April 9, 2019

Ms. Sue Murphy
State of North Carolina
Department of Environmental Quality
Division of Waste Management, Superfund Section
1646 Mail Service Center
Raleigh, NC 27699-1646

RE: Risk Management Plan
Winter Park Cleaners
1437 South College Road
Wilmington, New Hanover County, NC
DSCA Site ID: DC650013

Dear Ms. Murphey:

ATC Associates of North Carolina, P.C. (ATC) is pleased to submit the enclosed Risk Management Plan (RMP) for the above referenced site. The results of the risk assessment indicated that there are risks that exceed applicable target levels on the source property. These risks will be managed using site-specific land-use conditions that have been selected as part of the risk assessment evaluation and which require a RMP. The primary purpose of this RMP is to ensure that the assumptions made during the risk assessment remain valid in the future. Based on the documentation outlined in this report, ATC recommends issuance of a No Further Action letter for the site with the implementation of Land Use Controls.

If you have questions or require additional information, please do not hesitate to contact Meghan Greiner at (919) 871-0999.

Sincerely,
ATC Associates of North Carolina, P.C.

Meghan E. Greiner, P.E.
Program Manager
Risk Management Plan
Winter Park Cleaners
1437 South College Road
Wilmington, New Hanover County, NC
DSCA Site Identification No. DC650013

Prepared By: __________________________
Ashley M. Winkelman, P.G.
Senior Project Manager

Submitted To:
North Carolina Department of
Environmental Quality
Division of Waste Management
Superfund Section – DSCA Program
1646 Mail Service Center
Raleigh, NC 27699-1646

Prepared By: __________________________
Meghan E. Greiner, P.E.
Program Manager
ATC Associates of North Carolina, P.C.
2725 East Millbrook Road, Suite 121
Raleigh, North Carolina 27604
Phone: (919) 871-0999
Fax: (919) 871-0335

April 9, 2019
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

2.0 OBJECTIVES OF RISK MANAGEMENT PLAN (RMP) ... 1

3.0 SUMMARY OF APPROVED RISK ASSESSMENT REPORT .. 2
 3.1 Exposure Unit #1 .. 2
 3.2 Protection of Groundwater Use Pathway .. 4
 3.3 Protection of Surface Water Pathway .. 5
 3.5 Risk Assessment Conclusions ... 5

4.0 RAP COMPONENTS ... 5
 4.1 Summary of Prior Assessment and Interim Actions ... 5
 4.2 Remedial Action .. 7

5.0 DATA COLLECTED DURING RMP IMPLEMENTATION ... 9

6.0 LAND-USE CONTROLS ... 9

7.0 LONG-TERM STEWARDSHIP PLAN ... 10

8.0 RMP IMPLEMENTATION SCHEDULE ... 11

9.0 CRITERIA FOR DEMONSTRATING RMP SUCCESS .. 11

10.0 CONTINGENCY PLAN IF RMP FAILS ... 11

11.0 CONCLUSIONS AND RECOMMENDATIONS .. 12
FIGURES

Figure 1 Exposure Unit Map
Figure 2 Exposure Unit Map and Surface Water Point-of-Exposure
Figure 3 Soil Quality Map
Figure 4 Groundwater Quality Map
Figure 5 Soil Gas Quality Map
Figure 6 Land-Use Control Areas

APPENDICES

Appendix A DSCA Program’s Analytical Data Tables
Appendix B GSI Mann-Kendall Toolkit Documentation
Appendix C Level 1 Ecological Risk Assessment Checklists
Appendix D Notice of Dry-Cleaning Solvent Remediation for Source Property
Appendix E Example Annual Certification of Land-Use Restrictions
Appendix F Example Documents Announcing the Public Comment Period
1.0 INTRODUCTION

ATC Associates of North Carolina, P.C. (ATC) has prepared this Risk Management Plan (RMP) for the former Winter Park Cleaners site (DSCA Site #DC650013) in Wilmington, New Hanover County, North Carolina, under contract to the North Carolina Dry-Cleaning Solvent Cleanup Act (DSCA) Program. This RMP is intended to comply with the requirements of the DSCA Program (N.C.G.S. 143-215.104A et seqs) and promulgated rules, as well as the DSCA Program’s May 2015 Risk Assessment Guidance (RAG). The former Winter Park Cleaners site (herein referred to as the “site”) references only the source property.

The site is currently developed with a Trader Joe’s grocery store and parking lot with a primary address of 1437 South College Road (PIN R06107-002-006-000), owned by Cole TR Wilmington NC, LLC. Maps showing the site location and the site in relation to the nearest downgradient surface water body are included as Figures 1 and 2, respectively.

2.0 OBJECTIVES OF RISK MANAGEMENT PLAN (RMP)

ATC completed assessment activities at the site which indicated the following areas of impact attributed to releases at the former Winter Park Cleaners site:

- Concentrations of petroleum compounds above unrestricted use levels in soil at the site.
- Concentrations of petroleum compounds above Title 15A NCAC 2L .0202 Groundwater Standards (2L Standards) in groundwater at the site.

ATC completed a risk assessment for the site on November 13, 2018. The results of the risk assessment indicated that target risk levels were exceeded. However, the risks will be managed based on site-specific land-use conditions that have been selected as part of the evaluation and which require a RMP. Thus, the objective of the RMP is to ensure that those site-specific land-use conditions remain valid in the future.
3.0 SUMMARY OF APPROVED RISK ASSESSMENT REPORT

Based on soil and groundwater impacts above unrestricted use levels, ATC completed a risk assessment for the site in November 2018. This section summarizes the final risk assessment findings, which resulted in the recommendation for no further action status with land-use controls placed on the property.

The first step in the risk assessment process consisted of development of an exposure model. One exposure unit, Exposure Unit #1, was assigned and encompasses the entire source property. The boundary of the exposure unit is depicted on Figure 1. The protection of groundwater use and protection of surface water pathways were also evaluated, as further discussed in the following sections.

To provide site background regarding the data used for the risk assessment, analytical data for soil, groundwater, and soil gas are depicted on Figures 3 through 5, respectively. The DSCA Program’s Analytical Data Tables that summarize the site chronology and analytical data are included in Appendix A.

3.1 Exposure Unit #1

Exposure Unit #1 contains the source property where the former Winter Park Cleaners was located. This parcel is developed with a Trader Joe’s grocery store and parking lot owned by Cole TR Wilmington NC, LLC. Complete pathways identified for this exposure unit include the indoor inhalation pathway for a current or future resident or non-residential worker and the surficial soil combined pathways for a current or future resident, non-residential worker, or construction worker.

Indoor Inhalation Pathway

- The current indoor inhalation pathway was evaluated for using near slab soil gas samples collected by the current building. Numerous compounds were detected in the near slab samples; however, only compounds which were previously detected in soil and/or
groundwater (petroleum compounds), tetrachloroethylene (PCE), and PCE daughter-products were assessed for in this risk assessment. Based on the Interstate Technology Regulatory Council (ITRC) Petroleum Vapor Intrusion (PVI) Guidance, petroleum compounds detected in soil or groundwater greater than a separation distance of 30 feet laterally and 5 feet vertically from a structure are negligible due to petroleum's ability to readily degrade in aerobic environments. The minimum depth to groundwater at the site was measured at 5.25 feet below ground surface and impacted soil is located greater than 30 feet from the onsite building. Therefore, the current vapor intrusion risk from petroleum compounds are considered negligible and were not used for current risk evaluations. Only two chlorinated solvent compounds were detected in the soil gas, PCE and vinyl chloride, both of which did not exceed risk levels. The results of the risk assessment using these data indicated no exceedances of acceptable risk levels for a resident or a non-residential worker for current risks.

- For evaluation of future risks, ATC reviewed soil gas data collected in two separate areas of the site: near slab data collected by the current building and sub-pavement data collected by the former dry-cleaner (which is currently a parking lot). The majority of compounds detected in soil gas are related to a petroleum release. The two separate areas of the vapor intrusion assessment exceed the separation distances outlined in the ITRC PVI Guidance. As a result, the two areas were assessed separately. The data indicates there are greater risks associated with the sub-pavement samples near the former dry-cleaner. Therefore, the indoor air pathway for future risk was evaluated using sub-pavement soil gas data. The results of the risk assessment using these data indicated no exceedances of acceptable risk levels for a resident or a non-residential worker for future risks.

Surficial Soil Combined Pathway

- For the current surficial soil combined pathway for a resident or non-residential worker and construction worker, the samples with the highest concentrations that were collected above the historical high water table was used to evaluate risk. The results of the risk assessment indicated no exceedances of acceptable risk levels for a resident, non-residential worker, or construction worker.
- For the future surficial soil combined pathway for a resident or non-residential worker and construction worker, the samples with the highest concentrations that were collected above the historical high water table was used to evaluate risk. The results of the risk assessment indicated no exceedances of acceptable risk levels for a resident, non-residential worker, or construction worker.

3.2 Protection of Groundwater Use Pathway

The protection of groundwater use pathway was modeled assuming a point of exposure (POE) at the nearest property boundary downgradient of the plume on which impacts have not been observed, located approximately 310 feet southeast of the source area and shown on Figure 1. Modeling under this scenario assumes that a groundwater use controls will be implemented for the site property.

Modeling results for evaluating the protection of groundwater use at the POE indicated exceedances of Site Specific Target Levels (SSTLs) for source soil and groundwater. Groundwater monitoring data indicate that the plume is stable and has not migrated as far as the modeling projects. Plume stability documentation is included in Appendix B. The groundwater monitoring data collected at the site are considered more relevant and applicable for making risk management decisions. Regarding exceedances for source soil, if site conditions do not change the current plume stability is not expected to change and therefore the groundwater monitoring data is considered more relevant than the modeling results. However, some of the modeling inputs are conservative parameters, specifically rate of infiltration, that may not be representative of the current land cover (i.e., asphalt, concrete). Such land cover would reasonably minimize infiltration in the source area and likely affect the documented plume migration at the site. However, because rate of infiltration is a significant variable in the leaching of contamination from soil and subsequent migration in groundwater, it is reasonable that plume expansion could occur as indicated by the model in the event that site conditions were altered such that infiltration rates increased in area of source contamination. Therefore, it is recommended that land-use controls be utilized to maintain current infiltration conditions in the areas of impacted soils exceeding the SSTL. This area is depicted on Figure 6. Note that some areas exceeding the SSTL currently have
no land cover. The surface cover restriction area only applies to areas that are currently covered by pavement or buildings since the unpaved areas where contamination is observed are assumed to be at equilibrium with the subsurface such that chemical migration to the POE will not occur in the future.

3.3 Protection of Surface Water Pathway

The protection of surface water pathway was modeled assuming a POE at downgradient retention pond located approximately 3,230 feet southeast of the source area and shown on Figure 2. Modeling results for the protection of surface water evaluation indicated no exceedances of SSTLs for source groundwater or source soil. The modeling results are corroborated by the plume stability determination and indicate the plume is unlikely to impact the POE. Based on these data, the protection of surface water pathway is not considered a significant concern.

3.5 Risk Assessment Conclusions

The risk assessment concluded that the risks associated with the contamination could be managed through implementation of land-use controls for the site, as detailed in this RMP. Land-use controls for the site are discussed in Section 6.0.

4.0 RAP COMPONENTS

4.1 Summary of Prior Assessment and Interim Actions

The site is located at 1437 South College Road in Wilmington, North Carolina in an area that is primarily characterized as regional business and office & institutional. The property is accessed from the east by South 47th Street, from the south by Oleander Drive, and from the west by South College Road. The area topography slopes downward towards the southeast. A used auto sales retail facility also operated at the source property for the same time period. A former filling station (name unknown) was located west of the source property across South College Road, a former
brake shop (NCDEQ UST Incident #20909) is located south across Oleander Drive, and former Coastal Dry Cleaners (DC650003) is located east across South 47th Street.

The site is an approximate 1.49-acre parcel developed with a Trader Joe’s grocery store and associated parking lot. The primary address is 1437 South College Road and is owned by Cole TR Wilmington NC, LLC. Available historical information indicated that dry-cleaning operations were conducted on the source property from at least 1951 until at least 1964. Detailed information is not available regarding the facility and associated dry-cleaning operations. Evidence of subsurface contamination was first identified during a limited site investigation. According to the Limited Site Investigation Report submitted on February 15, 2012, petroleum impacted soil and groundwater was identified in the vicinity of the former dry-cleaner.

Terracon completed a Phase I Environmental Assessment (ESA) for the site on December 30, 2011. The ESA identified a former dry-cleaning facility on the western portion of the property and a used auto sales facility on the southwestern portion of the property. Information regarding dry-cleaning practices were not available. Based on the results of the ESA, Terracon completed a Limited Site Investigation on February 15, 2012. During the investigation, nine soil samples and four groundwater grab samples were collected. Petroleum compounds were detected in one soil sample above the Protection of Groundwater Inactive Hazardous Sites Branch (IHSB) Preliminary Soil Remediation Goals (PSRGs); however, the sample was collected below the water table and is not indicative of soil impacts at the site. Petroleum compounds were also detected in three groundwater samples above the 2L Standard.

AMEC Environment & Infrastructure, Inc. conducted a Prioritization Assessment documenting the advancement and sampling of sixteen soil borings and the collection of eleven groundwater grab samples. Additionally, two near-slab soil gas samples were collected along the eastern edge and western edge of the Trader Joe’s building. The soil results detected naphthalene and 2-methynaphthalene above the Protection of Groundwater IHSB PRSGs in one soil sample. The concentration of naphthalene in the soil sample also exceeded the Residential Health Based PSRG. Naphthalene was detected above 2L Standard in one groundwater sample. Thirty-five compounds were detected in the soil gas samples; however, none of the concentrations exceeded the Division
of Waste Management (DWM) Non-Residential Soil Gas Screening Levels (SGSLs). The results were submitted to the DSCA Program on June 17, 2013.

Permanent monitoring wells MW-1 through MW-5 were installed and sampled in October 2013. Laboratory results indicated petroleum compounds above 2L Standards in MW-3. Geotechnical samples were also collected to determine soil characteristics and slug testing was performed to determine hydrology.

Plume stability monitoring was performed in September 2014, December 2014, and March 2015. Laboratory results indicated petroleum compounds above 2L Standards in MW-1 and MW-3. Report forms documenting plume stability were submitted to the DSCA Program on April 6, 2015. Laboratory results indicated groundwater impacts were confined to the site property, delineated, stable and decreasing.

Three sub-pavement soil gas samples were collected in the area of the former dry-cleaner in July 2018. The samples did not indicate any compounds above Non-Residential SGSLs. A Vapor intrusion Letter Report was submitted to the DSCA Program on October 10, 2018.

ATC compiled the recent and historical data for the site and prepared a risk assessment in November 2018. As discussed in detail in Section 3.0, the risk assessment concluded that risks associated with the contamination could be managed through implementation of land-use controls for the site, as detailed in this RMP. Therefore, the risk assessment recommended risk-based closure for the site.

4.2 Remedial Action

According to the DSCA Program’s RAG, no remedial action is necessary if four site conditions are met. Each of these conditions and their applicability to the subject site are addressed below.
Condition 1: The dissolved plume is stable or decreasing.

Periodic groundwater monitoring has been conducted at the site since 2012 to 2015. Constituents of concern (COCs) detected at concentrations above 2L Standards include benzene, ethylbenzene, naphthalene, total xylenes, isopropylbenzene (cumene), n-propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, C₅-C₈ aliphatics, C₉-C₁₂ aliphatics, C₉-C₁₀ aromatics, C₉-C₁₈ aliphatics, and C₉-C₁₁ aromatics. The DWM evaluates sites using specific COCs rather than carbon fractions due to the potential to double count risk. Therefore, C₅-C₈ aliphatics, C₉-C₁₂ aliphatics, C₉-C₁₀ aromatics, C₉-C₁₈ aliphatics, and C₉-C₁₁ aromatics were not included in plume stability monitoring.

ATC prepared concentration versus time graphs for each monitoring well showing significant detections of the aforementioned compounds using the GSI Mann-Kendall Toolkit for Constituent Trend Analysis (Mann-Kendall). The concentration versus time graphs show that COCs detected at the site above 2L Standards are stable or show “no trend” for the monitoring wells evaluated. Where "no trend" was indicated, ATC reviewed the graphs manually and concluded that trends appeared stable or decreasing. Furthermore, COCs which indicated “no trend” have not been identified in the most downgradient well, MW-5. Based on these data, ATC concludes that the dissolved plume associated with the site is stable or decreasing. Documentation of the plume stability evaluation, including a table showing historical groundwater analytical data and the Mann-Kendall Analyses, are included in Appendices A and B, respectively. Monitoring well locations and the extent of the groundwater plume are shown on Figure 4.

Condition 2: The maximum concentration within the exposure domain for every complete exposure pathway of any COC is less than ten times the representative concentration of that COC.

ATC evaluated the representative concentrations calculated during the risk assessment and found that this condition has been met for all COCs and exposure pathways.
Condition 3: Adequate assurance is provided that the land-use assumptions used in the DSCA Program’s Risk-Based Corrective Action (RBCA) process are not violated for current or future conditions.

Land-use controls will be implemented for the site to ensure the assumptions made in the risk assessment remain valid in the future. Refer to Section 6.0 for additional details regarding the proposed land-use controls for the site.

Condition 4: There are no ecological concerns at the site.

ATC completed a Level 1 Ecological Risk Assessment for the site in accordance with the DSCA Program’s RBCA guidance. The results of the evaluation indicate that the release does not pose an unacceptable ecological risk. The completed Level 1 Ecological Risk Assessment Checklists A and B and associated attachments are included in Appendix C.

The site’s compliance with the four above referenced conditions confirms that the contaminant concentrations are not likely to pose an unacceptable risk either at present or in the future. The plume is expected to naturally attenuate over time and the appropriate remedial action is to implement appropriate land-use controls on the properties where soil and/or groundwater contamination associated with the site is present.

5.0 DATA COLLECTED DURING RMP IMPLEMENTATION

No further sampling or other data collection activities are proposed for the site, as long as the assumptions detailed in each Notice of Dry-Cleaning Solvent Remediation (NDCSR) remain valid. As such, this section is not applicable.

6.0 LAND-USE CONTROLS

As discussed in detail in Section 3.0, the recommendation for closure in the risk assessment for the site was based on the following land-use conditions:
• No activities may occur that remove or disturb soil within the area of impacted soil designated on Figure 6 on the source property unless approved in writing in advance by NCDEQ.

• No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in the area designated on Figure 6.

• Groundwater will not be utilized on the source property.

Institutional controls will be implemented to ensure that land-use conditions are maintained and monitored until the land-use controls are no longer required for the site. A NDCSR was prepared for the source property to comply with the land-use control requirement. The NDCSR for the source property is included in Appendix D. Refer to the NDCSR for the specific language to be incorporated to address each of the risk assessment assumptions detailed above. A plat showing the locations and types of dry-cleaning solvent contamination is included as an exhibit to the NDCSR. The locations of dry-cleaning solvent contamination are where contaminants have been detected above unrestricted use standards.

7.0 LONG-TERM STEWARDSHIP PLAN

The NDCSR for the source property contains a clause which requires that the owner of the property submit notarized “Annual Certification of Land-Use Restrictions” to NCDEQ on an annual basis certifying that the NDCSR remains recorded with the Register of Deeds and that the land-use restrictions (LURs) are being complied with. An example of such a certification is included in Appendix E.
8.0 RMP IMPLEMENTATION SCHEDULE

Since the contamination is stable and confined to the source, no additional site remediation activities are required to implement the RMP. A 30-day public comment period will be held to allow the community an opportunity to comment on the proposed strategy. Appendix F includes example documents used to announce the public comment period in the local newspaper and to inform local officials, nearby property owners, and interested parties. As such, upon completion of the public comment period and final approval of the RMP, the NDCSR will be filed with the New Hanover County Register of Deeds and will complete the RMP schedule.

9.0 CRITERIA FOR DEMONSTRATING RMP SUCCESS

The RMP will be successfully implemented once the NDCSR has been executed and recorded with the New Hanover County Register of Deeds. The NDCSR may, at the request of the owner of the property, be canceled by NCDEQ after the risk to public health and the environment associated with the dry-cleaning solvent contamination and any other contaminants included in the dry-cleaning solvent assessment and remediation agreement has been eliminated as a result of remediation of the property. If NCDEQ is notified of a change in site conditions, per the notification requirements detailed in the NDCSR, the RMP will be reviewed to determine if the site conditions have impacted the requirements set forth in each NDCSR and if changes are required. Enforcement of the RMP will be maintained through receipt of the “Annual Land-Use Restrictions Certification” from the source property owner as part of the NDCSR requirements.

10.0 CONTINGENCY PLAN IF RMP FAILS

As discussed above, unless the DSCA Program is notified of a change in land-use conditions at the site, per the notification requirements detailed in this plan, the RMP will remain in effect until the RMP has met its objectives and is considered a success. Pursuant to N.C.G.S. 143-215.104K, if any of the LURs set out in the NDCSR are violated, the owner of the property at the time the LURs are violated, the owner’s successors and assigns, and the owner’s agents who direct or
contract for alteration of the site in violation of the LURs, shall be held liable for the remediation of all contaminants to unrestricted use standards.

11.0 CONCLUSIONS AND RECOMMENDATIONS

ATC has prepared this RMP for the former Winter Park Cleaners site on behalf of the DSCA Program. The results of a risk assessment indicated that contaminant concentrations at the site do not pose an unacceptable risk with appropriate land-use controls applied to the source property. The contaminant plume associated with the site appears stable or decreasing. This RMP specifies that the NDCSR requirements provide notification that land-use conditions observed during the risk assessment evaluation remain valid in the future. Based on the documentation contained in this report, ATC recommends issuance of a “No Further Action” letter.
APPENDIX A

DSCA PROGRAM’S ANALYTICAL DATA TABLES
Analytical Data Tables

for

North Carolina Dry-Cleaning Solvent Cleanup Act Program

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>Winter Park Cleaners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1437 South College Road, Wilmington, New Hanover County, North Carolina</td>
</tr>
<tr>
<td>DSCA ID No.:</td>
<td>DC650013</td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>April 9, 2019</td>
</tr>
<tr>
<td>Prepared By:</td>
<td>ATC Associates of North Carolina, P.C.</td>
</tr>
<tr>
<td></td>
<td>2725 East Millbrook Road, Suite 121, Raleigh, North Carolina 27604</td>
</tr>
<tr>
<td>Table/Att. No.</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Table 1</td>
<td>Site Chronology</td>
</tr>
<tr>
<td>Table 2</td>
<td>Analytical Data for Soil</td>
</tr>
<tr>
<td>Table 3</td>
<td>Analytical Data for Sub-slab Gas</td>
</tr>
<tr>
<td>Table 4</td>
<td>Analytical Data for Soil Gas</td>
</tr>
<tr>
<td>Table 5</td>
<td>Analytical Data for Indoor and Outdoor Air</td>
</tr>
<tr>
<td>Table 6</td>
<td>Monitoring Well Construction Data</td>
</tr>
<tr>
<td>Table 7</td>
<td>Groundwater Elevation Data</td>
</tr>
<tr>
<td>Table 8</td>
<td>Analytical Data for Groundwater</td>
</tr>
<tr>
<td>Table 9</td>
<td>Analytical Data for Surface Water</td>
</tr>
<tr>
<td>Table 10</td>
<td>Water Well(s) Survey Data</td>
</tr>
<tr>
<td>Table 11</td>
<td>Analytical Data for Water Supply Well(s)</td>
</tr>
<tr>
<td>Table 12</td>
<td>Analytical Data for Natural Attenuation Parameters</td>
</tr>
</tbody>
</table>

Att. 1 Site map showing location(s) of soil boring(s).

Att. 2 Soil contaminant concentration maps showing the concentration at each sampling point.

Att. 3 Soil isoconcentration maps.

Att. 4 Site map showing location(s) of monitoring well(s).

Att. 5 Well completion diagrams and records of construction submitted to state.

Att. 6 Groundwater gradient map for each sampling event.

Att. 7 PCE concentration map showing the concentration at each sampling point and isoconcentration map. However, if there are significant plumes for other dry-cleaning contaminants, contaminant concentration maps for each chemical of concern should be included.

Att. 8 Groundwater concentration trend plots.

Att. 9 Map showing location(s) of surface water sample(s) (if applicable).

Att. 10 Surface water concentration map showing the concentration at each sampling point (if applicable).

Att. 11 USGS Quad map with plotted water well location(s) within the 1,500 foot and 0.5 mile radii of the site (if applicable).

Att. 12 Site map showing location(s) of monitoring well(s) for natural attenuation parameters.

Att. 13 Site map showing location(s) of indoor air, outdoor air, or soil gas samples.

Att. 14 Air and soil gas concentration map showing the concentration at each sampling point.

Att. 15 Signed laboratory analytical reports including chain-of custody and quality assurance/quality control (QA/QC) documentation (only if not previously submitted).

Att. 16

Att. 17

Att. 18

Att. 19

Att. 20

Att. 21

Note:

1. All maps must include a bar scale, north arrow, site name, DSCA ID No., and date.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2011</td>
<td>Terracon conducted a Phase I Environmental Assessment (ESA).</td>
</tr>
<tr>
<td>1/3/2012</td>
<td>Terracon conducted a Limited Site Investigation. Field work consisted of the collection of nine soil samples: (T) SB-1 through (T) SB-4, (T) North, (T) South, (T) West, (T) East, and (T) B-1. (T) SB-1 through (T) SB-4 boring locations were then converted into four temporary monitoring wells for the collection of four groundwater grab samples: (T) GW-1 through (T) GW-4.</td>
</tr>
<tr>
<td>4/01/13 - 4/03/13</td>
<td>AMEC Environment & Infrastructure, Inc. (AMEC) conducted a Prioritization Assessment (PA) consisting of the advancement and sampling of 16 soil borings (SB-1 through SB-7, SB-9, SB-10B, SB-11B, SB-13, and SB-15 through SB-19), along with the collection of six groundwater grab samples (GW-1 through GW-6). Five temporary groundwater monitoring wells (TMW-1 through TMW-5) were installed for the collection of groundwater and to determine the direction of groundwater flow. Each were gauged, surveyed, and sampled prior to their abandonment. Additionally, two near-slab samples (NS-1 and NS-2) were collected at the front (east) and back (west) sides of the Trader Joes building.</td>
</tr>
<tr>
<td>10/14/13 - 10/16/13</td>
<td>AMEC installed, gauged and sampled five Type II permanent monitoring wells (MW-1 through MW-5), collected two geotechnical samples from borings MW-5 (2'-4') and MW-5 (8'-10'), and collected slug test data from MW-5.</td>
</tr>
<tr>
<td>9/17/2014</td>
<td>AMEC sampled wells MW-1 through MW-5.</td>
</tr>
<tr>
<td>12/9/2014</td>
<td>AMEC sampled wells MW-1 through MW-5.</td>
</tr>
<tr>
<td>3/10/2015</td>
<td>Amec Foster Wheeler sampled wells MW-1 through MW-5.</td>
</tr>
<tr>
<td>11/13/2018</td>
<td>ATC submitted a Risk Assessment recommending site closure given certain land-use controls are implemented for the source property. The DSCA Program issued a Risk Assessment Concurrence.</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Depth [feet]</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) SB-1*</td>
<td>12.5 - 14</td>
</tr>
<tr>
<td>(T) SB-2*</td>
<td>10 - 12.5</td>
</tr>
<tr>
<td>(T) SB-3*</td>
<td>5 - 7.5</td>
</tr>
<tr>
<td>(T) SB-4*</td>
<td>12.5 - 14</td>
</tr>
<tr>
<td>(T) North*</td>
<td>7.5 - 9</td>
</tr>
<tr>
<td>(T) South</td>
<td>0 - 2.5</td>
</tr>
<tr>
<td>(T) East</td>
<td>0 - 2.5</td>
</tr>
<tr>
<td>(T) West*</td>
<td>5 - 7.5</td>
</tr>
<tr>
<td>(T) B-1</td>
<td>2.5 - 5</td>
</tr>
<tr>
<td>SB-1</td>
<td>3</td>
</tr>
<tr>
<td>SB-2</td>
<td>4</td>
</tr>
<tr>
<td>SB-3</td>
<td>5</td>
</tr>
<tr>
<td>SB-4</td>
<td>4</td>
</tr>
<tr>
<td>SB-5</td>
<td>4</td>
</tr>
<tr>
<td>SB-6*</td>
<td>7</td>
</tr>
<tr>
<td>SB-7*</td>
<td>8</td>
</tr>
<tr>
<td>SB-9</td>
<td>5</td>
</tr>
<tr>
<td>SB-10B</td>
<td>5</td>
</tr>
<tr>
<td>SB-11B</td>
<td>3</td>
</tr>
<tr>
<td>SB-13</td>
<td>4</td>
</tr>
<tr>
<td>SB-15</td>
<td>4</td>
</tr>
<tr>
<td>SB-16</td>
<td>5</td>
</tr>
<tr>
<td>SB-17</td>
<td>4</td>
</tr>
<tr>
<td>SB-18</td>
<td>5</td>
</tr>
<tr>
<td>SB-19</td>
<td>5</td>
</tr>
</tbody>
</table>

| IHSB PSRG | 0.01 | 0.41 | 6.1 | 0.09 | 0.39 | 0.0063 | 8.3 | 0.62 | 0.021 | 0.00021 | 9.9 |

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth [feet]</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>1,2,3-Trimethylbenzene</th>
<th>1,2,4-Trimethylbenzene</th>
<th>1,3,5-Trimethylbenzene</th>
<th>m,p-Xylenes</th>
<th>o-Xylene</th>
<th>p-Xylenes</th>
<th>o,Bu-Xylene</th>
<th>m,Bu-Xylene</th>
<th>n-Bu-Xylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) SB-1*</td>
<td>12.5 - 14</td>
<td>01/03/12</td>
<td><0.0046</td>
<td>0.0394</td>
<td>0.0089</td>
<td>0.109</td>
<td>0.0195</td>
<td><0.0046</td>
<td><0.0046</td>
<td><0.0046</td>
<td><0.0046</td>
</tr>
<tr>
<td>(T) SB-2*</td>
<td>10 - 12.5</td>
<td>01/03/12</td>
<td><1.060</td>
<td>86.6</td>
<td>25.1</td>
<td>73.0</td>
<td>9.77</td>
<td>3.47</td>
<td>5.1</td>
<td>1.78</td>
<td>5.65</td>
</tr>
<tr>
<td>(T) SB-3*</td>
<td>5 - 7.5</td>
<td>01/03/12</td>
<td><0.0053</td>
<td><0.0053</td>
<td><0.0053</td>
<td>0.0106</td>
<td><0.0053</td>
<td><0.0053</td>
<td><0.0053</td>
<td><0.0053</td>
<td><0.0053</td>
</tr>
<tr>
<td>(T) SB-4*</td>
<td>12.5 - 14</td>
<td>01/03/12</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
<td><0.0048</td>
</tr>
<tr>
<td>(T) North*</td>
<td>7.5 - 9</td>
<td>02/02/12</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
</tr>
<tr>
<td>(T) South</td>
<td>0 - 2.5</td>
<td>02/02/12</td>
<td><0.0012</td>
<td>0.0042</td>
<td><0.0012</td>
<td><0.0034</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
</tr>
<tr>
<td>(T) East</td>
<td>0 - 2.5</td>
<td>02/02/12</td>
<td><0.0011</td>
<td>0.0024</td>
<td><0.0011</td>
<td><0.0033</td>
<td>0.0035</td>
<td><0.0011</td>
<td><0.0011</td>
<td>0.0095</td>
<td>0.0013</td>
</tr>
<tr>
<td>(T) West*</td>
<td>5 - 7.5</td>
<td>02/02/12</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
<td><0.0012</td>
</tr>
<tr>
<td>(T) B-1</td>
<td>2.5 - 5</td>
<td>02/02/12</td>
<td>0.25</td>
<td>0.43</td>
<td>0.16</td>
<td>0.16</td>
<td>0.24</td>
<td>0.054</td>
<td>0.71</td>
<td>0.11</td>
<td>0.26</td>
</tr>
<tr>
<td>SB-1</td>
<td>3</td>
<td>04/02/13</td>
<td><0.0069</td>
<td>0.057</td>
<td>0.0077 J</td>
<td><0.014</td>
<td><0.0069</td>
<td>0.0045 J</td>
<td>0.0072 J</td>
<td>0.0082 J</td>
<td>0.023</td>
</tr>
<tr>
<td>SB-2</td>
<td>4</td>
<td>04/02/13</td>
<td><0.30</td>
<td><0.30</td>
<td><0.61</td>
<td><0.30</td>
<td><0.30</td>
<td><0.30</td>
<td>1.7</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>SB-3</td>
<td>5</td>
<td>04/02/13</td>
<td><0.0043</td>
<td><0.0086</td>
<td><0.0086</td>
<td><0.0043</td>
<td><0.0086</td>
<td><0.013</td>
<td><0.0013</td>
<td><0.017</td>
<td></td>
</tr>
<tr>
<td>SB-4</td>
<td>4</td>
<td>04/02/13</td>
<td><0.0091</td>
<td><0.018</td>
<td><0.018</td>
<td><0.0091</td>
<td><0.018</td>
<td><0.027</td>
<td><0.018</td>
<td><0.027</td>
<td><0.0036</td>
</tr>
<tr>
<td>SB-5</td>
<td>5</td>
<td>04/02/13</td>
<td><0.0076</td>
<td><0.015</td>
<td><0.015</td>
<td><0.0076</td>
<td><0.015</td>
<td><0.023</td>
<td><0.015</td>
<td><0.023</td>
<td><0.030</td>
</tr>
<tr>
<td>SB-6*</td>
<td>7</td>
<td>04/02/13</td>
<td><0.0059</td>
<td><0.012</td>
<td><0.012</td>
<td><0.0059</td>
<td><0.012</td>
<td><0.018</td>
<td><0.012</td>
<td><0.018</td>
<td><0.023</td>
</tr>
<tr>
<td>SB-7*</td>
<td>8</td>
<td>04/02/13</td>
<td><0.0059</td>
<td><0.012</td>
<td><0.012</td>
<td><0.0059</td>
<td><0.012</td>
<td><0.018</td>
<td><0.012</td>
<td><0.018</td>
<td><0.024</td>
</tr>
<tr>
<td>SB-9</td>
<td>5</td>
<td>04/02/13</td>
<td><0.0044</td>
<td><0.0088</td>
<td><0.0088</td>
<td><0.0044</td>
<td><0.0088</td>
<td><0.013</td>
<td><0.0088</td>
<td><0.013</td>
<td><0.018</td>
</tr>
<tr>
<td>SB-10B</td>
<td>5</td>
<td>04/03/13</td>
<td><0.0040</td>
<td><0.0079</td>
<td><0.0079</td>
<td><0.0040</td>
<td><0.0079</td>
<td><0.012</td>
<td><0.0079</td>
<td><0.012</td>
<td><0.016</td>
</tr>
<tr>
<td>SB-11B</td>
<td>3</td>
<td>04/02/13</td>
<td><0.0042</td>
<td><0.0085</td>
<td><0.0085</td>
<td><0.0042</td>
<td><0.0085</td>
<td><0.013</td>
<td><0.0085</td>
<td><0.013</td>
<td><0.017</td>
</tr>
<tr>
<td>SB-13</td>
<td>4</td>
<td>04/03/13</td>
<td><0.0047</td>
<td><0.0104</td>
<td><0.0094</td>
<td><0.0047</td>
<td><0.0094</td>
<td><0.014</td>
<td><0.0094</td>
<td><0.014</td>
<td><0.019</td>
</tr>
<tr>
<td>SB-15</td>
<td>4</td>
<td>04/03/13</td>
<td><0.0043</td>
<td><0.0087</td>
<td><0.0087</td>
<td><0.0043</td>
<td><0.0087</td>
<td><0.013</td>
<td><0.0087</td>
<td><0.013</td>
<td><0.017</td>
</tr>
<tr>
<td>SB-16</td>
<td>5</td>
<td>04/03/13</td>
<td><0.0040</td>
<td><0.0080</td>
<td><0.0080</td>
<td><0.0040</td>
<td><0.0080</td>
<td><0.012</td>
<td><0.0080</td>
<td><0.012</td>
<td><0.016</td>
</tr>
<tr>
<td>SB-17</td>
<td>4</td>
<td>04/03/13</td>
<td><0.0040</td>
<td><0.0080</td>
<td><0.0080</td>
<td><0.0040</td>
<td><0.0080</td>
<td><0.012</td>
<td><0.0080</td>
<td><0.012</td>
<td><0.016</td>
</tr>
<tr>
<td>SB-18</td>
<td>5</td>
<td>04/03/13</td>
<td><0.0041</td>
<td><0.0082</td>
<td><0.0082</td>
<td><0.0041</td>
<td><0.0082</td>
<td><0.012</td>
<td><0.0082</td>
<td><0.012</td>
<td><0.016</td>
</tr>
<tr>
<td>SB-19</td>
<td>5</td>
<td>04/03/13</td>
<td><0.0049</td>
<td><0.0098</td>
<td><0.0098</td>
<td><0.0049</td>
<td><0.0098</td>
<td><0.015</td>
<td><0.0098</td>
<td><0.015</td>
<td><0.020</td>
</tr>
</tbody>
</table>

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (feet bgs)</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>Acetone (mg/kg)</th>
<th>Methyl Ethyl Ketone (2-Butanone) (mg/kg)</th>
<th>Acenaphthene (SVOC) (mg/kg)</th>
<th>Dibenzofuran (SVOC) (mg/kg)</th>
<th>Fluorene (SVOC) (mg/kg)</th>
<th>Phenanthrene (SVOC) (mg/kg)</th>
<th>1-Methylnaphthalene (SVOC) (mg/kg)</th>
<th>2-Methylnaphthalene (SVOC) (mg/kg)</th>
<th>Naphthalene (SVOC) (mg/kg)</th>
<th>Bis(2-Ethylhexyl)phthalate (SVOC) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-1*</td>
<td>12.5 - 14</td>
<td>01/03/12</td>
<td><0.0926</td>
<td><0.0926</td>
<td><0.383</td>
<td><0.383</td>
<td><0.383</td>
<td><0.383</td>
<td><0.383</td>
<td><0.383</td>
<td><0.383</td>
<td></td>
</tr>
<tr>
<td>SB-2*</td>
<td>10 - 12.5</td>
<td>01/03/12</td>
<td><21.20</td>
<td><21.20</td>
<td><1.850</td>
<td><1.850</td>
<td><1.850</td>
<td><1.850</td>
<td>2.85</td>
<td>6.39</td>
<td>6.67</td>
<td></td>
</tr>
<tr>
<td>SB-3*</td>
<td>5 - 7.5</td>
<td>01/03/12</td>
<td><0.106</td>
<td><0.106</td>
<td><0.356</td>
<td><0.356</td>
<td><0.356</td>
<td><0.356</td>
<td>-0.356</td>
<td>-0.356</td>
<td>-0.356</td>
<td></td>
</tr>
<tr>
<td>SB-4*</td>
<td>12.5 - 14</td>
<td>01/03/12</td>
<td><0.0967</td>
<td><0.0967</td>
<td><0.385</td>
<td><0.385</td>
<td><0.385</td>
<td><0.385</td>
<td><0.385</td>
<td><0.385</td>
<td><0.385</td>
<td></td>
</tr>
<tr>
<td>SB-5</td>
<td>7.5 - 9</td>
<td>02/02/12</td>
<td><0.059</td>
<td><0.012</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SB-6*</td>
<td>7</td>
<td>02/02/12</td>
<td><0.058</td>
<td><0.012</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SB-7*</td>
<td>5</td>
<td>02/02/12</td>
<td><0.057</td>
<td><0.011</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SB-8*</td>
<td>5</td>
<td>02/02/12</td>
<td><2.7</td>
<td><0.54</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SB-9</td>
<td>5</td>
<td>02/02/12</td>
<td><0.018</td>
<td><0.018</td>
<td><0.36</td>
<td><0.36</td>
<td><0.36</td>
<td><0.36</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SB-10B</td>
<td>5</td>
<td>04/03/13</td>
<td><0.016</td>
<td><0.016</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td>NA</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>SB-11B</td>
<td>3</td>
<td>04/03/13</td>
<td><0.018</td>
<td><0.017</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td>NA</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>SB-12</td>
<td>4</td>
<td>04/03/13</td>
<td><0.020</td>
<td><0.019</td>
<td><1.7</td>
<td><1.7</td>
<td><1.7</td>
<td><1.7</td>
<td>NA</td>
<td><1.7</td>
<td><1.7</td>
<td></td>
</tr>
<tr>
<td>SB-13</td>
<td>4</td>
<td>04/03/13</td>
<td><0.017</td>
<td><0.017</td>
<td><4.2</td>
<td><4.2</td>
<td><4.2</td>
<td><4.2</td>
<td>NA</td>
<td><4.2</td>
<td><4.2</td>
<td></td>
</tr>
<tr>
<td>SB-14</td>
<td>4</td>
<td>04/03/13</td>
<td><0.016</td>
<td><0.016</td>
<td><3.8</td>
<td><3.8</td>
<td><3.8</td>
<td><3.8</td>
<td>NA</td>
<td><3.8</td>
<td><3.8</td>
<td></td>
</tr>
<tr>
<td>SB-15</td>
<td>5</td>
<td>04/03/13</td>
<td><0.016</td>
<td><0.016</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td>NA</td>
<td><0.35</td>
<td><0.35</td>
<td></td>
</tr>
<tr>
<td>SB-16</td>
<td>5</td>
<td>04/03/13</td>
<td><0.016</td>
<td><0.016</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td>NA</td>
<td><0.35</td>
<td><0.35</td>
<td></td>
</tr>
<tr>
<td>SB-17</td>
<td>5</td>
<td>04/03/13</td>
<td><0.016</td>
<td><0.016</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td><0.35</td>
<td>NA</td>
<td><0.35</td>
<td><0.35</td>
<td></td>
</tr>
<tr>
<td>SB-18</td>
<td>5</td>
<td>04/03/13</td>
<td><0.051</td>
<td><0.016</td>
<td><4.1</td>
<td><4.1</td>
<td><4.1</td>
<td><4.1</td>
<td>NA</td>
<td><4.1</td>
<td><4.1</td>
<td></td>
</tr>
<tr>
<td>SB-19</td>
<td>5</td>
<td>04/03/13</td>
<td><0.020</td>
<td><0.020</td>
<td><3.6</td>
<td><3.6</td>
<td><3.6</td>
<td><3.6</td>
<td>NA</td>
<td><3.6</td>
<td><3.6</td>
<td></td>
</tr>
</tbody>
</table>

Table 2(1): Analytical Data for Soil (User Specified Chemicals)

* - Soil sample was collected below the historical high water table. Therefore, the sample is not indicative of soil conditions in the subsurface.
Table 3: Analytical Data for Sub-slab Gas

DSCA ID No.: DC650013

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth [inches bgs]</th>
<th>Slab Thickness [inches]</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>Benzene [µg/m³]</th>
<th>cis-1,2-Dichloroethylene [µg/m³]</th>
<th>Ethylbenzene [µg/m³]</th>
<th>Methyl tert-butyl ether (MTBE) [µg/m³]</th>
<th>Naphthalene [µg/m³]</th>
<th>Tetrachloroethylene [µg/m³]</th>
<th>Trans-1,2-Dichloroethylene [µg/m³]</th>
<th>Trichloroethylene [µg/m³]</th>
<th>Vinyl chloride [µg/m³]</th>
<th>Xylenes (total) [µg/m³]</th>
<th>Isopropylbenzene (cumene) [µg/m³]</th>
<th>n-Propylbenzene [µg/m³]</th>
<th>1,2,4-Trimethylbenzene [µg/m³]</th>
<th>1,3,5-Trimethylbenzene [µg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMP-1</td>
<td>3</td>
<td>4</td>
<td>G</td>
<td>7/26/18</td>
<td>100</td>
<td><20</td>
<td>29</td>
<td>NA</td>
<td><27</td>
<td><34</td>
<td>NA</td>
<td><40</td>
<td><27</td>
<td><13</td>
<td>62</td>
<td><25</td>
<td><25</td>
</tr>
<tr>
<td>SPMP-2</td>
<td>3</td>
<td>4</td>
<td>G</td>
<td>7/26/18</td>
<td>36</td>
<td><4.0</td>
<td>58</td>
<td>NA</td>
<td><5.3</td>
<td>9.9</td>
<td>NA</td>
<td><8.0</td>
<td><5.5</td>
<td><2.6</td>
<td>170</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>SPMP-3</td>
<td>3</td>
<td>4</td>
<td>G</td>
<td>7/26/18</td>
<td>530</td>
<td><2,500</td>
<td><2,500</td>
<td>NA</td>
<td><500</td>
<td>NA</td>
<td>NA</td>
<td><2,500</td>
<td><2,500</td>
<td><2,500</td>
<td><2,500</td>
<td><2,500</td>
<td><2,500</td>
</tr>
</tbody>
</table>

Non-Residential Vapor Intrusion Screening Levels

| [µg/m³] | 1,600 | NE | 4,900 | 47,000 | 260 | 3,500 | 440,000 | NE | 180 | 2,800 | 8,800 | 35,000 | 88,000 | 5,300 | 5,300 |

1. Indicate "G" for grab sample or for longer samples indicate the number of hours followed by "h".

2. North Carolina Department of Environmental Quality (February 2018)
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (ft. eq.)</th>
<th>Sample Duration</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>Benzene</th>
<th>cis-1,2-Dichloroethylene</th>
<th>Ethylbenzene</th>
<th>Methyl tert-butyl ether (MTBE)</th>
<th>Naphthalene</th>
<th>Tetrachloroethylene</th>
<th>Toluene</th>
<th>trans-1,2-Dichloroethylene</th>
<th>Trichloroethylene</th>
<th>Vinyl chloride</th>
<th>Xylenes (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-1</td>
<td>7</td>
<td>0.33h</td>
<td>04/03/13</td>
<td>40</td>
<td>< 0.40</td>
<td>130</td>
<td>< 0.36</td>
<td>2.1</td>
<td>1.4</td>
<td>560</td>
<td>< 0.40</td>
<td>< 0.54</td>
<td>1.6</td>
<td>580</td>
</tr>
<tr>
<td>NS-2</td>
<td>7</td>
<td>0.55h</td>
<td>04/03/13</td>
<td>14</td>
<td>< 0.40</td>
<td>6.8</td>
<td>< 0.36</td>
<td>2.2</td>
<td>1.0</td>
<td>33</td>
<td>< 0.40</td>
<td>< 0.54</td>
<td>0.31</td>
<td>25.2</td>
</tr>
<tr>
<td>DWM Non-Residential</td>
<td>Soil Gas Screening Level</td>
<td>1,600</td>
<td>NE</td>
<td>4,910</td>
<td>47,000</td>
<td>260</td>
<td>3,500</td>
<td>180</td>
<td>2,800</td>
<td>8,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Indicate "G" for grab sample or for longer samples indicate the number of hours followed by "h".
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (feet bgs)</th>
<th>Sample Duration</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)</th>
<th>1,4-Dichlorobenzene</th>
<th>1,3-Butadiene</th>
<th>1,3,5-Trimethylbenzene</th>
<th>1,2,4-Trimethylbenzene</th>
<th>2-Butanone (MEK)</th>
<th>2-Hexanone (MBK)</th>
<th>Trichlorofluoromethane (Freon 11)</th>
<th>Tetrahydrofuran</th>
<th>Styrene</th>
<th>Propene</th>
<th>Methylene Chloride</th>
<th>Isopropanol</th>
<th>Hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-1</td>
<td>7</td>
<td>0.33h</td>
<td>04/03/13</td>
<td>0.81</td>
<td><0.60</td>
<td>1.8</td>
<td>46</td>
<td>150</td>
<td>9.7</td>
<td><0.41</td>
<td>13</td>
<td>2.3</td>
<td>2.4</td>
<td>56</td>
<td>3.3</td>
<td>190</td>
<td>69</td>
</tr>
<tr>
<td>NS-2</td>
<td>7</td>
<td>0.55h</td>
<td>04/03/13</td>
<td>0.51</td>
<td>0.24</td>
<td>45</td>
<td>6.7</td>
<td>25</td>
<td>27</td>
<td>8.7</td>
<td>41</td>
<td><0.29</td>
<td>2.3</td>
<td>540</td>
<td>2.8</td>
<td>220</td>
<td>34</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DWM Non-Residential Soil Gas Screening Level</td>
<td>440,000</td>
<td>1,100</td>
<td>5,300</td>
<td>5,300</td>
<td>2,600</td>
<td>NE</td>
<td>180,000</td>
<td>88,000</td>
<td>260,000</td>
<td>53,000</td>
<td>18,000</td>
<td>61,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Indicate “G” for grab sample or for longer samples indicate the number of hours followed by “h”.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (ft bgs)</th>
<th>Sample Duration</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>Heptane</th>
<th>Ethyl Acetate</th>
<th>Ethanol</th>
<th>Dichlorodifluoromethane (Freon 12)</th>
<th>Carbon Disulfide</th>
<th>4-Ethyltoluene</th>
<th>4-Methyl-2-pentanone (MIBK)</th>
<th>Acetone</th>
<th>Cyclohexane</th>
<th>Carbon Tetrachloride</th>
<th>Chlorobenzene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>Helium</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-1</td>
<td>7</td>
<td>0.33h</td>
<td>04/03/13</td>
<td>91</td>
<td>40</td>
<td>160</td>
<td>2.3</td>
<td>1.1</td>
<td>54</td>
<td><0.41</td>
<td></td>
<td>140</td>
<td>4.5</td>
<td>0.54</td>
<td><0.46</td>
<td>8.1</td>
<td>2.2</td>
</tr>
<tr>
<td>NS-2</td>
<td>7</td>
<td>0.55h</td>
<td>04/03/13</td>
<td>19</td>
<td>31</td>
<td>82</td>
<td>1.6</td>
<td>11</td>
<td>5.4</td>
<td>17</td>
<td>210</td>
<td>1.4</td>
<td><0.63</td>
<td>0.37</td>
<td>0.66</td>
<td>1.2</td>
<td>1,308.79</td>
</tr>
</tbody>
</table>

DWM Non-Residential Soil Gas Screening Level

35,000

NES

NE

8,800

61,000

NE

260,000

2,700,000

530,000

2,000

4,400

530

7,900

NE

1 Indicate "G" for grab sample or for longer samples indicate the number of hours followed by "h".
Table 6: Monitoring Well Construction Data

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Date Installed (mm/dd/yy)</th>
<th>Number of Samples</th>
<th>Well Depth [feet]</th>
<th>Well Diameter [inch]</th>
<th>Screen Interval [feet]</th>
<th>Status (Active/Inactive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>10/15/13</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>8-18</td>
<td>Active</td>
</tr>
<tr>
<td>MW-2</td>
<td>10/15/13</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>8-18</td>
<td>Active</td>
</tr>
<tr>
<td>MW-3</td>
<td>10/15/13</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>7-17</td>
<td>Active</td>
</tr>
<tr>
<td>MW-4</td>
<td>10/15/13</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>7-17</td>
<td>Active</td>
</tr>
<tr>
<td>MW-5</td>
<td>10/15/13</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>4-14</td>
<td>Active</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MW-1</td>
<td>10/16/13</td>
<td>95.04</td>
<td>9.55</td>
<td>85.49</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>09/17/14</td>
<td></td>
<td>7.21</td>
<td>87.83</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>12/09/14</td>
<td></td>
<td>9.38</td>
<td>85.66</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>03/10/15</td>
<td></td>
<td>7.95</td>
<td>87.09</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MW-2</td>
<td>10/16/13</td>
<td>94.56</td>
<td>9.01</td>
<td>85.54</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>09/17/14</td>
<td></td>
<td>8.91</td>
<td>85.65</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>12/09/14</td>
<td></td>
<td>6.53</td>
<td>88.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>03/10/15</td>
<td></td>
<td>7.25</td>
<td>87.31</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MW-3</td>
<td>10/16/13</td>
<td>94.44</td>
<td>8.90</td>
<td>85.54</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>09/17/14</td>
<td></td>
<td>6.55</td>
<td>87.89</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>12/09/14</td>
<td></td>
<td>8.69</td>
<td>85.75</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>03/10/15</td>
<td></td>
<td>7.26</td>
<td>87.18</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MW-4</td>
<td>10/16/13</td>
<td>94.69</td>
<td>9.32</td>
<td>85.37</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>09/17/14</td>
<td></td>
<td>6.90</td>
<td>87.79</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>12/09/14</td>
<td></td>
<td>9.11</td>
<td>85.58</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>03/10/15</td>
<td></td>
<td>7.67</td>
<td>87.02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MW-5</td>
<td>10/16/13</td>
<td>92.60</td>
<td>7.79</td>
<td>84.81</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>09/17/14</td>
<td></td>
<td>5.28</td>
<td>87.32</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>12/09/14</td>
<td></td>
<td>7.42</td>
<td>85.18</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>03/10/15</td>
<td></td>
<td>5.97</td>
<td>86.63</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 8: Analytical Data for Groundwater

<table>
<thead>
<tr>
<th>Groundwater Sampling Point</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>Benzene</th>
<th>cis-1,2-Dichloroethylene</th>
<th>Ethylbenzene</th>
<th>Methyl tert-butyl ether (MTBE)</th>
<th>Naphthalene</th>
<th>Tetrachloroethylene</th>
<th>Toluene</th>
<th>trans-1,2-Dichloroethylene</th>
<th>Trichloroethylene</th>
<th>Vinyl chloride</th>
<th>Xylenes (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 2L Standard</td>
<td></td>
<td>0.001</td>
<td>0.07</td>
<td>0.6</td>
<td>0.02</td>
<td>0.006</td>
<td>0.001</td>
<td>0.6</td>
<td>0.1</td>
<td>0.003</td>
<td>0.00003</td>
<td>0.5</td>
</tr>
<tr>
<td>(T) GW-1</td>
<td>1/3/12</td>
<td><0.001</td>
<td><0.003</td>
</tr>
<tr>
<td>(T) GW-2</td>
<td>1/3/12</td>
<td>0.0021</td>
<td><0.001</td>
<td>0.285</td>
<td><0.001</td>
<td>0.0734</td>
<td><0.001</td>
<td><0.001</td>
<td>0.00039</td>
<td><0.001</td>
<td><0.001</td>
<td>0.729</td>
</tr>
<tr>
<td>(T) GW-3</td>
<td>1/3/12</td>
<td>0.0057</td>
<td><0.001</td>
<td>0.0702</td>
<td><0.001</td>
<td>0.0151</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.003</td>
</tr>
<tr>
<td>(T) GW-4</td>
<td>1/3/12</td>
<td>0.0874</td>
<td><0.001</td>
<td>0.657</td>
<td><0.001</td>
<td>0.0841</td>
<td><0.001</td>
<td><0.001</td>
<td>0.0012</td>
<td><0.001</td>
<td><0.001</td>
<td>0.2545</td>
</tr>
<tr>
<td>GW-1</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>GW-2</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>GW-3</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>GW-4</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>GW-5</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>GW-6</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>TMW-5/GW-7</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>TMW-3/GW-8</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>TMW-2/GW-9</td>
<td>4/3/13</td>
<td>0.00056</td>
<td><0.00050</td>
<td>0.036</td>
<td><0.00050</td>
<td>0.0089</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>TMW-1/GW-10</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>TMW-4/GW-11</td>
<td>4/3/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0015</td>
</tr>
<tr>
<td>Sampling Date (mm/dd/yy)</td>
<td>[mg/L]</td>
<td>Benzene</td>
<td>cis-1,2-Diethylenylene</td>
<td>Ethylbenzene</td>
<td>Methyl tert-butyl ether (MTBE)</td>
<td>Naphthalene</td>
<td>Tetrachloroethylene</td>
<td>Toluene</td>
<td>trans-1,2-Diethylenylene</td>
<td>Trichloroethylene</td>
<td>Vinyl chloride</td>
<td>Xylenes (total)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MW-1 10/15/13</td>
<td>0.00053</td>
<td><0.00050</td>
<td>0.0063</td>
<td><0.00050</td>
<td>0.0021</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>9/17/14</td>
<td>0.0014</td>
<td><0.00050</td>
<td>0.038</td>
<td><0.00050</td>
<td>0.0019</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>12/9/14</td>
<td>0.0011</td>
<td><0.00050</td>
<td>0.0062</td>
<td><0.00050</td>
<td>0.00099 J</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.0003</td>
</tr>
<tr>
<td>3/10/15</td>
<td>0.0039</td>
<td><0.00050</td>
<td>0.076</td>
<td><0.00050</td>
<td>0.0015</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>MW-2 10/15/13</td>
<td><0.00050</td>
<td><0.0003</td>
</tr>
<tr>
<td>9/17/14</td>
<td>0.0063</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.00078 J</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>12/9/14</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>3/10/15</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>MW-3 10/15/13</td>
<td>0.18</td>
<td><0.0025</td>
<td>2.6</td>
<td><0.0025</td>
<td>0.56</td>
<td><0.0025</td>
<td>0.0058</td>
<td><0.0025</td>
<td><0.0025</td>
<td><0.0025</td>
<td>0.0025</td>
<td>2.3</td>
</tr>
<tr>
<td>9/17/14</td>
<td>0.13</td>
<td><0.0025</td>
<td>2.7</td>
<td><0.0025</td>
<td>0.74</td>
<td><0.0025</td>
<td>0.0054</td>
<td><0.0025</td>
<td><0.0025</td>
<td><0.0025</td>
<td>0.0025</td>
<td>1.82</td>
</tr>
<tr>
<td>12/9/14</td>
<td>0.24</td>
<td><0.0025</td>
<td>3.8</td>
<td><0.0025</td>
<td>0.8</td>
<td><0.0025</td>
<td>0.008</td>
<td><0.0025</td>
<td><0.0025</td>
<td><0.0025</td>
<td>0.0025</td>
<td>2.4</td>
</tr>
<tr>
<td>3/10/15</td>
<td>0.18</td>
<td><0.0025</td>
<td>2.7</td>
<td><0.0025</td>
<td>0.43</td>
<td><0.0025</td>
<td>0.005</td>
<td><0.0025</td>
<td><0.0025</td>
<td><0.0025</td>
<td>0.0025</td>
<td>1.712</td>
</tr>
<tr>
<td>MW-4 10/15/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.18</td>
<td><0.00050</td>
<td>0.054</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.016</td>
</tr>
<tr>
<td>9/17/14</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.00072 J</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>12/9/14</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>3/10/15</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>MW-5 10/15/13</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.021</td>
<td><0.00050</td>
<td>0.00088 J</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>9/17/14</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td>0.00055 J</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>12/9/14</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>3/10/15</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>Groundwater Sampling Point</td>
<td>Sampling Due (mm/dd/yy)</td>
<td>Acetone</td>
<td>Chloroform</td>
<td>Isopropylbenzene (Cumene)</td>
<td>n-Butylbenzene</td>
<td>n-Propylbenzene</td>
<td>sec-Butylbenzene</td>
<td>1,2,4-Trimethylbenzene</td>
<td>1,3,5-Trimethylbenzene</td>
<td>m,p-Xylenes</td>
<td>o-Xylene</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>NC 2L Standard</td>
<td>6</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.025</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) GW-1</td>
<td>1/3/12</td>
<td><0.025</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td><0.002</td>
<td>NA</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>(T) GW-2</td>
<td>1/3/12</td>
<td><0.025</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.583</td>
<td>NA</td>
<td>0.146</td>
<td></td>
</tr>
<tr>
<td>(T) GW-3</td>
<td>1/3/12</td>
<td><0.025</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td><0.002</td>
<td>NA</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>(T) GW-4</td>
<td>1/3/12</td>
<td><0.025</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.235</td>
<td>NA</td>
<td>0.0195</td>
<td></td>
</tr>
<tr>
<td>GW-1</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>GW-2</td>
<td>4/3/13</td>
<td><0.0050</td>
<td>0.0007</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>GW-3</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>GW-4</td>
<td>4/3/13</td>
<td>0.0082</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>GW-5</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.0031</td>
<td>0.00033</td>
<td>0.0056</td>
<td>0.0026</td>
<td>0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>GW-6</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>TMW-5/GW-7</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>TMW-3/GW-8</td>
<td>4/3/13</td>
<td>0.0031</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>TMW-2/GW-9</td>
<td>4/3/13</td>
<td>0.0043</td>
<td>0.00090</td>
<td>0.0016</td>
<td>0.014</td>
<td>0.002</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>TMW-1/GW-10</td>
<td>4/3/13</td>
<td>0.0040</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>TMW-4/GW-11</td>
<td>4/3/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.001</td>
<td><0.00050</td>
<td><0.00050</td>
<td></td>
</tr>
<tr>
<td>Groundwater Sampling Point</td>
<td>Sampling Date (mm/dd/yy)</td>
<td>Acetone</td>
<td>Chloroform</td>
<td>Isopropylbenzene (Cumene)</td>
<td>n-Butylbenzene</td>
<td>n-Propylbenzene</td>
<td>sec-Butylbenzene</td>
<td>1,2,4-Trimethylbenzene</td>
<td>1,3,5-Trimethylbenzene</td>
<td>m,p-Xylenes</td>
<td>4-Isopropyltoluene</td>
<td>o-Xylene</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>MW-1</td>
<td>10/15/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td>0.0012</td>
<td><0.00050</td>
<td>0.005</td>
<td>0.0012</td>
<td>0.0063</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.0056</td>
<td>0.0017</td>
<td>0.01</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.0036</td>
<td><0.0010</td>
<td>0.0011</td>
<td>0.0018</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.018</td>
<td>0.0037</td>
<td>0.017</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td>MW-2</td>
<td>10/15/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.0011</td>
<td><0.0010</td>
<td><0.0019</td>
<td>0.00052</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00060</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td>MW-3</td>
<td>10/15/13</td>
<td><0.025</td>
<td><0.0025</td>
<td>0.13</td>
<td>0.017</td>
<td>0.27</td>
<td>0.011</td>
<td>1.2</td>
<td>0.26</td>
<td>2.3</td>
<td>0.004</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.025</td>
<td><0.0025</td>
<td>0.17</td>
<td>0.027</td>
<td>0.36</td>
<td>0.019</td>
<td>2.1</td>
<td>0.46</td>
<td>1.8</td>
<td>0.0095</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.025</td>
<td><0.0025</td>
<td>0.47</td>
<td>0.017</td>
<td>0.24</td>
<td>0.018</td>
<td>2.4</td>
<td>0.54</td>
<td>2.4</td>
<td>0.01</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.025</td>
<td><0.0025</td>
<td>0.14</td>
<td>0.017</td>
<td>0.28</td>
<td>0.013</td>
<td>1.7</td>
<td>0.29</td>
<td>1.7</td>
<td>0.0065</td>
<td>0.012</td>
</tr>
<tr>
<td>MW-4</td>
<td>10/15/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td>0.0013</td>
<td><0.0010</td>
<td>0.0034</td>
<td>0.011</td>
<td>0.0024</td>
<td>0.016</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td>MW-5</td>
<td>10/15/13</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td>0.00052</td>
<td><0.00050</td>
<td>0.002</td>
<td>0.00055</td>
<td>0.002</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.0050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0010</td>
<td><0.00050</td>
<td><0.00050</td>
<td><0.0050</td>
</tr>
<tr>
<td>Groundwater Sampling Point</td>
<td>Sampling Date (mm/dd/yy)</td>
<td>1-Methylnaphthalene (SVOC)</td>
<td>2-Methylnaphthalene (SVOC)</td>
<td>Naphthalene (SVOC)</td>
<td>Acenaphthylene (SVOC)</td>
<td>C9-C10 Aromatics (VPH)</td>
<td>C9-C12 Aromatics (VPH)</td>
<td>C11-C18 Aromatics (EPH)</td>
<td>C11-C22 Aromatics (EPH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC 2L Standard</td>
<td>0.001</td>
<td>0.03</td>
<td>0.006</td>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) GW-1</td>
<td>1/3/12</td>
<td><0.0111</td>
<td><0.0111</td>
<td><0.0111</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) GW-2</td>
<td>1/3/12</td>
<td><0.0111</td>
<td>0.0146</td>
<td>0.0218</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) GW-3</td>
<td>1/3/12</td>
<td><0.0111</td>
<td><0.0111</td>
<td><0.0111</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) GW-4</td>
<td>1/3/12</td>
<td><0.0111</td>
<td><0.0111</td>
<td>0.0301</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-1</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-2</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-3</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-4</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-5</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-6</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMW-5/GW-7</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMW-3/GW-8</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMW-2/GW-9</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMW-1/GW-10</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMW-4/GW-11</td>
<td>4/3/13</td>
<td>NA</td>
<td><0.010</td>
<td><0.010</td>
<td><0.010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Analytical Data for Groundwater

<table>
<thead>
<tr>
<th>Groundwater Sampling Point</th>
<th>Sampling Date (mm/dd/yy)</th>
<th>1-Methylnaphthalene (SVOC) [mg/L]</th>
<th>2-Methylnaphthalene (SVOC) [mg/L]</th>
<th>Naphthalene (SVOC) [mg/L]</th>
<th>Acenaphthylene (SVOC) [mg/L]</th>
<th>C9-C10 Aliphatics (VPH) [mg/L]</th>
<th>C9-C12 Aliphatics (VPH) [mg/L]</th>
<th>C9-C10 Aromatics (VPH) [mg/L]</th>
<th>C9-C18 Aliphatics (EPH) [mg/L]</th>
<th>C11-C22 Aromatics (EPH) [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 2L Standard</td>
<td></td>
<td>0.001</td>
<td>0.03</td>
<td>0.006</td>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>MW-1</td>
<td>10/15/13</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.0016 J</td>
<td>0.05 J</td>
<td>0.015 J</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td>0.0044 J</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.05 J</td>
<td>0.22</td>
<td>0.21</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.010</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.05</td>
<td>0.16</td>
<td>0.21</td>
<td><0.10</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td>0.0075 J</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.12</td>
<td>0.38</td>
<td>0.42</td>
<td><0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>MW-2</td>
<td>10/15/13</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td>0.0095 J</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.018 J</td>
<td>0.051</td>
<td>0.012 J</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>MW-3</td>
<td>10/15/13</td>
<td>0.063</td>
<td>0.11</td>
<td>0.44</td>
<td>0.0031 J</td>
<td>1.8</td>
<td>0.51</td>
<td>4</td>
<td>0.14</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td>0.06</td>
<td>0.1</td>
<td>0.41</td>
<td><0.01</td>
<td>1.6</td>
<td>1.9</td>
<td>6.1</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td>0.062</td>
<td>0.42</td>
<td>0.46</td>
<td><0.010</td>
<td>2.2</td>
<td>2.1</td>
<td>6.2</td>
<td>0.053 J</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td>0.039</td>
<td>0.071</td>
<td>0.2</td>
<td><0.010</td>
<td>1.2</td>
<td>5.4</td>
<td>2.9</td>
<td>0.028 J</td>
<td>0.52</td>
</tr>
<tr>
<td>MW-4</td>
<td>10/15/13</td>
<td><0.01</td>
<td><0.01</td>
<td>0.0031 J</td>
<td><0.01</td>
<td><0.050</td>
<td>0.13</td>
<td>0.062</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>9/17/14</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>12/9/14</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td></td>
<td>3/10/15</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>MW-5</td>
<td>10/15/13</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.10</td>
<td><0.10</td>
</tr>
</tbody>
</table>
APPENDIX B

GSI MANN-KENDALL TOOLKIT DOCUMENTATION
<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>MW-1 Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00053 0.0050</td>
</tr>
<tr>
<td>2</td>
<td>0.0014 0.0044</td>
</tr>
<tr>
<td>3</td>
<td>0.0011 0.0050</td>
</tr>
<tr>
<td>4</td>
<td>0.0039 0.0075</td>
</tr>
</tbody>
</table>

Coefficient of Variation: 0.86 0.25
Mann-Kendall Statistic (S): 3 4
Confidence Factor: 83.3% 72.9%
Concentration Trend: No Trend No Trend

Notes:
1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S<0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc. disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com
GSI MANN-KENDALL TOOLKIT
for Constituent Trend Analysis

Evaluation Date: 21-Jan-19
Facility Name: Winter Park Cleaners
Conducted By: ATC Associates of North Carolina, P.C.
Job ID: DC650013
Constituent: MW-3
Concentration Units: mg/L

Sample Point ID:

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Sampling Date</th>
<th>Benzene (mg/L)</th>
<th>Etylbenzene (mg/L)</th>
<th>Naphthalene (mg/L)</th>
<th>Xylenes (mg/L)</th>
<th>Cumene (mg/L)</th>
<th>n-Propylbenzene (mg/L)</th>
<th>1,2,4-TMB (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/15/13</td>
<td>0.18</td>
<td>2.60</td>
<td>0.56</td>
<td>2.30</td>
<td>0.13</td>
<td>0.27</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>9/17/14</td>
<td>0.13</td>
<td>2.70</td>
<td>0.74</td>
<td>1.82</td>
<td>0.17</td>
<td>0.38</td>
<td>2.10</td>
</tr>
<tr>
<td>3</td>
<td>12/9/14</td>
<td>0.24</td>
<td>3.80</td>
<td>0.80</td>
<td>2.40</td>
<td>0.17</td>
<td>0.24</td>
<td>2.40</td>
</tr>
<tr>
<td>4</td>
<td>3/10/15</td>
<td>0.18</td>
<td>2.70</td>
<td>0.43</td>
<td>1.71</td>
<td>0.14</td>
<td>0.28</td>
<td>1.70</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficient of Variation:

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Benzene</th>
<th>Etylbenzene</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>Cumene</th>
<th>n-Propylbenzene</th>
<th>1,2,4-TMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.19</td>
<td>0.27</td>
<td>0.17</td>
<td>0.14</td>
<td>0.18</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Mann-Kendall Statistic (S):

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Benzene</th>
<th>Etylbenzene</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>Cumene</th>
<th>n-Propylbenzene</th>
<th>1,2,4-TMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Concentration Trend:

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Benzene</th>
<th>Etylbenzene</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>Cumene</th>
<th>n-Propylbenzene</th>
<th>1,2,4-TMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Trend</td>
<td>No Trend</td>
<td>Stable</td>
<td>Stable</td>
<td>No Trend</td>
<td>Stable</td>
<td>No Trend</td>
</tr>
</tbody>
</table>

Notes:
1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S<0, and COV ≥ 1 = No Trend; < 90%, S<0, and COV < 1 = Stable.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc. disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com
GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

<table>
<thead>
<tr>
<th>Sampling Event</th>
<th>Sampling Date</th>
<th>MW-3 CONCENTRATION (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/15/13</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>9/17/14</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>12/9/14</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>3/10/15</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>9/17/14</td>
<td>0.46</td>
</tr>
<tr>
<td>6</td>
<td>12/9/14</td>
<td>0.54</td>
</tr>
<tr>
<td>7</td>
<td>3/10/15</td>
<td>0.29</td>
</tr>
<tr>
<td>8</td>
<td>10/15/13</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>9/17/14</td>
<td>0.46</td>
</tr>
<tr>
<td>10</td>
<td>12/9/14</td>
<td>0.54</td>
</tr>
<tr>
<td>11</td>
<td>3/10/15</td>
<td>0.29</td>
</tr>
<tr>
<td>12</td>
<td>10/15/13</td>
<td>0.26</td>
</tr>
<tr>
<td>13</td>
<td>9/17/14</td>
<td>0.46</td>
</tr>
<tr>
<td>14</td>
<td>12/9/14</td>
<td>0.54</td>
</tr>
<tr>
<td>15</td>
<td>3/10/15</td>
<td>0.29</td>
</tr>
<tr>
<td>16</td>
<td>10/15/13</td>
<td>0.26</td>
</tr>
<tr>
<td>17</td>
<td>9/17/14</td>
<td>0.46</td>
</tr>
<tr>
<td>18</td>
<td>12/9/14</td>
<td>0.54</td>
</tr>
<tr>
<td>19</td>
<td>3/10/15</td>
<td>0.29</td>
</tr>
<tr>
<td>20</td>
<td>10/15/13</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Notes:

1. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S<0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc. disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc. www.gsi-net.com
APPENDIX C

LEVEL 1 ECOLOGICAL RISK ASSESSMENT CHECKLISTS
Appendix C
Ecological Risk Assessment – Level 1
Winter Park Cleaners
1437 South College Road
Wilmington, New Hanover County, NC
DSCA Site ID: DC650013

Checklist A

1. Are there navigable water bodies or tributaries to a navigable water body on or within the one-half mile of the site?

 Based upon the United States Geological Survey (USGS), Wilmington Quadrangle Topographic Map and the United States Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI), two tributaries to Hewletts Creek are within a half mile radius of the site. A riverine intermittent streambed with seasonal flooding is located approximately 1,584 feet southwest of the site, and a semi-permanently flooded riverine system is located approximately 1,056 feet northeast of the site. The section of Hewletts Creek downgradient from the site is an estuarine and marine deepwater habitat and flows into the Atlantic Ocean. See the topographic map in Figure 1 and the USFWS NWI map in Figure 2.

2. Are there any water bodies anywhere on or within the one-half mile of the site?

 Based on the USGS map (Figure 1) and the USFWS NWI map (Figure 2), two tributaries that drain in to Hewletts Creek, which drains to the Atlantic Ocean are located within one-half mile of the site. In addition, three fresh water ponds are located northwest, southwest, and east of the site.

3. Are there any wetland areas such as marshes or swamps on or within one-half mile of the site?

 Based on the USFWS Wetland map (Figure 2), within one-half mile of the site there is a riverine intermittent streambed with seasonal flooding located southwest of the site, a semi-permanently flooded riverine located northeast of the site, and three fresh water ponds located northwest, southwest, and east of the site.

4. Are there any sensitive environmental areas on or within one-half mile of the site?

 According to the North Carolina Natural Heritage Database, there are no significant natural heritage areas within one-half mile of the site. ATC also reviewed the USFWS online database, and no critical habitats or significant natural areas were found within one-half mile of the site. However, two tributaries to Hewletts Creek, which ultimately drains in to the Atlantic Ocean are located approximately 1,584 feet southwest and 1,056 feet northeast of the site. These could be considered sensitive environments. Additionally, ATC consulted with the North Carolina State Historic Preservation Office to determine if any archaeological sites or historical sites were located within one-half mile of the site. No archaeological sites were found within one-half mile. No historic places were listed in the National Register of Historic Places within one-half mile of the site, but according to Natural Heritage Program
website the nearby Winter Park School (NH0619), located 1,000 feet east, is eligible for listing.

5. Are there any areas on or within one-half mile of the site owned or used by local tribes?

Based on site observations and the North Carolina Department of Cultural Resources (NCDCR), no tribal artifacts or lands have been identified on or within one-half mile of the site. The Native American Consultation Database maintained by the National Park Service did not indicate any tribal areas are located within a one-half mile radius of the site.

A response from the NCDCR is included in Attachment 4.

6. Are there any habitat, foraging area or refuge by rare, threatened, endangered, candidate and/or proposed species (plants or animals), or any otherwise protected species on or within one-half mile of the site?

According to the North Carolina Natural Heritage Database, there is no habitat, foraging area, or refuge utilized by rare, threatened, endangered, candidate and/or proposed species (plants and animals), or any otherwise protected species on or within one-half mile of the site. This area is heavily developed with commercial properties.

Based on the USFWS online databases, there are no wilderness areas or wildlife refuges within one-half mile of the site.

7. Are there any breeding, roosting or feeding areas by migratory bird species on or within one-half mile of the site?

ATC obtained a list of birds that have been identified in New Hanover County from www.carolinabirdclub.org (see Attachment 1). The list includes several migratory bird species. The National Audubon Society has identified 96 Important Bird Areas (IBAs) in North Carolina, comprising 4.9 million acres (http://nc.audubon.org/conservation/important-bird-areas). IBAs are defined as “places that provide essential habitat for one or more species of birds at some time during their annual cycle of breeding, migrating or wintering”. Four IBAs are located in New Hanover County: Ferry Slip Island, Masonboro Island, North Pelican Island, and Onslow Bay. The presence of migratory bird habitat has been identified at all four IBAs. However, the IBAs are beyond 0.5 miles from the site. The Atlantic Flyway is one of four principal bird migration pathways in the United States, encompassing all of the states on the eastern coast, including North Carolina. Accordingly, it is possible that migratory birds pass over the site and the area within 0.5 miles of the site during their migration, and may roost/feed during their migration.

8. Are there any ecologically, recreationally, or commercially important species on or within one-half mile of the site?

The site is located in an urban environment with mostly commercial, retail and residential properties surrounding the property. It is unlikely that recreational or commercially important species are within the developed areas within one-half mile of the site. However, two tributaries to Hewletts Creek, which ultimately drains in to the Atlantic Ocean, are located...
within one-half mile of the site, and it is possible that ecologically important species may exist within these sensitive environments.

9. Are there any threatened and/or endangered species (plant or animal) on or within one-half mile of the site?

ATC reviewed the USFWS online species list. Several endangered and threatened species were identified within New Hanover County. Examples of endangered and threatened species identified within New Hanover County include the Red-Cockaded Woodpecker, Rough-leaved loosestrife, Golden Sedge, Northern Long-Eared Bat, Loggerhead Sea Turtle, and Magnificent Ramshorn. The USFWS list of endangered species, threatened species, federal species of concern and candidate species in New Hanover County is included in Attachment 2.

ATC also reviewed the North Carolina Heritage Program Wilmington USGS Topographic Quadrangle species list. Species identified include the Mabee’s Salamander, American Alligator, Eastern Diamondback Rattlesnake, and West Indian Manatee. Refer to Attachment 3 for the complete list of species.

The majority of the area within one-half mile of the site consists of developed commercial properties. It is unlikely that the above-referenced species are located on these properties.
Checklist B

1A. Can chemicals associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes. The primary constituents of concern at the site, benzene, ethylbenzene, naphthalene, xylenes, and additional total petroleum hydrocarbons, are leachable to groundwater ranging from low to high rates depending upon the constituent according to the Agency for Toxic Substances and Disease Registry (ATSDR). These constituents were also confirmed to be present in the groundwater at the site.

1B. Are chemicals associated with the site mobile in groundwater?

Yes. The primary constituents of concern at the site, benzene, ethylbenzene, naphthalene, xylenes, and additional total petroleum hydrocarbons, are considered to be mobile in groundwater ranging from low to high rates depending upon the constituent according to the ATSDR. These constituents were also confirmed to be present in the groundwater at the site.

1C. Does groundwater from the site discharge to ecological receptor habitat?

The primary ecological receptor habitats identified in the site vicinity are the two tributaries flowing towards Hewletts Creek within one-half mile of the site. Groundwater does not flow towards these surface water bodies. Also, sampling of the groundwater monitoring well located furthest downgradient, MW-5, showed low concentrations of contaminants below respective Title 15A NCAC 02L .0202 Groundwater Quality Standards (2L Standards). These ecological receptor habitats are not a significant concern as the impacted groundwater does not appear likely to discharge to these ecological receptor habitat.

1. Could chemicals associated with the site reach ecological receptors through groundwater?

The primary ecological receptor habitats identified in the site vicinity are the two tributaries flowing towards Hewletts Creek within one-half mile of the site. Groundwater flows away from these surface water bodies. Also, sampling of the groundwater monitoring well located furthest downgradient, MW-5, showed low concentrations of contaminants below respective 2L standards. Based on these data, there is no potential impact to these areas.

2A. Are chemicals present in surface soils on the site?

No. Chemicals are not present in surface soils on the site. The shallowest soil impacts are identified at 2.5 feet below ground surface.

2B. Can chemicals be leached from or be transported by erosion of surface soils on the site?

Yes. Hydrocarbon constituents can be leached from the soil. However, the area of impacted soil is mostly covered with asphalt and concrete and erosion is unlikely.
2. Could chemicals associated with the site reach ecological receptors through runoff or erosion?

As discussed above, ATC considers the potential for erosion to be low. In addition, since the subject property is covered by commercial development, the potential for ecological receptors to be present is low.

3A. Are chemicals present in surface soil or on the surface of the ground?

No. Chemicals are not present in surface soils on the site. The shallowest soil impacts are identified at 2.5 feet below ground surface.

3B. Are potential ecological receptors on the site?

No. There is no evidence of ecological receptors at the site. Also, the site is mostly covered with asphalt and concrete, so ecological receptors appear unlikely to be present in the area.

3. Could chemicals associated with the site reach ecological receptors through direct contact?

As discussed above, ecological receptors are unlikely to be present at the site. Furthermore, chemicals are not present in surface soils as the shallowest soil impacts are identified at 2.5 feet below ground surface.

4A. Are chemicals on the site volatile?

Yes. Hydrocarbon constituents are considered volatile organic compounds.

4B. Could chemicals on the site be transported in air as dust or particulate matter?

No. The soil impact is located under an area paved with asphalt and concrete. It is unlikely that chemicals on the site can be transported in air or as particulate matter.

4. Could chemicals associated with the site reach ecological receptors through inhalation of volatilized chemicals or adhered chemicals to dust in ambient air or in subsurface burrows?

As discussed above, significant erosion of impacted soils or significant volatilization from impacted soil appears unlikely.

5A. Is Non-Aqueous Phase Liquid (NAPL) present at the site?

No. NAPL has not been encountered at the site.

5B. Is NAPL migrating?

No. NAPL has not been encountered at the site.
5C. Could NAPL discharge occur where ecological receptors are found?

No. NAPL has not been encountered at the site.

5. Could chemicals associated with the site reach ecological receptors through migration of NAPL?

Not applicable as NAPL was not identified at the site.

6A. Are chemicals present in surface and shallow subsurface soils or on the surface of the ground?

Yes. Impacted shallow subsurface soils are present at the site at 2.5 feet below ground surface.

6B. Are chemicals found in soil on the site taken up by plants growing on the site?

Since shallow subsurface soils have been impacted at the site, chemicals could potentially be taken up by the plant root system. However, the property is mostly covered with asphalt, and is currently used as a parking lot. It is unlikely that chemicals will be taken up by the plant root system.

6C. Do potential ecological receptors on or near the site feed on plants (e.g., grasses, shrubs, forbs, trees, etc.) found on the site?

It is possible that migratory birds could be present in the site area. However, migratory birds are considered unlikely to be in the area on a regular basis since the site is located in an active commercial area and near busy roadways.

6D. Do chemicals found on the site bioaccumulate?

Based on published references (ATSDR), xylenes can bioaccumulate to modest levels while benzene, ethylbenzene, and naphthalene do not readily bioaccumulate.

6. Could chemicals associated with the site reach ecological receptors through direct ingestion of soil, plants, animals, or contaminants?

Based on the commercial site environment and the minimal impact or absence of bioaccumulation for the chemicals of concern, it is not anticipated that chemicals associated with the site would reach ecological receptors through direct ingestion of soil, plants, animals, or contaminants. In the case of xylenes, the ATSDR notes that bioaccumulation up the food chain is unlikely.
ATTACHMENT 1

MIGRATORY BIRD SPECIES LIST
Birds of North Carolina: their Distribution and Abundance

Birds of North Carolina - County Listing

No distinction is made between transient and resident records for a county. The majority of the records are from eBird and the Chat. If you would like to submit a record for a species that you have personally sighted in a county not listed for that species, click this link.

Search by: [County List] [County Map]
Search by: [Species] [Species per County]

New Hanover - 361 species

Ducks, Geese, & Swans - 39 species

<table>
<thead>
<tr>
<th>No.</th>
<th>Species Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Black-bellied Whistling-Duck</td>
<td>Dendrocygna autumnalis</td>
</tr>
<tr>
<td>2</td>
<td>Fulvous Whistling-Duck</td>
<td>Dendrocygna bicaudata</td>
</tr>
<tr>
<td>3</td>
<td>Snow Goose</td>
<td>Anser caerulescens</td>
</tr>
<tr>
<td>4</td>
<td>Ross's Goose</td>
<td>Anser rossi</td>
</tr>
<tr>
<td>5</td>
<td>Greater White-fronted Goose</td>
<td>Anser alibrio</td>
</tr>
<tr>
<td>6</td>
<td>Brant</td>
<td>Branta bernicla</td>
</tr>
<tr>
<td>7</td>
<td>Canada Goose</td>
<td>Branta canadensis</td>
</tr>
<tr>
<td>8</td>
<td>Mute Swan</td>
<td>Cygnus olor</td>
</tr>
<tr>
<td>9</td>
<td>Tundra Swan</td>
<td>Cygnus columbianus</td>
</tr>
<tr>
<td>10</td>
<td>Wood Duck</td>
<td>Aix sponsa</td>
</tr>
<tr>
<td>11</td>
<td>Blue-winged Teal</td>
<td>Spatula discors</td>
</tr>
<tr>
<td>12</td>
<td>Cinnamon Teal</td>
<td>Spatula cyanoptera</td>
</tr>
<tr>
<td>13</td>
<td>Northern Shoveler</td>
<td>Spatula clypeata</td>
</tr>
<tr>
<td>14</td>
<td>Gadwall</td>
<td>Mareca strepera</td>
</tr>
<tr>
<td>15</td>
<td>Eared Grebe</td>
<td>Mareca penelope</td>
</tr>
<tr>
<td>16</td>
<td>American Wigeon</td>
<td>Mareca americana</td>
</tr>
<tr>
<td>17</td>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
</tr>
<tr>
<td>18</td>
<td>American Black Duck</td>
<td>Anas rubripes</td>
</tr>
<tr>
<td>19</td>
<td>Mottled Duck</td>
<td>Anas fulvigula</td>
</tr>
<tr>
<td>20</td>
<td>Northern Pintail</td>
<td>Anas acuta</td>
</tr>
<tr>
<td>21</td>
<td>Green-winged Teal</td>
<td>Anas crecca</td>
</tr>
<tr>
<td>22</td>
<td>Canvasback</td>
<td>Aythya valisineria</td>
</tr>
<tr>
<td>23</td>
<td>Redhead</td>
<td>Aythya americana</td>
</tr>
<tr>
<td>24</td>
<td>Ring-necked Duck</td>
<td>Aythya collaris</td>
</tr>
<tr>
<td>25</td>
<td>Greater Scaup</td>
<td>Aythya marila</td>
</tr>
<tr>
<td>26</td>
<td>Lesser Scaup</td>
<td>Aythya affinis</td>
</tr>
<tr>
<td>27</td>
<td>King Eider</td>
<td>Somateria spectabilis</td>
</tr>
<tr>
<td>28</td>
<td>Common Eider</td>
<td>Somateria mollissima</td>
</tr>
<tr>
<td>29</td>
<td>Hartegei Duck</td>
<td>Histrionicus histrionicus</td>
</tr>
<tr>
<td>30</td>
<td>Surf Scoter</td>
<td>Melanitta perspicillata</td>
</tr>
<tr>
<td>31</td>
<td>White-winged Scoter</td>
<td>Melanitta fusca</td>
</tr>
<tr>
<td>32</td>
<td>Black Scoter</td>
<td>Melanitta americana</td>
</tr>
<tr>
<td>33</td>
<td>Long-tailed Duck</td>
<td>Clangula hyemalis</td>
</tr>
<tr>
<td>34</td>
<td>Bufflehead</td>
<td>Bucephala albeola</td>
</tr>
<tr>
<td>35</td>
<td>Common Goldeneye</td>
<td>Bucephala clangula</td>
</tr>
<tr>
<td>36</td>
<td>Hooded Merganser</td>
<td>Lophodytes cucullatus</td>
</tr>
<tr>
<td>37</td>
<td>Common Merganser</td>
<td>Mergus merganser</td>
</tr>
<tr>
<td>38</td>
<td>Red-breasted Merganser</td>
<td>Mergus serrator</td>
</tr>
<tr>
<td>39</td>
<td>Red-eyed Duck</td>
<td>Oxyura japonensis</td>
</tr>
</tbody>
</table>

New World Quails - 1 species

Grouse and Allies - 1 species

Grebes - 5 species

40 Northern Bobwhite
41 Wild Turkey
42 Pied-billed Grebe
43 Horned Grebe
44	Red-necked Grebe	Podiceps grisegena
45	Eared Grebe	Podiceps nigricollis
46	Western Grebe	Aechmophorus occidentalis
47	Rock Pigeon	Columba livia
48	Eurasian Collared-Dove	Streptopelia decaocto
49	Common Ground-Dove	Columbina passerina
50	White-winged Dove	Zenaida asiatica
51	Mourning Dove	Zenaida macroura
52	Yellow-billed Cuckoo	Coccyzus americanus
53	Common Nighthawk	Chordeiles minor
54	Chuck-will’s-widow	Antrostomus carolinensis
55	Eastern Whip-poor-will	Antrostomus vociferus
56	Chimney Swift	Chaetura pelagica
57	Ruby-throated Hummingbird	Archilochus colubris
58	Black-chinned Hummingbird	Archilochus alexandri
59	Rufous Hummingbird	Selasphorus rufus
60	Black Rail	Laterallus jamaicensis
61	Cinnamon Rail	Rallus crepitans
62	King Rail	Rallus elegans
63	Virginia Rail	Rallus limicola
64	Sora	Porzana carolina
65	Purple Gallinule	Porphyrion martinicus
66	Common Gallinule	Gallinula galeata
67	American Coot	Fulica americana
68	Sandhill Crane	Antigone canadensis
69	Black-necked Stilt	Himantopus mexicanus
70	American Avocet	Recurvirostra americana
71	American Oystercatcher	Haematopus palliatus
72	Black-bellied Plover	Pluvialis squatarola
73	American Golden-Plover	Pluvialis dominica
74	Snowy Plover	Charadrius nivosus
75	Wilson’s Plover	Charadrius wilsonia
76	Semipalmated Plover	Charadrius semipalmatus
77	Piping Plover	Charadrius melodus
78	Kittiwake	Charadrius vociferus
79	Upland Sandpiper	Bartramia longicauda
80	Whimbrel	Numenius phaeopus
81	Long-billed Curlew	Numenius americanus
82	Hudsonian Godwit	Limosa haemastica
83	Marbled Godwit	Limosa fedoa
84	Ruddy Turnstone	Arenaria interpres
85	Red Knot	Calidris canutus
86	Ruff	Calidris pugnax
87	Sharp-tailed Sandpiper	Calidris acuminata
88	Stilt Sandpiper	Calidris himantopus
89	Curlew Sandpiper	Calidris ferruginea
90	Sanderling	Calidris alba
91	Dunlin	Calidris alpina
92	Purple Sandpiper	Calidris maritima
93	Baird’s Sandpiper	Calidris bairdii
94	Least Sandpiper	Calidris minutilla
95	White-rumped Sandpiper	Calidris fuscicollis
96	Buff-breasted Sandpiper	Calidris subrugicollis
97	Pectoral Sandpiper	Calidris melanotos
98	Semipalmated Sandpiper	Calidris pusilla
99	Western Sandpiper	Calidris mauri
100	Short-billed Dowitcher	Limnodromus griseus
101	Long-billed Dowitcher	Limnodromus scolopacius

http://ncbirds.carolinabirdclub.org/county_list.php?search_type=County+List
102	American Woodcock	Scopelopax minor
103	Wilson's Snipe	Gallinago delicata
104	Spotted Sandpiper	Actitis macularius
105	Solitary Sandpiper	Tringa solitaria
106	Lesser Yellowlegs	Tringa flavipes
107	Willet	Tringa semipalmata
108	Greater Yellowlegs	Tringa melanoleuca
109	Wilson's Phalarope	Phalaropus tricolor
110	Red-necked Phalarope	Phalaropus lobatus
111	Red Phalarope	Phalaropus fulicarius

Skuas & Jaegers - 3 species

112	South Polar Skua	Stercorarius maccormicki
113	Pomarine Jaeger	Stercorarius pomarinus
114	Parasitic Jaeger	Stercorarius parasiticus

Auks - 4 species

115	Dovekie	Alle alle
116	Thick-billed Murre	Uria lomvia
117	Razorbill	Alca torda
118	Black Guillemot	Cepphus grylle

Gulls & Terns - 26 species

119	Black-legged Kittiwake	Rissa tridactyla
120	Sabine's Gull	Xema sabini
121	Bonaparte's Gull	Chroicocephalus philadelphia
122	Black-headed Gull	Chroicocephalus ridibundus
123	Little Gull	Hydrocoloeus minutus
124	Laughing Gull	Leucophaeus atricilla
125	Franklin's Gull	Leucophaeus pipixcan
126	Ring-billed Gull	Larus delawarensis
127	Herring Gull	Larus argentatus
128	Iceland Gull	Larus glaucaoides
129	Lesser Black-backed Gull	Larus fuscus
130	Glaucous Gull	Larus hyperboreus
131	Great Black-backed Gull	Larus marinus
132	Sooty Tern	Onychoprion fuscatus
133	Bridled Tern	Onychoprion anaethetus
134	Least Tern	Sterna antillarum
135	Gull-billed Tern	Gelochelidon nilotica
136	Caspian Tern	Hydroprogne caspia
137	Black Tern	Chlidonias niger
138	Roseate Tern	Sterna dougalli
139	Common Tern	Sterna hirundo
140	Arctic Tern	Sterna paradisaea
141	Forster's Tern	Sterna forsteri
142	Royal Tern	Thalasseus maximus
143	Sandwich Tern	Thalasseus sandvicensis
144	Black Skimmer	Rynchops nigra

Tropicbirds - 1 species

| 145 | Red-billed Tropicbird | Phaethon aethereus |

Loons - 3 species

146	Red-throated Loon	Gavia stellata
147	Pacific Loon	Gavia pacifica
148	Common Loon	Gavia immer

Storm-Petrels - 3 species

149	Wilson's Storm-Petrel	Oceanites oceanicus
150	White-faced Storm-Petrel	Pelagodroma marina
151	Leach's Storm-Petrel	Oceanodroma leucorhoa

Petrels & Shearwaters - 6 species

152	Northern Fulmar	Fulmarus glacialis
153	Trindade Petrel	Pterodroma aminjoniana
154	Cory's Shearwater	Calonectris diomedea
155	Sooty Shearwater	Ardenna grisea
156	Great Shearwater	Ardenna gravis
157	Audubon's Shearwater	Puffinus lherminieri

Storks - 1 species

| 158 | Wood Stork | Mycteria americana |

Frigatebirds - 1 species

| 159 | Magnificent Frigatebird | Fregata magnificens |
Boobies & Gannets - 3 species

160 Masked Booby Sula dactylatra
161 Brown Booby Sula leucogaster
162 Northern Gannet Morus bassanus

Cormorants - 2 species

163 Double-crested Cormorant Phalacrocorax auritus
164 Great Cormorant Phalacrocorax carbo

Darters - 1 species

165 Anhinga Anhinga anhinga

Pelicans - 2 species

166 American White Pelican Pelecanus erythrorhynchos
167 Brown Pelican Pelecanus occidentalis

Bitterns, Herons, & Allies - 12 species

168 American Bittern Botaurus lentiginosus
169 Least Bittern Ixobrychus exilis
170 Great Blue Heron Ardea herodias
171 Great Egret Ardea alba
172 Snowy Egret Egretta thula
173 Little Blue Heron Egretta caerulea
174 Tricolored Heron Egretta tricolor
175 Reddish Egret Egretta rufescens
176 Cattle Egret Bubulcus ibis
177 Green Heron Butorides virescens
178 Black-crowned Night-Heron Nycticorax nycticorax
179 Yellow-crowned Night-Heron Nyctanassa violacea

Ibises & Spoonbills - 3 species

180 White Ibis Eudocimus albus
181 Glossy Ibis Plegadis falcinellus
182 Roseate Spoonbill Platalea ajaja

New World Vultures - 2 species

183 Black Vulture Coragyps atratus
184 Turkey Vulture Cathartes aura

Osprey - 1 species

185 Osprey Pandion haliaetus

Kites, Eagles, & Hawks - 11 species

186 White-tailed Kite Elanus leucurus
187 Swallow-tailed Kite Elanoides forficatus
188 Northern Harrier Circus hudsonius
189 Sharp-shinned Hawk Accipiter striatus
190 Cooper's Hawk Accipiter cooperi
191 Bald Eagle Haliaeetus leucocephalus
192 Mississippi Kite Ictinia mississippiensis
193 Red-shouldered Hawk Buteo lineatus
194 Broad-winged Hawk Buteo platypterus
195 Swainson's Hawk Buteo swainsoni
196 Red-tailed Hawk Buteo jamaicensis

Barn-Owls - 1 species

197 Barn Owl Tyto alba

Owls - 8 species

198 Eastern Screech-Owl Megascops asio
199 Great Horned Owl Bubo virginianus
200 Snowy Owl Bubo scandiacus
201 Barred Owl Athene cunicularia
202 Burrowing Owl Strix varia
203 Long-eared Owl Asio otus
204 Short-eared Owl Asio flammeus

Kingfishers - 1 species

205 Northern Saw-whet Owl Aegolius acadicus

Woodpeckers - 9 species

206 Belted Kingfisher Megaceryle alcyon
207 Red-headed Woodpecker Melanerpes erythrocephalus
208 Red-bellied Woodpecker Melanerpes carolinus
209 Yellow-bellied Sapsucker Sphyrapicus varius
210 Downy Woodpecker Dryobates pubescens
211 Red-cockaded Woodpecker Dryobates borealis
212 Hairy Woodpecker Dryobates villosus
213 Northern Flicker Colaptes auratus
214 Pileated Woodpecker Dryocopus pileatus
215 Ivory-billed Woodpecker Campephilus principalis

Falcons - 3 species

216 American Kestrel Falco sparverius
217 Merlin Falco columbarius
Tyrant Flycatchers - 12 species

218	Peregrine Falcon	Falco peregrinus
219	Ash-throated Flycatcher	Myiarchus cinerascens
220	Great Crested Flycatcher	Myiarchus crinitus
221	Western Kingbird	Tyrannus verticalis
222	Eastern Kingbird	Tyrannus tyrannus
223	Gray Kingbird	Tyrannus dominicensis
224	Scissor-tailed Flycatcher	Tyrannus forficatus
225	Olive-sided Flycatcher	Contopus cooperi
226	Eastern Wood-Pewee	Contopus virens
227	Yellow-bellied Flycatcher	Empidonax flaviventer
228	Acadian Flycatcher	Empidonax virescens
229	Least Flycatcher	Empidonax minimus
230	Eastern Phoebe	Sayornis phoebe

Shrikes - 1 species

| 231 | Loggerhead Shrike | Lanius ludovicanus |

Vireos - 7 species

232	White-eyed Vireo	Vireo griseus
233	Bell's Vireo	Vireo bellii
234	Yellow-throated Vireo	Vireo flavifrons
235	Blue-headed Vireo	Vireo solitarius
236	Philadelphia Vireo	Vireo philadelphicus
237	Red-eyed Vireo	Vireo olivaceous
238	Black-whiskered Vireo	Vireo atrilobatus

Jays, Crows, & Ravens - 3 species

239	Blue Jay	Cyanocitta cristata
240	American Crow	Corvus brachyrhynchos
241	Fish Crow	Corvus caurinus

Swallows - 7 species

242	Purple Martin	Progne subis
243	Tree Swallow	Tachycineta bicolor
244	Northern Rough-winged Swallow	Stelgidopteryx serripennis
245	Bank Swallow	Riparia riparia
246	Cliff Swallow	Petrochelidon pyrrhonota
247	Cave Swallow	Petrochelidon fulva
248	Barn Swallow	Hirundo rustica

Chickadees & Titmice - 2 species

| 249 | Carolina Chickadee | Poecile carolinensis |
| 250 | Tufted Titmouse | Baeolophus bicolor |

Nuthatches - 3 species

251	Red-breasted Nuthatch	Sitta canadensis
252	White-breasted Nuthatch	Sitta carolinensis
253	Brown-headed Nuthatch	Sitta pusilla

Treecreepers - 1 species

| 254 | Brown Creeper | Certhia americana |

Wrens - 5 species

255	House Wren	Troglodytes aedon
256	Winter Wren	Troglodytes hiemalis
257	Sage Wren	Cistothorus platensis
258	Marsh Wren	Cistothorus palustris
259	Carolina Wren	Thryothorus ludovicianus

Gnatcatchers - 1 species

| 260 | Blue-gray Gnatcatcher | Polioptila caerulea |

Kinglets - 2 species

| 261 | Golden-crowned Kinglet | Regulus satrapa |
| 262 | Ruby-crowned Kinglet | Regulus calendula |

Thrushes - 7 species

263	Eastern Bluebird	Sialia sialis
264	Veery	Catharus fuscatus
265	Gray-cheeked Thrush	Catharus minimus
266	Swainson's Thrush	Catharus ustulatus
267	Hermit Thrush	Catharus guttatus
268	Wood Thrush	Hylocichla mustelina
269	American Robin	Turdus migratorius

Mockingbirds & Thrashers - 3 species

270	Gray Catbird	Dumetella carolinensis
271	Brown Thrasher	Toxostoma rufum
272	Northern Mockingbird	Mimus polyglottos

Starlings - 1 species

| 273 | European Starling | Sturnus vulgaris |

Waxwings - 1 species

| 274 | Cedar Waxwing | Bombycilla cedrorum |

Old World Sparrows - 1 species

| 275 | House Sparrow | Passer domesticus |
Wagtails & Pipits - 1 species
 276 **American Pipit** Anthus rubescens
Cardueline Finches & Allies - 6 species
 277 **Evening Grosbeak** Coccothraustes vespertinus
 278 **House Finch** Haemorhous mexicanus
 279 **Purple Finch** Haemorhous purpureus
 280 **Red Crossbill** Loxia curvirostra
 281 **Pine Siskin** Spinus pinus
 282 **American Goldfinch** Spinus tristis
Longspurs & Allies - 3 species
 283 **Lapland Longspur** Calcarius lapponicus
 284 **Chestnut-collared Longspur** Calcarius ornatus
 285 **Snow Bunting** Plectrophenax nivalis
New World Sparrows & Allies - 20 species
 286 **Eastern Towhee** Pipilo erythrophthalmus
 287 **Bachman’s Sparrow** P. bachmani
 288 **Chipping Sparrow** Spizella passerina
 289 **Clay-colored Sparrow** Spizella pallida
 290 **Field Sparrow** Spizella pusilla
 291 **Vesper Sparrow** Poecetes gramineus
 292 **Lark Sparrow** Chondestes grammacus
 293 **Savannah Sparrow** Passerculus sandwichensis
 294 **Grasshopper Sparrow** Ammodramus savannarum
 295 **Henslow’s Sparrow** Centronyx henslowii
 296 **Seaside Sparrow** Ammospiza maritima
 297 **Nelson’s Sparrow** Ammospiza nelsoni
 298 **Saltmarsh Sparrow** Ammospiza caudacuta
 299 **Fox Sparrow** Passerella iliaca
 300 **Song Sparrow** Melospiza melodia
 301 **Lincoln’s Sparrow** Melospiza lincolnii
 302 **Swamp Sparrow** Melospiza georgiana
 303 **White-throated Sparrow** Zonotrichia albicollis
 304 **White-crowned Sparrow** Zonotrichia leucophrys
 305 **Dark-eyed Junco** Junco hyemalis
Yellow-breasted Chat - 1 species
 306 **Yellow-breasted Chat** Icteria virens
Blackbirds & Orioles - 12 species
 307 **Yellow-headed Blackbird** Xanthocephalus xanthocephalus
 308 **Bobolink** Dolichonyx oryzivorus
 309 **Eastern Meadowlark** Sturnella magna
 310 **Orchard Oriole** Icterus spurius
 311 **Bullock’s Oriole** Icterus bullockii
 312 **Baltimore Oriole** Icterus galbula
 313 **Red-winged Blackbird** Agelaius phoeniceus
 314 **Shiny Cowbird** Molothrus bonariensis
 315 **Brown-headed Cowbird** Molothrus ater
 316 **Rusty Blackbird** Euphagus carolinus
 317 **Common Grackle** Quiscalus quiscula
 318 **Boat-tailed Grackle** Quiscalus major
Wood-Warblers - 34 species
 319 **Ovenbird** Seiurus aurocapilla
 320 **Worm-eating Warbler** Helmitheros vermivorum
 321 **Louisiana Waterthrush** Parkesia motacilla
 322 **Northern Waterthrush** Parkesia noveboracensis
 323 **Gold-winged Warbler** Vermivora chrysoptera
 324 **Blue-winged Warbler** Vermivora cyanoptera
 325 **Black-and-white Warbler** Mniotilta varia
 326 **Prothonotary Warbler** Protonotaria citrea
 327 **Swainson’s Warbler** Limothlypis swainsonii
 328 **Tennessee Warbler** Oporornis agilis
 329 **Orange-crowned Warbler** Oporornis citralis
 330 **Nashville Warbler** Oporornis ruficapilla
 331 **Connecticut Warbler** Kentucky philadelphia
 332 **Mourning Warbler** Geothlypis philadelphia
 333 **Common Yellowthroat** Geothlypis trichas
334	Hooded Warbler	Setophaga citrina
335	American Redstart	Setophaga ruticilla
336	Cape May Warbler	Setophaga tigrina
337	Northern Parula	Setophaga americana
338	Magnolia Warbler	Setophaga magnolia
339	Bay-breasted Warbler	Setophaga castanea
340	Blackburnian Warbler	Setophaga fusca
341	Yellow Warbler	Setophaga petechia
342	Chestnut-sided Warbler	Setophaga pensylvanica
343	Black-throated Blue Warbler	Setophaga caerulescens
344	Palm Warbler	Setophaga palmarum
345	Pine Warbler	Setophaga pinus
346	Yellow-rumped Warbler	Setophaga coronata
347	Yellow-throated Warbler	Setophaga dominica
348	Prairie Warbler	Setophaga discolor
349	Black-throated Gray Warbler	Setophaga nigrescens
350	Black-throated Green Warbler	Setophaga virens
351	Canada Warbler	Cardellina canadensis
352	Wilson's Warbler	Cardellina pusilla
353	Summer Tanager	Piranga rubra
354	Scarlet Tanager	Piranga olivacea
355	Western Tanager	Piranga ludoviciana
356	Northern Cardinal	Cardinalis cardinalis
357	Rose-breasted Grosbeak	Pheucticus ludovicianus
358	Blue Grosbeak	Passerina caerulea
359	Indigo Bunting	Passerina cyanea
360	Painted Bunting	Passerina ciris
361	Dickcissel	Spiza americana

Cardinals, Grosbeaks, & Allies - 9 species
ATTACHMENT 2

USFWS ENDANGERED SPECIES, THREATENED SPECIES, FEDERAL SPECIES OF
CONCERN AND CANDIDATE SPECIES LIST
Species By County Report

The following report contains Species that are known to or are believed to occur in this county. Species with range unrefined past the state level are now excluded from this report. If you are looking for the Section 7 range (for Section 7 Consultations), please visit the IPaC application.

County: New Hanover, North Carolina

Need to contact a FWS field office about a species? Follow this link to find your local FWS Office.

<table>
<thead>
<tr>
<th>Group</th>
<th>Name</th>
<th>Population</th>
<th>Status</th>
<th>Lead Office</th>
<th>Recovery Plan</th>
<th>Recovery Plan Action Status</th>
<th>Recovery Plan Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>Red-cockaded woodpecker (Picoides borealis)</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>Mississippi Ecological Services Field Office</td>
<td>Red-cockaded Woodpecker Recovery Plan, Second Revision</td>
<td>Implementation Progress</td>
<td>Final Revision 2</td>
</tr>
<tr>
<td>Birds</td>
<td>Piping Plover (Charadrius melodus)</td>
<td>[Atlantic Coast and Northern Great Plains populations] - Wherever found, except those areas where listed as endangered.</td>
<td>Threatened</td>
<td>Office of the Regional Director</td>
<td>Piping Plover Atlantic Coast Population Revised Recovery Plan</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td>Birds</td>
<td>Piping Plover (Charadrius melodus)</td>
<td>[Atlantic Coast and Northern Great Plains populations] - Wherever found, except those areas where listed as endangered.</td>
<td>Threatened</td>
<td>Office of the Regional Director</td>
<td>Volume I: Draft Revised Recovery Plan for the Northern Great Plains Piping Plover (Charadrius melodus)</td>
<td>Recovery efforts in progress, but no implementation information yet to display.</td>
<td>Draft Revision 1</td>
</tr>
<tr>
<td>Group</td>
<td>Name</td>
<td>Population</td>
<td>Status</td>
<td>Lead Office</td>
<td>Recovery Plan Action Status</td>
<td>Recovery Plan Stage</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>Red knot (Calidris canutus rufa)</td>
<td>Wherever found</td>
<td>Threatened</td>
<td>New Jersey Ecological Services Field Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowering Plants</td>
<td>Cooley's meadowrue (Thalictrum cooleyi)</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>Raleigh Ecological Services Field Office</td>
<td>Cooley's Meadowrue</td>
<td>Implementation Progress</td>
<td>Final</td>
</tr>
<tr>
<td>Flowering Plants</td>
<td>Rough-leaved loosestrife (Lysimachia asperulaefolia)</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>Raleigh Ecological Services Field Office</td>
<td>Rough-leaved Loosestrife</td>
<td>Implementation Progress</td>
<td>Final</td>
</tr>
<tr>
<td>Flowering Plants</td>
<td>Seabeach amaranth (Amaranthus pumilus)</td>
<td>Wherever found</td>
<td>Threatened</td>
<td>Raleigh Ecological Services Field Office</td>
<td>Seabeach Amaranth</td>
<td>Implementation Progress</td>
<td>Final</td>
</tr>
<tr>
<td>Flowering Plants</td>
<td>Golden sedge (Carex lutea)</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>Raleigh Ecological Services Field Office</td>
<td>Final Recovery Plan for the Golden Sedge (Carex Lutea)</td>
<td>Implementation Progress</td>
<td>Final</td>
</tr>
<tr>
<td>Mammals</td>
<td>West Indian Manatee (Trichechus manatus)</td>
<td>Wherever found</td>
<td>Threatened</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan Puerto Rican Population of the West Indian *(Antillean) Manatee</td>
<td>Implementation Progress</td>
<td>Final</td>
</tr>
<tr>
<td>Mammals</td>
<td>West Indian Manatee (Trichechus manatus)</td>
<td>Wherever found</td>
<td>Threatened</td>
<td>North Florida Ecological Services Field Office</td>
<td>Florida Manatee Recovery Plan, Third Revision</td>
<td>Implementation Progress</td>
<td>Final Revision 3</td>
</tr>
<tr>
<td>Group</td>
<td>Name</td>
<td>Population</td>
<td>Status</td>
<td>Lead Office</td>
<td>Recovery Plan Action Status</td>
<td>Recovery Plan Stage</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>Northern Long-Eared Bat</td>
<td>Wherever found</td>
<td>Threatened</td>
<td>Minnesota-Wisconsin Ecological Services Field Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Myotis septentrionalis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>American alligator</td>
<td>Wherever found</td>
<td>Similarity of Appearance</td>
<td>Office of the Regional Director</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Alligator mississippiensis)</td>
<td></td>
<td>(Threatened)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>Hawksbill sea turtle</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for U.S. Pacific Populations of the Hawksbill Turtle</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td></td>
<td>(Eretmochelys imbricata)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>Hawksbill sea turtle</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for the Hawksbill Turtle in the U.S., Caribbean, Atlantic and Gulf of Mexico</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td></td>
<td>(Eretmochelys imbricata)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>Leatherback sea turtle</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for U.S. Pacific Populations of the Leatherback Turtle</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td></td>
<td>(Dermochelys coriacea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>Leatherback sea turtle</td>
<td>Wherever found</td>
<td>Endangered</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for Leatherback Turtles in the U.S. Caribbean, Atlantic, and Gulf of Mexico</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td></td>
<td>(Dermochelys coriacea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Name</td>
<td>Population</td>
<td>Status</td>
<td>Lead Office</td>
<td>Recovery Plan</td>
<td>Recovery Plan Action Status</td>
<td>Recovery Plan Stage</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Reptiles</td>
<td>Green sea turtle (Chelonia mydas)</td>
<td>North Atlantic DPS</td>
<td>Threatened</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for U.S. Population of Atlantic Green Turtle</td>
<td>Implementation Progress</td>
<td>Final Revision 1</td>
</tr>
<tr>
<td>Reptiles</td>
<td>Loggerhead sea turtle (Caretta caretta)</td>
<td>Northwest Atlantic Ocean DPS</td>
<td>Threatened</td>
<td>North Florida Ecological Services Field Office</td>
<td>Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta); Second Revision</td>
<td>Implementation Progress</td>
<td>Final Revision 2</td>
</tr>
<tr>
<td>Snails</td>
<td>Magnificent ramshorn (Planorbella magnifica)</td>
<td>Wherever found</td>
<td>Candidate</td>
<td>Raleigh Ecological Services Field Office</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Natural Heritage Program
NATURAL AND CULTURAL RESOURCE

HOME

Species/Community Search

Updated on October 8, 2018 with 2018-10 data set.

Search Parameters: Topo Map like 'Wilmington'
(Searched on Mon Jan 21 2019)

Download Results (https://www.google.com/fusiontables/exporttable?query=SELECT TAXONOMIC_GROUP, SCIENTIFIC_NAME, COMMON_NAME, STATE_STATUS, FEDERAL_STATUS, STATE_RANK, GLOBAL_RANK, HABITAT_COMMENT, TOPO_MAP, TOPO_MAP_STATUS FROM 1wtZV_ycWxreFFO6i2qUq7IlfcPG6x0MI4XaNB8 WHERE TOPO_MAP CONTAINS IGNORING CASE 'Wilmington' ORDER BY SCIENTIFIC_NAME&o=csv)

Show 100 entries per page

Filter search results:

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>NC Status</th>
<th>Federal Status</th>
<th>State Rank</th>
<th>Global Rank</th>
<th>Topo Map</th>
<th>Topo Map Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater Fish</td>
<td>Acipenser</td>
<td>Shortnose Sturgeon</td>
<td>E</td>
<td>E</td>
<td>S1</td>
<td>G3</td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>brevirostrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater Fish</td>
<td>Acipenser</td>
<td>Atlantic Sturgeon</td>
<td>E</td>
<td>E</td>
<td>S2</td>
<td>G3T3</td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>oxyrinchus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oxyrinchus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Alligator</td>
<td>American Alligator</td>
<td>T</td>
<td>T(S/A)</td>
<td>S3</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>mississippiensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibian</td>
<td>Ambystoma</td>
<td>Mabee's Salamander</td>
<td>T</td>
<td></td>
<td>S2?</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
</tr>
<tr>
<td></td>
<td>mabeei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donate to Hurricane Recovery
<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>NC Status</th>
<th>Federal Status</th>
<th>State Rank</th>
<th>Global Rank</th>
<th>Topo Map</th>
<th>Topo Map Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibian</td>
<td>Anaxyrus quercicus</td>
<td>Oak Toad</td>
<td>SR</td>
<td>S2</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Freshwater Bivalve</td>
<td>Anodonta couperiana</td>
<td>Barrel Floater</td>
<td>E</td>
<td>S1</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Aristida condensata</td>
<td>Big Threeawn Grass</td>
<td>T</td>
<td>S2</td>
<td>G4?</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Arnoglossum ovatum var. lanceolatum</td>
<td>Savannah Indian-plantain</td>
<td>E</td>
<td>S2</td>
<td>G4G5TNR</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Asclepias pedicellata</td>
<td>Savanna Milkweed</td>
<td>SC-V</td>
<td>S3</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Baccharis glomeruliflora</td>
<td>Silverling</td>
<td>SC-H</td>
<td>S1</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Boltonia asteroids var. glastifolia</td>
<td>White Doll's-daisy</td>
<td>SR-O</td>
<td>S2</td>
<td>G5TNR</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Brackish Marsh (Smooth Cordgrass Subtype)</td>
<td></td>
<td></td>
<td>S1</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Carex decomposita</td>
<td>Cypress Knee Sedge</td>
<td>SC-V</td>
<td>S2</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Mammal</td>
<td>Corynorhinus rafinesquii macrotis</td>
<td>Eastern Big-eared Bat</td>
<td>SC</td>
<td>S3</td>
<td>G3G4T3</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Crocanthemum carolinianum</td>
<td>Carolina Sunrose</td>
<td>E</td>
<td>S1</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Crotalus adamanteus</td>
<td>Eastern Diamondback Rattlesnake</td>
<td>E</td>
<td>S1</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Cyperus lecontei</td>
<td>Leconte's Flatsedge</td>
<td>T</td>
<td>S2</td>
<td>G4?</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Deirochelys reticularia (syn. Deirochelys reticularia)</td>
<td>Eastern Chicken Turtle</td>
<td>SC</td>
<td>S3</td>
<td>G5T5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
</tbody>
</table>

Donate to Hurricane Recovery
<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>NC Status</th>
<th>Federal Status</th>
<th>State Rank</th>
<th>Global Rank</th>
<th>Topo Map</th>
<th>Topo Map Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular Plant</td>
<td>Dichanthelium cryptanthum (syn. Dichanthelium sp. 9)</td>
<td>Hidden-flowered Witchgrass</td>
<td>SR-T</td>
<td>S2</td>
<td>G3G4Q</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Dionaea muscipula</td>
<td>Venus Flytrap</td>
<td>SC-V</td>
<td>S2</td>
<td>G2</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Eleocharis vivipara</td>
<td>Viviparous Spikerush</td>
<td>E</td>
<td>S1</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Freshwater Fish</td>
<td>Enneacanthus chaetodon</td>
<td>Blackbanded Sunfish</td>
<td>SR</td>
<td>S3</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Freshwater Fish</td>
<td>Enneacanthus obesus</td>
<td>Banded Sunfish</td>
<td>SR</td>
<td>S3</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Butterfly</td>
<td>Erynnis martialis</td>
<td>Mottled Duskywing</td>
<td>SR</td>
<td>S2</td>
<td>G3</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Butterfly</td>
<td>Euphyes dukesi</td>
<td>Dukes' Skipper</td>
<td>SR</td>
<td>S1S2</td>
<td>G3</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Farancia erytrogramma</td>
<td>Rainbow Snake</td>
<td>SR</td>
<td>S3</td>
<td>G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Freshwater or Terrestrial Gastropod</td>
<td>Helisoma eucosium</td>
<td>Greenfield Rams-horn</td>
<td>E</td>
<td>S1</td>
<td>G1Q</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Freshwater Fish</td>
<td>Heterandria formosa</td>
<td>Least Killifish</td>
<td>SC</td>
<td>S2</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Heterodon simus</td>
<td>Southern Hognose Snake</td>
<td>T</td>
<td>S2</td>
<td>G2</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>Himantopus mexicanus</td>
<td>Black-necked Stilt</td>
<td>SR</td>
<td>S1B</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Iris prismatica</td>
<td>Slender Blue Iris</td>
<td>SR-T</td>
<td>S1S2</td>
<td>G4G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Lachnocalon minus</td>
<td>Brown Bogbutton</td>
<td>T</td>
<td>S2</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Mammal</td>
<td>Lasiurus intermedius floridanus</td>
<td>Florida Yellow Bat</td>
<td>SC</td>
<td>S1</td>
<td>G5T4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Taxonomic Group</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>NC Status</td>
<td>Federal Status</td>
<td>State Rank</td>
<td>Global Rank</td>
<td>Topo Map</td>
<td>Topo Map Status</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Lilaeopsis carolinensis</td>
<td>Carolina Grasswort</td>
<td>SR-O</td>
<td>S2</td>
<td>G3G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Liodytes rigida</td>
<td>Glossy Crayfish Snake</td>
<td>SR</td>
<td>S2S3</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Litsea aestivalis</td>
<td>Pondspice</td>
<td>SC-V</td>
<td>S2S3</td>
<td>G3?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Ludwigia lanceolata</td>
<td>Lanceleaf Seedbox</td>
<td>E</td>
<td>S1</td>
<td>G3</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Ludwigia suffruticosa</td>
<td>Shrubby Seedbox</td>
<td>T</td>
<td>S2</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Crustacean</td>
<td>Lynceus graciliornis</td>
<td>Graceful Clam Shrimp</td>
<td>SC</td>
<td>S2</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Malaclemys terrapin</td>
<td>Diamondback Terrapin</td>
<td>SC</td>
<td>S3</td>
<td>G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Masticophis flagellum</td>
<td>Coachwhip</td>
<td>SR</td>
<td>S3</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Micrurus fulvius fulvius</td>
<td>Eastern Corpsnake</td>
<td>E</td>
<td>S1</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Mammal</td>
<td>Myotis septentrionalis</td>
<td>Northern Long-eared Bat</td>
<td>T</td>
<td>T-4(d)</td>
<td>S2</td>
<td>G1G2</td>
<td>Wilmington</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Oenothera riparia</td>
<td>Riverbank Evening-primrose</td>
<td>SR-L</td>
<td>S2S3</td>
<td>G2G3</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Ophisaurus mimicus</td>
<td>Mimic Glass Lizard</td>
<td>SC</td>
<td>S1</td>
<td>G3</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>Passerina ciris</td>
<td>Painted Bunting</td>
<td>SC</td>
<td>S2B</td>
<td>G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Dragonfly or Damselfly</td>
<td>Phanogomphus australis (syn. Gomphus australis)</td>
<td>Clearlake Clubtail</td>
<td>SR</td>
<td>S2</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>Picoides borealis</td>
<td>Red-cockaded Woodpecker</td>
<td>E</td>
<td>E</td>
<td>S2</td>
<td>G3</td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Taxonomic Group</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>NC Status</td>
<td>Federal Status</td>
<td>State Rank</td>
<td>Global Rank</td>
<td>Topo Map</td>
<td>Topo Map Status</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Pinguicula lutea</td>
<td>Yellow Butterwort</td>
<td>SR-P</td>
<td>S1</td>
<td>G4G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Pituophis melanoleucus melanoleucus</td>
<td>Northern Pinesnake</td>
<td>T</td>
<td>C</td>
<td>S2</td>
<td>G4T4</td>
<td>Wilmington</td>
<td>Historical</td>
</tr>
<tr>
<td>Freshwater or Terrestrial Gastropod</td>
<td>Planorbella magnifica</td>
<td>Magnificent Rams-horn</td>
<td>E</td>
<td>C</td>
<td>S1</td>
<td>G1</td>
<td>Wilmington</td>
<td>Historical</td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Platanthera nivea</td>
<td>Snowy Orchid</td>
<td>T</td>
<td>SH</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Butterfly</td>
<td>Problema bulenta</td>
<td>Rare Skipper</td>
<td>SR</td>
<td>S1</td>
<td>G2G3</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Amphibian</td>
<td>Pseudacris ornata</td>
<td>Ornate Chorus Frog</td>
<td>E</td>
<td>S2</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Ptilimnium ahlesii</td>
<td>Carolina Bishopweed</td>
<td>SR-T</td>
<td>S1</td>
<td>G1</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Ptilimnium costatum</td>
<td>Ribbed Bishop-weed</td>
<td>T</td>
<td>S1</td>
<td>GNR</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Quercus elliottii</td>
<td>Running Oak</td>
<td>SC-V</td>
<td>S2</td>
<td>G3G5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Amphibian</td>
<td>Rana capito (syn. Rana capito capito)</td>
<td>Carolina Gopher Frog</td>
<td>E</td>
<td>S2</td>
<td>G3</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Rhynchospora harperi</td>
<td>Harper's Beaksedge</td>
<td>SC-V</td>
<td>S2</td>
<td>G4?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Rhynchospora pleiantha</td>
<td>Coastal Beaksedge</td>
<td>T</td>
<td>S2</td>
<td>G2G3</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Rhynchospora tracyi</td>
<td>Tracy's Beaksedge</td>
<td>T</td>
<td>S2</td>
<td>G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Sagittaria isoetiformis</td>
<td>Quillwort Arrowhead</td>
<td>T</td>
<td>S2</td>
<td>G4?</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Sagittaria weatherbiana</td>
<td>Grassleaf Arrowhead</td>
<td>E</td>
<td>S2</td>
<td>G5T3T4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Sarracenia minor var. minor</td>
<td>Hooded Pitcherplant</td>
<td>E</td>
<td>S2</td>
<td>G4T4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Taxonomic Group</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>NC Status</td>
<td>Federal Status</td>
<td>State Rank</td>
<td>Global Rank</td>
<td>Topo Map</td>
<td>Topo Map Status</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Moth</td>
<td>Schinia septentrionalis</td>
<td>Northern Flower Moth</td>
<td>SR</td>
<td>SH</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Scleria reticularis</td>
<td>Netted Nutrush</td>
<td>T</td>
<td>S2</td>
<td>G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Seminatrix pygaea paludis</td>
<td>Carolina Swamp Snake</td>
<td>SC</td>
<td>S2</td>
<td>G5T4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Reptile</td>
<td>Sistrurus miliarus miliarus</td>
<td>Carolina Pigmy Rattlesnake</td>
<td>SC</td>
<td>S3</td>
<td>G5T4T5</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Small Depression Drawdown Meadow (Typic Subtype)</td>
<td>S2S3</td>
<td>G2?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Small Depression Pond (Open Lily Pond Subtype)</td>
<td>S3</td>
<td>G3?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Small Depression Pond (Typic Marsh Subtype)</td>
<td>S3</td>
<td>G3?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Small Depression Shrub Border</td>
<td>S3</td>
<td>G3?</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dragonfly or Damselfly</td>
<td>Somatochlora georgiana</td>
<td>Coppery Emerald</td>
<td>SR</td>
<td>S2?</td>
<td>G3G4</td>
<td>Wilmington</td>
<td>Historical</td>
<td></td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Spiranthes laciniata</td>
<td>Lace-lip Ladies'-tresses</td>
<td>SC-V</td>
<td>S2</td>
<td>G4G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td>Sternula antillarum</td>
<td>Least Tern</td>
<td>SC</td>
<td>S3B</td>
<td>G4</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Freshwater Marsh (Cattail Subtype)</td>
<td>S3</td>
<td>G4G5</td>
<td>Wilmington</td>
<td>Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxonomic Group</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>NC Status</td>
<td>Federal Status</td>
<td>State Rank</td>
<td>Global Rank</td>
<td>Topo Map</td>
<td>Topo Map Status</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Freshwater Marsh (Giant Cordgrass Subtype)</td>
<td></td>
<td>S4</td>
<td>G4</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Freshwater Marsh (Mixed Freshwater Subtype)</td>
<td></td>
<td>S1</td>
<td>G2?</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Freshwater Marsh (Sawgrass Subtype)</td>
<td></td>
<td>S4</td>
<td>G4?</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Freshwater Marsh (Threesquare Subtype)</td>
<td></td>
<td>S2S3</td>
<td>G2G3</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Tidal Swamp (Cypress--Gum Subtype)</td>
<td></td>
<td>S4</td>
<td>G3G4</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Mammal</td>
<td>Trichechus manatus</td>
<td>West Indian Manatee</td>
<td>T</td>
<td>T</td>
<td>S1N</td>
<td>G2</td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Utricularia cornuta</td>
<td>Horned Bladderwort</td>
<td>T</td>
<td></td>
<td>S1S2</td>
<td>G5</td>
<td>Wilmington</td>
<td>Historical</td>
</tr>
<tr>
<td>Vascular Plant</td>
<td>Utricularia olivacea</td>
<td>Dwarf Bladderwort</td>
<td>T</td>
<td></td>
<td>S2</td>
<td>G4</td>
<td>Wilmington</td>
<td>Historical</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Vernal Pool (Typic Subtype)</td>
<td></td>
<td>S2S3</td>
<td>G2?</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Animal Assemblage</td>
<td>Waterbird Colony</td>
<td></td>
<td>S3</td>
<td>GNR</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
<tr>
<td>Natural Community</td>
<td>Xeric Sandhill Scrub (Typic Subtype)</td>
<td></td>
<td>S3S4</td>
<td>G3?</td>
<td></td>
<td></td>
<td>Wilmington</td>
<td>Current</td>
</tr>
</tbody>
</table>
A species/community search provides lists of rare plants and animals, natural communities, and important animal assemblages (e.g., heronries and colonial waterbird nesting sites) known to the North Carolina Natural Heritage Program. By default, records are summarized by county, but you also have the option to summarize the records by USGS topographic maps or simple statewide summaries. For more information or for an explanation of the results of the search, see the "Help" and "Definitions" links above.

- Partial search terms are acceptable. If you are unsure of the correct spelling, you could enter the beginning letters of either the genus or species in the Scientific Name field.

- To see distribution maps, click on the scientific or common name of an element in the table of results from a county or topo database search. Note that there are no maps for the statewide summary.

- The results can be further refined by entering a text string in the "Filter search results" field.

- Clicking the "Download Results" button will give you the option of saving the results table to a comma-separated-values file. This type of file can be opened with most spreadsheet programs, including Microsoft Excel.

- If you have any questions or technical issues, contact a Conservation Information Manager.

Use of North Carolina Natural Heritage Program data should not be substituted for actual field surveys, particularly if the project area contains suitable habitat for rare species. If a database search lists no records for a project area, it does not necessarily mean that they are not present. The area may not have been surveyed by biologists, or the data may not have been reported to the Natural Heritage Program.

Information obtained from the heritage data search should be cited as follows: North Carolina Natural Heritage Program Online Data Search. [search date]. Department of Natural and Cultural Resources, Division of Land and Water Stewardship, Raleigh, NC. Available at: www.ncnhp.org (http://www.ncnhp.org).
March 11, 2019

Brian Buchanan
ATC Group Services, LLC
2725 East Millbrook Road, Suite 121
Raleigh, NC 27604

Re: Risk Assessment, Winter Park Cleaners, 1437 South College Road, Wilmington, New Hanover County,
ER 19-0798

Dear Mr. Buchanan:

Thank you for your email of February 11, 2019, concerning the above project.

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation’s Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or environmental.review@ncdcr.gov. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Ramona M. Bartos
APPENDIX D

NOTICE OF DRY-CLEANING SOLVENT REMEDIATION FOR SOURCE PROPERTY
NOTICE OF DRY-CLEANING SOLVENT REMEDIATION

Property Owner: Cole TR Wilmington NC, LLC
Recorded in Book _______, Page _______
Associated plat recorded in Plat Book _______, Page _______

This documentary component of a Notice of Dry-Cleaning Solvent Remediation (hereinafter “Notice”) is hereby recorded on this ___ day of __________, 20___ by Cole TR Wilmington NC, LLC (hereinafter “Property Owner”). The survey plat component of the Notice is being recorded concurrently with this documentary component. The real property (hereinafter “Property”) which is the subject of this Notice is located at 1437 South College Road, Wilmington, New Hanover County, North Carolina, Parcel Identification Number (PIN) R06107-002-006-000.

The Property is contaminated with dry-cleaning solvent, as defined at North Carolina General Statutes (hereinafter “N.C.G.S.”), Section (hereinafter “§”) 143-215.104B(b)(9) and other contaminants. This Notice has been approved by the North Carolina Department of Environmental Quality, or its successor in function (hereinafter “DEQ”) under the authority of the Dry-Cleaning Solvent Cleanup Act of 1997, as amended, N.C.G.S. § 143-215.104A et seq. (hereinafter “DSCA”), and is required to be filed in the Register of Deeds' Office in the county or counties in which the land is located, pursuant to NCGS § 143-215.104M.

Soil and groundwater at the Property are contaminated with dry-cleaning solvents associated with dry-cleaning operations at the former Winter Park Cleaners (DSCA Site DC650013) located at 1437 South College Road, Wilmington, New Hanover County, North Carolina. Dry-cleaning operations were conducted on the Property from approximately 1951 to at least 1964.

Pursuant to N.C.G.S. § 143-215.104M, this Notice is being filed in order to reduce or eliminate the danger to public health or the environment posed by the Property. Attached hereto as Exhibit A is a reduction, to 8 1/2" x 11", of the survey plat component of the Notice required by N.C.G.S. § 143-215.104M. The survey plat has been prepared and certified by a professional
land surveyor and meets the requirements of G.S. 47-30, and contains the following information required by N.C.G.S. § 143-215.104M:

(1) A description of the location and dimensions of the areas of potential environmental concern with respect to permanently surveyed benchmarks; and
(2) The type, location and quantity of regulated dry-cleaning solvent contamination and other contaminants known to exist on the Property.

Attached hereto as Exhibit B, is a legal description of the Property that would be sufficient as a description in an instrument of conveyance.

Pursuant to NCGS § 143-215.104M, a certified copy of this Notice must be filed within 15 days of receipt of DEQ's approval of the Notice or the effective date of the dry-cleaning solvent remediation agreement, whichever is later. Pursuant to NCGS § 143-215.104M, the copy of the Notice certified by DEQ must be recorded in the grantor index under the names of the owners of the land.

LAND-USE RESTRICTIONS

NCGS § 143-215.104M requires that the Notice identify any restrictions on the current and future use of the Property that are necessary or useful to maintain the level of protection appropriate for the designated current or future use of the Property and that are designated in the dry-cleaning remediation agreement. The restrictions shall remain in force in perpetuity unless canceled by the Secretary of DEQ, or his/her designee, after the hazards have been eliminated, pursuant to NCGS §143-215.104M. Those restrictions are hereby imposed on the Property, and are as follows:

1. Without prior written approval from DEQ, the Property shall not be used for mining or extraction of coal, oil, gas or any mineral or non-mineral substances.

2. No activities that encounter, expose, remove or use groundwater (for example, installation of water supply wells, fountains, ponds, lakes or swimming pools that use groundwater, or construction or excavation activities that encounter or expose groundwater) may occur on the Property without prior approval of DEQ.

3. Soil in “Area A” may not be removed or disturbed unless approved in writing in advance by DEQ or its successor in function, except for routine landscape maintenance and emergency utility repair. In the event of emergency utility repair, DEQ shall be given written notice of any such emergency repair no later than the next business day, and further related assessment and remedial measures may be required.

4. No activities that cause or create an increase in infiltration (for example, removal or demolition of materials such as asphalt, concrete, buildings, or other structures that by their use and nature minimize infiltration of rain or water runoff into potentially contaminated soil) may occur in “Area A” of the Property, as shown on Exhibit A, without prior approval of DEQ.
5. In January of each year, on or before January 31st, the owner of any portion of the Property shall submit a notarized Annual Certification of Land-Use Restrictions to DEQ certifying that this Notice remains recorded at the Register of Deeds’ office, and that the land-use restrictions are being complied with.

6. No person conducting environmental assessment or remediation at the Property or involved in determining compliance with applicable land-use restrictions, at the direction of, or pursuant to a permit or order issued by DEQ may be denied access to the Property for the purpose of conducting such activities.

7. The owner of any portion of the Property shall cause the instrument of any sale, lease, grant, or other transfer of any interest in the property to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Notice. The failure to include such a provision shall not affect the validity or applicability of any land-use restriction in this Notice.

RIGHT OF ENTRY

The property owner grants and conveys to DEQ, its agents, contractors, and employees, and any person performing pollution remediation activities under the direction of DEQ, access at reasonable times and under reasonable security requirements to the Property to determine and monitor compliance with the land-use restrictions set forth in this Notice. Such investigations and actions are necessary by DEQ to ensure that use, occupancy, and activities of and at the Property are consistent with the land-use restrictions and to ensure that the structural integrity and continued effectiveness of any engineering controls (if appropriate) described in the Notice are maintained. Whenever possible, at least 48 hours advance notice will be given to the Property Owner prior to entry. Advance notice may not always be possible due to conditions such as response time to complaints and emergency situations.

REPRESENTATIONS AND WARRANTIES

The Property Owner hereby represents and warrants to the other signatories hereto:

i) that the Property Owner is the sole owner of the Property; or that the Property Owner has provided to DEQ the names of all other persons that own an interest in or hold an encumbrance on the Property and have notified such persons of the Property Owner’s intention to enter into this Notice;

ii) that the Property Owner has the power and authority to enter into this Notice, to grant the rights and interests herein provided and to carry out all obligations hereunder; and

iii) that this Notice will not materially violate or contravene or constitute a material default under any other agreement, document or instrument to which the Property Owner is a party or by which the Property Owner may be bound or affected.
ENFORCEMENT

The above land-use restrictions shall be enforceable without regard to lack of privity of estate or contract, lack of benefit to particular land, or lack of any property interest in particular land. The land-use restrictions shall be enforced by any owner of the Property. The land-use restrictions may also be enforced by DEQ through the remedies provided in NCGS § 143-215.104P or by means of a civil action; by any unit of local government having jurisdiction over any part of the Property; and by any person eligible for liability protection under the DSCA who will lose liability protection if the restrictions are violated. Any attempt to cancel any or all of this Declaration without the approval of the Secretary of DEQ (or its successor in function), or his/her delegate, shall be subject to enforcement by DEQ to the full extent of the law. Failure by any party required-or authorized to enforce any of the above restrictions shall in no event be deemed a waiver of the right to do so thereafter as to the same violation or as to one occurring prior or subsequent thereto.

If a land-use restriction set out in this Notice required under NCGS § 143-215.104.M is violated, the owner of the Property at the time the land-use restriction is violated, the owner’s successors and assigns, and the owner’s agents who direct or contract for alteration of the contamination site in violation of a land-use restriction shall be liable for remediation of all contaminants to unrestricted use standards.

FUTURE SALES, LEASES, CONVEYANCES AND TRANSFERS

When any portion of the Property subject to this Notice is sold, leased, conveyed or transferred, the deed or other instrument of transfer shall contain in the description section, in no smaller type than that used in the body of the deed or instrument, (1) a statement that the property has been contaminated with dry-cleaning solvent and, if appropriate, cleaned up under the Act and (2) a reference by book and page to the recordation of this Notice.

The Property Owner shall notify DEQ within fourteen (14) calendar days of the effective date of any conveyance, grant, gift, or other transfer, whole or in part, of the Property Owner’s interest in the Property. This notification shall include the name, business address and phone number of the transferee and the expected date of transfer.

The Property Owner shall notify DEQ within thirty (30) days following the petitioning or filing of any document by any person initiating a rezoning of the Property that would change the base zone of the Property.

This provision shall not apply to leases that do not provide for the right to take actions that would violate the prohibitions and restrictions of this Notice.
PROPERTY OWNER SIGNATURE

IN WITNESS WHEREOF, Property Owner has caused this instrument to be duly executed this ___ day of _____________, 20___.

Cole TR Wilmington NC, LLC

By:

Name of contact

STATE OF _____________________
COUNTY OF ____________________

I, ____________________________________, a Notary Public of the county and state aforesaid, certify that ________________ personally came before me this day and acknowledged that he/she is a Member of Cole TR Wilmington NC, LLC, a North Carolina limited liability corporation, and its Manager, and that by authority duly given and as the act of the company, the foregoing Notice of Dry-Cleaning Solvent Remediation was signed in its name by him.

WITNESS my hand and official stamp or seal, this ___ day of _____ __, 20___.

__
Name typed or printed
Notary Public

My Commission expires: ___________________
[Stamp/Seal]

APPROVAL AND CERTIFICATION

The foregoing Notice of Dry-Cleaning Solvent Remediation is hereby approved and certified.

North Carolina Department of Environmental Quality

By:

Jim Bateson, LG
Chief, Superfund Section
Division of Waste Management
ATTACHMENT

LIMITED POWER OF ATTORNEY

I _______________________________ “Property Owner”, do hereby grant a limited power of attorney to DEQ and to DEQ’s independent contractors, as follows:

DEQ and DEQ’s independent contractors shall have the limited power of attorney to record this Notice, including its documentary and survey plat components, in accordance with N.C.G.S. § 143-215.104M on my “Property Owner” behalf. This limited power of attorney shall terminate upon completion of the recordation of the Notice.

Signature of Property Owner __

Dated this _____ day of ________________, 20__.

STATE OF _______________________
COUNTY OF ____________________

I, ______________________________, a Notary Public, do hereby certify that ______________________________ personally appeared before me this day and signed this “Limited Power of Attorney”.

WITNESS my hand and official stamp or seal, this ___ day of __________, 20__.

__
Name typed or printed
Notary Public

My Commission expires: ________________
[Stamp/Seal]
CERTIFICATION OF REGISTER OF DEEDS

The foregoing documentary component of the Notice of Dry-Cleaning Solvent Remediation, and the associated plat, are certified to be duly recorded at the date and time, and in the Book and on the Page(s), shown on the first page hereof.

Register of Deeds for New Hanover County

By: ____________________________ (signature) ____________________________ Date

Name typed or printed: ____________________________

Deputy/Assistant Register of Deeds
SURVEY PLAT - EXHIBIT A TO THE NOTICE OF DRY-CLEANING SOLVENT REMEDIATION

THE FORMER WINTER PARK CLEANERS - DSCA SITE DC650013

SOURCE PROPERTY OWNER: COLE TR WILMINGTON NC, LLC
SOURCE PROPERTY ADDRESS: 1437 SOUTH COLLEGE ROAD, WILMINGTON TOWNSHIP, NEW HANOVER COUNTY, NC

P ID: R06107-002-006-000

SURVEY NOTES:
1. THIS IS AN EXHIBIT TO A NOTICE OF DRY-CLEANING SOLVENT REMEDIATION. THIS IS NOT TO DESCRIBE THE LOCATION OF THE SOURCE OF THE LIQUID TRANSPORTED ON THE PLAT.
2. SURVEY WAS PERFORMED ON THE GROUND WITH A COMPLETION DATE OF JANUARY 25, 2019. AREAS SHOWN ON THE PLAT MAY DIFFER FROM THE ACTUAL CONDITION.
3. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
4. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
5. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
6. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
7. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
8. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
9. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
10. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
11. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.
12. PROPERTY OWNER INFORMATION OBTAINED FROM NEW HANOVER COUNTY ON-LINE TAX RECORDS.

GENERAL NOTES:
1. THE APPEAR AND TIME OF CONTAMINATION DETERMINED UPON THE PLAT ARE APPROXIMATIONS DERIVED FROM THE BEST AVAILABLE INFORMATION AT THE TIME OF FILING.

REVISIONS:
NO: 0
1. 2

PLAN INFORMATION:
PROJECT NO. AGS-1000
FILE NAME: AGS1000-B1
CHECKED BY: BMC
DRAWN BY: BMC
SCALE: F-1/40
DATE: 2018-03-25
SHEET: 1-2
EXHIBIT B
PROPERTY LEGAL DESCRIPTION

Legal Description

All that certain piece, parcel or tract of land situate, lying and being on the northern side of US 76/Oleander Drive at the intersection with the eastern side of US 117/NC 132/South College Road in the County of New Hanover, State of North Carolina, containing 1.49 acres, more or less, and having according to plat of survey entitled "Amended and Restated Dedication Plat For CAP Wilmington, LLC" prepared by MSP & Associates Land Surveying, Inc. dated March 19, 2012 as revised on December 13, 2012 and recorded in the Office of the Register of Deeds for New Hanover County, North Carolina in Plat Book 57 at Page 229 on December 17, 2012, the following metes and bounds, to-wit:

Beginning at a pk nail at a mitered intersection of the northern right of way of Oleander Drive (Variable R/W) and the eastern right of way of South College Road (Variable R/W); thence with said right of way of South College Road the following calls: N. 06-45-42 E. a distance of 186.30 feet to a pk nail found; thence leaving said right of way S. 83-18-50 E. a distance of 303.36 feet to a 3/4"open top found along the western right of way of 47th Street; thence with said right of way S. 06-37-49 W. a distance of 226.46 feet to a point along the northern right of way of Oleander Drive (Variable R/W); thence with said right of way the following calls: N. 83-23-18 W. a distance of 81.08 feet to a point; thence N. 06-35-38 E. a distance of 16.09 feet to a pk nail found; thence N. 83-21-24 W. a distance of 198.27 feet to a pk nail found; thence with mitered intersection N. 38-26-48 W. a distance of 34.49 feet to a pk nail found, the Point of Beginning.
Annual Certification of Land-Use Restrictions

Site Name: Winter Park Cleaners
Site Address: 1437 South College Road, Wilmington, New Hanover County
DSCA ID No: DC650013

ANNUAL CERTIFICATION of LAND-USE RESTRICTIONS

Pursuant to land-use restriction number 5 (the land-use restrictions are included as part of this form for reference) in the Notice of Dry-Cleaning Solvent Remediation (Notice) signed by Cole TR Wilmington NC, LLC and recorded in Deed Book___, Page _____on <date> at the New Hanover County Register of Deeds Office, Cole TR Wilmington NC, LLC hereby certifies, as an owner of at least part of the property that is the subject of the Notice, that the Notice remains recorded at the New Hanover County Register of Deeds office and the land-use restrictions therein are being complied with.

Duly executed this _____ day of _______________, 20__.

Cole TR Wilmington NC, LLC
By: __________________________
Name typed or printed:

STATE OF _________________
COUNTY OF ________________

I, _________________________, a Notary Public of the county and state aforesaid, certify that ________________________ personally came before me this day and the foregoing certification was signed by him/her.

WITNESS my hand and official stamp or seal, this _____ day of ________________, 20__.

Name typed or printed:
Notary Public

My Commission expires: ________________
[Stamp/Seal]
APPENDIX F

EXAMPLE DOCUMENTS ANNOUNCING THE PUBLIC COMMENT PERIOD
Dear <name>:

The Dry-Cleaning Solvent Cleanup Act of 1997 (DSCA), North Carolina General Statutes (N.C.G.S.) Sections 143-215.104A through 143-215.104U, provides for the assessment and remediation of properties that may have been or were contaminated by chlorinated solvents. To satisfy the requirements of N.C.G.S. 143-215.104L, this letter serves as the Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI) approved by the North Carolina Department of Environmental Quality (DEQ).

The NOI must provide, to the extent known, a legal description of the location of the DSCA Site, a map showing the location of the DSCA Site, a description of the contaminants involved and their concentrations in the media of the DSCA Site, a description of the intended future use of the DSCA Site, any proposed investigation and remediation, and a proposed Notice of Dry-Cleaning Solvent Remediation (NDCSR) prepared in accordance with N.C.G.S. Section 143-215.104M. The required components of the NOI are included in the attached Risk Management Plan, and are available during the public comment period on our website at: https://deq.nc.gov/about/divisions/waste-management/superfund-section/special-remediation-branch/dsca-public-notices-announcements

The DSCA Program is providing a copy of the NOI to all local governments having jurisdiction over the DSCA Site. A 30-day public comment period is being held from <date>, until <date>. Written comments may be submitted to DEQ no later than <date>. Written requests for a public meeting may be submitted to DEQ no later than <date>. All such comments and requests should be sent to:

Sue Murphy, DSCA Remediation Unit
Division of Waste Management, NCDEQ
1646 Mail Service Center
Raleigh, North Carolina 27699-1646
A Summary of the NOI is being published in the Star News, copies are being sent to owners of property within and contiguous with the area of contamination, and a copy of the Summary will be conspicuously posted at the Site during the public comment period.

If you have any questions, please feel free to contact me at (919)707-8354.

Sincerely,

Sue Murphy, DSCA Project Manager
Division of Waste Management, NCDEQ

Attachments: Risk Management Plan

cc: DSCA Site #DC650013 File
Public Notice

SUMMARY OF NOTICE OF INTENT TO REMEDIATE A DRY-CLEANING SOLVENT FACILITY OR ABANDONED SITE

N.C. Department of Environmental Quality
Division of Waste Management
Dry-Cleaning Solvent Cleanup Act (DSCA) Program

Winter Park Cleaners
DSCA Site # DC650013

Pursuant to N.C.G.S. §143-215.104L, on behalf of Cole TR Wilmington NC, LLC, the North Carolina Department of Environment Quality’s (NCDEQ’s) private contractor has prepared a Notice of Intent to RemEDIATE a Dry-Cleaning Solvent Facility or Abandoned Site (NOI). The purpose of this Summary of the NOI is to notify the community of the proposed remedy for the contamination site and invite comment on the proposed remedy.

Winter Park Cleaners formerly conducted dry-cleaning operations at 1437 South College Road, in Wilmington, North Carolina. The property is currently occupied by the Trader Joe’s. Dry-cleaning solvent contamination in soil and/or ground water has been identified at the following parcel(s):

1437 South College Road, in Wilmington; Parcel No. R06107-002-006-000

An investigation of the extent of contamination has been completed. A risk assessment of the contaminated properties concluded that the contamination poses no unacceptable risks. A Risk Management Plan has been prepared which proposes using land-use controls to prevent current and future risks at the affected properties.

The elements of the complete NOI are included in the Risk Management Plan (RMP) which is available online at http://portal.ncdenr.org/web/wm/DSCA/PublicNotices.

The public comment period begins ________ __, 20__, and ends ________ __, 20__.

Comments must be in writing and submitted to NCDEQ no later than ________ __, 20__. Written requests for a public meeting may be submitted to NCDEQ no later than ________ __, 20__. Requests for additional information should be directed to Sue Murphy at (919)707-8354. All comments and requests should be sent to:

Sue Murphey, DSCA Remediation Unit
Division of Waste Management, NCDEQ
1646 Mail Service Center
Raleigh, North Carolina 27699-1646
<date>

<property owner>
<mailing address>
<city, state, zip>

Subj: Dry-Cleaning Solvent Contamination at Winter Park Cleaners, 1437 South College Road, Wilmington, New Hanover County, NC DSCA ID # DC650013

Dear <property owner>:

You are receiving this letter because your property at <adjacent property address> is adjacent to an area contaminated with dry-cleaning solvents. There are no actions required on your part and your property is not contaminated. This letter is only for notification purposes. The Dry-Cleaning Solvent Clean-up Act (DSCA) Program has completed an assessment of the dry-cleaning solvent contamination associated with the former Winter Park Cleaners at 1437 South College Road in Wilmington. The property is currently occupied by Traer Joe’s. A remedial strategy to address the site contamination has been prepared, and in accordance with our program’s statutes, the community has an opportunity to review and comment on the proposed strategy.

The attached Summary of the Notice of Intent to Remediate a Dry-Cleaning Solvent Facility or Abandoned Site (NOI) provides a brief description of the proposed remedy, a web link to the complete NOI, and the dates and procedures for commenting on the proposed remedy. If you do not have access to the internet, we ask that you contact us to request a hard copy of the complete NOI.

If you have questions, please contact me at Sue.Murphy@ncdenr.gov or (919) 707-8354.

Sincerely,

Sue Murphy, DSCA Project Manager
Division of Waste Management, NCDEQ

Attachments: Summary of the NOI
cc: DSCA Site # DC650013 File