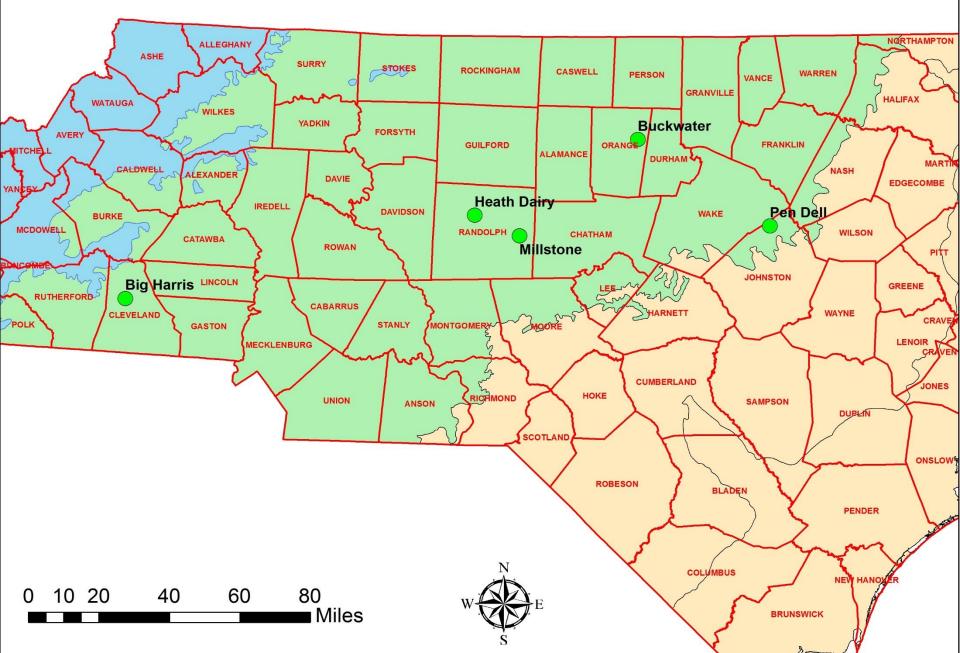


NCSU EcoStream Conference August 13-16, 2018 Asheville, NC

Determining the Likelihood of Detecting Change in Water Quality Resulting from Stream Restoration Practices over Mitigation Time Frames

> Greg Melia and Casey Haywood NC Department of Environmental Quality Division of Mitigation Services

> > *EcoStream Conference* August 13-16, 2018 Asheville, NC

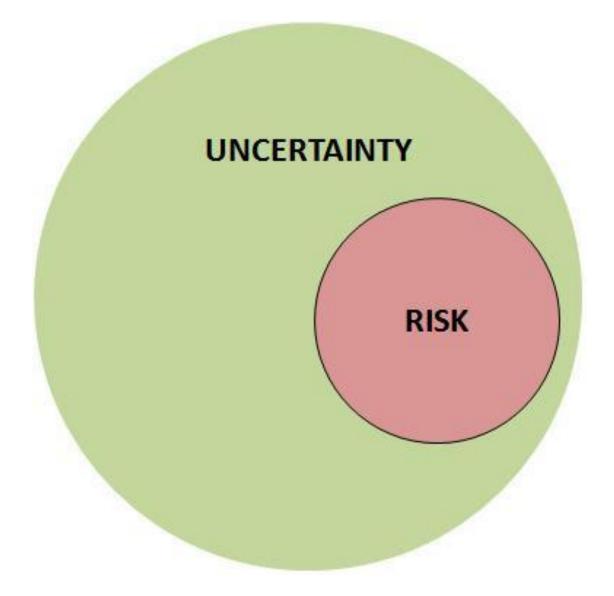

DMS WQ Sites

Project	County	# Reaches	Param	Storm	Base
Heath Dairy	Randolph	2	F,N,S,M	Y	Y
Millstone	Randolph	2	F,N,S,M	Y	Y
Millstone	Randolph	1	F,N,S	Y	Y
Pen Dell	Johnston	1	F		Y
Buckwater	Orange	1	F,N,S	Y	Y
Big Harris	Cleveland	5	F,N,S	Y	Y
Big Harris	Cleveland	8	Μ		Y

F – Fecal; N – Nutrients; S – Total Suspended Res; M–Macrobenthos

DMS WQ Sites

Station Setup and Methods



North Carolina Stream Quantification Tool Data Collection and Analysis Manual

The Challenges

December 2011

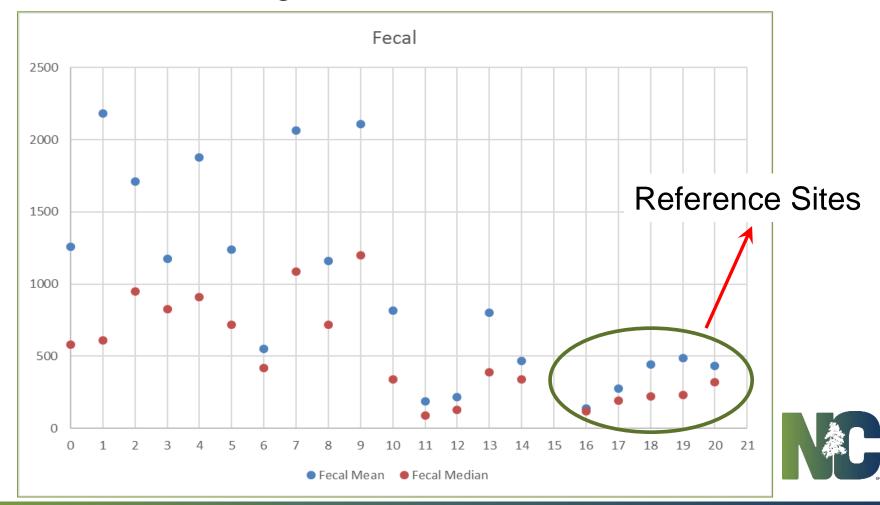
Jean Spooner, Steven A. Dressing, and Donald W. Meals. 2011. Minimum detectable change analysis. Tech Notes 7, December 2011. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA, 21 p. Available online at www.bae.ncsu.edu/programs/extension/wgg/319monitoring/tech_notes.htm. Through the National Nonpoint Source Monitoring Program (NNPSMP), states monitor and evaluate a subset of watershed projects funded by the

- 1. To scientifically evaluate the effectiveness of watershed technologies designed to control nonpoint source pollution
- 2. To improve our understanding of nonpoint source pollution

NNPSMP Tech Notes is a series of publications that shares this unique research and monitoring effort. It offers guidance on data collection, implementation of pollution control technologies, and monitoring design, as well as case studies that illustrate principles in action

Minimum Detectable Change Analysis

MDC Allows you to estimate the amount of change necessary to support statistically reliable change detection. This is based on the variability observed in the parameters distribution.


Big Harris Pre-con Water Quality Monitoring Scope

Station	0	1	2	3	4	5a	6	7	8	9	10	11	12	13	14	16	17	18	19	20
Fecal																				
Cond																				
Solids																				
NH3																				
TKN																				
NOx																				
ТР																				
Macro																				
Fish																				

Baseflow Base and Stormflow

Optimizing Water Quality Monitoring Plans Criteria and Analyses Applied to Pre-con Data Are the existing levels of concern?

Optimizing Water Quality Monitoring Plans Criteria and Analyses Applied to Pre-con Data

 \Box MDC values \geq 50% were considered too high

Example : Variability in data pre-construction data for TSS at station 4 produced an MDC of 81%.

High MDC (low probability of reliable change detection)

	TSS mg/L
MDC	11.86
MDC%	81

Criteria and Analyses Applied to Pre-con Data

Proposed restoration treatment(s) for reach(s) represented by sampling have the opportunity to address the main stressors

Example: Constraints or landowners will not permit stabilization of ephemeral gullies that are producing the bulk of the sediment load. Does it make sense to expect meaningful TSS reductions?

Criteria and Analyses Applied to Pre-con Data

Pre-con data indicates one or more other stations will adequately represent the station that was dropped.

The application of these criteria and the analyses performed on the pre-con data converted the scope from this....

Big Harris Pre-con Water Quality Monitoring Scope

Station	0	1	2	3	4	5a	6	7	8	9	10	11	12	13	14	16	17	18	19	20
Fecal																				
Cond																				
Solids																				
NH3																				
ΤΚΝ																				
NOx																				
ТР																				
Macro																				
Fish																				

Baseflow

Base and Stormflow

Big Harris Post-con Water Quality Monitoring Scope

Station	2	3	5a	6	8	9	10	13	14		
Fecal										Base and Storm	
Cond										Baseflow	
Solids										Stormflow	
NH3											
TKN											
NOx											
ТР											
Macro											
Fish											

Criteria and Analyses Applied to Pre-con Data

- Data driven.
- Technically Sound
- □ ~50% cost-scope reduction between pre and post
- Optimized.

Questions that Need to be Addressed

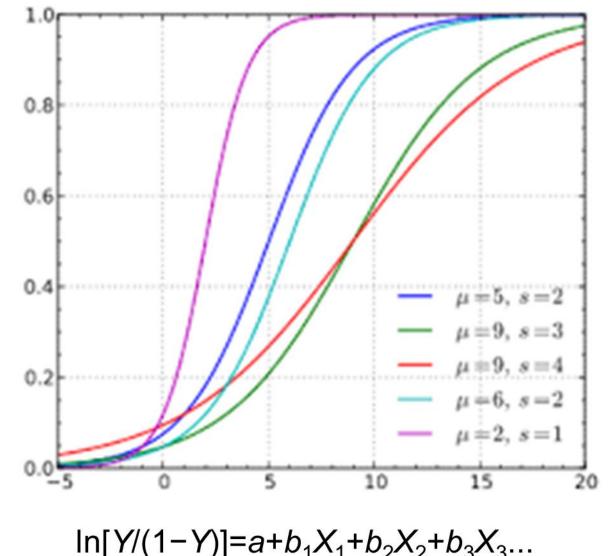
How do we arrive at appropriate performance standards and optimize post-construction sampling plans?

Overarching Goal of DMS Plan.

Provide information and data resources to the mitigation/restoration community that will assist practitioners in making decisions about the inclusion of water quality goals and performance standards at the reach scale and to augment models and tools with quality data.

This will reduce the need for direct measurement of water quality in the long run.

		#	_		
Project	County	Reaches	Param	Storm	Base
Heath Dairy	Randolph	2	F,N,S,M	Y	Υ
Millstone	Randolph	2	F,N,S,M	Υ	Y
Millstone	Randolph	1	F,N,S	Y	Y
Pen Dell	Johnston	1	F		Y
Buckwater	Orange	1	F,N,S	Y	Y
Big Harris	Cleveland	5	F,N,S	Y	Y
Big Harris	Cleveland	8	М		Y


F – Fecal; N – Nutrients; S – Total Suspended Res; M–Macrobenthos

Heath Dairy – NCSU (D.E. Line) larger reach showed storm load reductions ranging from 41 to 67% for nutrients and solids. Smaller reach only demonstrated reductions in NH3/4

Multivariate Logistic Regression Model

Take the data set of 30 or so reaches and regress against the 3 or 4 most influential explanatory variables

Objective 3

Use the same data to augment/calibrate existing models and tools to improve their predictive capability hopefully reducing the need for direct measurement given its challenges.

Acknowledgements and Citations

- Casey Haywood DMS
- □ Jamie Blackwell NCSU and DMS.
- Dan Line NCSU
- Jean Spooner NCSU
- DMS Management.

Jean Spooner, Steven A. Dressing, and Donald W. Meals. 2011. Minimum detectable change analysis. Tech Notes 7, December 2011. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA, 21 p.

Daniel E. Line 2015. Effects of Livestock Exclusion and Stream Restoration on the Water Quality of a North Carolina Stream. ASABE Vol. 58(6): 1547-1557

Terziotti, Silvia, Capel, P.D., Tesoriero, A.J., Hopple, J.A., and Kronholm, S.C., 2018, Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology: U.S. Geological Survey Scientific Investigations Report 2017–5160, 20 p., https://doi.org/10.3133/sir20175160.

DMS S&A Website

https://deq.nc.gov/about/divisions/ mitigation-services/dms-sciencedata

