Comparing Water Quality Functional Uplift Outcomes from Common Models and Direct Measurement Using the Stream Function Quantification Tool (SQT): A Case Study

NC Division of Mitigation Services (DMS)

Lin Xu Greg Melia

Stream Function Pyramid Framework

In April 2008, the United States Army Corps of Engineers (USACE) and the United States Environmental Protection Agency (EPA) jointly issued regulations clarifying compensatory mitigation requirements for Department of the Army permits (33 C.F.R. § 332/40 C.F.R. § 230):

"...With this rule, we are encouraging the use of functional and condition assessments to determine the appropriate amount of compensatory mitigation needed to offset authorized impacts, instead of relying primarily on surrogate measures such as acres and linear feet."

The Final Rule stated:

"...In cases where appropriate functional or condition assessment methods or other suitable metrics are available, these methods should be used where practicable to determine how much compensatory mitigation is required (33 C.F.R. § 332.3FR Vol 73, 19633)."

Stream Function Pyramid Framework

Stream Function Quantification Tool (SQT)

Determine numerical difference between existing stream condition and proposed condition

Link restoration activities to changes in stream functions

Estimate restoration potential

Functional Category	Function-Based Parameters	Measurement Method		
	Catchment Hydrology	Curve Number		
Hydrology		Curve Number		
	Reach Runoff	Concentrated Flow Points		
		Soil Compaction		
Hydraulics	Floodplain Connectivity	Bank Height Ratio		
		Entrenchment Ratio		
	Large Woody Debris	LWD Index		
	Large Woody Debris	# Pieces		
		Erosion Rate (ft/yr)		
	Lateral Stability	Dominant BEHI/NBS		
		Percent Streambank Erosion (%)		
		Left Canopy Coverage (%)		
		Right Canopy Coverage (%)		
		Left Riparian Vegetation Width (ft)		
	Riparian Vegetation	Right Riparian Vegetation Width (ft)		
Geomorphology		Left Basal Area (sq.ft/acre)		
		Right Basal Area (sq.ft/acre)		
		Left Stem Density (stems/acre)		
		Right Stem Density (stems/acre)		
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-		
	Bed Waterial Characterization	value)		
		Pool Spacing Ratio		
	Bed Form Diversity	Pool Depth Ratio		
	Bed Form Diversity	Percent Riffle		
		Aggradation Ratio		
	Sinuosity	Plan Form		
Physicochemical	Temperature	Temperature (°F)		
	Bacteria	Fecal Coliform (Cfu/100 ml)		
	Organic Carbon	Leaf Litter Processing Rate		
	Organic Carbon	Percent Shredders		
	Nitrogen	Monitoring (mg/L)		
	Phosphorus	Monitoring (mg/L)		
	Macros	Biotic Index		
Biology	IVIACIUS	EPT Taxa Present		
	Fish	North Carolina Index of Biotic Integrity		

Physiochemical Function

The nutrient (nitrogen and phosphorus) parameter is included in both the BMP Routine and the reach condition assessments in SQT.

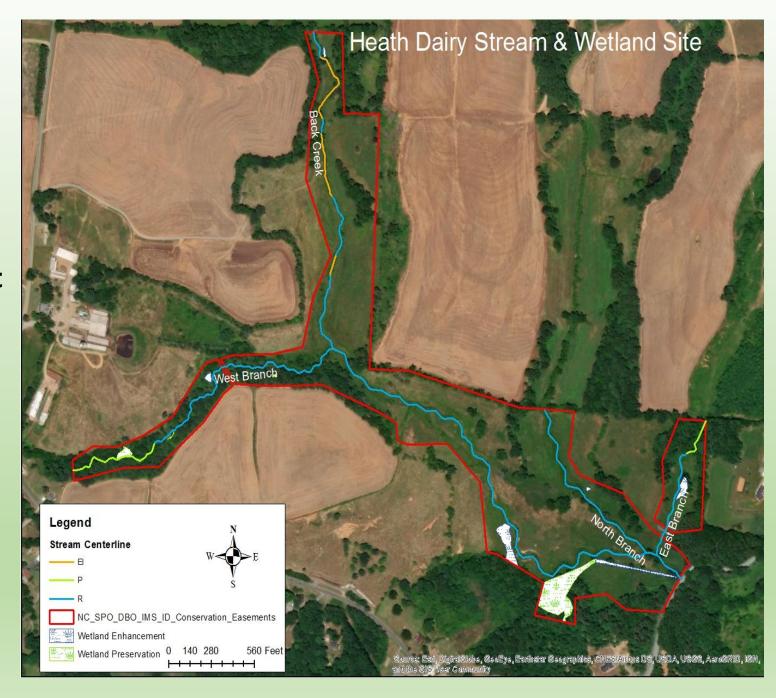
SQT suggests to use the Jordan/Falls Lake Stormwater Nutrient Load Accounting Tool (JFSLAT), if a BMP is being installed.

Four common water quality models are selected and results of model runs are compared with direct in-stream monitoring results for a DMS mitigation project.

Heath Dairy Road Restoration Site

Cape Fear River Basin

Provides 7,791 LF of stream restoration, 960 LF of enhancement and 636 LF of preservation


Construction completed in 2013, and current in year 4 monitoring

NCSU Water Group conducted pre and post restoration monitoring

Department of Environmental Quality

Nothing Compares

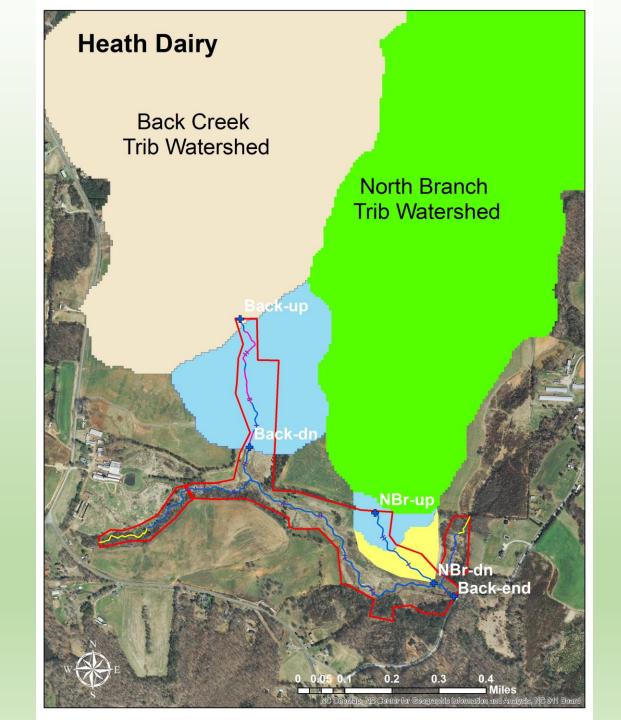
Water Quality Models

Two Export Coefficient Models

- DMS tool for Quantifying Benefits to Water Quality from Livestock Exclusion and Riparian Buffer Establishment for Stream Restoration (DMS)
- Total Nitrogen (TN) and Total Phosphorus Loading Calculation Worksheet –
 Piedmont of the Tar-Pamlico River Basin (DWR)

Two Storm Water Based Models

- Jordan/Fall Lake Stormwater Nutrient Load Accounting Tool (JFSLAT) (DWR & NCSU BAE)
- Stormwater Nutrient Accounting Tools (SNAP) (DWR)


Back Creek Reach - Heath Dairy

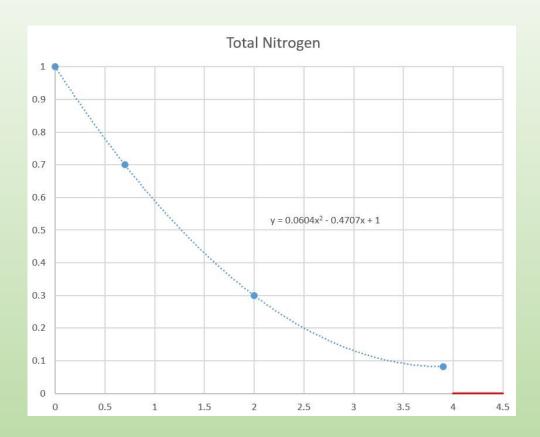
- Catchment size 1.08 sq mi,
 buffer planted area 6 ac, and
 lateral drainage area 52 ac
- Predominant agricultural land use (55%, mostly pasture)

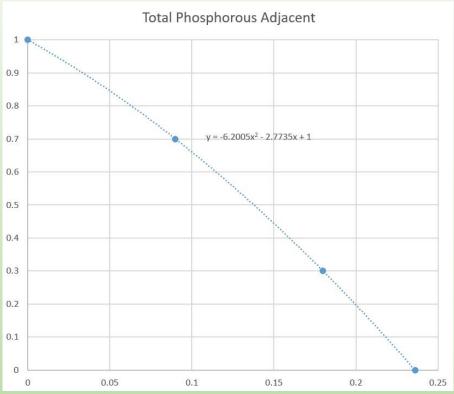
North Branch Reach - Heath Dairy

- Catchment size 1.14 sq mi,
 buffer planted area 6.04 ac,
 and lateral drainage area 17 ac
- Predominant agricultural land use (60%, mostly pasture)

Back Creek Reach - Water Quality Models Results and Monitoring Data

	TN (mg/L) Pre-restoration	TN (mg/L) Post-restoration	% Change	TP (mg/L) Pre-restoration	TP (mg/L) Post-restoration	% Change
Tar-Pam Nutrient Loading Calculation Worksheet	1.89	1.83	3.2	0.48	0.46	4.2
JFLSAT	2.07	2.02	2.4	0.55	0.54	1.8
SNAP	1.71	1.63	4.7	0.34	0.33	2.9
Monitoring Data	5.59	2.29	59.0	1.97	0.48	75.6




North Branch Reach - Water Quality Models Results and Monitoring Data

	TN (mg/L) Pre-restoration	TN (mg/L) Post-restoration	% Change	TP (mg/L) Pre-restoration	TP (mg/L) Post-restoration	% Change
Tar-Pam Nutrient Loading Calculation Worksheet	1.76	1.74	1.1	0.45	0.45	0
JFLSAT	1.74	1.73	0.5	0.44	0.44	0
SNAP	1.69	1.68	0.5	0.31	0.31	0
Monitoring Data	5.51	3.39	38.5	1.81	0.80	55.8

SQT Application – BMP Routine

Department of Environmental Quality

Nothing Compares

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

SQT Physicochemical Function Application Back Creek Reach

		TN Scores	TP Scores	Overall Score
Tar-Pam Nutrient Loading Calculation Worksheet	Pre-restoration	0.33	0	0.16
	Post-restoration	0.34	0	0.17
JFLSAT	Pre-restoration	0.29	0	0.14
	Post-restoration	0.30	0	0.15
SNAP	Pre-restoration	0.37	0	0.19
	Post-restoration	0.39	0	0.20
Monitoring Data	Pre-restoration	0	0	0
	Post-restoration	0.24	0	0.12

Department of Environmental Quality

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

SQT Physicochemical Function Application North Branch Reach

		TN Scores	TP Scores	Overall Score
Tar-Pam Nutrient Loading Calculation Worksheet	Pre-restoration	0.36	0	0.18
	Post-restoration	0.36	0	0.18
JFLSAT	Pre-restoration	0.36	0	0.18
	Post-restoration	0.37	0	0.19
SNAP	Pre-restoration	0.38	0	0.19
	Post-restoration	0.38	0	0.19
Monitoring Data	Pre-restoration	0	0	0
	Post-restoration	0.10	0	0.05

Department of Environmental Quality

Not Functioning (NF): 0.0 - 0.29

Functioning at Risk (FAR): 0.3 - 0.69

Functioning (F): 0.7 - 1.0

Conclusions

Model Limitations – Catchment Size, Nutrient EMC, Nutrient Removal Mechanism

SQT Limitation – Reference Condition, no Change / Improvement

Going Forward

Testing Additional Models, like EPA's STEP

Questions

Department of Environmental Quality

