

NMEB Conference July 18-22, 2020 Raleigh, NC

Evaluating Water Quality Before and After Stream Restoration

Greg Melia – Presenting Co-authors: Danielle Mir Joe Famularo Periann Russell

NC Department of Environmental Quality Division of Mitigation Services

> NMEB Conference July 18-22, 2020 Raleigh, NC

Need and Justification

- Water quality improvement is often stated as a goal in mitigation. Bernhardt et al., (2005)
- Historically it has not been measured sufficiently to support those goals. Palmer et al., (2007)
- Many investigators questioned the functional value and efficacy of restoration for pollutant attenuation absent watershed controls Walsh et al., 2005; Bernhardt and Palmer, 2007; Craig et al., 2008; Selvakumar et al., 2010
- The last decade has shown a range of results and promise but understanding of scale and efficacy of specific practices is still lacking. (Palmer et al. (2014); Lammers and Bledsoe (2017); Newcomer Johnsen et al., (2016))

- 1. DMS has a large inventory of projects from 2 decades of mitigation.
- 2. Opportunity for long term observation and monitoring.
- 3. Tied to a robust watershed planning approach.

DMS Study Objectives

- Provide case examples of water quality response to restoration. (Todays presentation is focused on one such case example deliberately selected with a condition of high signal to noise)
- Gain understanding of the scale under which change detection is feasible. (Gradient of signal to noise)
- 3. Understanding the efficacy of different practices.
- 4. Understanding the time frames of improvement and their sustainability.

DMS WQ Study Sites

DMS WQ Study Sites

Project	# Reaches	Param	Years Pre	Years Post			
Heath Dairy	2	F,N,S,M	3	1.7			
Millstone	2	F,N,S,M	1.3				
Pen Dell	1	F	1	2			
Buckwater	1	F,N,S	0.8	1			
Big Harris	13	F,N,S,FS,M	5	0.5			
Cross Creek	1	F,N,S	1				
Crane Creek	1	F,N,S	0.5				
Indicates a year or more of post restoration da							

Indicates a year or more of post restoration data

F – Fecal; N – Nutrients; S – Total Suspended Solids; M–Macrobenthos FS – Fish

- Approximately 12,600 feet, overall drainage of 3.53 M²
- T4 is reach subject to WQ monitoring

0	500	1,000 Feet			
1					

Buckwater Site Reach T4 (Hillsborough, NC)

700 Feet

- 820 Foot Reach
- Overall drainage 77 Acres
- Upper watershed 20 acres

Upstream Site Watershed Control Station

Dowstream Site Treatment Station

700 350

Buckwater Reach T4 Stressors

- The main lateral stressor to the reach was livestock.
- Eutrophied pond draining to reach.
- Reach was incised (floodplain disconnection).
- Watershed above upper station completely forested.
- This is a low watershed noise case example.

Buckwater Reach T Stressors

Buckwater Reach T4 Stressors

Buckwater Reach T4 Stressors

Using ISCO Auto Samplers:

- Records stage measurements in 15 min increments.
- Calculates discharge based on rating curve. Discharge calculated via weir equations or dilution gauging.
- Water samples pulled as flow composite sample in base or storm flow conditions.
- Integrated precipitation gauge.

Buckwater T4 – Total Suspended Solids

Buckwater - Nitrate & Nitrite

Buckwater - Ammonia

Buckwater - Total Organic Nitrogen

Buckwater – Total Nitrogen

Buckwater – Fecal Coliform (T-4)

n=39

Summation of Buckwater Results Thus Far

- Low watershed noise case study demonstrated:
 62 78% reduction in all pollutants pre-post..
 except NO₂/NO₃ (45% reduction).
- Concentrations and reductions were related to livestock removal.

 NO_2/NO_3 reductions still significant but this parameter is more groundwater mediated.

- At this time we cannot attribute the proportion of reductions to the different treatments applied (e.g. cattle removal, channel manipulation, floodplain reconnection).

Looking Ahead

- Include projects with different levels of signal to noise.
- Determine if reductions are sustained or even increase.
- Examine effects of different restoration treatments? (e.g. livestock removal versus channel modification)
 Example: Millstone Project with NCSU partners.
- Calculate and compare discharge and loads.
- Analyze change in hydrologic residence times.

DMS Data Sharing Resources – Web Dashboard

DMS Data Sharing Resources – Web Dashboard

OMS Data Dashboard With	nin Project	Across Projects							<	 Source Co
elect Project										
Buckwater 💌	8	3								BuckUp Pre
roup Data By	5	7								BuckUp Post BuckDWN Pre
Site + Pre and Post Restoration	e									BuckDWN Post
riable						[
NOx -	9_L	5								
an ar Diasharma?	Nox_mg_L	ţ								
age or Discharge? Discharge -	Ž 3	3				l				
	2	2								
rametric or Non-Parametric?	1	L								
T Test 🔹					<u>:</u>				1	
	,	, ,	BuckUp Pre	Buck	kUp Post		BuckDWN Pre	BuckD	WN Post	
					S	PPR				
	Show 1	0 🗸 entries							Search:	
		Variable	Group A	Group B	n Grou	р А	n Group B ≑	Test Statistic	DF ≑	P Values
	1	NOx_mg_L	BuckDWN Post	BuckDWN Pre		32	37	-4.65064596110617	51.7312504006054	0.000023
	2	NOx_mg_L	BuckDWN Post	BuckUp Post		32	18	13.4367537175331	33.2618718341732	5.41e-1
	3	NOx_mg_L	BuckDWN Post	BuckUp Pre		32	61	12.187028679179	44.4147221157828	9.2e-1
	4	NOx_mg_L	BuckDWN Pre	BuckUp Post		37	18	11.7875733057548	36.6314159636725	5e-1
	5	NOx_mg_L	BuckDWN Pre	BuckUp Pre		37	61	11.4238341719509	39.6327776882484	4.13e-1
	6	NOx_mg_L	BuckUp Post	BuckUp Pre		18	61	-0.549104642492704	73.6810755750711	0.58

Acknowledgements

- DMS Management
- Academic Partners

NCSU Bio and Ag Engineering (Dan Line, Jamie Blackwell) Heath Dairy and Millstone WCU (Dr. Jerry Miller) Big Harris Project

• Mitigation Provider Partners

Land and Water Solutions (Pen Dell) Restoration Systems (Crane Creek) Wildlands Engineering (Buckwater, Cross Creek, Big Harris)

Citations

Bernhardt, E.S., Palmer, M.A., Allan, J.D., Alexander, G., Barnas, K., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad-Shah, J., and Galat, D. (2005). Synthesizing U.S. river restoration efforts. Science 308, 636–637.

Bernhardt, E.S. and Palmer, M.A. (2007). Restoring streams in an urbanizing world. Freshwater Biol., 52, 738–751. DOI: 10.1111/j.1365-2427.2006.01718.x

Craig, L.S., Palmer, M.A., Richardson, D.C., Filoso, S., Bernhardt, E.S., Bledsoe, B.P., Doyle, M.W., Groffman, P.M., Hassett, B.A., Kaushal, S.S., and Mayer, P.M. (2008). Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ., 6, 529–538. DOI: 10.1890/070080

Lammers, R.W. and Bledsoe, B.P. (2017) What role does stream restoration play in nutrient management?, Critical Reviews in Environmental Science and Technology, 47:6, 335-371, DOI: 10.1080/10643389.2017.1318618.

Palmer, M.A., Hondula, K.L., and Koch, B.J. (2014). Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu. Rev. Ecol., Evol. Syst., 45, 247–272. DOI: 10.1146/ annurev-ecolsys-120213-091935.

Palmer, Margaret & Allan, J. David & Meyer, Judy & Bernhardt, Emily. (2007). River Restoration in the Twenty-First Century: Data and Experiential Future Efforts. Restoration Ecology. 15. 472 - 481. 10.1111/j.1526-100X.2007.00243.x.

Newcomer Johnson, T.A., Kaushal, S.S., Mayer, P.M., Smith, R.M., and Sivirichi, G.M. (2016). Nutrient retention in restored streams and rivers: A global review and synthesis. Water, 8, 116. DOI: 10.3390/w8040116.

Selvakumar, A., O'Connor, T.P., and Struck, S.D. (2010). Role of stream restoration on improving benthic macroinvertebrates and in-stream water quality in an urban watershed: case study. J. Environ. Eng., 136, 127–139. DOI: 10.1061/(ASCE)EE.1943-7870.0000116

Walsh, C.J., Fletcher, T.D., and Ladson, A.R. (2005). Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream. J. NorthAm. Benthol. Soc., 24, 690–705. DOI: 10.1899/0887-3593(2005)024\[0690:SRIUCT\]2.0.CO;2

