

Are water quality changes detectable post stream restoration?

Danielle Mir

NC DEQ, Division of Mitigation Services

WRRI, Raleigh NC. March 23 – 24, 2022

Insight based on our current findings in relation to our objectives 1 & 3:

1. Provide case examples of water quality response to restoration.

2. Gain understanding the relative efficacy of different practices

3. Gain understanding of the time frames of improvement & their sustainability.

- 4. Utilize data collected to potentially calibrate current models in use in mitigation plans.
- 5. Gain an understanding of the reach and watershed attributes that inform the detection of change in water quality to help refine stated mitigation plan goals (*i.e.* examine a Gradient of "signal to noise")

450

900 Feet

•

Buckwater Site: Reach T4

Downstream Site

Treatment Station

- Project reach length 820 ft.
- Overall drainage 74 Acres
- Upper watershed 20 acres
- T4 has lower watershed noise

Upstream Site Watershed Control Station Water Quality Monitoring Period

Pre – 1.5 years Post – 2 years

Reach T4 Watershed Characteristics

- Watershed above upper WQ station is completely forested.
 This is a low watershed noise case example.
- 30 ac. of the entire 74 ac. watershed had stressors.
 - 68% of the stressors were within the treatment area.

What were some of the major stressors to the watershed?

Buckwater Stressors: Reach T4

Livestock

Was the main lateral drainage in Reach T4.

Buckwater Stressors: Reach T4

Eutrophic Pond

Drains into Reach T4.

Buckwater Stressors: Reach T4

Floodplain Disconnection

ReachT4 was incised.

Water Quality Station Setup

Water Quality Station Setup and Methods

Why use an ISCO autosampler?

- Avoid storm chasing
- Samples programed to collect as flow proportional composite sample in base or storm flow conditions.
- Discharge calculated based on site specific rating curve derived from weir equations or dilution gauging.
- Integrates precipitation and stage data.

ISCO autosampler

Water Quality Station Setup and Methods

Cross-section

Install ISCOs

Install stage plate

Program ISCOs

Secure sampling equipment

Site specific rating curve

Buckwater Reach T4 – Total Suspended Solids

Buckwater Reach T4 – Total Phosphorus

Buckwater Reach T4 – Total Nitrogen

Buckwater Reach T4 – Total Organic Nitrogen

Buckwater Reach T4 – Nitrate + Nitrite

Buckwater Reach T4 – Ammonia

Buckwater NH3 Concentration

Reach T4 – Total Fecal Coliform Bacteria

Buckwater Site: Reach T3 (Fecal Only)

1,336 project linear feet ullet**Overall drainage 141 acres** igodolDownstream Site Treatment Station Upstream Site Watershed Control Station

Reach T3 – Total Fecal Coliform Bacteria

- Buckwater Reach T4 demonstrated a low watershed noise case study with reductions in nutrients and suspended solids:
 - 64 79% reduction in all pollutants in the post sampling compared to pre-construction conditions.
 - 45% reductions for Nitrate and Nitrite (NO₂/NO₃).
 - Decreased concentrations and variability of nutrients and solids in post restoration conditions.
 - Attributed to stream reconnect, vegetated buffers, cattle exclusion.
- Significant reduction in fecal coliform (53 70% reduction) due to cattle exclusion at both reachT3 and T4.

Goals we are still working towards:

- Include projects with different levels of signal to noise.
- Examine effects of different restoration treatments?
- Calculate and compare discharge and loads.
- Analyze change in hydrologic residence times.

DMS Water Quality Dashboard

https://ncdms.shinyapps.io/DMS_Data_Dashboard/? ga=2.244140805.1888177155.1629207544-1820359697.1629207544

DMS Water Quality Dashboard

Acknowledgements

DMS Science & Analysis

- Periann Russell
- Greg Melia
- Joe Famularo
- Lin Xu

DMS Mitigation Provider:

Wildlands Engineering, Inc.

Questions?

Email: Danielle.Mir@ncdenr.gov

https://deq.nc.gov/about/divisions/mitigation-services

