The criteria pollutant NO_2 was sampled at two sites, yielding 16,334 valid hourly averages. There were no exceedances of the National Ambient Air Quality Standard (0.053 ppm for the annual arithmetic mean). The mean one-hour average concentration has been decreasing by about 20 percent per year.

Lead (Pb) emissions result from coal combustion and the sandblasting of highway bridges, overpasses, and water tanks. In the past, the combustion of gasoline containing tetraethyl lead as an additive was a major source.

Lead was not sampled in 2001. There have been no recent exceedances of the ambient air quality standard for lead (1.5 μ g/m³ for a quarterly arithmetic mean). Mean lead concentrations have decreased by 92 percent since 1979. The steady decline in the use of leaded gasoline is primarily responsible for this trend.

Acid Rain is produced when nitrate and sulfate ions from motor vehicles, combustion and industrial sources reach the upper atmosphere, react with moisture in the air, and are deposited as acid precipitation. Monitoring of pH and other ion concentrations in precipitation will help to identify trends and demonstrate the results of efforts to reduce emissions from mobile and industrial sources.

The annual mean pH in 2001 ranged from 4.43 (Rowan County) to 4.88 (Sampson County).

CONTENTS

2 Description of Criteria Pollutants 2 2.1 Particulate Matter 2 2.1.1 Sources 2 2.1.2 Effects 3 2.2 Carbon Monoxide 3 2.2.1 Sources 3 2.2.1 Sources 3 2.2.1 Effects 3 2.2.2 Effects 3 2.2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.4.2 Effects 4 2.4.1 Sources 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 5 2.6.3 Sources 5 2.6.4 Ead 5 2.6.5 Sources 5 2.6.6 Lead 5 2.6.7 Supended Particulates 18 5.1 Total Suspended Particulates <th>1</th> <th>Introduction</th> <th>. 1</th>	1	Introduction	. 1
2.1 Particulate Matter 2 2.1.1 Sources 2 2.1.2 Effects 3 2.2 Carbon Monoxide 3 2.1.3 Sources 3 2.2.2 Effects 3 2.2.2 Effects 3 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.3.2 Effects 4 2.4.3 Sources 4 2.4.4 Sources 4 2.4.2 Effects 5 2.5.1 Sources 5 2.5.2 Effects 5 2.5.3 Surces 5 2.5.4 Sources 5 2.5.5 Sources 5 2.6.6 Lead 5 2.6.7 Surces 5 2.6.8 Surces 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4	2		
2.1.2 Effects 3 2.2.1 Sources 3 2.2.2 Effects 3 2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.4.2 Effects 4 2.4.2 Effects 4 2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 5 2.6.3 Standards 7 7 4 Ambient Air Quality Monitoring Program 9 9 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM25 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.7 Nitrogen Dioxide 52 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 </td <td>2.1</td> <td>1</td> <td></td>	2.1	1	
2.1.2 Effects 3 2.2.1 Sources 3 2.2.2 Effects 3 2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.1 Sources 4 2.4.2 Effects 4 2.4.2 Effects 4 2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 5 2.6.3 Standards 7 7 4 Ambient Air Quality Monitoring Program 9 9 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM25 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.7 Nitrogen Dioxide 52 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 </td <td></td> <td>2.1.1 Sources</td> <td> 2</td>		2.1.1 Sources	2
2.2 Carbon Monoxide 3 2.2.1 Sources 3 2.2.2 Effects 3 2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.2 Effects 4 2.3.2 Effects 4 2.3.2 Effects 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5.1 Sources 5 2.5.2 Effects 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 Ambient Air Quality Monitoring Program 9 9 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 Ozone 36 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide			
2.2.1 Sources 3 2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.3.2 Effects 4 2.3.2 Effects 4 2.4 Sulfur Dioxide 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 9 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 Ozone 36 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 32 5.7 Ozone 36 5.8 Lead 51 6.4 Carb	2.2		
2.2.2 Effects 3 2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.4 Sulfur Dioxide 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5.1 Sources 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 Ozone 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.8 Lead 51 6.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.8 <td< td=""><td></td><td></td><td></td></td<>			
2.3 Ozone 4 2.3.1 Sources 4 2.3.2 Effects 4 2.4 Sulfur Dioxide 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5.1 Sources 5 2.5.2 Effects 5 2.5.1 Sources 5 2.6.2 Effects 5 2.6.3 Standards 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 Ozone 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 4 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7.1 Sources 62 7.2 Effects 62 7.3			
2.3.1 Sources 4 2.3.2 Effects 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 Ozone 36 5.3 PM ₁₀ 20 5.3 PM _{2.5} 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 40 5.7 Nitrogen Dioxide 52 5.8 Lead 51 6 Air Quality Index 52 7.4 Abinoring 62 7.5	2.3		
2.3.2 Effects 4 2.4 Sulfur Dioxide 4 2.4.1 Sources 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.5.2 Effects 5 2.5.2 Effects 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 9 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 32 5.6 Sulfur Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7.4 Sources 62 7.2 Effects 62 7.3			
2.4 Sulfur Dioxide 4 2.4.1 Sources 4 2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.1 Total Suspended Particulates 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 <			
2.4.1 Sources 4 2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 200 5.3 PZ5 Ozone 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Mon	2.4		
2.4.2 Effects 5 2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 200 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 52 5.8 Lead 51 6 Air Quality Index 52 7.4 Carden Monitoring 62 7.2 Effects 62 7.3<			
2.5 Nitrogen Oxides 5 2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM25 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 7.4 Anity Pollution Monitoring Agencies 67 Appendix A. Air Pollution Monitoring Agencies 67 7.1 Sources 70			
2.5.1 Sources 5 2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 7.4 Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 Appendix C. Box-And-Whisker Plots 71	2.5		
2.5.2 Effects 5 2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 7.4 Appendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70		6	
2.6 Lead 5 2.6.1 Sources 5 2.6.2 Effects 6 3 Standards 7 4 Ambient Air Quality Monitoring Program 9 5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 7.4 Surces 66 Appendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 Appendix C. Box-And-Whisker Plots 71			
2.6.1Sources52.6.2Effects63Standards74Ambient Air Quality Monitoring Program95Pollutant Monitoring Results185.1Total Suspended Particulates185.2PM10205.3PM2.5265.4Carbon Monoxide325.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	2.6		
2.6.2Effects63Standards74Ambient Air Quality Monitoring Program95Pollutant Monitoring Results185.1Total Suspended Particulates185.2PM10205.3PM2.5265.4Carbon Monoxide325.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
3Standards			
4Ambient Air Quality Monitoring Program95Pollutant Monitoring Results185.1Total Suspended Particulates185.2PM10205.3PM2.5265.4Carbon Monoxide325.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies70Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	3		
5 Pollutant Monitoring Results 18 5.1 Total Suspended Particulates 18 5.2 PM10 20 5.3 PM2.5 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 References 66 Appendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 Appendix C. Box-And-Whisker Plots 71			
5.1 Total Suspended Particulates 18 5.2 PM ₁₀ 20 5.3 PM _{2.5} 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 7.4 Pendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 70 Appendix C. Box-And-Whisker Plots 71			
5.2 PM ₁₀ 20 5.3 PM _{2.5} 26 5.4 Carbon Monoxide 32 5.5 Ozone 36 5.6 Sulfur Dioxide 46 5.7 Nitrogen Dioxide 50 5.8 Lead 51 6 Air Quality Index 52 7 Acid Rain 62 7.1 Sources 62 7.2 Effects 62 7.3 Monitoring 62 References 66 Appendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 Appendix C. Box-And-Whisker Plots 71			
5.3 $PM_{2.5}$ 265.4Carbon Monoxide325.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix C. Box-And-Whisker Plots71		1	
5.4Carbon Monoxide325.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
5.5Ozone365.6Sulfur Dioxide465.7Nitrogen Dioxide505.8Lead516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
5.6Sulfur Dioxide	5.5		
5.7Nitrogen Dioxide505.8Lead.516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
5.8Lead.516Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
6Air Quality Index527Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	5.8	e	
7Acid Rain627.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	6		
7.1Sources627.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	7		
7.2Effects627.3Monitoring62References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71	7.1		
7.3 Monitoring 62 References 66 Appendix A. Air Pollution Monitoring Agencies 67 Appendix B. Exceptional Events 70 Appendix C. Box-And-Whisker Plots 71			
References66Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
Appendix A. Air Pollution Monitoring Agencies67Appendix B. Exceptional Events70Appendix C. Box-And-Whisker Plots71			
Appendix B. Exceptional Events			
Appendix C. Box-And-Whisker Plots			
11		•• •	
Appendix D. Nonattainment and North Carolina		Appendix D. Nonattainment and North Carolina	72

List of Tables

Table 3.1 National and North Carolina Ambient Air Quality Standards	8
Table 4.1 Ambient Air Monitoring Sites Operated in North Carolina, 2001	. 11
Table 5.1 Total Suspended Particulates in Micrograms Per Cubic Meter for 2000	. 19
Table 5.2 PM ₁₀ in Micrograms Per Cubic Meter for 2001	. 21
Table 5.3 PM _{2.5} in Micrograms Per Cubic Meter for 2001	. 27
Table 5.4 Carbon Monoxide in Parts Per Million for 2001	. 33
Table 5.5 One-Hour Ozone in Parts Per Million for 2001	. 38
Table 5.6 Eight-Hour Ozone in Parts Per Million for 2001	. 42
Table 5.7 Sulfur Dioxide in Parts Per Million from All Sites for 1999-2001	. 47
Table 5.8 Nitrogen Dioxide in Parts Per Million for	. 50
Table 6.1 Air Quality Index Category Days in the Major Metropolitan Statistical Areas, 2001	. 55
Table 7.1 pH, Conductivity in Microsiemans per Centimeter and Precipitation in Inches from	the
National Atmospheric Deposition Program for 2001.	. 64
Table 7.2 Ion Concentrations in Milligrams per Liter (Precipitation-weighted Annual Means)	
from the National Atmospheric Deposition Program Data for 2001	. 65

List of Figures

Figure 4.1 Monitoring Sites Active in 2001	10
Figure 5.1 Location of PM10 Monitoring Sites	21
Figure 5.2 PM ₁₀ : Second Highest 24-Hour Averages, 2001	25
Figure 5.3 PM ₁₀ : Maximum Annual Arithmetic Means, 2001	25
Figure 5.4 Location of PM _{2.5} Monitoring Sites	
Figure 5.5 PM _{2.5} : Second Highest 24-Hour Averages, 2001	30
Figure 5.6 PM _{2.5} : Maximum Annual Arithmetic Means, 2001	30
Figure 5.7 PM _{2.5} : Design Values by County, 1999-2001	31
Figure 5.8 Location of Carbon Monoxide Monitoring Sites	33
Figure 5.9 Carbon Monoxide: Second Highest 1-Hour Average, 2001	35
Figure 5.10 Carbon Monoxide: Second Highest Non-overlapping 8-Hour Average, 2001	35
Figure 5.11 Location of Ozone Monitoring Sites	37
Figure 5.12 Ozone: Second Highest Annual 1-Hour Average, 2001	45
Figure 5.13 Ozone: Mean Annual Fourth Highest 8-Hourr Average, 1999-2001	45
Figure 5.14 Locations of Sulfur Dioxide Monitoring Sites in 1999,2000 and 2001	47
Figure 5.15 Sulfur Dioxide: Second Highest 3-Hour Averages in the Most recent Year of Da	ita
from 1999, 2000 and 2001	49
Figure 5.16 Sulfur Dioxide: Second Highest 24-Hour Averages in the Most Recent Year of I	Data
from 1999, 2000 or 2001	
Figure 5.17 Location of Nitrogen Dioxide Monitoring Sites	
Figure 6.1 Daily Air Quality Index Values for Asheville, NC, Metropolitan Statistical Area,	2001
	55
Figure 6.2 Daily Air Quality Index Summary for Asheville, NC, Metropolitan Statistical Are	
2001	56
Figure 6.3 Daily Air Quality Index Values for Charlotte-Gastonia, NC,-Rock Hill, SC,	
1 y	56
Figure 6.4 Daily Air Quality Index Summary for Charlotte-Gastonia, NC,-Rock Hill, SC,	
Metropolitan Statistical Area, 2001	57
Figure 6.5 Daily Air Quality Index Values for Fayetteville, NC, Metropolitan Statistical Are	
2001	57
Figure 6.6 Daily Air Quality Index Summary for Fayetteville, NC, Metropolitan Statistical A 2001	
Figure 6.7 Daily Air Quality Index Values Greensboro-Winston-Salem-High Point, NC,	
Metropolitan Statistical Area, 2001	58
Figure 6.8 Daily Air Quality Index Summary Greensboro-Winston-Salem-High Point, NC,	
Metropolitan Statistical Area, 2001	59
Figure 6.9 Daily Air Quality Index Values for Raleigh-Durham, NC, Metropolitan Statistica	
Area, 2001	
Figure 6.10 Daily Air Quality Index Summary for Raleigh-Durham, NC, Metropolitan Statis	
Area, 2001	60
Figure 6.11 Daily Air Quality Index Values for Wilmington, NC, Metropolitan Statistical An	rea,
2001	

Figure 6.12 Daily Air Quality Index Summary for Wilmington, NC, Metropolitan Statistical	
Area, 2001	61
Figure 7.1 Annual Mean pH Values at North Carolina NADP Sites, 2001	

1 Introduction

This annual report summarizes the ambient air monitoring performed in calendar year 2001 by the North Carolina Division of Air Quality (DAQ), three local air pollution agencies and one tribal agency, which are more fully described in Appendix A.

There were 451,124¹ air quality samples of the U.S. Environmental Protection Agency's (EPA) criteria pollutants particulate matter, carbon monoxide, ozone, sulfur dioxide, nitrogen dioxide and lead-which are discussed in this report.

Chapter 2 describes the criteria pollutants and discusses their sources and effects on human health, plants and animals. Chapter 3 outlines the standards applied to criteria pollutant concentrations established by the EPA and the state of North Carolina to protect human health (primary standards) and plants, animals, and property (secondary standards). Chapter 4 describes the ambient monitoring program conducted by DAQ and three local program agencies. Chapter 5 gives detailed monitoring results for each pollutant, with a map of the monitor sites, a table of the monitor summary statistics relevant to the standards, one or more maps summarizing the important statistics for each county with monitors, and additional summaries as appropriate to each pollutant. Chapter 6 describes the EPA Air Quality Index for the criteria pollutants and charts index measurements for five Metropolitan Statistical Areas of North Carolina. Chapter 7 presents sources, effects and monitoring of acid rain data conducted in North Carolina by the National Atmospheric Deposition Program and National Trends Network (NADP). It also includes a map of the calendar year mean pH level and site statistics for the calendar year in two tables.

In previous reports, we included a final chapter that provides statewide summary trends for the criteria pollutants. We intend to restore the trends report chapter in subsequent annual report to be published in 2008.

¹ The number includes TSP samples collected in 2000.

2 Description of Criteria Pollutants

2.1 Particulate Matter

Atmospheric particulate matter is defined as any airborne material, except uncombined water (liquid, mist, steam, etc.) that exists in a finely divided form as a liquid or solid at standard temperature (251C) and pressure (760 mm mercury) and has an aerodynamic diameter of less than 100 micrometers (µm). In the period covered by this report, three sizes of particulate matter were monitored, total suspended particulate (TSP), PM₁₀ and PM_{2.5}. TSP is any particulate matter measured by the method described in EPA regulations 40 CFR 50 App. B (United States Environmental Protection Agency [US EPA] 1993, p. 715-728) and is generally considered to be particles having an aerodynamic diameter of 40 um or less (Watson and Chow 2001), although particles up to about 100 um are sometimes captured by samplers. (The probability of inhalation for 100 µm particles is about 50 percent and increases with decreasing particle size [Maynard and Jensen 2001].) PM₁₀ is particulate matter with an aerodynamic diameter less than or equal to 10 µm as measured according to EPA regulations 40 CFR 50 App. J (United States Environmental Protection Agency [US EPA] 1993, p. 769-773). TSP measurements have been made in North Carolina since the early 1960s and PM₁₀ has been sampled locally in Charlotte since 1985 and statewide since 1986 (North Carolina Department of Environment, Health, and Natural Resources 1991). The new PM_{2.5} standard was adopted by North Carolina on April 1, 1999. On May

14, 1999 the U.S. Court of Appeals ruled the setting or the standard by EPA was an unconstitutional use of authority and could be vacated. The Supreme Court later upheld the new standard. EPA continues to require monitoring for $PM_{2.5}$.

2.1.1 Sources

Particulates are emitted by many human activities, such as fuel combustion, motor vehicle operation, industrial processes, grass mowing, agricultural tilling and open burning. Natural sources include windblown dust, forest fires, volcanic eruptions, and plant pollen.

Particles emitted directly from a source may be either fine (less than $2.5 \ \mu$ m) or larger (2.5 - 60 μ m), but particles photochemically formed in the atmosphere will usually be fine. Generally, larger particles have very slow settling velocities and are characterized as suspended particulate matter. Typically, fine particles originate by condensation of materials produced during combustion or atmospheric reactions.

2.1.2 Effects

Particulate matter can cause health problems affecting the breathing system, including aggravation of existing lung and heart disease, limitation of lung clearance, changes in form and structure of organs, and development of cancer. Individuals most sensitive to the effects of particulate matter include those with chronic obstructive lung or heart disease, those suffering from the flu, asthmatics, the elderly, children, and mouth breathers.

Health effects from inhaled particles are influenced by the depth of penetration of the particles into the respiratory system, the amount of particles deposited in the respiratory system, and by the biological reaction to the deposited particles. The risks of adverse health effects are greater when particles enter the tracheobronchial and alveolar portions of the respiratory system. Small particles can penetrate into these deeper regions of the respiratory system. Healthy respiratory systems can trap particles larger than 10 micrometers more efficiently before they move deeply into the system and can more effectively remove the particles that are not trapped before deep movement.

Particulate matter also can interfere with plant photosynthesis, by forming a film on leaves reducing exposure to sunlight. Particles also can cause soiling and degradation of property, which can be costly to clean and maintain.

Suspended particles can absorb and scatter light, causing reduction of visibility. This is a national concern, especially in areas such as national parks, historic sites and scenic attractions visited by sightseers.

2.2 Carbon Monoxide

Carbon monoxide (CO) is the most commonly occurring air pollutant. CO is a colorless and poisonous gas produced by incomplete burning of carbon-containing fuel.

2.2.1 Sources

Most atmospheric CO is produced by incomplete combustion of fuels used for vehicles, space heating, industrial processes and solid waste incineration. Transportation accounts for the majority of CO emissions. Boilers and other fuel burning heating systems are also significant sources.

2.2.2 Effects

Breathing carbon monoxide affects the oxygen-carrying capacity of the blood. Hemoglobin in the blood binds with CO more readily than with oxygen, starving the body of vital oxygen.

Individuals with anemia, lung and heart diseases are particularly sensitive to CO effects. Low concentrations affect mental function, vision and alertness. High concentrations can cause fatigue, reduced work capacity and may adversely affect fetal development. Chronic exposure to CO at concentrations as low as 70 ppm (80 mg/m³) can cause cardiac damage. Other health effects associated with exposure to CO include central nervous system effects and pulmonary function difficulties. Ambient CO apparently does not adversely affect vegetation or materials.

2.3 Ozone

Ozone is a clear gas that forms in the troposphere (lower atmosphere) by chemical reactions involving hydrocarbons (or volatile organic compounds) and nitrogen oxides in the presence of sunlight and high temperatures. Even low concentrations of tropospheric ozone are harmful to people, animals, vegetation and materials. Ozone is the most widespread and serious criteria air pollutant in North Carolina.

Ozone in the upper atmosphere (stratosphere) shields the earth from harmful effects of ultraviolet solar radiation. Stratospheric ozone can be damaged by the emission of chlorofluoro-hydrocarbons (CFCs) such as Freon.

2.3.1 Sources

Ozone (O_3) is the major component of a complex mixture of compounds known as photochemical oxidants. Ozone is not usually emitted directly into the atmosphere, but is formed by a series of complex reactions involving hydrocarbons, nitrogen oxides and sunlight. Ozone concentrations are higher during the daytime in late spring, summer and early autumn when the temperature is above 601F and the sunlight is more intense.

Two natural sources of upper atmosphere ozone are solar radiation and lightning during thunderstorms. These are not significant sources of tropospheric (ground level) ozone.

2.3.2 Effects

Ozone is a pulmonary irritant, affecting the respiratory mucous membranes, as well as other lung tissues and respiratory functions. Ozone has been shown to impair normal function of the lung causing shallow, rapid breathing and a decrease in pulmonary function. Other symptoms of exposure include chest tightness, coughing and wheezing. People with asthma, bronchitis or emphysema probably will experience breathing difficulty when exposed to shortterm concentrations between 0.15 and 0.25 ppm. Continued or repeated long-term exposure may result in permanent lung structure damage.

Ozone damages vegetation by injuring leaves. Ozone also accelerates material aging, cracking rubber, fading dyes and eroding paint.

2.4 Sulfur Dioxide

Sulfur dioxide (SO₂) is a colorless, corrosive, harmful gas with a pungent odor. Smaller concentrations of sulfur trioxide and other sulfate compounds are also found in SO₂ emissions. Sulfur oxides contribute to the formation of acid rain and the formation of particles that reduce visibility.

2.4.1 Sources

The main sources of SO_2 are combustion of fossil fuels containing sulfur compounds and the manufacture of sulfuric acid. Other sources include refining of petroleum and smelting of ores that contain sulfur.

2.4.2 Effects

The most obvious health effect of sulfur dioxide is irritation and inflammation of body tissues brought in contact with the gas. Sulfur dioxide can increase the severity of existing respiratory diseases such as asthma, bronchitis, and emphysema. Sulfuric acid and fine particulate sulfates, which are formed from sulfur dioxide, also may cause significant health problems. Sulfur dioxide causes injury to many plants. A bleached appearance between the veins and margins on leaves indicates damage from SO₂ exposure. Commercially important plants sensitive to SO₂ include cotton, sweet potatoes, cucumber, alfalfa, tulips, apple trees, and several species of pine trees.

2.5 Nitrogen Oxides

Several gaseous oxides of nitrogen are normally found in the atmosphere, including nitrous oxide (N₂O), nitric oxide (NO) and nitrogen dioxide (NO₂). Nitrous oxide is a stable gas with anesthetic characteristics and typical ambient concentrations well below the threshold concentration for a biological effect. Nitric oxide is a colorless gas with ambient concentrations generally low enough to have no significant biological effect. Nitrogen dioxide is reddish-brown but is not usually visible at typical ambient concentrations.

2.5.1 Sources

The most significant nitrogen oxide emissions result from the burning of fossil fuels such as coal, oil and gasoline, due to the oxidation of atmospheric nitrogen and nitrogen compounds in the fuel. The primary combustion product is NO, which reacts to form NO_2 .

2.5.2 Effects

At typical concentrations, nitrogen dioxide has significant health effects as a pulmonary irritant, especially upon asthmatics and children. In North Carolina a much greater health concern is the formation of ozone, which is promoted by the presence of NO₂ and other nitrogen oxides.

Some types of vegetation are very sensitive to NO_2 , including oats, alfalfa, tobacco, peas and carrots. Chronic exposure causes chlorosis (yellowing) and acute exposure usually causes irregularly shaped lesions on the leaves.

Nitric oxide and nitrogen dioxide do not directly damage materials. However, NO₂ can react with moisture in the air to produce nitric acid, which corrodes metal surfaces and contributes to acid rain.

High concentrations of NO_2 may reduce visibility. Much of the brownish coloration sometimes observed in polluted air in winter months may be due to NO_2 .

2.6 Lead

Lead is a toxic heavy metal element occurring in the atmosphere as small particles.

2.6.1 Sources

The major source of atmospheric lead used to be the combustion of gasoline containing the additive tetraethyl lead as an anti-knock agent. However, the availability of leaded fuel has declined, and the concentration of lead in such fuel has decreased, minimizing gasoline as a source. Significant remaining sources include coal combustion (lead exists in very small quantities as an impurity in coal) and sandblasting of highway structures and water tanks. Lead also is used in some batteries, paints, insecticides and newspaper inks

2.6.2 Effects

Lead (Pb) persists and accumulates in the environment and the human body. It may be inhaled, ingested, and eventually absorbed into the bloodstream and distributed to all body tissues. Exposure to low concentrations interferes with blood production and specific enzyme systems. It is believed to cause kidney and nerve cell damage, and severe lead poisoning is known to cause brain damage in children.

3 Standards

Ambient air quality status is determined by measuring pollutant concentrations in outdoor air and comparing the measured concentrations to corresponding standards. The US EPA (Environmental Protection Agency) defines the ambient air as "that portion of the atmosphere, external to buildings, to which the general public has access."

Ambient air quality standards are classified as primary and secondary. Primary standards are those established to protect public health. Secondary standards are those established to protect the public welfare from adverse pollution effects on soils, water, crops, vegetation, manmade materials, animals, wildlife, weather, visibility, climate, property, transportation, economy, and personal comfort and wellbeing. The scientific criteria upon which the standards are based are reviewed periodically by the EPA, which may reestablish or change the standards according to its findings.

A pollutant measurement that is greater than the ambient air quality standard for a specific averaging time is called an *exceedance*. The national primary, secondary and North Carolina ambient air quality standards that were in effect during 2001 are summarized in Table 3.1.

Table 3.1 National and North Carolina Ambient Air Quality Standards

For new or anticipated new standards, References in the Code of Federal Regulations are given. For standards expressed in parts per million, an equivalent mass per unit volume is also shown.

Pollutant/ Ambient Measurement/ (Reference)	Averaging Period	Type of Summary	Primary National (Health Related) Standard	Secondary National (Welfare Related) Standard	North Carolina Standard
TSP	1 year	geometric mean	(1)	(1)	$75 \ \mu g/m^3$
24 hour average	1 day	2nd maximum	(1)	(1)	$150 \ \mu g/m^3$
PM-2.5 24 hour average	1 year	average ² arithmetic mean	$15 \ \mu g/m^{3} \ ^{(6)}$	$15 \ \mu g/m^{3}$ ⁽⁶⁾	$15 \ \mu g/m^{3}$ ⁽⁶⁾
(40CFR50, App. N)	1 day	average ² 98th percentile	$65 \ \mu g/m^3$	65 µg/m ³	$65 \ \mu g/m^3$ ⁽⁶⁾
PM-10 24 hour average	1 year	average ² arithmetic mean	$50 \ \mu g/m^3$	$50 \ \mu g/m^3$	$50 \ \mu g/m^3$
(40CFR50, App. N)	1 day	average ² 2 nd maximum ³	$150 \ \mu\text{g/m}^3$	$150 \ \mu g/m^3$	$150 \ \mu g/m^3$
CO 1 hour average	8 hours	2nd maximum	9 ppm (10 mg/m ³)		9 ppm (10 mg/m ³)
	1 hour	2nd maximum	35 ppm (40 mg/m ³)		35 ppm (40 mg/m ³)
O ₃ 1 hour average	1 hour	expected ⁴ 2nd maximum	0.12 ppm ⁽⁶⁾ (235 μg/m ³)	0.12 ppm ⁽⁶⁾ (235 μg/m ³)	0.12 ppm (235 μg/m ³) ^(6,7)
(40CFR50, App. I)	8 hours	average ⁵ arithmetic mean 4th maximum	0.08 ppm ⁽⁶⁾ (157 μg/m ³)	0.08 ppm ⁽⁶⁾ (157 μg/m ³)	0.08 ppm ⁽⁶⁾ (157 μg/m ³)
SO ₂ 1 hour average	1 year	arithmetic mean	0.03 ppm (80 μg/m ³)		0.03 ppm (80 μg/m ³)
	1 day	2nd maximum	0.14 ppm (365 μg/m ³)		0.14 ppm (365 μg/m ³⁾
	3 hours (non- overlapping)	2nd maximum		0.50 ppm (1,300 μg/m ³)	0.50 ppm (1,300 μg/m ³)
NO ₂ 1 hour average	1 year	arithmetic mean	0.053 ppm (100 μg/m ³)	0.053 ppm (100 μg/m ³)	0.053 ppm (100 μg/m ³)
Pb 24-hour average	1 quarter	arithmetic mean	$1.5 \ \mu g/m^3$	1.5 μg/m ³	1.5 μg/m ³

1. In 1987, National standards for PM-10 replaced those for TSP.

2. Arithmetic mean over the 3 most current years.

3. In July 1997, a percentile-based statistic replaced the 2nd maximum, but in May 1999 the 2nd maximum standard was reinstated. That change was vacated in 2000, but we overlooked it in the 2000 Annual Air Quality Report.

4. Determined by adjusting for incomplete days and averaging over the most recent 3 consecutive, complete calendar years. 5. Arithmetic mean value over the most recent 3 consecutive, complete calendar years.

6. On April 1, 2000 North Carolina adopted the EPA PM2.5 and Ozone standards. On May 14, 2000 the US Court of Appeals ruled the new EPA PM2.5 standard vacated and the new 8-hour ozone standard as unenforceable. On appeal to the US Supreme Court the new standard was upheld.

7. On May 27, 2000, the one-hour ozone standard was rescinded by the Environmental Management Commission based on EPA guidance. The one-hour standard is being reinstated by EPA.

4 Ambient Air Quality Monitoring Program

The North Carolina Division of Air Quality, three local air pollution control programs, and one tribal program (Appendix A) performed ambient monitoring and analyses of samples in 2001. Ambient air monitoring data are used to determine whether air quality standards are being met; to assist in enforcement actions; to determine the improvement or decline of air quality; to determine the extent of allowable industrial expansion; and to provide air pollution information to the public. A list of all monitoring sites active in 2001 is presented in Table 4.1 and shown as a map in Figure 4.1. The locations of sites for individual pollutants are shown in Figures 5.1, 5.4, 5.8, 5.11, 5.14, and 5.17.

In general, ambient monitors are operated vear-round, but in some cases seasonal variations in pollutant levels make it feasible to suspend sampling at certain times. Ambient carbon monoxide associated with transportation and heating tends to produce significant concentrations only in cold weather conditions, so (with the US EPA's permission) we generally operate these monitors only from October through March. Ozone concentrations, by contrast, are correlated positively with ambient temperature. US EPA regulations accordingly require monitoring in NC from April through October. Along with ozone at some locations we also monitor ozone precursor pollutants. Indeed, one of the

ozone precursors is carbon monoxide. See $\S5.4$ for more information about seasonal carbon monoxide monitoring and $\S5.5$ for more information about seasonal ozone monitoring.

Siting of monitors involves several considerations, including size of the area represented, distance from roadways and nearby sources, unrestricted air flow, safety, availability of electricity and security. Each site has a defined monitoring objective, and annual evaluations are conducted to ensure that the objectives are met. The four basic monitoring objectives are to determine:

- the highest concentration expected in an area;
- representative concentrations in areas of high population density;
- the impact of significant sources or source categories on ambient air quality;
- general background concentration levels.

All monitors have known precision, accuracy, interferences and operational parameters. The monitors – as well as all measurement devices – are carefully calibrated at predetermined frequencies, varying from daily to quarterly. Measurements are traceable to National Institute of Standards and Technology (NIST), when standards are available. Monitoring and analyses are performed according to a set of standard operating procedures. Field personnel visit manual sampling sites once every six days to replace sample media and check the operation and calibration of monitors. Personnel check continuous monitors at least twice monthly for correct instrument operation.

Monitoring agencies carry out quality assurance activities to determine the quality of the collected ambient data, improve the quality of the data and evaluate how well the monitoring system operates. The goal of quality assurance activities is to produce high quality air pollution data with defined completeness, precision, accuracy, representativeness and comparability. Microprocessors are used at most sites to collect the data. A computerized telemetry system aids in assembly of the data for submission to the US EPA. This enhances data validity, minimizes travel costs, and allows real-time data to be available by computer polling when needed. Numerous checks are performed to ensure that only valid data are reported.

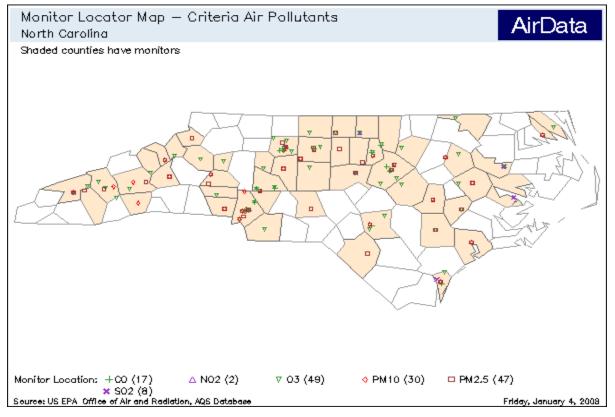


Figure 4.1 Monitoring Sites Active in 2001

SITE	ADDRESS		P	OLLUTANTS
COUNTY				
37-001-0002 ALAMANCE	827 S GRAHAM & HOPEDALE RD BURLINGTON	PM2.5		
37-003-0003 ALEXANDER	324 MINNIGAN LANE TAYLORSVILLE	O3		
37-011-0002 AVERY	7510 BLUE RIDGE PARKWAY SPUR	O3		
37-013-0006 BEAUFORT	NC 306 @ PCS ENTRANCE	SO2		
37-021-0003 BUNCOMBE	HEALTH & SOCIAL SERVICES BLDG WOODFIN ST ASHEVILLE	PM10		
37-021-0030 BUNCOMBE	ROUT 191 SOUTH BREVARD RD ASHEVILLE	O3		
37-021-0034 BUNCOMBE	175 BINGHAM ROAD ASHEVILLE	PM2.5		
37-025-0004 CABARRUS	933 FLOYD STREET KANNAPOLIS	PM10	PM2.5	
37-027-0003 CALDWELL	HWY 321 NORTH LENOIR	O3		
37-029-0099 CAMDEN	COUNTY ROAD 1136 & 1134	O3		
37-033-0001 CASWELL	7074 CHERRY GROVE RD REIDSVILLE	O3	PM2.5	
37-035-0004 CATAWBA	1650 1ST STREET HICKORY	PM10	PM2.5	
37-035-0005 CATAWBA	7075 WEST NC HWY 10 HICKORY	PM2.5		
37-037-0004 CHATHAM	ROUTE 4 BOX 62 PITTSBORO	SO2	PM2.5	O3

Table 4.1 Ambient Air Monitoring Sites Operated in North Carolina, 2001

SITE	ADDRESS		P	OLLUTA	NTS	
COUNTY						
37-051-0007 CUMBERLAND	CUMBERLAND CO ABC BOARD, 1705 OWEN DR FAYETTEVILLE	CO				
37-051-0008 CUMBERLAND	1/4 MILE SR1857/US301/1857	O3				
37-051-0009 CUMBERLAND	4533 RAEFORD RD FAYETTEVILLE	PM10	PM2.5			
37-051-1003 CUMBERLAND	3625 GOLFVIEW RD HOPE MILLS	O3				
37-057-0002 DAVIDSON	SOUTH SALISBURY STREET LEXINGTON	PM10	PM2.5			
37-059-0002 DAVIE	246 MAIN STREET COOLEEMEE	O3				
37-061-0002 DUPLIN	HIGHWAY 50 KENANSVILLE	O3	PM2.5			
37-063-0001 DURHAM	HEALTH DEPT 300 E MAIN STREET DURHAM	PM10	PM2.5			
37-063-0013 DURHAM	2700 NORTH DUKE STREET DURHAM	со	O3			
37-065-0003 EDGECOME	TALBERT PARK AT SPRUCE & CAROLINA ROCKY MOUNT	PM10	PM2.5			
37-065-0099 EDGECOME	7589 NC HIGHWAY 33 NW TARBORO	O3				
37-067-0022 FORSYTH	1300 BLK HATTIE AVENUE WINSTON-SALEM	со	SO2	NO2	PM2.5	PM10
37-067-0023 FORSYTH	1401 CORPORATION PARKWAY WINSTON-SALEM	со	PM10			
37-067-0024 FORSYTH	NORTH FORSYTH HIGH SCHOOL WINSTON-SALEM	PM2.5				
37-067-0025 FORSYTH	100 SW STRATFORD RD WINSTON-SALEM	СО				

SITE	ADDRESS		POLLUTANTS
COUNTY	—		
37-067-0027 FORSYTH	7635 HOLLYBERRY LANE WINSTON-SALEM	O3	
37-067-0028 FORSYTH	6496 BAUX MOUNTAIN ROAD WINSTON-SALEM	O3	
37-067-0029 FORSYTH	1985 GRIFFITH ROAD WINSTON-SALEM	СО	
37-067-1008 FORSYTH	3656 PIEDMONT MEMORIAL DRIVE WINSTON-SALEM	O3	
37-069-0001 FRANKLIN	431 S. HILLSBOROUGH STREET FRANKLINTON	O3	
37-071-0016 GASTON	1622 EAST GARRISON BLVD GASOTNIA	PM10	PM2.5
37-077-0001 GRANVILLE	WATER TREATMENT PLANT JOHN UMSTEAD HOS BUTNER	PCO	O3
37-081-0009 GULIFORD	EDGEWORTH & BELLEMEADE ST'S GREENSBORO	PM10	PM2.5
37-081-0011 GULIFORD	KELLY PARK , KELLY RD MC CLEANSVILLE	O3	
37-081-0013 GULIFORD	205 WILOUGHBY BLVD GREENSBORO	PM2.5	
37-081-1005 GULIFORD	E. GREEN & S CENTENNIAL STREET HIGH POINT	PM10	PM2.5
37-081-1011 GULIFORD	401 WEST WENDOVER GREENSBORO	со	
37-087-0002 HAYWOOD	CANTON FIRE DEPARTMENT CANTON	PM10	
37-087-0004 HAYWOOD	2177 ASHEVILLE ROAD WAYNESVILLE	O3	
37-087-0010 HAYWOOD	9 MAIN STREET WAYNESVILLE	PM2.5	

SITE	ADDRESS		POLLUTANTS
COUNTY			
37-087-0011 HAYWOOD	PROSPECT AND NORTHSIDE STREETS CANTON	PM10	
37-087-0035 HAYWOOD	TOWER BLUE RIDGE PARKWAY MILE MARKER 410	O3	
37-087-0036 HAYWOOD	GREAT SMOKY MOUNTAINS NATIONAL PARK	O3	
37-089-1006 HANDERSON	CORNER OF ALLEN & WASHINGTON ST'S HENDERSONVILLE	PM10	
37-099-0005 JACKSON	BARNET KNOB FIRE TOWER RD	O3	
37-099-0006 JACKSON	US ROUTE 19 NORTH CHEROKEE RESERVATION	PM2.5	
37-101-0002 JOHNSTON	1338 JACK ROAD CLAYTON	O3	
37-107-0004 LENIOR	HIGHWAY 70 EAST AND HIGHWAY 58 SOUTH KINSTON	O3	PM2.5
37-109-0004 LINCOLN	1487 RIVERVIEW ROAD LINCOLNTON	O3	
37-111-0004 MC DOWELL	BALWIN AVENUE (EAST MARION JR. HIGH SCHOOL MARION	_PM10	PM2.5
37-117-0001 MARTIN	1210 HAYES STREET JAMESVILLE	SO2	O3
37-119-0001 MECKLENBURG	600 EAST TRADE STREET G CHARLOTTE	PM10	
37-119-0003 MECKLENBURG	-	PM10	
37-119-0010 MECKLENBURG	FIRE STATION # 10, 2136 FREMOUNT ROAD G CHARLOTTE	PM10	PM2.5
37-119-0038 MECKLENBURG	301 NORTH TRYON STREET G CHARLOTTE	СО	

SITE	ADDRESS		P	OLLUTA	NTS	
COUNTY						
37-119-0041 MECKLENBURG	1130 EASTWAY DRIVE G CHARLOTTE	CO	PM2.5	SO2	NO2	O3
37-119-0042 MECKLENBURG		PM2.5				
37-119-1001 MECKLENBURG	FILTER PLANT G DAVIDSON	PM10				
37-119-1005 MECKLENBURG	400 WESTINGHOUSE BLVD. 6 CHARLOTTE	O3	PM10			
37-119-1009 MECKLENBURG	29 N @ MECKLENBURG CAB CO. G CHARLOTTE	СО	O3			
37-121-0001 MITCHELL	CITY HALL, SUMMIT STREET SPRUCE PINE	PM10	PM2.5			
37-123-0001 MONTGOMERY	112 PERRY DRIVE CANDOR	PM2.5				
37-129-0002 NEW HANOVER	6028 HOLLY SHELTER ROAD CASTLE HAYNE	O3				
37-129-0006 NEW HANOVER		SO2				
37-129-0008 NEW HANOVER	CORNER OF OLEANDER & COLLEGE RD WILMINGTON	СО				
37-129-0009 NEW HANOVER	2710 MARKET STREET WILMINGTON	PM10	PM2.5			
37-131-0002 NORTHAMPTON	ROUTE 46 I GASTON	O3				
37-133-0005 ONSLOW	617 HENDERSON DR JACKSONVILLE	PM10	PM2.5			
37-135-0007 ORANGE	MASON FARM ROAD CHAPEL HILL	PM2.5				
37-139-0002 PASQUOTANK	600 WESTOVER STREET ELIZABETH CITY	PM10	PM2.5			

SITE	ADDRESS	POLLUTANTS			NTS
COUNTY 37-145-0003 PERSON	STATE ROAD 1102 & NC 49	SO2	O3		
37-147-0005 PITT	851 HOWELL STREET GREENVILLE	PM10	PM2.5		
37-147-0099 PITT	US 264 NEAR WATER TOWER FARMVILLE	O3			
37-151-0004 RANDOLPH	4507 BRANSON DAVIS ROAD SOPHIA	O3			
37-155-0005 ROBESON	1170 LINKHAW ROAD LUMBERTON	PM2.5			
37-157-0099 ROCKINGHAM	6371 NC 65 @ BETHANY SCHOOL BETHANY	O3			
37-159-0021 ROWAN	301 WEST ST & GOLD HILL AVENUE ROCKWELL	со	O3		
37-159-0022 ROWAN	925 NORTH ENOCHVILLE AVENUE CHINA GROVE	со	O3		
37-173-0002 SWAIN	CENTER ST/PARKS & RECREATION FACILITY	SO2	PM2.5	PM10	O3
37-179-0003 UNION	701 CHARLES STREET MONROE	O3			
37-183-0011 WAKE	420 S PERSON STREET RALEIGH	СО			
37-183-0014 WAKE	3801 SPRING FOREST ROAD RALEIGH	O3	PM2.5	PM10	
37-183-0015 WAKE	808 NORTH STATE STREET RALEIGH	со	PM2.5	O3	
37-183-0016 WAKE	201 NORTH BROAD STREET FUQUAY-VARINA	O3			
37-183-0017 WAKE	5033 TV TOWER ROAD GARNER	O3			

SITE	ADDRESS		POLLUTANTS
COUNTY			
37-183-0018 WAKE	US HIGHWAY 70 WEST & NC HIGHWAY 50 NOR RALEIGH	CO	
37-189-0003 WATAUGA	361 JEFFERSON ROAD BOONE	PM2.5	
37-191-0005 WAYNE	DILLARD MIDDLE SHOOL, DEVEREAU STREET GOLDSBORO	PM10	PM2.5
37-199-0003 YANCEY	STATE HIGHWAY 128 BURNSVILLE	O3	
Sites operated in 2001	93		

5 Pollutant Monitoring Results

Air quality in a given area is affected by many factors, including meteorological conditions, the location of pollutant sources, and the amount of pollutants emitted from them.

The speed and direction of air movement determine whether pollutant emissions cause exceedances of the ambient air quality standards and where those exceedances will occur. Atmospheric stability, precipitation, solar radiation and temperature also affect pollutant concentrations.

Geographic factors that affect concentrations include variables such as whether an area is urban or rural, and whether the area has mountains, valleys or plains.

Important economic factors affecting air quality include concentration of industries, conditions of the economy, and the day of the week.

Air quality also may be influenced by "exceptional events" in the short term. Exceptional events may be either natural (e.g., forest fire) or manmade (e.g., construction or demolition). Unusual data that can be attributed to an exceptional event are considered biased and may be omitted from data summaries when they are not representative of normal conditions. In the tabular listings in this report, data affected by exceptional events are excluded, and are omitted from summaries in charts. However they are addressed in the text of the report. A list of typical exceptional events is given in Appendix B.

Data for the 2001 ambient air quality report were collected at 153 air pollutant monitors operated by state and local agencies in North Carolina (listed in Appendix A). To minimize operating expenses, some sulfur dioxide monitors are operated only every third year. Twelve of the 153 monitors used for this report operated most recently in 1999 or 2000.

5.1 Total Suspended Particulates

Total Suspended Particulate matter (TSP) is collected on filters using a "high volume" sampler (an EPA Reference Method). The sampler motor is set and calibrated to an air flow rate of 40±4 cubic feet per minute. Gravimetric analysis is performed by comparing the exposed filter weight to the unexposed filter weight. Weights are measured to the nearest 0.1 milligram. The difference between the exposed and unexposed weights is the amount of particulate collected from a known volume of air.

The state and local program agencies discontinued routine ambient TSP sampling at the end of 2000, but will resume a limited sampling program again in 2003. In 2000, two sites in Mecklenburg County were used to monitor TSP and 92 samples were collected. A detailed summary of the data from each site is given in Table 5.1.

No sample exceeded the N.C. TSP ambient air quality standards in 2000. The highest 24-hour average was 116, which was 77 percent of the standard. This value occurred at the Fire Station # 10 site in Charlotte. Attainment status is based on the second highest 24-hour concentration and on the geometric mean of all the 24-hour concentrations at a given site.

The largest geometric mean TSP average was $45 \ \mu g/m^3$, which is 59 percent of the level of the air quality standard. This value occurred at the East Trade Street site in Charlotte.

During early November 2000, especially November 2, 3, 4, and 8 there were several sites on which particulate matter samplers were affected by smoke from forest fires in North Carolina and neighboring states. A reading of 152 μ g/m³, which is above the standard of 150 μ g/m³, was recorded at the East Trade Street site in Charlotte. The geometric mean increased to 49 μ g/m³ as well.

SITE NUMBER	ADDRESS	NUM		I-HOUR		41-	ARITH	GEOM	GEOM
COUNTY		OBS	1 st	2 nd	3 rd	4 th	MEAN	MEAN	SD
37-119-0001 MECKLENBURG	600 EAST TRADE STREET CHARLOTTE	40	90	82	75	70	47	45	1.4
37-119-0010 MECKLENBURG	FIRE STA #10 2136 REMOUNT ROAD CHARLOTTE	52	116	75	73	71	44	41	1.5
Total Samples Total Sites Sampled		92 2							

Table 5.1 Total Suspended Particulates in Micrograms Per Cubic Meter for 2000

State and local program agencies in North Carolina use high volume samplers and size selective inlets to collect PM_{10} samples. A gravimetric analysis procedure (EPA Reference Method) is used to analyze the samples.

In 2001, 2376 ordinary 24-hour samples of PM_{10} were collected from monitors located at 31 sites. A map of the PM_{10} sampling sites is shown in Figure 5.1, and a detailed summary of the data from each site is given in Table 5.2.

There was one exceedance of the PM_{10} ambient air quality standards in 2001. During the forest fires in November, the monitor in Bryson City recorded 203 µg/m³ on 15 November and 79 µg/m³ on 22 November. During the same fire episode on 15 November the Asheville monitor recorded 115 µg/m³. For about a week, from 30 October through 5 November, peat fires were burning in the vicinity of the monitor near Elizabeth City. DAQ scheduled daily sampling that was successful on five of the seven days. Here, on 30 October the monitor recorded 84 μ g/m³, and on the other days several concentrations between 10 and 20 μ g/m³. Excluding these samples affected by fires, the highest 24-hour maximum concentration was 75 μ g/m³, or about 50 percent of the standard (150 μ g/m³). The highest annual arithmetic mean was 29.6 μ g/m³, which is about 60 percent of the standard (50 μ g/m³).

NAAQS attainment is based on the level of the second highest 24-hour concentration (Table 3.1), the second highest 24-hour concentrations are shown by county in Figure 5.2 and the annual arithmetic means are shown in Figure 5.3. (In counties with more than one PM₁₀ monitoring site, the concentration reported in Figure 5.2 is the county-wide second maximum 24-hour concentration, and the mean reported in Figure 5.3 is the maximum arithmetic mean for the county.)

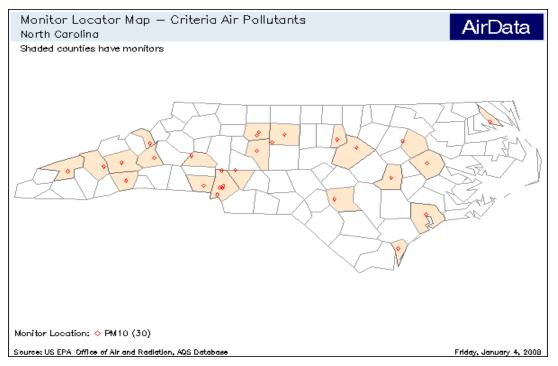


Figure 5.1 Location of PM₁₀ Monitoring Sites

SITE NUMBER	ADDRESS	NUM OBS	24-HOUR MAXIMA		ARITH MEAN		
COUNTY			1 st	2 nd	3 rd	4 th	
37-021-0003	HEALTH & SOCIAL SERVICES BLDG WOODFIN ST	53	43	34	32		17.5
BUNCOMBE	ASHEVILLE						
37-025-0004	FLOYD STREET	61	53	46	40	35	20.1
CABARRUS	KANNAPOLIS						
37-035-0004	1650 1ST. ST.	48	47	39	35	33	21.0
CATAWBA	HICKORY						
37-051-0009	4533 RAEFORD ROAD	57	44	39	35	33	21.5
CUMBERLAND	FAYETTEVILLE						
37-057-0002	S. SALISBURY ST.	52	47	46	35	35	21.3
DAVIDSON	LEXINGTON, NC						

Table 5.2 PM ₁₀ in	Micrograms	Per Cubic	Meter for 200	01
	miler ograms		MICTOR TOL 200	

SITE NUMBER	ADDRESS	NUM OBS	24-HOUR MAXIMA				ARITH MEAN
COUNTY			1 st	2 nd	3 rd	4 th	
37-063-0001	HEALTH DEPT 300 E MAIN ST	61	48	46	39	39	23.6
DURHAM	DURHAM						
38-065-0003	TALBERT PARK at SPRUCE ST	18	34	30	29	29	18.8
EDGECOMBE	ROCKY MOUNT						
37-067-0022	1300 BLK. HATTIE AVE	365	71	58	53	51	21.5
FORSYTH	WINSTON-SALEM						
37-067-0023	1401 CORPORATION PARKWAY	346	75	67	57	57	24.1
FORSYTH	WINSTON-SALEM						
37-071-0016	1622 E. GARRISON BLVD	58	49	37	34	30	19.4
GASTON	GASTONIA						
37-081-0009	EDGEWORTH & BELLEMEADE STS	60	46	43	41	40	21.3
GUILFORD	GREENSBORO						
37-081-0013	205 WILOUGHBY BLVD	3	19	10	2	0	10.3
GUILFORD	GREENSBORO						
37-081-1005	E GREEN & S CENTENNIAL ST	24	57	42	35	32	22.6
GUILFORD	HIGH POINT						
37-087-0002	ROOF, CANTON FIRE DEPT.	34	63	53	52	47	29.6
HAYWOOD	CANTON						
37-08-70011	PROSPECT AND NORTHSIDE STREETS	22	54	36	32	30	23.7
HAYWOOD							
37-089-1006	CORNER OF ALLEN & WASHINGTON STS	60	53	46	46	40	21.5
	'	1					

SITE NUMBER	ADDRESS	NUM OBS	24-HOUR MAXIMA				ARITH MEAN
COUNTY			1 st	2 nd	3 rd	4 th	
HENDERSON	HENDERSON-VILLE						I
37-111-0004	BALWIN AVENUE (EAST MARION JR. HIGH SCHOOL)	60	46	43	37	33	20.7
MC DOWELL	MARION						
37-119-0001	600 EAST TRADE STREET	40	59	41	37	36	25.5
MECKLENBURG	CHARLOTTE						
37-119-0003 MECKLENBURG	FIRE STA #11 620 MORETZ STREET CHARLOTTE	57	71	58	52	47	28.0
37-119-0010	FIRE STA #10 2136 REMOUNT RD	60	62	58	41	39	24.9
MECKLENBURG	CHARLOTTE						
37-119-1001 MECKLENBURG	FILTER PLANT DAVIDSON	61	55	53	37	36	20.6
37-119-1005	400 WESTINGHOUSE BLVD.	60	74	65	56	51	29.2
MECKLENBURG	CHARLOTTE						
37-121-0001	CITY HALL SUMMIT ST	60	44	42	40	39	23.3
MITCHELL	SPRUCE PINE						
37-129-0009	2710 MARKET STREET	58	32	31	26	26	16.0
NEW HANOVER	WILMINGTON						
37-133-0005 ONSLOW	617 HENDERSON DRIVE JACKSONVILLE	59	34	28	27	26	15.6

SITE NUMBER	ADDRESS	NUM OBS	24-HOUR MAXIMA				ARITH MEAN
COUNTY			1 st	2 nd	3 rd	4 th	
37-139-0002	600 WESTOVER STREET	54	38	34	30	29	17.6
PASQUOTANK	ELIZABETH CITY						
37-147-0005	851 HOWELL STREET	57	41	38	33	31	18.7
PITT	GREENVILLE						
37-173-0002	CENTER ST/PARKS 7 REC	51	46	37	32	29	19.3
SWAIN	FACILITY						
37-183-0014	3801 SPRING FOREST RD.	265	56	52	42	42	19.5
WAKE	RALEIGH						
37-183-0014	3801 SPRING FOREST RD.	56	47	43	42	41	21.9
WAKE	RALEIGH						
37-191-0005	DILLARD MIDDLE SCHOOL DEVEREAU ST	56	38	35	33	33	20.8
WAYNE	GOLDSBORO						
Total Samples		2,376					
Total Sites Sampled		31					

Figure 5.2 PM₁₀: Second Highest 24-Hour Averages, 2001

,

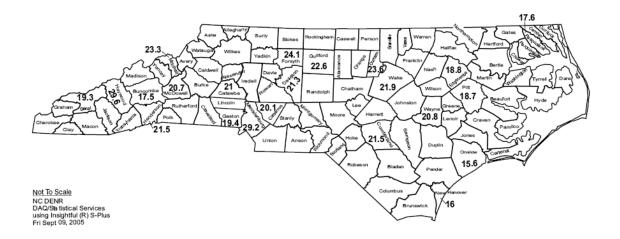


Figure 5.3 PM₁₀: Maximum Annual Arithmetic Means, 2001

5.3 PM_{2.5}

In 2001, 38 sites were used to monitor $PM_{2.5}$ and 5375 samples were collected. A map of the $PM_{2.5}$ sampling sites is shown in Figure 5.4 and a detailed summary of the data from each site is given in Table 5.3.

There was one exceedance of the $PM_{2.5}$ 24-hour ambient air quality standards in 2001 at the Asheville site in Buncombe County. This highest 24-hour maximum concentration was 93.3 µg/m³, or about 145 percent of the standard (65 µg/m³) (See Table 5.3).

The highest annual arithmetic mean was $16.5 \ \mu g/m^3$, which is about 10 percent over the level of the standard ($15 \ \mu g/m^3$) at the Lexington in Davidson County. Three other monitors exceeded the annual arithmetic mean standard in 2001: Hickory in Catawba County, Winston-Salem in Forsyth County and Charlotte in Mecklenburg County (See Table 5.3).

NAAQS attainment is based on the level of the 98th percentile concentration (Table 3.1). The 98th percentile concentrations are shown by county in Figure 5.5, and the annual arithmetic means are shown in Figure 5.6. (In counties with more than one monitoring site, the concentration reported in Figure 5.5 is the maximum 98th percentile and the mean reported in Figure 5.6 is the maximum arithmetic mean for the county.)

Figure 5.7 is a map of "design values" for PM_{2.5}, computed from the highest 3year average arithmetic mean in each county for 1999 through 2001, using the federal reference method monitors. Twenty-five counties have enough reported data to compute this metric correctly, and fourteen of them appear to be violating the ambient standard that is due to be implemented. Attainment decisions for PM_{2.5} will be based on the design values observed during 2001 through 2003, which may or may not resemble the values illustrated here.

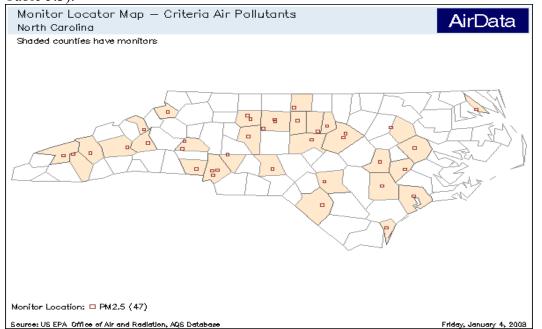


Figure 5.4 Location of PM_{2.5} Monitoring Sites

SITE NUMBER	ADDRESS	NUM OBS	2	4-HOUR MA	AXIMA		PERCENTILE	ARITH MEAN
COUNTY	-		1 st	2 nd	3 rd	4 th	98TH	
37-001-0002	827 SOUTH	122	44.5	38.0	36.5	35.1	36.5	14.0
ALAMANCE	GRAHAM & HOPE BURLINGTON							
37-021-0034	175 BINGHAM	84	93.3	45.2	31.1	29.4	45.2	14.1
BUNCOMBE	ROAD ASHEVILLE							
37-025-0004 CABARRUS	933 FLOYD STR KANNAPOLIS	118	44.7	34.1	31.4	30.3	31.4	14.4
37-033-0001	7074 CHERRY GROVE	119	50.2	41.5	40.3	35.6	40.3	13.6
CASWELL	REIDSVILLE							
37-035-0004 CATAWBA	1650 1ST. ST. HICKORY	103	40.0	32.8	32.0	30.4	32.0	16.0
37-035-0005	7075 WEST HWY	119	38.9	30.5	30.0	28.6	30.0	13.3
CATAWBA	10 HICKORY							
37-037-0004 CHATHAM	RT4 BOX62 PITTSBORO	118	39.5	32.2	30.0	27.5	30.0	12.9
37-051-0009	4533 RAEFORD	119	39.6	38.5	27.0	26.2	27.0	14.3
CUMBERLAND	ROAD FAYETTEVILLE							
37-057-0002	SOUTH SALISBURY STREET	106	41.6	39.2	37.7	29.0	37.7	16.5
DAVIDSON	LEXINGTON							
37-061-0002 DUPLIN	HWY 50 KENANANSVILLE	119	31.4	30.1	25.6	25.5	25.6	12.4
37-063-0001	HEALTH DEPT 300	335	45.4	35.9	34.5	34.0	33.0	14.6
DURHAM	E MAIN ST DURHAM							
38-065-0003	TALBERT PARK at	38	24.5	22.7	22.5	20.2	24.5	11.2
EDGECOMBE	SPRUCE ST ROCKY MOUNT							
37-067-0022	1300 BLOCK,	337	49.4	46.4	44.6	42.3	35.4	15.7
FORSYTH	HATTIE AVENUE WINSTON-SALEM							
37-067-0024	NORTH FORSYTH	113	43.2	42.7	41.2	32.5	41.2	14.3
FORSYTH	HIGH SCHOOL WINSTON-SALEM							
37-071-0016	1622 EAST	118	39.5	28.8	28.1	26.9	28.1	14.0
GASTON	GARRISON BLVD GASTONIA							
37-081-0009	EDGEWORTH &	341	49.8 27	47.2	40.3	35.0	32.7	14.9

Table 5.3 $PM_{2.5}$ in Micrograms Per Cubic Meter for 2001

SITE NUMBER	ADDRESS	NUM OBS	2	4-HOUR MA		PERCENTILE		
COUNTY	-		1 st	2 nd	3 rd	4 th	98TH	
GUILFORD	BELLEMEADE GREENSBORO							
37-081-0013	205 WILOUGHBY	13	16.2	12.9	12.7	12.3	16.2	1
GUILFORD	BLVD GREENSBORO							
37-081-1005	E GREEN & S	50	24.6	23.7	23.6	22.5	24.6	1
GUILFORD	CENTENNIAL ST HIGH POINT							
37-087-0010	9 MAIN STREET	118	40.7	37.6	35.9	32.2	35.9	1
HAYWOOD	WAYNESVILLE							
37-099-0006 JACKSON	US RT 19 NORTH CHEROKEE RES	81	60.4	36.5	34.0	33.4	36.5	1
37-107-0004	CORNER HWY 70	122	27.5	27.3	27.1	24.2	27.1	1
LENOIR	EAST KINSTON	122	21.0	21.0	27.1	21.2	2	
37-111-0004	BALDWIN AVE	122	40.7	37.1	35.7	30.6	35.7	1
MC DOWELL	MARION	122	-0.7	57.1	00.1	50.0	00.7	
37-119-0010	FIRE STA #10 2136 REMOUNT	360	40.9	40.5	35.3	35.0	31.9	1
MECKLENBURG	ROAD CHARLOTTE							
37-119-1041	1130 EASTWAY	320	40.3	39.6	33.6	33.4	31.8	1
MECKLENBURG	DRIVE CHARLOTTE							
37-119-1042	1935	116	39.8	28.4	27.9	27.2	27.9	1
	EMERYWOOD DRIVE							
MECKLENBURG	CHARLOTTE							
37-121-0001	CITY HALL SUMMIT ST	120	37.2	34.7	32.7	30.8	32.7	1
MITCHELL	SPRUCE PINE							
37-123-0001 MONTGOMERY	112 PERRY DRIVE	117	31.5	25.9	25.9	25.7	25.9	1
27 420 0000		100	20.2	26.2	25.4	0E 4	25.4	
37-129-0009 NEW HANOVER	2710 MARKET STREET WILMINGTON	109	29.3	26.3	25.4	25.1	25.4	1
37-133-0005	617 HENDERSON DRIVE	114	38.3	26.2	26.0	25.7	26.0	
ONSLOW	JACKSONVILLE							
37-135-0007	MASON FARM ROAD	119	38.0	30.2	30.1	30.0	30.1	1
ORANGE	CHAPEL HILL							
37-139-0002	600 WESTOVER	128	37.2	36.4	32.3	30.6	32.3	1
PASQUOTANK	STREET ELIZABETH CITY							

SITE NUMBER	ADDRESS	NUM OBS	:	24-HOUR M	AXIMA		PERCENTILE	ARITH MEAN
COUNTY	-		1 st	2 nd	3 rd	4 th	98TH	
37-147-0005 PITT	851 HOWELL STREET GREENVILLE	107	30.3	30.0	27.8	26.4	27.8	12.5
37-155-0005 ROBESON	1170 LINKHAM ROAD LUMBERTON	115	28.7	25.9	25.7	24.2	25.7	13.2
37-173-0002 SWAIN	CENTER ST/PARKS 7 REC FACILITY	114	64.4	57.1	36.2	32.3	36.2	13.8
37-183-0014 WAKE	EAST MILLBROOK JR HI RALEIGH	361	48.7	36.9	32.5	32.5	31.1	14.2
37-183-0015 WAKE	808 NORTH STATE STREET RALEIGH	120	43.9	35.9	29.3	28.8	29.3	14.1
37-189-0003 WATAUGA	361JEFFERSON HWY BOONE	18	27.1	26.6	19.1	13.6	27.1	9.8
37-191-0005 WAYNE	DILLARD MIDDLE SCHOOL GOLDSBORO	122	32.7	30.3	29.2	29.1	29.2	14.7
Total Samples Total Sites Sampled		5,375 38						

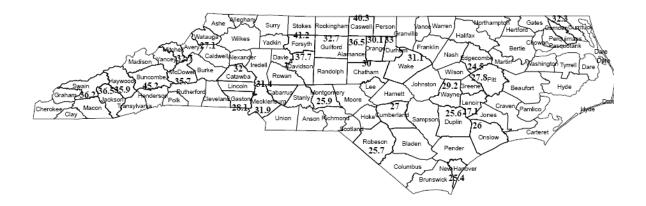


Figure 5.5 PM_{2.5}: Maximum 98th percentile, 2001

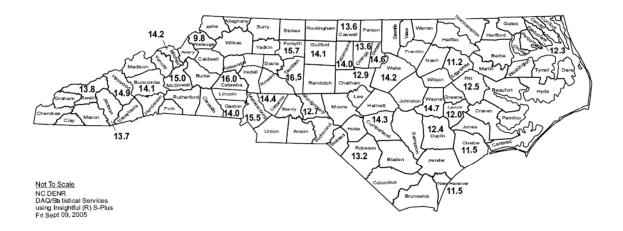


Figure 5.6 PM_{2.5}: Maximum Annual Arithmetic Means, 2001

Estimated Annual Mean PM 2.5 - 24 Hour Concentrations for January 1999 through December 2001

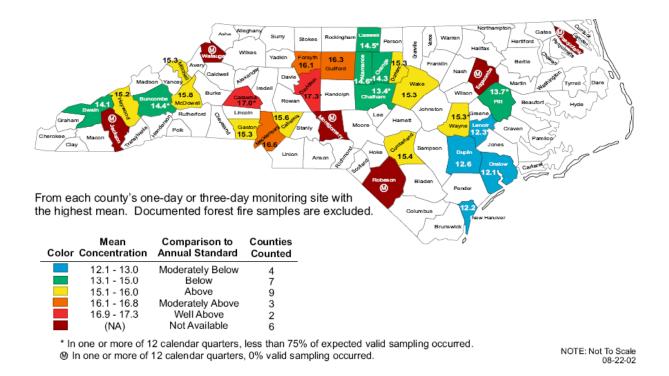


Figure 5.7 PM_{2.5}: Design Values by County, 1999-2001

5.4 Carbon Monoxide

Carbon monoxide (CO) data were collected for two purposes in 2001: to determine attainment status of the ambient air quality standard and to gather data on CO as an ozone precursor. The carbon monoxide associated with ozone formation consists of very low concentrations (not greater than 2 ppm) collected at special sites considered optimal for input to a large photochemical grid model. This report will not further discuss the role of CO as an ozone precursor, but these data and more information are available on request from the Division of Air Quality (see the Preface for a mailing address).

To assess CO attainment status, the Division of Air Quality collected data from monitors in Fayetteville, Chapel Hill, Wilmington, Durham, Greensboro and Raleigh, and local program agencies collected data from three monitors in Winston-Salem and Charlotte using EPA Reference or equivalent methods to measure the concentrations.

In 2001, 11 sites were used to monitor CO and 57,473 valid hourly averages were collected. To keep operating costs minimal, some sites are operated only in the colder months. A map of the CO sampling sites is shown in Figure 5.8, and a detailed summary of the data from each site is presented in Table 5.4.

There were no exceedances of the CO ambient air quality standards in 2001. The highest 1-hour average was 9.3 parts per million (ppm), or about 25 percent of the standard (35 ppm). This value occurred at the Tryon Street site in Charlotte. The highest 8-hour average was 4.4 ppm, at the same site, which is about 50 percent of the standard.

The second highest 1-hour concentrations in each county are shown in Figure 5.9 and the second highest 8hour concentrations are shown in Figure 5.10.

Historical data have demonstrated that high concentrations of CO occur more frequently in autumn and winter than during the warmer months of the year. There are three main reasons for this seasonal variation: (1) North Carolina experiences more atmospheric inversions in colder months, trapping air pollutants at low heights; (2) motor vehicles emit more CO due to inefficient combustion during cold starts and warm up; and (3) during colder temperatures, more fuel is burned for comfort heating.

All areas monitored are attaining the ambient air quality standards for carbon monoxide. Several factors have reduced CO concentrations, with the most significant being that older vehicles are gradually being replaced with newer, more efficient vehicles. The motor vehicle Inspection and Maintenance program (in effect in Mecklenburg, Wake, Durham, Forsyth, Guilford, Gaston, Cabarrus, Orange and Union counties) is an intentional control strategy that helps assure cleanerrunning cars. Other factors include increased news media interest and public awareness, and the reporting of the Air Quality Index (see Chapter 6 of this report). As a result of greater public awareness, more cars are kept in better running condition, thus operating more cleanly. Traffic flow improvements such as new roads and better coordinated traffic signals also help reduce CO.

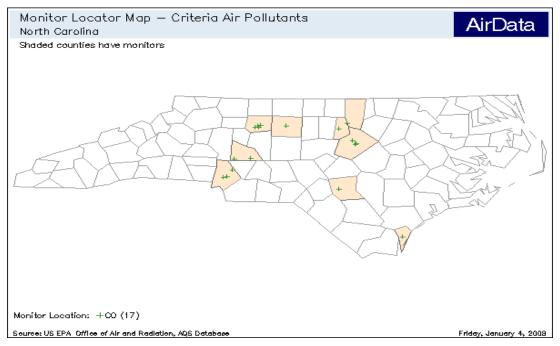


Figure 5.8 Location of Carbon Monoxide Monitoring Sites

SITE NUMBER	ADDRESS	NUM OBS	-		EIGHT-HOUR MAXIMA		
			1 st	2 nd	1 st	2 nd	
37-051-0007 CUMBERLAND	ABC BOARD, 1705 OWEN DR FAYETTEVILLE	4,132	5.2	5.2	4.0	3.9	
37-063-0013 DURHAM	2700 NORTH DUKE STREET DURHAM	2,890	1.7	1.6	1.3	1.1	
37-067-0023 FORSYTH	1401 CORPORATION PKY WINSTON-SALEM	8,708	4.8	4.6	3.5	3.5	
37-067-0025 FORSYTH	100 SW STRATFORD RD WINSTON-SALEM	4,211	3.0	3.0	2.0	1.6	
37-067-0029	1985 GRIFFITH ROAD	8,712	6.3	6.1	4.2	4.0	

WINSTON-SALEM	OBS	MAXIMA	2 nd	MAXIMA	
WINSTON-SALEM		1 st	2 nd	⊿ st	
WINSTON-SALEM	ł		1		2 nd
			1		
401 WEST WENDOVER	4,340	4.4	4.4	3.3	3.0
GREENSBORO					
301 N TRYON ST	8,522	9.3	8.8	4.3	4.3
CHARLOTTE					
1130 EASTWAY DRIVE	8,137	4.8	4.6	3.7	2.9
CHARLOTTE					
OLEANDER & COLLEGE	4,319	7.5	5.8	4.4	3.4
WILMINGTON					
420 S PERSON ST	2,147	6.2	5.4	3.7	3.5
RALEIGH					
US HWY 70 WEST AND NC HWY 50	1,355	4.7	4.5	3.1	3.0
NORTH RALEIGH					
	57,473				
	GREENSBORO 301 N TRYON ST CHARLOTTE 1130 EASTWAY DRIVE CHARLOTTE OLEANDER & COLLEGE WILMINGTON 420 S PERSON ST RALEIGH US HWY 70 WEST AND NC HWY 50 NORTH	GREENSBORO301 N TRYON ST CHARLOTTE8,5221130 EASTWAY DRIVE CHARLOTTE8,1370LEANDER & COLLEGE WILMINGTON4,319420 S PERSON ST RALEIGH2,147US HWY 70 WEST AND NC HWY 50 NORTH RALEIGH1,355	GREENSBORO301 N TRYON ST CHARLOTTE8,5229.31130 EASTWAY DRIVE CHARLOTTE8,1374.80LEANDER & COLLEGE WILMINGTON4,3197.5420 S PERSON ST RALEIGH2,1476.2US HWY 70 WEST AND NC HWY 50 NORTH RALEIGH1,3554.757,47357,473	GREENSBORO301 N TRYON ST CHARLOTTE8,5229.38.81130 EASTWAY DRIVE CHARLOTTE8,1374.84.60LEANDER & COLLEGE WILMINGTON4,3197.55.8420 S PERSON ST RALEIGH2,1476.25.4US HWY 70 WEST AND NC HWY 50 NORTH RALEIGH1,3554.74.557,473	GREENSBORO 301 N TRYON ST 8,522 9.3 8.8 4.3 CHARLOTTE 8,137 4.8 4.6 3.7 1130 EASTWAY DRIVE CHARLOTTE 8,137 4.8 4.6 3.7 OLEANDER & COLLEGE WILMINGTON 4,319 7.5 5.8 4.4 420 S PERSON ST RALEIGH 2,147 6.2 5.4 3.7 US HWY 70 WEST AND NC HWY 50 NORTH RALEIGH 1,355 4.7 4.5 3.1 57,473 5.473 5.47 5.4 3.7

Figure 5.9 Carbon Monoxide: Second Highest 1-Hour Average, 2001

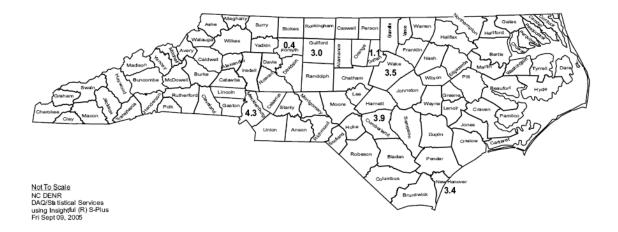
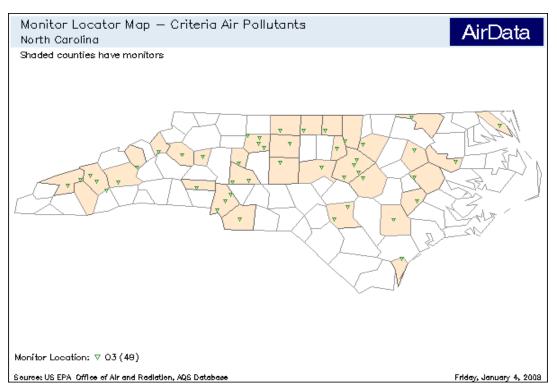


Figure 5.10 Carbon Monoxide: Second Highest Non-overlapping 8-Hour Average, 2001

5.5 Ozone

Ozone (O₃) concentrations are measured using EPA reference or equivalent continuous monitors. Ozone is a seasonal pollutant formed in the atmosphere as a result of many chemical reactions that occur in sunlight, mainly during the warmer months. Thus, most ozone monitors only operate from April through October.

The state and local program agencies operated 46 monitoring sites in 2001 during the ozone season, April through October. A map of the O_3 sampling sites is presented in Figure 5.11, and a detailed summary of the one-hour data from each site is given in Table 5.5, and the 8-hour data in Table 5.6. These 46 monitoring sites provided 9715 site-days of valid data (a success rate of 98.5 percent for the days that sampling is required).


There were 6 exceedances of the 1-hour ozone standard in North Carolina in 2001, one each in Franklinton and Butner, one in Cooleemee, two at Enochville (Rowan County) and one in Mecklenburg County.

The one-hour standard is exceeded when one valid one-hour average exceeds 0.124 ppm at a site and the expected number of exceedances is greater than 1. (To exceed the standard, the largest average must be larger than 0.12 ppm when *rounded* to two significant digits. The "expected number" of exceedances is determined from a 3-year average of exceedance day counts for an area. Moreover, when any ozone sampling day does not have a valid maximum ozone measurement for any reason, the missing day can be counted as an *estimated* exceedance day under certain circumstances [40 CFR 50 App. J, US EPA 1993, p. 767-768]. Table 5.5 gives both the actually measured and the estimated number of exceedance days at each site.)

The 8-hour standard was exceeded a total of 182 times at the 46 sites that monitored for O_3 . Thirty-two monitors had at least one exceedance. The largest number at one monitor was 17 in Rockwell (Rowan County). These exceedances were distributed over 34 days during the ozone season where at least one site within the state recorded values greater than 0.085 ppm.

The second highest 1-hour concentrations in each county are shown in Figure 5.12 for areas with one or more monitors active in 2001. Monitors whose second highest 1-hour concentration exceeds 0.124 ppm potentially violate the EPA one-hour standard (although it is no longer in effect in North Carolina).

Historical average fourth-highest 8-hour concentrations of O₃ in counties where monitors were operated in 2001 are shown in Figure 5.13. Monitors whose fourth-highest 8-hour ozone concentration (averaged over *three* years) exceeds 0.084 ppm are deemed in violation of the EPA 8-hour standard.

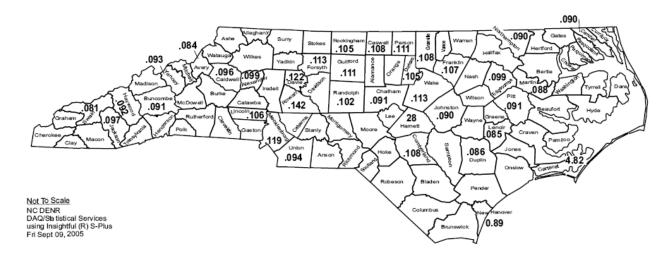
Figure 5.11 Location of Ozone Monitoring Sites

SITE NUMBER	ADDRESS	NUM		DAILY 1-H	R MAXIMA		NO. VALUES > 0.125		
COUNTY		OBS	1 st	2 nd	3 rd	4 th	MEAS	EST	
37-003-0003 ALEXANDER	324 MINNIGAN LANE TAYLORSVILLE	5136	0.105	0.099	0.096	0.093	в С	0.00	
37-011-0002 AVERY	7510 BLUE RIDGE	5136	0.087	0.084	0.083	0.081	C	0.00	
37-021-0030 BUNCOMBE	ROUTE 191 SOUTH BREVARD RD ASHEVILLE	5040	0.097	0.091	0.087	0.086	6 C	0.00	
37-027-0003 CALDWELL	HWY 321 NORTH LENOIR	5088	0.104	0.096	0.094	0.094	L C	0.00	
37-029-0099 CAMDEN	COUNTY ROAD 1136 & 1134	5112	0.090	0.090	0.086	0.086	s c	0.00	
37-033-0001 CASWELL	7074 CHERRY GROVE REIDSVILLE	5112	0.113	0.108	0.105	0.103	3 C	0.00	
37-037-0004 CHATHAM	RT 4 BOX 64 PITTSBORO NC 27312	5112	0.091	0.091	0.089	0.089) (0.00	
37-051-0008 CUMBERLAND	1/4MI SR1857/US301/1857 WADE	5136	0.115	0.108	0.097	0.096	6 C	0.00	
37-051-1003 CUMBERLAND	3625 GOLFVIEW ROAD HOPE MILLS	5136	0.097	0.095	0.094	0.093	в С	0.00	
37-059-0002 DAVIE	246 MAIN STREET COOLEEMEE	5088	0.128	0.122	0.119	0.102	2 1	1 1.00	
37-061-0002 DUPLIN	HWY 50 KENANSVILLE	5112	0.087	0.086	0.085	0.085	5 C	0.00	
37-063-0013 DURHAM	2700 NORTH DUKE STREET DURHAM	5136	0.116	0.105	0.105	0.103	3 C	0.00	

Table 5.5 One-Hour Ozone in Parts Per Million for 2001

SITE NUMBER	ADDRESS	NUM		DAILY 1-H	R MAXIMA		NO. VALUES > 0.125		
COUNTY		OBS	1 st	2 nd	3 rd	4 th	MEAS	EST	
37-065-0099 EDGECOMBE	7589 NC HWY 33-NW LEGGETT	5064	0.105	0.099	0.098	0.092	0	0.00	
37-067-0022 FORSYTH	1300 BLK. HATTIE AVENUE WINSTON-SALEM	5088	0.109	0.106	0.105	0.104	0	0.00	
37-067-0027 FORSYTH	7635 HOLLYBERRY LANE WINSTON-SALEM	5136	0.107	0.103	0.096	0.095	0	0.00	
37-067-0028 FORSYTH	6496 BAUX MOUNTAIN RD WINSTON-SALEM	5136	0.115	0.113	0.108	0.108	0	0.00	
37-067-1008 FORSYTH	3656 PIEDMONT MEMORIAL DRIVE WINSTON-SALEM	5136	0.109	0.108	0.104	0.101	0	0.00	
37-069-0001 FRANKLIN	431 S. HILLBOROUGH ST FRANKLINTON	5112	0.128	0.107	0.094	0.093	1	1.00	
37-077-0001 GRANVILLE	WATER TREATMENT PLANT, JOHN UMSTEAD HOSPITAL BUTNER	5112	0.127	0.108	0.105	0.097	1	1.00	
37-081-0011 GUILFORD	KEELY PARK, KEELY RD, GREENSBORO	5136	0.120	0.111	0.107	0.104	0	0.00	
37-087-0004 HAYWOOD	2177 SCHEVILLS ROAD WAYNESVILLE	5136	0.087	0.084	0.083	0.081	0	0.00	
37-087-0035 HAYWOOD	TOWER BLUE RIDGE PARKWAY MILE MARKER 410	4752	0.095	0.092	0.091	0.090	0	0.00	
37-087-0036 HAYWOOD	GREAT SMOKY MOUNTAIN NATIONAL PARK	4896	0.093	0.092	0.092	0.088	0	0.00	
37-099-0005 JACKSON	BARNET KNOB FIRE TOWER	4776	0.101	0.097	0.089	0.086	0	0.00	
37-101-0002 JOHNSTON	1338 JACK ROAD CLAYTON	5112	0.098	0.090	0.089	0.088	0	0.00	
37-107-0004 LENOIR	CORNER HWY EAST KINSTON	5088	0.099	0.085	0.083	0.083	0	0.00	

SITE NUMBER	ADDRESS	NUM		DAILY 1-HR			NO. VALUE	S > 0.125
COUNTY		OBS	1 st	2 nd	3 rd	4 th	MEAS I	EST
37-109-0004 LINCOLN	1487 RIVERVIEW ROAD LINCOLNTON	5136	0.121	0.106	0.105	0.104	0	0.00
37-117-0001 MARTIN	1210 HAYES STREET JAMESVILLE	5064	0.091	0.088	0.087	0.086	0	0.00
37-119-0041 MECKLENBURG	1130 EASTWAY DRIVE CHARLOTTE	4752	0.121	0.119	0.115	0.111	0	0.00
37-119-1005 MECKLENBURG	400 WESTINGHOUSE BLVD. CHARLOTTE	5064	0.121	0.116	0.101	0.095	0	0.00
37-119-1009 MECKLENBURG	29 N@ MECKLENBURG CAB CO CHARLOTTE	5112	0.128	0.120	0.119	0.109	1	1.00
37-129-0002 NEW HANOVER	6028 HOLLY SHELTER RD	5136	0.101	0.089	0.088	0.084	0	0.00
37-131-0002 NORTHAMPTON	ROUTE 46 GASTON	5136	0.095	0.090	0.090	0.087	0	0.00
37-145-0003 PERSON	SR49	5136	0.117	0.111	0.101	0.095	0	0.00
37-147-0099 PITT	US 264 NEAR WATTER TOWER FARMVILLE	5136	0.097	0.091	0.090	0.086	0	0.00
37-151-0004 RANDOLPH	4507 BRANSON DAVIS ROAD SOPHIA	5136	0.109	0.102	0.101	0.100	0	0.00
37-157-0099 ROCKINGHAM	6371 NC 65 @ BETHANY SCHOOL	5136	0.107	0.105	0.105	0.103	0	0.00
37-159-0021 ROWAN	301 WEST ST & GOLD HILL AVENUE ROCKWELL	5136	0.121	0.118	0.118	0.114	0	0.00
37-159-0022 ROWAN	925 N ENOCHVILLE AVE	4944	0.145	0.142	0.123	0.115	2	2.10
37-173-0002 SWAIN	CENTER STREET	5112	0.084	0.081	0.078	0.078	0	0.00


SITE NUMBER	ADDRESS	NUM	D	AILY 1-HR	MAXIMA		NO. VAL	UES >	0.125
COUNTY		OBS	1 st	2 nd	3 rd	4 th	MEAS	EST	
37-179-0003	701 CHARLES STREET	4944	0.124	0.094	0.090	0.089	I.	0	0.00
UNION	MONROE								
37-183-0014	3801 SPRING FOREST ROAD	5112	0.113	0.113	0.113	0.102		0	0.00
WAKE	RALEIGH								
37-183-0015	808 NORTH STATE STREET	5136	0.108	0.104	0.104	0.099		0	0.00
WAKE	RALEIGH								
37-183-0016	201 NORTH BROAD STREET	5088	0.093	0.091	0.090	0.089		0	0.00
WAKE	FUQUAY-VARINA								
37-183-0017	5033 TV TOWER ROAD	5112	0.101	0.093	0.091	0.089		0	0.00
WAKE	GARNER								
37-199-0003	BLUE RIDGE PARKWAY	4608	0.094	0.093	0.090	0.089		0	0.00
YANCY									
Total Samples		233,160						6	6.10
Total Sites Sampled		46							

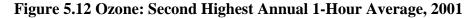

SITE NUMBER	ADDRESS	VALID	VALID D	AILY 8-H	IR MAXIN	MUM	NO. VALUES
COUNTY		DAYS	1 st	2 nd	3 rd	4 th	.>.085 MEAS
37-003-0003 ALEXANDER	STATE ROAD 1177 TAYLORSVILLE	208	0.093	0.09	0.089	0.88	5
37-001-0002 AVERY	7510 BLUE RIDGE	204	0.082	0.078	0.075	0.074	0
37-021-0030 BUNCOMBE	ROUT 191 SOUTH BREVARD RD ASHEVILLE	209	0.085	0.083	0.077	0.076	1
37-027-0003 CALDWELL	HWY 321 NORTH LENOIR	204	0.087	0.086	0.084	0.082	2
37-029-0099 CAMDEN	COUNTY ROAD 1136 & 1134	209	0.082	0.081	0.080	0.080	0
37-033-0001 CASWELL	7074 CHERRY GROVE RD REIDSVILLE	213	0.095	0.092	0.089	0.087	6
37-037-0004 CHATHAM	RT 4 BOX 64 PITTSBORO NC 27312	206	0.081	0.081	0.078	0.077	0
37-051-0008 CUMBERLAND	1/4MI SR1857/US301/1857 WADE	209	0.091	0.088	0.083	0.080	2
37-051-1003 CUMBERLAND	3625 GOLFVIEW ROAD HOPE MILLS	212	0.087	0.085	0.085	0.084	3
37-059-0002 DAVIE	246 MAIN STREET COOLEEMEE	208	0.104	0.102	0.098	0.094	11
37-061-0002 DUPLIN	HWY 50 KENANSVILLE	196	0.080	0.080	0.079	0.077	0
37-063-0013 DURHAM	2700 NORTH DUKE STREET DURHAM	205	0.098	0.090	0.089	0.084	3
37-065-0099 EDGECOMBE	7589 NC HWY 33-NW LEGGETT	203	0.092	0.087	0.085	0.085	4
37-067-0022 FORSYTH	1300 BLK. HATTIE AVENUE WINSTON-SALEM	210	0.099	0.098	0.098	0.094	10
37-067-0027 FORSYTH	7635 HOLLYBERRY LANE WINSTON-SALEM	214	0.091	0.088	0.082	0.082	2
37-067-0028 FORSYTH	6496 BAUX MOUNTAIN RD WINSTON-SALEM	214	0.103	0.100	0.099	0.096	10
37-067-1008 FORSYTH	3656 PIEDMONT MEMORIAL DRIVE WINSTON-SALEM	213	0.097	0.096	0.096	0.094	8
37-069-0001 FRANKLIN	431 S. HILLBOROUGH ST FRANKLINTON	203	0.099	0.090	0.086	0.085	4
37-077-0001 GRANVILLE	WATER TREATMENT PLANT JOHN UMSTEAD HOSPITAL BUTNER	209	0.108	0.097	0.094	0.094	5

Table 5.6 Eight-Hour Ozone in Parts Per Million for 2001

SITE NUMBER	ADDRESS	VALID	VALID	MUM	N0. VALUES .>.085		
COUNTY		DAYS	1 st	2 nd	3 rd	4 th	MEAS
37-081-0011 GUILFORD	KEELY PARK, KEELY RD, GREENSBORO	212	0.099	0.091	0.087	0.086	4
37-087-0004 HAYWOOD	2177 SHEVILLE ROAD WAYNESVILLE	207	0.082	0.076	0.076	0.075	0
37-087-0035 HAYWOOD	TOWER BLUE RIDGE PARKWAY MILE MARKER 410	192	0.085	0.083	0.081	0.081	1
37-087-0036 HAYWOOD	GREAT SMOKY MOUNTAIN NATIONAL PARK	202	0.083	0.082	0.082	0.082	0
37-099-0005 JACKSON	BARNET KNOB FIRE TOWER	198	0.093	0.090	0.084	0.084	2
37-101-0002 JOHNSTON	1338 JACK ROAD CLAYTON	207	0.084	0.080	0.078	0.078	0
37-107-0004 LENOIR	CORNER HWY 70 EAST KINSTON	200	0.088	0.078	0.078	0.077	1
37-109-0004 LINCOLN	1487 RIVERVIEW ROAD LINCOLNTON	206	0.095	0.094	0.094	0.094	9
37-117-0001 MARTIN	1210 HAYES STREET JAMESVILLE	197	0.079	0.077	0.077	0.074	0
37-119-0041 MECKLENBURG	1130 EASTWAY DRIVE CHARLOTTE	198	0.106	0.103	0.100	0.099	9
37-119-1005 MECKLENBURG	400 WESTINGHOUSE BLVD. CHARLOTTE	208	0.103	0.099	0.086	0.086	5
37-119-1009 MECKLENBURG	29 N@ MECKLENBURG CAB CO CHARLOTTE	211	0.103	0.103	0.100	0.099	10
37-129-0002 NEW HANOVER	6028 HOLLY SHELTER RD	196	0.080	0.080	0.080	0.078	0
37-131-0002 NORTHAMPTON	ROUTE 46 GASTON	205	0.084	0.084	0.080	0.078	0
37-145-0003 PERSON	SR NC 49	211	0.099	0.089	0.089	0.088	5
37-147-0099 PITT	US 264 NEAR WATER TOWER FARMVILLE	208	0.078	0.078	0.078	0.077	0
37-151-0004 RANDOLPH	4507 BRANSON DAVIS RD SOPHIA	213	0.097	0.093	0.091	0.085	7
37-157-0099 ROCKINGHAM	6371 NC 65 @ BETHANY SCHOOL BETHANY	210	0.098	0.096	0.094	0.094	9
37-159-0021 ROWAN	301 WEST ST & GOLD HILL AVE ROCKWELL	206	0.104	0.102	0.101	0.097	17
37-159-0022 ROWAN	925 N ENOCHVILLE AVE ENOCHVILLE	198	0.122	0.104	0.103	0.103	15
37-173-0002 SWAIN	CENTER STREET PARKS 7 REC FACILITY	210	0.075	0.072	0.071	0.069	0

SITE NUMBER	ADDRESS	VALID	VALID DAILY 8-HR MAXIMUM				N0. VALUES .>.085	
COUNTY		DAYS	1 st	2 nd	3 rd	4 th	MEAS	
37-179-0003 UNION	701 CHARLES STREET MONROE	194	0.096	0.085	0.085	0.081	3	
37-183-0014 WAKE	E. MILLBROOK JR HI 3801 SPRING FOREST ROAD RALEIGH	208	0.093	0.093	0.089	0.089	4	
37-183-0015 WAKE	808 NORTH STATE STREET RALEIGH	206	0.093	0.091	0.088	0.088	4	
37-183-0016 WAKE	201 NORTH BROAD STREET FUQUAY-VARINA	199	0.084	0.083	0.083	0.082	0	
37-183-0017 WAKE	5033 TV TOWER ROAD GARNER	204	0.084	0.081	0.077	0.077	0	
37-199-0003 YANCY	BLUE RIDGE PARKWAY	183	0.086	0.084	0.084	0.084	1	
Total Sample Total Site Sample	S	9,438 46					182	

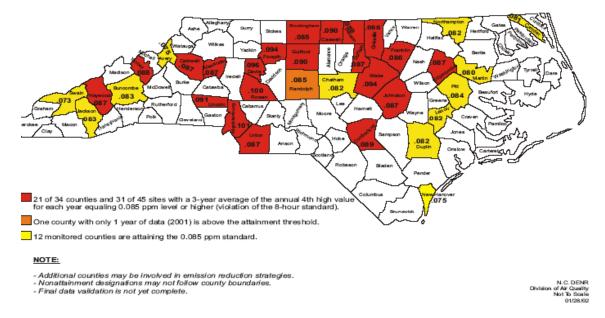


Figure 5.13 Ozone: Mean Annual Fourth Highest 8-Hour Average, 1999-2001

5.6 Sulfur Dioxide

Sulfur dioxide (SO₂) concentrations were measured by the State and two local program agencies using EPA reference or equivalent methods. Eight SO₂ monitors were active in North Carolina in 2001. Some SO₂ sites are operated only every third year. We supplemented this report with 4 monitors that operated last in 2000, (and will next be operated in 2003), and 5 monitors that operated last in 1999 (and will next be operated in 2002).

From the 17 sites with SO₂ data obtained between 1999 and 2001, 136,344 valid hourly averages were collected. A map of the active SO₂ sampling sites is presented in Figure 5.14 and a detailed summary of the data from each site is given in Table 5.7.

There were no exceedances of the SO_2 ambient air quality standards in 2001. The highest annual arithmetic mean was 0.006 ppm, or about 20 percent of the standard (0.03 ppm). The highest maximum 24hour average was 0.050 ppm, about 30 percent of the standard (0.14 ppm), and the highest maximum 3-hour average was 0.12 ppm, about 25 percent of the welfare-related (secondary) standard (0.50 ppm).

Apparently, the size of an urban area has little effect on the ambient concentrations of SO_2 in North Carolina. Seasonal variations, such as those with CO and O₃, do not appear to exist for SO_2 . Major source characteristics such as type, size, distribution, control devices, operating conditions and dispersion situations significantly affect the amount of SO_2 in ambient air.

The second highest three-hour concentrations in each county are shown in Figure 5.15. The second highest 24hour concentrations in each county are shown in Figure 5.16.

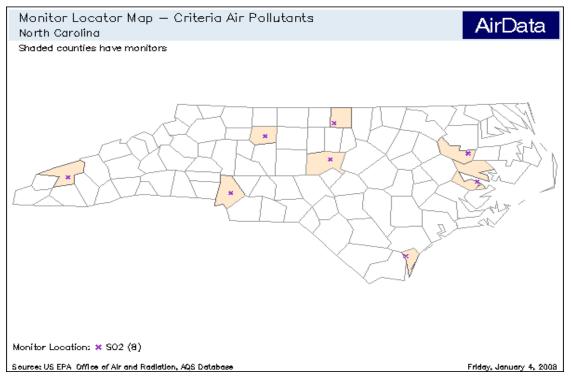


Figure 5.14 Locations of Sulfur Dioxide Monitoring Sites in 1999, 2000 and 2001.

SITE NUMBER	ADDRESS	NUM OBS	DBS		THREE-HOUR MAXIMA		24-HOUR MAXIMA		ARITH MEAN
COUNTY]		1 st	2 nd	1 st	2 nd	1 st	2 nd	
2001 DATA									
37-013-0006 BEAUFORT	NC 306 @ PCS ENTRANCE AURORA	7,940	0.107	0.099	0.075	0.072	0.034	0.026	0.003
37-037-0004 CHATHAM	RT4 BOX62 PITTSBORO	8,287	0.062	0.043	0.037	0.020	0.008	0.008	0.002
37-067-0022 FORSYTH	1300 BLK. HATTIE AVENUE WINSTON-SALEM	8,558	0.101	0.077	0.050	0.046	0.016	0.016	0.005
37-117-0001 MARTIN	1210 HAYES STREET	8,200	0.035	0.023	0.021	0.016	0.012	0.008	0.002
37-119-0041 MECKLENBURG	1130 EASTWAY DRIVE CHARLOTTE	8,010	0.146	0.122	0.062	0.055	0.024	0.018	0.004
37-129-0006 NEW HANOVER	HWY 421 NORTH	8,166	0.162	0.154	0.120	0.093	0.050	0.039	0.006

Table 5.7 Sulfur Dioxide in Parts Per Million from All Sites for 1999-2001

SITE NUMBER	ADDRESS	NUM OBS	ONE-HOUR	MAXIMA	THREE MAX		24-H MAX		ARITH MEAN
COUNTY			1 st	2 nd	1 st	2 nd	1 st	2 nd	
37-14-5-0003 PERSON	SR49	7,054	0.088	0.085	0.069	0.057	0.016	0.015	0.003
37-173-0002 SWAIN	CENTER ST/PARKS 7 REC FACILITY BRYSON CITY	7,057	0.015	0.015	0.013	0.012	0.008	0.004	0.002
Tatal Oscarlas		00.070							
Total Samples Total Sites Sampled		63,272 8							
2000 data									
	246 MAIN STREET COOLEEMEE	8,249	0.071	0.054	0.055	0.049	0.019	0.018	0.004
37-109-0004 LINCOLN		8,159	0.076	0.066	0.046	0.043	0.022	0.018	0.004
37-131-0002 NORTHAMPTON		8,361	0.037	0.033	0.025	0.021	0.012	0.012	0.004
37-147-0099 PITT	TOWER	8,153	0.023	0.023	0.017	0.016	0.009	0.007	0.003
Total Samples		32,922							
Total Sites Sampled		4							
1999 Data									-
37-051-1003 CUMBERLAND		8,271	0.018	0.018	0.012	0.011	0.007	0.007	0.005
37-061-0002 DUPLIN		8,258	0.017	0.016	0.014	0.012	0.007	0.007	0.005
37-065-0099 EDGECOMBE	7589 NC HWY 33-NW	8,125	0.060	0.024	0.012	0.011	0.008	0.007	0.005
37-101-0002 JOHNSTON	1338 JACK ROAD CLAYTON	8,275	0.042	0.037	0.032	0.018	0.013	0.009	0.005
37-119-0034 MECKLENBURG	PLAZA RD. & LAKEDELL CHARLOTTE	7,221	0.083	0.082	0.066	0.047	0.014	0.013	0.004
Total Samples		40,150							
Total Sites Sampled		5							

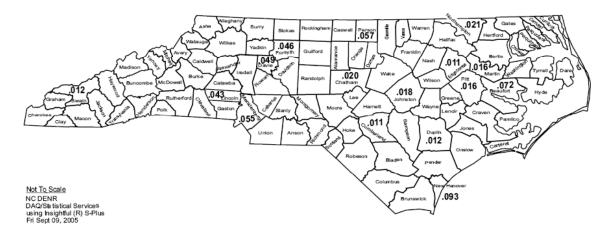


Figure 5.15 Sulfur Dioxide: Second Highest 3-Hour Averages in the Most Recent Year of Data from 1999, 2000 or 2001

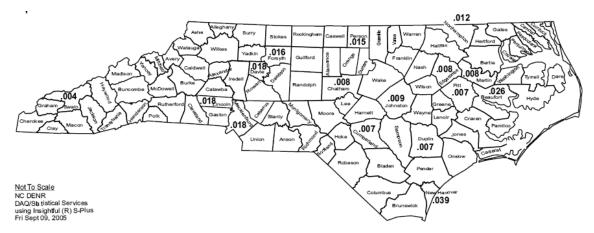


Figure 5.16 Sulfur Dioxide: Second Highest 24-Hour Averages in the Most Recent Year of Data from 1999, 2000 or 2001

5.7 Nitrogen Dioxide

Nitrogen dioxide (NO₂) concentrations were measured using EPA reference or equivalent continuous monitors in 2001 at one local program site in Forsyth County and one local program site in Mecklenburg County.

From these two sites, 16,334 hourly NO₂ measurements were reported. A map of the

 NO_2 sampling sites is presented in Figure 5.17, and a summary of the 2001 NO_2 data is given in Table 5.8.

Each urban area site has only a few outlying high hourly sample values that are above the standard defined for the annual arithmetic mean. The arithmetic means (Table 5.7) are about 34 percent of the standard.

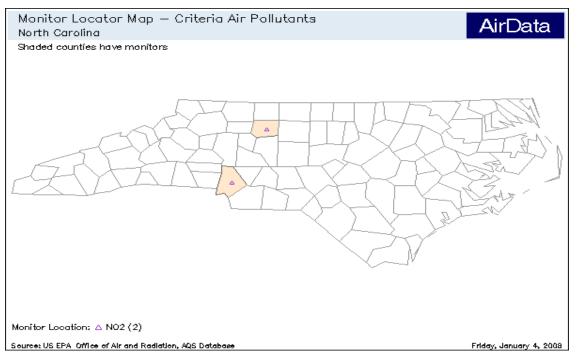


Figure 5.17 Location of Nitrogen Dioxide Monitoring Sites

Table 5.8 Nitrogen l	Dioxide in Parts	Per Million for 2001
----------------------	-------------------------	----------------------

SITE NUMBER COUNTY	ADDRESS	NUM OBS	ONE-HOUR N	MAXIMA	ARITH MEAN
			1ST	2ND	
37-067-0022 FORSYTH	1300 BLK. HATTIE AVENUE WINSTON-SALEM	8,530	0.067	0.065	0.016
37-067-0041 MECKLENBURG	1130 EASTWAY DRIVE CHARLOTTE	7,804	0.074	0.069	0.018
Total Samples	·	16,334			
Total Sites Sampled		2			

5.8 Lead

The state and local program agencies have not performed routine analysis of ambient lead (Pb) in North Carolina since 1982. Lead monitoring was discontinued as a result of the low measurements and a continuing decrease in the lead concentrations being reported. The decrease in ambient Pb concentrations is due to the reduction and elimination of leaded gasoline, resulting in greatly reduced lead emissions from automobiles.

The most recent year of data available prior to 1996-97 was in 1990. Because the previous data were so old, the state began metals analysis at three locations on 1996. These metal sites will be relocated to other locations in future years. The purpose of these sites is to gather background information about lead and other metals. No lead sites operated in 2001. The change in analytical laboratories from the EPA's National Particulate Analysis Program to the state program also changed the minimum detectable levels of the method from 0.01 to 0.04 μ g/m³, respectively. Concentrations of most metals are below detectable limits regardless of the method used.

During 1999, a special study focusing on arsenic levels was undertaken. Lead, as well as 9 other toxic metals were analyzed on TSP samplers with PM_{10} filters at 10 ambient air monitoring sites, by a contract laboratory using inductively coupled plasma/mass spectrometry (ICP/MS). This method has a sensitivity of three orders of magnitude greater than the past methods. Of the 526 samples analyzed only 39 exceeded the minimum detectable level of $0.01 \ \mu g/m^3$ and only 2 exceeded the minimum detectable level of 0.04 μ g/m³, with values of 0.04154 μ g/m³ and 0.04174 μ g/m³. This study was discontinued in 2000. The lead standard remains 1.5 μ g/m³ for a quarterly average.

6 Air Quality Index

The Air Quality Index (AQI) was developed by the EPA to provide the public with a simple, accessible, and uniform assessment of air quality at a specific location, based on the criteria pollutants PM_{2.5}, PM₁₀, CO, O₃ (both 1 and 8 hour values), SO_2 and NO_2 . AQI measurements are made and reported in all U.S. metropolitan statistical areas (MSA) with a population over 350,000. Ambient concentrations for each of these seven pollutants are converted to a numerical scale ranging from 0 to 500, where 100 corresponds to the EPA primary standard for a 24-hour average (8-hour CO average, 1 and 8-hour O₃ average) and 500 corresponds to a concentration associated with *significant harm*. The AQI is determined by the pollutant with the highest scaled concentration, and a subjective description of good, moderate, "unhealthy for sensitive groups", "unhealthy", very unhealthy, or hazardous is included with the report, with the descriptions corresponding to AQI values of 0-50, 51-100, 101-150, 151-200, 201-300, and 301-500, respectively. For AQI values between 101 and 500, an appropriate cautionary statement is included advising people susceptible to deleterious health effects to restrict activities and exposure to the ambient air.

An AQI of 101-200 (unhealthy for sensitive groups and unhealthy) can produce mild aggravation of symptoms in susceptible persons and possible irritation in healthy persons. People with existing heart or lung ailments should reduce physical exertion and outdoor activity. The general population should reduce vigorous outdoor activity.

An AQI of 201 to 300 (very unhealthy) can produce significant aggravation of symptoms and decreased exercise tolerance in persons with heart or lung disease, and a variety of symptoms in healthy persons. Elderly people and those with existing heart or lung disease should stay indoors and reduce physical activity. The general population should avoid vigorous outdoor activity.

The health effects of an AQI of over 300 (hazardous) include early onset of certain diseases in addition to significant aggravation of symptoms and decreased exercise tolerance in healthy persons. The elderly and persons with existing diseases should stay indoors and avoid physical exertion.

At AQI values over 400, premature death of ill and elderly persons may result, and healthy people will experience adverse symptoms that affect normal activity. Outdoor activity should be avoided. All people should remain indoors, keeping windows and doors closed, and should minimize physical exertion.

During winter months in North Carolina, carbon monoxide usually has the highest air quality index value, and in summer months the highest index value is usually due to ozone.

In 2001, Charlotte area provided an AQI report to the public by telephone using computer-generated recorded voice announcements 24 hours daily. The AQI report also may be published by local newspapers or broadcast on radio and television stations.

The Air Quality Index report is available by telephone for Charlotte area at 704-333- SMOG. We also provide an AQI Report on the North Carolina DAQ web site, (<u>http://www.daq.state.nc.us/monitor</u>).

In this printed report, we have summarized AQI statistics for six metropolitan areas in North Carolina. Table 6.1 shows the number of days in each health category at each area. (The Asheville area has two entries, "actual" and "adjusted", in Table 6.1, because it was not monitored every day of the year; the "adjusted" entry gives our estimate of the number of days that *would have occurred* in each category had all 365 days been monitored.)

Asheville did not have AQI monitors operating every day of the year. During

January through March PM10 and PM2.5 monitors operated on 27 of the 90 days; April through October, PM and ozone, monitors operated on 211 of the 214 days; and in November and December, PM10 and PM2.5 monitors operated on 16 of the 61 days. There were only 3 days on which an AQI value was "unhealthy for sensitive groups" or "unhealthy"; one occurred in June, and two during November¹. Figure 6.1 shows the 2001 AQI time series for Asheville. Figure 6.2 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AOI was in each respective health category, and the percentile distribution for each health category for Asheville.

In the Charlotte-Gastonia-Rock Hill MSA, the AQI was "*unhealthy for sensitive groups*" or "*unhealthy*" on 28 out of 365 days monitored. All 28 of these days occurred between April and September.

¹ If the unsampled days in November and December were proportioned the same way as the sampled days, the statistical expectation would have been 7.2 days of "unhealthy for sensitive groups" or "unhealthy".

Figure 6.3 shows the 2001 AQI time series for Charlotte-Gastonia-Rock Hill. Figure 6.4 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AQI was in each respective health category, and the percentile distribution for each health category for Charlotte-Gastonia-Rock Hill.

In the Fayetteville MSA, the AQI was "unhealthy for sensitive groups" or "unhealthy" on 4 out of 365 days monitored. All 4 of these days occurred between May and September. Figure 6.5 shows the 2001 AQI time series for Fayetteville. Figure 6.6 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AQI was in each respective health category, and the percentile distribution for each health category for Fayetteville.

In the Greensboro-Winston-Salem-High Point MSA, the AQI was "*unhealthy for sensitive groups*" or "*unhealthy*" on 21 out of 365 days monitored. All 21 of these days occurred between May and September. Figure 6.7 shows the 2001 AQI time series for Greensboro-Winston-Salem-High Point. Figure 6.8 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AQI was in each respective health category, and the percentile distribution for each health category for Greensboro-Winston-Salem-High Point.

In the Raleigh-Durham-Chapel Hill MSA, the AQI was "*unhealthy for sensitive groups*" or "*unhealthy*" on 10 out of 365 days monitored. All 10 of these days occurred between May and August. Figure 6.9 shows the 2001 AQI time series for Raleigh-Durham-Chapel Hill. Figure 6.10 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AQI was in each respective health category, and the percentile distribution for each health category for Raleigh-Durham-Chapel Hill.

In the Wilmington MSA, the AQI was never "*unhealthy for sensitive groups*" or "*unhealthy*" out of 365 days monitored. Figure 6.11 shows the 2001 AQI time series for Wilmington. Figure 6.12 shows summaries of the numbers of days each respective pollutant was responsible for the AQI, the number of days the AQI was in each respective health category, and the percentile distribution for each health category for Wilmington.

MSA	STATISTICAL TREATMENT	GOOD	MODERATE	UNHEALTHY FOR SENSITIVE GROUPS	UNHEALTHY
Asheville	actual	192.0	59.0	2.0	1.0
Asheville	adjusted	279.4	77	4.8	3.8
Charlotte	actual	169.0	168.0	26.0	2.0
Fayetteville	actual	265.0	96.0	4.0	0.0
Greensboro	actual	180.0	164.0	21.0	0.0
Raleigh	actual	162.0	193.0	10.0	0.0
Wilmington	actual	316.0	49.0	0.0	0.0

 Table 6.1 Air Quality Index Category Days in the Major Metropolitan Statistical

 Areas, 2001



Figure 6.1 Daily Air Quality Index Values for Asheville

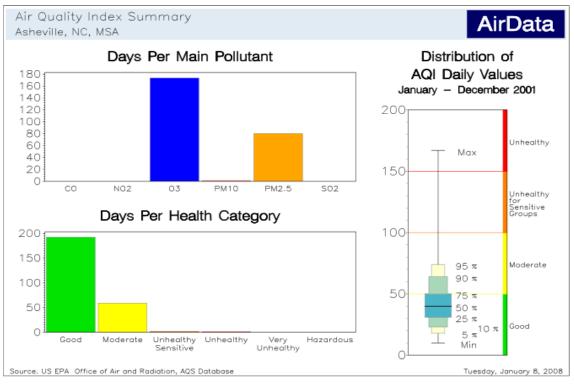


Figure 6.2 Daily Air Quality Index Summary for Asheville

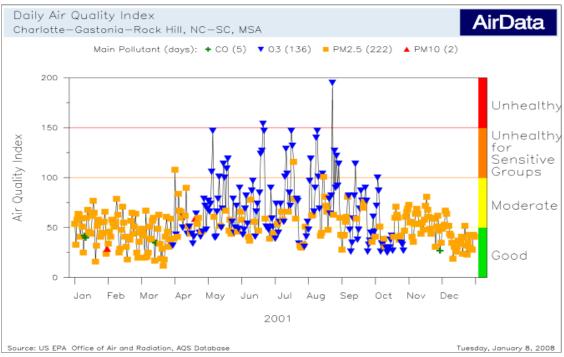


Figure 6.3 Daily Air Quality Index Values for Charlotte-Gastonia

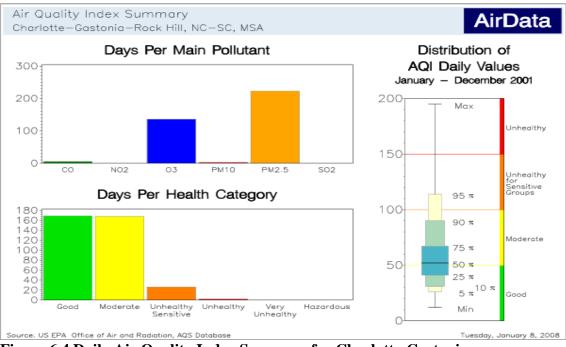


Figure 6.4 Daily Air Quality Index Summary for Charlotte-Gastonia

Figure 6.5 Daily Air Quality Index Values for Fayetteville, NC

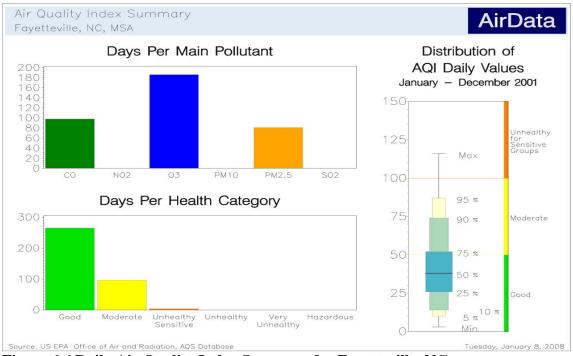


Figure 6.6 Daily Air Quality Index Summary for Fayetteville, NC

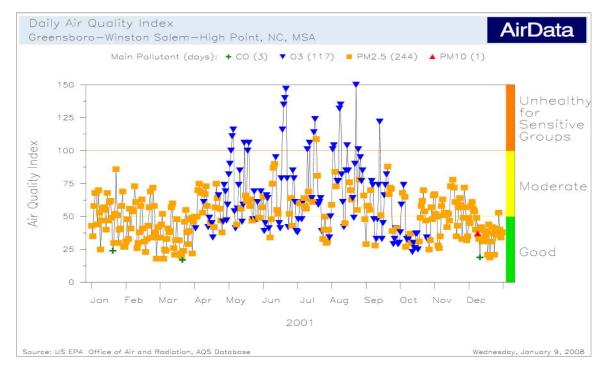


Figure 6.7 Daily Air Quality Index Values for Greensboro-Winston-Salem-High Point

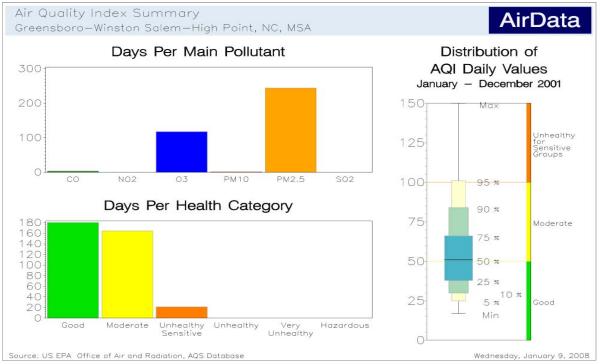


Figure 6.8 Daily Air Quality Index Summary for Greensboro-Winston-Salem-High Point

Figure 6.9 Daily Air Quality Index Values for Raleigh-Durham-Chapel Hill, NC

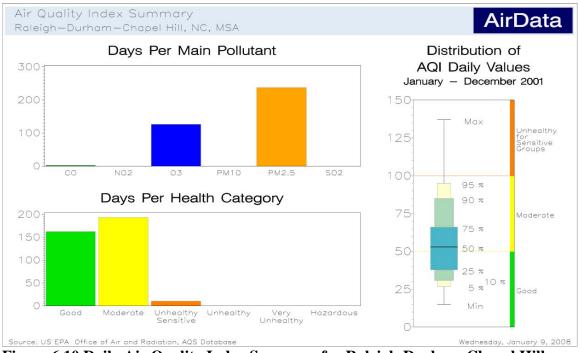


Figure 6.10 Daily Air Quality Index Summary for Raleigh-Durham-Chapel Hill

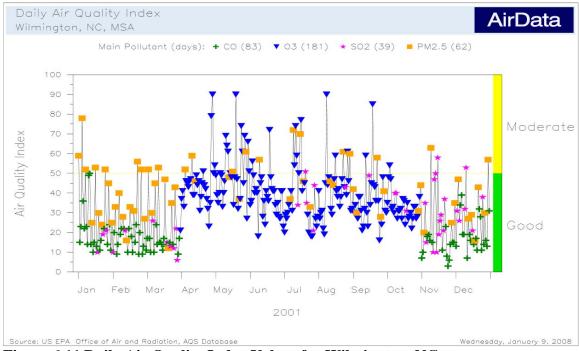


Figure 6.11 Daily Air Quality Index Values for Wilmington, NC

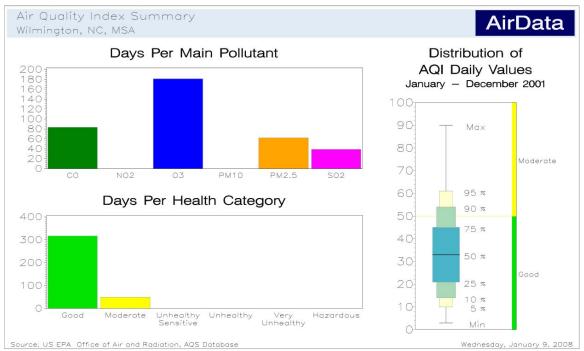


Figure 6.12 Daily Air Quality Index Summary for Wilmington, NC

7 Acid Rain

7.1 Sources

Acid rain is produced when nitrate and sulfate ions from automobile and industrial sources are released into the atmosphere, undergo a reaction with moisture in the air, and are deposited as acid precipitation. Acid ions are produced when sulfur dioxide and nitrogen oxides reach equilibrium with water to form sulfuric acid and nitric acid.

7.2 Effects

Many agricultural crops in North Carolina are sensitive to acid rain. Forests are subject to mineral loss from acid rain exposure and may also suffer root damage. Acid fogs and mists, typical in the mountains of North Carolina, can expose trees and plants to even higher acid concentrations and cause direct damage to foliage. Lakes, rivers and streams that are too acidic can impede fish and plant growth.

7.3 Monitoring

Acid rain monitoring has been conducted nationally, including in North Carolina, since 1978 by the National Atmospheric Deposition Program (NADP) and the National Trends Network (NTN) which merged with NADP in 1982. In 2001, acid rain samples were collected at eight sites in North Carolina and one Tennessee site in the Great Smoky Mountains less than 10 miles from the western border of North Carolina.

NADP conducts acid deposition monitoring using a wet/dry bucket type sampler. When rainfall is detected, a sensor is activated and a metal lid automatically covers and protects the *dry* sample, exposing the *wet* bucket to collect precipitation.

Acidity is measured using a *pH* scale. The pH scale is numbered from 0 to 14, with 0 being extremely acidic and 14 being extremely basic. A substance with a pH of five is ten times as acidic as one with a pH of six, 100 times as acidic as a substance with a pH of seven, etc. Neutral water with an equal concentration of acid and base ions has a pH of seven. The pH of vinegar is approximately 2.8, and lemon juice has a pH of about 2.3. The pH of ammonia is approximately 12. Pure water in equilibrium with the air is slightly acidic and has a pH of approximately 5.6. The measurements of pH at the North Carolina monitoring sites in 2001 ranged from 4.43 to 4.88 with a mean of 4.63. The 2001 pH annual means for North Carolina from the NADP database are presented in Figure 7.1 and Table 7.1. Table 7.1 also exhibits conductivity averages and precipitation totals for rainfall. Measured concentrations of several other chemical constituents of precipitation are given in Table 7.2. The highest pH (and the least acid) precipitation occurred at the Sampson County site. This general area in southeastern North Carolina has the greatest numbers of animal producing farms. This area has the highest emissions of ammonia, a basic gas emitted from animal wastes. Table 7.2 shows that the ammonium concentration in precipitation is second-highest at the Sampson County site.



Figure 7.1 Annual Mean pH Values at North Carolina NADP Sites, 2001

County Site ID Address	рН	Conductivity	Precipitation
Bertie NC03 Lewiston	4.6	8 14.0	91 34.8
Carteret NC06 Beaufort	4.6	57 16.0	39.9
Macon NC25 Coweeta	4.6	3 13.5	5 52.9
Rowan NC34 Piedmont Research Station	4.4	-3 24.1	3 26.6
Sampson NC35 Clinton Crops Research Station	4.8	8 12.3	30 34.6
Scotland NC36 Jordan Creek	4.5	5 16.7	29.6
Wake NC41 Finley Farm	4.6	2 15.0	97 43.5
Yancey NC45 Mt. Mitchell	4.6	13.5	58 71.9
Sevier (TN) TN11 Great Smoky Mountains National Park-Elkmont	4.6	14.2	20 54.9

Table 7.1 pH, Conductivity in Microsiemans per Centimeter and Precipitation inInches from the National Atmospheric Deposition Program for 2001.

County Site ID	% complete- C ness	a	Mg	К	Na	NH4	NO3	CI	SO4
Bertie NC03	94	0.07	0.027	0.041	0.196	0.22	0.86	0.36	1.17
Beaufort NC06	80	0.09	0.066	0.028	0.567	0.14	0.81	1.01	1.12
Macon NC25	90	0.04	0.013	0.013	0.088	0.13	0.68	0.17	1.11
Rowan NC34	90	0.10	0.026	0.080	0.133	0.48	1.37	0.32	2.33
Sampsor NC35	n 96	0.07	0.023	0.021	0.187	0.44	0.86	0.35	1.26
Scotland NC36	87	0.07	0.022	0.015	0.155	0.20	0.96	0.29	1.37
Wake NC41	94	0.06	0.017	0.020	0.114	0.27	0.89	0.22	1.35
Yancey NC45	79	0.04	0.009	0.012	0.047	0.16	0.61	0.10	1.22
Sevier (TN) TN11	92	0.06	0.013	0.038	0.036	6 0.14	0.76	0.08	1.18

Table 7.2 Ion Concentrations in Milligrams per Liter (Precipitation-weightedAnnual Means) from the National Atmospheric Deposition Program Data for 2001.

References

- Cornelius, Wayne L. (1996). Effects of North Carolina's Oxygenated Fuel Program on Ambient Carbon Monoxide Concentrations. *Air Quality Section, Division of Environmental Management, N.C. Dept. Of Env., Health, and Nat. Res.*
- Cornelius, Wayne L. (1997). Comparison of Nitrogenous Ion Deposition and Human and Animal Census Trends in Eastern North Carolina. *Air Quality Section, Division of Environmental Management, N.C. Dept. Of Env., Health, and Nat. Res.*
- Maynard, Andrew D. and Paul a. Jensen (2001). Aerosol Measurement in the Workplace. Chapter 25 in *Aerosol Measurement: Principles, Techniques, and Applications, Second Edition*, Paul A. Baron and Klause Willeke, eds., p. 779-799.
- NADP (National Atmospheric Deposition Program) (1995). Notification of Important Change in NADP/NTN Procedures on 11 January 1994.
- North Carolina Department of Environment, Health, and Natural Resources (1991a). 1989 Ambient Air Quality Report. *Air Quality Section, Division of Environmental Management, N.C. Dept. Of Env., Health, and Nat. Res.*
- North Carolina Department of Environment, Health, and Natural Resources (1991b). Ambient Air Quality Trends in North Carolina 1972-1989. Air Quality Section, Division of Environmental Management, N.C. Dept. Of Env., Health, and Nat. Res.
- United States Environmental Protection Agency [US EPA] (1993), ACode of Federal Regulations, Title 40, Parts 1 to 51, Protection of Environment,≅ (July 1 ed.). Office of the Federal Register (National Archives and Records Administration), Washington, DC.
- Watson, John G. and Judith C. Chow (2001). Ambient Air Sampling. Chapter 27 in Aerosol Measurement: Principles, Techniques, and Applications, Second Edition, Paul A. Baron and Klause Willeke, eds., p. 821-844

Appendix A. Air Pollution Monitoring Agencies

North Carolina State Headquarters

Division of Air Quality

Raleigh Central Office 2728 Capital Boulevard 1641 Mail Service Center Raleigh, North Carolina 27699-1641 (919) 733-3340

North Carolina Regional Offices

Asheville Regional Office

2090 U.S. Highway 70 Swannanoa, NC 28778 Phone: (828) 296-4500

Counties of Avery, Burke, Caldwell, Cherokee, Clay, Graham, Haywood, Henderson, Jackson, Macon, Madison, McDowell, Mitchell, Polk, Rutherford, Swain, Transylvania, and Yancey.

Fayetteville Regional Office

225 Green Street, Suite 714 Fayetteville, North Carolina 28301 (910) 433-3300

Counties of Anson, Bladen, Cumberland, Harnett, Hoke, Montgomery, Moore, Robeson, Richmond, Sampson, and Scotland.

Mooresville Regional Office

610 East Center Avenue, Suite 301 Mooresville, NC 28115 Phone: (704) 663-1699

Counties of Alexander, Cabarrus, Catawba, Cleveland, Gaston, Iredell, Lincoln, Rowan, Stanly and Union.

Raleigh Regional Office

3800 Barrett Drive Raleigh, North Carolina 27609 (919) 791-4200

Counties of Chatham, Durham, Edgecombe, Franklin, Granville, Halifax, Johnston, Lee, Nash, Northampton, Orange, Person, Vance, Wake, Warren, and Wilson.

Washington Regional Office

943 Washington Square Mall Washington, North Carolina 27889 (252) 946-6481

Counties of Beaufort, Bertie, Camden, Chowan, Craven, Currituck, Dare, Gates, Greene, Hertford, Hyde, Jones, Lenoir, Martin, Pamlico, Pasquotank, Perquimans, Pitt, Tyrrell, Washington, and Wayne.

Wilmington Regional Office

127 Cardinal Drive Extension Wilmington, North Carolina 28405-3845 (910) 796-7215

Counties of Brunswick, Carteret, Columbus, Duplin, New Hanover, Onslow and Pender.

Winston-Salem Regional Office

585 Waughtown Street Winston-Salem, North Carolina 27107 (336) 771-5000

Counties of Alamance, Alleghany, Ashe, Caswell, Davidson, Davie, Guilford, Rockingham, Randolph, Stokes, Surry, Yadkin, Watauga, and Wilkes.

Local Agencies in North Carolina

Forsyth County Environmental Affairs Department

537 North Spruce Street Winston-Salem, North Carolina 27101 (336) 703-2440

Mecklenburg County Air Quality

700 N. Tryon Street, Suite 205 Charlotte, North Carolina 28202-2236 (704) 336-5500

Western North Carolina Regional Air Quality Agency (Buncombe County and Asheville city) 40 Maunt Carmal Baad

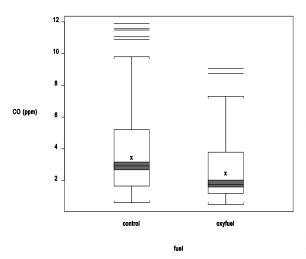
49 Mount Carmel Road Asheville, NC 28806 (828) 250-6777

Tribal Agency in North Carolina

Eastern Band of Cherokee Indians

Tribal Environmental Office P. O. Box 455 Cherokee, North Carolina 28719 (828) 497-3814

Territory overlaps with portions of Swain and Jackson Counties


Appendix B. Exceptional Events

Type of Event	Pollutants Affected			
Natural Events				
Sustained high wind speeds	particulate matter (PM			
Stagnations, inversions	all pollutants			
Unusual lack of precipitation	PM			
Stratospheric ozone intrusion	O ₃			
Volcanic eruption	CO, SO ₂ , PM			
Forest fires	CO, PM, O ₃			
High pollen count	PM			
Unintentional Man-made Events				
Large structural fires	CO, PM			
Major traffic congestion due to accident or nonrecurring obstruction	СО			
Chemical spills	SO ₂ , NO ₂ , PM, CO			
Industrial accidents	SO ₂ , NO ₂ , PM, CO			
Intentional Man-made Events				
Short-term construction/demolition	PM			
Sandblasting	PM			
High-sulfur oil refining	SO_2			
Roofing operations	PM, SO ₂			
Salting or sanding of streets	PM			
Infrequent large gatherings	PM, CO			
Soot blowing from ships	PM			
Agricultural tilling	PM			
Prescribed burning	CO, PM			
Noncompliance of local sources	CO, SO_2			

Appendix C. Box-And-Whisker Plots

A *box-and-whisker plot* (also called *boxplot* or *schematic plot*) is a schematic diagram useful for depicting the location, spread and skewness of a continuous data variable. Box plots are constructed from *order statistics* (data values sorted from smallest to largest). The "box" of the box plot is oriented parallel to a continuous scale and is defined by 3 points, (1) a line or point in the interior of the box at the median of the data (a point that divides the order statistics into two equal parts), and (2) upper and (3) lower *fourths* or *quartiles*. (Fourths divide the upper and lower halves of the data values into two equal parts; quartiles divide the entire range of the data into 4 equal parts. Fourths and quartiles are not necessarily the *same*, because there may be more than one number that appropriately divides a given set of data in the prescribed way, and different computational techniques [or computer programs] may make different choices.)

The distance between the upper and lower fourth in the box plot is called the *interquartile range*. In most box plots, the length of each of the *whiskers* is 1.5 times the interquartile range or to the extreme (maximum or minimum) of the data, whichever is *shorter*. The endpoint of each whisker is called an *inner fence*. (In the box plots pictured below, the end of each whisker is marked by a "staple" for clarity.) There may be data points, called *outliers*, beyond the inner fences; if so, they are usually indicated individually on the box plot by a dot, small circle, or (as

below) a short line segment perpendicular to the axis of the box. Box plots of variables with very long-tailed distributions may display two kinds of outliersXsmall dots for those just beyond the inner fences and larger dots or circles for *extreme outliers* at a distance of more than 3.0 times the interquartile range beyond the fourths. This boundary between outliers and extreme outliers is termed the *outer fence* and usually not explicitly shown in the plot.

The maximum and minimum values are always visible in a box-and-whisker plot as either the outermost outliers or, if there is no outlier, the position of the inner fence.

Box plots may have additional, optional features, such as a point marker at the *arithmetic mean* or a distinctive display of a *confidence interval for the median*, which is calculated from the fourths. In the figure, the arithmetic mean is marked with an "X", and the confidence interval for the median is displayed as a shaded or colored range; it is also common to display the confidence interval by cutting notches in the sides of the box at its endpoints.

Box plots are very useful for comparing two or more variables by placing two comparable variables side-by-side on the same scale (as in the figure). The statistics displayed can be directly compared, and statistical significance of difference between the medians can be assessed by examining overlap or lack of overlap of confidence intervals.

Appendix D. Nonattainment and North Carolina

What is nonattainment and what are the sources of the pollutants?

The United States Environmental Protection Agency (EPA) sets National Ambient Air Quality Standards. North Carolina monitors concentrations of air pollutants in the ambient air. Some of these monitors have measured concentrations of ozone and carbon monoxide exceeding the standards. Areas that have not met the National Ambient Air Quality Standards can be classified by EPA as "nonattainment".

Mobile sources such as cars and trucks are the primary cause of carbon monoxide and ozone precursors. About 90 percent of the carbon monoxide emissions come from motor vehicles. In the urban areas, 60 percent of the nitrogen oxides and 25 percent of the man-made hydrocarbons or volatile organic compound emissions come from motor vehicles; the rest comes from off-road vehicles, utility and industrial boilers, petroleum marketing, factories, businesses, and households. Nitrogen oxides react with volatile organic compounds and sunlight in warm weather to produce ozone.

Why is my county nonattainment?

EPA guidance recommends that an entire Metropolitan Statistical Area (MSA) be designated nonattainment when a monitor is found to be violating the National Ambient Air Quality Standards (NAAQS). This policy is due to the regional nature of certain pollutants, like ozone. Ozone is formed in the atmosphere under complex chemical reactions. Sometimes the ozone levels are higher just downwind of urban areas because of the time it takes the pollutants to react to form ozone. Therefore, larger areas are designated nonattainment to represent the likely area contributing to the air quality problems.

Once we are nonattainment, what is the process for becoming attainment?

North Carolina is required by the federal Clean Air Act and EPA to produce and implement emission reduction plans and show that these plans are strong enough to produce compliance with the standards. The plans could involve resource-intensive monitoring, emissions inventory, modeling, public participation, and strategy formulation efforts. There are deadlines for producing the plans and for achieving compliance with the standards. EPA must approve the plans.

How does the public get involved in the formulation of the emission reduction plans, known as State Implementation Plan (SIP) revisions?

Local agencies and officials, as well as state agencies, will be involved in drawing up the SIP

revisions. There will be public meetings or special citizen panels. When draft SIP revisions are done, there will be public hearings on them. The SIP revisions must be approved by the N.C. Environmental Management Commission and possibly by local bodies as well. The N. C. General Assembly also reviews the SIP. EPA's approval process also includes an opportunity for public comment.

How will it affect citizens?

Emission reduction strategies fall into several categories. Motor vehicle inspection/maintenance may be required for hydrocarbons, carbon monoxide, and nitrogen oxides. Traffic patterns may be altered by changing roads or traffic signals. Both new and existing factories and business may have to reduce emissions by installing control equipment or changing processes. Cleaner burning gasoline may be required. More controls will be required on utility and industrial boilers. All of these measures may mean higher costs to the public.

What happens if North Carolina refuses to address these air pollution problems?

Under the Clean Air Act, EPA has the authority to apply sanctions. EPA can require more stringent offsets for new facilities of major pollutant sources, and may withhold federal highway construction funds in the nonattainment areas.

What is the likelihood of receiving sanctions if we are showing progress in reducing pollution?

North Carolina can avoid sanctions if it produces and carries out SIP revisions that EPA approves by the deadlines. If pollution concentrations do not recede and attain the standards as projected, the EPA could impose construction bans. However, EPA has some discretion about imposing sanctions. Sanctions are a last step to persuade states to take required positive action.

What does inspection/maintenance cost?

As of December, 2001, the inspection/maintenance (I/M), or motor vehicle tailpipe testing process, costs the motorist \$30.00. If a vehicle fails the test, it must be repaired. A waiver is available if a vehicle still fails after \$200.00 worth of repairs have been done. The \$200.00 limit does not apply to tampered or misfueled vehicles. The inspection/maintenance program includes tests for hydrocarbon (HC) and carbon monoxide (CO) emissions for the following counties, Mecklenburg, Wake, Guilford, Forsyth, Durham, Gaston, Cabarrus, Orange, and Union. The number of counties will increase to 48 by 2006 under the Clean Air bill passed in 2000. The cost for this new test was set by the General Assembly during the 2001 legislative session. Currently, only gasoline powered motor vehicles built after 1974, excluding the current model year and motorcycles, are inspected in these counties. Inspection/maintenance pass/fail levels vary with vehicle age and pollutant.