LITTLE BUFFALO CREEK STREAM MITIGATION PROJECT Cabarrus County, NC Yadkin River Basin Cataloging Unit: 03040105

EEP Project Number: 94147

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Little Buffalo Creek Stream Mitigation Plan Final

Submitted April 2013

Prepared for:

Prepared by:

The Louis Berger Group, Inc. 1001 Wade Avenue, Suite 400 Raleigh, North Carolina 27605 Tel (919) 866-4400 Fax (919) 755-3502

Project Manager:

Michael O'Rourke Tel (919) 866-4421 Fax (919) 755-3502 morourke@louisberger.com

TABLE OF CONTENTS

1.	Executive Summary/Project Abstract	1
2.	Project Site Identification and Location	3
2.1.	Directions to the Project Site	
2.2.	USGS Hydrologic Unit Code and NCDWQ River Basin Designation	3
2.3.	Project Vicinity	4
2.4.	Project Components and Structure	4
3.	Watershed Characterization	6
3.1.	Drainage Area	6
3.2.	Surface Water Classification / Water Quality	6
3.3.	Physiography, Geology, and Soils	
3.4.	Historical Land Use and Development Trends	8
3.5.	Endangered / Threatened Species	. 11
3.6.	Cultural Resources	. 12
3.7.	Potential Constraints	.13
	7.1. Property Ownership and Boundary	13
3.	7.2. Site Access	
3.	7.3. Utilities	
3.	7.4. FEMA / Hydrologic Trespass	
4.	Project Site Streams - Existing Conditions	
4.1.	Existing Conditions Survey	
4.2.	Channel Classification	
4.3.	Valley Classification	
4.4.	Discharge	
4.5.	Channel Morphology (pattern, profile)	
4.6.	Channel Evolution	
4.7.	Channel Stability Assessment	
4.8.	Bankfull Verification	
4.9.	Vegetation Community Type(s) Descriptions and Disturbance History	
5.	Reference Streams	
5.1.	Watershed Characterization	
5.2.	Channel classification	
5.3.	Discharge (bankfull, trends)	
5.4.	Channel Morphology (pattern, dimension, profile)	
5.5.	Channel Stability Assessment	
5.6.	Bankfull Verification	
5.7.	Vegetation Community Type(s) Descriptions and Disturbance History	
6.	Project Site Wetlands	
7.	Reference Wetlands	
8.	Project Site Restoration Plan	
8.1.	Restoration Project Goals and Objectives	
	1.1. Designed Channel Classification and/ or Wetland Type	
8.	1.2. Target Wetland Communities / Buffer Communities	. 32

8.2.	Sedi	ment Transport Analysis	. 32
8.3.	HEC	-RAS Analysis	. 33
8.	3.1.	Hydrologic Analysis	. 34
	8.3.1.1.	Data Sources	. 34
	8.3.1.2.	Weighted Curve Number Computations	. 34
	8.3.1.3.	Watershed Lag Time Computations	. 35
	8.3.1.4.	Hydrologic Reach Routing	35
	8.3.1.5.	Peak Discharge Summary	35
8.	3.2.	Hydraulic Analysis	
	8.3.2.1.	J J	
	8.3.2.2.	\mathcal{O}	
	8.3.2.3.	5 8	
	8.3.8.3.		38
	8.3.8.3.		
	8.3.2.3.		
	8.3.2.3.		
		Existing Bridges and Hydraulic Structures	
		Hydrologic Trespass for the 100-Year Storm Event	
		Conclusions	
8.4		nwater Best Management Practices	
8.5	-	rological Modifications (for wetland restoration or enhancement)	
8.6		Restoration	
8.7		ral Plant Community Restoration	
		Narrative of Plant Community Restoration	
	7.2	Seeding Plan Summary for Vegetation Communities and Zones	
		Planting Plan Summary for Vegetation Communities and Zones	
		Narrative of species management	
9.		mance Criteria	
9.1		ms	
9.2	0	etation	
9.3		dule/Reporting	
10.		inary Monitoring	
11.	Kefere	nces	48

LIST OF TABLES

- Table 1:Project Components
- Table 2:Project Activity and Reporting History
- Table 3:Project Contact Table
- Table 4:Project Attribute Table
- Table 5:Morphological Design Table
- Table 6:
 BEHI and Sediment Export Estimates for Project Site Streams
- Table 7:
 Planting Summary for Vegetative Communities and Zones
- Table 8:
 Seeding Summary for Permanent Vegetation
- Table 9:
 Planting Summary for Temporary Sediment and Erosion Control Seed Mix

LIST OF FIGURES

- Figure 1:Project Site Vicinity Map
- Figure 2: Project Site Watershed Map
- Figure 3: Project Site NRCS Soil Survey Map
- Figure 4: Project Site Hydrological Features with Gauge Locations Map
- Figure 5: Project Site Wetland Delineation Map (N/A)
- Figure 6: Reference Site Vicinity Map
- Figure 7: Reference Site Watershed Map
- Figure 8: Reference Site NRCS Soil Survey Map
- Figure 9: Reference Site Wetland Determination Sample Locations with Gauge Locations (N/A)
- Figure 10: Reference Site Vegetative Communities Map

LIST OF APPENDICES

- Appendix 1: Project Site Photographs
- Appendix 2: Project Site USACE Routine Wetland Delineation Data Forms (N/A)
- Appendix 3: Project Site NCDWQ Stream Classification Forms
- Appendix 4: Reference Site Photographs
- Appendix 5: Reference Site USACE Routine Wetland Delineation Data Forms (N/A)
- Appendix 6: Reference Site NCDWQ Stream Classification Forms (N/A)
- Appendix 7: Hydrologic Gauge Data Summary, Groundwater and Rainfall Information
- Appendix 8: HEC-RAS Analysis
- Appendix 9: EEP Floodplain Requirements Checklist
- Appendix 10: Benthos Survey Results
- Appendix 11: Agency Correspondence
- Appendix 12: Conservation Easement Documentation

1. <u>Executive Summary/Project Abstract</u>

The Louis Berger Group, Inc. (Berger) proposes to restore the Little Buffalo Creek Stream Mitigation Site (Site) in Cabarrus County, North Carolina to provide the North Carolina Ecosystem Enhancement Program (NCEEP) with approximately 6,557 stream mitigation units needed to compensate for projects occurring within the Yadkin-Pee Dee River basin.

The Little Buffalo Creek Stream Mitigation Site consists of six reaches along the mainstem and seven unnamed tributaries (UTs) (Figure 1). The mainstem of Little Buffalo Creek as well as UT 4 and UT 7 are perennial streams. The remainder of the UTs are intermittent. Photographs of each reach and UT can be found in Appendix 1. North Carolina Division of Water Quality (NCDWQ) Stream Classification Forms can be found in Appendix 3. This stream mitigation project includes reaches of restoration, enhancement, and preservation along the mainstem and its associated UTs. In total, the Site will provide 13641 linear feet of restoration, enhancement, and preservation. At a 1:1 ratio for restoration, 1.5:1 for enhancement level I, 2.5:1 for enhancement level II, and a 5:1 ratio for preservation, the NCEEP will receive approximately 6,679 stream mitigation units from the Site. In addition, approximately 47 acres of riparian buffer will be protected within a conservation easement. The fourteen reaches are detailed below.

Mitigation Types by Reach (Linear Feet)						
Reach Name	Restoration	Enhancement I	Enhancement II	Preservation		
Reach 1	438	0	1,862	0		
Reach 2	0	0	1,248	0		
Reach 3	267	0	808	0		
Reach 4	0	120	721	0		
Reach 5	0	0	952	0		
Reach 6	0	0	0	2,053		
UT 1	0	0	109	0		
UT 2	0	0	616	335		
UT 3	197	515	763	0		
UT 4	0	397	431	0		
UT 5	0	0	184	0		
UT 6	0	0	151	0		
UT 7	1,374	0	0	0		
UT 8	100	0	0	0		

The original stream channel has been altered by years of ranching activities, including cattle access to the stream and riparian zone. Several reaches of the stream have bedrock in their streambed and vertical migration of the stream has been confined to a small percentage of the project site. The stability in the vertical direction coupled with the loss of vegetation along the stream due to cattle accessing the stream via the streambank have led to streambank failures and lateral stream migration on several stream reaches throughout the Site.

The goals of the proposed Little Buffalo Creek Stream Restoration project include, but are not limited to, the enhancement of water quality and aquatic/terrestrial habitat, stream stability improvement, and erosion reduction. The uplift of these stream functions specifically requires:

- Protecting and improving water quality through the removal or minimization of the biological, chemical, and physical stressors,
 - o reducing sediment input into the stream from erosion,

- o reducing non-point pollutant impacts by removing livestock access (including restoring forested buffer,
- o protecting headwater springs
- Improving aquatic and terrestrial wildlife habitat,
 - moderating stream water temperatures by improving canopy coverage over the channel; and,
 - o restoring, enhancing, reconnecting, and protecting valuable wildlife habitat.
- Restore floodplain connectivity
 - reestablishing floodplain connection thereby dissipating energy associated with flood flows.

In addition to the ecological uplift that the project will provide to the Site through the improvement of the stream functions, this project establishes the following environmentally advantageous goals:

- providing a water source for livestock removed from the stream and riparian corridor;
- reducing the number of locations that livestock are able to cross the stream; and
- providing a safe and environmentally appropriate stream crossing points for livestock.

In order to achieve the project goals, Berger proposes to accomplish the following objectives:

- fence the cattle out of the stream and riparian corridor,
- remove invasive vegetative species from the riparian corridor,
- restore and enhance unstable portions of the stream,
- preserve the stream channel and banks through a conservation easement, and
- plant the riparian corridor with native tree and shrub vegetation.

The expected ecological benefits and goals associated with the Little Buffalo Creek site mitigation plan serve to meet objectives consistent with the resource protection objectives detailed in the Yadkin-Pee Dee River Basinwide Water Quality Plan, 2008.

2. <u>Project Site Identification and Location</u>

Berger proposes to restore the Little Buffalo Creek Stream Mitigation Site (Site) in Cabarrus County, North Carolina to provide the North Carolina Ecosystem Enhancement Program (NCEEP) with approximately 6,557 stream mitigation units needed to compensate for projects occurring within the Yadkin-Pee Dee River basin. This Restoration Plan describes existing project site conditions and details the restoration process. This report continues the regulatory review process through the NCEEP.

The Little Buffalo Creek Stream Mitigation Site consists of six reaches along the mainstem and seven unnamed tributaries (UTs) (Figure 1). The mainstem of Little Buffalo Creek as well as UT 4 and UT 7 are perennial streams. The remainder of the UTs are intermittent. Photographs of each reach and UT can be found in Appendix 1 and North Carolina Division of Water Quality (NCDWQ) Stream Classification Forms can be found in Appendix 3. This stream mitigation project includes reaches of restoration, enhancement, and preservation along the mainstem and its associated UTs. In total, the Site will provide 13,641 linear feet of restoration, enhancement, and preservation. At a 1:1 ratio for restoration, 1.5:1 for enhancement level I, 2.5:1 for enhancement level II, and a 5:1 ratio for preservation, the NCEEP will receive approximately 6,679 stream mitigation units from the Site. In addition, approximately 47 acres of riparian buffer will be protected within a conservation easement.

2.1. Directions to the Project Site

From Raleigh: follow US-1 south. Merge onto US-64 W via Exit 98B toward Pittsboro/Asheboro. Stay on US-64 for approximately 62 miles. Turn left onto NC-49. Turn right onto NC-49 S. Turn right onto Stokes Ferry Road. Turn left onto Old Beatty Ford Road. Turn left onto St. Stephen Church Road. Turn right onto Old Mine Road. The upper and middle sections of the project can be accessed by parking on Old Mine Road. The lower sections of the project can be accessed by parking on Kluttz Road.

2.2. <u>USGS Catalog Unit, Hydrologic Unit Code and NCDWQ River Basin Designation</u>

The Site is located in Cabarrus County southwest of the Town of Gold Hill, in the Rocky River basin, US Geologic Survey (USGS) Catalog Unit (CU) 03040105 (Hydrologic Unit Code (HUC) and Targeted Local Watershed (TLW): 03040105020060), of the Yadkin-Pee Dee River basin (Figure 1). Streams in the uppermost reach of the Rocky River watershed, including Little Buffalo Creek, are located primarily in the Southern Outer Piedmont ecoregion. They are characterized by sandy substrates and generally consistent summer flow regimes (Griffith et al. 2002). The Rocky River, the largest tributary of the Yadkin River, flows for approximately 25 river miles from its headwaters near Mooresville in Iredell County to its confluence with Irish Buffalo Creek in Cabarrus County. Outside of this region's numerous small urban areas, land use is primarily agricultural (NCDWQ 2007).

According to the NCDWQ 2008 Yadkin Pee-Dee River Basin Plan, 13 benthic and 21 fish sites were sampled as part of the five-year basinwide sampling program. Of the sites that were sampled in both 2001 and 2006, over 30 percent declined in bioclassification while just 20 percent showed an improvement. Further, the total number of samples increased by 41 percent and corresponded to a 37 percent increase in the number of impaired sites. This suggests that as further investigations are performed, more water quality problems are uncovered. In response to existing impacts from agricultural land uses and anticipated residential growth, the

NCEEP targeted the Rocky River Watershed for water quality and habitat quality improvements (NCEEP 2009b).

The site is located in Targeted Local Watershed (TLW) 03040105020060. By the year 2015, the population within this area is expected to increase by 4000. According to the 2009 Lower Yadkin Pee Dee River Basin Restoration Priorities Report (NCEEP 2009b), the goals for CU 03040105, which encompasses this watershed, include: improved management of stormwater runoff, protection of threatened and endangered wildlife resources, continued mitigation of impacts resulting from rapid urbanization, and restoration of water quality in DWQ-identified impaired streams.

2.3. <u>Project Vicinity</u>

Located in Cabarrus County, North Carolina, the Site is approximately 12 miles east of Kannapolis and two miles southwest of Gold Hill. The Site starts at the Rowan/Cabarrus county line (Figure 1).

2.4. Project Components and Structure

A summary of the project components is available in Table 1 and Figure 3 displays mapped soils and proposed mitigation.

Reach 1 begins at the Rowan/Cabarrus county line and continues 2,300 feet south until Old Mine Road bridge. The existing riparian buffer extends approximately 10 feet on both sides. Both sides of the bank are open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank. Soils along this reach are Chewacla sandy loam (Ch), Tatum silt loam (2-8 percent slopes) (TaB), and Goldston very channery silt loam (15-45 percent slopes) (GoF) (USDA 2009a). Reach 1 will include restoration and enhancement level II. The restoration component will provide stable channel geometry and improvement in water quality, and aquatic and terrestrial wildlife habitat. Enhancement level II will provide improved water quality through the removal or minimization of the biological, chemical, and physical stressors. This effort will also improve aquatic and terrestrial habitat over time as invasive species are removed and natural species returned.

Reach 2 begins just below the Old Mine Road bridge and continues downstream for 1,248 feet. The existing riparian buffer extends approximately 10 feet on both sides. Both sides of the bank are open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank. Soils along this reach are Chewacla sandy loam (Ch) and Goldston very channery silt loam (15-45 percent slopes) (GoF) (USDA 2009a). Reach 2 will include enhancement level II efforts.

Reach 3 begins where Reach 2 ends and continues 1,075 feet south to UT4. The existing riparian buffer extends approximately 10 feet on the west stream bank, but is more forested along the east bank. Both sides of the bank are open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank. Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). Reach 3 will include restoration for the central portion and enhancement level II for the upper and lower portions.

Reach 4 begins at UT 4 and continues 841 feet south to UT 3. The existing riparian buffer extends approximately 10 feet on both sides. Both sides of the bank are open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank.

Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). Reach 4 will include enhancement level I and enhancement level II. Enhancement level I provides improved water quality through the removal or minimization of the biological, chemical, and physical stressors. Additionally, this effort will improve aquatic and terrestrial wildlife habitat over time as invasive species are removed and natural species are returned.

Reach 5 begins at UT 3 and continues for 952 feet past UT 5 and UT 6. The existing riparian buffer extends approximately 10 feet on both sides. Both sides of the bank are open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank. Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). Reach 5 will include enhancement level I and enhancement level II.

Reach 6 begins where Reach 5 ends and extends 2,053 feet to the end of the mitigation reach at Kluttz Road. The existing riparian buffer extends approximately 10 feet on the west bank, but is more forested on the east bank. The west bank is open to cattle pasture. The floodplain is generally flat and slopes upward to the east and west from each streambank. Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). Reach 6 consists of only preservation.

UT 1, north of the first cattle crossing, flows into Reach 1 from the west. Only 109 feet of this reach upstream of the confluence with Little Buffalo Creek will be enhanced as the landowner was unwilling to allow more for this project. There is no riparian buffer and both sides of the bank are open to cattle pasture. Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). UT 1 will include enhancement level II.

UT 2 flows into Reach 2 from the west. This reach extends 951 feet from the pond outlet to the mainstem of Little Buffalo Creek. For 336 feet below the pond, the existing riparian buffer is greater than 50 feet wide on each side of the bank. Below that point, there is no riparian buffer. This area is open to cattle pasture. Soils along this reach are Chewacla sandy loam (Ch) (USDA 2009a). The section of the reach with the riparian buffer will include preservation, while the section below will include enhancement level II.

UT 3 flows into the end of Reach 4 from the west. Mitigation for this reach starts at Old Mine Road and continues 1,475 feet to the mainstem. There is no existing riparian buffer and both banks are open to cattle pasture. Soils along this reach are Chewacla sandy loam (Ch), Georgeville silty clay loam (2-8 percent slopes) (Geb2), and Badin channery silt loam (8-15 percent slopes) (BaD) (USDA 2009a). UT 3 will include restoration, enhancement level I and enhancement level II.

UT 4 flows into the end of Reach 3 from the east and will be mitigated for approximately 828 feet. The existing riparian buffer extends approximately 10 feet on the south bank, but is forested along the north bank. The south bank is open to cattle pasture. Soils along this reach are Chewacla sandy loam (Ch) and Goldston very channery silt loam (15-45 percent slopes) (USDA 2009a). UT 4 will include enhancement level I and enhancement level II.

UT 5 flows into Reach 5 from the east. The riparian buffer is intact along the north bank of the stream, but the south bank is open to cattle pasture. Soils along this reach are Goldston very channery silt loam (15-45 percent slopes) (GoF) and Chewalca sandy loam (0-2 percent slopes) (Ch) (USDA 2009a). Mitigation for UT 5 will include approximately 184 feet of enhancement level II.

UT 6 also flows into Reach 5 from the east. The riparian buffer is intact for a portion upstream along the south bank. The north bank is open to cattle pasture. Soils along this reach are Goldston very channery silt loam (15-45 percent slopes) (GoF) and Chewalca sandy loam (0-2 percent slopes) (Ch) (USDA 2009a). Mitigation for UT 5 will include approximately 151 feet of enhancement level II.

UT 7 is a larger tributary flowing into Reach 6 from the west. The existing riparian buffer extends approximately 10 feet from each bank. Stream geometry is severely incised. Soils along this reach Chewalca sandy loam (0-2 percent slopes) (Ch) (USDA 2009a). The original length of UT 7 is approximately 1,374 feet. Mitigation consists of restoration This restoration effort also includes a short segment of UT 8. The lower half of the stream's geometry is severely incised because of head cutting due to the incision of UT 7. The flow from the UT 8 to UT 7 will be redirected to join UT 7 at a new location upstream of the current confluence and at a more natural elevation.

3. <u>Watershed Characterization</u>

3.1. Drainage Area

The Little Buffalo Creek Stream Mitigation project has a total drainage area of approximately 4,039 acres (Figure 2). The watershed is mostly agricultural with forested areas. UT 1 has a drainage area of approximately 293 acres, UT 2 has 193 acres, UT 3 has 62 acres, UT 4 has 254 acres, UT 5 has 8 acres, UT 6 has 16 acres, and UT 7 has 1,222 acres. Little Buffalo Creek flows south into Dutch Buffalo Creek, which then flows into Reedy Creek. Reedy Creek flows to the Rocky River, which eventually drains into the Yadkin Pee-Dee River. Table 4 in Section 12 displays the drainage area, easement area, and surface water classification associated with each project reach.

3.2. Surface Water Classification / Water Quality

The CU 03040105 subbasin is located adjacent to the City of Charlotte where rapid development and limited stream waste assimilation capacity is having a major impact on water quality. Of the monitored waters, 29 percent are supporting and 65 percent are impaired. New impairments corresponded with an increase in number of sample sites, indicating as more monitoring is done more water quality problems will likely be detected. A macro-benthos survey specifically for the Site was completed in October 2010. The results from the survey are included in Appendix 10.

The network of ambient monitoring sites in the Rocky River watershed indicate that turbidity and nutrients (nitrogen and phosphorus) are notably higher in this area than in other parts of the Yadkin – Pee Dee River basin. Fecal coliform bacteria, iron, and copper are also pollutants of concern in this watershed. Iron and copper occur naturally in the soils of this region and further investigation is needed to determine the groundwater contribution of these metals to surface waters. Other possible sources include nonpoint source runoff from urban areas and waste land-application sites. Land use in this subbasin is mostly comprised of cultivated cropland, although there are large numbers of swine and poultry operations (NCEEP 2009b, NCDWQ 2008a).

• Water Supply Watershed

The Little Buffalo Creek Stream Mitigation Site is not located within a water supply watershed. Little Buffalo Creek is classified as C: freshwaters protected for

secondary recreation, fishing, aquatic life including propagation and survival, and wildlife (NCDWQ 2010). Several segments of Dutch Buffalo Creek as well as several tributaries to Dutch Buffalo Creek are listed as High Quality Waters (HQW). These segments are downstream of Little Buffalo Creek.

• Pollution Sources within the Subbasin

Subbasin CU 03040105 has eight major and 45 minor facilities with National Pollutant Discharge Elimination System (NPDES) permits to discharge wastewater into its waterways. All major and minor facilities are either located downstream of Little Buffalo Creek or in other watersheds. No facilities are located on Dutch Buffalo Creek. In 2001, a fish community (F-8) was sampled at SR 2622 (NC 200) and rated 'Good.' In 2004, the community was resampled and dropped to a 'Good-Fair' rating (NCDWQ 2007).

• 303d-Listed Stream or Watershed

Several streams are listed as impaired on the 2008 final 303d list within the CU 03040105. Many streams listed as impaired occur within the Charlotte, Concord, and Kannapolis vicinity. No streams are listed as impaired within the Dutch Buffalo Creek watershed, upstream of its confluence with Reedy Creek. The entire stretch of the Rocky River within the 03040105 watershed is listed as impaired due to copper and turbidity (NCEEP 2009b, NCDWQ 2008b).

• NCWRP Targeted Watershed

Several 14 digit HUCs of 03040105 are listed as NCEEP Targeted Local Watersheds, including HUC 03040105020060 (NCEEP 2009b).

• Significant Natural Heritage Area

A significant natural heritage area is an area that contains one or more threatened or endangered species or exemplifies a naturally occurring ecological community that exists within North Carolina. Within the HUC subbasin 03040105020060, the Natural Heritage Program (NCNHP) has identified nine significant natural heritage areas and one managed area (NCDENR 2010):

- o Butcher Branch Forest is located 3.3 miles south of the Site;
- Charity Church Hardwood Forest is located 4.6 miles southwest of the Site;
- Dutch Buffalo Creek Aquatic Habitat is located 4.7 miles southwest of the Site;
- o Dutch Buffalo Creek Dam is located 3.1 miles southwest of the Site;
- Georgeville Sunflower Site is located 13.5 miles southwest of the Site;
- Lower Butcher Branch Depression Swamps are located 2.1 miles south of the Site;
- o Miami Church Hill Rare Plant Site is located 12 miles southwest of the Site;
- Stephens Church Forest is located 12.5 miles southwest of the Site;
- Walker Road Hardpan Forest is located 7.8 miles southwest of the Site; and
- The Gold Hill Rail Trail (managed area) is located 0.15 miles northeast of the Site.

3.3. <u>Physiography, Geology, and Soils</u>

The Site is located within the Carolina Slate Belt ecoregion of the Piedmont physiographic province of North Carolina, along the edge of the Southern Outer Piedmont ecoregion. The Carolina Slate Belt extends from southern Virginia, across the Carolinas, and into a small part of eastern Georgia. The mineral-rich metavolcanic and metasedimentary rocks with slatey cleavage tend to be finer-grained and less metamorphosed than other parts of the Piedmont (except for the Triassic Basins) and is somewhat less resistant to erosion.

The Carolina Slate Belt has been an important region of mineral production and is thought to have the potential for containing undiscovered deposits of gold and silver, as well as copper, lead, zinc, molybdenum, and tin. The volcanic slates are deeply weathered in places forming clay and shale, and soils generally have high silt contents. The more silty and silty clay soils of the Carolina Slate Belt contrast with the loam and sandy loam soils often found in other parts of the Piedmont. Streams tend to dry up and water yields to wells are low as this region contains some of the lowest water-yielding rock units in North Carolina (Griffith *et al.* 2002).

The Southern Outer Piedmont extends from Alabama, across large portions of the Georgia and South Carolina Piedmont, and into northern North Carolina. It covers the middle portion of the North Carolina Piedmont in the south. The ecoregion has lower elevations, less relief, and less precipitation than the Southern Inner and Northern Inner Piedmont ecoregions, and tends to have more cropland than those Inner Piedmont regions. The landform class is mostly irregular. Gneiss, schist, and granite are typical rock types, and the rocks are intensely deformed and metamorphosed.

Streams within each area are affected by the soils, geology, vegetation, and topography characteristic of the physiographic region. Overall, streams in the Southern Outer Piedmont ecoregion are characterized by sandy substrates and generally consistent summer flow regimes, while streams in the Carolina Slate Belt are characterized by low summer flows, extensive bedrock formations, and the prevalence of boulder and cobble substrate. The characteristics of the regional geology is expressed within the Little Buffalo Creek project reach through its eroding banks where the stream has carved out the moderately erodible soils and at halted headcuts where the stream degraded to bedrock.

3.4. <u>Historical Land Use and Development Trends</u>

As specified in the NCDWQ Basin Plan and the NCEEP River Basin Restoration Priorities Report, this subbasin is located adjacent to the City of Charlotte where rapid development and limited stream waste assimilation capacity is having a major impact on water quality. Thirteen benthic and 21 fish sites were sampled as part of the five-year basinwide sampling program. NCDWQ's biological and ambient data indicate streams in urbanizing areas of the Rocky River Watershed are demonstrating negative water quality impacts (NCDWQ 2008a, NCEEP 2009b). Of the sites that were sampled in both 2001 and 2006, over 30 percent declined in bioclassification while just 20 percent showed an improvement. As further investigations were performed as part of the sampling program, more water quality problems were uncovered.

In response to existing impacts from agricultural land uses and anticipated residential growth, the NCEEP targeted the Rocky River Watershed for water quality and habitat quality improvements. The severe bank erosion, shifting sandy substrates, channelization, and sedimentation point to an overall pattern of habitat degradation in the watershed. In addition, turbidity violations are common throughout the Rocky River watershed. It is likely that a combination of human caused land disturbances and natural erosion are causing the majority of

turbidity violations in this watershed, with human causes being the leading contributor (NCEEP 2009b, NCDWQ 2008a).

WARSSS Analysis

In addition to the standard analysis, the Environmental Protection Agency's (EPA) Watershed Assessment of River Stability and Sediment Supply (WARSSS) Reconnaissance Level Assessment (RLA) methodology was used as a basis to conduct a table top assessment of Little Buffalo Creek. This methodology examines land and river management activities and attempts to identify sediment sources and channel stability problems linked to these activities.

Multiple data sets were compiled to aide in this assessment, including USGS topographic maps, high altitude aerial photography, and US Department of Agriculture, Natural Resources Conservation Service (USDA NRCS) soils data. Synthesis of the data was done using ESRI ArcMAP GIS software. A comparative analysis was done using aerial photography from 1983 and 2005/2006 to determine if trends could be identified as influencing river stability and sediment supply (USDA 1983; USDA 2005; USDA 2006). (Aerial photography was available from 2005 for Cabarrus County and from 2006 for Rowan County. The timeframe encompassing both sets of aerial photography will herein be referred to as 2006.) The 4,039-acre Little Buffalo Creek watershed was divided into two sub-watersheds, UT 7 and the main stem of Little Buffalo Creek for this analysis.

	Little Buffalo Creek Watershed	Main Stem Sub- Watershed	UT 7 Sub-Watershed
Total Size (acres)	4,039	2,817	1,222
300 ft Riparian Buffer (acres)	1,526	1,026	500

WARSSS Exhibit 1. Size of Little Buffalo Creek watershed and sub-watersheds.

Analyses conducted as part of the WARSSS analysis are summarized below.

• <u>Riparian Buffer Evaluation</u>

LBG applied a 300-foot buffer to the centerline of the stream features to determine the extent of the riparian zone within each reach.

• Bedload Transport Sampling

Conducted bed load sampling (via buckets buried side by side through the length of each cross section) to confirm sediment transport calculations.

• Land Use Analysis

Land use polygons were digitized from 1983 and 2006 aerial photography to satisfy spatial analysis requirements (USDA 1983; USDA 2005; USDA 2006). The land use analysis found that the acres of forested land, the miles of roadways, the area of surface mining, the number of structures, and the number of water impoundments increased within the Little Buffalo Creek watershed from 1983 to 2006. Detailed results for land use analysis are presented in Exhibit 2.

WARSSS Exhibit 2. Little Buffalo Creek land use/land cover analysis

	Little Buffalo Creek Watershed		Main Stem Sub-Watershed		UT 7 Sub-Watershed	
	1983	2006	1983	2006	1983	2006
Forested Land (ac)	2,152	2,300	1,451	1,531	701	800
Forested land: 300 ft						
Riparian Buffer (ac)	1,033	1,089	658	690	375	399
Non-Forested Land (ac)	1,872	1,694	1,325	1,245	547	448
Non-Forested Land: 300						
ft Riparian Buffer (ac)	493	437	368	336	125	101
Mines/Quarries (ac)	2.1	31.6	0	26.5	2.1	7.1
Roads (miles)	18.2	30.3	11.6	21.6	6.6	8.7
House/Structures	179	385	108	262	71	123

• Soils Analysis

Potentially erodible soil within the Little Buffalo Creek watershed were identified soils using NRCS web soil surveys for Cabarrus and Rowan Counties (USDA 2010), as well as soil survey area shapefiles obtained from the Soil Data Mart (http://soildatamart.nrcs.usda.gov) (USDA 2009a; USDA 2009b). A soil type was identified as "erodible" if it had an erosion factor of moderate or severe. Detailed results for soil analysis can be found in Exhibit 3.

	Little Buffalo Creek Watershed		Main Stem Sub- Watershed		UT 7 Sub-Watershed	
	1983	2006	1983	2006	1983	2006
Erodible Soils (ac)	630	630	511	511	119	119
Erodible Soils - 300 ft Riparian Buffer (ac)	382	382	302	302	80	80
Forested Erodible Soils (ac)	452	487	349	376	104	111
Non-Forested Erodible Soils (ac)	178	143	163	136	15	8
Forest Erodible Soils: 300 ft Riparian Buffer (ac)	289	314	216	237	73	77
Non-Forested Erodible Soils: 300 ft	02	<u>(</u>)	95	645	0	2
Riparian Buffer (ac)	93	68	85	645	8	3

WARSSS Exhibit 3. Little Buffalo Creek Highly Erodible Soils Analysis

Conclusions

From this table top exercise one can conclude that watershed processes are not likely the cause of channel instability within the main stem sub-watershed. From 1983 to 2006 the sub-watershed experienced a doubling in the number of house/structures and an increase in miles of roads. These increases were relatively insignificant relative to the size of the sub-watershed. The main stem sub-watershed remains rural without significant urbanization. Land use did not

significantly change. The sub-watershed did not experience a significant change in the size or number of impoundments. These factors make it likely that watershed driven hydrological processes are not the source of channel of instability.

A 26.5 acre quarry was constructed between 1983 and 2006 within the sub-watershed, but this acreage is less than one percent of the sub-watershed size. This quarry is not likely a significant source of sediment to the stream. Furthermore, erodible soils, both within and outside the 300-foot riparian buffer, experienced a slight increase in forested land use. It is not likely that land use changes are leading to watershed-driven sediment supply and, therefore, is not likely a major factor leading to channel instability.

It is unlikely that UT 7 sub-watershed has experienced significant changes in watershed processes leading to stream instability. UT 7, similar to the main stem sub-watershed, experienced a doubling in the number of house/structures, but only a two mile increase in roadways. Both of these are insignificant relative to the sub-watershed size. The number or size of impoundments did not significantly change between 1983 and 2006. UT 7 experienced a slight (non-significant) increase in forested acres. This suggests that, as within the main stem, watershed driven hydrological processes are not the source of channel instability.

UT 7 did not experience watershed changes leading to an increase in sediment supply. The mine within the sub-watershed increased in size by five acres; this is insignificant when one considers that the sub-watershed is over 1,200 acres in size. Land use on erodible soils did not significantly change. Forested land on erodible soils slightly increased within the 300-foot riparian buffer, as well as in the sub-watershed as a whole. This suggests that watershed driven sediment supply is not contributing to channel instability.

From this table top exercise it appears that the Little Buffalo Creek watershed is not experiencing significant watershed driven processes leading to channel instability. The watershed has not experienced significant changes in hydrological processes or land use changes leading to changes in sediment supply. It is likely that localized processes, (i.e. cattle grazing and direct stream access), and/or localized stream features (i.e. undersized culverts) that are the major forcing functions driving channel instability.

3.5. Endangered / Threatened Species

The US Fish and Wildlife Service (USFWS) and NCNHP listed two species for Cabarrus County that are offered protection by the Endangered Species Act of 1973, as amended (USFWS 2008 and NCNHP 2010). Species listed are the Carolina heelsplitter (*Lasmigona decorata*) and the Schweinitz's sunflower (*Helianthus schweinitzii*). Both species are listed as endangered.

Suitable habitat for the Carolina heelsplitter includes mud, muddy sand, or muddy gravel substrates in streams and rivers along stable, wellshaded stream banks (USFWS 2008). Suitable habitat for the Schweinitz's sunflower includes roadsides, power line clearings, old pastures, woodland openings and other sunny or semi-sunny situations (USFWS 2008). The project area includes degraded stream channels with little riparian vegetation and poor water quality from nutrient loading. The majority of the mainstem of Little Buffalo Creek and its UTs are open to cattle pasture. Due to the Site's disturbed nature, suitable habitat for the Carolina heelsplitter and Schweinitz's sunflower is not anticipated to occur on Site. In addition, the NCNHP shapefile did not indicate any federally threatened or endangered species within a mile of the Site (NCDENR 2010).

A letter was sent to the USFWS dated November 16, 2009 requesting any known information on these species in the county. No response was received; therefore; it is assumed that the USFWS does not have any comments nor do they have information relevant to this project. A copy of the letter sent to USFWS can be found in Appendix 11.

3.6. <u>Cultural Resources</u>

Berger conducted a cultural resources records review for the Site on November 24, 2009. The archaeological field work was conducted from January 6 through January 7, 2010. The official archaeological site inventory and National Register files at the North Carolina State Historic Preservation Office (SHPO) and the Office of State Archaeology (OSA) in Raleigh were reviewed for the presence of previously recorded archaeological sites and historical properties within the boundaries of the parcel that contains the Site and within a one mile radius of that location. No previously recorded archaeological sites are located within one mile of the Site. The Daniel Isenhour House and Farm (District #0000392) is the only nearby architectural property listed on the National Register of Historic Places. The proposed project is not expected to have an effect on the ca. 1843 house or the contributing outbuildings and landscape. No other architectural properties determined eligible, or under consideration, for inclusion in the National Register of Historic Places are located within one mile of the Site. Outside the project boundary, the remains of a gold mine, identified as the Whitney Mine in Cabarrus County Architectural Survey files, is present immediately above one of the unnamed tributaries proposed for preservation. The mine depression has been converted into a pond through the construction of an earthen dam.

Fieldwork included a pedestrian reconnaissance of the Site. This was accomplished by walking the perimeter of the Site. Locations with good surface visibility, such as cutbanks, exposed ground surfaces, and erosional features, were also inspected in order to identify structural remains, cultural deposits, and any other cultural features. The area was photographed and its topographic and vegetative characteristics noted. A total of three shovel tests were excavated within the boundaries of the Site. An additional shovel test was excavated in the vicinity of the mine. Shovel Test 1 was excavated in a pasture along the level upper reaches of the project marked for restoration. Shovel Test 2 was excavated in a sparsely wooded area near the center of the project area. Shovel Test 3 was excavated on the grassy slope overlooking the old mine. Shovel Test 4 was excavated in an area of tall grass and weeds near the confluence of the creek and its southern most tributary in the project area. No artifacts were collected in Shovel Test pits 2, 3, and 4. The location of Shovel Test 1 has been temporarily designated an archaeological site (Temp Site 4555-1). The artifacts recovered from Shovel Test 1 include rhyolite early reduction flakes, a rhyolite biface reduction flake, and an unidentified chert flake showing possible signs of utilization. Although much of the terrain along the eastern bank of Little Buffalo Creek is steeply sloped, the northern, western, and southern portions of the project area are characterized by floodplains sufficiently wide for human occupation. The presence of prehistoric artifacts suggests there is a moderately high potential for additional prehistoric cultural resources within the project boundary.

A letter summarizing the findings of the cultural resources records review and the archaeological reconnaissance was submitted to the NC SHPO on January 22, 2010. A response letter, dated February 2, 2010, from the NC SHPO stated that "We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed." As a result, no further

investigations were performed. Letters of coordination, including the NC SHPO concurrence, are provided in Appendix 11.

These findings were also summarized in the Categorical Exclusion (CE) document submitted March 8, 2010. The CE was approved on March 23, 2010 for the Little Buffalo Creek Stream Mitigation Project and a copy of this approval is provided in Appendix 11. Therefore, the proposed project is not likely to affect cultural resources.

3.7. Discharge

A flow meter was used to take flow measurements at various stages at the reference reach and at UT 7. A rough stage discharge curve was created, but high flows did not occur during the sampling period, limiting the utility of this data. Roughness coefficients were calculated using velocity, slope, and flow area data collected during the field effort and used in the hydrologic and hydraulic modeling effort.

3.8. <u>Potential Constraints</u>

3.8.1. Property Ownership and Boundary

The Site is enrolled in a perpetual conservation easement held by the state of North Carolina. Documentation of this enrollment and the property boundary survey are provided in Appendix 12. The conservation easement is also mapped on the design plan sheets found in Section 14.

3.8.2. <u>Site Access</u>

The northern portion of the Site can be accessed from Old Mine Road. The southern portion of the Site can be accessed from Kluttz Road. Areas requiring work can also be accessed through several pastures on Site. It is not anticipated that site access would act as a constraint.

3.8.3. <u>Utilities</u>

Based on a deed and title search, in addition to landowner input, there are no known utility right of ways that traverse the Site.

3.8.4. FEMA / Hydrologic Trespass

There are no Federal Emergency Management Act (FEMA) studied streams within the project reach and; therefore, FEMA coordination is not anticipated for this project. H&H models were used to confirm that there will be no hydrologic trespass as a result of this project. The results are provided in Appendix 8.

4. <u>Project Site Streams - Existing Conditions</u>

4.1. <u>Existing Conditions Survey</u>

The Site is comprised of the mainstream of Little Buffalo Creek from its entrance into Cabarrus County southward to its crossing of Kluttz Road at the downstream end of the Site. Four first order tributaries, two second order tributaries, and one third order tributary feed the mainstem from parcels belonging to three landowners. The upstream two thirds of the

mainstem are flanked by sparse vegetation, with the exception of one short reach. The downstream third of the Site is stable and well buffered.

Within the project site Little Buffalo Creek is a predominantly a Rosgen C-type channel. Little Buffalo Creek is a second order stream until its confluence with UT 1. From UT 1 to UT 7, Little Buffalo is a third order stream. The mainstem turns into a fourth order stream at its confluence with UT 7. Representative photos of the reaches of Little Buffalo Creek are provided in Appendix 1. The upstream two thirds of the mainstem of Little Buffalo Creek are primarily characterized by a vertically stable stream channel with a cobble/gravel substrate and numerous bedrock outcroppings. Portions of the mainstem are laterally unstable as evidenced by a bankfull width range of approximately 10 feet to more than 30 feet in areas with little persistent vegetation. Comparable bankfull widths within stable, preservation reaches range from 20 to 25 feet. Some sections of the mainstem have fairly good vegetation; however, unimpeded cattle access has reduced the ability of existing vegetation to absorb stream energy resulting in over widened channel dimension.

Within this upper section many of the small UTs originate from small farm ponds or springs located onsite. Seven UTs will receive some level of mitigation as part of the project. Currently cattle have access to all of the tributaries and only half of them have any vegetation beyond grass.

Land cover immediately to the north and south of the Site is primarily forest. Further upstream and downstream there are large agricultural fields adjacent to the creek. The majority of the Site is in cow pasture while the riparian areas consist of Piedmont/Mountain Bottomland Forest with a sparse understory (Schafale and Weakley 1990).

The widths of the existing mature forest buffer along the segments of Little Buffalo Creek and its tributaries vary but are generally forested immediately along the channel. The buffer is only about 10 feet in width at many locations. More detailed descriptions of the individual project reaches can be found in Section 2.4 above and in Section 4.1.5 below. Existing conditions are also displayed on the design sheets found in Section 14.

4.2. <u>Channel Classification</u>

Stream Classification was performed using the Rosgen Classification System which is predicated on combinations of morphological variables including dimension, pattern, profile, slope, and available sediment.

Little Buffalo Creek is predominantly a "C4" stream type as the overwhelming majority of the stream within the project reach has a width/depth ratio greater than 12 and has formed a riffle/pool bedform sequence with a gravel bed. Much of the stream lies on bedrock and has a fairly sinuous low flow channel. Stream banks are low but suffer instability, primarily due to hoof shear from to cattle intrusion rather than shear stress. In a few short reaches the stream narrows considerably due to a combination of lack of bedrock bed and fairly good bank vegetation and would be considered and "E4" stream type, but these reaches make up a very small fraction of the onsite length. Similarly there are a few small sections of stream that are wider and more entrenched and would be classified an "F4" stream type.

The upper end of UT 7 is a wide flat stream as it exits the two culverts under Old Mine Road. A head cut extends nearly half way from the confluence back to the culvert, UT 7 is an "F4" stream type that is itself entrenched albeit not as much as the head cut section. The stream has

cut down to bedrock and the beginnings of a "C4" stream type are starting to form within the "F4" due to the vertical stability being provided by the rock and culvert. Downstream from the confluence of UT 7 and the mainstem of Little Buffalo Creek, the stream narrows, and is even more severely entrenched. The stream's side slopes are vertical and beginning to fall in on themselves, slowly widening the stream.

The other stream reaches and tributaries are proposed to undergo enhancement or preservation and therefore their classifications are listed in Table 4 instead of discussed here.

4.3. Valley Classification

Valley Classification was performed using the Rosgen Classification System. Both Little Buffalo Creek and UT 7 were classified as having valley type 8 (Rosgen 1996). This valley type is defined as long and broad with gentle relief; alluvial terraces and floodplains are the predominant depositional landforms and most often stream type "C" and E" form riffle/pool bedforms (Rosgen 1996).

UT 5 and UT 6 were not classified as they are spring fed and have valleys of less than 200 feet. Similarly the portion of UT 1 being protected was less than 200 feet and therefore was also not classified.

UT 2, UT 3, and UT 4 were classified as having valley type II. This valley type is defined as having moderate relief, moderate side slope gradients, and valley floors developed from parent material alluvium and colluvium (Rosgen 1996). Due to low sediment supply, the stream type "B" is most often found as the stable type within this valley and each of these tributaries exhibits predominantly "B" streams.

4.4. <u>Discharge</u>

The bankfull discharge of Little Buffalo Creek and UT7 were calculated by calibrating bankfull discharge at the nearby USGS Gage Station, gage # 02125000 (Big Bear Creek near Richfield, NC), and relating the flows comparing drainage areas (Rosgen 1996). Calibration of return intervals considered 53 years of available data. The discharge associated with field surveyed bankfull indicators corresponded with a return interval of approximately 1.14 years. Appendix 7 shows annual peak flows from 1955-2007.

Bankfull discharge for Little Buffalo Creek was determined to be 115 cubic feet per second (CFS) in the upstream restoration reach and 163 CFS in the lower restoration reach. UT 7 was calculated to have a bankfull discharge of 96 CFS (UT 7 enters Little Buffalo Creek downstream of the lower restoration reach).

The NC Regional Curve for Rural Piedmont streams was consulted as well; however, the curve calculated data resulted in a flow that was field calibrated to a feature deemed to be inner berm. This feature was fairly distinct and therefore was incorporated into the natural channel design of both Little Buffalo Creek and UT 7.

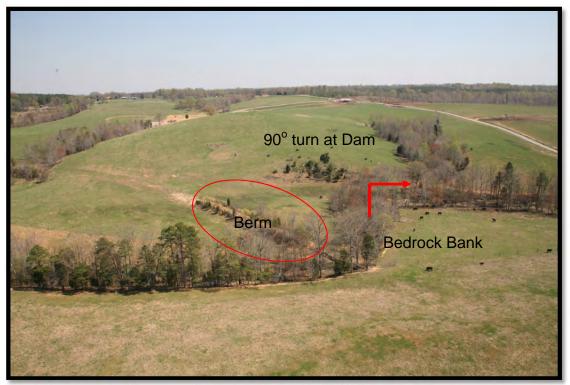
4.5. <u>Channel Morphology (pattern, profile)</u>

A portion of Reach 1, a portion of Reach 3, and all of UT 7 are going to be fully restored with a natural channel design that will result in the construction of a completely new channel in

each instance. Since the other reaches (enhancement and preservation) will receive less manipulation of morphology only the three restoration reaches will be discussed in this section.

Reach 1

The portion of Reach 1 that is to be restored lies within a portion of the landscape that appears to have been a pond at some point in time. At the upstream end of the reach, the stream squeezes through an opening defined by a right bank of bedrock and a left bank that is several feet higher than the surrounding grade. The left bank appears to be the remnants of the berm that defined the back of the pond historically. The stream hugs the high bank on the right while the left floodplain is low and flat as it was the old pond bed. The end of the reach is defined by the stream taking a 90 degree right turn. The remnants of the stone dam are still present on the terrace high above the left stream bank.


A comprehensive list of dimension measurements for the 438 feet of proposed restoration of Reach 1 is shown in Table 5. The bankfull widths range from 46 to 83 feet and the width to depth ratios range from 33 to 128. Since the stream was pushed up against the valley wall, it has virtually no pattern, or a sinuosity of nearly 1.0, in this section. Similarly the stream rests on bedrock for more than half its length, so there is not a common step-pool morphology found in this reach.

Reach 1 (upstream limit of restoration reach) - Bedrock Bank on the right. (3/29/2010)

Reach 1 (downstream limit of restoration reach) – Remnants of dam (circled). (12/9/2009)

Aerial photograph of the restoration limits of Reach 1. (4/2/2010)

Reach 3

The portion of Reach 3 that is to be restored has been pushed up against the left wall of the valley and has cut a vertical bank over time. In addition to being placed at the toe of the valley slope, the restoration reach occurs in a section that is transitioning from one of the widest parts of Reach 3 to some of the narrowest of Reach 3.

Reach 3 - restoration to begin where narrow channel leaves wide channel on left. (6/18/2008)

Reach 3 – restoration will relocate the restored channel to the right, away from steep bank. (6/18/2008)

Reach 3 – restored channel will tie into narrower, stable channel downstream. (6/18/2008)

A comprehensive list of dimension measurements for Reach 3 is shown in Table 5. The bankfull widths range from 34 to 48 feet and the width to depth ratios range from 19 to 40. The entire restoration reach, 267 feet of stream, forms one long curve pushed up against the valley wall and has no additional pattern to be measured. This portion of the reach rests on bedrock so there is not a common step-pool morphology found in this reach. The bedrock is adding to the stress on the high bank as the stream can no longer cut down to dissipate energy and instead is migrating laterally.

<u>UT 7</u>

UT 7 is proposed as restoration. Though the mean bankfull depth is only a foot, the high streambanks are over six feet deep in the shallow portions and over 10 feet deep in some areas. In the upstream half of the reach the right bank is the low bank, about at the midpoint they even out, and the downstream portion has the low bank on the left. The reach will be reconnected just upstream of its current confluence and the cut from the new channel will be used to fill much of the existing channel.

Since UT 7 has cut down to bedrock and reached vertical stability, consideration was given to only performing streambank enhancement activities and allowing the channel to remain in place. However, it was decided that the banks were too steep and the best design approach would be to reestablish the channel on the historic floodplain in order to preserve the existing mature vegetation. Both the H&H modeling and sediment transport analysis indicated the need for a wider, shallower channel than what exists currently.

Placing the stream channel back onto the historic floodplain also allows for the creation of a wider, shallower, and more sinuous channel more in character with the channel's natural condition. Upstream of the culverts under Old Mine Road, the channel has a very high width to depth ratio. Downstream of the two culverts, the channel has downcut to the bedrock and is beginning to widen back to its equilibrium point, but has not yet reached the appropriate width. Establishing the proper width to depth ratio would allow for a gradually changing flow and sustainable sediment transport.

Also by raising the bed of the stream close to the invert of the culvert, there will no longer be a drop of several feet from the invert of the downstream end of the culvert to the water's surface in the scour pool. This proposed condition is better for fish passage through the culverts. The increased bed elevation will not cause hydrologic trespass.

Currently, UT 8 joins enters UT 7just a few tens of feet below the confluence with Little Buffalo Creek. Both UT 7 and UT 8 have downcut due to the elevation of the mainstem. UT 7 has cut all the way back to the culverts at Old Mine Road; UT8 has only headcut halfway back to the road due to a bedrock outcropping in its halting the cut. A short portion of UT 8 will be restored and connected to UT 7 further upstream in order to avoid raising its bed.

UT 7 – The culverts under Old Mine Road are the upstream limit of the restoration reach. (3/29/2010)

UT 7 – Looking downstream within the upper portion of UT-7. The higher bank is on the left (3/29/2010).

UT 7 – Downstream section of UT-7 looking upstream right after a storm event. (12/9/2009)

A comprehensive list of dimension measurements for UT 7 is shown in Table 5. The bankfull widths range from 20 to 30 feet and the width to depth ratios range from 20 to 32. Aside from the initial plunge pool below the culverts, this entire reach is littered with bedrock and there is a weak step-pool profile found. Even the low bank within the reach is several feet higher than the bed. With the stream having reached bedrock it is now transferring the stress onto the streambanks. With the depth of the channel now below the root zone of most trees, the added shear stress and lack of roots has allowed the stream to start undercutting the stream banks in some places. The stream is predominantly straight until after its confluence with its UT then it has a gentle curve until it reaches the mainstem.

4.6. <u>Channel Evolution</u>

The mainstem of Little Buffalo Creek has likely been a "C4" channel for the recent past and will continue for the foreseeable future. Much of it sits on bedrock and it is at the bottom of a wide valley where it is not constrained so it is in a state of equilibrium except for a few places where it has been moved or cattle have caused bank trauma.

The UT 7 channel likely started as a "C4" stream type that over the years has devolved into an "F4" over the years in response to a combination of the farmers straightening it, the cattle creating bank instability, and the increased flow due to mining practices directly upstream.

Through their evolution, both Little Buffalo Creek and UT 7 have downcut until they have reached bedrock. In their unstable reaches, both streams have created vertical banks. Over time these streams would undercut the banks causing them to fall in on the stream, lowering the bank height as the stream attempts to reach a state of equilibrium by accessing its newly

formed floodplain. The design channels restore the state of equilibrium without having to erode the existing landscape.

4.7. <u>Channel Stability Assessment</u>

The Bank Erodibility Hazard Index (BEHI) method was used to assess streambank stability throughout the project site (Rosgen 2006). The majority of the mainstem of Little Buffalo Creek rated as low or very low on the BEHI assessment. The exceptions being portions of the stream that are to undergo restoration or enhancement level 1 mitigation; those reaches scored as follows:

- Little Buffalo Creek Reach 1(Restoration portion), BEHI rating of Very High
- Little Buffalo Reach 3 (Restoration portion), BEHI rating of Very High
- Little Buffalo Reach 4 (all of reach including concrete removal area), BEHI rating of Moderate

The same is true for the tributaries; they had BEHI ratings of low or very low except for the following reaches:

- UT-3 (E-I portions), BEHI rating of High
- UT-4 (E-I portions), BEHI rating of High
- UT-4 (E-II portions), BEHI rating of Moderate
- UT-7 (Lower Restoration portion), BEHI rating of High
- UT-7 (Upper restoration portion), BEHI rating of Very High

4.8. <u>Bankfull Verification</u>

The bankfull indicators in the disturbed portions of the site were somewhat obscured due to the cattle onsite accessing the stream regularly. Reaches immediately upstream and downstream were used to compare indicators. In the more stable sections, the field indicators used to identify bankfull included the back of point bars, the upper break in slope of the bank, and the presence of inner berms. In the more disturbed areas, depositional features provided the best indication of bankfull.

Project reach bankfull discharges were compared to the NC Rural Piedmont Regional Curve (Harman, W.H. *et al.* 1999) and the bankfull verification data LBG collected at the USGS Big Bear Creek Gage data (USGS, 2010). The regional curve underestimated bankfull discharges for the project reach, but aligned well with the inner berm elevations. Therefore, this information was not relied upon for verifying bankfull. Assuming a linear relationship between bankfull discharge and drainage area, the bankfull discharges for the reference reach corresponded well to the verified Big Bear Creek gage bankfull discharge.

4.9. <u>Vegetation Community Type(s) Descriptions and Disturbance History</u>

The Site consists mostly of cow pasture; the historical vegetative community has been almost completely disturbed. Areas along the stream banks of the mainstem and its tributaries consist of Piedmont/Mountain Bottomland Forest with a sparse understory and several invasive species. Along most riparian segments, the buffer is 10 feet in width. Only the southern portion of the east bank of Little Buffalo Creek has an intact, riparian buffer forest of greater than 50 feet wide.

The vegetative communities present vary depending on several factors; exposure to cattle grazing, position relative to channel dimension, seasonal soil moisture availability and invasive species presence. Portions of the main stem not subjected to grazing have a prominent shrub structural layer dominated by common privet (Ligustrum sinense), likey a result of past grazing, with spice bush (Lindera benzoin) and greenbriar (Smilax rotundifolia) common native species on the bankfull terrace and higher alluvial terraces. The tree structural layer is comprised of green ash (Fraxinus pennsylvanica), sweet gum (Liquidambar styraciflua) and tulip poplar (*Liriodendron tulipifera*) on the bankfull terrace and higher alluvial terraces. The composition of the community shifts to a tree layer dominated by river birch and sycamore (Platanus occidentalis) with a patchy shrub layer of primarily silky dogwood (Cornus amomum) and hazel alder (Alnus serrulata) which occurs along the low flow channel and inner-berm channel features up to the bankfull terrace. Seasonal moisture availability next to ephemeral and intermittent channels on the terrace of the main stem favor tulip poplar and spicebush while drier areas of floodplain terrace favor white oak (Ouercus alba) and red bud (Cersis canadensis). Grazed sections of the main stem have a thin to absent shrub layer but the tree layer is much the same only sparse and that tree of heaven (Ailanthus altissima) replaces tulip poplar in community structure.

All of UT 7 is subject to grazing. The riparian vegetation exists on an alluvial terrace above bankfull as the channel has incised and the groundwater table driving stream flow is disconnected from the immediately adjacent riparian vegetation. There is no shrub structural component to the vegetative community. Vegetation includes some invasive species such as tree of heaven, mimosa (*Albizia julibrissin*), Chinese privet, and microstegium (*Microstegium vimineum*). Tree of heaven is abundant however a few large sweet gums have persisted.

5. <u>Reference Streams</u>

5.1. <u>Watershed Characterization</u>

The reference reach used for the project was the upstream-most portion of Reach 1 of Little Buffalo Creek (Figures 6 through 10). This reach extended from the gate crossing upstream to the property line. This portion of the reach had little sign of degradation due to cattle, fair vegetation, and in many cases was sitting on bedrock which helps yield stable morphology. The reference reach watershed is fairly undeveloped and consists primarily of low density residential areas, forested areas, and pastures.

Some additional dimension and pattern measurements were made immediately upstream of the property line. Additional dimension and pattern measurements were made throughout the mainstem of Little Buffalo Creek within the project bounds.

5.2. <u>Channel classification</u>

The reference channel is slightly entrenched with a width to depth ratio that ranges from 31 to 64 with an average ratio of 47. Additionally the reference reach had a high sinuosity of 1.25, a slope of 0.38, and a gravel bed. These factors key out to a Rosgen classification of a "C4" stream.

5.3. <u>Discharge (bankfull, trends)</u>

A flow meter was used to take flow measurements at various stages at the reference reach. A rough stage discharge curve was created, but high flows did not occur during the sampling period limiting the utility of this data. Roughness coefficients were calculated using velocity, slope, and flow area data and used in the hydrologic and hydraulic modeling effort.

5.4. <u>Channel Morphology (pattern, dimension, profile)</u>

Supplemental data was collected throughout the project site and even one property upstream, but only the data from the cross sections is shown in the morphological table.

Dimension

Four riffle cross sections were surveyed and the following minimum, **average**, and maximum measurements were obtained:

- $W_{Bankfull} = 43, 52, 64$ (ft.)
- $A_{Bankfull} = 55, 59, 65 (sq. ft.)$
- $D_{Bankfull} = 0.98$, **1.16**, 1.98 (ft.)
- W/D = 31, 47, 64 (dimensionless)

Additionally, in both straight-pools and curved-pools, cross sections were surveyed to collect data for use in creating the design pools.

Pattern

The reference reach was relatively straight, so pattern measurements were sought out in many of the other stable reaches throughout the project site as well as stable sections immediately upstream of the project reach. Additionally, pattern measurements of the inner berm were taken in both locations. The natural channel design pattern was made more conservative to address the fact that the new channel will not have the mature vegetation the reference reaches currently contain.

Profile

Since the reference reach was located on site it was influenced by all of the same parameters that will impact the portions of the project that are scheduled to undergo construction. The slope, soil type, vegetation, abundance of bedrock, and other factors within the reference reach were all as close to exact as one could get to the proposed restoration reaches.

The reference reach consisted of two sub-reaches with respect to its profile or slope, each reach was approximately 50 percent of the overall reach. The upstream end of the reach has a 0.74 percent slope while the second half of the reach is much flatter with only a 0.16 percent. The reaches overall slope is 0.46 percent. Riffle slopes ranged from near one percent to in excess of four percent.

5.5. <u>Channel Stability Assessment</u>

The same BEHI assessment that was conducted throughout the project site was completed on the reference reach. The assessment resulted in "very low" values recorded in the reference reach.

5.6. Bankfull Verification

In the more stable sections, the field indicators used to identify bankfull included the back of point bars, the upper break in slope of the bank, and the presence of inner berms. In the more disturbed areas, depositional features provided the best indication of bankfull. This information was supplemented with anecdotal evidence from the landowners, who have monitored the weather and stream high flow events closely.

Project reach bankfull discharges were compared to the NC Rural Piedmont Regional Curve (Harman, W.H. *et al.* 1999) and the bankfull verification data LBG collected at the USGS Big Bear Creek Gage data (USGS, 2010). The regional curve underestimated bankfull discharges for the project reach, but aligned well with the inner berm elevations. Therefore, this information was not relied upon for verifying bankfull. Assuming a linear relationship between bankfull discharge and drainage area, the bankfull discharges for the reference reach corresponded well to the verified Big Bear Creek gage bankfull discharge.

5.7. <u>Vegetation Community Type(s) Descriptions and Disturbance History</u>

The community types and disturbance history are discussed in section 4.1.9.

6. <u>Project Site Wetlands</u>

Wetland scientists from Berger performed a wetland investigation on the Site in July 2008. The investigation was conducted in accordance with the procedures outlined in the *Corps of Engineers Wetland Delineation Manual* (Environmental Laboratory 1987). Two small wetland seeps were identified and delineated, one wetland along UT 5 and one wetland along UT 6 (Figure 4). These wetlands were captured in the permanent conservation easement and protected in perpetuity, although no restoration work will occur there.

7. <u>Reference Wetlands</u>

Wetland Mitigation is not proposed as part of this project; therefore, reference wetlands are not necessary.

8. <u>Project Site Restoration Plan</u>

Within the proposed project site, Little Buffalo Creek and its UTs have impaired water quality due to stressors that are biological (bacteria such as fecal coliform), chemical (fertilizers) and physical (cattle on streambanks and riparian zone) in origin. Coupled with the poor water quality, the lack of riparian buffers throughout much of the Site has greatly devalued both aquatic and terrestrial habitat. Berger will mitigate approximately 14,432 linear feet of stream channel along Little Buffalo Creek and its UTs.

Little Buffalo Creek has been divided into six reaches within the project site using the natural divisions of the landscape as points of transition. Additionally, seven UTs are identified of the project site. All of the reaches are shown on Figures 1 through 4. The 13 reaches can be defined in the following way:

- Reach 1 Upstream property boundary to existing cattle crossing (CC1) at Old Mine Road,
- Reach 2 Below Old Mine Road to existing cattle crossing (CC2) at first wire crossing,
- Reach 3 Existing cattle crossing (CC2) to existing cattle crossing (CC3) below UT 4,
- Reach 4 Existing cattle crossing (CC3) to UT 3,

- Reach 5 UT 3 to Chains at property boundary (proposed cattle crossing at Reach 5/6 point),
- Reach 6 Chains at property boundary to Kluttz Road,
- UT 1 Feeds Little Buffalo Creek immediately upstream of Old Mine Road from the west,
- UT 2 Feeds Little Buffalo Creek from west in Reach 2 (originates at pond),
- UT 3 Feeds Little Buffalo Creek from west at Reach 4/5 transition (originates at 2nd pond),
- UT 4 Feeds Little Buffalo Creek from east at Reach 3/4 transition,
- UT 5 Feeds Little Buffalo Creek from east within Reach 5,
- UT 6 Feeds Little Buffalo Creek from east immediately upstream of Reach 5/6 transition, and
- UT 7 Feeds Little Buffalo Creek from west almost immediately upstream of Kluttz Road, includes UT 8, a tributary to UT 7.

The proposed stream mitigation concept for Little Buffalo Creek consists of a combination of activities along distinct reaches of the mainstem of the creek and its tributaries. Mitigation approaches include stream restoration, enhancement (levels I and II) and preservation. Collectively, the mitigation effort will result in an improved headwater stream system that will improve water quality, stream habitat, and riparian habitat.

Restoration activities will create a new, stable stream channel with the appropriate dimension, pattern, and profile to transport perennial flow and sediment, and will re-connect the stream to its floodplain. Reestablishment of vegetation and cattle exclusion will also occur as part of the restoration activities.

Enhancement activities will include reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. In the case of enhancement level I the activities will also include reshaping or relocating the bed and banks.

Preservation will be conducted within portion of the stream corridors that have intact riparian forests and stable stream reaches.

An illustration of the proposed stream restoration concept for the Little Buffalo Creek Restoration site is provided in Figure 3.

Reach 1 – Restoration and enhancement level II is proposed for this reach. This reach has a section that was previously a mill pond. The stream currently hugs the valley wall from the former inlet of the pond and makes an abrupt 90 degree turn at the exit of the old pond. Restoration will include re-aligning the stream channel for a more natural flow for 438 feet. Two log vanes are proposed along the realignment to slow the energy of the water. This restoration will bring the stream closer to its original landscape position, restore sinuosity, and alleviate the instability associated with the turn. The old channel will be filled. The remaining 1862 feet of the stream length will undergo enhancement level II, which involves reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Reach 2 – Only enhancement level II is proposed for 1248 feet on this reach. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Reach 3 – Restoration and enhancement level II is proposed for this reach. This reach is pushing against its left bank and has severely undercut the stream banks, which are now greater than 6 feet high. Restoration will align a new channel for 267 feet where the stream historically existed along the center of the valley floor. The old channel will be filled and the bank will be repaired. Just upstream of the restoration segment, the channel has over-widened. Placing trees along the east bank is proposed to help direct preferential flow towards the center of the channel. The remaining 808 feet of stream will undergo enhancement level II, which involves reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Reach 4 – Enhancement level I and II are proposed for this reach. Enhancement level I is proposed for the 120 foot segment that contains concrete slabs along the right stream bank just upstream of the confluence of UT 3. The concrete is to be removed and the stream's dimension, pattern, and profile will all be adjusted throughout this segment. The remaining 721feet of stream will undergo enhancement level II, which involves reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Reach 5 – Only enhancement level II is proposed for 952 feet on this reach. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Reach 6 – Preservation is proposed for this 2,053 foot reach. This section of channel has intact riparian forest and a stable stream bed.

UT 1 - Only enhancement level II is proposed for 109 feet on this reach. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

UT 2 – Both preservation and enhancement level II is proposed for this reach. The upper 335 feet will be preserved, while the lower 616 feet will be enhanced. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

UT 3 – This reach has a short segment of restoration through a former pond, followed by sections of enhancement level I and enhancement level II. The first 197 feet consists of restoration where the segment was previously ponded and there is no existing concentrated flow path. The stream's dimension, pattern, and profile will all be established throughout this segment by cutting a channel through the ponded area. Additionally the pipe section will be removed from this section. The next 263 feet will consist of enhancement level II. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed. The following 515 feet will consist of enhancement level I. This reach has down cut. The stream banks will have to be laid back throughout this reach in order to reduce the shear stress along the stream banks. These actions will affect the stream's dimension and pattern. Additionally, in some sections the profile will be adjusted and a pipe section will be removed from this section as well. The lower 500 feet will consist of enhancement level II.

UT 4 – Enhancement level I and II are proposed for this reach. The upper 431 feet will be enhancement level II. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any

existing fence will be removed. The lower 397 feet will be enhancement level I. The lower segment of this reach is incised due to head cutting from the confluence of LBC. The stream banks will have to be laid back throughout this reach in order to reduce the shear stress along the stream banks. This reach is fairly well forested and small construction equipment will be necessary, possibly requiring some segments to be completed by hand.

UT 5 – Only enhancement level II is proposed for 184 feet on this reach. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

UT 6 – Only enhancement level II is proposed for 151 feet on this reach. This includes reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

UT 7 –Restoration is proposed for 1,374 feet of UT-7. This reach has been straightened and has downcut several feet until it has reached bedrock. It will be almost entirely reconstructed on its original floodplain and will join the existing channel just above the confluence with LBC. The old channel will be plugged at specified locations and filled with the dirt excavated from the new channel. Two rock cross vanes are proposed, one along the upper section and one below the confluence with UT-8, an unnamed tributary to UT 7. A series of 12 step pools is proposed along the lower segment for approximately 180 feet to account for the drop in elevation. The segments of enhancement include reestablishing native riparian vegetation within a 50-foot easement along each bank of the stream corridor and excluding cattle with fencing. Any existing fence will be removed.

Mitigation Types by Reach (Linear Feet)						
Reach Name	Restoration	Enhancement I	Enhancement II	Preservation		
Reach 1	438	0	1,862	0		
Reach 2	0	0	1,248	0		
Reach 3	267	0	808	0		
Reach 4	0	120	721	0		
Reach 5	0	0	952	0		
Reach 6	0	0	0	2,053		
UT 1	0	0	109	0		
UT 2	0	0	616	335		
UT 3	0	515	763	0		
UT 4	0	397	431	0		
UT 5	0	0	184	0		
UT 6	0	0	151	0		
UT 7	1,374	0	0	0		
UT 8	100	0	0	0		

Stream mitigation for the Little Buffalo Creek Stream Mitigation Site is being conducted to protect ecologically important streams in perpetuity, through the implementation of a conservation easement owned by the State of North Carolina. Stream mitigation will restore, enhance, and preserve the existing riparian corridor, aquatic habitat and stream hydrology of the stable perennial stream channels by establishing a permanent conservation easement along 13,641 linear feet of stream. The easement protects a minimum 50-foot wide forested buffer along both sides of the creek and encompasses 47 acres. Where necessary, the easement is

protected by fencing to keep livestock out of the 50-foot buffer. The easement was recorded by Cabarrus County and is held by NCEEP. The conservation easement is shown on design sheets 19 to 28 in Section 14.0.

A few areas of invasive floral species were identified in patchy distributions at various densities, particularly along the banks of the mainstem and UT 7. Invasive species along the mainstem include: multiflora rose (*Rosa multiflora*) and Chinese privet. Invasive species along UT 7 include: tree of heaven, mimosa, microstegium, and Chinese privet. No specific control effort is detailed for these species; however, they will be removed during the construction process.

Throughout the project area, native species will be planted in order to re-establish a native Piedmont/Mountain Bottomland Forest, which is currently found upstream and downstream of the Site. Restoring a forested riparian corridor will also provide additional forest habitat as well as provide a connection between the intact hardwood forests to the north of the Site and the forested corridor to the south of the Site. The proposed species for planting can be found on Table 7 in Section 12 of this report.

Berger proposes to exclude cattle from the stream along both sides of the upstream two properties by extending fencing the length of the two properties, tying into existing fencing where possible. Two cattle crossing locations have been agreed upon, in principal, by the landowners (Figure 4). Portions of the downstream two properties will be fenced as needed as cattle do not have access to the properties in their entirety. Agreed upon fencing will be either 4 foot tall woven wire with one strand of barbed wire across the top or electric fence.

8.1. <u>Restoration Project Goals and Objectives</u>

The original stream channel has been altered by years of ranching activities, including cattle access to the stream and riparian zone. Several reaches of the stream have bedrock in their streambed and vertical migration of the stream has been confined to a small percentage of the project site. The stability in the vertical direction coupled with the loss of vegetation along the stream due to cattle accessing the stream via the streambanks have led to streambank failure and lateral stream migration on several stream reaches throughout the Site.

The goals of the proposed Little Buffalo Creek Stream Restoration project include, but are not limited to, the enhancement of water quality and aquatic/terrestrial habitat, stream stability improvement, and erosion reduction. The uplift of these stream functions specifically requires:

- protecting and improving water quality through the removal or minimization of the biological, chemical, and physical stressors,
 - o reducing sediment input into the stream from erosion,
 - reducing non-point pollutant impacts by removing livestock access (including restoring forested buffer,
 - o protecting headwater springs
- improving aquatic and terrestrial wildlife habitat,
 - moderating stream water temperatures by improving canopy coverage over the channel; and,
 - o restoring, enhancing, reconnecting, and protecting valuable wildlife habitat.
- Restore floodplain connectivity
 - reestablishing a floodplain connection thereby dissipating energy associated with flood flows.

In addition to the ecological uplift that the project will provide to the Site through the improvement of the stream functions, this project establishes the following environmentally advantageous goals:

- providing a water source for livestock removed from the stream and riparian corridor;
- reducing the number of locations that livestock are able to cross the stream; and
- providing a safe and environmentally appropriate stream crossing points for livestock.

In order to achieve the project goals, Berger proposes to accomplish the following objectives:

- fence the cattle out of the stream and riparian corridor,
- remove invasive vegetative species from the riparian corridor,
- restore and enhance unstable portions of the stream,
- preserve the stream channel and banks through a conservation easement, and
- plant the riparian corridor with native tree and shrub vegetation.

The expected ecological benefits and goals associated with the Little Buffalo Creek site mitigation plan serve to meet objectives consistent with the resource protection objectives detailed in the Yadkin-Pee Dee River Basinwide Water Quality Plan, 2008.

8.1.1. Designed Channel Classification and/ or Wetland Type

Reach 1

The proposed channel for Reach 1 is merely a continuation of the channel immediately upstream of it, only in a proper location. The existing channel is appropriately sized and has a stable bed as it sits on bedrock; however the right bank is vertical and extremely high. Additionally the valley makes a turn to the right and the channel currently runs directly into the valley wall forcing a 90 degree right turn. The proposed channel is slightly entrenched and will have a width to depth ratio of 26. Additionally the reach will have length added in the form of a curve to replace the 90 degree turn. This will reduce the overall reach slope to 0.38 percent, but will increase the overall reach sinuosity to 1.25. The substrate of the reach will remain a gravel bed. These factors key out to a Rosgen classification of a "C4" stream. The design for this reach is shown on the design plan sheets in Section 14.

Reach 3

The section of Reach 3 to be restored is currently a long curved reach; however, the proposed channel will bypass the curve that is cutting into the high bank and reconnect the stream to its floodplain. The entrenchment ratio will be greater than 2.2 and the width to depth ratio is proposed at 22. This width to depth ratio pushes the lower limit of the reference data, but sections immediately upstream of the impaired reach had even smaller width to depth ratios and were stable. With the implementation of the design, Reach 3's slope will decrease to 0.46 percent, and the sinuosity will decrease to 1.09. The channel will continue to be considered a gravel bed stream. These factors key out to a Rosgen classification of a "C4" stream for the design channel. The design for this reach is shown on the design plan sheets in Section 14.

<u>UT 7</u>

From immediately downstream of its plunge pool at the foot of the two culverts under Old Mine Road to its confluence with Little Buffalo Creek, UT 7 is disconnected from its floodplain. Elevating this reach will reconnect the two and the result will be an entrenchment ratio greater than 2.2 and the width to depth ratio is proposed at 26. Again this is slightly

narrower and deeper than the reference, but this is to ensure that the reach is able to move some of the larger particles within its bedload. The design channel will have a sinuosity of 1.17 and an overall slope of 0.68 percent. More specifically, the majority of the stream will have a 0.16 percent slope and the step pool section transitioning to the tie in point just about Little Buffalo Creek will have a slope of 3.00 percent. The new channel will be a gravel bed stream that is classified as a Rosgen classification of a "C4" stream. The design for this reach is shown on the design plan sheets in Section 14.

8.1.2. <u>Target Wetland Communities / Buffer Communities</u>

In the areas on Site of agricultural land where the riparian buffer forest canopy is noncontiguous, seedlings of native woody species will be planted. There are no target wetland communities for this project. The goal of the planting scheme will be to establish a riparian forest community consistent with a Piedmont/Mountain Bottomland Forest and to complement the existing riparian vegetation.

8.2. <u>Sediment Transport Analysis</u>

The energy a stream has to transport sediment (or stream power) is directly related to two factors: discharge and slope. As a stream progresses from upstream to downstream, typically its discharge increases and its slope decreases. This dynamic influences the stream's overall power, as well as the stream's balance of the two principal components of its sediment load: bed load and wash load.

As a check that the proposed design will create a stable channel that will not aggrade or degrade over time, but adjusts within stable limits, the competence of the restored channels was evaluated. Sediment transport competency is a measure of the stream's ability to move a particular grain size and is measured in force (lbs/ft^2) .

For the purposes of this report, the following calculations are used to make the competence prediction:

 $\tau = \gamma RS$

Shear Stress

Where:

 τ = Shear stress (lb/ft²) γ = specific gravity of water (62.4 lb/ft³) R= Hydraulic radius (ft) S = Slope (ft/ft)

Dimensionless Shear stress

$$\tau_c^* = \frac{\tau}{(\rho_s - \rho_w)gD_{50}}$$

Where:

 τ_c^* = Dimensionless shear stress ρ_s = density of rock ρ_w = density of water g = acceleration due to gravity (ft/s) D₅₀ = Median grain Size The table below summarizes the existing and proposed sediment transport competency calculations for the restoration reaches. Enhancement reaches were not analyzed because they are currently stable with respect to sediment transport. For each restoration reach, the proposed conditions reduce the shear forces acting on the channel bottom, resulting in a slight reduction in the grain size that the channel can mobilize. The median movable grain size is still within the gravel range in each case. The bankfull shear stress predicts that each restored reach will be capable of moving particles ranging from 20 - 33 mm, closely corresponding to the existing material on site. The proposed channel dimensions will not increase the potential for vertical incision, but rather will reduce this tendency. Additionally, the use of constructed riffle and pool features and structures throughout the proposed restoration areas will provide additional stability.

	Reach 1 Upper Restoration Area		Read Lower Re Are	storation	UT7	
	Existing	Proposed	Existing	Proposed	Existing	Proposed
Hydraulic Radius (ft)	1.14	1.35	1.48	1.76	0.96	0.96
Slope (ft/ft)	0.0047	0.0038	0.0067	0.0047	0.008	0.0068
Dimensionless shear stress	0.35	0.32	0.62	0.52	0.48	0.41
Median Movable Particle at Incipient Motion (mm)	21	20	38	33	30	26

8.3. <u>HEC-RAS Analysis</u>

A hydrologic and hydraulic analysis of Little Buffalo Creek was conducted to verify that the proposed restored Little Buffalo Creek dimensions developed from reference reach and regional curve data are appropriate and to determine what, if any, impacts will occur off-site as a result of the proposed creek/tributary widening and realignment. The hydrologic analysis (surface water hydrology) of Little Buffalo Creek was performed using the United States Army Corps of Engineers Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) model, which yielded the peak flood discharges for four storm events (1.5-year, 2-year, 5-year, and 100-year storm events). The peak discharges from the HEC-HMS model were used in the Hydrologic Engineering Center's River Analysis System (HEC-RAS) to determine water surface profiles, channel velocities and hydrologic trespass resulting from the project implementation. To be able to quantify the impacts that might occur as a result of channel modification, a baseline condition (existing condition) was first modeled and the results were then compared to the proposed channel modification. This information was utilized to develop the proposed restored channel geometry and to determine whether the restored stream will impact the existing condition flood elevations for various storm events. The following report sections describe the methodology, results and conclusions of the hydrologic and hydraulic analyses.

8.3.1. <u>Hydrologic Analysis</u>

The hydrologic analysis for this project incorporated available data and implemented USDA-NRCS recommended procedures to estimate the peak runoff rates for the site drainage system, consisting of an existing main channel of Little Buffalo Creek and its multiple tributaries. Stormwater peak runoff rates (design flood discharges) for the contributing drainage areas of Little Buffalo Creek and its tributaries were calculated using the HEC-HMS (version 3.4) computer program, which simulates precipitation-runoff processes. The Soil Conservation Service (SCS) runoff unit hydrograph approach was used for the flow computation methodology. The SCS method is based on the procedures outlined in the June 1986 edition of Technical Release 55–Urban Hydrology for Small Watersheds (TR-55), published by the U.S. Department of Agriculture, Soil Conservation Service (USDA, 1986).

8.3.1.1. Data Sources

Parameters used to estimate the stormwater peak runoff rates include the drainage area, the runoff curve number, and the watershed lag time. The drainage areas were delineated utilizing available site survey contours. Beyond the limits of the site survey, the survey contours were supplemented with additional 1-ft interval contours that were generated using the U.S. Geological Survey (USGS) National Elevation Dataset (NED) digital elevation models (DEM). The DEM data were imported into ArcMap 9.3, and 1-foot interval contours were generated using the Spatial Analyst and the 3D Analyst extensions. The total contributing drainage area to the downstream terminus of the project site was estimated to be approximately 6.25 square miles. The overall drainage area of the project site was divided into twenty-one sub-areas, which first discharge to the multiple tributaries before finally emptying to the main Little Buffalo Creek. The drainage area was divided based on the available topographic and existing drainage information. Delineated drainage areas for existing and proposed conditions are shown in Appendix 8I.

Soils information for the contributing drainage sub-areas was obtained from the United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Web Soil Survey for Cabarrus County and Rowan County, North Carolina. The land cover data was obtained from the USGS National Land Cover Dataset (NLCD). The land use classifications of the contributing drainage sub-areas of the Little Buffalo Creek project site are primarily agricultural land and woods. Field visits, supplemented by aerial photograph and county zoning map reviews, were performed to obtain existing and proposed land use information.

8.3.1.2. Weighted Curve Number Computations

The weighted runoff curve number computations were performed using the NRCS Soil-Cover Complex methodology, as outlined in TR-55 and the National Engineering Handbook. Area-weighted averages of runoff curve numbers for each unique combination of land use and soil type (soil-cover complex methodology) were computed to evaluate the weighted curve number for each sub-watershed. The curve numbers assigned for each unique land use-soil hydrologic soil group combination are adopted from TR-55, for antecedent moisture condition II (AMC-II). The weighted runoff curve number calculations for all sub-watersheds are included in Appendix 8B.

8.3.1.3. <u>Watershed Lag Time Computations</u>

The watershed lag time was calculated separately for each sub-watershed to better simulate the peak flow hydrograph responses and flow combinations through the project site. The NRCS Watershed Lag Method (also known as the NRCS Curve Number Method) was used to calculate the time of concentration and the watershed lag time for each sub-watershed, as outlined in the National Engineering Handbook and USDA-SCS Technical Paper 149. The lag time of a watershed may be thought of as a weighted time of concentration. It is related to the physical properties of a watershed such as area, length and slope. NRCS developed an empirical relationship between the watershed lag time and the time of concentration:

$$T_L = 0.6T_C$$
 where,

 T_L – Watershed lag time in hours

T_C – Watershed time of concentration in hours

Time of concentration for a watershed can be calculated using the empirical relationship:

$$T_C = \frac{L^{0.8} (\frac{1000}{CN} - 9)^{0.7}}{1140Y^{0.5}}$$
 where,

L - Watershed Hydraulic Length in feet

CN – Watershed Weighted Curve Number (Dimensionless)

Y - Average Watershed Slope (%), which can be determined using the formula

$$Y = \frac{(100CI)}{A}$$
 where,

C – Total length of contours inside the watershed, in feet

I - Contour Interval in feet, and

A - Drainage area in sq. feet

Based on this method, the lag time for each watershed is calculated. Watershed lag time and time of concentration calculation worksheets for existing and proposed conditions are included in Appendix 8C.

8.3.1.4. Hydrologic Reach Routing

The Muskingum-Cunge reach routing method was utilized to route the peak flows through open channel reaches between each hydrologic point of interest (POI). The input parameters for the Muskingum-Cunge method include reach length, slope, invert, shape of cross-sections and Manning's roughness coefficients for the routed reaches.

8.3.1.5. Peak Discharge Summary

The peak discharges were estimated based on a Type II rainfall distribution (TR-55, 1986), and using 24-Hour rainfall depths obtained from the National Oceanic and Atmospheric Administration (NOAA) Hydrometeorological Design Studies Center for the geometric centroid of the overall Little Buffalo Creek watershed (Appendix 8A). A log-log plot was performed with the NOAA reported 24-hour precipitation depths, to calculate the depth of the 1.5-year 24-Hour rainfall. A 1.5-year rainfall has a probability of exceedance of 66.7 percent in a given 1 year period. Detailed calculations and the logarithmic plot of the values are presented in Appendix 8E. Design flood discharges were determined for the 1.5-year, 2-year, 5-year, and

100-year storms at several points of interest along the existing and proposed reaches. A summary of the computed peak discharges for the modeled storm events at each hydrologic POI location along the existing and proposed reaches is presented in Appendix 8F. POI locations are depicted on the maps and exhibits included in Appendix 8I.

Four separate work areas are proposed inside the overall drainage area to realign and restore the main branch and two tributaries of Little Buffalo Creek. The sinuous longitudinal shapes of the proposed restoration channel sections will provide slightly longer watershed hydraulic lengths, which will result in a slight increase in the watershed lag times. The changes to peak flows will be negligible. A separate proposed condition hydrology was not developed for this study, and the changes in the channel geometry due to the restoration design were evaluated based on the peak flow values as calculated under the existing conditions, to obtain a conservative estimate of the resultant flow velocities and water surface elevations.

8.3.2. <u>Hydraulic Analysis</u>

The open channel hydraulics of Little Buffalo Creek and its major tributaries within the study area were modeled using the HEC-RAS (version 4.1.0) river modeling program, as detailed in the following report sections.

8.3.2.1. Hydraulic Geometry Model

A total of 38 surveyed cross-sections along Little Buffalo Creek and its tributaries were used to develop the HEC-RAS geometry base. In order to properly evaluate the site, the surveyed cross-sections were supplemented with additional cross-sections throughout Little Buffalo Creek and its tributaries based on field survey data, photogrammetric survey prepared by GeoData Corp, and USGS DEM where necessary. Cross-sections cut throughout the creek and tributaries were laid out perpendicularly to the centerline of the channel and the topographic contours. The HEC-RAS geometry took into consideration the three locations of the proposed restoration work. Cross-section locations are identified on the HEC-RAS Cross-Section Location Plan in Appendix 8I.

The proposed channel realignment work at the Little Buffalo Creek site is sub-divided into three areas (see Appendix 8I - HEC-RAS Cross-Section Location Plan), which will be referred to in subsequent discussions as Work Area 1, Work Area 2 and Work Area 3. To determine the impact of the proposed stream restoration work occurring at the three specific proposed work areas and beyond, the proposed condition model was created using the existing condition model cross-sections and roughness values, in addition to the proposed geometric and roughness parameters associated with the proposed stream restoration design. Using the same stream cross-section locations for both the existing and proposed condition models allowed for direct comparison of existing and proposed condition water surface profiles at a given crosssection, thereby allowing for a better evaluation of the hydraulic impacts of the proposed stream restoration on adjacent properties.

Roughness coefficients (Manning's n-values) were calculated based on field data and verified by comparing the results to the HEC-RAS Hydraulic Reference Handbook (USACE, 2002). For the existing condition model, the roughness coefficients selected for the main channel varied from 0.035 to 0.055. The Manning's n-values selected for the overbanks ranged from 0.030 to 0.08 to represent no crop lands, farmlands, and forested areas.

A concrete liner exists in a fourth area, Work Area 4, which will be removed under proposed condition as part of the stream restoration work. A Manning's n-value of 0.013 was selected for this material under existing condition.

For the proposed condition model, the roughness coefficient selected for the main channel of the proposed work areas were equivalent to the existing condition roughness coefficient, as the channel bed material will be the same as the existing bed material. A roughness coefficient of 0.10 was selected for the adjacent floodplain areas of the proposed streams to represent the proposed fifty-foot forested buffers on both sides of the proposed channels. Outside of the fifty-foot proposed forested buffers, Manning's roughness coefficients for the floodplains remained the same as existing condition.

To account for the series of proposed step pools at Work Area 3, a roughness coefficient of 0.050 was used, which was representative of cobbles with boulders so as to mimic the proposed logs in the channel. This roughness value was chosen as the most representative value for the step pool design to account for energy dissipation. No modifications to roughness coefficients were made outside of the proposed work areas.

The HEC-RAS model included nine surveyed hydraulic structures for the existing condition model, which were maintained in the proposed conditions model, as the hydraulic structures will remain in place. A wooden bridge exists on Old Mine Road and two 92"x138" culverts exist on Kluttz Road at their respective crossings of Little Buffalo Creek. The remaining seven hydraulic structures are CMP and RCP culverts of various sizes located along the tributaries that discharge to the main channel. Locations of the hydraulic structures modeled are shown in Appendix 8I – HEC-RAS Cross-section Location Plan.

In addition, the proposed condition model took into consideration the proposed ditch plugs at the proposed work areas as described previously in this report, using the Obstruction tool in HEC-RAS to account for the blockage.

8.3.2.2. <u>HEC-RAS Peak Flow Loading Points Summary</u>

The design floods (peak discharges) that were entered into the HEC-RAS Steady Flow Data Editor were developed from the hydrologic POI locations, as modeled in the HEC-HMS computer program (Appendices 8F and 8G). A steady-state flow simulation (i.e., flow rate not changing with time) was utilized, and normal depth boundary conditions were specified for both the upstream-most and downstream-most cross-sections.

The peak flows generated from the hydrographs in the HEC-HMS model were specified in the HEC-RAS Steady Flow data at appropriate loading points (junctions) along the reaches, for the various modeled storm events.

The peak flow coded inputs for existing and proposed conditions remained the same, as the design of the three proposed reaches did not affect the overall hydrology of the site as described in Section 8.3.1.5. Appendix 8G presents a summary of the HEC-RAS peak flow inputs along the reaches associated with the HEC-HMS POIs.

8.3.2.3. <u>Hydraulic Modeling Results</u>

8.3.8.3.1 <u>Work Area 1</u>

Appendix 8H provides a summary of the HEC-RAS modeling results for existing and proposed conditions for Little Buffalo Creek Work Area 1. It should be noted that even though the same general cross-section locations were used for both the existing and proposed condition models, the existing and proposed "stationing" of each cross-section differed from one another in some areas within the proposed work areas as a result of the proposed changes in the main channel alignment and associated increase in sinuosity. For this reason, the HEC-RAS modeling results summary (Appendix 8H) refers to the proposed condition stationing of each cross-section. As evidenced in Appendix 8H, increases in water surface elevation occurred at cross-sections 11+16 and 13+90 (Main-Reach 1 River Station 4.6 and 3.7, respectively) for the 100-year, 5-year, 2-year and 1.5-year storm under proposed condition. The increases in water surface elevations at cross-section 11+16 are however minor and within the predefined minimum error water surface model default tolerance error of 0.3 ft. Increases in elevations under proposed conditions at cross-section 13+90 can be attributed to the proposed logs slightly downstream of cross-section 13+90. The logs will act as a block to slow velocities in the channel, but will increase the water surface elevation slightly as shown. The increase in water surface elevation will be primarily contained within the channel banks and 50 foot forest buffer and should not impact existing nearby buildings or structures.

The velocity summary presented in Appendix H shows that the average velocities within the proposed main reach exhibits a decrease compared to existing condition velocities with the exception of the cross-sections directly upstream of Work Area 1 and cross-section 13+90 (Main-Reach 1 River Station 3.7). An overall decrease in average velocities within the main channel is expected as the cross-sectional area of the proposed channel is larger than the existing channel. The increases in velocity for the cross-section directly upstream of Work Area 1 can be attributed to the transition between Work Area 1 and the existing channel. The existing channel cross-sectional area is smaller than the proposed channel cross-sectional area. Based on the fundamental concepts of the Continuity Equation, the velocity is expected to increase at the cross-section directly upstream of Work Area 1 under proposed condition in order to satisfy the continuity of flow as it is transitioning into cross-section 11+16 (Main-Reach 1 River Station 4.6), which has a larger cross-sectional area. The same concept can be applied to the minor increase in velocity for cross-section 13+90 (Main-Reach 1 River Station 3.6) as the transition into the existing channels (smaller cross-sectional area) is expected to result in slight increases in velocity. This slight increase in velocity appears to be localized as the difference in velocity between existing and proposed conditions reduces to zero further downstream at cross-section labeled as Main-Reach 1 River Station 3.

8.3.8.3.2 <u>Work Area 2</u>

Appendix 8H provides a summary of the HEC-RAS modeling results for existing and proposed conditions for Little Buffalo Creek Work Area 2. As explained in Section 8.3.2.3.1, the existing and proposed "stationing" of each cross-section differed from one another in some areas, as a result of the proposed changes in the main channel alignment and associated increase in sinuosity. As evidenced in Appendix 8H, an overall decrease in water surface elevation resulted with the proposed realignment at Work Area 2. The only increase in water surface elevation occurs at cross-section 12+60 with the largest resulting in a 0.09 ft increase for the 2-year storm. The increases in water surface elevations are however minor and within the minimum error water surface model default tolerance error of 0.3 ft. This negligible impact

is likely due to the transitioning between the larger proposed cross-sectional area and the smaller existing cross-sectional area, therefore reducing the wetted area.

As shown in Appendix 8H, there are some increases in velocities occurring at cross-section 10+05 (Main-Reach 2 River Station 2) for the 100-year and 5-year storm under proposed condition. Cross-section 10+05 is the upstream transition between the existing channel and proposed channel. The existing channel cross-sectional area is smaller than the proposed channel cross-sectional area. Based on the fundamental concepts of the Continuity Equation, the velocity is expected to increase at the cross-section directly upstream of Work Area 2 under proposed condition in order to satisfy the continuity of flow as it is transitioning into cross-section 11+08 (Main-Reach 2 River Station 1.5), which has a larger cross-sectional area. However, the velocity increase at cross-section 10+05 appears to be localized as the main channel velocities remain essentially the same as existing conditions as shown in Appendix 8H.

8.3.2.3.3. Work Area 3

Appendix 8H below provides a summary of the HEC-RAS modeling results for existing and proposed conditions for Little Buffalo Creek Tributary Work Area 3. As explained in section 8.3.2.3.1, the existing and proposed "stationing" of each cross-section differed from one another at some areas, as a result of the proposed changes in the main channel alignment and associated increase in sinuosity. Work Area 3 consists of various proposed activities including proposed ditch plugs at specific locations of the existing channel, proposed riffles/pool design, rising of the channel bed compared to existing channel bed, and a step pool design. Work Area 3 can also be considered to have the most significant change in re-routing the existing channel compared to all the other proposed Work Areas.

As evidenced in Appendix 8H, some increases and decrease in water surface elevations were observed. The increases in water surface elevations were observed between cross-section 14+20 (LBC 4 River Station 1.7) and cross-section 17+12 (LBC 4 River Station 1.3). As shown in Appendix H, the largest impact occurs at cross-section 16+37 (LBC 4 River Station 1.5) with a 1.31 ft increase in water surface elevation for the 1.5-year storm event. The water surface elevation increases occurring at this location can be largely associated with the proposed ditch plugging of the existing channel. Proposed ditch plugs will be installed at the existing channels located on cross-section 17+12 (LBC 4 River Station 1.3) and Cross-section 18+78 (LBC 6 River Station 3). The ditch plugging of the existing channels at these locations will prevent water from entering into the existing channels, thus reducing a large amount of storage available within the floodplain. This impact extends upstream of cross-section 17+12 (LBC 4 River Station 1.3) until cross-section 12+52 (LBC 4 River Station 1.8) where the proposed impact eventually dissipates as shown in Appendix 8H. From the results, the proposed ditch plugs appear have a pronounced effect on the lower storm events as the proposed impacts significantly reduce for the 100-year storm event. It should be noted that even though there are significant increases in surface water elevations for the lower storm events (1.5 to 5 year storms), the increases are primarily contained within the banks of the stream and are not expected to impact areas adjacent and outside of the project boundary.

The velocity summary indicates a general decrease in main channel velocity for all storm events at Work Area 3 as expected due to the effects of the proposed riffles/pool design, the fifty-foot forested buffers surrounding both sides of the proposed channel, and the proposed step pool design. The only increases in velocity under proposed condition occurs at cross-section 17+12 (LBC 4 River Station 1.3) and cross-section 18+78 (LBC 6 River Station 3).

Unlike the existing condition where the existing channel is relatively straight, all three cross sections under proposed condition are located at or near bends of the meandering channel and the increases in velocities at these locations can be attributed to the bends where velocity of the channel is highest. However, the velocities within the main channel eventually dissipate downstream by cross-section 19+47 (LBC 6 River Station 2) where the proposed step pool begins.

8.3.2.3.4. Work Area 4

Work Area 4 consists of a section of streambanks requiring removal of an existing concrete liner along the right bank of the existing channel (toe of slope to right bank) and slightly increased cross-sectional area while maintaining the same channel alignment. Appendix H provides a summary of the HEC-RAS modeling results for existing and proposed conditions for Little Buffalo Creek Tributary Work Area 4. As evidenced in Appendix 8H, an overall decrease in water surface elevations occurs with the exception of the following cross-sections: Main-Reach 4 River Station 0.9 and Main-Reach 4 River Station 0.5.

The increase in water surface elevations for Main-Reach 4 River Station 0.9 and Main-Reach 4 River Station 0.5 are considered minor with the largest increase yielding 0.24 feet under proposed condition. The minor increases observed can be attributed to the removal of the existing concrete liner and the proposed pools within the proposed channel. Under proposed conditions, the channel bed will be restored to existing channel conditions with small pools, which is modeled with a Manning's n roughness coefficient of 0.055. Under existing conditions, the concrete liner is modeled with a Manning's n roughness coefficient of 0.013. Although the concrete liner under existing condition exists only along the right bank of the existing channel (toe of slope to right bank), this significant difference between the roughness parameter results in a slightly increased water surface elevation under the proposed condition. The increases in water surface elevations are within the minimum error water surface model default tolerance error of 0.3 ft.

As shown in Appendix 8H, increases in velocity are observed at the upstream transition area of Work Area 4. This is most likely attributed to the increase in slope from the existing channel to the proposed channel. However, within the proposed channel, a decrease in channel velocity results as expected since the proposed condition has a slightly larger cross-sectional area and a rougher channel bed compared to existing with the addition of the pools and the removal of the concrete liner.

8.3.3. Existing Bridges and Hydraulic Structures

In addition to evaluating the flooding impacts at the cross-sections along the proposed work areas, existing bridges and hydraulic structures along or within the vicinity of the proposed reaches were evaluated to determine whether adverse impacts would occur as a result of the proposed stream realignment activities. Appendix 8H presents the computed water surface elevations and velocity summary for the hydraulic structures evaluated.

A wooden bridge exists on Old Mine Road downstream of Work Area 1. The modeling results indicate no impact in the water surface elevations and velocities under proposed condition, with the exception of a negligible 0.01 ft water surface elevation increase and a decrease of 0.01 ft/s velocity for the 1.5-year storm at the downstream cross-section, as summarized in

Appendix H. No impact is expected at this wooden bridge as the proposed Work Area 1 is approximately 653 ft upstream of the wooden bridge. As the modeling results indicate, proposed impacts have already diminished by cross-section Main-Reach 1 River Station 3.3, which is located approximately 472 ft upstream of the wooden bridge.

As described in Section 8.3.2.3.1, two 92"x138" CMP culverts exist on Kluttz Road, at the most downstream section of the overall project site. As evidenced in Appendix H, the modeling results indicate that no impact is anticipated under proposed conditions, as the flood elevation differences between existing and proposed conditions do not change for any of the modeled storm events. In addition, the main channel velocities for the upstream and downstream bounding cross-sections under proposed conditions remained the same as under existing conditions.

Additionally, two hydraulic structures exist upstream of the Work Area 3 tributaries along Old Mine Road. The modeling results indicate an overall decrease in flood elevations, indicating no adverse impacts. One hydraulic structure consists of two 8.5' CMP culverts as shown in Appendix 8I. The modeling results indicate that no adverse impact is anticipated under proposed conditions. No increase in water surface elevations is expected at the bounding upstream cross-section of the hydraulic structure (LBC Trib 4 River Station 3), as the results indicate no changes in water surface elevations for all storm events evaluated. At the downstream bounding cross-section (LBC Trib 4 River Station 2.9), the water surface elevation for the 2-year decrease under proposed conditions; however, these impacts are considered negligible, since it is 0.02 ft. For the 5-year storm and the 1.5 year, the water surface elevation at the downstream bounding cross-section exhibits a 0.03 ft and a 0.04 ft, respectively, increase under proposed conditions, which are also considered negligible. The 100-year storm event results indicate zero impact in water surface elevations under proposed condition. As shown in Appendix 8H, there are no velocity changes under proposed condition at the upstream face of the hydraulic structure. Downstream of the hydraulic structure (crosssection LBC Trib 4 River Station 2.9), the impacts in velocity occur at the 5-year, 2-year and 1.5-year storm event, which yields a maximum increase in velocity of 0.03 ft/s and a maximum decrease in velocity of 0.06 ft/s. These impacts, which can be considered negligible, can be attributed to the transition from the existing channel to the proposed channel, which begins at cross-section 11+95 (LBC 4 River Station 1.85).

The second hydraulic structure upstream of Work Area 3 consists of a 72"x108" CMP culvert. As evidenced in Appendix 8H, the modeling results indicate that no impact is anticipated under proposed conditions, as the flood elevation differences between existing and proposed conditions do not change for any of the modeled storm events. In addition, the main channel velocities for the upstream and downstream bounding cross-sections under proposed conditions remained the same as under existing conditions.

HEC-RAS results for the remaining hydraulic structures (labeled as #2, 3, 4, 5, and 6 in Appendix I - HEC-RAS Cross-Section Location Plan) were not evaluated as the hydraulic structures were located at the headwater of existing tributaries that were not impacted by any proposed work.

Overall, as the modeling results indicate in Appendix 8H, no adverse impacts are expected at the hydraulic structures along or within the vicinity of the proposed work areas.

8.3.4. Hydrologic Trespass for the 100-Year Storm Event

In analyzing for hydrologic trespass, the 100-year storm event was selected to determine whether the 100-year flood elevation extends outside of the adjacent properties as a result of the proposed stream modifications. As evidenced in Appendix 8H, major impacts for the 100-year flood elevations are not anticipated as the modeling results indicate that there is an overall decrease in the 100-yr flood elevations under proposed conditions with the exception of a few localized areas in Work Area 1, Work Area 3 and Work Area 4.

As evidenced in section 8.3.3, water surface elevation impacts are not anticipated for the 100year storm event at the existing bridges and hydraulic structures (locations shown on Appendix 8I) as there is no difference in the 100-year flood elevations between existing and proposed conditions. Additionally, there is no difference in the 100-year flood elevations at the most upstream and downstream end of the project site as shown in Appendix 8H.

In Work Area 1, the cross-section 13+90 (Main-Reach 1 River Station 3.6) results in a 0.61 ft increase in the 100-year flood elevation under proposed conditions. After evaluation of the surrounding topography, this 0.61 ft increase under proposed condition has a minimal impact as the surrounding areas reach very high grounds with steep slopes on both sides of the proposed stream significantly minimizing the spread of flood water. Cross-section 11+16 (Main-Reach 1 River Station 4.6) results in a 0.05 ft increase in the 100-year flood elevation and cross-section Main-Reach 1 River Station 4.9 results in a 0.14 ft increase. Both of these increases are under the minimum error water surface model default tolerance error of 0.3 ft. Again, Work Area 1 is also surrounded by high grounds that will minimize the spread of flood water.

In Work Area 3, cross-section 12+52 (LBC 4 River Station 1.8) results in a 0.11 ft increase in the 100-year flood elevation under proposed conditions. After evaluation of the surrounding topography, this 0.11 ft increase under proposed condition has a minimal impact as the surrounding areas reach very high grounds with steep slopes on both sides of the proposed stream significantly minimizing the spread of flood water. The only other increase in the 100-yr flood elevation occurring at Work Area 3 is at cross-section 16+37 (LBC River Station 1.5), which results in a 0.08 ft increase in the 100-year flood elevation under proposed conditions. As mentioned previously, Work Area 3 is surrounded by high grounds with steep slopes on both sides of the proposed stream. The 0.08 ft increase in the 100-year flood elevation under proposed conditions are sufficient.

In Work Area 4, cross-section Main-Reach 4 River Station 1 exhibits an increase of 0.24 ft for the 100-year flood elevation under proposed conditions and this increase is below the minimum error water surface model default tolerance error of 0.3 ft. This localized increase will also have minimal spread of flood water due to the surrounding topography. Both sides of the proposed stream extend to extremely steep slopes reaching high grounds with elevations surpassing the 100-year flood elevation under proposed conditions.

The HEC-RAS modeling results indicate that the 100-yr flood elevations actually decrease or do not change under proposed conditions, with the exception of a few minor increases occurring at localized spots described above. After evaluation of the 100-yr flood elevation results, no hydrologic trespass issues are anticipated under proposed conditions.

8.3.5. Conclusions

The hydrologic and hydraulic analyses of the Little Buffalo Creek restoration show that no adverse impacts are anticipated for the 1.5-year, 2-year, 5-year, and 100-year storm events. The HEC-RAS modeling results indicate negligible (a 0.01 ft increase in the 100-year flood) to no increase in water surface elevations at the most upstream cross-section (Main Reach 1 River Station 6) and most downstream cross-section (Main Reach 5 River Station 1) of the overall project site as shown in Appendix 8H. Therefore, adverse flooding impacts are not anticipated to result upstream or downstream of the proposed project site.

As the existing Little Buffalo Creek reach within the project area does not currently have a FEMA-delineated floodplain or floodway, the Conditional Letter of Map Revision (CLOMR)/LOMR process will not be applicable to this project.

8.4 <u>Stormwater Best Management Practices</u>

The project site is almost entirely pastureland for cattle. There are a few small barns and buildings within the site and gravel and paved roads around it. Aside from the precipitation that falls directly on the ponds and stream channel itself, all stormwater generated onsite will be funneled through a riparian buffer on either Little Buffalo Creek or one of its tributaries.

Although not a stormwater best management practice (BMP), but rather an agricultural BMP, drinking wells will be installed now that the cattle are excluded from the stream.

8.5 <u>Hydrological Modifications (for wetland restoration or enhancement)</u>

No wetlands were identified on Site; therefore, hydrological modifications are not necessary.

8.6 <u>Soil Restoration</u>

At this point in time no soil restoration is planned onsite; nearly all of the areas to be planted are existing cattle pasture and aside from minimal compaction due to livestock intrusion, should be suitable for planting. In the area where new channel is proposed, the design does not include excavation into the subsoils and no soil restoration is planned in these sections.

8.7 <u>Natural Plant Community Restoration</u>

8.7.1 <u>Narrative of Plant Community Restoration</u>

In general, the goal of the planting scheme will be to establish a riparian forest community consistent with a Piedmont/Mountain Bottomland Forest. Berger's planting plan will incorporate the use of native trees and shrubs.

8.7.2 <u>Seeding Plan Summary for Vegetation Communities and Zones</u>

For areas of restoration, an herbaceous seed mix will be used to cover the old portions of the stream channel.

8.7.3 <u>Planting Plan Summary for Vegetation Communities and Zones</u>

Tree species will be established through the planting of live stakes and bare root or tubeling seedlings of hardwood species native to the area. The establishment of species will follow the Guidelines for Riparian Buffer Restoration (NCEEP 2004). The overall goal of the planting density is to attain a minimum density of 260 trees per acre at maturity (five years). Planting stock will be obtained from sources within 200 miles of the site. Target plant species can be found in Table 7 of Section 12 in the report.

There will be three planting zones. Zone 1 includes the areas of the inner stream berm up to bankfull in the restoration and enhancement level I mitigation areas. This zone will be planted with livestakes to provide stabilization to the streambank. Zone 1 will consist of black willows (Salix nigra) and silky dogwood live stakes planted at 2000 stems per acre. Stakes will be installed along both banks on five-foot centers in a triangular pattern. Zone 2 includes the bankfull bench of the stream and will be planted with bare root or tubeling plants. Zone 2 will consist of nine-foot spacing on center bare root or tubeling of species such as hazel alder, river birch, ironwood (Carpinus caroliniana), silky dogwood, green ash, spicebush, sycamore, black willow, and arrowwood (Viburnum dentatum). Zone 3 includes the area above the bankfull bench to 50 feet from the top of bank. This zone will also be planted with bare root or tubeling plants. Zone 3 will consist of nine-foot spacing on center bare root or tubeling of species such as ironwood, sugarberry (*Celtis laevigata*), redbud, green ash, sycamore and tulip poplar. Both Zone 2 and 3 will be planted at 500 stems per acre with species consistent with a Piedmont/Mountain Bottomland Forest to enhance the existing riparian buffer. Zones 2 and 3 will be plants for all levels of mitigation except for preservation. The planting summary is detailed in Table 7 of Section 12.0 and shown on design sheets 30 to 41 of Section 14.

Seedlings will be established in a naturalized pattern to avoid creating rows and monotypic stands. Tree species will be established within zones that reflect the preferable hydrologic regimes of each species; areas with the longer periods of inundation will be planted with flood tolerant species. To encourage a higher diversity of woody plant species on the site, planting patterns will include leaving small gaps to provide open areas for recruitment.

8.7.4 <u>Narrative of species management</u>

A few areas of invasive floral species were identified in patchy distributions at various densities, particularly along the banks of the mainstem and UT 7. Invasive species along the mainstem include: multiflora rose (*Rosa multiflora*) and Chinese privet. Invasive species along UT 7 include: tree of heaven, mimosa, microstegium, and Chinese privet. No specific control effort is detailed for these species; however, the woody species will be removed during construction and remaining root stumps treated with an appropriate herbicide.

9. Performance Criteria

9.1 <u>Streams</u>

For stream hydrology, a minimum of two bankfull events must be documented within the standard 5-year monitoring period. In order for the monitoring to be considered complete, the two verification events must occur in separate monitoring years.

All of the morphologic and channel stability parameters will be evaluated in the context of hydrologic events to which the system is exposed.

• Dimension – General maintenance of a stable cross-section and hydrologic access to the floodplain features over the course of the monitoring period will generally represent success in dimensional stability. For stream dimension, cross-sectional overlays and key parameters such as cross-sectional area, and the channel's width to depth ratios should demonstrate relative stability in order to be deemed successful.

• Pattern – Pattern features should show little adjustment over the standard 5 year monitoring period. Rates of lateral migration need to be moderate.

• Profile – For the channels' profile, the reach under assessment should not demonstrate any trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with maintenance around design distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes.

• Substrate and Sediment Transport – Substrate measurements should indicate progression towards, or maintenance of the known distributions from the design phase. Sediment Transport should be deemed successful in by absence of any significant trend in the aggradation or depositional potential of the channel.

9.2 <u>Vegetation</u>

Survival of woody species planted at mitigation sites should be at least 320 stems/acre through year three. A 10 percent mortality rate will be accepted in year four (288 stems/acre) and another 10 percent in year five resulting in a required survival rate of 260 trees/acre through year five. This is consistent with Wilmington District (1993) guidance for wetland mitigation (USACE 2003).

9.3 <u>Schedule/Reporting</u>

Berger will be responsible for the success of the restoration project. Annual monitoring of the site will be carried out for a period of five years after completion of all restoration activities, or until the restoration site is deemed successful. Monitoring will be conducted each year and the subsequent report will be submitted to NCEEP before December 31 of that year. Required documents will also be delivered to Carolina Vegetation Survey as required. Direct sampling and measurement techniques will be employed as well as photo-documentation. Based on field observations and annual monitoring results, Berger will determine if actions are required to reach or exceed the performance criteria outlined in the Mitigation Plan. Monitoring Reports (including the Summary Report) will follow the format established in the NCEEP Full Delivery Templates Version 1.2 (11116/06), which will be obtained from the EEP Project Manager. Additionally, Berger will utilize EEP's monitoring template and guidance V-1.3 (01/15/2010) for this project, available on the website at http://portal.ncdenr.org/web/eep/fd-forms-templates.

10. Preliminary Monitoring

The surface water hydrology at the Little Buffalo Creek Stream Restoration site will be monitored using a stream gage with an automatic data logger. The gage will be established to compare the surface water level in the streams to the mean bankfull stage. The performance criteria prescribed in the Stream Mitigation Guidelines (USACE 2003) requires that at least two bankfull events are documented during the five year monitoring period. If less than two bankfull events occur during the first five years, the annual monitoring will be required to continue until the second bankfull event is documented. The two documented bankfull events must occur during separate monitoring years.

Stream channel stability will be determined by measuring the dimension, pattern, and profile of the stream to determine the rates, magnitude, and direction of stream adjustments. Rosgen methodologies of determining stream stability will be employed. Monumented cross-sections will be installed and surveyed on a yearly basis to monitor vertical bed stability in accordance with NCDENR stream monitoring guidelines. A longitudinal profile will be surveyed along the thalweg of the channel to capture the bed slope and determine the level of aggradation or degradation and capture any changes in the pool/riffle sequence. The stream pattern will be evaluated by measuring the sinuosity of the channel, which will be calculated by dividing the channel length determined during the long profile by the straight-line valley length. Pebble counts will also be performed to assess changes in bed material distribution (i.e., finer substrate in pools and coarser substrate in riffles). As part of the pre-construction visual inspection and during monitoring year 5, a detailed BEHI and Near Bank Stress (NBS) assessment will be performed. The entire project will be classified into the BEHI erosion hazard categories and accompanied by an NBS assessment for the purpose of describing sediment export estimates (tonnage per annum).

Problem areas will be identified based on a visual inspection of vegetative and structural characteristics. Vegetative problem areas will be identified as either lacking vegetation or containing exotic vegetation and the probable cause of the problem will be described, shown in a plan view, and photographed. Invasive species will be observed and documented each monitoring year in the areas of restoration and enhancement level I. If invasive plant populations become problematic, Berger will manage and control them as necessary by mechanical and/or chemical methods. Any vegetation control requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations. Structural problem areas will be identified in more descriptive terms by individual issue. Aggradation or degradation of channel slope, instream and engineered structures, bank erosions and other physical stability problems will be measured, described, shown in plan view, and photographed.

Vegetative establishment will be monitored through the use of permanent sample quadrats established at random locations. The quadrats will be monitored annually employing techniques described per the CVS-EEP Protocol for Recording Vegetation- VERSION 4.0 as published at NCEEP's website: <u>http://portal.ncdenr.org/web/eep/process-and-protocol</u>. One representative digital photo of each sample plot will be taken the same day as the vegetative sampling is conducted. A series of fixed photograph stations will be established upon the asbuilt survey to record a set of representative views during subsequent monitoring years.

10.1 Anticipated Performance Criteria

As stated above, Berger intends to follow the 2003 Stream Mitigation Guidelines and the 2006 CVS-EEP Vegetation Monitoring Protocol as the protocols for monitoring. More specifically, Berger is planning the following assessments:

Cross Sections

- LBC Stations 21+25 through 25+75, 2 riffle and 2 pool cross sections,
- LBC Stations 48+00 through 51+00, 1 riffle and 1 pool cross sections,
- LBC Stations 64+00 through 65+25, 1 riffle and 1 pool cross sections,
- UT 3 Stations 10+00 through 12+00, 1 riffle and 1 pool cross sections,
- UT 3 Stations 14+00 through 20+00, 1 riffle and 1 pool cross sections,
- UT 4 Stations 13+60 through 18+28, 1 riffle and 1 pool cross sections,
- UT 7 Stations 12+00 through 23+00, 2 riffle, 2 pool, 2 step-pool cross sections.

Longitudinal Profiles

- LBC Stations 20+00 through 27+00, no less than 500 linear feet,
- LBC Stations 47+00 through 52+00, no less than 300 linear feet, and
- UT 7 Stations 10+00 through 23+00, no less than 1,100 linear feet.

Vegetation Plots

Using the CVS-EEP protocol, Berger has determined that 18 vegetation plots will be required within the restoration and enhancement reaches onsite. No vegetation plots will be established in preservation reaches. These plots will be monitored using Levels 1 and 2 plot sampling. The location of these plots has not been established yet.

Photo Points

Berger expects to install and monitor 24 photo points throughout the site. The photo points will capture restoration, enhancement, and preservation reaches and will be in addition to photographs taken at cross sections and vegetation plots. The location of these plots has not been established yet.

11. <u>References</u>

- Environmental Laboratory 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Griffith, G.E. Omernik, J.M., Comstock, J.A., Schafale, M.P., McNab, W.H., Lenat, D.R., MacPherson, T.F. 2002. Ecoregions of North Carolina, U.S. Environmental Protection Agency, Corvallis, OR, (map scale 1:1,500,000).
- Harman, W.H. et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. Regional Curves for the three physiographic regions of North Carolina. Available URLs: http://www.bae.ncsu.edu/programs/extension/wqg/srp/techresources.html http://www.bae.ncsu.edu/programs/extension/wqg/srp/rural_pied_paper.html
- NCDENR 2010. Natural Heritage Element Occurrences and Significant Natural Heritage Areas Shapefile, April 2010. North Carolina Natural Heritage Program, Division of Natural Resources Planning and Conservation, North Carolina Department of Environment and Natural Resources.
- NCDWQ 2007. Basinwide Assessment Report Yadkin River Basin. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Available URL: http://h2o.enr.state.nc.us/esb/Basinwide/YADBasinwide2007.pdf
- NCDWQ 2008a. Yadkin Pee Dee River Basin Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Available URL: http://h2o.enr.state.nc.us/basinwide/Neuse/2008/Yadkin2008.htm
- NCDWQ 2008b. North Carolina Final 2008 303(d) list. North Carolina Waterbodies Listed by Subbasin. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Available URL: http://portal.ncdenr.org/web/wq/ps/mtu/assessment
- NCDWQ 2010. North Carolina Waterbodies Reports. North Carolina Waterbodies Listed by County. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Available URL: http://h2o.enr.state.nc.us/bims/reports/basinsandwaterbodies/Cabarrus.pdf Last updated: July 24, 2010.
- NCEEP 2004. North Carolina Ecosystem Enhancement Program. Guidelines for Riparian Buffer Restoration. October 2004. Available URL: http://www.nceep.net/news/reports/buffers.pd
- NCEEP 2009a. North Carolina Ecosystem Enhancement Program Targeted Local Watersheds. Available URL: http://portal.ncdenr.org/web/eep/rbrps/yadkin

NCEEP 2009b. Lower Yadkin Pee Dee River Basin Restoration Priorities. Available URL: <u>http://portal.ncdenr.org/web/eep/rbrps/yadkin</u>

NCNHP 2010. North Carolina Natural Heritage Program. Natural Heritage Program List of Rare Plant Species of North Carolina. Office of Conservation and Community Affairs,

NC. Department of Environment and Natural Resources. Raleigh, NC. Available URL: http://nhpweb.enr.state.nc.us/search/county.html Accessed: August 11, 2010.

- Rosgen, Dave 2006. Watershed Assessment of River Stability and Sediment Supply (WARSSS), Pagosa Springs Colorado, Wildland Hydrology Books, 2006.
- Rosgen, Dave 2001. A Stream Channel Stability Assessment Methodology, Proceedings of the Seventh Federal Interagency Sedimentation Conference, Vol. 2, pp. II - 18-26, March 25-29, 2001, Reno, NV
- Rosgen, Dave 1996. Applied River Morphology. Pagosa Springs Colorado, Wildland Hydrology Books, 1996.
- Schafale, M.P. and A.S. Weakley 1990. Classification of the Natural Communities of North Carolina, A Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment, Health and Natural Resources. Raleigh, NC.
- USACE 2003. Stream Mitigation Guidelines. Prepared by: USACE, NCDWQ, USEPA, NCWRC.
- USDA, 2010. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/ accessed [August/2/2010].
- USDA 2009a. U.S. Department of Agriculture, Natural Resource Conservation Service. Soil Survey Geographic (SSURGO) database for Cabarrus County, North Carolina. 2009 Shapefiles. Available URL: http://SoilDataMart.nrcs.usda.gov/
- USDA 2009b. U.S. Department of Agriculture, Natural Resource Conservation Service. Soil Survey Geographic (SSURGO) database for Rowan County, North Carolina. 2009 Shapefiles. Available URL: http://SoilDataMart.nrcs.usda.gov/
- USDA 2005. US Department of Agriculture, Farm Service Agency. Aerial Photography Field Office. National High Altitude Program. 2005 NAIP05 Cabarrus County Aerial Images. Available URL: http://www.cabarruscounty.us/GIS/
- USDA 2006. US Department of Agriculture, Farm Service Agency. Aerial Photography Field Office. National High Altitude Program. 2006 NAIP06 Rowan County Aerial Images. Available URL: http://www.co.rowan.nc.us/GOVERNMENT/Departments/PlanningDevelopment/GIS/ta bid/257/Default.aspx
- USDA 1983. US Department of Agriculture, Farm Service Agency. Aerial Photography Field Office. National High Altitude Program. 1983 NHAP1 Aerial Images for Cabarrus and Rowan Counties. Image: HAP83-189-3; HAP93-189-4; HAP83-39-73; HAP83-39-74.
- USFWS 2008. List of Endangered, Threatened, Proposed and Candidate Species for the Southeast Region. Cabarrus County, North Carolina. Available URL:

http://www.fws.gov/nc-es/es/countyfr.html. Last updated: January 31, 2008. Accessed: August 11, 2010.

USGS 2010. USGS Water Resources. National Water Information System: Web Interface. Peak Streamflow for the Nation. USGS 02125000 BIG BEAR CR NR RICHFIELD, NC. Available URL:

 $http://nwis.waterdata.usgs.gov/nwis/peak?site_no=02125000\&agency_cd=USGS\&format=html$

Tables Table 1: Project Components Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147								
Reach ID	Existing Feet (linear feet)	Restoration Level and Ratio	Approach	Footage (linear feet)	Stationing	Buffer Area (acres)		
Reach 1	2,300	Restoration 1:1 Enhancement Level II 2.5:1	P1	438 R; 1862 EII	10+00 to 33+00	7.7		
Reach 2	1,248	Enhancement Level II 2.5:1	NA	1248 EII	33+62 to 46+10	3.8		
Reach 3	1,075	Restoration 1:1 Enhancement Level II 2.5:1	P1 P2	267 R; 808 EII	46+10 to 56+85	3.9		
Reach 4	841	Enhancement Level I 1.5:1 Enhancement Level II 2.5:1	P2 P2	120 EI; 721 EII	56+85 to 65+26	3.2		
Reach 5	952	Enhancement Level II 2.5:1	NA	952 EII;	65+26 to 74+78	2.7		
Reach 6	2053	Preservation 5:1	NA	2,053 P	75+05 to 82+48; 91+79 to 104+90	10.0		
UT 1	109	Enhancement Level II 2.5:1	NA	109 EII	10+00 to 11+09	0.1		
UT 2	951	Enhancement Level II 2.5:1 Preservation 5:1	NA	616 EII; 335 P	10+00 to 19+50	2.7		
UT 3	1,475	Restoration 1:1 Enhancement Level I 1.5:1 Enhancement Level II 2.5:1	P1 P2 P2	197 R; 515 EI; 763 EII	10+00 to 24+74	4.2		
UT 4	828	Enhancement Level I 1.5:1 Enhancement Level II 2.5:1	P2 P2	397 EI; 431 EII	10+00 to 18+28	1.9		
UT 5	184	Enhancement Level II 2.5:1	NA	184 EII	10+00 to 11+84	0.5		
UT 6	151	Enhancement Level II 2.5:1	NA	151 EII	10+00 to 11+51	0.4		
UT 7*	1,374	Restoration 1:1	P1	1,374 R	10+00 to 23+74	5.9		
UT 8*	100	Restoration 1:1	P1	100 R	10+00 to 23+74			

*UT 8 to UT7's flow was redirected to join UT7 at new location. Note: Stationing based off of proposed lengths; therefore it may not correspond to existing feet. Also, due to rounding some of the values when added may appear to be 1' short of total, this is purely a product of values being rounded to nearest linear foot.

Component Summations							
Restoration Level	Stream (linear feet)	Ratio	Stream Mitigation Units				
Restoration	2,376	1:1	2,376				
Enhancement Level I	1,032	1.5:1	688				
Enhancement Level II	7,845	2.5:1	3,138				
Preservation	2,388	5:1	478				
TOTALS	13,641		6,679				

Table 2: Project Activity and Reporting History
Little Buffalo Creek Stream Mitigation Project
EEP Project No. 94147

Activity or Report	Data Collection Complete	Completion or Delivery
Technical Proposal	June 2009	August 2008
Categorical Exclusion	February 2010	March 2010
Secure Conservation Easement	March 2010	July 2012
Mitigation Plan	August 2010	April 2013
Final Design – Construction Plans	N/A	May 2013
Construction	N/A	August 2013
Fencing Installation	N/A	September 2013
Native Species Planting	N/A	October 2013
Mitigation Plan / As-built (Year 0 Monitoring –	November 2013	December 2013
Baseline)		
Year 1 Monitoring	November 2014	December 2014
Year 2 Monitoring	November 2015	December 2015
Year 3 Monitoring	November 2016	December 2016
Year 4 Monitoring	November 2017	December 2017
Year 5 Monitoring	November 2018	December 2018

Table 3: Project Contact Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147				
Designer	The Louis Berger Group, Inc. 1001 Wade Avenue, Suite 400 Raleigh, NC 27605			
Primary Project Design POC	Michael O'Rourke (919) 866-4421 Edward Samanns (973) 407-1468			
Construction Contractor	To be determined			
Construction contractor POC				
Fencing Contractor	To be determined			
Fencing Contractor POC				
Planting Contractor	To be determined			
Planting Contract POC				
Nursery Stock Suppliers	To be determined			
Monitoring Performers	The Louis Berger Group, Inc.			
	1001 Wade Avenue, Suite 400			
	Raleigh, NC 27605			
	EEE Consulting			
Stream Monitoring POC	Louis Berger Group, Inc., Jennifer Brunton, P.E. (973-407-1365)			
Vegetation Monitoring POC	EEE Consulting, Tina Sekula, PWS (919-866-4439)			

Table 4: Project Attribute Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147								
Project County	Cabarrus County	у						
Physiographic Region								
Ecoregion	Southern Outer	Piedmont						
Project River Basin								
USGS HUC for Project (14 digit)	0304010502006	0						
NCDWQ Sub-basin for Project	03-07-12							
Within extent of EEP Watershed Plan?	No							
WRC Class (Warm, Cool, Cold)	Warmwater							
% of project easement fenced or demarcated	100% of the pro	ject easement w	ill be demarcate	d and approxim	ately 85% will be	e fenced.		
Beaver activity observed during design phase?	Yes							
	storation Comp		e Table (Mains	tem)				
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	Reach 6		
Drainage Area (acres)	1914	2146	2446	2568	2632	4039		
Stream order	2/3	3	3	3	3	3/4		
Restored (R) /Enhanced (EI or EII) / Preserved	438 (R)	1248 (EII)	267 (R)	120 (EI)	952 (EII)	2053 (P)		
(P) length (feet)	1862 (EII)		808 (EII)	721 (EII)				
Perennial or Intermittent	Perennial	Perennial	Perennial	Perennial	Perennial	Perennial		
Watershed type (Rural, Urban, Developing, etc)	Rural	Rural	Rural	Rural	Rural	Rural		
Watershed LULC Distribution (e.g.)								
Residential	10	10	10	10	10	10		
Ag-Row Crop	0	0	0	0	0	0		
Ag-Livestock		40	40	40	40	40		
Forested		50	50	50	50	50		
Watershed Impervious cover (%)		5%	5%	5%	5%	5%		
NCDWQ AU/Index number	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6		
NCDWQ classification	С	С	С	С	С	С		
303d listed?	No	No	No	No	No	No		
Upstream of a 303d listed segment?	No	No	No	No	No	No		

Final Little Buffalo Creek Stream Mitigation Plan

Table 4: Project Attribute Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147							
Reasons for 303d listing or stressor	N/A	N/A	N/A	N/A	N/A	N/A	
Total acreage of easement	7.7	3.8	3.9	3.2	2.7	10.0	
Total vegetated acreage within the easement	4.0	1.3	2.4	0.6	1.5	8.1	
Total planted acreage as part of restoration	3.7	2.5	1.5	2.6	1.2	1.9	
Rosgen classification of existing	C4/F4	C4/E4	C4/F4	C4	C4/D4b	C4	
Rosgen classification of As-built	C4	No Restoration	C4	No Restoration	No Restoration	No Restoration	
Valley type	VIII	VIII	VIII	VIII	VIII	VIII	
Valley slope	0.48%	0.38%	0.51%	039%	0.47%	0.43%	
Cowardin classification	N/A	N/A	N/A	N/A	N/A	N/A	
Trout waters designation	N/A	N/A	N/A	N/A	N/A	N/A	
Species of concern, endangered, etc.? (Y/N)	No	No	No	No	No	No	
Dominant soil series and characteristics							
Series	Chewacla/ Goldston	Chewacla	Chewacla	Chewacla	Chewacla	Chewacla	
1	6 to 18 in/ 10-20 inches	6 to 18 in	6 to 18 in	6 to 18 in	6 to 18 in	6 to 18 in	
Clay %	U	U	U	U	U	U	
K	U	U	U	U	U	U	
Т	U	U	U	U	U	U	

Note: N/A is used for items that do not apply, "-" is used for items that are unavailable, "U" is used for items that are unknown and "NA" is used for items that are not applicable due to the fact that the mitigation project is stream preservation only.

Table 4: Project Attribute Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147								
	Cabarrus Cou	inty						
Physiographic Region								
	Southern Out							
Project River Basin								
j 、/								
NCDWQ Sub-basin for Project								
Within extent of EEP Watershed Plan?								
WRC Class (Warm, Cool, Cold)								
% of project easement fenced or demarcated	100% of the p	project easeme	nt will be dem	arcated and ap	proximately 8	5% will be fen	ced.	
Beaver activity observed during design phase?	Yes							
Restoration Component Attribute								
	UT 1	UT 2	UT 3	UT 4	UT 5	UT 6	UT 7/UT8	
Drainage Area (acres)	293	193	62	254	8	16	1222	
Stream order	2	1	1	2	1	1	3/1	
Restored (R) /Enhanced (EI or EII) / Preserved	109 (EI)	616 (EII)	197 (R)	397 (EI)	184 (EII)	151 (EII)	1474 (R)	
(P) length (feet)		335 (P)	515 (EI) 763 (EII)	431 (EII)				
Perennial or Intermittent	Intermittent	Intermittent	Intermittent	Perennial	Intermittent	Intermittent	Perennial	
Watershed type (Rural, Urban, Developing, etc)								
	Rural	Rural	Rural	Rural	Rural	Rural	Rural	
Watershed LULC Distribution (e.g.)								
Residential	0	0	0	0	0	0	5	
Ag-Row Crop	0	0	0	0	0	0	0	
Ag-Livestock	20	20	100	20	80	80	45	
Forested	80	80	0	80	20	20	50	
Watershed Impervious cover (%)	5%	5%	5%	5%	5%	5%	5%	
NCDWQ AU/Index number	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	13-17-11-6	
NCDWQ classification		С	С	С	С	С	С	
303d listed?	No	No	No	No	No	No	No	
Upstream of a 303d listed segment?	No	No	No	No	No	No	No	

Final Little Buffalo Creek Stream Mitigation Plan

Table 4: Project Attribute Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147							
Reasons for 303d listing or stressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total acreage of easement	0.1	2.7	4.2	1.9	0.5	0.4	5.9
Total vegetated acreage within the easement	0	0.6	0.2	1.6	0	0.05	1.2
Total planted acreage as part of restoration	0.1	2.1	4.0	0.3	0.5	0.35	4.7
Rosgen classification of existing		B6	B6/G6	B4c	NA	NA	F4
Rosgen classification of As-built	No Restoration	No Restoration	B6	B4c	No Restoration	No Restoration	C4
Valley type	NA	II	Π	Π	NA	NA	VIII
Valley slope	NA	2.45%	2.35%	2.17%	NA	NA	0.96%
Cowardin classification	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trout waters designation	No	No	No	No	No	No	No
Species of concern, endangered, etc.? (Y/N)	No	No	No	No	No	No	No
Dominant soil series and characteristics							
Series	Chewacla	Chewacla	Badin/ Georgeville	Goldston	Goldston	Goldston	Chewacla
Depth	6-18 inches	6-18 inches	72+ inches/	10 to 20	10 to 20	10 to 20	6-18 inches
			72+ inches	inches	inches	inches	
Clay %	U	U	U	U	U	U	U
K	U	U	U	U	U	U	U
Т	U	U	U	U	U	U	U

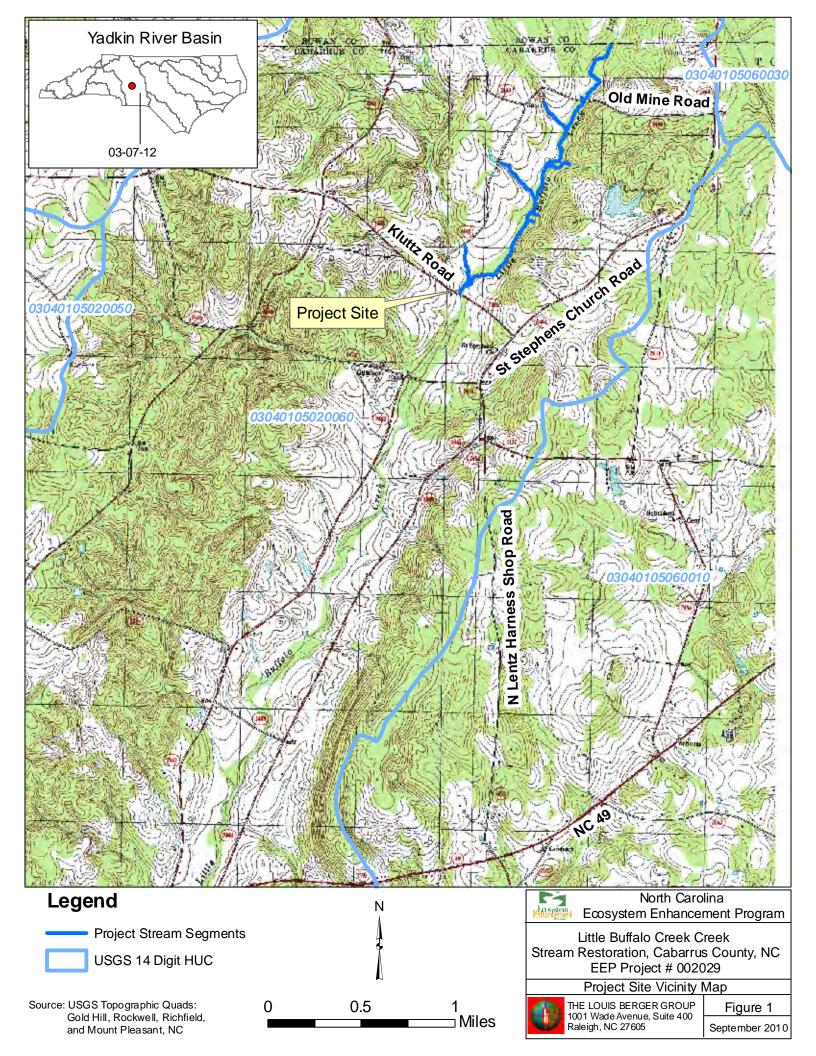
Note: N/A is used for items that do not apply, "-" is used for items that are unavailable, "U" is used for items that are unknown and "NA" is used for items that are not applicable due to the fact that the mitigation project is stream preservation only. UT 1, UT 5, & UT 6 are not classified as the reaches are 100 feet long or less.

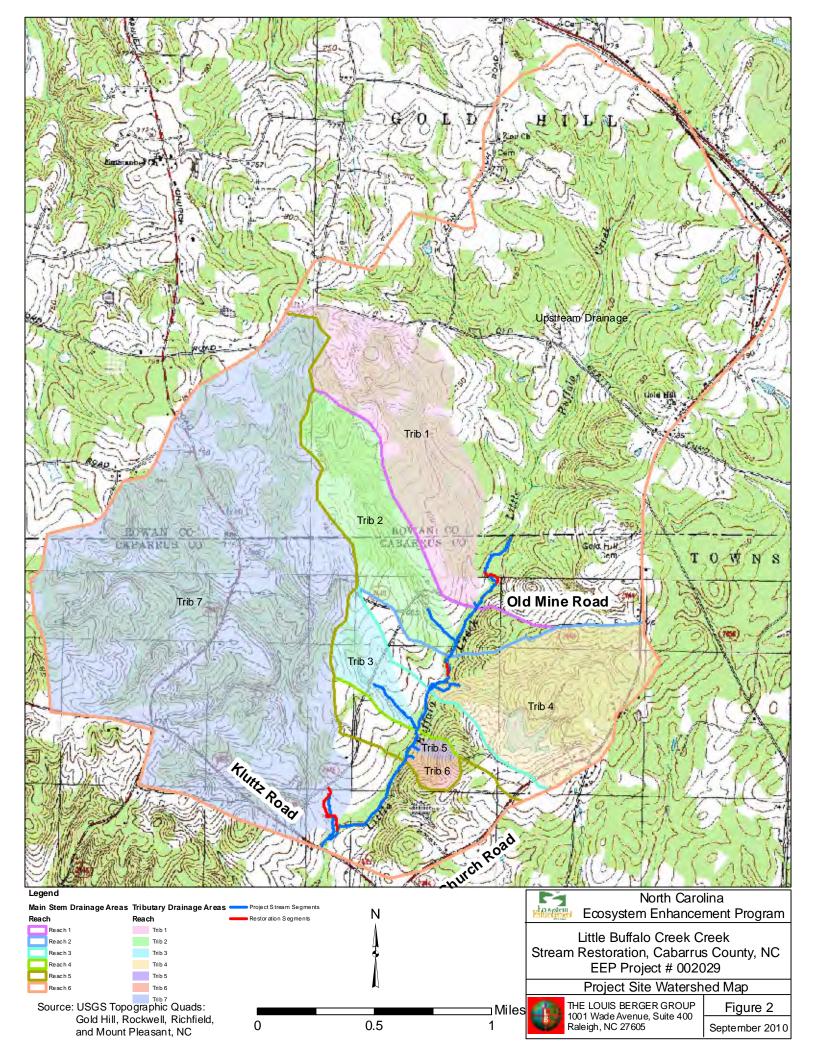
Table 5: Morphological Design Table Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147						
Item	Existing Conditions	Designed Conditions	Reference Reach			
LOCATION	Reach 1	Reach 1	Reach 1			
Stream Type	C4/F4	C4	C4			
Drainage Area, Ac	1470	1470	1470			
Bankfull Width (W _{bkf}), ft	46-57-83	36	43-52-64			
Bankfull Mean Depth (d _{bkf}), ft	0.65-1.18-1.60	1.38	0.98-1.16-1.38			
Width/Depth Ratio (W _{bkf} / d _{bkf})	33-57-128	26	31-47-64			
Bankfull X-Section Area (A _{bkf}), ft ²	54-63-83	49.5	55-59-65			
Bankfull Mean Velocity, fps	1.82	2.32	2.44			
Bankfull Discharge, cfs	115	115	115			
Bankfull Max Depth (d _{max}), ft	2.54-3.04-3.83	1.5	2.17-2.41-2.50			
Depth Ratio d_{max}/d_{bkf}	3.91-2.58-2.39	1.09	2.21-2.08-1.81			
Low Bank Height	2.8	1.5	1.89			
Bank Height Ratio (BHR)	0.91-1.09-1.37	1	1.15-1.28-1.32			
Width Flood-prone Area (W _{fpa}), ft	68-107-177	>88	>150			
Entrenchment Ratio (ER)	1.49-1.84-2.17	>1.53	>2.2			
Valley Slope (S _{valley}), ft/ft	0.0055	0.0055	0.0055			
Channel Slope (S _{channel}), ft/ft	0.0047	0.0035	0.0039			
Sinuosity (K)	1.05	1.27	1.16			
LOCATION	Reach 3	Reach 3	Reach 1			
Stream Type	C4	C4	C4			
Drainage Area, Ac	2081	2081	1470			
Bankfull Width (W _{bkf}), ft	34-41-48	40	43-52-64			
Bankfull Mean Depth (d _{bkf}), ft	1.20-1.47-1.80	1.80	0.98-1.16-1.38			
Width/Depth Ratio (W_{bkf}/d_{bkf})	19-30-40	22	31-47-64			
Bankfull X-Section Area (A_{bkf}) , ft^2	58-60-62	72	55-59-65			
Bankfull Mean Velocity, fps	2.73	2.3	2.44			
Bankfull Discharge, cfs	163	163	115			
Bankfull Max Depth (d_{max}), ft	2.47-2.78-3.09	2.0	2.17-2.41-2.50			
Depth Ratio d_{max}/d_{bkf}	2.06-1.89-1.72	1.11	2.21-2.08-1.81			
Low Bank Height	1.27	2	1.89			
Bank Height Ratio (BHR)	1.94-2.19-2.43	- 1	1.15-1.28-1.32			
Width Flood-prone Area (W_{fpa}), ft	258-265-272	>88	>150			
Entrenchment Ratio (ER)	5.3-6.5-7.7	>2.1	>2.2			
Valley Slope (S _{valley}), ft/ft	0.0037	0.0037	0.0055			
Channel Slope (S _{channel}), ft/ft	0.0067	0.0018	0.0039			
Sinuosity (K)	1.13	1.39	1.16			

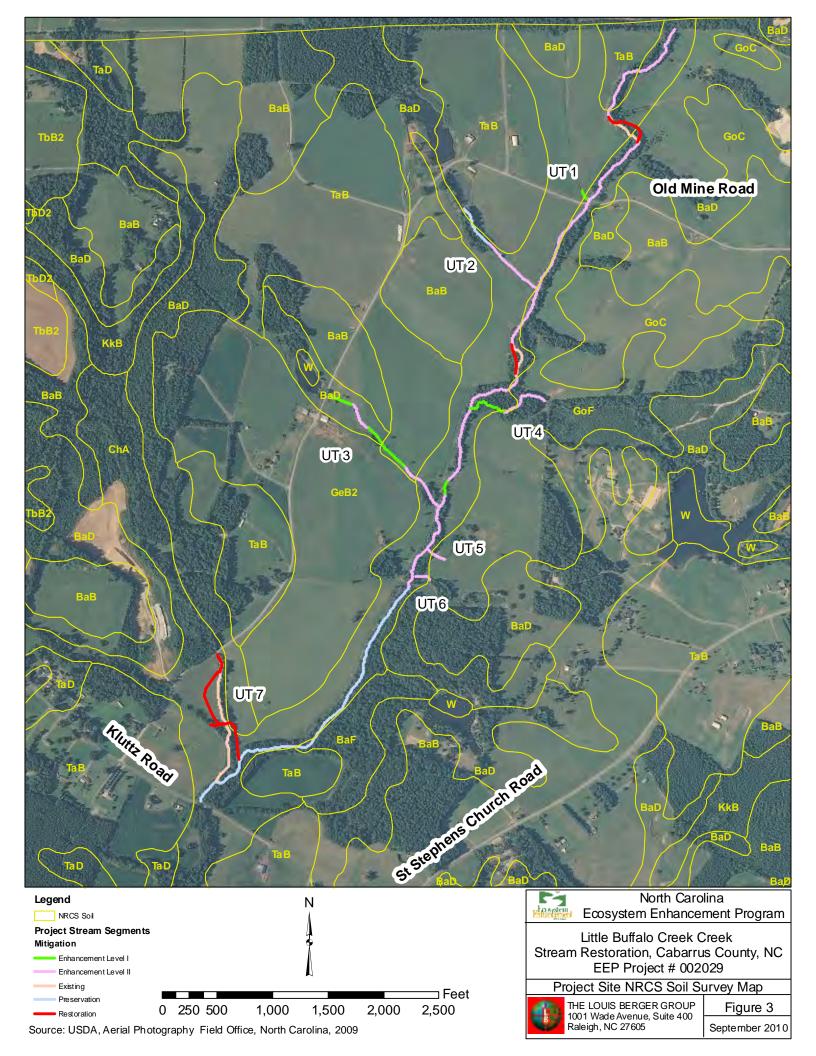
Table 5: Morphological Design Table Continued.							
LOCATION	UT 7	UT 7	Reach 1				
Stream Type	F4/C4	C4	C4				
Drainage Area, Ac	1230	1230	1470				
Bankfull Width (W _{bkf}), ft	20-26-30	25	43-52-64				
Bankfull Mean Depth (d _{bkf}), ft	0.85-1.00-1.17	0.97	0.98-1.16-1.38				
Width/Depth Ratio (W _{bkf} / d _{bkf})	20-26-32	26	31-47-64				
Bankfull X-Section Area (A _{bkf}), ft ²	20-26-31	24.3	55-59-65				
Bankfull Mean Velocity, fps	3.7	3.9	2.44				
Bankfull Discharge, cfs	96	96	115				
Bankfull Max Depth (d _{max}), ft	1.79-2.16-2.95	1.13	2.17-2.41-2.50				
Width Flood-prone Area (W _{fpa}), ft	39-54-91	>55	>150				
Entrenchment Ratio (ER)	1.45-2.07-3.01	>2.2	>2.2				
Meander Length (Lm), ft	NA	NA	NA				

*Reach 1, Reach 3, and UT 7 are the only reaches where restoration is proposed.

Table 6: BEHI and Sediment Export Estimates for Project Site StreamsLittle Buffalo Creek Stream Mitigation Project														
					Proje									
Time Point	Reach	Lin. Ft	Extr	1	Very I	1	Hig	-	Mode		Lo	1	Very I	1
	-		ft	%	ft	%	ft	%	ft	%	ft	%	ft	%
Preconstruction	1 EII	1,862											1,862	100
Preconstruction	1 Rest	438			438	100								
Preconstruction	2 EII	1,248											1,248	100
Preconstruction	3 Rest	267			267	100								
Preconstruction	3 EII	808									808	100		
Preconstruction	4 EII	721							360.5	50	360.5	50		
Preconstruction	4 EI	120							120	100				
Preconstruction	5 EII	952									952	100		
Preconstruction	6 Pres	2,053											2,053	100
Preconstruction	UT 1 EII	109									109	100		
Preconstruction	UT 2 Pres.	335											335	100
Preconstruction	UT 2 EII	616									616	100		
Preconstruction	UT 3 Res	197					197	100						
Preconstruction	UT 3 EI	515					515	100						
Preconstruction	UT 3 EII	763									763	100		
Preconstruction	UT 4 EI	397					397	100						
Preconstruction	UT 4 EII	431							431	100				
Preconstruction	UT 5	184											184	100
Preconstruction	UT 6	151											151	100
Preconstruction	UT 7 Rest	1374					1373	100						
Preconstruction	UT 8 rest	100									100	100		
Project Total		14,379			791	5.5	2,174	15.1	1,012	7.0	3,595	25.0	6,807	47.4


Note: The percentages are based off the pre-construction linear feet measurements, not SMUs.


		lanting Summa Little Buffalo Ci	eek Stream	Mitigation I		Zones		
Zone	e Species Comm Nam		' Project No. Type	94147 Species percent	Quantity per Acre	Acreage	Total Quantity	
Zone 1 0.33 acres)	Salix nigra	black billow	live stake	60%	1200	0.33	396	
Z01 (0.33	Cornus amomum	silky dogwood	live stake	40%	800	0.33	264	
TOTAL	S				2000	0.33	660	
	Alnus serrulata	hazel alder	bare root or tubeling	15%	75	11.42	571	
	Betula nigra	river birch	bare root or tubeling	10%	50	11.42	571	
(se	Carpinus caroliniana	ironwood	bare root or tubeling bare root or	10%	50	11.42	571	
Zone 2 (12 acres)	Cornus amomum Fraxinus	silky dogwood	tubeling bare root or	5%	25	11.42	285	
ne 2 (1	pennsylvanica	green ash	tubeling bare root or	10%	50	11.42	571	
Z01	Lindera benzoin	spicebush	tubeling bare root or	10%	50	11.42	571	
	Platanus occidentalis	sycamore	tubeling bare root or	15%	75	11.42	856	
	Salix nigra	black willow	tubeling bare root or	10%	50	11.42	571	
TOTAL	Viburnum dentatum S	arrowwood	tubeling	15%	75 500	11.42	856 5710	
	Carpinus caroliniana	ironwood	bare root or tubeling	10%	50	12.17	608	
	Celtis laevigata	sugarberry	bare root or tubeling	10%	50	12.17	608	
s)	Cercis canadensis	redbud	bare root or tubeling	10%	50	12.17	608	
2 acre	Fraxinus pennsylvanica	green ash	bare root or tubeling bare root or	5%	25	12.17 12.17	304	
Zone 3 (12 acres)	Lindera benzoin Liriodendron	spicebush	tubeling bare root or	10%	50	12.17	608	
Zon	tulipifera	tulip poplar	tubeling bare root or	20%	100	12.17	1271	
	Quercus alba	white oak	tubeling bare root or	15%	75	12.17	912 608	
	Ulmus rubra	slippery elm	tubeling bare root or	10% 50		12.17	608	
TOTAL	Viburnum dentatum	arrowwood	tubeling	10%	50 500	12.17	6085	


Final Little Buffalo Creek Stream Mitigation Plan

Little Buffalo Creek	ary for Permanent Vegetation Stream Mitigation Project ject No. 94147
Scientific Name	Common Name
Panicum virgatum var. Shelter	Switchgrass
Panicum clandestinum var. Tioga	Deer tongue
Elymus virginiana	Virginia wild rye
Mixed Wildflowers	Meadow seed mix
Little Buffalo Creek	rary Sediment and Erosion Control Seed Mix Stream Mitigation Project ject No. 94147
Scientific Name	Common Name
Lolium multiflorum	Annual rye
Dichanthelium clandestinum	Deer tongue

Figures

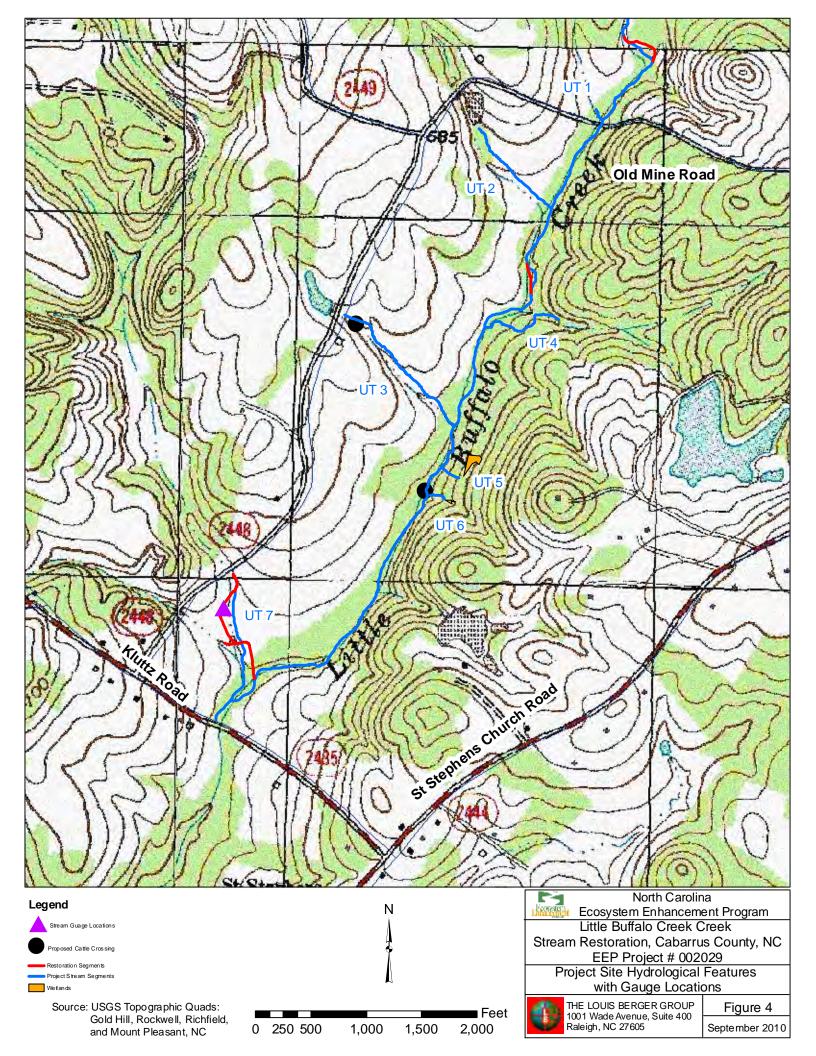
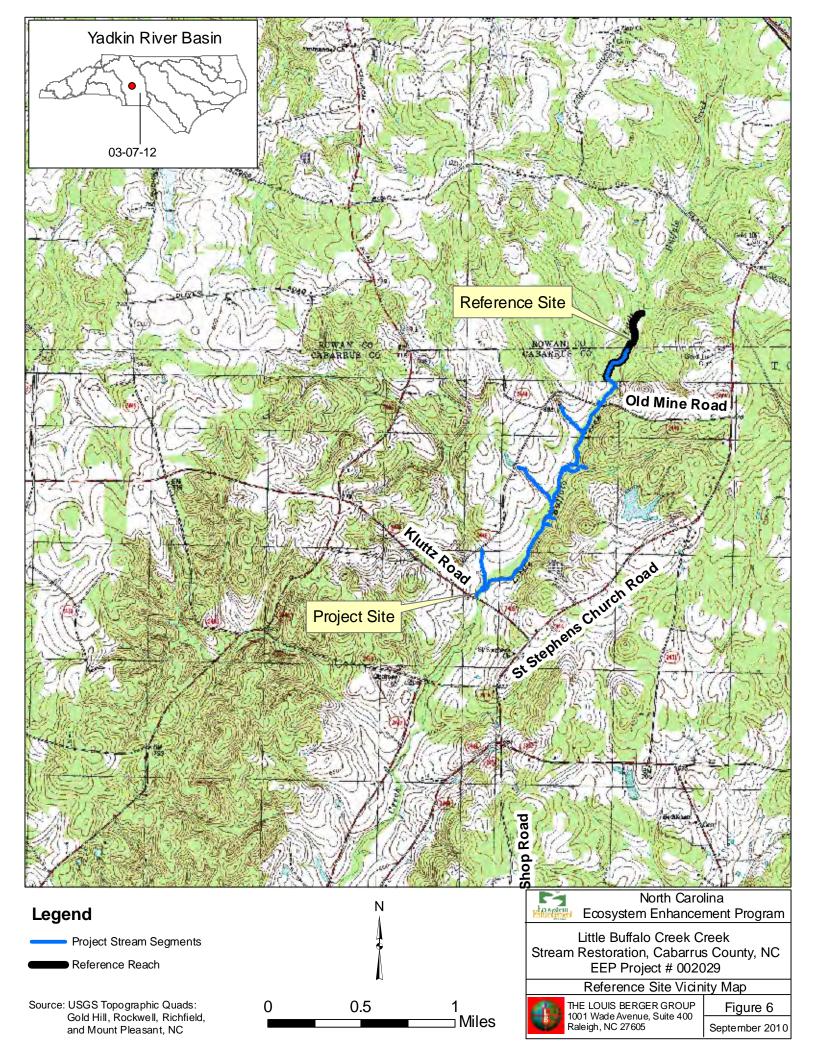
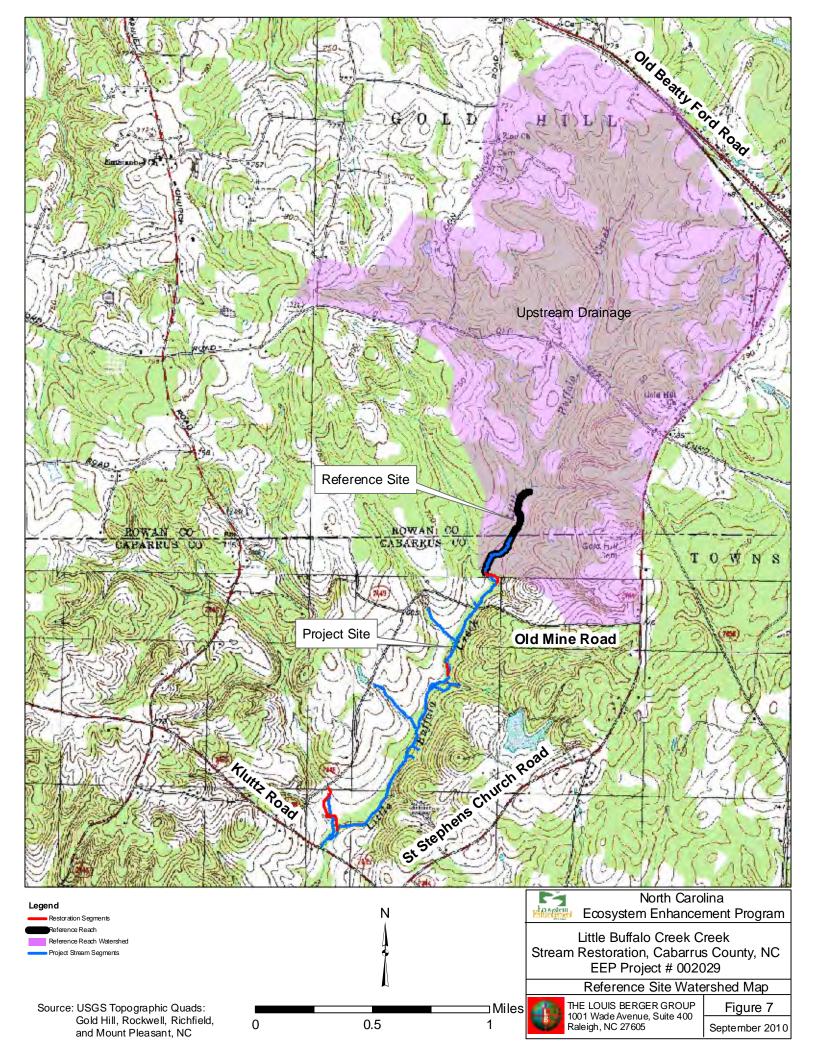
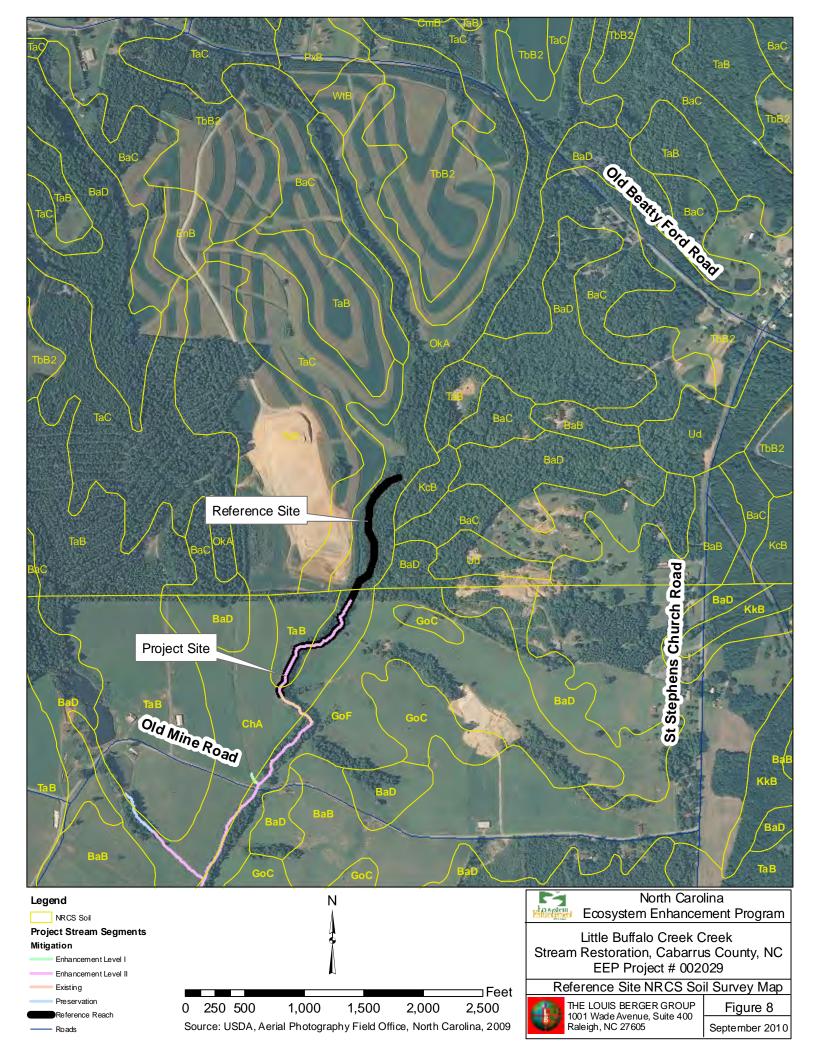
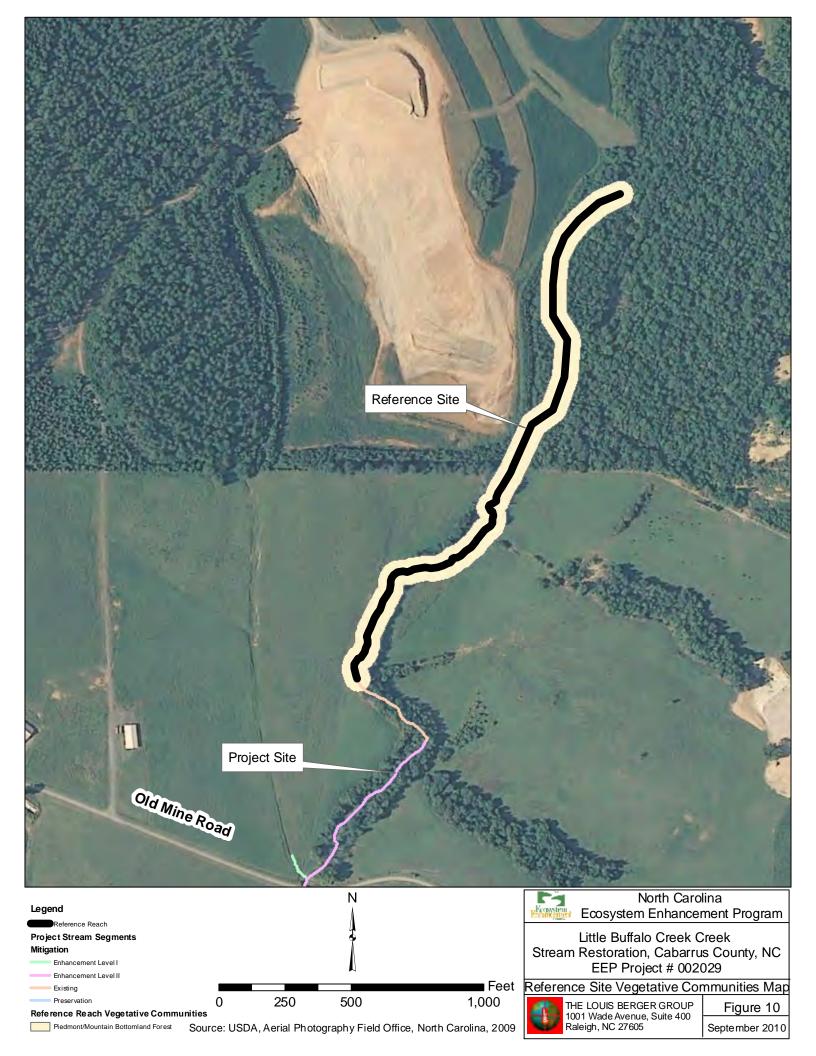





Figure 5: Project Site Wetland Delineation Map

Not applicable to this project. Figure not produced.



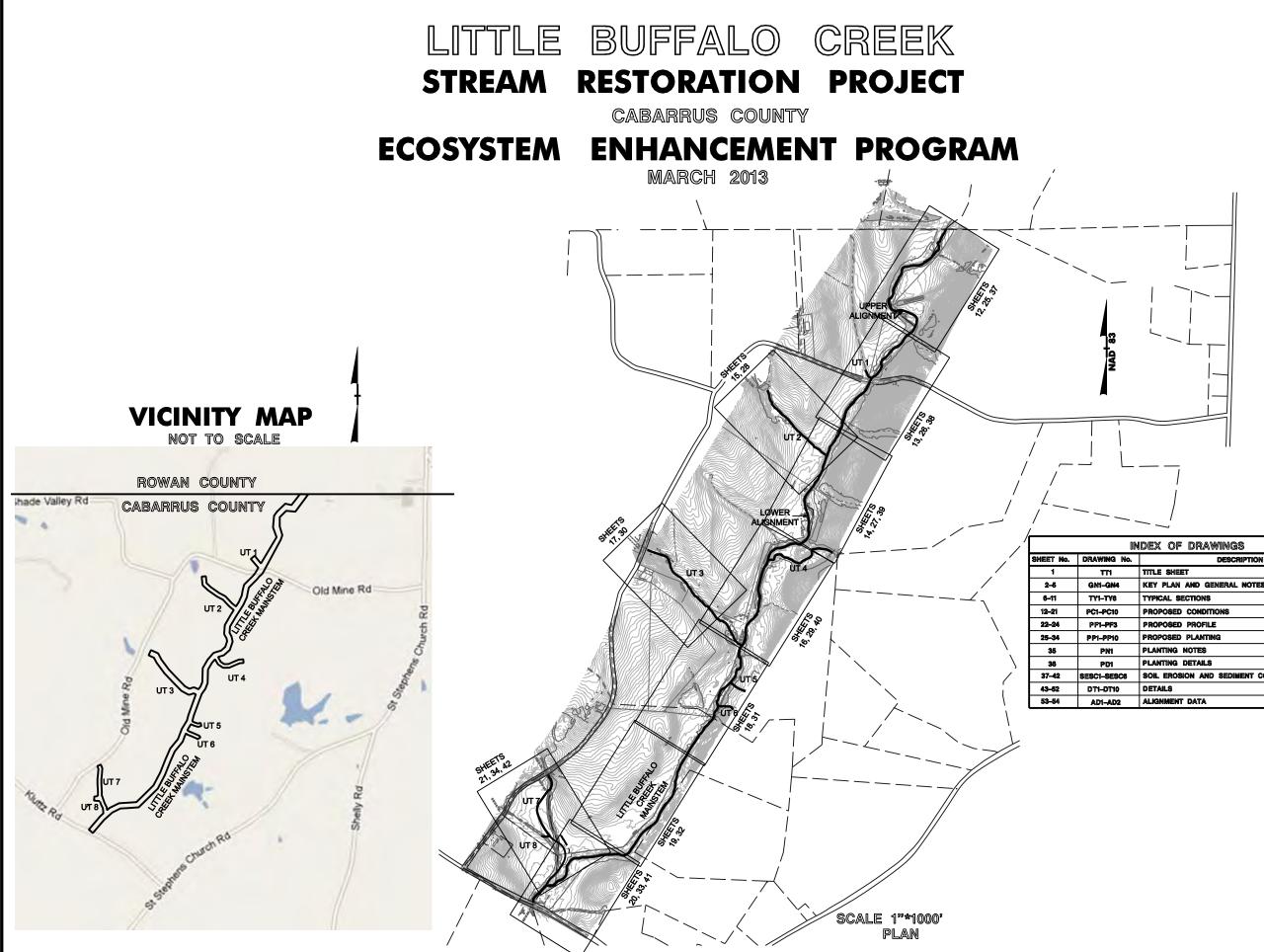
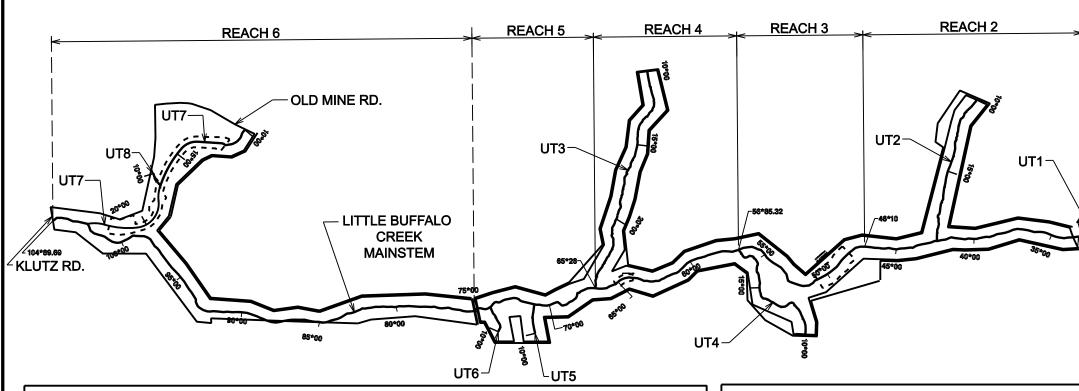


Figure 9: Reference Site Wetland Determination Sample Locations with Gauge Locations

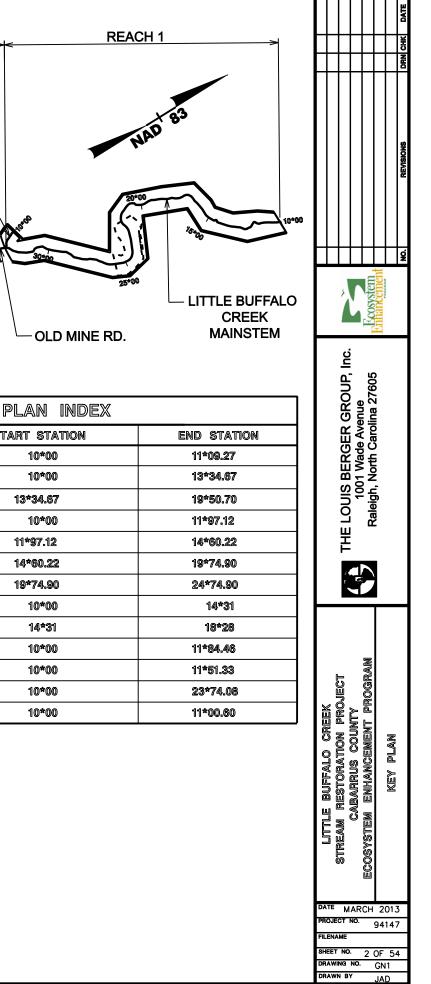
Not applicable to this project. Figure not produced



Design Plan Sheets

	IN	DEX OF DRAWINGS		
No.	DRAWING No. DESCRIPTION			
	TTI	TITLE SHEET		
	GN1-GN4	KEY PLAN AND GENERAL NOTES		
	TY1- TY6	TYPICAL SECTIONS		
	PC1-PC10	PROPOSED CONDITIONS		
	PF1 -PF3	PROPOSED PROFILE		
	PP1-PP10	PROPOSED PLANTING		
	PM	PLANTING NOTES		
	PD1	PLANTING DETAILS		
	SESC1-SESC8	SOIL EROSION AND SEDIMENT CONTROL PLAN		
	DTI-DTIO	DETAILS		
	AD1-AD2	ALIGNMENT DATA		

MAINSTEM RESTORATION PLAN INDEX					
ALIGNMENT	MITIGATION ACTIVITY	START STATION	END STATION		
	ENHANCEMENT LEVEL 2	10*00	21*28.92		
REACH 1	RESTORATION	21*28.92	25*66.91		
	ENHANCEMENT LEVEL 2	25*66.91	33*00		
REACH 2	ENHANCEMENT LEVEL 2	33*62.35	46*10		
	ENHANCEMENT LEVEL 2	46*10	48*10.4		
REACH 3	RESTORATION	48*10.40	50*76.91		
	ENHANCEMENT LEVEL 2	50*76.91	56*85.32		
REACH 4	ENHANCEMENT LEVEL 2	56*85.32	64*06		
neagn 4	ENHANCEMENT LEVEL 1	64*06	65*26		
REACH 5	ENHANCEMENT LEVEL 2	65*26	74*78.37		
REACH 6	PRESERVATION	75*05.63	82*47.74		
	PRESERVATION	91*79.22	104*89.69		


٦	RIBUTARY RESTORAT	TION I
ALIGNMENT	MITIGATION ACTIVITY	ST
UT-1	Enhancement level 2	
UT-2	PRESERVATION	
UT-2	Enhancement level 2	
UT3	RESTORATION	
UT3	Enhancement level 2	
UT 3	Enhancement level 1	
UT 3	Enhancement level 2	
UT-4	Enhancement level 2	
UT-4	enhancement level 1	
UT-5	Enhancement level 2	
UT-6	Enhancement level 2	
UT - 7	RESTORATION	
UT-8	RESTORATION	

MITIGATION ACTIVITY	GENERAL DESCRIPTION
RESTORATION	CHANNEL RE-ALIGNMENT AND CREATION. DITCH PLUG INSTALLATION. IN-STREAM STRUCTURE INSTALLATION, INCLUDING LOG VANES,ROCK CROSS VANES, STEP POOLS AND LARGE WOODY DEBRIS. STREAM BANK RE-GRADING. PLANTING.
Enhancement level i (E1)	STREAM BANK GRADING. MINOR CHANNEL REGRADING. LIMITED PIPE AND CONCRETE REMOVAL. PLANTING.
enhancement level 2 (E2)	PLANTING.

NOTE: REFER TO PROPOSED CONDITIONS AND PLANTING PLANS FOR SPECIFIC ACTIVITIES AS PART OF THIS PROJECT. ADDITIONAL PROJECT COMPONENTS INCLUDE REMOVAL OF EXISTING FENCING, FENCE INSTALLATION, INSTALLATION OF TWO CATTLE CROSSINGS AND FLOOD GATES AS SHOWN ON THE PLANS.

Date: 45/2013

Filename: G:*CAlarcon*4-4-12*NC*02*buffalo*KEY*PLAN.dgn

<u>Planting legend</u>	
ZONE 1 (LIVE STAKES)	
ZONE 2 (BANKFULL)	
EXISTING PLAN LEGEND	
TREE LINES / WOODS	
සු SHRUB	
EIP O EXISTING IRON PIPE	
EIR O EXISTING IRON ROD	
● POLE → ← CULVERT	
<u>se&s legend</u>	
LIMITS OF DISTURBANCE	
STAGING & STOCKPILE	
LIMITS OF GRADING — REINFORCED	
STABILIZED OUTLET	
<u> Proposed plan legend</u>	
PROPOSED 4' WOVEN WIRE WITH 1 STRAND ELECTRIC	
PROPOSED EASEMENT	
PROPOSED LOG VANES	
PROPOSED LARGE WOODY DE	BRIS
PROPOSED ROCK CROSS VAL	NE
PROPOSED LIVESTOCK CROSS	SING
O PROPOSED LIVESTOCK WELL	
SENSITIVE AREA	

<u>GENERAL NOTES</u>

- 1. THE HORIZONTAL COORDINATE SYSTEM IS THE NORTH CAROLINA STATE PLAN COORDINATE SYSTEM, NAD83, FT.
- 2. ALL ELEVATIONS SHOWN ON THESE PLANS ARE REFERENCED TO NAVD88,
- 3. PROPOSED CONSTRUCTED STREAM FEATURES AND STRUCTURES SHOWN OF ARE SHOWN IN THEIR APPROXIMATE LOCATION AND SHALL BE FIELD LOCA DIMENSIONED TO INSURE PROPER CHANNEL DIMENSIONS.
- 4. CONSTRUCTION ACTIVITIES SHALL BEGIN UPSTREAM AND PROGRESS DOWNS UNLESS OTHERWISE NOTED ON THESE PLANS OR AS DIRECTED BY THE EN
- 5. ALL MECHANIZED EQUIPMENT OPERATED IN OR NEAR THE STREAM OR ITS TRIBUTARIES SHALL BE INSPECTED REGULARLY AND MAINTAINED TO PREVE CONTAMINATION OF STREAM WATERS FROM FUELS, LUBRICANTS, HYDRAULIC OR OTHER TOXIC MATERIALS. ANY EQUIPMENT REPAIRS, MAINTENANCE OR R ACTIVITIES SHALL NOT BE DONE WHILE THE EQUIPMENT IS IN THE STREAM TRIBUTARIES.
- 6. WASTE MATERIAL DESIGNATED FOR OFFSITE DISPOSAL SHALL BE DONE IN ACCORDANCE WITH ALL FEDERAL, STATE AND LOCAL REGULATIONS.
- 7. CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRS TO ANY DAMAGE TO UTILITIES, INCLUDING BUT NOT LIMITED TO, OVERHEAD AND UNDERGROUND UCURB AND GUTTER, PAVEMENT, SIDEWALKS, STORMWATER DRAINAGE SYSTEM SANITARY SEWER SYSTEMS, ACCESS ROADS OR FENCING. ANY REQUIRED RE TO BE MADE IN ACCORDANCE WITH ANY AND ALL APPLICABLE STATE AND MUNICIPALITY STANDARDS. THE CONTRACTOR SHALL CONSULT WITH THE "CALL BEFORE YOU DIG" TOLL FREE NUMBER 800-632-4949, AND THE NC ON CALL CENTER AT LEAST 48 HOURS PRIOR TO BEGINNING ANY EARTHWORK ACTIVITIES.
- 8. CONTRACTOR IS ADVISED TO USE CAUTION AND TO FOLLOW ALL APPLICA REGULATIONS WITH REGARDS TO PEDESTRIAN AND BYSTANDER SAFETY.
- 9. CONTRACTOR IS RESPONSIBLE FOR COORDINATING WITH THE LAND OWNER THROUGHOUT ALL PHASES OF CONSTRUCTION REGARDING THE MOVEMENT CONTAINMENT OF LIVESTOCK AT THE SITE. THE CONTRACTOR SHALL COORD WITH THE LAND OWNER AS NECESSARY TO INSURE AT ALL TIMES THAT LI ARE SAFELY AND SECURELY MOVED OUT OF ALL WORK AREAS, THAT LIVES NOT ESCAPE FROM THE PROPERTY AS A RESULT OF CONSTRUCTION ACTIV THAT LIVESTOCK ARE NOT HARMED AS A RESULT OF CONSTRUCTION ACTIV THAT LIVESTOCK ARE EXCLUDED AT ALL TIMES FROM THE ACTIVE AND CO WORK AREAS, AND THAT CONSTRUCTION ACTIVITIES ARE NOT HINDERED, DEL OR DAMAGED BY LIVESTOCK OR THE ASSOCIATED MOVEMENT OR CONTAIN LIVESTOCK.
- 10. AREAS DESIGNATED AS SENSITIVE AREAS MUST BE KEPT FREE OF CONSTR EQUIPMENT.

		Π	Τ			DATE
		Ц				
		Ц		\square		DRN CHK
		Ц		\square		B O
FT.						
						SNO
ON THE PLANS ATED AND						REVISIONS
						œ
NSTREAM,						
NGINEER.						
\$						NO.
					nent	
C FLUIDS REFUELING		,		cosystem	NCEII	
kepueling M OR ITS		l		l S	Inar	
			ຼ			
I		-	ษ์ า^	1001 wage Avenue Raleigh. North Carolina 27605	•	
		1	₫	760		
EXISTING		Ì	ž	a 2 a 2		
UTILITIES,		()	r	olir Ö	,	
MS, Iepairs		i	Ц С	e S Car	5	
IDVOR LOCAL		ĺ	Ц	th wa		
		i		ΞŽ		
DNE			<u> </u>	- Laie	p	
K			2	Rale		
		ļ	븯	_	•	
ABLE					_	
			K.			
R						
AND	F					
DINATE						
LIVESTOCK						
estock do Ivities,				AM		
IVITIES,		ΩŢ		ЯQ В		
OMPLETED		ع © الا		PROGRAM		
		j Ó	Ĩ		Ś	
nment of		stream restoration proviect	CABARRUS COUNTY	ENHANCEMENT	general notes	
	C) M	. U . w	CER	ž	
RUCTION		1 0 0 0 0	n n	IAN	ral Ral	
		j n n n n n n n n n n n n n n n n n n n	aar Ar	ENH		
		u 👼	s S	M	5	
		LI ILE Eam r		3TEL		
	-			SYS		
		Ċ.)	ECOSYSTEM		
				Ш		
	DA	TE	MAG	4.05	201	3
		OJEC			201. 9414	_
	FIL	ENAM	E			
		IEET I			DF 5	4
		LAWIN RAWN			gn2 Jad	
ne: 2:25:24 PM				-		

TYPICAL CONSTRUCTION SEQUENCE

Phase 1

LIVESTOCK MANAGEMENT, MOBILIZATION, AND ESTABLISHMENT OF EROSION CONTROL

1. Coordinate with the landowners and complete all necessary livestock movement,

exclusion or containment prior to commencement of each phase of operations.

2. Identify, locate, and delineate staging areas, stockpile locations, construction entrances and access roads, temporary stream crossings required for construction access, limits of silt fence installation, and limits of tree protection fencing.

3. Install construction entrances.

4. Install stream crossings required for construction access. Stream crossings will be located at the upstream end of mainstem Reach 6 and where the existing access road crosses UT3. Locations will be shown on plan drawing.

Install and monitor silt fencing as shown on plan drawings. Silt fencing may be 5. installed at other locations as directed by the Engineer. Silt fencing shall be installed and monitored at limits of all staging and stockpile areas.

6. Stockpile construction materials in designated staging areas.

7. Tree protection fencing may be installed at locations as directed by the Engineer.

8. Mark all vegetation to be transplanted.

9. Mark trees to be used as rootwads, header or footer logs, or sills. Coordinate with Engineer to ensure that selections are appropriate.

10. Install livestock water wells and livestock watering stations at locations designated on the plan drawings or as directed by the Engineer. This work may be done independent of the other steps in Phase 1, but must be completed prior to the installation of the livestock exclusion fencing.

11. Install permanent livestock exclusion fence throughout the project as shown on the plan drawings with the exception of the restoration segments or as directed by the Engineer. At the Enhancement Level 1 and Restoration segments, sequencing of installation of the fence will be at the discretion of the Contractor so as to facilitate ease of access for construction equipment and materials. In these areas, fence will be erected as temporary structures sufficient to exclude livestock until the installation of the permanent fence. All fence segments temporary and/or permanent will be securely installed prior to installation of plant materials. The Engineer will stake locations for the fenceline.

Phase 2 Restoration

1. Contractor will perform construction staking.

2. to be left as impervious dikes in order to isolate all work from stream flow during new channel construction.

Remove all vegetation designated for transplant within the zone of active 3. construction. Stockpile and maintain in accordance with project specifications.

4. accordance with project specifications.

5. Perform required clearing and grubbing.

6. Segregate and stockpile topsoil and other soil material in accordance with project specifications. Soil stockpiles will be seeded, mulched, and isolated by silt fence in accordance with project specifications and other erosion controls as directed by the Engineer.

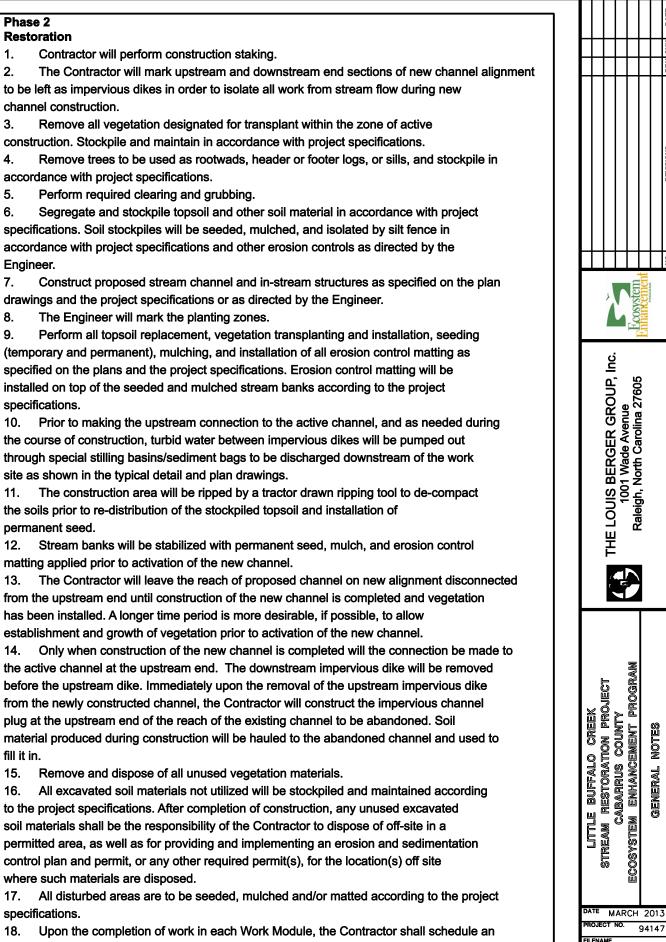
7. drawings and the project specifications or as directed by the Engineer.

8. The Engineer will mark the planting zones. 9. Perform all topsoil replacement, vegetation transplanting and installation, seeding (temporary and permanent), mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Erosion control matting will be installed on top of the seeded and mulched stream banks according to the project specifications.

10. Prior to making the upstream connection to the active channel, and as needed during the course of construction, turbid water between impervious dikes will be pumped out through special stilling basins/sediment bags to be discharged downstream of the work site as shown in the typical detail and plan drawings.

11. The construction area will be ripped by a tractor drawn ripping tool to de-compact the soils prior to re-distribution of the stockpiled topsoil and installation of permanent seed.

12. matting applied prior to activation of the new channel. 13. The Contractor will leave the reach of proposed channel on new alignment disconnected from the upstream end until construction of the new channel is completed and vegetation has been installed. A longer time period is more desirable, if possible, to allow establishment and growth of vegetation prior to activation of the new channel.


the active channel at the upstream end. The downstream impervious dike will be removed before the upstream dike. Immediately upon the removal of the upstream impervious dike from the newly constructed channel, the Contractor will construct the impervious channel plug at the upstream end of the reach of the existing channel to be abandoned. Soil material produced during construction will be hauled to the abandoned channel and used to fill it in.

15. Remove and dispose of all unused vegetation materials.

16. to the project specifications. After completion of construction, any unused excavated soil materials shall be the responsibility of the Contractor to dispose of off-site in a permitted area, as well as for providing and implementing an erosion and sedimentation control plan and permit, or any other required permit(s), for the location(s) off site where such materials are disposed.

specifications.

inspection by the Engineer. The Contractor must have written approval from the Engineer that the Work Module has been completed to satisfactory standards prior to demobilization.

SHEET NO. 40F 54

GN3

JAD

DRAWING NO.

DRAWN BY

TYPICAL CONSTRUCTION SEQUENCE (CONT.)

Phase 2 (continued)

Enhancement Level 1

1. Earthwork to modify and stabilize stream banks will be conducted with a stream flow diversion pump.

2. Contractor will perform construction staking.

3. Install impervious dikes at upstream and downstream ends of proposed limit of active construction to isolate work from stream flow. Pump around operation will be conducted in accordance with the typical pump around detail shown in the design plans.

4. Turbid water between impervious dikes will be pumped out through special stilling basins/sediment bags to be discharged downstream of the work site as shown in the typical detail and plan drawings.

5. The Engineer must approve the pump around operation prior to commencement of work in the reach.

6. Remove all vegetation designated for transplant within the zone of active

construction. Stockpile and maintain in accordance with project specifications.

7. Perform required clearing and grubbing.

8. Segregate and stockpile topsoil and other soil material in accordance with project specifications. Soil stockpiles will be seeded, mulched, and isolated by silt fence in accordance with project specifications and other erosion controls as directed by the Engineer.

9. Perform proposed stream bank modifications as specified on the plan drawings and the project specifications or as directed by the Engineer.

10. The Engineer will mark the planting zones.

11. Perform all topsoil replacement, vegetation transplanting and installation, seeding (temporary and permanent), mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded and mulched stream banks according to the project specifications.

12. Prior to making the upstream connection to the active channel, and as needed during the course of construction, turbid water between impervious dikes will be pumped out through special stilling basins/sediment bags to be discharged downstream of the work site as shown in the typical detail and plan drawings.

13. The construction area will be ripped by a tractor drawn ripping tool to de-compact the soils prior to re-distribution of the stockpiled topsoil and installation of permanent seed.

14. Stream banks will be stabilized with permanent seed, mulch, and erosion control matting applied to them prior to re-activation of the channel.

15. The Contractor will leave the modified reach disconnected from the upstream end until construction is completed and vegetation has been installed. A longer time period is more desirable, if possible, to allow establishment and growth of vegetation prior to re-activation of the modified channel.

16. Only when construction of the new channel is completed will the connection be made to the active channel at the upstream end. The downstream impervious dike will be removed before the upstream dike.

17. Remove and dispose of all unused vegetation materials.

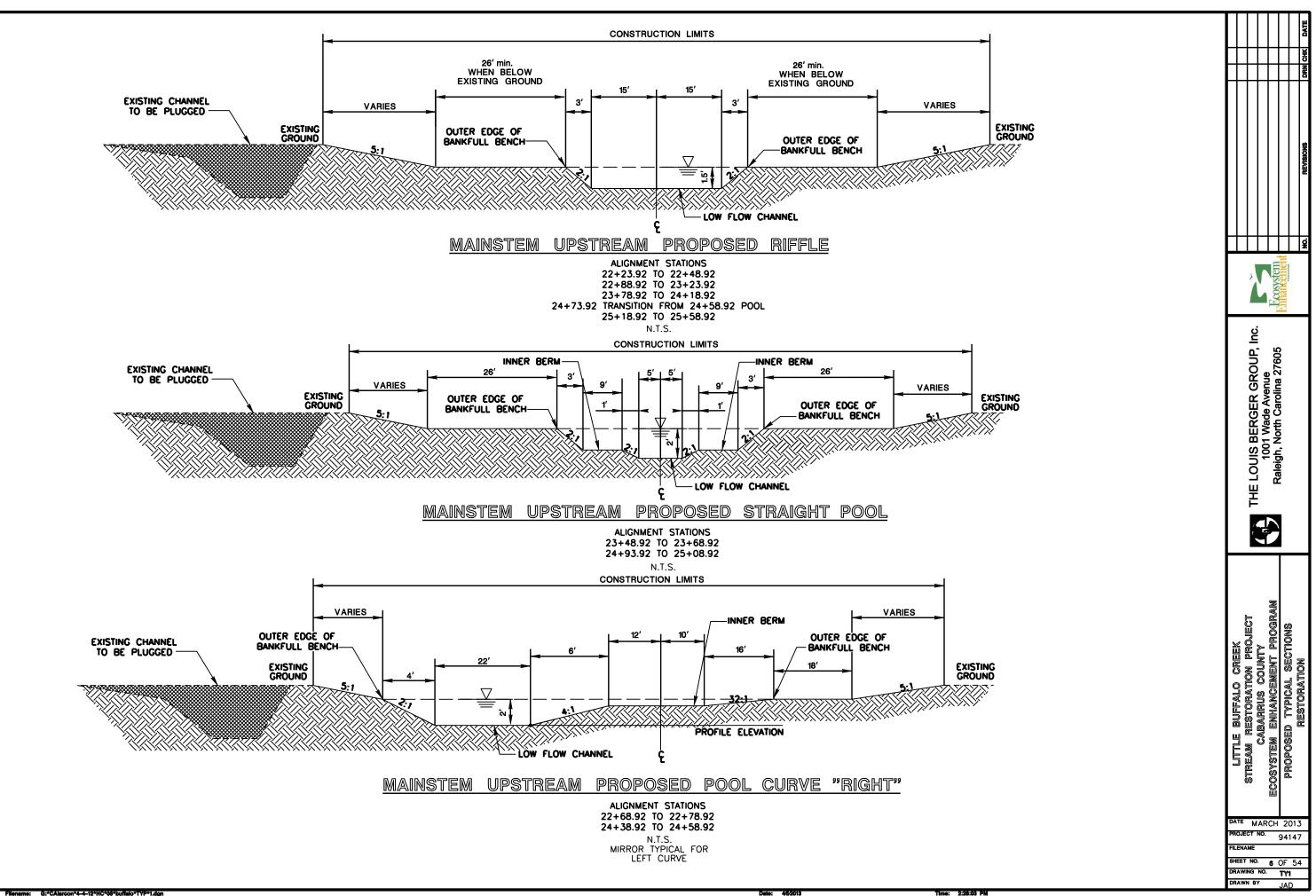
18. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After completion of construction, any unused excavated soil materials shall be the responsibility of the Contractor to dispose of off-site in a permitted area, as well as for providing and implementing an erosion and sedimentation control plan and permit, or any other required permit(s), for the location(s) off site where such materials are disposed.

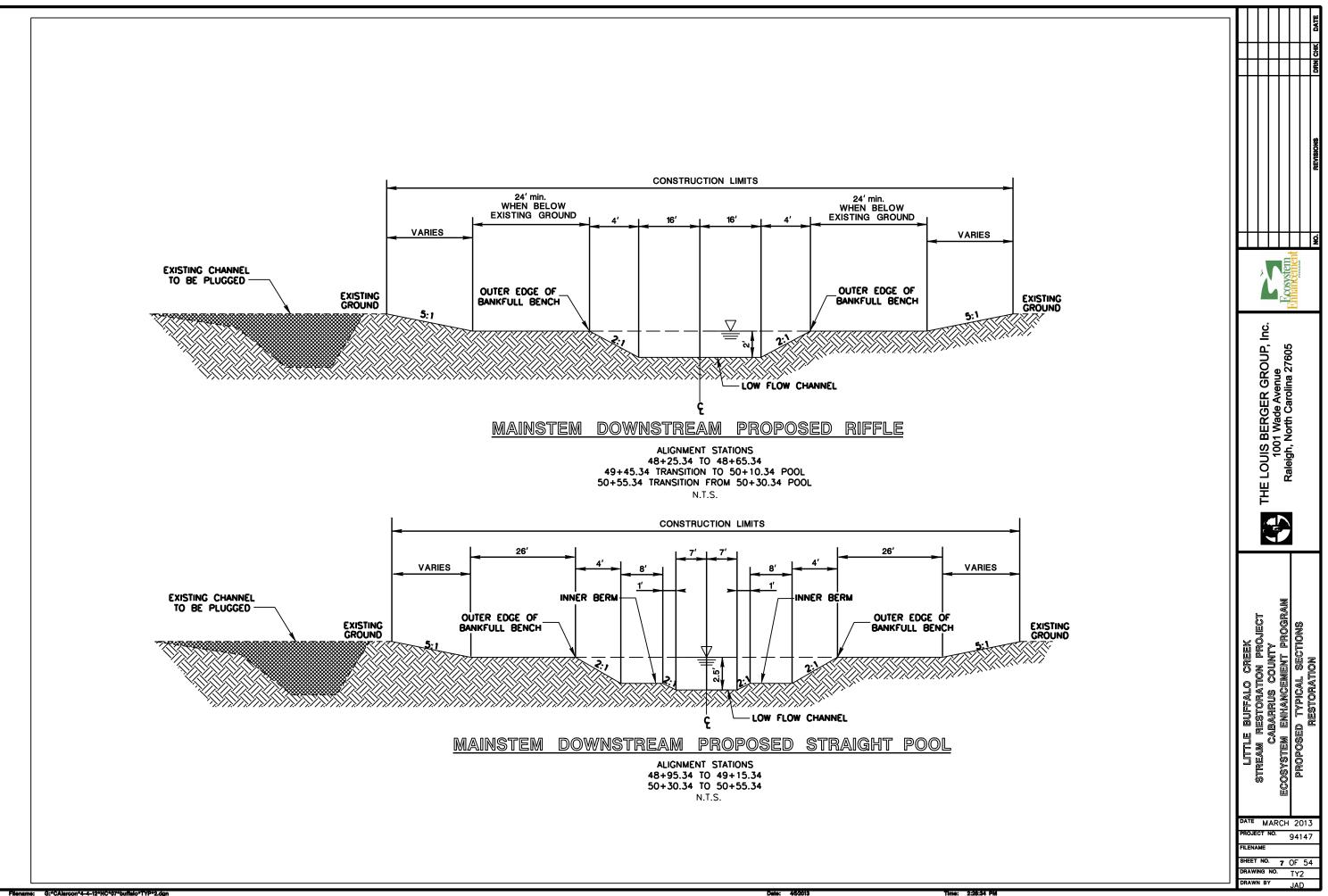
Enhancement Level 1 (continued)

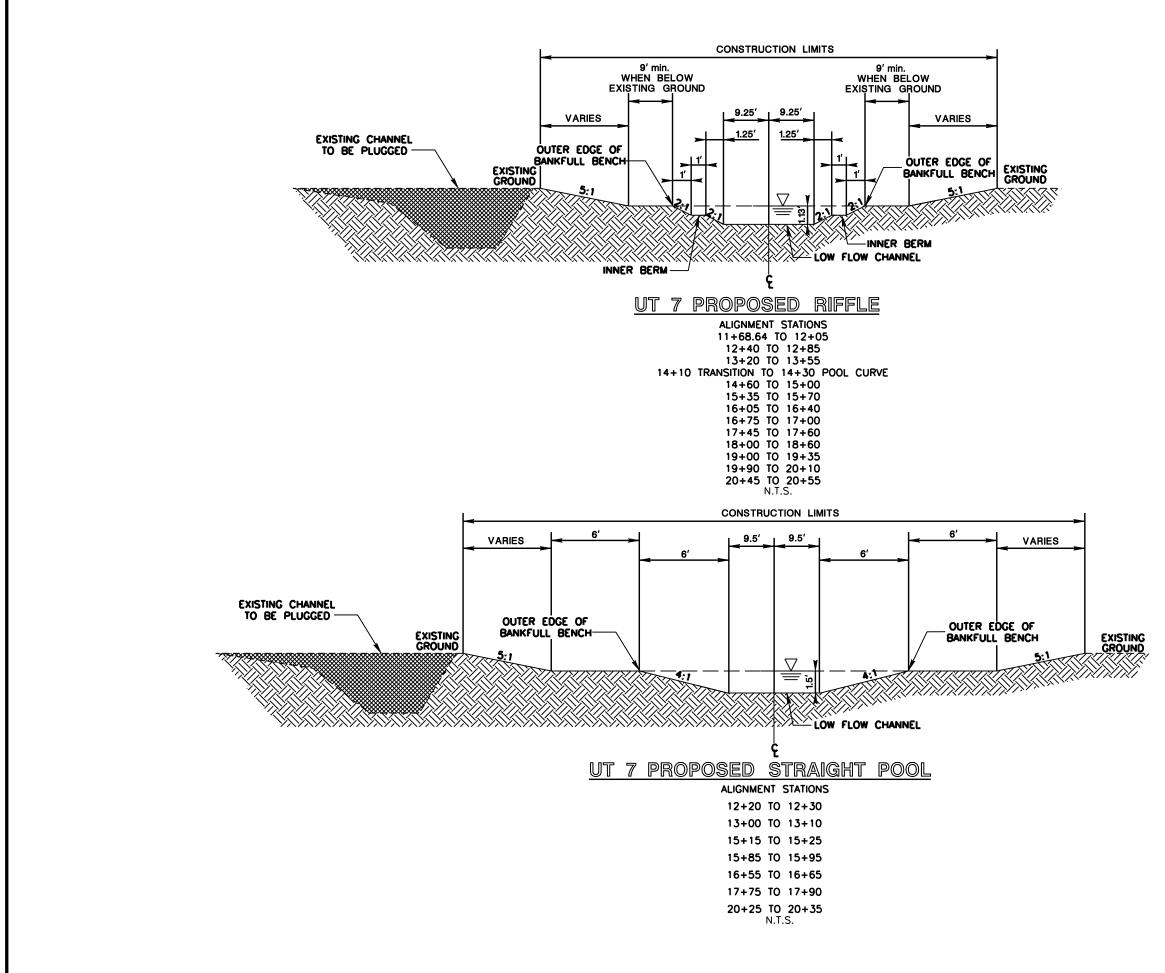
19. All disturbed areas are to be seeded, mulched and/or matted according to the project specifications.

20. Upon the completion of work in each Work Module, the Contractor shall schedule an inspection by the Engineer. The Contractor must have written approval from the Engineer that the Work Module has been completed to satisfactory standards prior to demobilization. **Enhancement Level 2**

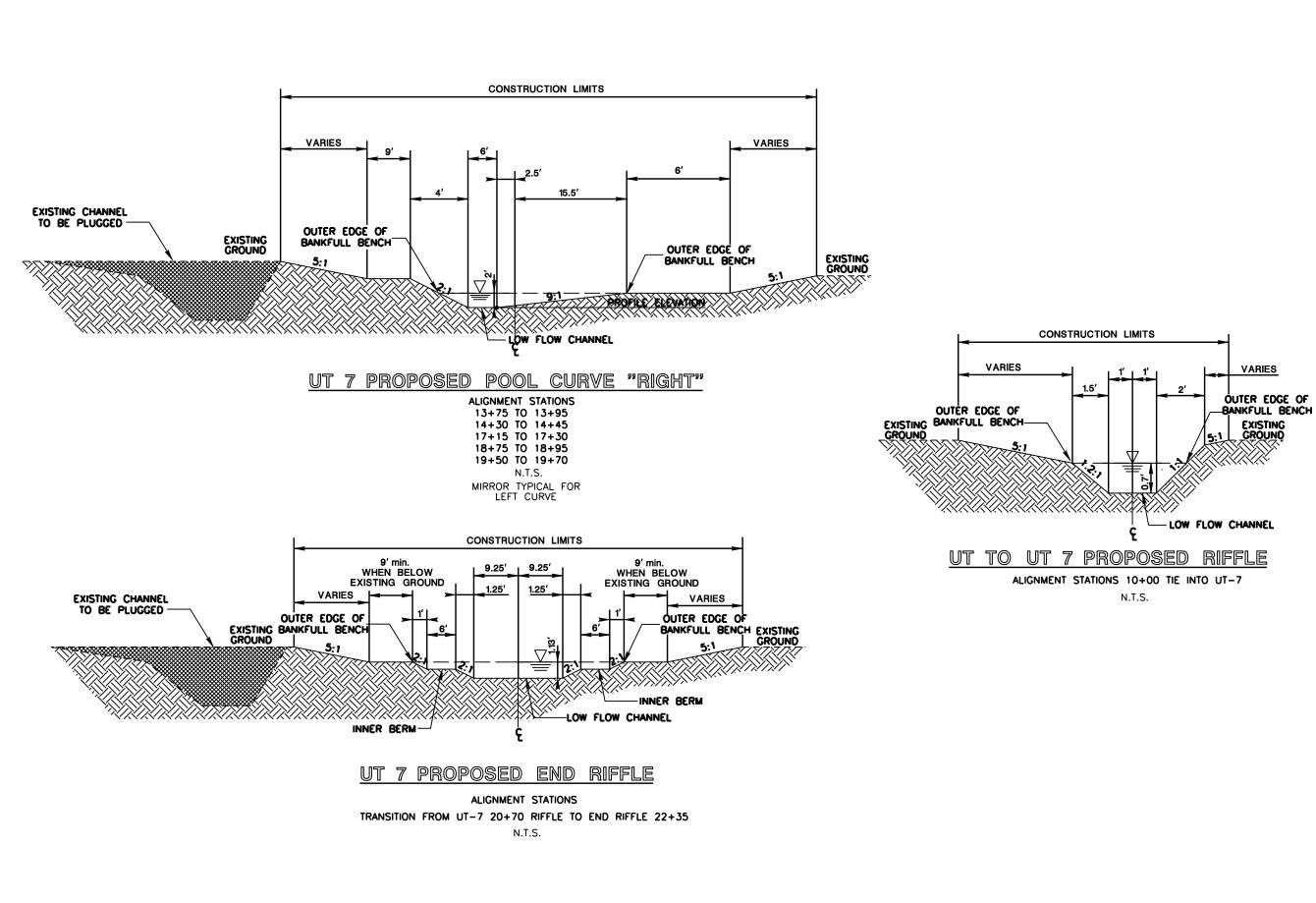
1. The Engineer will mark planting zones.

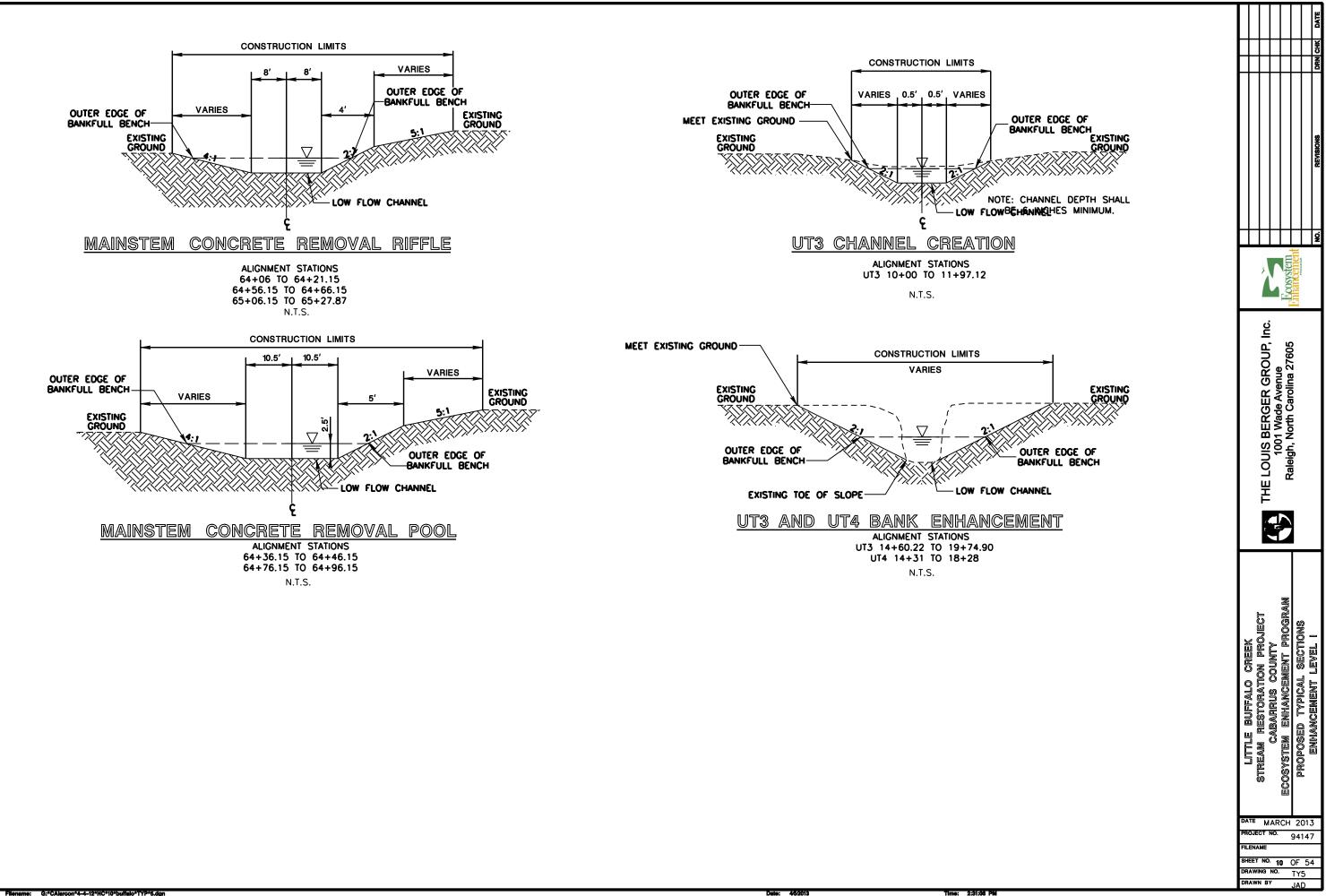

2. Areas lacking existing tree canopy will be ripped by a tractor drawn ripping tool to de-compact the soils prior to installation of vegetation as shown on the design plan drawings. These areas will be marked by the Engineer.


3. Perform all vegetation transplanting and installation as specified on the plans and the project specifications.


SURVEY CONTROL POINTS

Control Point	NORTHING	Easting
600 - Monument	637495.6110	1592310.8590
601 – Monument	635049.9530	1591355.3360
602	633940.0160	1590470.3200
603	633348.7210	1591639.1740
604	635717.2520	1593413.0340
605	637370.9250	1594236.7770
606 - MONUMENT	637975.0800	1593763.8310
607	639070.9930	1593605.3430
608 - MONUMENT	639507.0790	1595180.5440
609	640557.4300	1595783.8180
610	640541.1480	1594633.4580

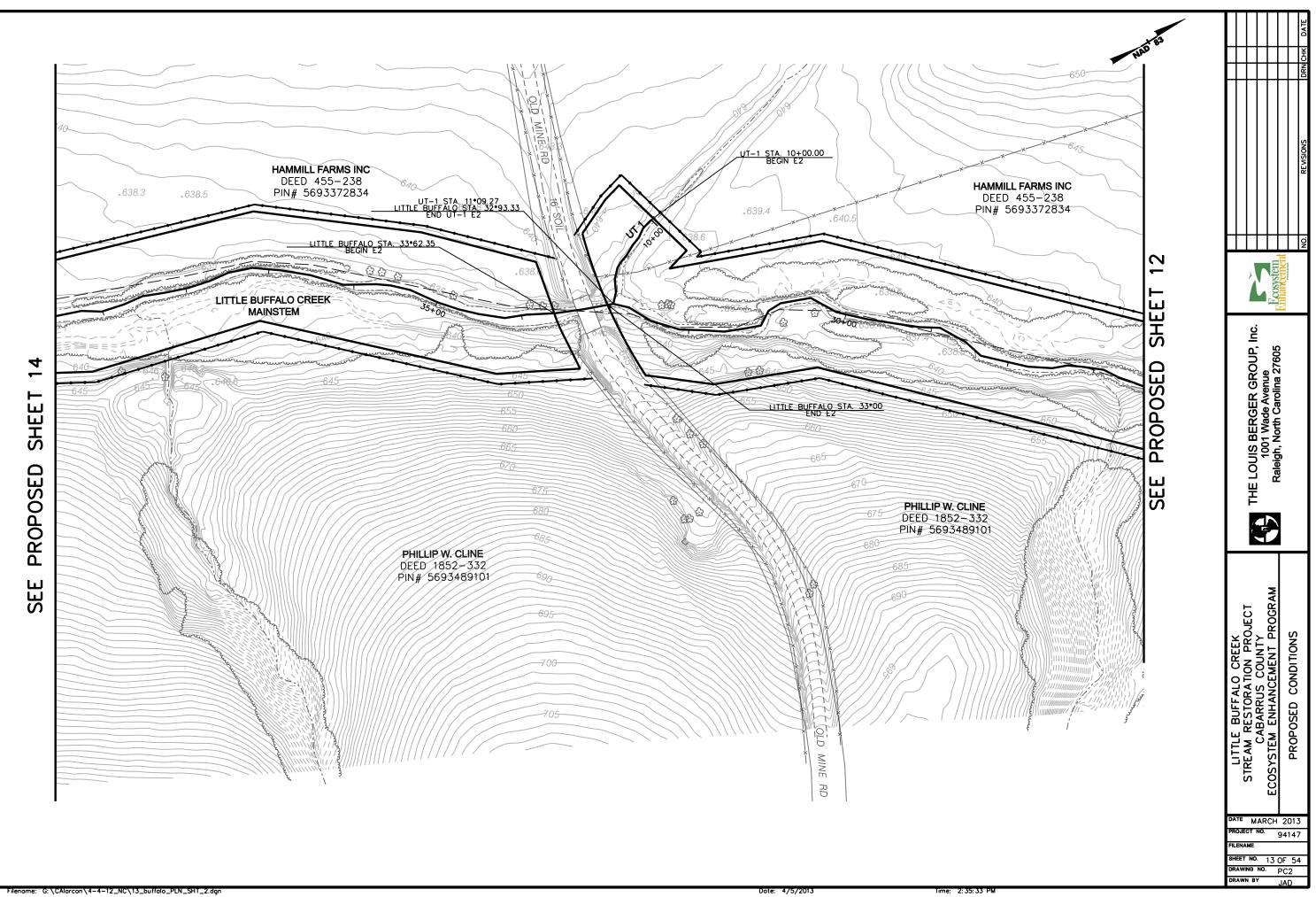

							DATE
							DRN CHK
							DRN
							REVISIONS
_			┢	┝			NO.
		,	V	Frosvstem	Enhancement	1000004	
		S REP C					
		THE LOUIS RERGER GROUP Inc		Deleich North Carolina 27605			
		THE LOUIS BEE		Dalaidh North			
	The Burral Chencen	STREAM RESTORATION PROJECT	CABARRUS COUNTY	ECOSYSTEM ENHANCEMENT PROGRAM		GENERAL NOTES	
		STREAM RESTORATION PROJECT	ARRUS COUNTY	ECOSYSTEM ENHANCEMENT PROGRAM	2	CENERAL NOT	
		STREAM RESTORATION PROJECT	CABARRUS COUNTY	ECOSYSTEM ENHANCEMENT PROGRAM	21	10 DENERAL NOT	7
		STREAM RESTORATION PROJECT	CABARRUS COUNTY	ECOSYSTEM ENHANCEMENT PROGRAM	2	CENERAL NOT	7

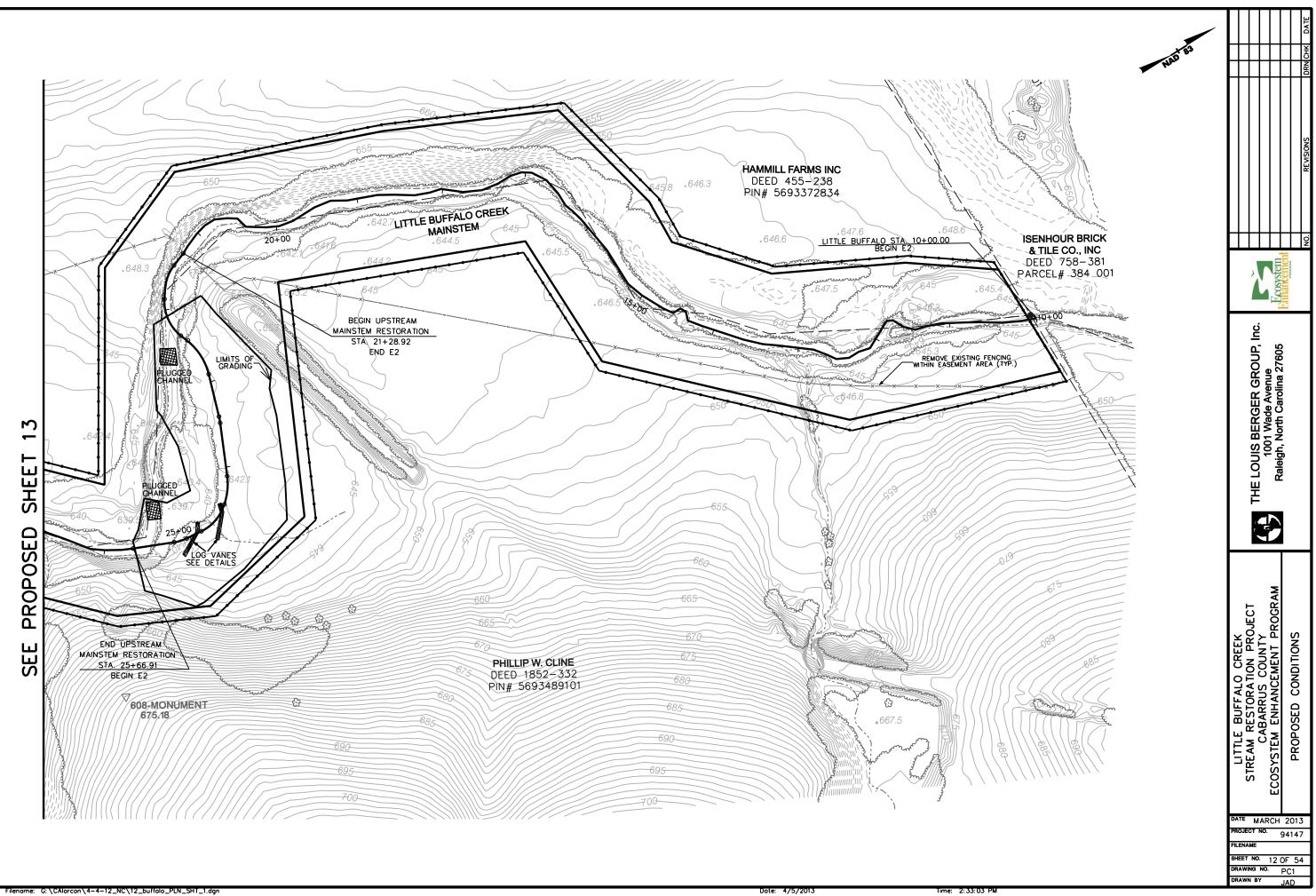


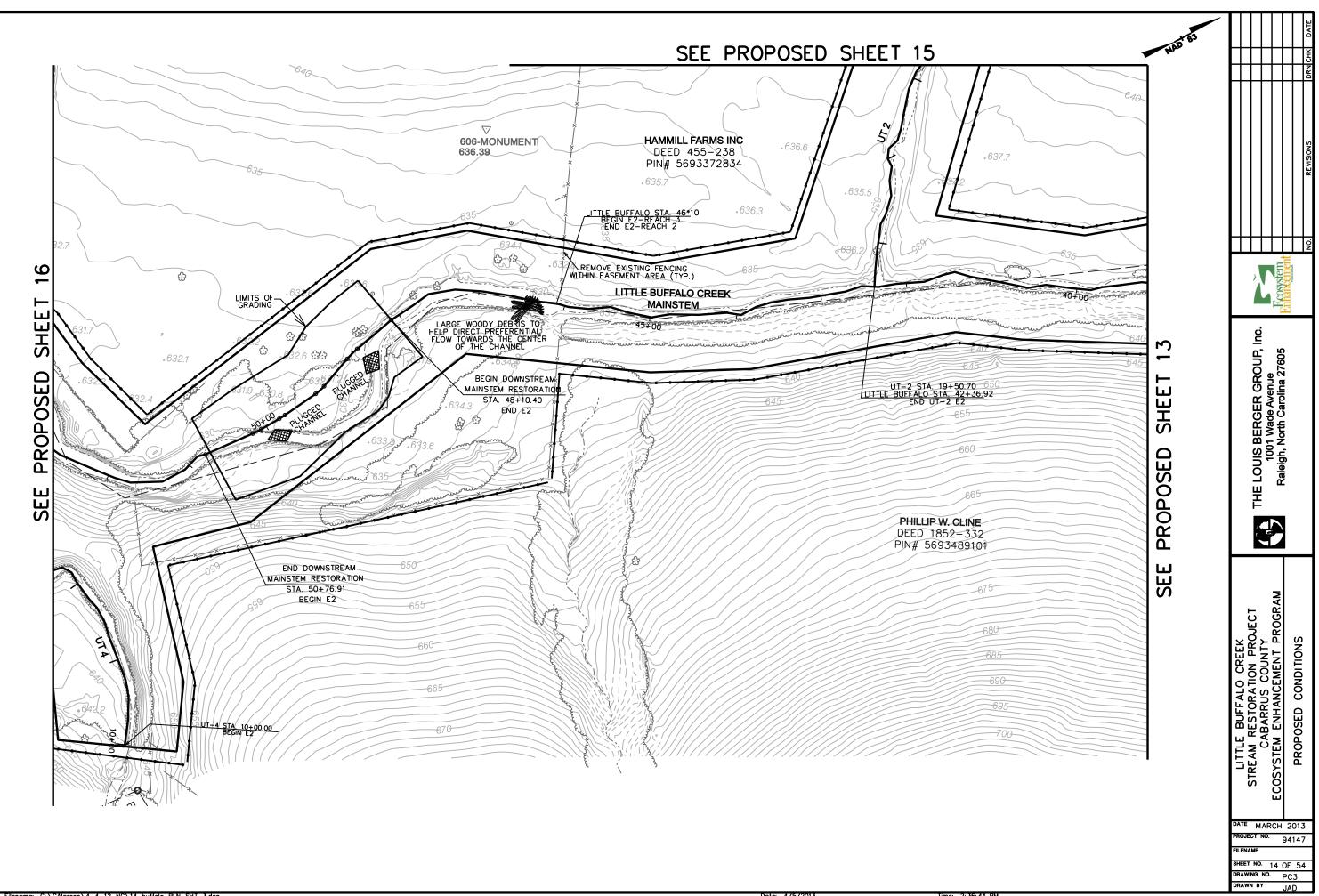
THE LOUIS BERGER GROUP, Inc. 1001 Wade Avenue Raleidh. North Carolina 27605	THE LO PROJECT NTY THE LO
	CTIONS

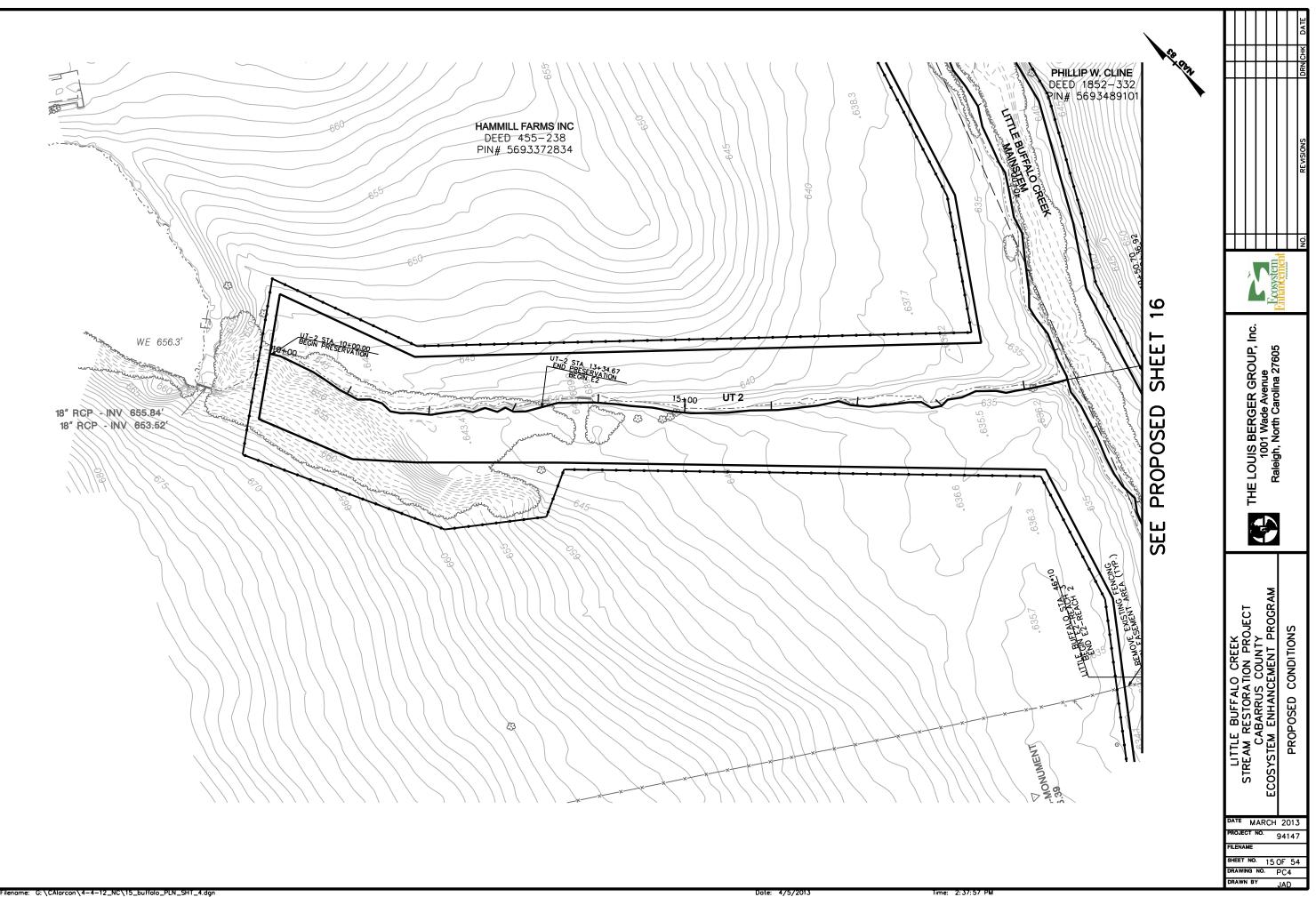
TYPICAL SECTION TABLE

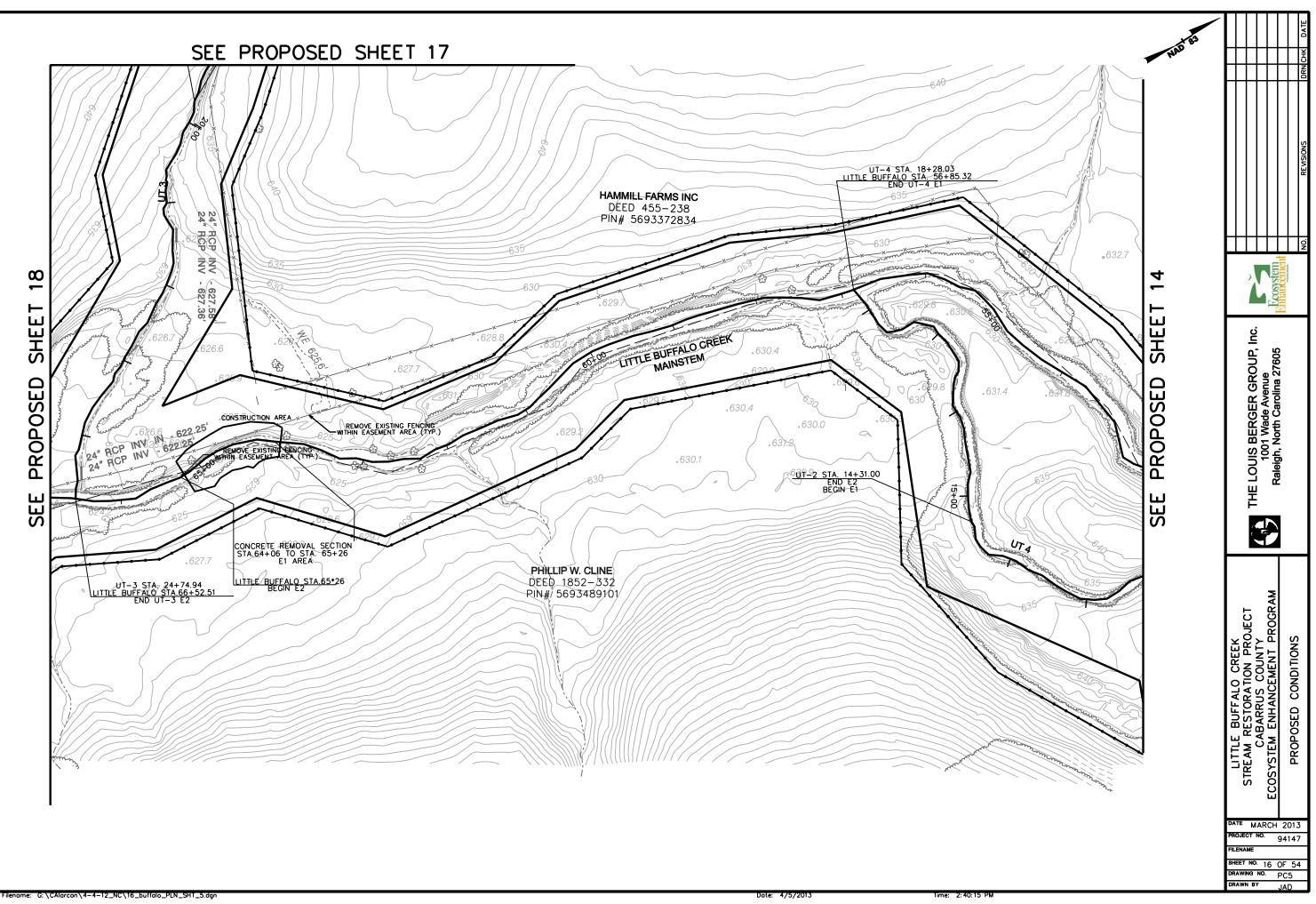
	MAINSTEM UPSTREAM
STATION	SECTION
22+23.92 TO 22+48.92	MAINSTEM UPSTREAM PROPOSED RIFFLE
22+48.92 TO 22+68.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED POOL CURVE "RIGHT"
22+68.92 TO 22+78.92	MAINSTEM UPSTREAM PROPOSED POOL CURVE "RIGHT"
22+78.92 TO 22+88.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED RIFFLE
22+88.92 TO 23+23.92	MAINSTEM UPSTREAM PROPOSED RIFFLE
23+23.92 TO 23+48.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED STRAIGHT POOL
23+48.92 TO 23+68.92	MAINSTEM UPSTREAM PROPOSED STRAIGHT POOL
23+68.92 TO 23+78.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED RIFFLE
23+78.92 TO 24+18.92	MAINSTEM UPSTREAM PROPOSED RIFFLE
24+18.92 TO 24+38.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED POOL CURVE "RIGHT"
24+38.92 TO 24+58.92	MAINSTEM UPSTREAM PROPOSED POOL CURVE "RIGHT"
24+58.92 TO 24+73.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED RIFFLE
24+73.92 TO 24+93.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED STRAIGHT POOL
24+93.92 TO 25+08.92	MAINSTEM UPSTREAM PROPOSED STRAIGHT POOL
25+08.92 TO 25+18.92	TRANSITION TO MAINSTEM UPSTREAM PROPOSED RIFFLE
25+18.92 TO 25+58.92	MAINSTEM UPSTREAM PROPOSED RIFFLE
	MAINSTEM DOWNSTREAM
STATION	SECTION
48+25.34 TO 48+65.34	MAINSTEM DOWNSTREAM PROPOSED RIFFLE
48+65.34 TO 48+95.34	TRANSITION TO MAINSTEM DOWNSTREAM PROPOSED STRAIGHT POOL
48+95.34 TO 49+15.34	MAINSTEM DOWNSTREAM PROPOSED STRAIGHT POOL
49+15.34 TO 49+45.34	TRANSITION TO MAINSTEM DOWNSTREAM PROPOSED RIFFLE
49+45.34 TO 50+10.34	TRANSITION TO MAINSTEM DOWNSTREAM PROPOSED STRAIGHT POOL
50+10.34 TO 50+30.34	MAINSTEM DOWNSTREAM PROPOSED STRAIGHT POOL
50+30.34 TO 50+55.34	TRANSITION TO MAINSTEM DOWNSTREAM PROPOSED RIFFLE
	<u>UT 7</u>
STATION	SECTION
11+68.64 TO 12+05	UT 7 PROPOSED RIFFLE
12+05 TO 12+20	TRANSITION TO UT 7 PROPOSED STRAIGHT POOL
12+20 TO 12+30	UT 7 PROPOSED STRAIGHT POOL
12+30 TO 12+40	TRANSITION TO UT 7 PROPOSED RIFFLE
12+40 TO 12+85	UT 7 PROPSED RIFFLE
12+85 TO 13+00	TRANSITION TO UT 7 PROPOSED STRAIGHT POOL
13+00 TO 13+10	UT 7 PROPOSED STRAIGHT POOL
13+10 TO 13+20	TRANSITION TO UT 7 PROPOSED RIFFLE
13+20 TO 13+55	UT 7 PROPOSED RIFFLE
13+55 TO 13+75	TRANSITION TO UT 7 PROPOSED POOL CURVE "RIGHT"
13+75 TO 13+95	UT 7 PROPOSED POOL CURVE "RIGHT"
47.05 70 44.40	TRANSITION TO UT 7 PROPOSED RIFFLE
13+95 TO 14+10	
13+95 10 14+10 14+10 TO 14+30	TRANSITION TO UT 7 PROPOSED POOL CURVE "RIGHT"
	TRANSITION TO UT 7 PROPOSED POOL CURVE "RIGHT" UT 7 PROPOSED POOL CURVE "RIGHT"
14+10 TO 14+30	
14+10 TO 14+30 14+30 TO 14+45	UT 7 PROPOSED POOL CURVE "RIGHT"
14+10 TO 14+30 14+30 TO 14+45 14+45 TO 14+60	UT 7 PROPOSED POOL CURVE "RIGHT" TRANSITION TO UT 7 PROPOSED RIFFLE
14+10 TO 14+30 14+30 TO 14+45 14+45 TO 14+60 14+60 TO 15+00	UT 7 PROPOSED POOL CURVE "RIGHT" TRANSITION TO UT 7 PROPOSED RIFFLE UT 7 PROPOSED RIFFLE

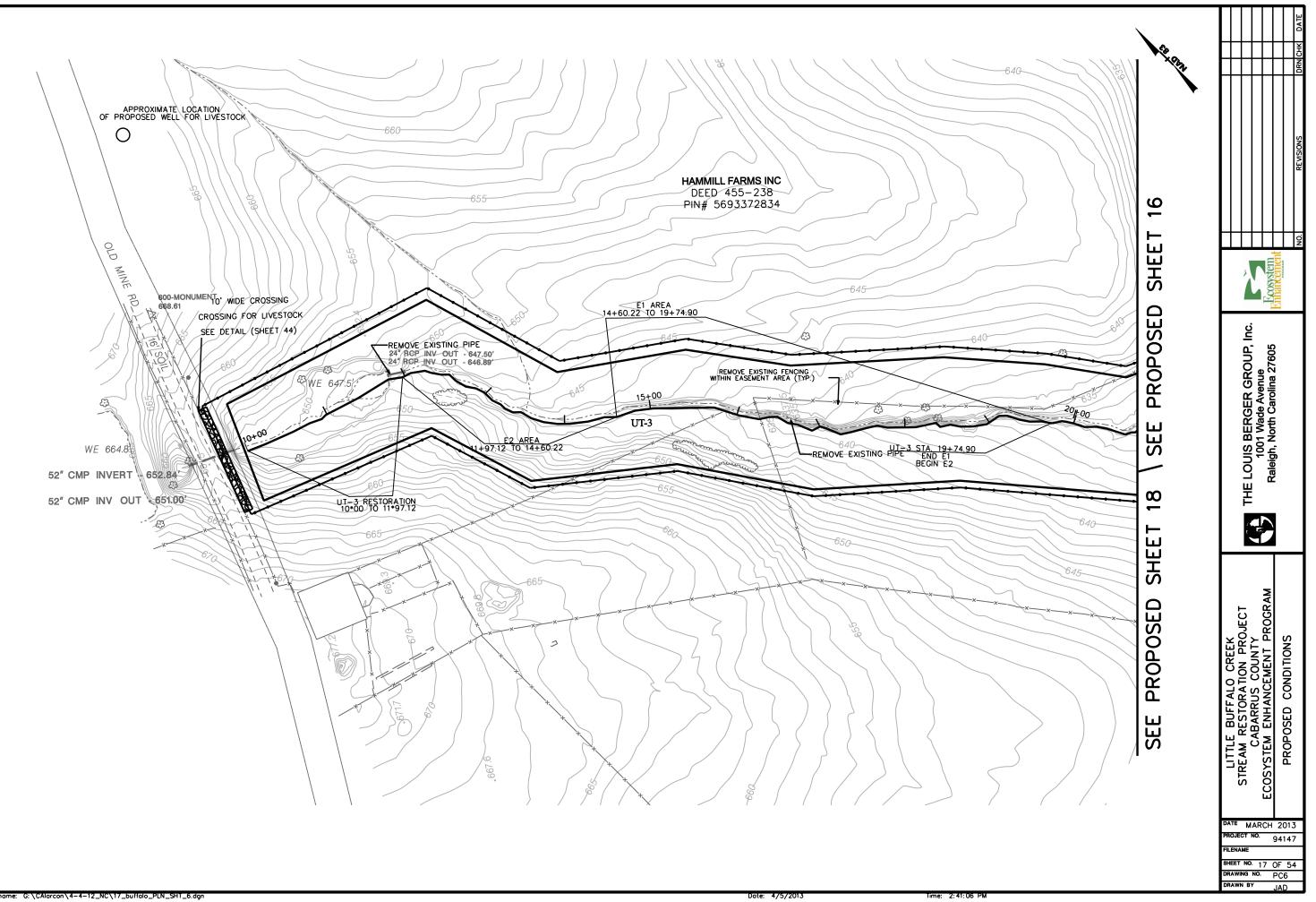

15+35 TO 15+70	UT 7 PROPOSED RIFFLE
15+70 TO 15+85	TRANSITION TO UT 7 PROPOSED STRAIGHT F
15+85 TO 15+95	UT 7 PROPOSED STRAIGHT POOL
15+95 TO 16+05	TRANSITION TO UT 7 PROPOSED RIFFLE
16+05 TO 16+40	UT 7 PROPOSED RIFFLE
16+40 TO 16+55	TRANSITION TO UT 7 PROPOSED STRAIGHT F
16+55 TO 16+65	UT 7 PROPOSED STRAIGHT POOL
16+65 TO 16+75	TRANSITION TO UT 7 PROPOSED RIFFLE
16+75 TO 17+00	UT 7 PROPOSED RIFFLE
17+00 TO 17+15	TRANSITION TO UT 7 PROPOSED POOL CUR
17+15 TO 17+30	UT 7 PROPOSED POOL CURVE "RIGHT"
17+30 TO 17+45	TRANSITION TO UT 7 PROPOSED RIFFLE
17+45 TO 17+60	UT 7 PROPOSED RIFFLE
17+60 TO 17+75	TRANSITION TO UT 7 PROPOSED STRAIGHT F
17+75 TO 17+90	UT 7 PROPOSED STRAIGHT POOL
17+90 TO 18+00	TRANSITION TO UT 7 PROPOSED RIFFLE
18+00 TO 18+60	UT 7 PROPOSED RIFFLE
18+60 TO 18+75	TRANSITION TO UT 7 PROPOSED POOL CUR
18+75 TO 18+95	UT 7 PROPOSED POOL CURVE "RIGHT"
18+95 TO 19+00	TRANSITION TO UT 7 PROPOSED RIFFLE
19+00 TO 19+35	UT 7 PROPOSED RIFFLE
19+35 TO 19+50	TRANSITION TO UT 7 PROPOSED POOL CUR
19+50 TO 19+70	UT 7 PROPOSED POOL CURVE "RIGHT"
19+70 TO 19+90	TRANSITION TO UT 7 PROPOSED RIFFLE
19+90 TO 20+10	UT 7 PROPOSED RIFFLE
20+10 TO 20+25	TRANSITION TO UT 7 PROPOSED STRAIGHT F
20+25 TO 20+35	UT 7 PROPOSED STRAIGHT POOL
20+35 TO 20+45	TRANSITION TO UT 7 PROPOSED RIFFLE
20+45 TO 20+55	UT 7 PROPOSED RIFFLE
20+55 TO 22+35	TRANSITION TO UT 7 PROPOSED END RIFFLE
	MAINSTEM CONCRETE REMOVAL
STATION	SECT
64+06 TO 64+21.15	MAINSTEM CONCRETE REMOVAL RIFFLE
64+21.15 TO 64+36.15	TRANSITION TO MAINSTEM CONCRETE REMOV
64+36.15 TO 64+46.15	MAINSTEM CONCRETE REMOVAL POOL
64+46.15 TO 64+56.15	TRANSITION TO MAINSTEM CONCRETE REMOV
64+56.15 TO 64+66.15	MAINSTEM CONCRETE REMOVAL RIFFLE
64+66.15 TO 64+76.15	TRANSITION TO MAINSTEM CONCRETE REMOV
64+76.15 TO 64+96.15	MAINSTEM CONCRETE REMOVAL POOL
64+96.15 TO 65+06.15	TRANSITION TO MAINSTEM CONCRETE REMOV
65+06.15 TO 65+27.87	MAINSTEM CONCRETE REMOVAL RIFFLE
	UT3 CHANNEL CREATION
STATION	SECT
10+00 TO 11+97.12	UT3 CHANNEL CREATION
	UT3 AND UT4 BANK ENHANCEMEN
STATION	SECT
14+31 TO 18+28	UT4 BANK ENHANCEMENT
14+60.22 TO 19+74.90	UT3 BANK ENHANCEMENT

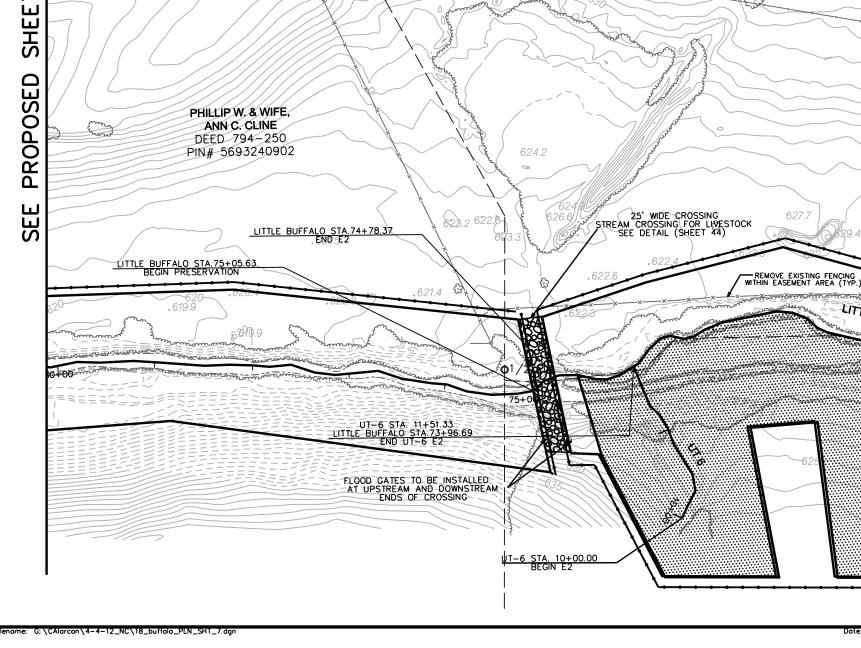

STRUCTURE TABLE

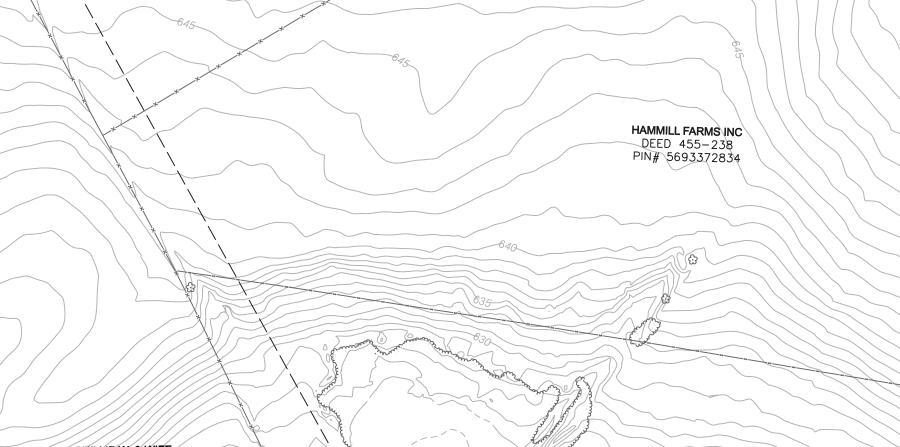

STRUCTURE LOCATION TABLE									
LITTLE BUFFALO									
STRUCTURE	STATION	NORTHING	EASTING						
LOG VANE	24+50	639,717.99	1,595,058.19						
LOG VANE	24+90	639,678.86	1,595,066.02						
LARGE WOODY DEBRIS	47+58	637,830.48	1,593,901.14						
LIVESTOCK STREAM CROSSING	74+91	635,615.04	1,592,969.81						
UT7									
STRUCTURE	STATION	NORTHING	EASTING						
ROCK CROSS VANE	12+10	634,802.32	1,591,237.40						
ROCK CROSS VANE	17+65	634,329.30	1,591,287.96						
PLUGGED CHANNEL	18+40	634,282.87	1,591,357.25						
PROPOSED STEP POOL START	20+55	634,090.75	1,591,415.19						
PROPOSED STEP POOL END	22+35	633,945.61	1,591,312.81						


r POOL
F POOL
- 002
JRVE "RIGHT"
F POOL
JRVE "RIGHT"
JRVE "RIGHT"
F POOL
FLE
L
CTION
<u></u>
OVAL POOL
OVAL RIFFLE
OVAL POOL
OVAL RIFFLE
CTION
ENT
CTION
6 HOIT

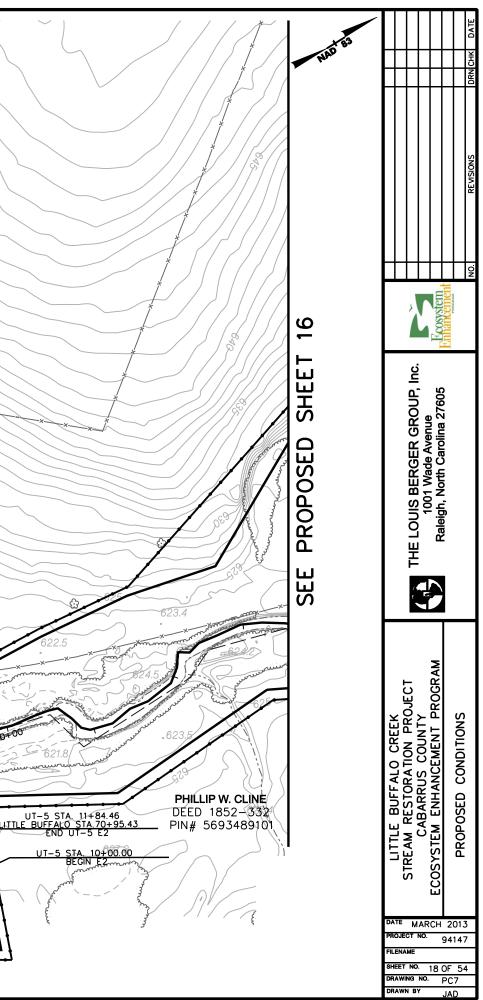


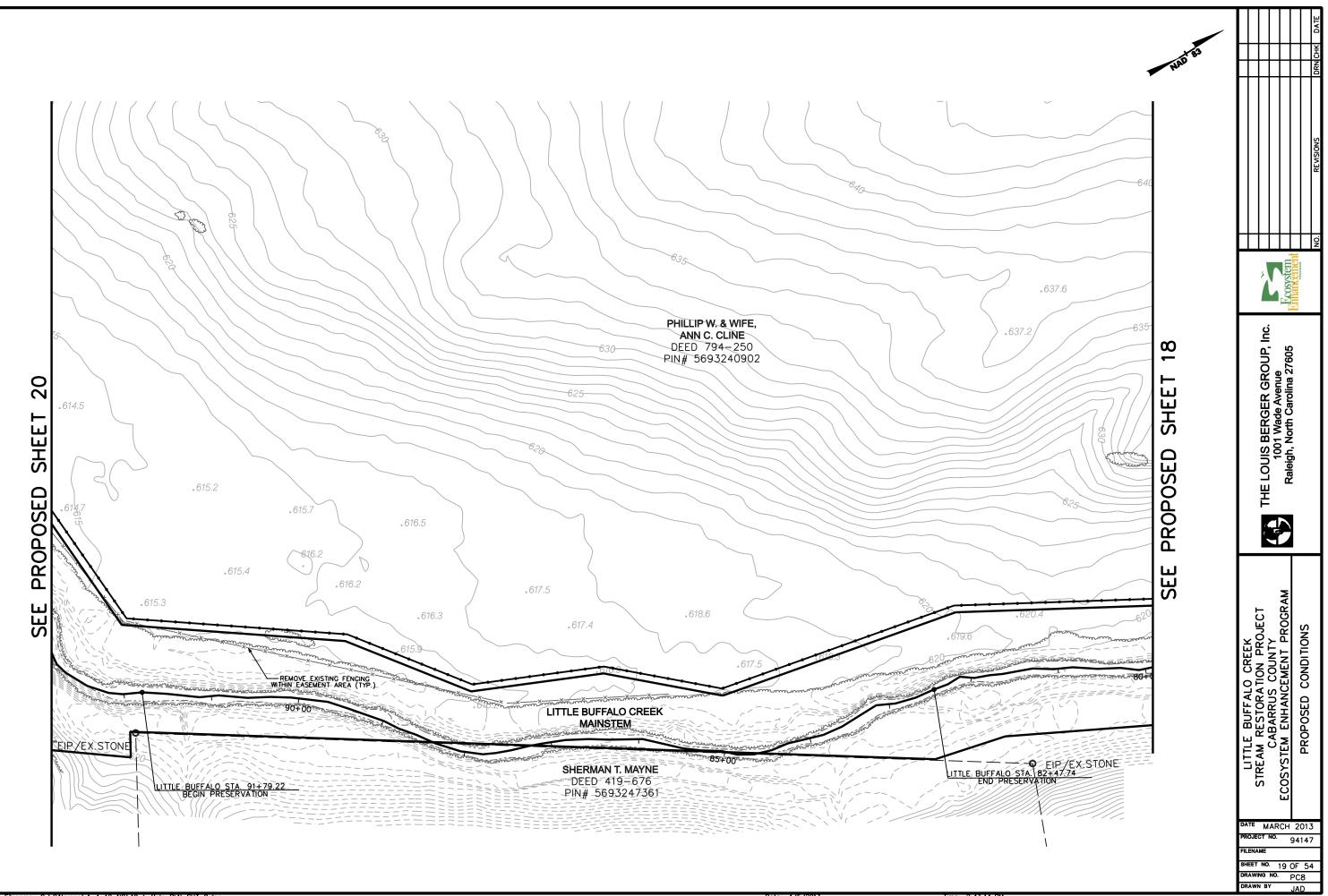


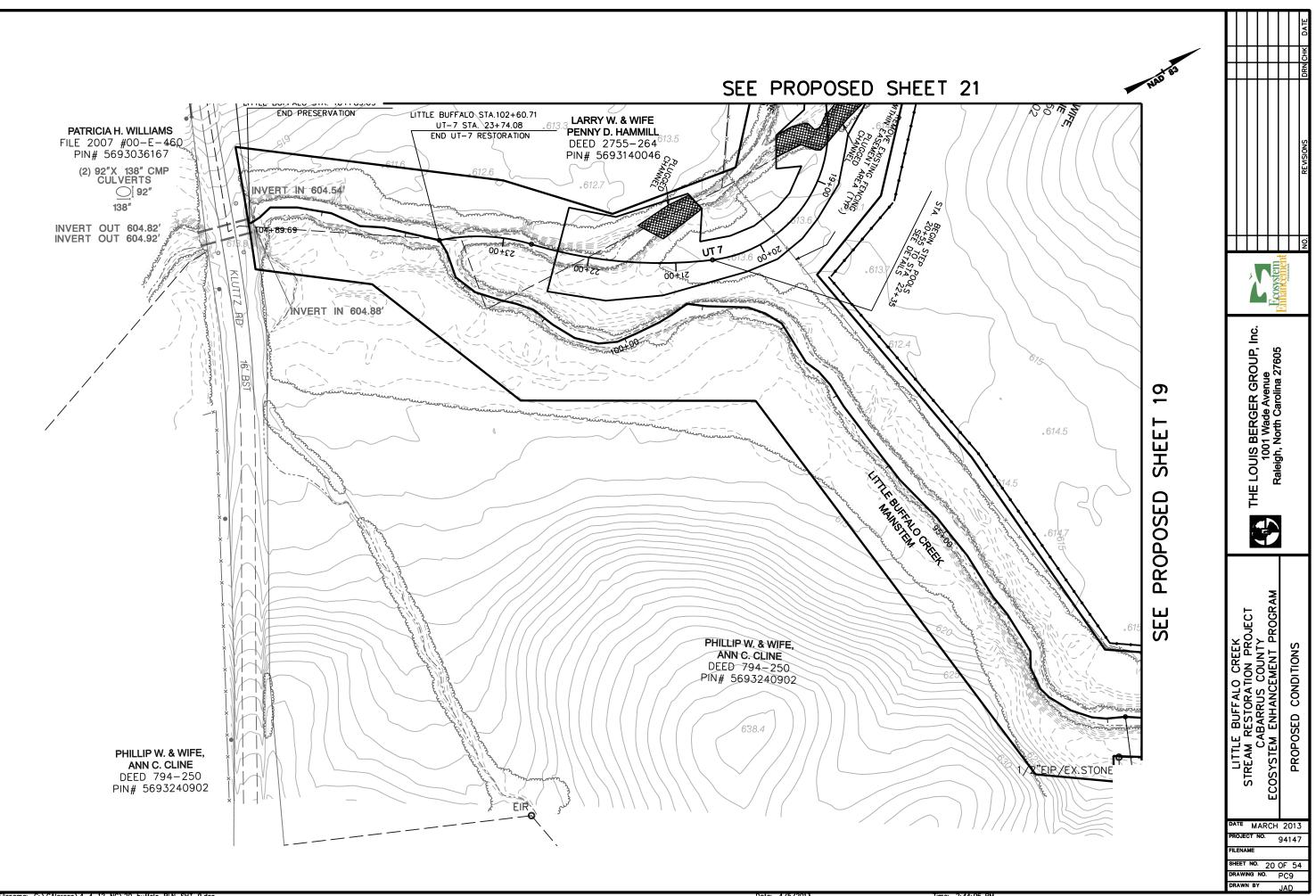


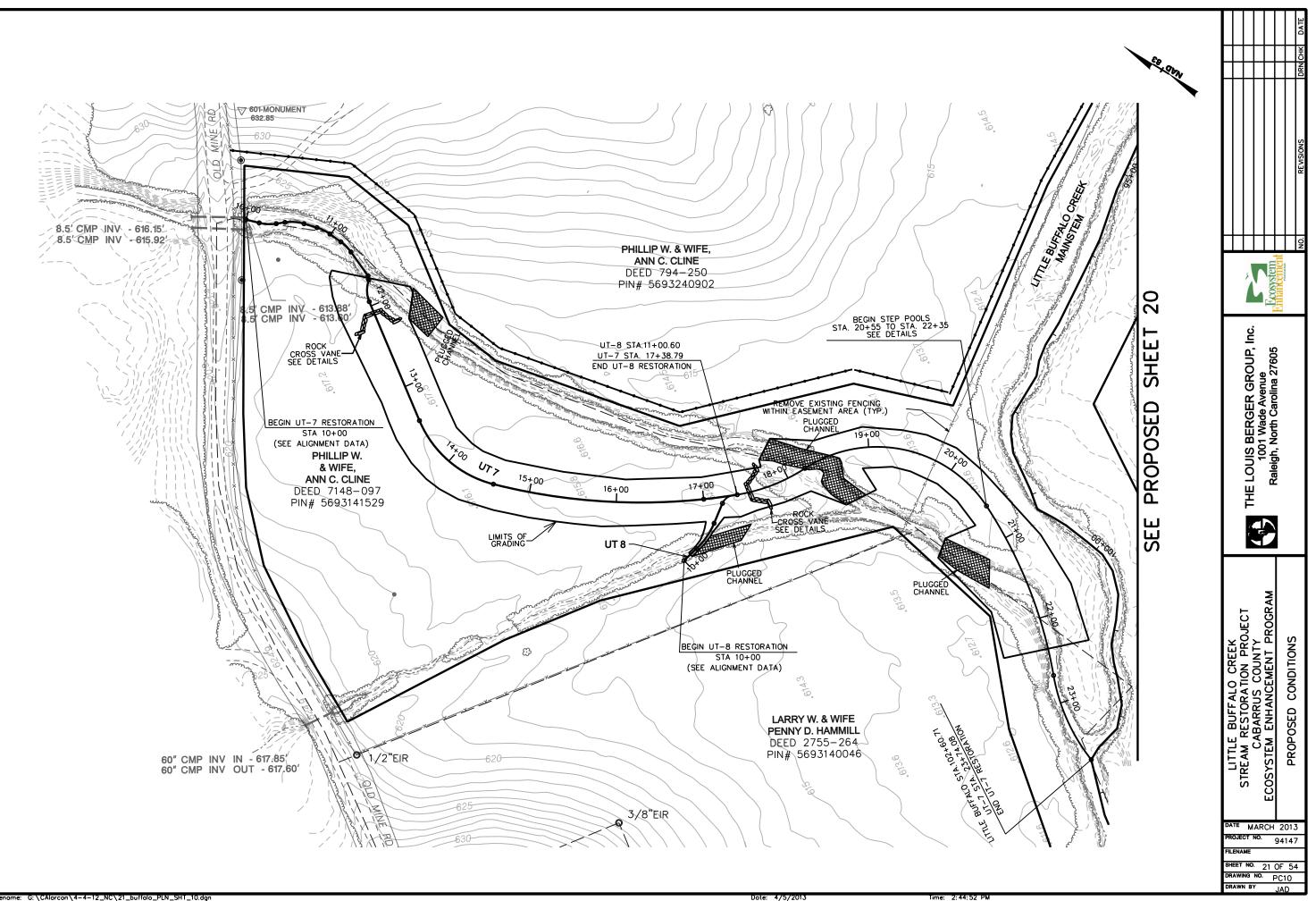


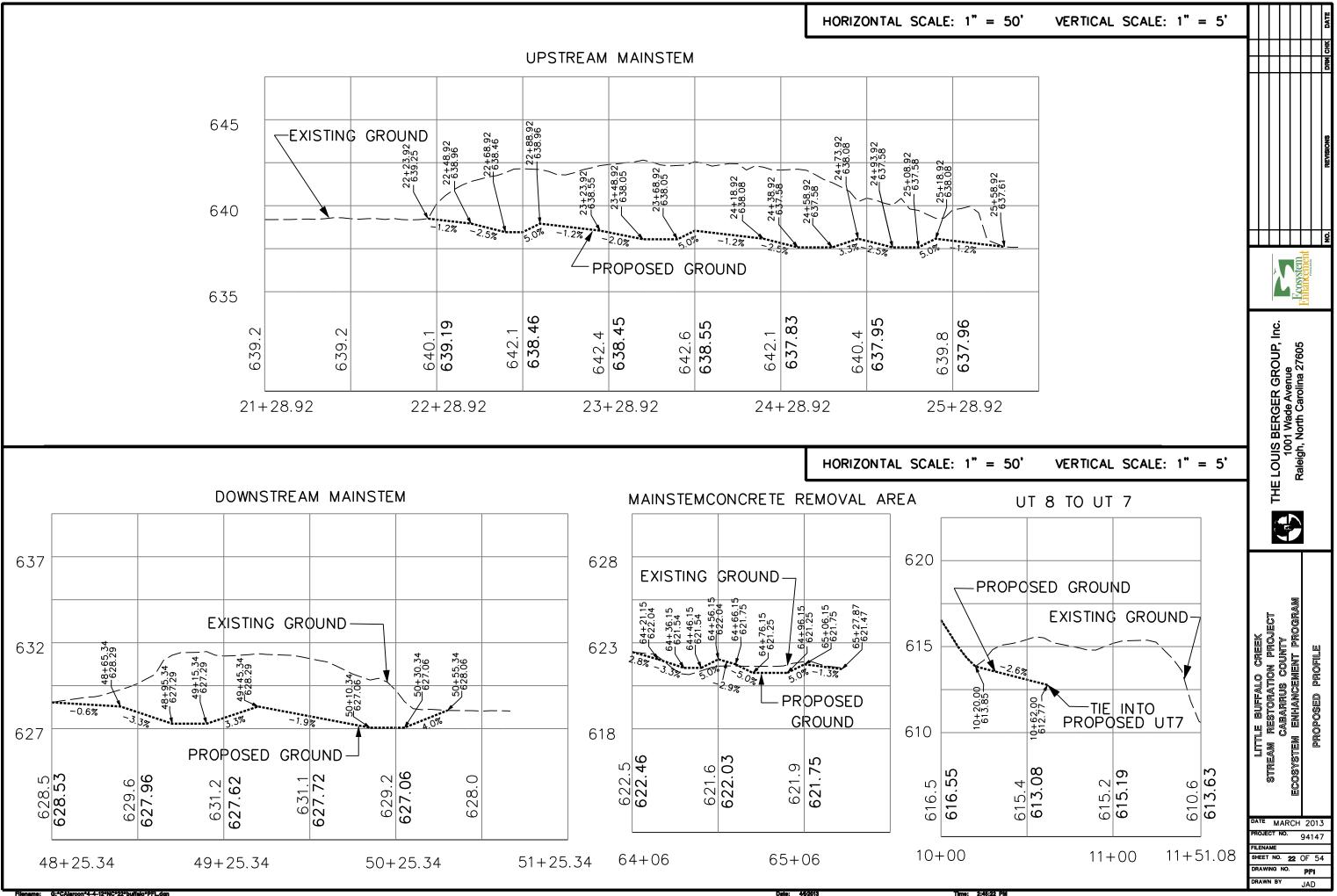
σ

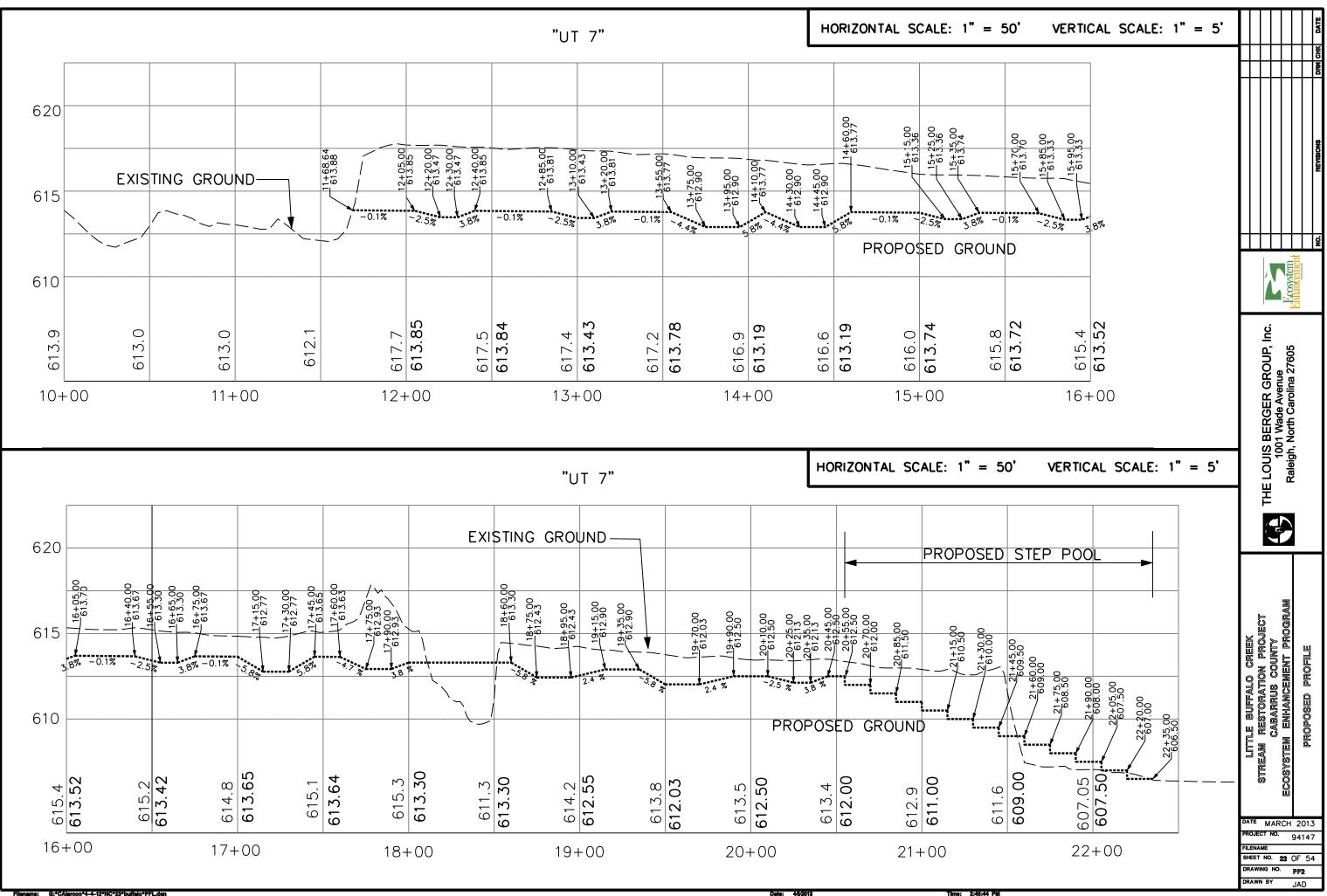

-

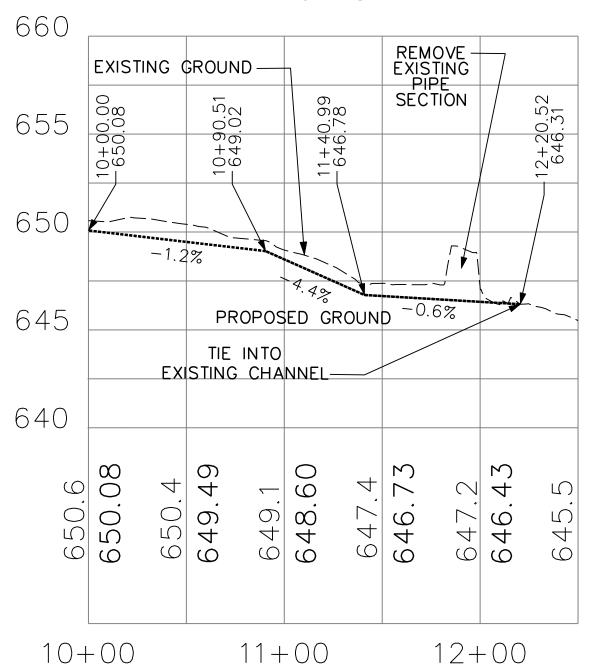

 \vdash

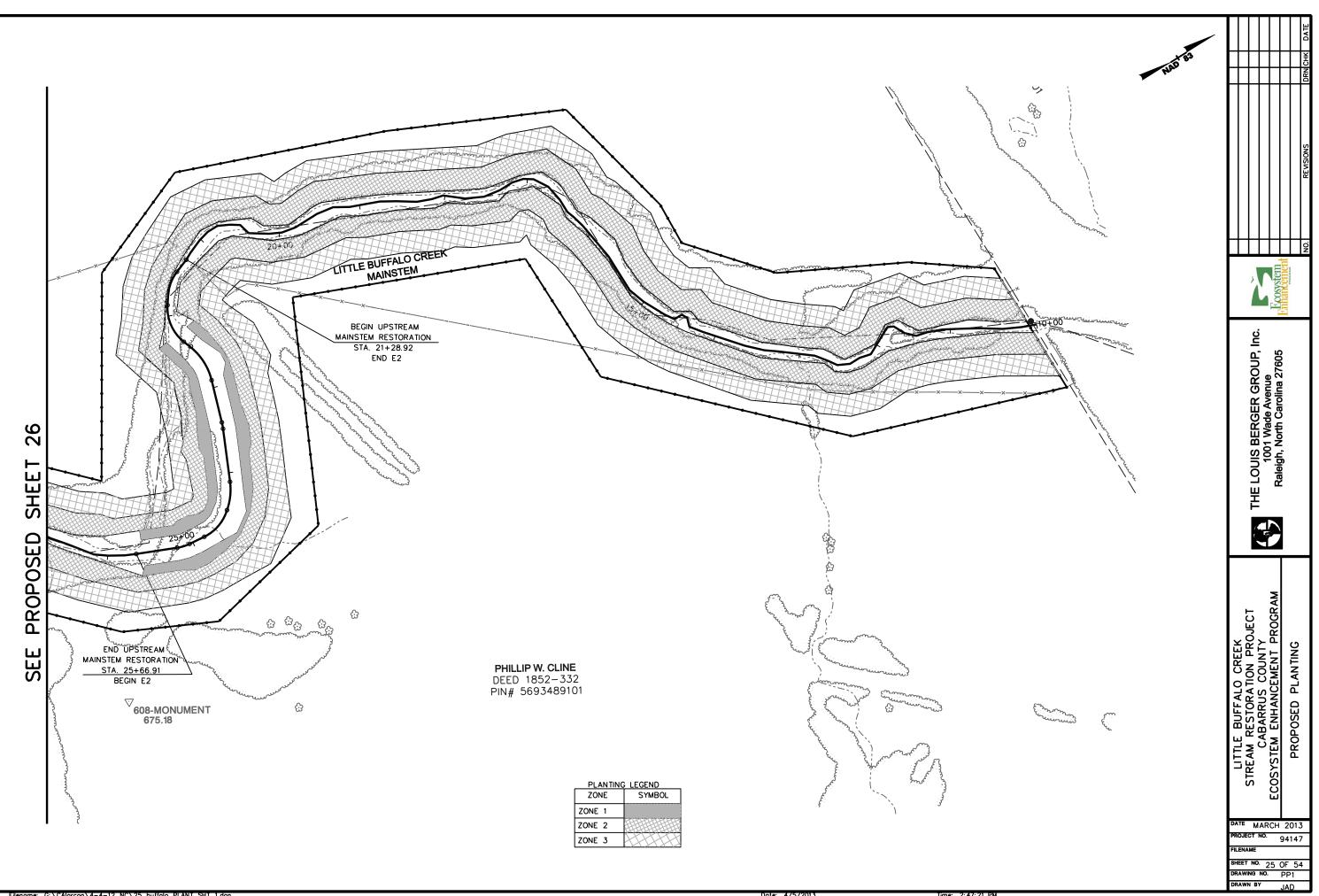

UT 5

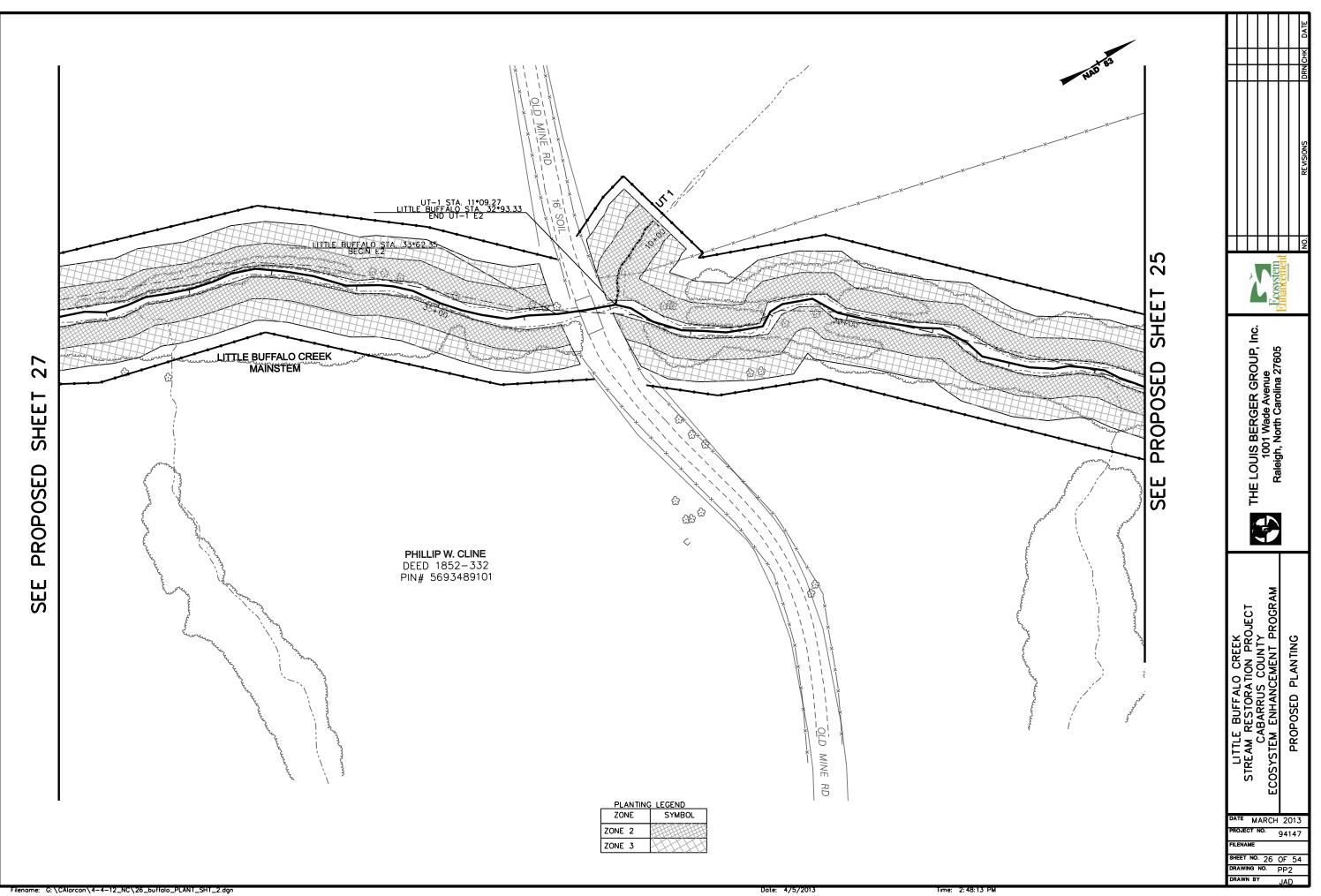

LITTLE BUFFALO CREEK MAINSTEM

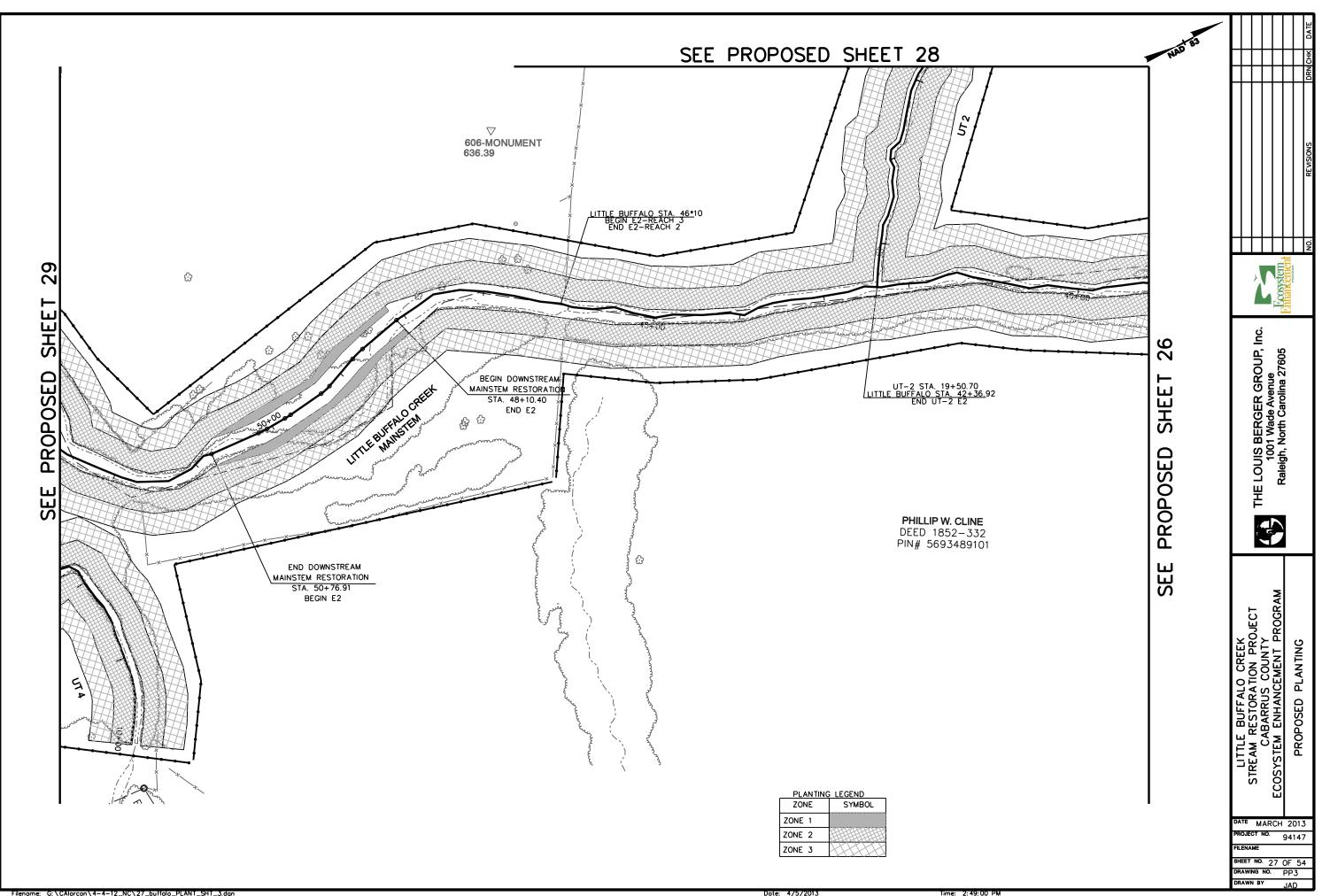

.623.3

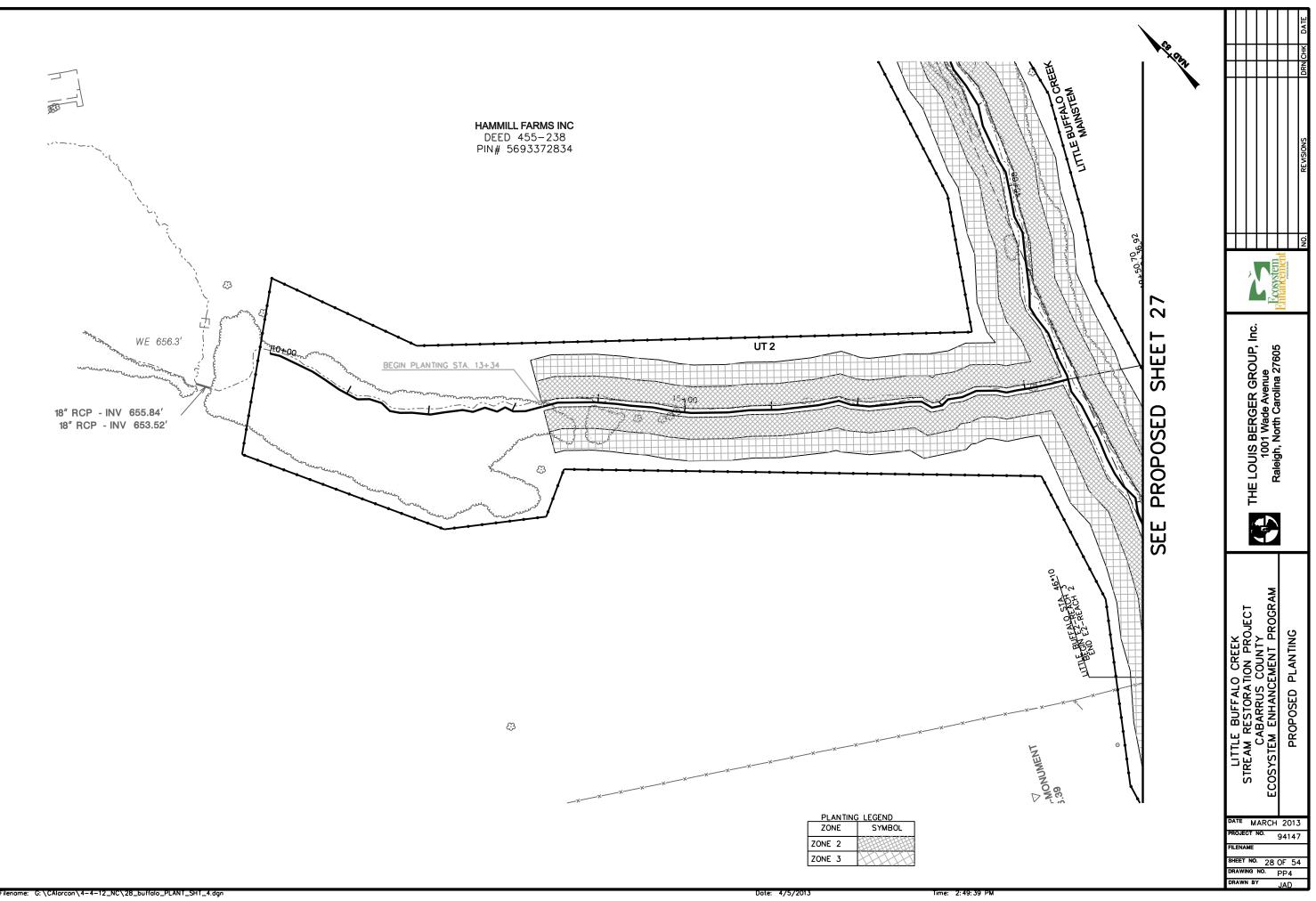


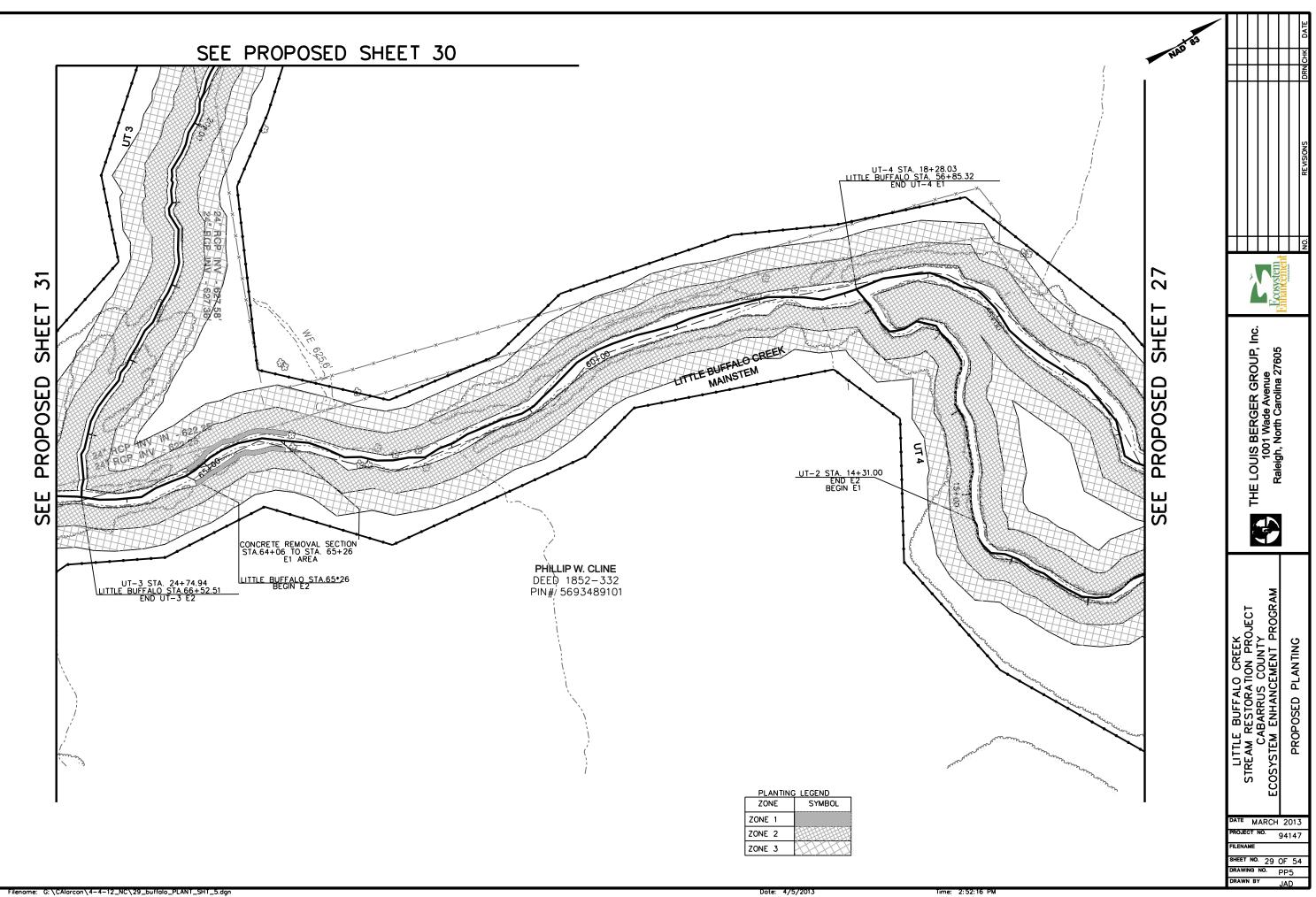


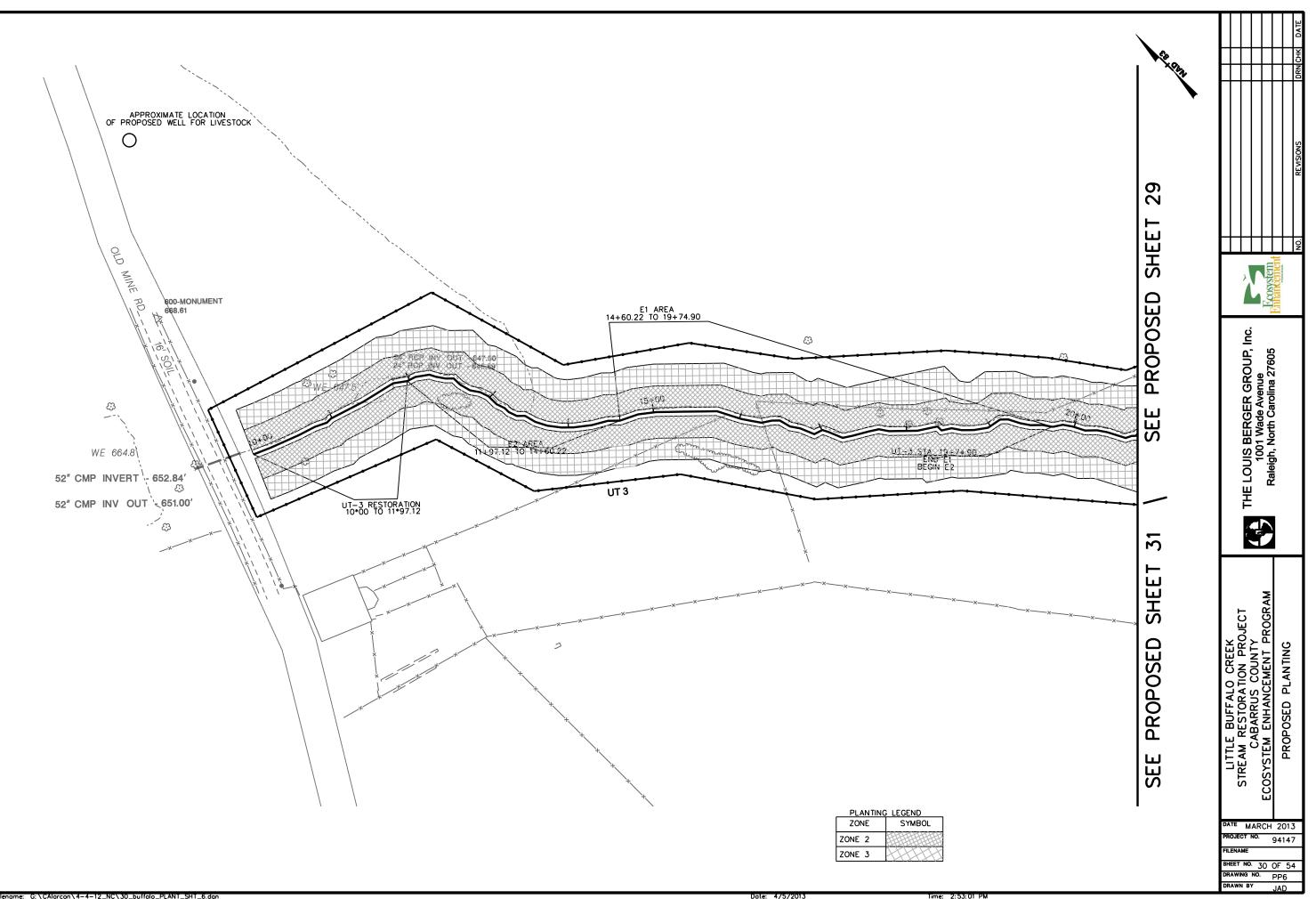


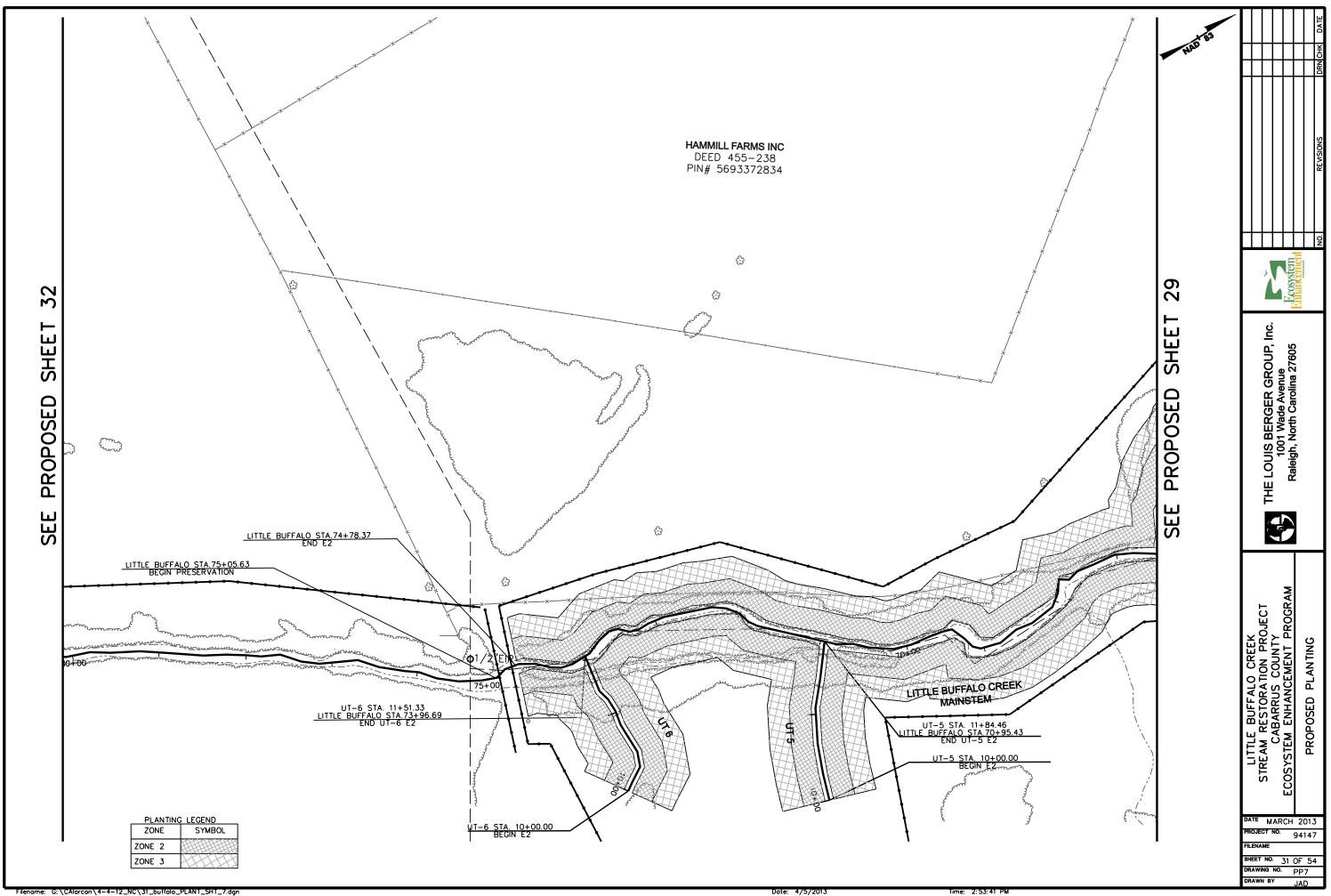


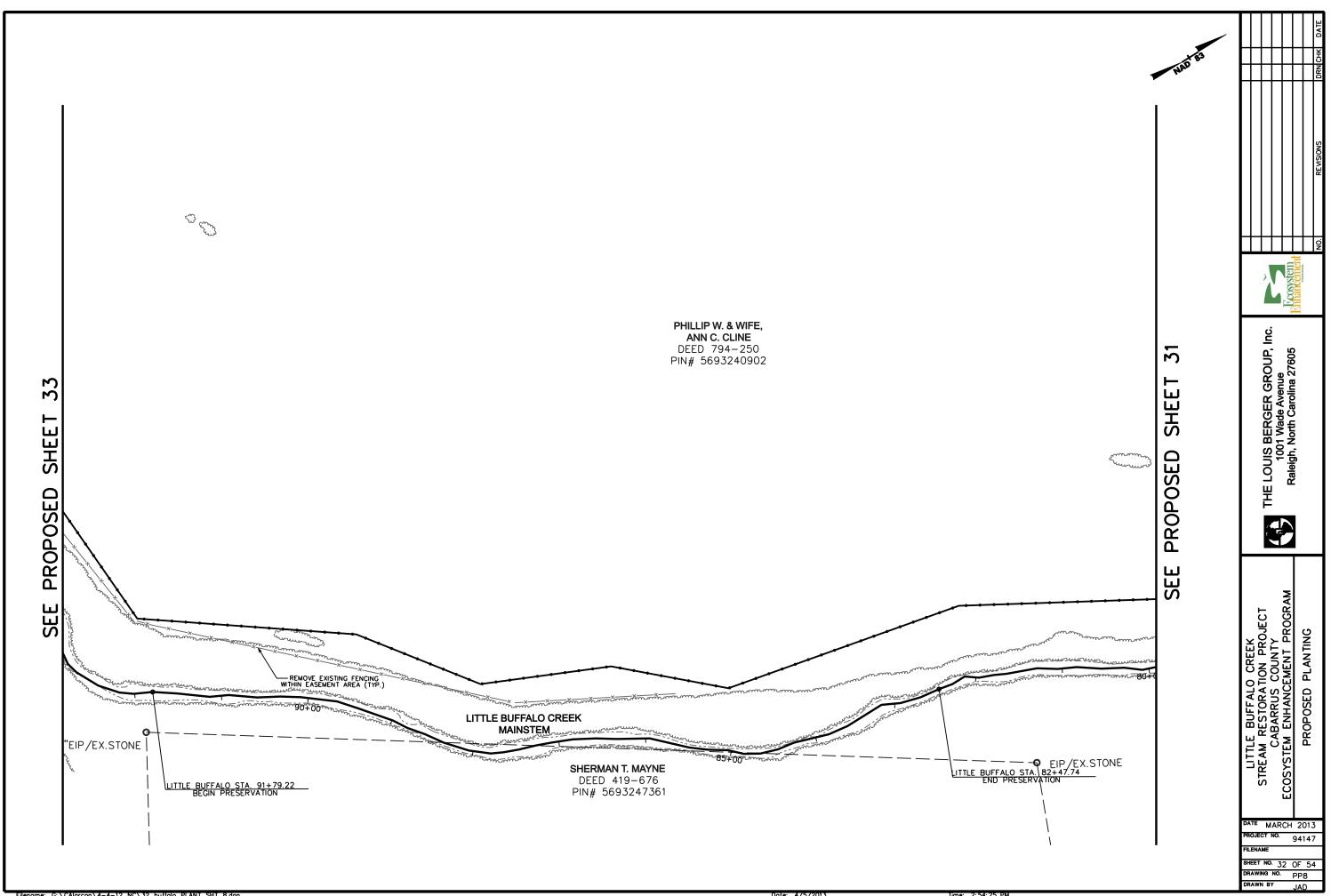

"UT 3"

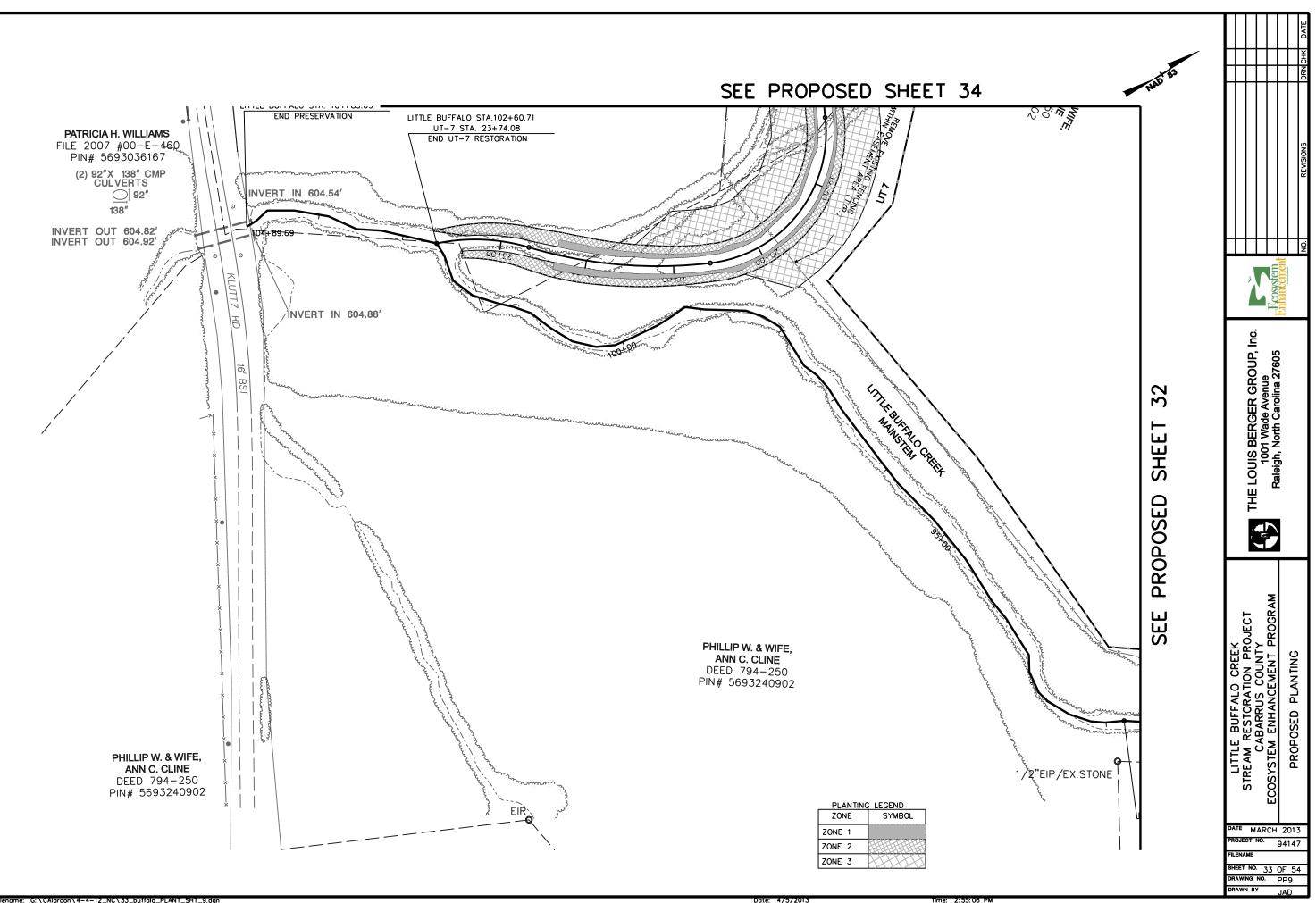


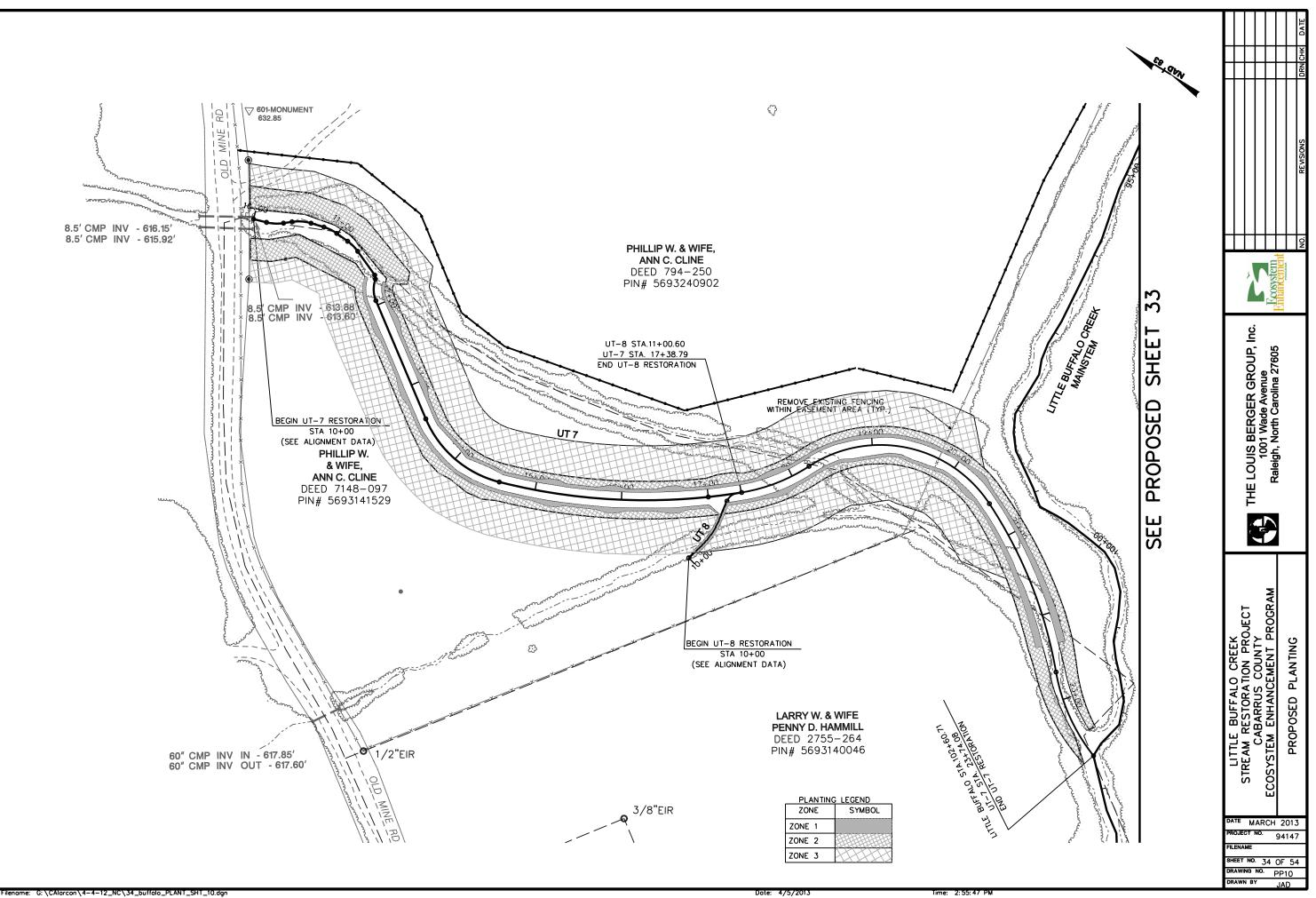

										_		-	_		
	" :	-	50'	VERTICA	L	SCALE:	1"	=	5'						DATE
															CHK
															DRN
															SNOIS
															REV
															NO.
PARE IN 24 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54											H Consystem H Milancement				
PARE IN 24 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54										╞			, ens		
PARE IN 24 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54													aue Averiue 27 Carolina 27		
PARE IN 24 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54 BREET NO. 27 OF 54													aleich Nort		
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3											L T T T		â	2	
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3											y t				
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3										┝					
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3											icT		gram		
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3										ALO CBEFK	ation proje	JS COUNTY	CEMENT PRO		
DATE MARCH 2013 PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PF3											m restor.	CABARRI	'Em Enhan		PROPOSED
PROJECT NO. 94147 FILENAME SHEET NO. 24 OF 54 DRAWING NO. PJF3											STREA		ECOSYST		
FILENAME SHEET NO. 24 OF 54 DRAWING NO. PJF3														20	013
SHEET NO. 24 OF 54 DRAWING NO. PF3											94147				
Pro Pro										SH	SHEET NO. 24 OF 54				
•															











Zone	Plant Community	Location	Туре	Species	Common Name	Species Percent	Quantity /Acre	Acreage	Total Quantity
Zone 1	Piedmont / Mountain	Inner Berm up to	Live Stakes	Salix nigra	Black willow	60%	1200	0.33	396
Zone i	Bottomland Forest	Bankfull		Cornus amomum	Silky dogwood	40%	800	0.33	264
	Т	otals				100%	2000	0.33	660

Distance between individual stems in feet.

5

Zone	Plant Community	Location	Туре	Species	Common Name	Species Percent	Quantity /Acre	Acreage	Total Quantity
				Alnus serrulata	smooth alder / hazel alder	15%	75	11.42	856
				Betula nigra	river birch	10%	50	11.42	571
				Carpinus caroliniana	ironwood	10%	50	11.42	571
	Piedmont /			Cornus amomum	silky dogwood	5%	25	11.42	285
Zone 2	Mountain Bottomland	Bankfull Bench	Bare Root or Tubeling	Fraxinus pennsylvanica	green ash	10%	50	11.42	571
	Forest			Lindera benzoin	spicebush	10%	50	11.42	571
				Platanus occidentalis	sycamore	15%	75	11.42	856
				Salix nigra	black willow	10%	50	11.42	571
				Viburnum dentatum	arrowwood	15%	75	11.42	856
	т	otals				100%	500	11.42	5710

Distance between individual stems in feet. 9

Zone	Plant Community	Location	Туре	Species	Common Name	Species Percent	Quantity /Acre	Acreage	Total Quantity
				Carpinus caroliniana	ironwood	10%	50	12.17	608
				Celtis laevigata	sugarberry	10%	50	12.17	608
				Cercis canadensis	redbud	10%	50	12.17	608
	Piedmont /	Above Bankfull		Fraxinus pennsylvanica	green ash	5%	25	12.17	304
Zone 3	Mountain to 50 ft from		Bare Root or Tubeling	Platanus occidentalis	sycamore	10%	50	12.17	608
	Forest			Liriodendron tulipifera	tulip poplar	20%	100	12.17	1217
				Quercus michauxii	swamp chestnut oak	15%	75	12.17	912
				Ulmus rubra	slippery elm	10%	50	12.17	608
				Viburnum dentatum	arrowwood	10%	50	12.17	608
	Totals					100%	500	12.17	6085

RIPARIAN SEED MIX:

Species	Percent Min.Purity	Percent Min. Germination	Quantity per Acre (Ibs.)
Lolium multiflorum	98	90	30
Panicum virgatum var. Shelter (PLS)	95	80	4
Panicum clandestinum var. Tioga	95	75	2
Elymus virginiana	95	90	3
Wetland Seed Mix	N/A	N/A	2

NOTE: THE WETLAND SEED MIX SHALL BE COMPOSED OF AT LEAST FIVE NOTE: THE WETLAND SEED MIX SHALL BE COMPOSED OF AT LEAST FIVE OF THE FOLLOWING SPECIES: SOFT RUSH (JUNCUS EFFUSUS), PURPLE STEMMED ASTER (ASTER PUNICEUS), LURID SEDGE (CAREX LURIDA), FOX SEDGE (CAREX VULPINOIDEA), BONESET (EUPATORIUM PERFOLIATUM), GRASS-LEAVED GOLDENROD (EUTHAMIA GRAMINIFOLIA), GREEN BULRUSH (SCIRPUS ATROVIRENS), WOOLGRASS (SCIRPUS CYPERINUS), BLUE VERVAIN (VERBENA HASTATA) AND NEW YORK IRONWEED (VERNONIA NOVEBORACENSIS).

SEEDING NOTES:

1. THE PROPOSED STREAM RESTORATION AND ENHANCEMENT GRADING AREAS, RIPARIAN BUFFERS AND ANY OTHER AREA OF SOIL DISTURBANCE SHALL BE SEEDED WITH THE SPECIFIED RIPRIAN SEED

2. THE SEED BED IN RIPARIAN BUFFER AREAS SHALL BE PREPARED BY HERBICDE TREATMENT OF Existing Cool Season Grasses per the invasive species treatment notes, followed by the REMOVAL OF SOIL COMPACTION AS DIRECTED BY THE ENGINEER, FOLLOWED BY DISCING TO A MINIMUM DEPTH OF 6 INCHES.

RELEASE (NON-WATER SOLUBLE) FERITILIZER WITH A RATIO OF 0-10-20 AT A RATE OF 250 I BS/ACRE

A SEED SHALL BE EVENLY SPREAD EITHER BY HAND OR MECHANICAL MEANS AT THE SPECIFIED RATE. THE PROPOSED METHOD OF SEEDING IS SUBJECT TO APPROVAL BY THE ENGINEER. THE SEED SHALL BE APPLIED SEPARATELY FROM THE FERTILIZER.

5. IMMEDIATELY FOLLOWING SEEDING, SEED SHALL BE INCORPORATED INTO SOIL 14 TO 12 INCH USING A CHAIN OR TINE HARROW OR HAND RAKING. THE EQUIPMENT USED TO COMPLETE THIS TASK IS SUBJECT TO APPROVAL BY THE ENGINEER.

STREAM	ZONE 1	ZONE 2	ZONE 3
	ACRES	ACRES	ACRES
MAINSTEM	0.30	7.34	6.91
UT-1	-	0.09	0.07
UT-2	-	0.64	0.64
UT-3	-	1.63	1.65
UT-4	-	0.75	0.78
UT-5	-	0.15	0.15
UT-6	-	0.14	0.14
UT-7 AND UT-8	0.21	0.68	1.84
TOTAL	0.51	11 .42	12.17

PLANTING NOTES:

1. ALL PROPOSED CHANGES TO THE PLANTING PLAN SHALL BE MADE IN WRITING TO THE LOUIS BERGER GROUP, INC. AT LEAST THREE MONTHS PRIOR TO PLANTING. ALL PROPOSED CHANGES

MUST BE APPROVED IN WRITING. 2. ALL PLANT STOCK WILL BE INSPECTED ON-SITE BY THE LOUIS BERGER GROUP, INC. SITE ENGINEER OR REPRESENTATIVE PRIOR TO INSTALLATION. PLANTING STOCK NOT MEETING SPECIFICATIONS WILL NOT BE PLANTED.

3. ALL BARE ROOT PLANT MATERIAL SHALL BE INOCULATED WITH MYCORRHIZAE FUNGI EITHER AT THE NURSERY OR ON-SITE AT THE TIME OF PLANTING. THE METHOD OF INOCULATION SHALL BE APPROVED IN ADVANCE BY THE LOUIS BERGER GROUP, INC. 4. AFTER LIFTING THE PLANT STOCK AT THE NURSERY AND PRIOR TO PACKAGING. THE ENTIRE

ROOT SYSTEM OF ALL BARE ROOT PLANT MATERIAL SHALL BE TREATED WITH A KAOLIN CLAY EMULSION.

5. THE INSTALLATION OF BARE ROOT TREE SAPLINGS SHALL BE WITH AN OST BAR, KBC BAR, OR HOEDAD. HOWEVER, THE USE OF HOEDADS BY AN INEXPERIENCED PLANTING CREW MAY BE PROHIBITED. SEE

CONSTRUCTION DETAILS FOR ACCEPTABLE METHODS FOR INSTALLATION BARE ROOT SAPLINGS. 6. ALL PLANT MATERIAL SHALL BE ESTABLISHED IN A NATURALIZED PATTERN. NATURALIZED PLANTING SHALL RESULT IN A RELATIVELY EVEN DISTRIBUTION OF EACH SPECIES ACROSS THE PLANTING AREA AT THE SPECIFIED DENSITY. UNEVEN DISTRIBUTIONS OF SPECIES OR MONOCULTURES SHALL NOT BE ACCEPTED AS SOLELY DETERMINED BY THE ENGINEER. 7. THE ESTABLISHMENT PERIOD FOR BARE ROOT TREES AND SHRUBS IS FROM DECEMBER 15 TO

ARCH 15. 8. PLANTING WILL BE SUPERVISED BY A CERTIFIED PROFESSIONAL WETLAND SCIENTIST PROVIDED BY THE LOUIS BERGER GROUP, INC.

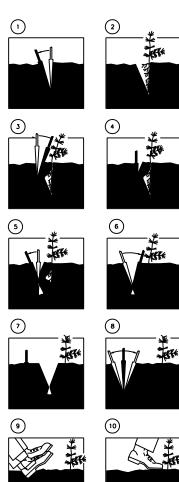
9. HERBACEOUS COMPETITION MAY BE CONTROLLED PRIOR TO PLANTING AND THROUGHOUT THE MAINTENANCE AND MONITORING PERIOD BY ACCEPTABLE MECHANICAL AND/OR CHEMICAL METHODS.

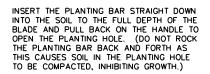
Distance between individual stems in feet.

9

PLANTING ZONE ACREAGE SUMMARY

		_	_	_		_	
							DATE
							DRN CHK
_							DRIN
							REVISIONS
							NO.
		,		-Fcosvstem	Enhancemer		
		THE LOUIS BERGER GROUP, Inc.	1001 Wada Avanua	Palaidh North Carolina 27605			
		HHT I I I					
	iiile Doitalo Calan	ESICIRATION FROJECT	CABARRUS COUNTY	ECOSYSTEM ENHANCEMENT PROGRAM		PLANTING NOTES	
	chiice doitaco oncen oserais: Brosocrass: Bro ir	SINEAM RESIGNATION PROJECT	CABARRUS COUNTY	2 ECOSYSTEM ENHANCEMENT PROGRAM	2	DI BURNLING NOL	
		M 2 WINEAM RESIGNATION PROJECT	A A CABARRUS COUNTY	2 ECOSYSTEM ENHANCEMENT PROGRAM	22	LON DILING	7
		N N M T S NIKEAM KENCHAIION PROJECI		2 ECOSYSTEM ENHANCEMENT PROGRAM	2	LON DNILNUTA	7


REFORESTATION


PLANTING PROCEDURE WITH KBC/OST BAR (DIBBLE BAR)

3.

PLANTING PROCEDURE WITH HOEDAD

2.

REMOVE THE PLANTING BAR AND PUSH THE TREE ROOTS DEEP INTO THE PLANTING HOLE. PULL THE TREE BACK UP TO THE CORRECT PLANTING DEPTH. GENTLY SHAKE THE TREE TREE TO ALLOW THE ROOT TO STRAIGHTEN OUT. DO NOT TWIST OR SPIN THE TREE OR LEAVE THE ROOTS J-ROOTED.

INSERT THE PLANTING BAR SEVERAL INCHES IN FRONT OF THE TREE AND PUSH THE BLADE HALFWAY INTO THE SOIL. TWIST AND PUSH THE HANDLE FORWARD TO CLOSE THE TOP OF THE SLIT TO HOLD THE TREE IN PLACE

PUSH THE PLANTING BAR DOWN TO THE FULL DEPTH OF THE BLADE.

PULL BACK ON THE HANDLE TO CLOSE THE BOTTOM OF THE PLANTING HOLE.

PUSH FORWARD ON THE HANDLE TO FIRM SOIL ON TOP OF ROOTS AND TO CLIMINATE AIR POCKETS AROUND THE ROOT.

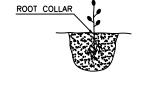
INSERT PLANTING BAR 2 INCHES FROM LAST HOLE.

- PUSH FORWARD, THEN PULL BACKWARD TO FILL PREVIOUS HOLE.
- REMOVE THE PLANTING BAR AND FIRM UP THE OPENING WITH THE HEEL.

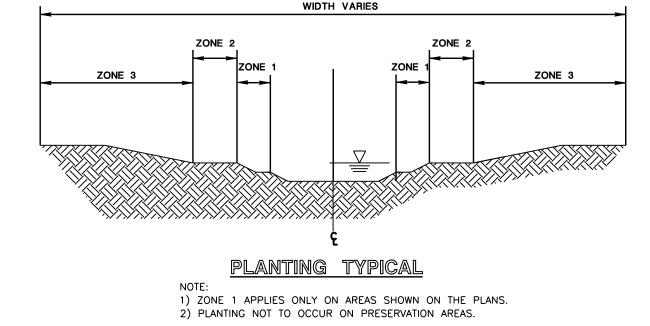
FIRM THE SOIL AROUND THE TREE WITH THE FOOT. BE CAREFUL TO AVOID DAMAGING THE TREE. 10.

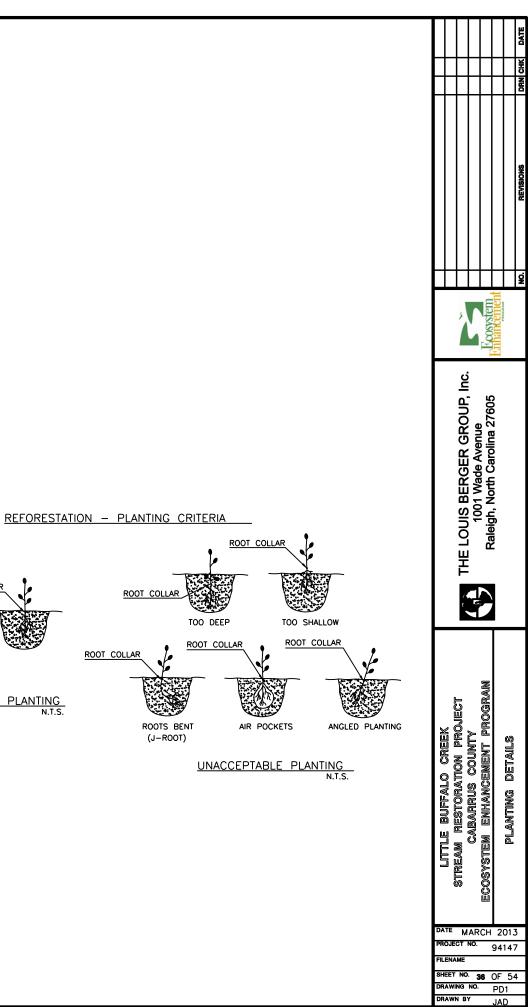
STRIKE BLADE ALMOST VERTICALLY, FULL OPPTH OF BLADE, INTO THE SOIL. PULL UP ON THE HANDLE TO BREAK THE SOIL LOOSE AT THE BOTTOM OF THE HOLE. CAUTION -AVOID RAISING THE HANDLE MORE THAN A FEW INCHES, OTHERWISE THE HOLE WILL FILL WITH SOIL AND THE TREE WILL BE SHALLOW ROOTED.

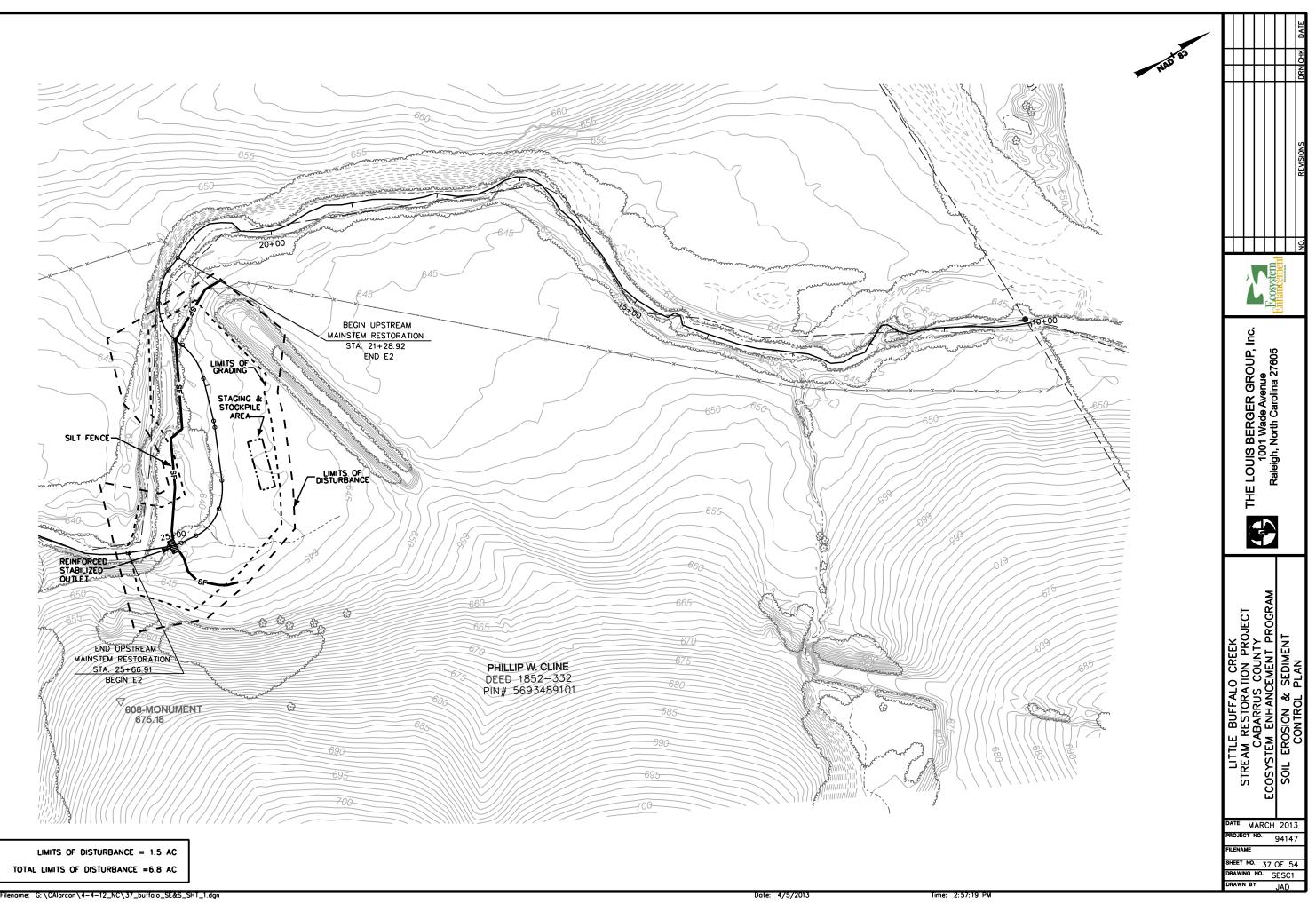
(3)

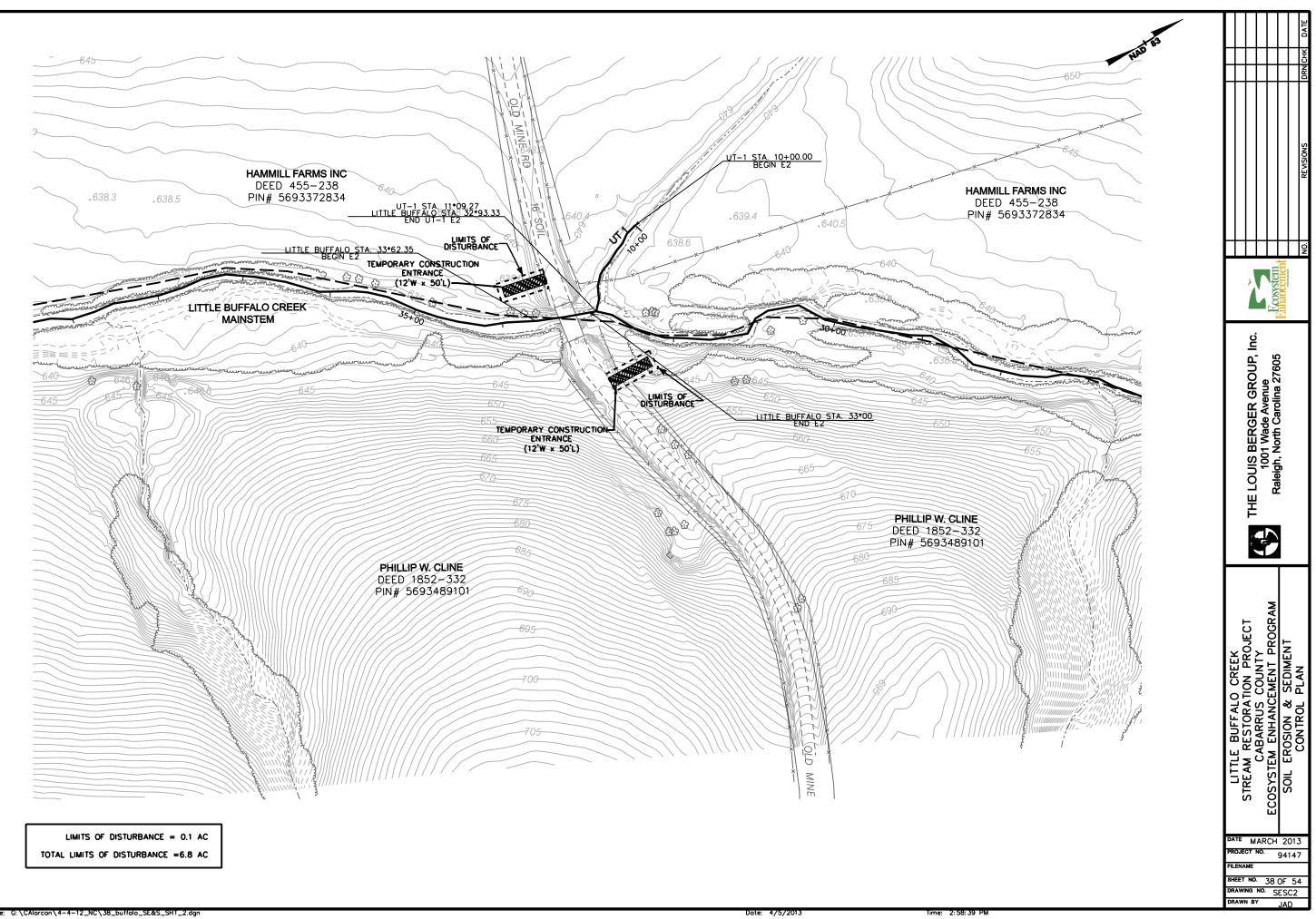

SLIDE HAND DOWN HANDLE ALMOST TO THE BLADE. PULL BACK AND DOWN ON THE HANDLE TO FORM A POCKET ON THE FAR SIDE OF THE BLADE. WITH THE OTHER HAND, IMMEDIATELY PLACE THE TREE ROOTS INTO THE POCKET TO THE FULL DEPTH OF THE HOLE.

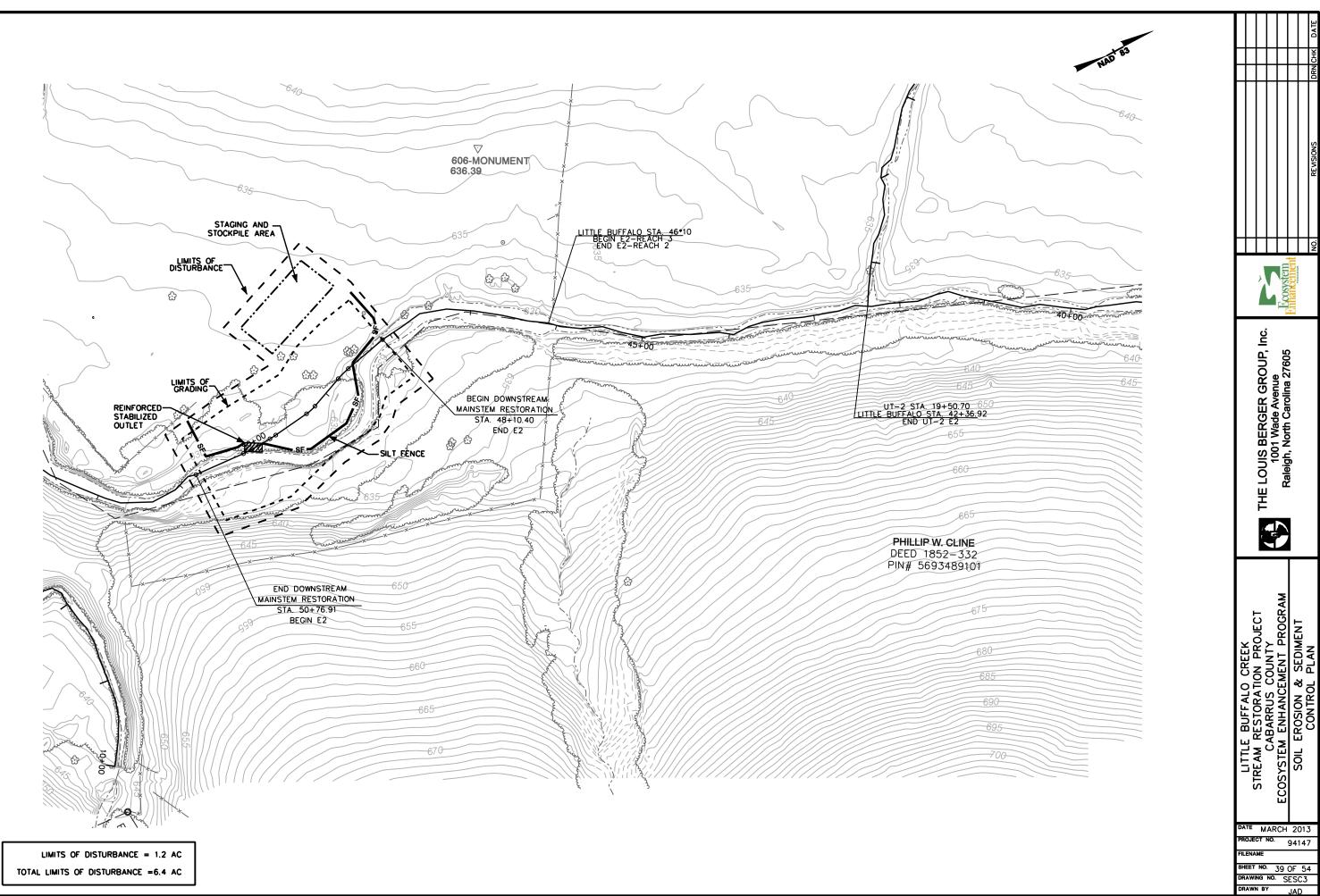
- HOLD TREE IN PLACE WHILE SLIDING THE HOEDAD BLADE OUT OF THE HOLE. LOOSE SOIL SHOULD FALL INTO THE HOLE, HOLDING TREE IN PLACE.
- PULL BLADE COMPLETELY OUT OF THE HOLE AND PUSH SOIL AGAINST PLANTED TREE WITH THE TIP OF THE BLADE.
- 5 USE FOOT TO FIRM THE SOIL AGAINST THE TREE. DO NOT STEP ON OR BRUISE TREE WITH YOUR FOOT.

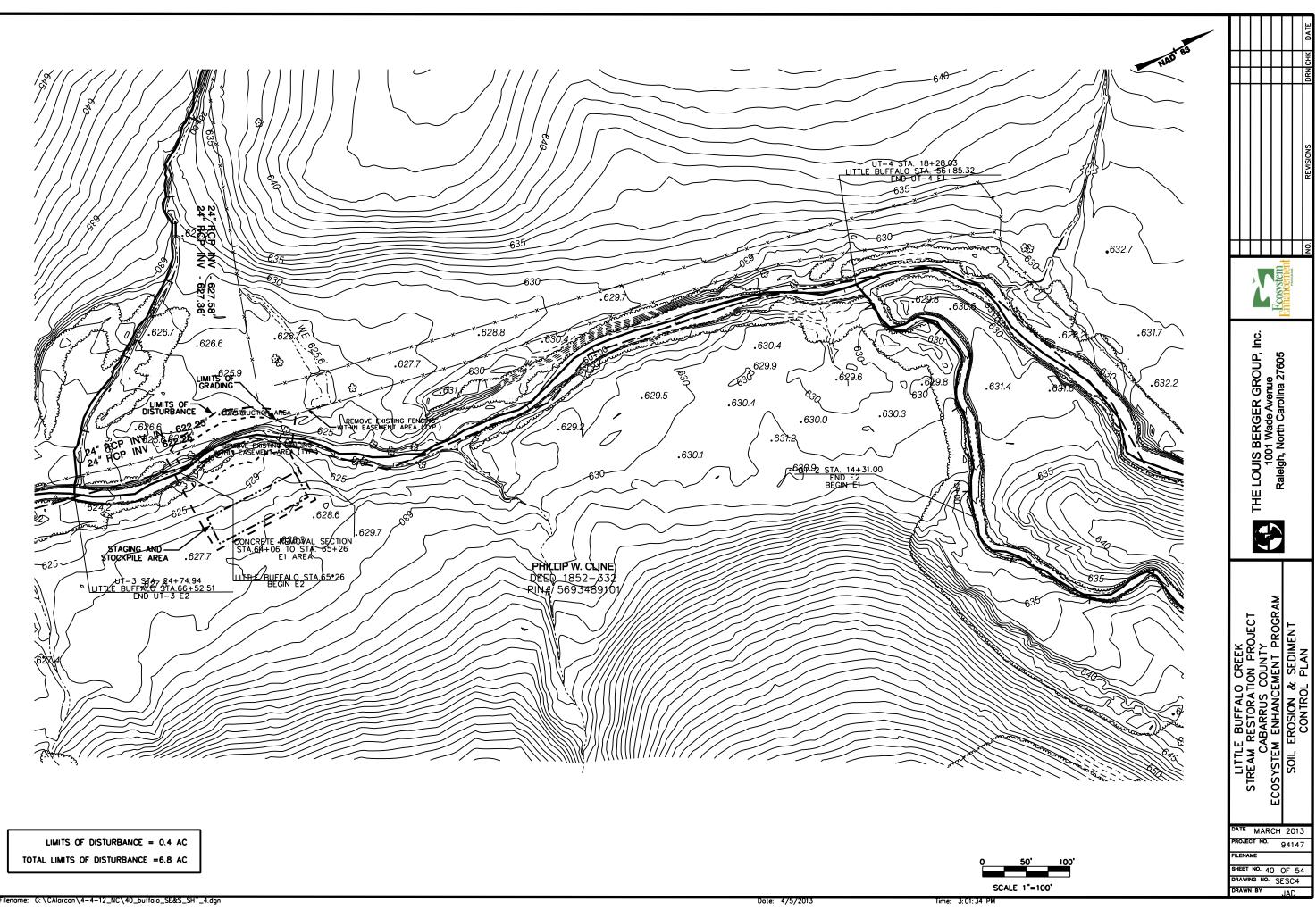


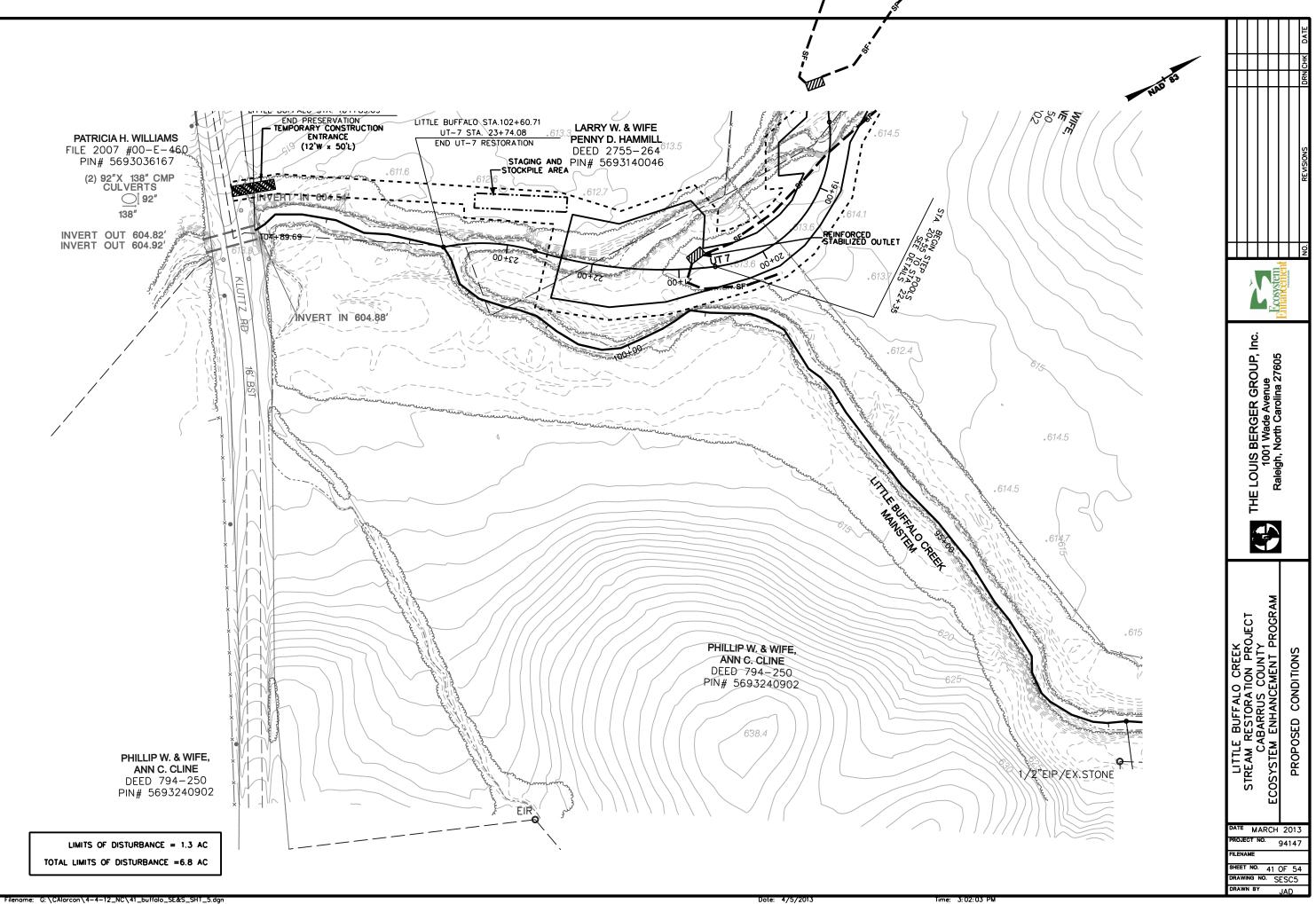


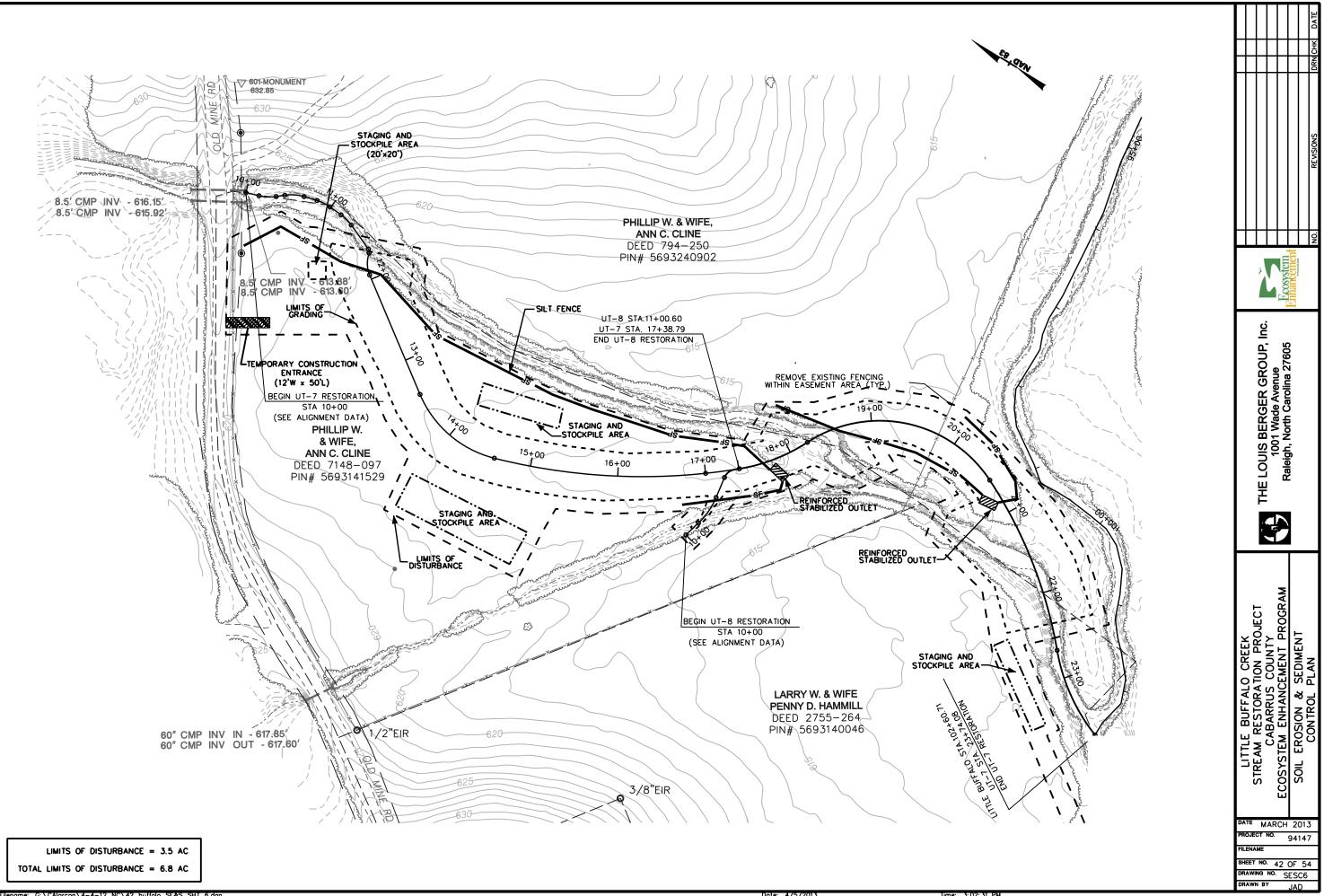


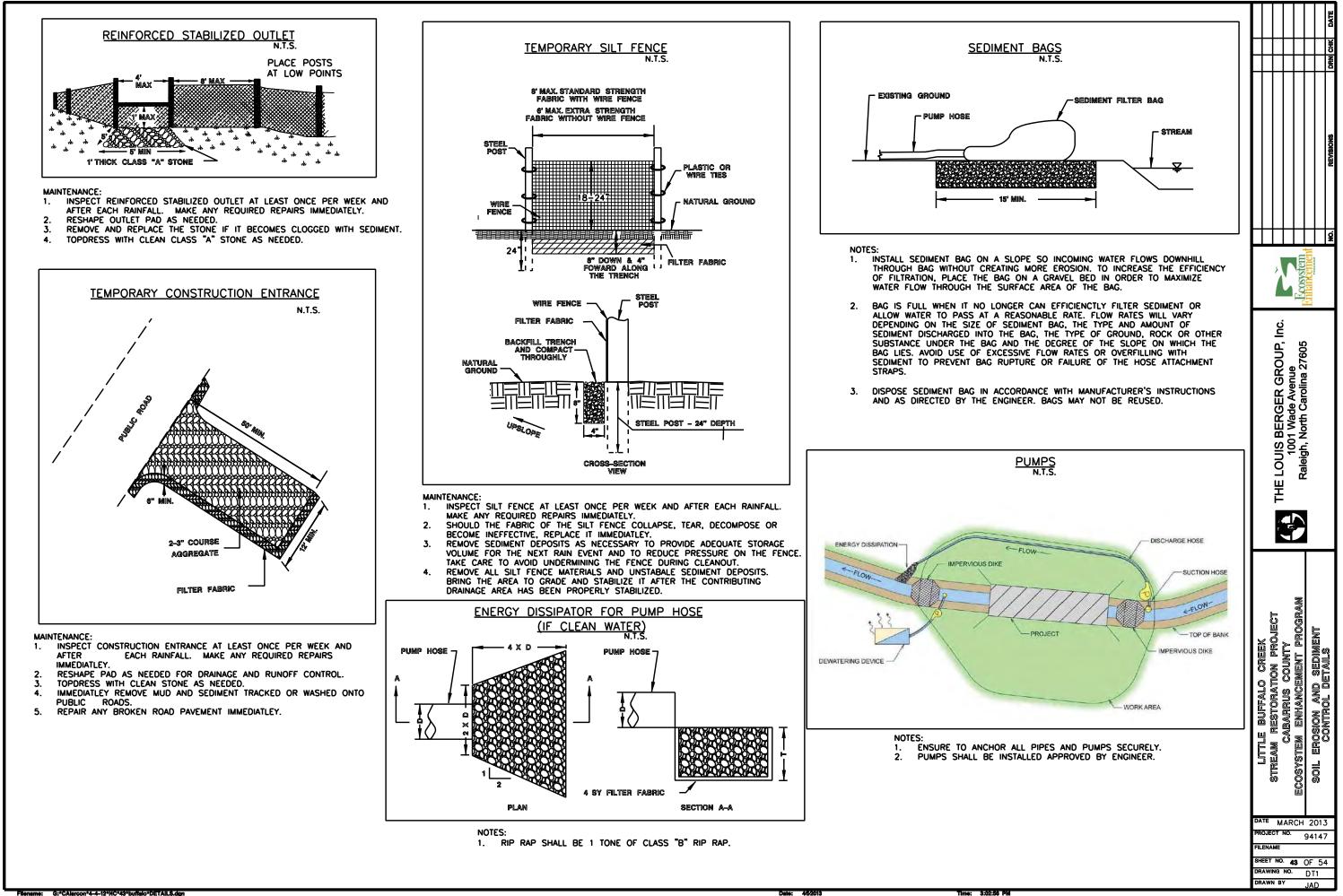


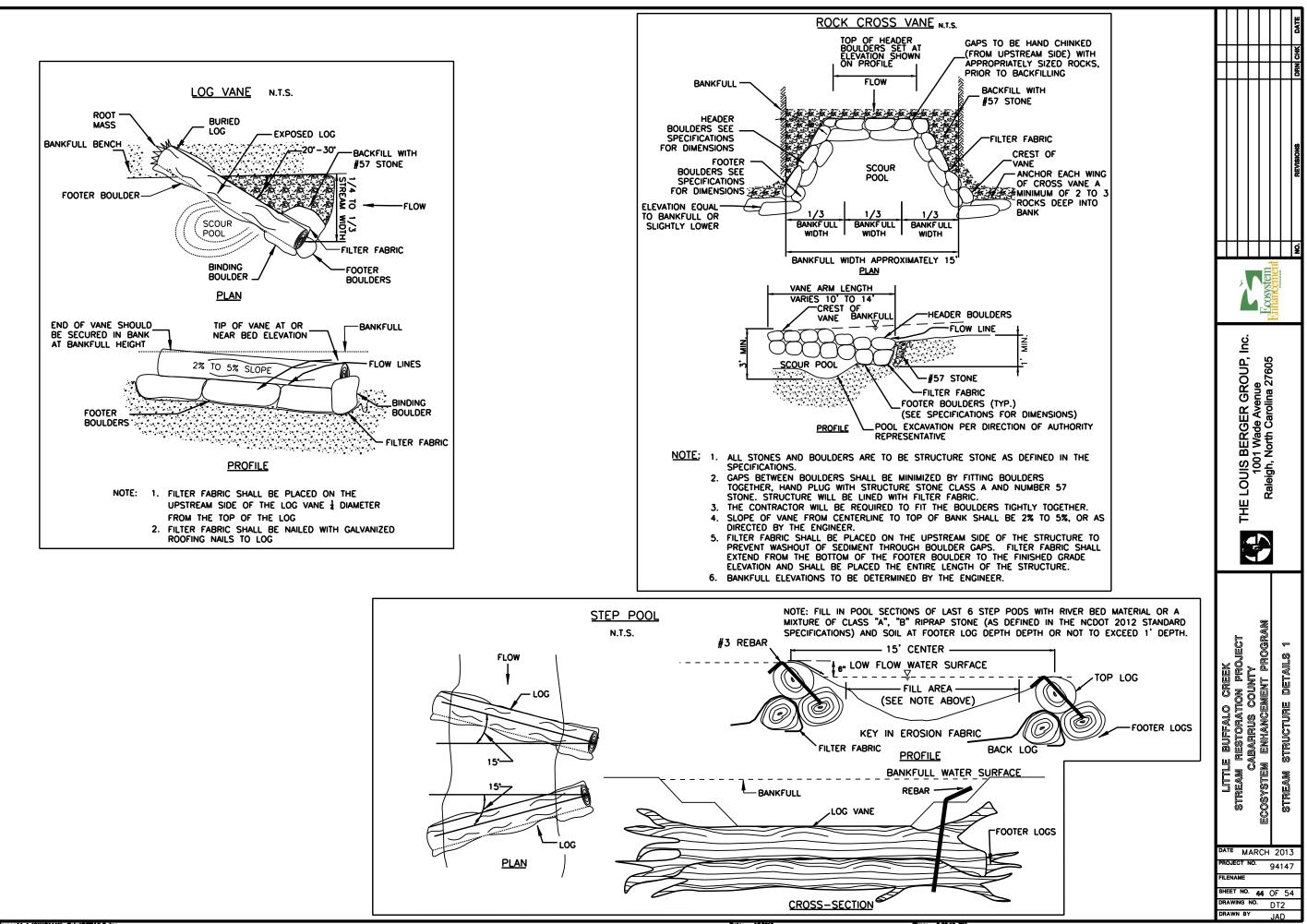

PROPER PLANTING

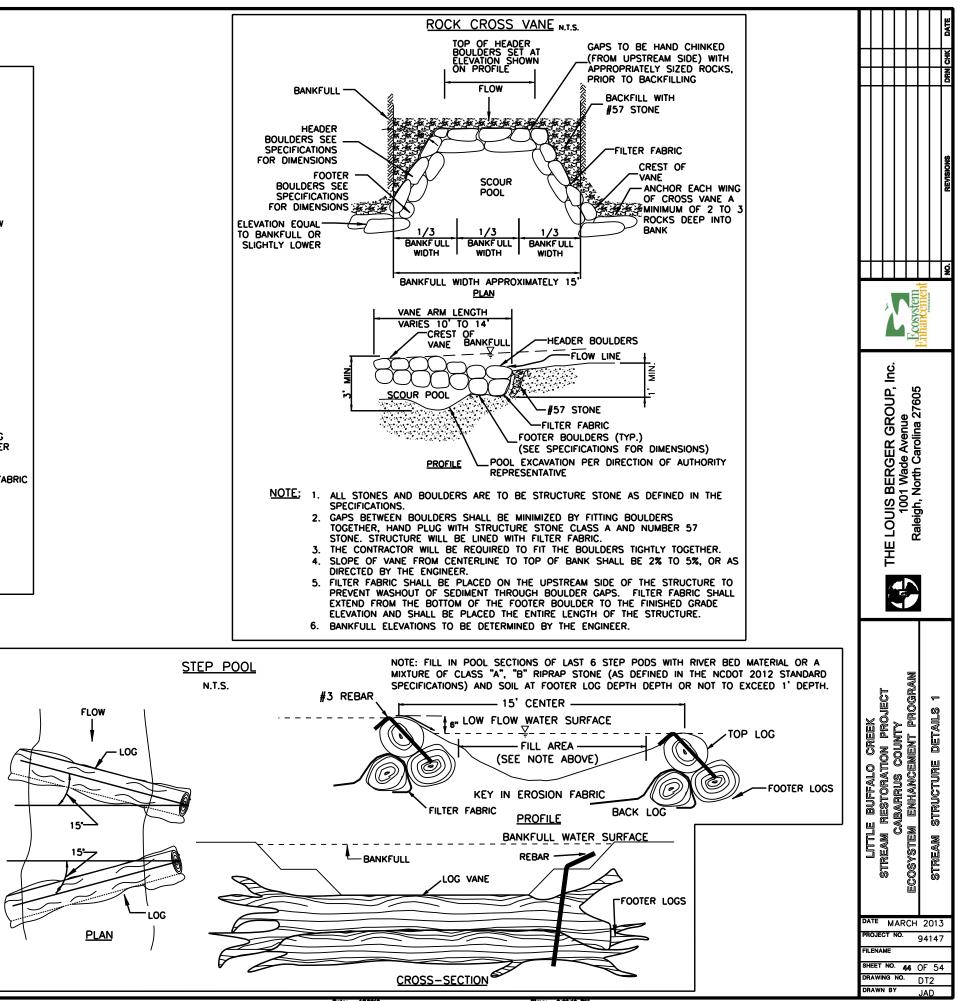


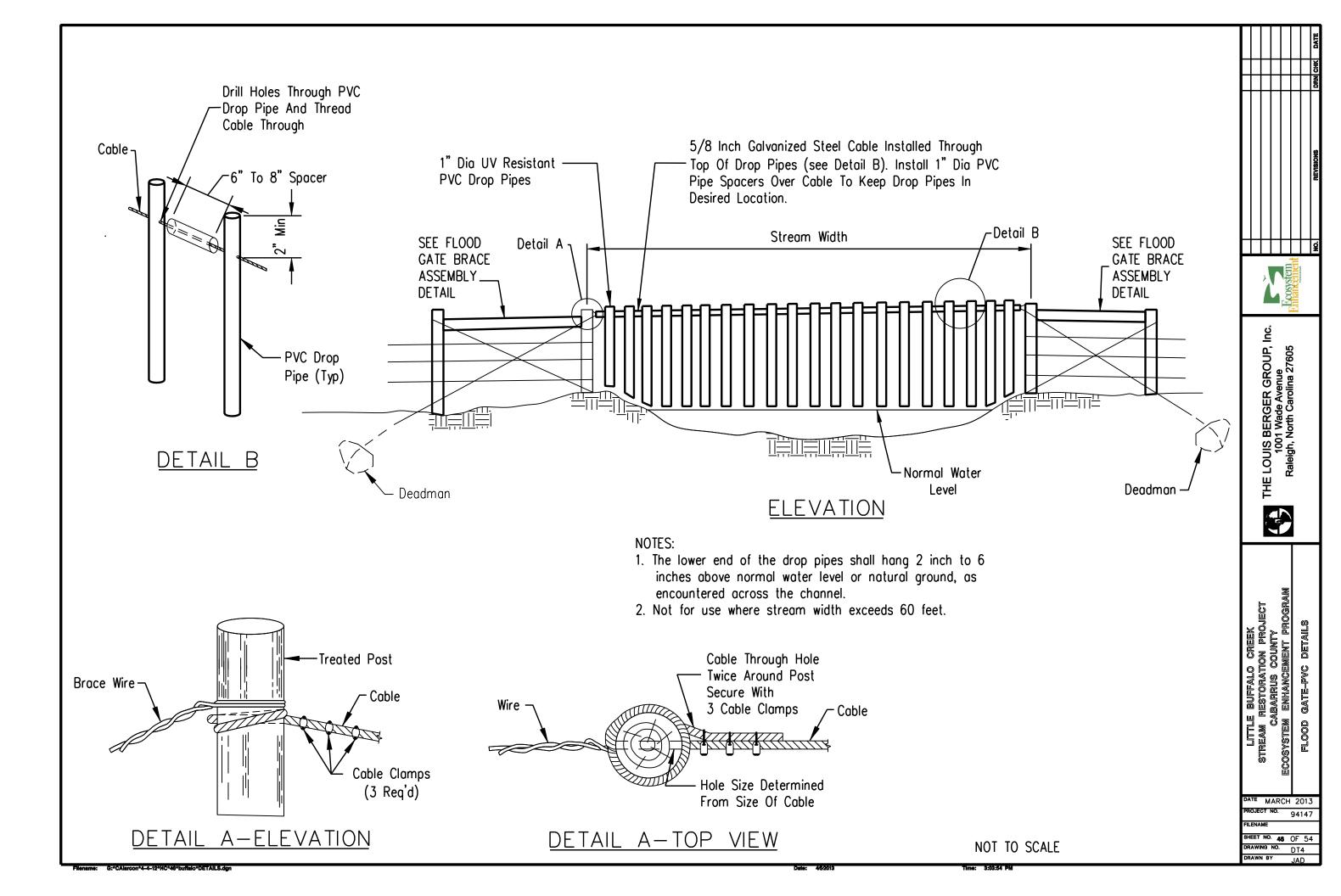


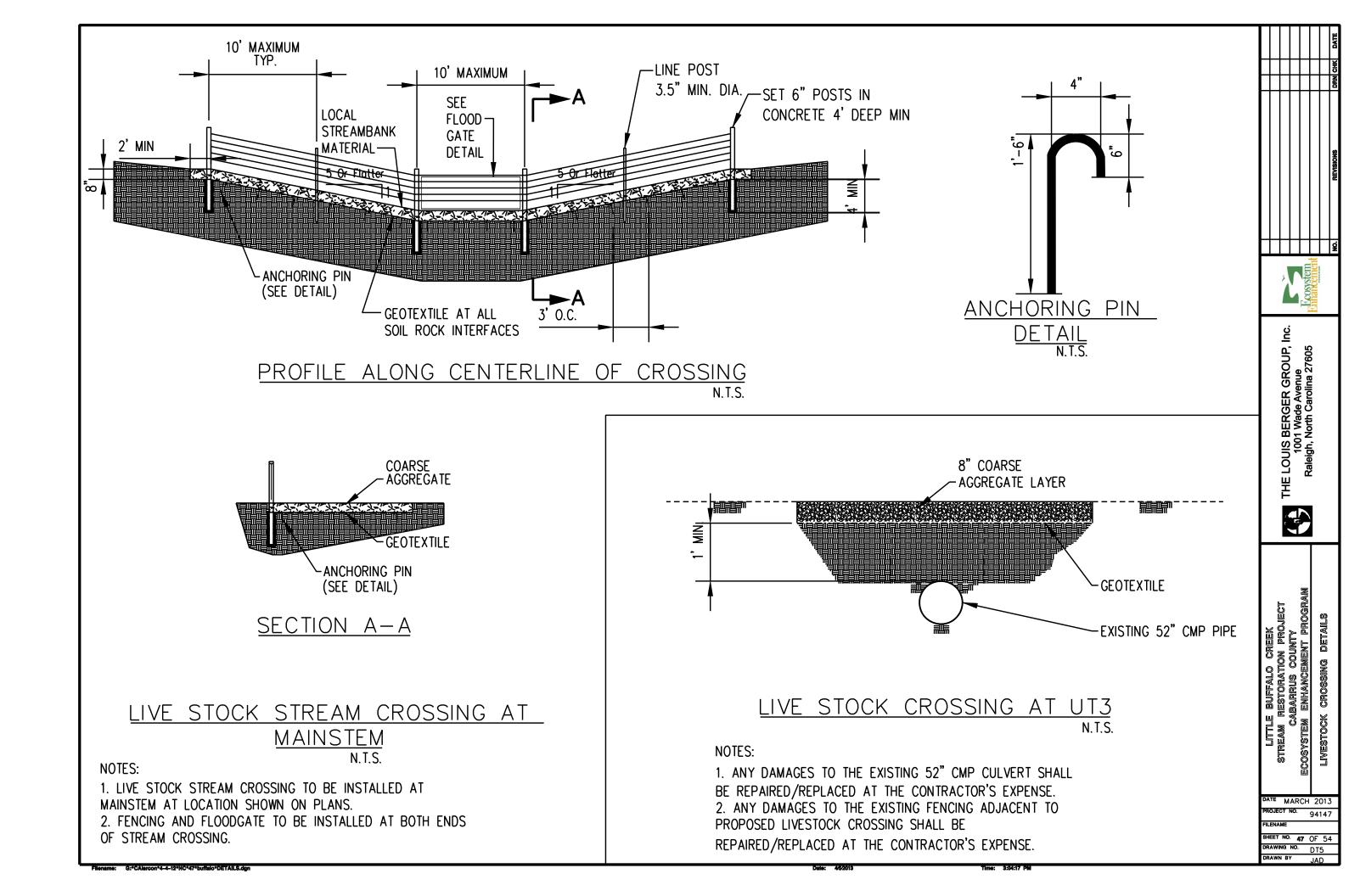












N.T.S.

- DIA.

LIVE STAKE INSTALLATION:

- 1. TAMP THE LIVE STAKE INTO THE GROUND AT RIGHT ANGLES TO THE SLOPE FACE.
- 2. LIVE STAKES SHALL BE INSTALLED 2-3 FEET APART USING TRIANGULAR SPACING. STAKES SHOULD BE PLACED WITH 2 TO 4 STAKES PER SQUARE YARD.
- 3. BUDS SHALL BE ORIENTED UP.
- 4. FOUR FIFTHS OF THE LENGTH OF THE LIVE STAKE SHALL BE INSTALLED INTO THE GROUND AND SOIL FIRMLY PACKED AROUND IT AFTER INSTALLATION.
- 5. STAKES THAT SPLIT DURING INSTALLATION SHALL BE REPLACED AT NO ADDITIONAL COST TO LBG.
- 6. AN IRON BAR CAN BE USED TO MAKE A PILOT HOLE IN FIRM SOIL. DRIVE THE LIVE STAKE INTO THE GROUND WITH A DEAD HAMMER (HAMMER HEAD FILLED WITH SHOT OR SAND).

ACCEPTABLE LIVE STAKE SPECIES	SCIENTIFIC NAME
BLACK WILLOW	SALIX NIGRA
SILKY DOGWOOD	CORNUS AMOMUM
ALNUS SPP.	ALDER

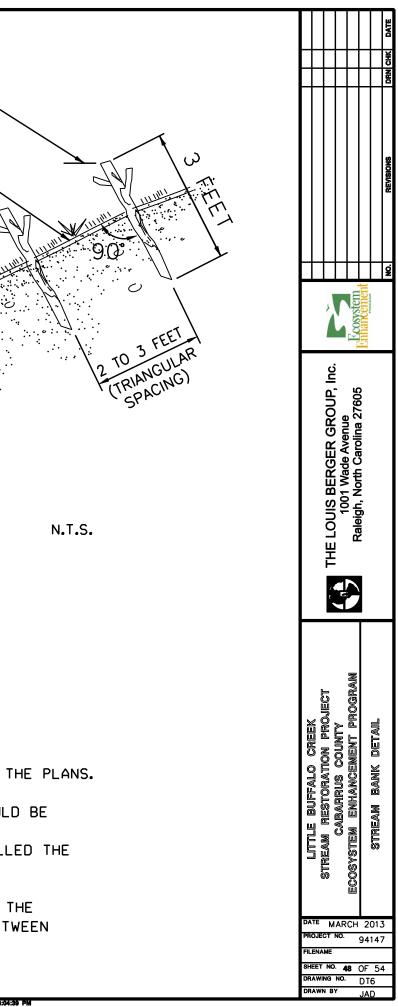
NOTE: REFER TO PLANTING NOTES ON SHEET 30.

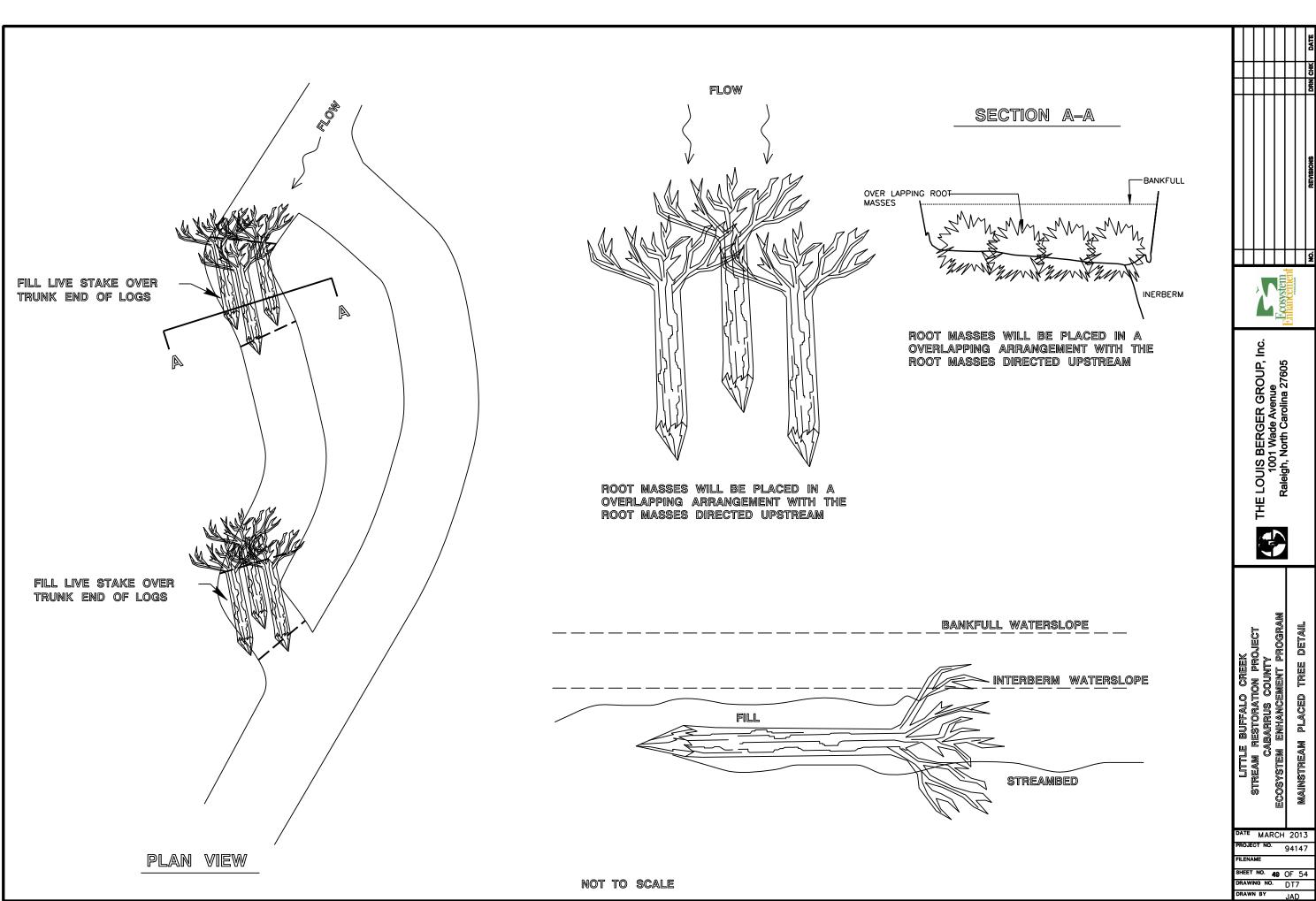
SLOPE SURFACE STREAM BED

BANKFULL ELEVATION -

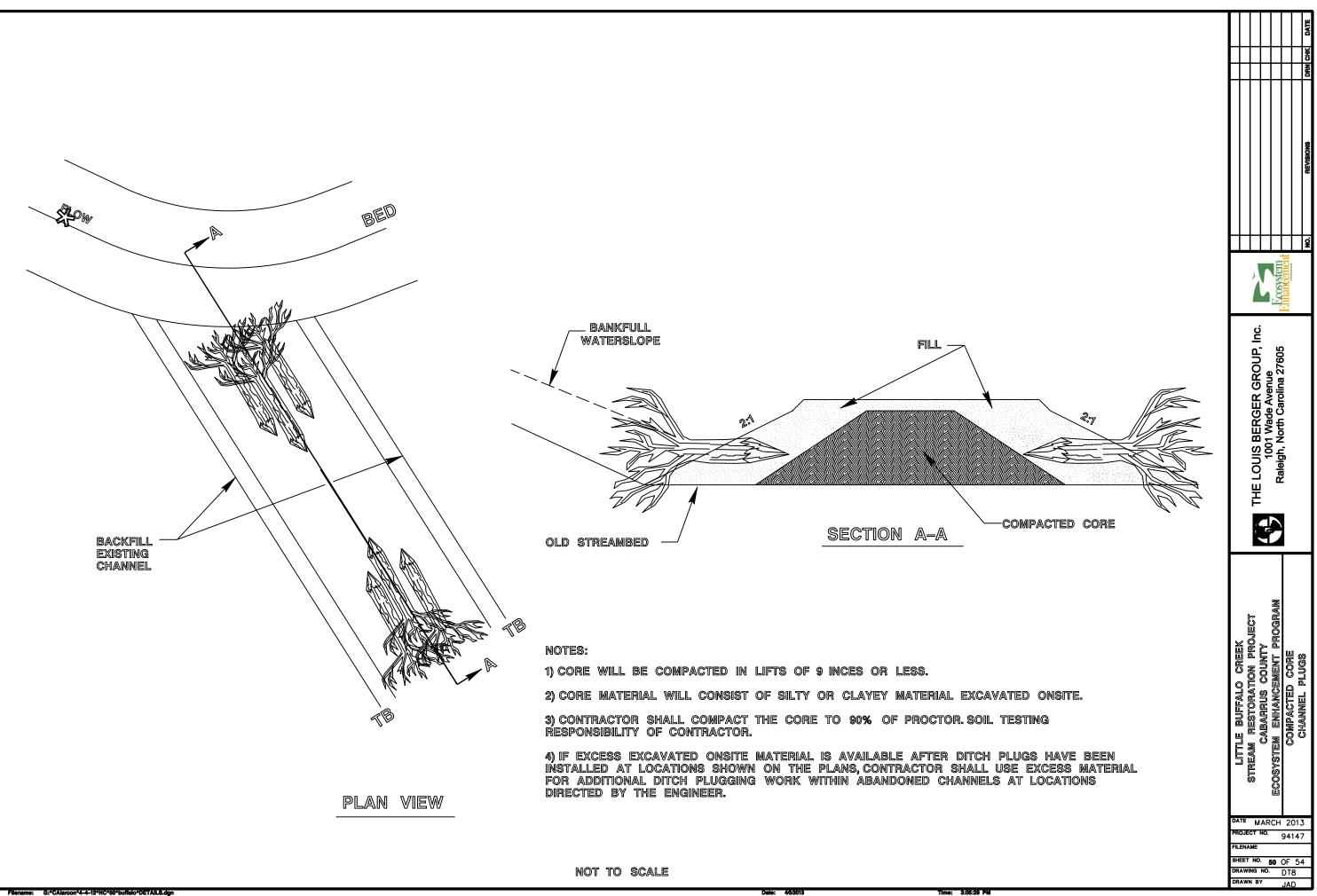
BONDED FIBER MATRIX (BFM)

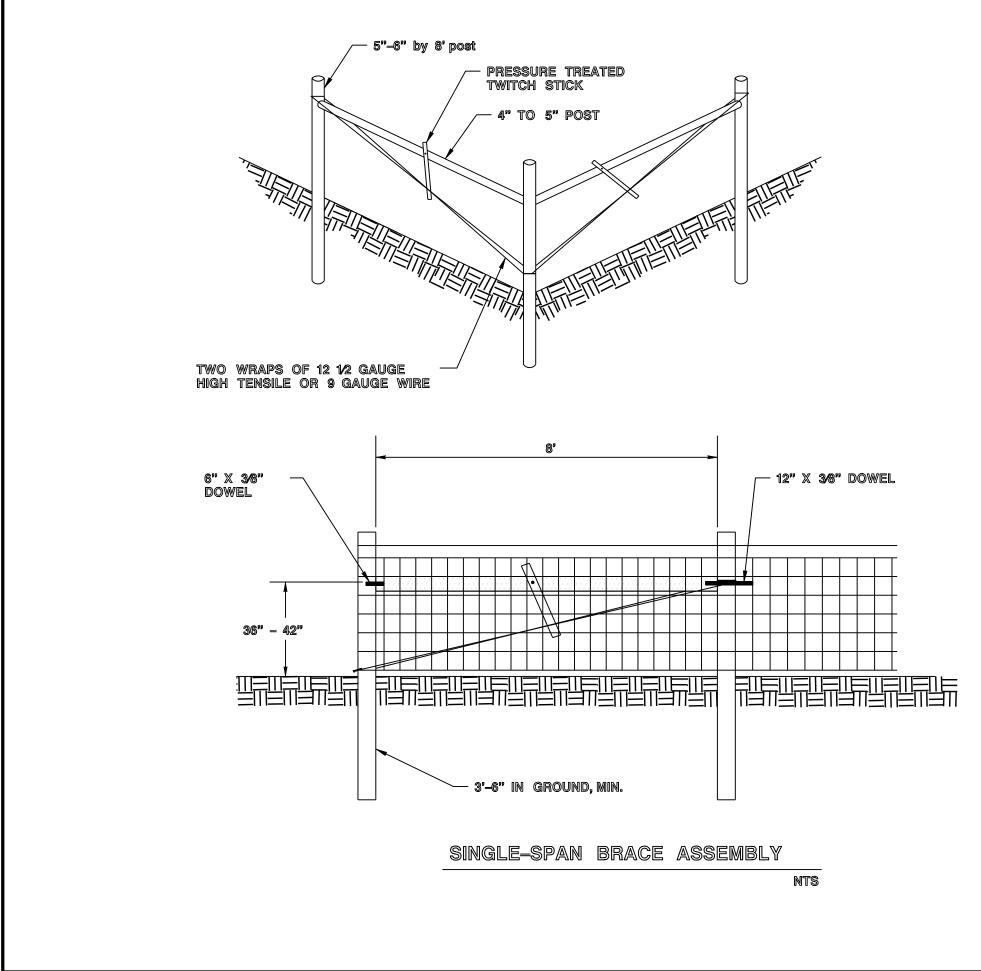
OR 100% WOOD FIBER MULCH

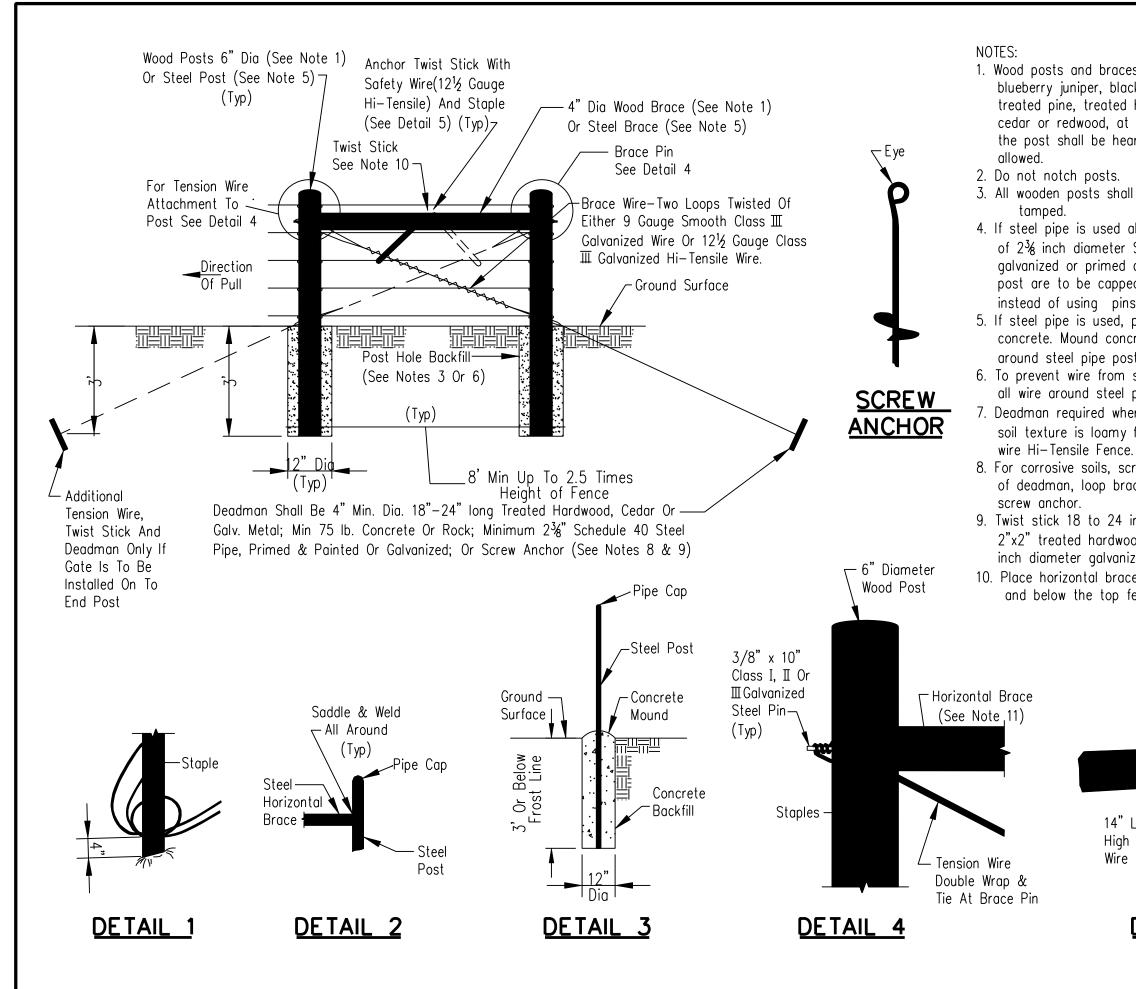

HYDROSEED CUSTOM


RIPARIAN SEED MIX

N.T.S.


LIVE STAKE GUIDELINES:


- 1. LIVE STAKE CUTTINGS SHALL BE INSTALLED WITHIN THE PLANTING ZONE I AS INDICATED ON THE PLANTING NOTES.
- 2. LIVE STAKE CUTTINGS SHALL BE 0.5 TO 1.5 INCHES IN DIAMETER AND A MINIMUM OF THREE FEET LONG.
- 3. CUTTINGS SHOULD BE UNDAMAGED, DISEASE AND INSECT FREE STOCK, AND FROM THE LIST OF ACCEPTABLE SPECIES PROVIDED ON THE PLANS.
- 4. MATERIALS MUST HAVE SIDE BRANCHES CLEANLY REMOVED AND BARK INTACT.
- 5. THE BASAL ENDS SHOULD BE CUT AT AN ANGLE FOR EASY INSERTION INTO THE SOIL. THE TOP SHOULD BE SQUARE. STAKES SHOULD BE PLANTED WITH BUTT-END INTO THE GROUND. BUDS SHOULD BE ORIENTED UP.
- 6. MATERIALS SHALL BE SOAKED IN WATER A MINIMUM OF 10 DAYS IMMEDIATELY AFTER PREPARATION. MATERIALS SHOULD BE INSTALLED THE SAME DAY THAT THEY ARRIVE ON SITE. THE MATERIAL MUST NOT BE ALLOWED TO DRY OUT; MATERIALS IN WATER OR IN A COOL. SHADED, WET ENVIROMENT PRIOR TO INSTALLATION.
- 7. PLANTS SHALL BE BOTH CUT AND INSTALLED WHEN THEY ARE DORMANT: THAT IS. PRIOR TO BUD SWELL AND LEAF EMERGENCE IN THE SPRING AND AFTER LEAVES HAVE TURNED COLOR AND FALLEN OFF IN THE FALL. THE INSTALLATION PERIOD IN THE SPRING IS BETWEEN MARCH 1 AND APRIL 15, AND IN THE FALL BETWEEN OCTOBER 30 AND NOVEMBER 30.



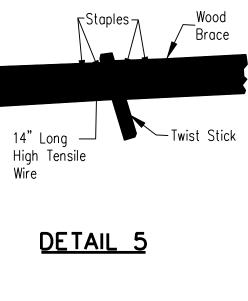
'ime: 3:05:03 PM

		DA PR							
AWI	ENA	TE OJE	LIIILE BULFALU Uncen States: tootootestion: 560 it						
NG			United mean oralion	THE LOUIS BERGER GROUP, Inc.	,				
			CABARRUS COUNTY						
51		СН	ECOSYSTEM ENHANCEMENT PROGRAM	Deleich North Carolina 37605	Honswitem				
OF DT					Enhancement				
		013 147	CONSERVATION EASEMENT FENCE DETAIL		5000044				
¥		_			*	0.	REVISIONS	DRN CHK	DATE

1. Wood posts and braces must be new redwood, red cedar, blueberry juniper, black locust, osage orange, pressure treated pine, treated hardwood, or steel. If using red cedar or redwood, at least one half of the diameter of the post shall be heartwood. No Landscape timbers are

3. All wooden posts shall be backfilled with earth thoroughly

4. If steel pipe is used all steel pipe must be a minimum of 2³/₈ inch diameter Schedule 40 steel pipe either galvanized or primed and painted. All top of steel pipe post are to be capped. Saddle and weld all connections instead of using pins. (See Detail 2).


5. If steel pipe is used, post hole must be backfilled with concrete. Mound concrete to prevent standing water around steel pipe post. (See Detail 3).

6. To prevent wire from slipping on steel post, double wrap all wire around steel post or weld chain link loops.

7. Deadman required where soil depth is restricted to <3', soil texture is loamy fine sand or coarser soil or >6'

8. For corrosive soils, screw anchors may be used in place of deadman, loop brace wire through eye of installed

9. Twist stick 18 to 24 inch long and 1 inch diameter or $2^{*}x2^{*}$ treated hardwood or 18 to 24 inch long and 1/2inch diameter galvanized or primed and painted pipe. 10. Place horizontal brace within the top 1/3 of the posts and below the top fence wire.

CURVE DATA ALIGNMENT "UPSTREAM MAINSTEM RESTORATION" DESCRIPTION *____: _____ P.I. STATION 24+66.87 N 639,704.79 E 1,595,068.80 POT STATION 21+28.92 N 639,836.06 E 1,594,784.57 44° 28' 59" (RT) 114° 35' 30" 20.45 38.82 DELTA = COURSE FROM POT 21+28.92 TO PC 21+46.44 S 20° 27' 18" E DIST 17.52 DEGREE = TANGENT = CURVE DATA LENGTH = 21+61.75 N 639,805.30 E 1,594,796.04 34' 02' 43" (LT) 114' 35' 30" 15.31 29.71 50.00 29.27 21+46.44 N 670.000 C RADIUS 50.00 = LONG CHORD = P.C. STATION P.T. STATION 37.85 STATION ΡI 639,720.82 E 639,684.46 E 1,595,056.10 1,595,066.62 24 + 46.42DEL TA = $\begin{array}{rcl} \text{STATION} & 24+85.24 \\ \text{STATION} & 24+85.24 \\ \text{STATION} & 38^{\circ} 22' \\ \text{O3'' E} \end{array}$ DEGREE TANGENT = BACK LENGTH RADIUS = AHEAD = S 6°06'56"W = CHORD BEAR = S $16^{\circ} 07' 34'' E$ LONG CHORD = P.C. STATION P.T. STATION $\begin{array}{rcl} CHORD &=& 29.27\\ STATION & 21+46.44 & N & 639,819.65 & E\\ STATION & 21+76.15 & N & 639,796.41 & E\\ &= S & 20^{\circ} 27' & 18'' & E\\ &= S & 54^{\circ} & 30', 00'' & E\\ &= S & 54^{\circ} & 30', 00'' & E \end{array}$ 1,594,790.69 1,594,808.50 COURSE FROM PT 24+85.24 TO PC 25+04.12 S 6' 06' 56" W DIST 18.88 BACK AHEAD CURVE DATA CHORD BEAR = S 37' 28' 39'' E*_____ COURSE FROM PT 21+76.15 TO PC 21+87.26 S 54' 30' 00" E DIST 11.11 24+11.70 N 639,658.16 E 1,595,063.80 17° 14' 43" (RT) 114° 35' 30" 7.58 15.05 50.00 14 00 P.I. STATION DELTA = CURVE DATA DEGREE = N 22+13.33 N 639,774.83 E 1,594,838.77 = 55° 04' 32" (LT) = 114° 35' 30" = 26.07 = 48.06 = 50.00 = 46.23 TANGENT = STATION P.L LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION DELTA DELTA = DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION PACK = 54* 14.99 25+04.12 N 25+19.17 N 1,595,064.61 1,595,060.79 639,665.69 E 639,651.20 E CHORD = 46.23 STATION 21+87.26 N STATION 22+35.32 N = S 54* 30' 00" E = N 70*25' 28" E BACK = S $6^{\circ} 06' 56'' W$ = S 23°21'39" W 639,789.96 E 639,783.56 E 1,594,817.54 1,594,863.33 AHEAD CHORD BEAR = S 14° 44' 18" W BACK AHEAD COURSE FROM PT 25+19.17 TO POT 25+66.91 S 23' 21' 39" W DIST 47.74 CHORD BEAR = S 82' 02' 16'' ECOURSE FROM PT 22+35.32 TO PC 22+44.94 N 70° 25' 28" E DIST 9.61 POT STATION 25+66.91 N 639.607.37 E 1.595.041.86 CURVE DATA ______ END ALIGNMENT "UPSTREAM MAINSTEM RESTORATION" DESCRIPTION 22+68.99 N 639,794.84 E 1,594,895.05 37* 55' 34" (RT) 81* 51' 04" 24.05 46.34 70.00 P.I STATION DELTA = DEGREE TANGENT = CURVE DATA = LANGENI – LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION ALIGNMENT "DOWNSTREAM MAINSTEM RESTORATION" DESCRIPTION _____ 70.00 STATION 49+78.8 ΡL POT STATION 48+10.40 N 637,778.64 E 1,593,907.14
 CHORD
 24.49

 STATION
 22+44.94

 STATION
 22+91.27

 N
 70° 25' 28" E

 D
 = S
 71° 38' 58".
 639,786.78 E 1,594,872.39 639,787.27 E 1,594,917.88 DELTA 4' 29' = DEGREE TANGENT 57° 17 COURSE POT 48+10.40 TO PC 48+61.78 S 12° 12' 41" E DIST 51.38 BACK 3.93 7.85 = AHEAD LENGTH CHORD BEAR = N $89^{\circ} 23' 15'' E$ CURVE DATA 100.00 7.85 49+74. RADIUS = *____* LONG CHORD = P.C. STATION P.T. STATION COURSE FROM PT 22+91.27 TO PC 23+41.37 S 71" 38' 58" E DIST 50.10 P.I. STATION 48+69.91 N 637,720.48 E 1,593,919.73 49+82 9° 17' 24" (LT) 57° 17' 45" CURVE DATA DELTA = BACK = S 6° 34' 55' DEGREE = AHEAD 2' 04 = S TANGENT N 23+45.12 N 639,770.31 E 1,594,968.99 = 6*08'10" (RT) = 81*51'04" = 7.50 = 70.00 = 7.49 N 23+41.37 N 639,771.50 E 1.594,965.43 8.12 = ΡI STATION LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION CHORD BEAR = S 4°1 16 21 DELTA 100.00 16.20 48+61.78 N 48+77.99 N DEGREE TANGENT COURSE FROM PT 49+82.8 LANGENI = LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION 637,728.42 E 637,712.92 E 1,593,918.01 1,593,922.70 CURVE DATA = S 12° 12' 41" E BACK
 STATION
 23+41.37 N

 STATION
 23+48.86 N

 = S
 71*38'58" E
 639,771.50 E 1,594,965.43 639,768.76 E 1,594,972.41 = S 21° 30⁻ 05" E AHEAD CHORD BEAR = S $16^{\circ} 51' 23'' E$ P.I. STATION 50+12.0 BACK DELTA 6°18'1 = = S 65° 30' 48" AHEAD 57•17 5.51 DEGREE TANGENT CHORD BEAR = S $68^{\circ} 34' 53'' E$ COURSE FROM PT 48+77.99 TO PC 49+19.17 S 21° 30' 05" E DIST 41.17 = TANGLIN LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION = 11.00 COURSE FROM PT 23+48.86 TO PC 24+10.58 S 65' 30' 48" E DIST 61.72 CURVE DATA 100.00 *_____ CURVE DATA 11.0050+06 50+17 49+25.71 N 637,668.52 E 1,593,940.19 14° 55' 10" (RT) 114° 35' 30" 6.55 13.02 P.I. STATION STATION 24+27.48 N 639,736.17 E 1,595,043.95 DELTA = ΡI = S 2° 04' 57 BACK 27°08'45" (RT) DELTA DEGREE $\begin{array}{rcrcrcrc} \text{DELTA} &=& 27^{\circ} \ 08' \ 45'' \ (\text{R1}) \\ \text{DEGREE} &=& 81^{\circ} \ 51' \ 04'' \\ \text{TANGENT} &=& 16.90 \\ \text{LENGTH} &=& 33.16 \\ \text{RADIUS} &=& 70.00 \\ \text{LONG CHORD} &=& 32.86 \\ \text{P.C. STATION} & 24+10.58 \\ \text{N} &=& 24+10.58 \\ \text{P.T. STATION} & 24+43.75 \\ \text{BACK} &=& S \ 65' \ 30' \ 48'' \\ \text{E} \\ \text{AHEAD} &=& S \ 38' \ 22' \ 03'' \\ \text{CHORD BEAR} &=& S \ 51' \ 56' \ 25'' \\ \text{E} \end{array}$ = = AHEAD = S 4° 13 TANGENT = CHORD BEAR = S 1° 04 LENGTH = LENGIN – RADIUS = LONG CHORD = P.C. STATION P.T. STATION 50.00 12.98 COURSE FROM PT 50+17.5
 STATION
 49+19.17 N

 STATION
 49+32.19 N

 = S
 21° 30' 05" E
 637,674.62 E 637,662.02 E 1,593,937.79 1,593,940.94 639,743.18 E 639,722.92 E 1,595,028.57 1,595,054.44 POT STATION 50+76.91 N BACK 6[•]34[·]55" AHEAD = S _____ CHORD BEAR = S $14^{\circ} 02' 30'' E$ END ALIGNMENT "DOWNSTR COURSE FROM PT 24+43.75 TO PC 24+46.42 S 38 22' 03" E DIST 2.68 COURSE FROM PT 49+32.19 TO PC 49+74.96 S 6° 34' 55" E DIST 42.77

						DATE
					1	DRN CHK
			+	+	+	DR
						L REVISIONS
		Ш				NO.
			2	ter tangeneri	1 of the second	
89 N 637,615.63 E 1,593,946.30 58" (RT) 7' 45" 5 96 N 637,619.53 E 1,593,945.85 .81 N 637,611.70 E 1,593,946.44			THE LOUIS BERGER GROUP, Inc.	Raleigh. North Carolina 27605		
'E 4'57"E 9'56"E	1 75			AM		
81 TO PC 50+06.56 S 2° 04' 57" E DIST 23	0.70), Ject		PROGRAM		
07 N 637,582.46 E 1,593,947.50 17" (RT) 7' 45"		e Buffalo Creek Restoration Proviect	COUNT	ENHANCEMENT PI	MENT DATA	
) .56 N 637,587.97 E 1,593,947.30 .57 N 637,576.97 E 1,593,947.10 3'20" W)4'11" W 57 TO POT 50+76.91 S 4°13'20" W DIST 5	9.34	LITTLE BUF Stream rest(CABARRUS	ECOSYSTEM ENH	ALIGNMENT	
637,517.79 E 1,593,942.73						
REAM MAINSTEM RESTORATION" DESCRIPTION		DATE PROJEC	MAR(2013 94147	
LAM MAINSTEM RESTORATION DESCRIPTION		FILENAM SHEET I			F 54	
		DRAWIN	GNO.		AD1	
				6	jad	

ALIGNMENT "UT 7" DESCRIPTION ______ POT STATION 10+00.00 N 634,983.44 E 1,591,252.65 COURSE FROM POT 10+00.00 TO PC 10+15.32 S 17° 30' 03" E DIST 15.32 CURVE DATA 10+25.31 N 634,959.31 E 1,591,260.26 22*35'15" (LT) 114*35'30" 9.99 19.71 STATION P.I. STATION DELTA = DEGREE = TANGENT = LENGTH = LONG CHORD = P.C. STATION P.T. STATION BACK = S AHFAD = = = 50.00 = = $\begin{array}{rrrr} & = & 19.38 \\ N & 10+15.32 & N \\ N & 10+35.03 & N \\ 17^{*} & 30^{*} & 03^{*} & F \\ = & S & 40^{*} & 05^{*} & 18^{*} & F \\ = & S & 28^{*} & 47^{*} & 40^{*} & F \end{array}$ 634,968.83 E 634,951.67 E 1,591,257.25 AHEAD CHORD BEAR COURSE FROM PT 10+35.03 TO PC 10+44.92 S 40' 05' 18" E DIST 9.88 CURVE DATA STATION DELTA DEGREE TANGENT = LENGTH RADIUS LONG CHORD P.C. STATION P.T. STATION PACK = S LONG CHORD = 21.96 P.C. STATION 10+44.92 N 634,944.11 E P.T. STATION 10+67.06 N 634,924.61 E BACK = S 40° 05' 18" E AHEAD = S 14' 42' 54" E CHORD BEAR = S 27° 24' 06" E 1,591,273.05 COURSE FROM PT 10+67.06 TO PC 10+82.54 S 14' 42' 54" E DIST 15.48 CURVE DATA 10+90.87 N 634,901.58 E 1,591,289.21 18' 54' 56'' (RT) 114' 35' 30'' 8.33 16.51 50.00 16.43 10.92 54 N 634,000 63 E 1,501,287,00 STATION DELTA DEGREE TANGENT = LENGTH RADIUS = LONG CHORD P.C. STATION P.T. STATION BACK = S = $\begin{array}{rrrr} & 10.43 \\ & 10+82.54 \\ & 10+99.05 \\ & 14^{\circ} 42^{\circ} 54^{\circ} E \\ & = S \\ & 4^{\circ} 12^{\circ} 02^{\circ} W \\ & = S \\ & 5^{\circ} 15^{\circ} 26^{\circ} E \end{array}$ 634,909.63 E 634,893.27 E 1,591,287.09 AHEAD CHORD BEAR COURSE FROM PT 10+99.05 TO PC 11+14.51-4 S 4* 12' 02" W DIST 15.46 CURVE DATA I 11+22.77 N 634,869.61 E 1,591,286.86 = 18' 45' 16" (RT) = 114' 35' 30" = 8.26 = 16.37 STATION DELTA DEGREE TANGENT 16.37 50.00 LENGTH RADIUS RADIUS = LONG CHORD = P.C. STATION P.T. STATION BACK = S 4 $\begin{array}{c} = & 50.000 \\ = & 16.29 \\ 11+14.51 \\ 11+30.88 \\ 4^{\circ} 12^{\circ} 02^{\circ} W \\ = & 5 & 22^{\circ} 57^{\circ} 18^{\circ} V \\ = & 5 & 13^{\circ} 34^{\circ} 40^{\circ} \end{array}$ 634,877.85 634,862.01 1,591,287.46 E AHEAD CHORD BEAR w COURSE FROM PT 11+30.88 TO PC 11+64.53 S 22* 57' 18" W DIST 33.65

P.I

____0 CURVE UT7-10 P.I. STATION DELTA DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD P.C. STATION P.T. STATION CURVE DATA 11+67.15 N 634,828.62 E 1,591,269.49 50' 52' 50' (RT) 1041' 44' 37'' 2.62 4.88 5.50 STATION DELTA = DEGREL = TANGENT = LENGTH = RADIUS = LONG CHORD P.C. STATION P.C. STATION BACK = S AHFAD N 11+64.53 N 6 11+69.41 N 6 22 57' 18' W = S 73* 50' 08'' W = S 48* 23' 43'' W 634,831.03 634,827.89 E 1,591,270.51 DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD = P.C. STATION P.T. STATION AHEAD CHORD BEAR COURSE FROM PT 11+69.41 TO PC 11+72.76 S 73° 50' 08" W DIST 3.34 CURVE DATA 11+84.17 N 634,823.78 E 1,591,252.81 38' 09' 47" (LT) 173' 37' 26" 11.42 21.98 33.00 STATION DELTA = TANGENT LENGENT = RADIUS = LONG CHORD P.C. STATION P.T. STATION BACK = S AHFAD = = $\begin{array}{rrrr} = & 21.58 \\ N & 11+72.76 & N \\ N & 11+94.74 & N \\ 73^{\circ} 50' & 08'' & W \\ = & S & 35^{\circ} 40' & 21'' & N \\ = & S & 54^{\circ} 45' & 14'' \end{array}$ DELTA 634,826.96 E 634,814.51 E DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD P.C. STATION P.T. STATION 1,591,263.77 CHORD BEAR COURSE FROM PT 11+94.74 TO PC 13+42.30 S 35' 40' 21" W DIST 147.56 BACK CURVE DATA AHEAD CHORD BEAR P.I. STA DELTA DEGREE TANGENT LENGTH RADULS 14+04.53 N 634,644.08 E 1,591,123.81 52:55,48,(LT) 45:50 12" 62.23 115.47 STATION = = RADIUS = LONG CHORD P.C. STATION P.T. STATION BACK = S 125.00 = = $\begin{array}{cccc} = & 111.41 \\ N & 13+42.30 & N \\ 1 & 14+57.78 & N \\ 35^{\circ} 40' 21'' & W \\ = & S & 17^{\circ} 15' 27'' \\ = & S & 9^{\circ} 12' 27'' \end{array}$ 634,694.63 E 634,584.65 E 1,591,160.10 1,591,142.27 N N CURVE DATA AHEAD CHORD BEAR P.I. STATION DELTA DEGREE = TANGENT = LENGTH = NADIUS = LONG CHORD = P.C. STATION P.T. STATION BACK = S CURVE DATA *____ CURVE UT7-8 P.I. STATION DELTA = DEGREE 16+00.28 N (23' 27' 28" (LT) 8' 20' 51" 142.50 281.01 686.37 279.05 14+57.78 N 17+38.79 N 17' 15' 27" E 40' 42' 55" E 28' 59' 11" E 634,448.5658 E 1,591,184.5466 TANGENT LENGTH RADIUS = LONG CHORD P.C. STATION P.T. STATION AHEAD CHORD BEAR = 634,584.6528 E 634.340.5548 E 1,591,142.2708 ' = S = S = S BACK BEAR = CURVE DATA * CURVE UT7-9 P.I. STATION DELTA = DEGREE TANGENT FNGTH OIUS CURVE DATA CURVE UT8-REV-2 P.I. STATION DELTA 17+81.25 N 23' 58' 31" (LT) 28' 38' 52" 42.47 83.69 200.00 83.08 17+38.79 N 18+22.48 N 40' 42' 55" E 64' 41' 26" E 52' 42' 10" E DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD P.C. STATION P.T. STATION 634,308.3672 E 1,591,305.2019 LANGEN I LENGTH = RADIUS = LONG CHORD P.C. STATION P.T. STATION Р.С. Р.Т BACK 634,340.5548 E 634,290.2127 E 1,591,277.5011 1,591,343.5918 AHEAD CHORD BEAR = SBACK CURVE DATA CURVE UT8-REV-3 P.I. STATION AHFAD CHORD BEAR DELTA DEGREE = TANGENT = LENGTH = RADIUS = LONG CHORD P.C. STATION P.T. STATION BACK

19+72.19 N 65 89*53'23" (RT) 38*11'50" 149.71 235.33 150.00 211.93 634,226.2100 E 1,591,478.9330 201 18+22.48 18+22.48 20+57.81 = S 64' 41' 26" E AHEAD = S 25' 11' 57" W CHORD BEAR = S 19' 44' 45" E CURVE UT7-11 P.I. STATION DELTA -CURVE TA -CURVE N 634,290.2127 E 1,591,343.5918 N 634,090.7459 E 1,591,415.1908 21+64.12 N 633,994.5516 E 1,591,369.9269 23' 29' 20" (RT) 11' 12' 16" 106.31 209.64 511.36 209.17 203.04 511.36 208.17 20+57.81 N 634,090.7459 E 1,591,415.1908 22+67.44 N 633,924.3691 E 1,591,290.0735 25° 11' 57" W 48° 41' 17" W 36° 56' 37" W 23+21.89 N 28' 31' 43" (LT) 26' 45' 14" 54.45 106.63 214.16 105.54 633,888.4259 E 1,591,249.18 48 Ľ Ľ 105.5 22+67.44 23+74.08 48° 41' 17" W 20° 09' 34" W 633,924,3691 E 1,591,290.0735 633,837,3150 E 1,591,230,4133 GROUP, 27605 Ν E LOUIS BERGER GRC 1001 Wade Avenue Raleigh, North Carolina 2 34°25'25" W END ALIGNMENT "UT 7" DESCRIPTION ALIGNMENT "UT 8 TO UT 7" DESCRIPTION POT STATION 10+00.00 N 634,353.20 E 1,591,181.68 COURSE FROM POT 10+00.00 TO PC 10+19.65 S 74° 48' 51" E DIST 19.65 10+37.64 N 634,343.34 E 1,591,218.00 23*54'00" (LT) 67*24'25" 17.99 35.46 85.00 35.20 뿜 $\begin{array}{rcl} 35.20\\ \text{STATION} & 10+19.65 & \text{N}\\ \text{STATION} & 10+55.11 & \text{N}\\ & = & \text{S} & 74^{\circ} & 48^{\circ} & 51^{\circ} & \text{E}\\ & & = & \text{N} & 81^{\circ} & 17^{\circ} & 09^{\circ} & \text{E} \end{array}$ 634,348.05 E 634,346.06 E 1,591,200.64 = S 86° 45' 51" E COURSE FROM PT 10+55.11 TO PC 10+79.87 N 81° 17' 09.49" E DIST 24.76 TLE BUFFALO CREEK M RESTORATION PROJECT CABARRUS COUNTY EM ENHANCEMENT PROGRA PROGR 10+88.26 N 63 58°27'06.09" (RT) 381°58'18.71" 8.39 634,351.0862 E 1,591,268.5536 DATA 15.30 14.65 10+79.87 N 10+95.17 N 81* 17' 09" E 40* 15' 44" E 634,349.8148 634.344.6823 1,591,260.2584 ENT E GNME 69°29'17" ITTLE | Am Ri LIT Strea 10+97.88 N 0' 27' 11" (LT) 8' 20' 51" 5.42 686.37 5.42 10+95.17 N COSYS. 634,342.6116 E 1,591,275.7311 634,344.6823 E 634,340.5548 E 1,591,273.9773 DATE MARCH 2013 11+00.60 ROJECT NO. 94147 40°15'44"E FILENAME $AHEAD = S 40^{\circ} 42^{\circ} 55^{\circ} E$ CHORD BEAR = S 40^{\circ} 29^{\circ} 20^{\circ} E THEET NO. 54 OF 54 DRAWING NO. AD2 END ALIGNMENT "UT 8 TO UT 7" DESCRIPTION DRAWN BY JAD

CURVE DATA

=

=

=

=

=

=

=

=

=

=

=

=

=

=

= N = S

= =

= S

=

=

= S

= S

= S

Appendices

APPENDIX 1

PROJECT SITE PHOTOGRAPHS

Photo 1: Reach 1 - View looking upstream from a portion of Reference Reach. (6/18/2008)

Photo 2: Reach 1 near proposed restoration reach. View looking downstream. (6/18/2008)

Photo 3: Reach 1 near end of restoration reach at 90° turn (right to left, then into the page). (3/29/2010)

Photo 4: Reach 2 downstream of Bridge, upstream of UT 2. View looking downstream. (6/18/2008)

Photo 5: Reach 3 – restored channel to be to the right. View looking downstream. (6/18/2008)

Photo 6: Reach 3 – E-2. View looking downstream. (6/18/2008)

Photo 7: Reach 4. View looking downstream. (6/18/2008)

Photo 8: Reach 4. Concrete on rt. bank to be removed and dimension, pattern, & profile restored. (8/30/2010)

Photo 9: Reach 5. View looking upstream at multi-thread channel. (7/17/2008)

Photo 10: Reach 6. Preservation Reach. (7/31/2008)

Photo 11: UT 1. View looking upstream from confluence with mainstem. (12/9/2009)

Photo 12: UT 2. View looking upstream. E-2 in pasture, Preservation from trees up to pond. (6/18/2008)

Photo 13: UT 3. View looking upstream at E-1 area. (7/27/2010)

Photo 14: UT 3. View looking upstream at E-2 area. (12/9/2009)

Photo 15: UT 4. View looking downstream at E-1 area, backpack shown for scale. (8/30/2010)

Photo 16: UT 4. View looking upstream at E-2 area. (8/30/2010)

Photo 17: UT 5. View looking upstream. (7/31/2008)

Photo 18: UT 6. View looking upstream. (7/31/2008)

Photo 19: UT 7. View looking upstream at upper limit – culverts under Old Mine Rd. (3/29/2010)

Photo 20: UT 7. View looking downstream. (3/29/2010)

PROJECT SITE USACE ROUTINE WETLAND DELINEATION DATA FORMS

(N/A – No Wetlands are associated with this project)

PROJECT SITE NCDWQ STREAM CLASSIFICATION FORMS

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: 6/18/08 Project:	LBC	Latitu		
Evaluator: nro Site: R+ 7	LABBY H =>	UTA Longi	tude:	
Total Points:	ABAREUS	Other	ad Name:	
A. Geomorphology (Subtotal = 24,5)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	2	3
2. Sinuosity	0	1	<u>~2</u> ~	
3. In-channel structure: riffle-pool sequence	0	1	_2	C 3
4. Soil texture or stream substrate sorting	0	11	Gen Zuringers.	<u></u>
5. Active/relic floodplain	0	1	2	<3>
6. Depositional bars or benches	0	11	e_2>	3
7. Braided channel	<0>	م <u>ت</u>	2	3
8. Recent alluvial deposits	0	<u> </u>	2	3
9 ^ª Natural levees	0	1	(2)	3
10. Headcuts	0	<1>	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	<1.5>
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. ⁸ Man-made ditches are not rated; see discussions in manu 	No al	= 0	Yes	= 3 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
B. Hydrology (Subtotal =6)			·	·····
14. Groundwater flow/discharge	0	1	2	<u>(3</u>
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3
16. Leaflitter	<1,52	1	0.5	0
17. Sediment on plants or debris	0	(0.5)	1	1.5
18. Organic debris lines or piles (Wrack lines)	< 0 >	0.5	1	1.5
19. Hydric soils (redoximorphic features) present?	< No	= 0.)	Yes	= 1.5
C. Biology (Subtotal = <u>4</u>)			1 4	0
20 ^b , Fibrous roots in channel	3	(2)	1	0
21 ^b . Rooted plants in channel	3	(2)	1	1.5
22. Crayfish	<u> </u>	0.5	2	3
		1		1.5
23. Bivalves		0.5	4	
23. Bivalves 24. Fish	<u> </u>	0.5	1	
23. Bivalves 24. Fish 25. Amphibians	0 0	0.5	1	1.5
 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 	(0) (0) (0)	0.5 0.5	1	1.5 1.5
 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 27. Filamentous algae; periphyton 	(0) (0) (0) (0) (0)	0.5 0.5 1	1 1 2	1.5 1.5 3
 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 		0.5 0.5 1 0.5	1	1.5 1.5 3 1.5

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.)

Drought Conditions Flow even n Q

channel from WB

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: 7/31/08 Project: 1	BC	Latit	ude:	
Evaluator: RB + 75 Site: TE	3 an ute	Long	jitude:	
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30 \approx 4.75 County:	ABARRUS	Othe e.g. G	r Quad Name:	
A. Geomorphology (Subtotal = <u>9,5</u>)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	(2)	3
2. Sinuosity	0	1	2	3
3. In-channel structure: riffle-pool sequence	0	1	2	3
4. Soil texture or stream substrate sorting	0	(1)	2	3
5. Active/relic floodplain	0	1	(2)	3
6. Depositional bars or benches	0	1	2	3
7. Braided channel	(0)	1	2	3
8. Recent alluvial deposits	(0)	1	2	3
9 ^a Natural levees	(0)	1	2	3
10. Headcuts	\bigcirc	1	2	3
11. Grade controls	(0)	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	(1.5)
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	= 3
^a Man-made ditches are not rated; see discussions in manu B. Hydrology (Subtotal = <u>25</u>) 14. Groundwater flow/discharge	0	1	2	(,3)
 Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 	0	1	2	(3)
16. Leaflitter	(1.5)	1	0.5	0
17. Sediment on plants or debris	0	(0.5)	1	1 6
		7		1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5
	0	(0.5) = 0	1 (Yes	1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =	0 No	= 0	(Yes	1.5 = 1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>6.75</u>) 20^b. Fibrous roots in channel 	0 No 3	= 0		1.5 = 1.5 0
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = 6.75) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 	0 No 3 3	= 0 2 2	(Yes:	1.5 = 1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =	0 No 3 (0)	= 0 2 0.5	(Yes:	1.5 = 1.5 0 0 1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>6.75</u>) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 	0 No 3 (0) (0)	= 0 2 0.5 1	(Yes: (1) (1) 1 2	1.5 = 1.5 0 0 1.5 3
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>6.75</u>) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 	0 No 3 3 0 0 0	= 0 2 0.5 1 0.5	(Yes: (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1.5 = 1.5 0 0 1.5 3 (1.5)
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>6.75</u>) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 	0 No 3 3 0 0 0 0 0	= 0 2 0.5 1 0.5 0.5	(Yes: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.5 = 1.5 0 0 1.5 3 (1.5) 1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = 6.75) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 	0 No No 0 0 0 0 0	= 0 2 2 0.5 1 0.5 0.5 0.5	(Yes: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.5 = 1.5 0 0 1.5 3 (1.5) 1.5 1.5
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =	0 No No 0 0 0 0 0 0 0 0	= 0 2 2 0.5 1 0.5 0.5 0.5 0.5 1	(Yes: (1) (1) (1) (1) (1) (2)	1.5 = 1.5 0 0 1.5 3 (1.5) 1.5 1.5 3
 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal = <u>6.75</u>) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 	0 No No 0 0 0 0 0 0 0 0	= 0 2 2 0.5 1 0.5 0.5 0.5 1 (0.5)	(Yes: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.5 = 1.5 0 0 1.5 3 1.5 1.5 1.5 3 1.5

 29 °. Wetland plants in streambed
 FAC = 0.5; FACW = 0.75; OBL = 1.5 SAV = 2.0; O

 ° Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.)

hshgambozia

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1 Latitude: Project: LBC Date: 2 5) DY WA-JUT 5 Longitude: Site: Channel from R **Evaluator:** 7 đ Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30 Other

MERRAS

e.g. Quad Name:

County:

7

A. Geomorphology (Subtotal = <u>13</u>)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	(2)	3
2. Sinuosity	0	1	(2)	3
3. In-channel structure: riffle-pool sequence	0	(1)	2	3
4. Soil texture or stream substrate sorting	0	(1	(2)	3
5. Active/relic floodplain	0	1	2	(3)
6. Depositional bars or benches	(,0)	1	2	3
7. Braided channel	0	(1)	2	3
8. Recent alluvial deposits	0	(1)	2	3
9 ^a Natural levees	(0)	1	2	3
10. Headcuts	(0)	1	2	3
11. Grade controls	(0)	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	(1)	1.5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	= 3

B. Hydrology (Subtotal =) 14. Groundwater flow/discharge	0	1	2	(3)
15. Water in channel and > 48 hrs since rain, or Water in channel dry or growing season	0	1	2	3
16. Leaflitter	1.5	1	(0.5)	0
17. Sediment on plants or debris	0	(0.5)	1	1.5
18. Organic debris lines or piles (Wrack lines)	0	(0.5)	1	1.5
19. Hydric soils (redoximorphic features) present?	No	0 = 0	Yes	= 1.5)

			F 1	e
C	Biology	(Subtotal =	515	5 1

11

20 ^b . Fibrous roots in channel	3	2	(1)	0
21 ^b . Rooted plants in channel	3	2	1	(0)
22. Crayfish	(0)	0.5	1	1.5
23. Bivalves	0	1	2	3
24. Fish	0	0.5	1	1.5
25. Amphibians	0	(0.5)	1	1.5
26. Macrobenthos (note diversity and abundance)	(0)	0.5	1	1.5
27. Filamentous algae; periphyton	0	1	(2)	3
28. Iron oxidizing bacteria/fungus.	0	(0.5)	1	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; F/	ACW = 0.75. OBL	_= 1.5 SAV =	2.0; Other = 0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.)

'Perennial 'Trib

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: $7/31/08$ P Evaluator: $RB+TS$ S	Site: T	F -> UT	4 Long	jitude:	
Total Points:	County: (HBARAUS	Othe	er Quad Name:	
	1.5,	Absent	Weak	Moderate	Strong
4. Ocomorphology (oubtotan	<u> </u> /	0	1	2	(3)
1 ^a . Continuous bed and bank		0	1	(2)	3
2. Sinuosity	000	0	1	2	(3)
3. In-channel structure: riffle-pool sequer		0	1	2	3)
4. Soil texture or stream substrate sorting	y	0	1	(2)	3
5. Active/relic floodplain		0	1	2	(3)
6. Depositional bars or benches		(0)	1	2	3
7. Braided channel		0	1	(2)	3
8. Recent alluvial deposits		(0)	1	2	3
9 ^ª Natural levees			1	2	3
10. Headcuts		0	(0.5)	1	1.5
11. Grade controls		0	0.5	(1)	1.5
 Natural valley or drainageway Second or greater order channel on greater 	existing	1	17		= 3
USGS or NRCS map or other docum evidence. ^a Man-made ditches are not rated; see discus	nented	lal	=0) ~	163	
USGS or NRCS map or other documevidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal = S	nented	6	1	2	(3)
USGS or NRCS map or other documevidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u>	lal			(3)
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal = 9.5 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since Water in channel dry or growing se	nented sions in manu _) rain, <u>or</u>	0 0	1	2	
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal = 9.5 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since Water in channel dry or growing se 16. Leaflitter	nented sions in manu _) rain, <u>or</u>	0 0 1.5	1 1 (1)	2 2 0.5	(3)
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal = 9.5 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since Water in channel dry or growing se 16. Leaflitter 17. Sediment on plants or debris	nented .sions in manu _) rain, <u>or</u> eason	0 0 1.5 0	1 1 (1) 0.5	2 2 0.5 (1)	(3) 3) 0 1.5
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0	1 1 (1) 0.5 0.5	2 2 0.5 (1) 1	(3) (3) 0
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal = 9.5 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since Water in channel dry or growing se 16. Leaflitter 17. Sediment on plants or debris	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0	1 1 (1) 0.5	2 2 0.5 (1) 1	(3) (3) 0 (1.5) (1.5)
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 No	1 1 0.5 0.5 0=0	2 2 0.5 1 1 Yes	(3) 0 1.5 (1.5) = 1.5
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 0 No	1 1 0.5 0.5 0 = 0	2 2 0.5 1 1 Yes	(3) 0 1.5 (1.5) = 1.5 0
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 0 0 0 0 (3) (3)	$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0 \\ 2 \\ 2 \end{array} $	2 2 0.5 1 1 Yes 1 1	$ \begin{array}{c} (3) \\ 0 \\ 1.5 \\ (1.5) \\ = 1.5 \\ \hline 0 \\ 0 \\ 0 \end{array} $
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 0 0 No	1 1 0.5 0.5 0 = 0	2 2 0.5 1 1 Yes 1 1 1	(3) 0 1.5 (1.5) = 1.5 0 0 1.5
USGS or NRCS map or other documevidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c c} 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0 = 0 \\ \hline 2 \\ 2 \\ 0.5 \\ 1 \\ \hline \end{array} $	2 2 0.5 1 1 Yes 1 1 1 2	3 0 1.5 1.5 1.5 1.5 0 0 0 0 0 3
USGS or NRCS map or other documevidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)	0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c c} 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ $	2 0.5 1 1 Yes 1 1 2 1 2 1 2 1	3 0 1.5 1.5 1.5 1.5 1.5 3 0 0 1.5
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)) present?	0 0 0 1.5 0	$ \begin{array}{c c} 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.$	2 0.5 1 1 Yes 1 1 2 1 2 1 2 1 1 1 1 2 1 1	3 0 1.5 1.5 1.5 1.5 1.5 0 0 0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)) present?	0 0 0 1.5 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0.5 (1) 1 Yes 1 1 2 1 1 2 1 1 (1)	3 0 1.5 1.5 1.5 1.5 0 0 1.5 1.5 1.5 1.5
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)) present?	al 0 0 1.5 0 0 0 No 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 0.5 (1) 1 Yes 1 1 1 2 1 1 1 2	$ \begin{array}{c} (3)\\ 0\\ 1.5\\ (1.5)\\ = 1.5\\ \hline 0\\ 0\\ 1.5\\ 3\\ 1.5\\ 1.5\\ 1.5\\ 3\\ 3\\ \end{array} $
USGS or NRCS map or other docur evidence. ^a Man-made ditches are not rated; see discus B. Hydrology (Subtotal =	nented sions in manu _) rain, <u>or</u> eason lines)) present?	0 0 0 1.5 0	$ \begin{array}{c c} 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ 0.5 \\ 1 \\ 0.5 \\ $	2 0.5 (1) 1 Yes 1 1 2 1 1 2 1 1 (1)	(3) 0 1.5 (1.5) = 1.5 0 0 0 1.5 1.5 1.5 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5

Mayfles Water penny Caddisfly casings

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: $7/3/08$ Project:	LBC	Latit	ude:	
Evaluator: RB + 75 Site:	TE -> U	73 Long	jitude:	
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30 26.5	CABARRUS	Othe e.g. G	r Quad Name:	
A. Geomorphology (Subtotal = <u> / </u>	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	2	Ð
2. Sinuosity	0	1	2	· 3
3. In-channel structure: riffle-pool sequence	0	(1)	2	3
4. Soil texture or stream substrate sorting	0	(I)	2	3
5. Active/relic floodplain	0		2	3
6. Depositional bars or benches	0	<u>(</u>)	2	3
7. Braided channel	(0)	1	2	3
8. Recent alluvial deposits	0	\bigcirc	2	3
9 ^ª Natural levees	(0)	1	2	3
10. Headcuts		1	2	3
11. Grade controls	0	0.5		1.5
12. Natural valley or drainageway	0	0.5		1.5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0	Yes	= 3
B. Hydrology (Subtotal = 2.5)	0	1	(2)	÷3.
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, or 	0	1	(2) 2	3 3
14. Groundwater flow/discharge		1		
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 	0	1	2	3
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 	0	· · · · · · · · · · · · · · · · · · ·	2 0.5	(3) 0
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 	0 1.5 0 0	1	2 0.5 1 1	(3) 0 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? 	0 1.5 0 0	1 ().5 ().5)	2 0.5 1 1	(3) 0 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 	0 1.5 0 0 No	1 (0.5) (0.5) = 0	2 0.5 1 1	(3) 0 1.5 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 	0 1.5 0 0 No	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ = 0 \\ \end{array} $	2 0.5 1 1 Yes	(3) 0 1.5 1.5 = 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 	0 1.5 0 0 No	1 (0.5) (0.5) = 0	2 0.5 1 1 Yes 1	(3) 0 1.5 1.5 = 1.5
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 	0 1.5 0 0 No No 3 3 (0)	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ = 0 \end{array} $	2 0.5 1 1 Yes 1 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 0 \end{array}$
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 	0 1.5 0 0 No 1.5 0 0 No No (0) (0)	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 0.5 \\ \hline 2 \\ 0.5 \\ \hline 1 \\ \end{array} $	2 0.5 1 1 Yes 1 1 1 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 1.5 \end{array}$
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 	0 1.5 0 0 No No 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ (0.5) \\ (0.5) \\ = 0 \end{array} $	2 0.5 1 1 Yes 1 1 1 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0 \\ 1.5 \\ 3 \end{array}$
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 	0 1.5 0 0 No No No 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ = 0 \\ \end{array} $	2 0.5 1 1 1 Yes 1 1 1 1 2 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 1.5 \\ 3 \\ 1.5 \end{array}$
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 26. Macrobenthos (note diversity and abundance) 	0 1.5 0 0 No No 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline 0.5 \\ \hline 2 \\ 0.5 \\ \hline 1 \\ 0.5 \\ 0.5 \\ \hline $	2 0.5 1 1 1 Yes 1 1 1 1 2 1 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$
 14. Groundwater flow/discharge 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 16. Leaflitter 17. Sediment on plants or debris 18. Organic debris lines or piles (Wrack lines) 19. Hydric soils (redoximorphic features) present? C. Biology (Subtotal =) 20^b. Fibrous roots in channel 21^b. Rooted plants in channel 22. Crayfish 23. Bivalves 24. Fish 25. Amphibians 	0 1.5 0 0 No No No 0 0 0 0 0 0	$ \begin{array}{c} 1 \\ 0.5 \\ 0.5 \\ = 0 \\ \end{array} $	2 0.5 1 1 1 Yes 1 1 1 2 1 1 1 1 1	$\begin{array}{c} (3) \\ 0 \\ 1.5 \\ 1$

Notes: (use back side of this form for additional notes.)

Intermittent Blue Line on TLS65 Topo MAP

North Carolina Division of Water Quality -- Stream Identification Form; Version 3.1

Date: 6 18/08	Project: LBC	Latitude:
Evaluator: MO	Site: POND ON LOFT -> KT2	Longitude:
Total Points: Streem is at least intermittent if ≥ 19 or perennial if ≥ 30 20	County: COBARANS	Other e.g. Quad Name:

A. Geomorphology (Subtotal = 11.5)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	2	(3)
2. Sinuosity	0	1	$\langle 2 \rangle$	3
3. In-channel structure: riffle-pool sequence	0	ST an	2000	3
4. Soil texture or stream substrate sorting	0	< >	2	3
5. Active/relic floodplain	0	1	<2>	3
6. Depositional bars or benches	C)	1	2	3
7. Braided channel	(0)	1	2	3
8. Recent alluvial deposits	0	<17	2	3
9 ^ª Natural levees	\bigcirc	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	<u>(</u>)	0.5	1	1,5
12. Natural valley or drainageway	0	0.5	1	(1,5)
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	P-> J < No	= 0) 1st Orde	Yes	= 3

Man-made ditches are not rated; see discussions in manual

. .

B. Hydrology (Subtotal =)				
14. Groundwater flow/discharge	0	(1)	2	3
15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season	0	\bigcirc	2	3
16. Leaflitter	_ 1.5)	1	0.5	0
17. Sediment on plants or debris	Ŏ	<0.5⊃	1	1.5
18. Organic debris lines or piles (Wrack lines)	0	0.5	1	1.5
19. Hydric soils (redoximorphic features) present?	Nő	= 0	Yes	= 1.5

C. Biology (Subtotal = 4,5)

	-			
20 ^b . Fibrous roots in channel	3	(2, m/	1	0
21 ^b . Rooted plants in channel	3 -	C2	1	0
22. Crayfish	$\langle 0 \rangle$	0.5	1	1.5
23. Bivalves	(0)	1	2	3
24. Fish	<u>(</u> 0)>	0.5	1	1.5
25. Amphibians Flog	0	0.5	1	1.5
26. Macrobenthos (note diversity and abundance)	<u>(</u> 0)	0.5	1	1.5
27. Filamentous algae; periphyton	< 0 >	1	2	3
28. Iron oxidizing bacteria/fungus.	୍ ୦>	0.5	1	1.5
29 ^b . Wetland plants in streambed	FAC = 0.5; FA	CW = 0.75; OBL	= 1.5 SAV =	2.0; Other = 0

^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (use back side of this form for additional notes.)

Sketch:

CONDITIONS PROUGHT US65 TOPO MAP Shows

In Person Pond with Intermittent Leaving POND WATH CONTRACT WI LBC.

Sometimes moved by Fremere TODAX Looked as Though untoenplud very surrounding. Several meeting and

North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

Date: 6 18 08 Project:	LBC	Latitu	de:	
Evaluator: MO Site: $\frac{\omega h^3}{MS}$	r TRIE DLD MING	>UT1 Longi	tude:	
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30 ∠/ Ø	CARARRUS	Other e.g. Qi	uad Name:	
A. Geomorphology (Subtotal = <u>13</u>)	Absent	Weak	Moderate	Strong
1 ^a . Continuous bed and bank	0	1	2	3
2. Sinuosity	0		2	3
3. In-channel structure: riffle-pool sequence	0	(1)	2	3
4. Soil texture or stream substrate sorting	0 `	<u>A</u>	2	3
5. Active/relic floodplain	0	1	(2)	3
 Depositional bars or benches 	$\langle 0 \rangle$	1	2	3
7. Braided channel	(0)	1	2	3
3. Recent alluvial deposits	-0-	Ð	2	3
en al levees		1	2	3
I0. Headcuts	(0)	1	2	3
1. Grade controls	0)	0.5	1	1.5
12. Natural valley or drainageway	Ő	0.5	(1)	1.5
 Second or greater order channel on <u>existing</u> USGS or NRCS map or other documented evidence. 	No	= 0)	Yes	= 3
⁴ Man-made ditches are not rated; see discussions in ma	anual /			
B. Hydrology (Subtotal =/_) 14. Groundwater flow/discharge	0	(1)	2	3
 15. Water in channel and > 48 hrs since rain, <u>or</u> Water in channel dry or growing season 	Q		2	3
16. Leaflitter	(1.5)	1	0.5	0
7. Sediment on plants or debris	0	< 0.5->	11	1.5
8. Organic debris lines or piles (Wrack lines)	$\langle 0 \rangle$	0.5	1	1.5
19. Hydric soils (redoximorphic features) present?	< <u>No</u>	= 0 >	Yes	= 1.5
C. Biology (Subtotal =/				
20 ^b , Fibrous roots in channel	3	2	1	0
21 ^b . Rooted plants in channel	3	(2)	11	0
22. Crayfish	60	0.5	1	1.5
23. Bivalves	(0)	1	2	3
24. Fish	(0)	0.5	11	1.5
25. Amphibians	/9>	0.5	1	1.5
26. Macrobenthos (note diversity and abundance)	(6)	0.5	11	1.5
27. Filamentous algae; periphyton	(0)	1	2	3
	······································	0.5	1	15

29 b. Wetland plants in streambed ^b Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

0)

Notes: (use back side of this form for additional notes.)

28. Iron oxidizing bacteria/fungus.

Sketch:

FAC = 0.5; FACW = 0.75; OBL = 1.5 SAV = 2.0; Other = 0

0.5

1

1.5

4565 TOPO MAP SHO WS Perend Stream that becomes where willout AS IT Reparate DINTERS FLOUDPLAIN of LING BUREALA CREEK

FARMER HAD ALLOWED VED to grow unimpected - some times mantains Alexa

DROUGHT CONDITIONS,

REFERENCE SITE PHOTOGRAPHS

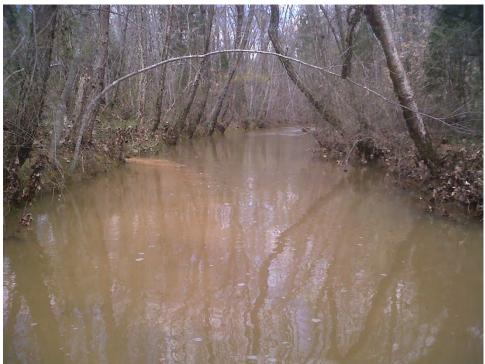


Photo 20: Upstream of project area. View looking upstream after a large rain event. (3/31/2010)

Photo 21: Upper limits of project area. View looking upstream. (3/31/2010)

Photo 22: Middle of reference reach. View looking downstream. (3/31/2010)

Photo 23: Middle of Reference Reach. View looking upstream. (4/13/2010)

Photo 24: Downstream portion of Reference reach. View looking upstream. (4/13/2010)

Photo 25: Downstream portion of Reference reach. View looking upstream at curve. (4/13/2010)

REFERENCE SITE USACE ROUTINE WETLAND DETERMINATION DATA FORMS

(N/A - A reference site was not necessary for this project)

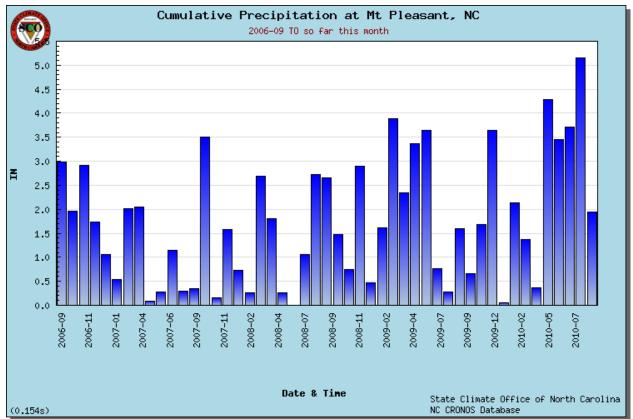
REFERENCE SITE NCDWQ STREAM CLASSIFICATION FORMS

(Little Buffalo Creek is a named, blue line stream on the USGS topographic quadrangle. The stream is perennial; therefore; a stream classification form was not completed.)

HYDROLOGIC GAUGE DATA SUMMARY, GROUNDWATER AND RAINFALL INFORMATION

Appendix 7 Table 1: Hydrologic Gauge Data Summary – Annual Peak Flows

USGS 02125000 BIG BEAR CR NR RICHFIELD, NC


1955-2007

Date	Cubic Feet per Second	Date	Cubic Feet per Second
	(CFS)		(CFS)
2/6/1955	4880	12/31/1981	3720
3/16/1956	4200	3/6/1983	2850
6/8/1957	7460	7/15/1984	9700
4/6/1958	4880	8/17/1985	2740
7/9/1959	9700	11/21/1985	4370
2/18/1960	4550	2/28/1987	3990
2/21/1961	4140	3/10/1988	1610
4/11/1962	5400	3/24/1989	4150
3/6/1963	3020	10/1/1989	8030
8/11/1964	4850	10/11/1990	10100
10/16/1964	8270	6/16/1992	3290
3/4/1966	5610	4/6/1993	4700
8/22/1967	11100	3/2/1994	3410
3/12/1968	3440	9/11/1995	6600
8/16/1969	3620	10/4/1995	4900
4/1/1970	1960	7/23/1997	11400
3/3/1971	4880	2/17/1998	4820
10/16/1971	4040	1/24/1999	2030

7/24/1973	6590	10/11/1999	7520	
4/5/1974	1730	8/18/2001	3360	
5/18/1975	6110	1/23/2002	3840	
12/31/1975	1520	3/20/2003	7670	
3/30/1977	5830	9/28/2004	9640	
10/26/1977	8410	3/28/2005	2810	
3/24/1979	6690	12/15/2005	3010	
3/21/1980	3440	3/2/2007	5580	
8/12/1981	7770			

Source: USGS 2010. USGS Water Resources. National Water Information System: Web Interface. Peak Streamflow for the Nation. USGS 02125000 BIG BEAR CR NR RICHFIELD, NC. Available URL:

 $http://nwis.waterdata.usgs.gov/nwis/peak?site_no=02125000\&agency_cd=USGS\&format=html$

Source: North Carolina State Climate Office. NC CRONOS Database – Monthly Sum of Daily Percipitation. Mount Pleasant, Cabarrus County, North Carolina. Station # 315945.

Available URL: http://www.nc-climate.ncsu.edu/cronos/

HEC-RAS Analysis

APPENDIX A: NOAA 24-Hour Precipitation Depths

_

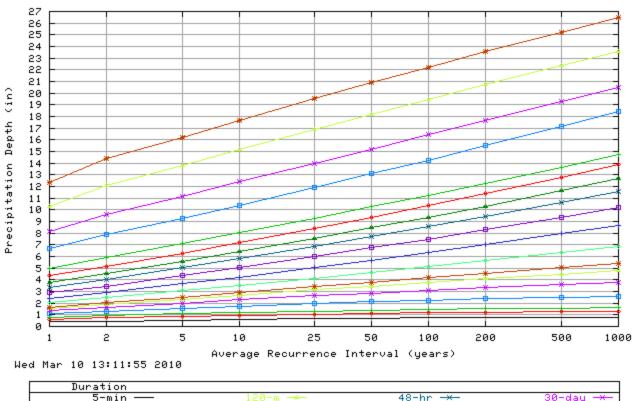
NOAA 24-HOUR PRECIPITATION DEPTHS FOR GEOMETRIC CENTROID OF

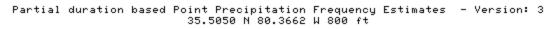
LITTLE BUFFALO CREEK WATERSHED

POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

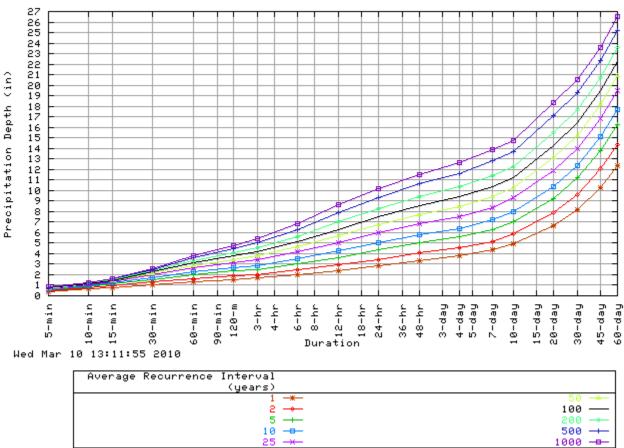
North Carolina 35.5050 N 80.3662 W 800 feet from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 2, Version 3 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2004 Extracted: Wed Mar 10 2010

	Precipitation Frequency Estimates (inches)																	
ARI* (years)	<u>5</u> <u>min</u>	<u>10</u> <u>min</u>	<u>15</u> <u>min</u>	<u>30</u> <u>min</u>	<u>60</u> <u>min</u>	<u>120</u> <u>min</u>	<u>3 hr</u>	<u>6 hr</u>	<u>12</u> <u>hr</u>	<u>24 hr</u>	<u>48 hr</u>	<u>4 day</u>	<u>7 day</u>	<u>10</u> <u>day</u>	<u>20</u> <u>day</u>	<u>30</u> <u>day</u>	<u>45</u> <u>day</u>	<u>60</u> <u>day</u>
1	0.40	0.63	0.79	1.08	1.35	1.57	1.67	2.03	2.41	2.87	3.36	3.78	4.33	4.96	6.65	8.18	10.31	12.32
2	0.47	0.75	0.94	1.30	1.63	1.90	2.02	2.44	2.91	3.47	4.04	4.53	5.17	5.89	7.85	9.62	12.08	14.37
5	0.55	0.87	1.10	1.57	2.01	2.35	2.52	3.05	3.65	4.35	5.03	5.58	6.29	7.08	9.26	11.18	13.81	16.22
10	0.60	0.96	1.21	1.75	2.28	2.69	2.90	3.52	4.23	5.04	5.81	6.41	7.19	8.02	10.38	12.39	15.14	17.66
25	0.66	1.05	1.33	1.97	2.62	3.13	3.40	4.15	5.03	5.98	6.86	7.55	8.41	9.27	11.89	13.98	16.87	19.51
50	0.70	1.11	1.40	2.12	2.87	3.45	3.78	4.64	5.67	6.73	7.69	8.45	9.38	10.26	13.07	15.21	18.18	20.91
100	0.73	1.16	1.47	2.25	3.10	3.77	4.16	5.13	6.32	7.50	8.54	9.37	10.38	11.26	14.27	16.42	19.45	22.24
200	0.76	1.21	1.52	2.37	3.32	4.08	4.55	5.63	7.00	8.29	9.41	10.32	11.40	12.27	15.48	17.64	20.71	23.55
500	0.79	1.25	1.57	2.50	3.59	4.47	5.05	6.32	7.93	9.36	10.60	11.63	12.80	13.65	17.12	19.26	22.36	25.24
1000	0.81	1.28	1.60	2.59	3.79	4.76	5.44	6.84	8.67	10.22	11.54	12.65	13.91	14.73	18.39	20.50	23.59	26.51

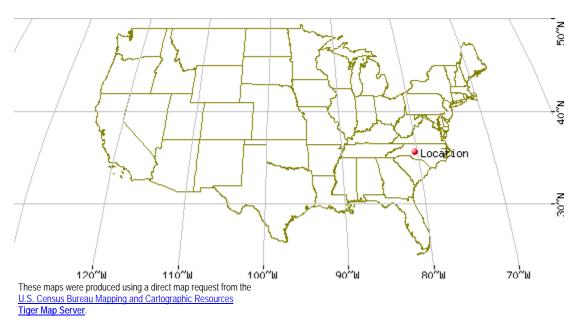

* These precipitation frequency estimates are based on a <u>partial duration series</u>. **ARI** is the Average Recurrence Interval. Please refer to <u>NOAA Atlas 14 Document</u> for more information. NOTE: Formatting forces estimates near zero to appear as zero.


	* Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																	
ARI** (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	0.43	0.69	0.86	1.18	1.47	1.71	1.83	2.22	2.63	3.10	3.61	4.04	4.62	5.26	7.00	8.59	10.78	12.84
2	0.51	0.81	1.02	1.42	1.77	2.07	2.21	2.68	3.19	3.74	4.35	4.85	5.51	6.25	8.26	10.10	12.61	14.95
5	0.59	0.95	1.20	1.71	2.19	2.57	2.75	3.33	3.99	4.69	5.41	5.97	6.70	7.51	9.74	11.73	14.40	16.89
10	0.65	1.04	1.31	1.90	2.48	2.94	3.15	3.84	4.62	5.43	6.24	6.86	7.65	8.50	10.92	13.00	15.78	18.38
25	0.71	1.14	1.44	2.13	2.84	3.41	3.69	4.51	5.46	6.45	7.36	8.08	8.95	9.82	12.51	14.67	17.59	20.31
50	0.76	1.20	1.52	2.29	3.11	3.76	4.11	5.04	6.14	7.25	8.26	9.05	9.99	10.88	13.76	15.97	18.98	21.78
100	0.79	1.26	1.59	2.44	3.36	4.11	4.51	5.57	6.84	8.07	9.17	10.05	11.05	11.95	15.03	17.26	20.32	23.19
200	0.82	1.31	1.65	2.57	3.60	4.44	4.93	6.11	7.56	8.93	10.12	11.07	12.16	13.03	16.33	18.56	21.66	24.58
500	0.86	1.36	1.71	2.72	3.90	4.87	5.49	6.85	8.55	10.11	11.43	12.50	13.69	14.52	18.09	20.30	23.41	26.39
1000	0.88	1.39	1.74	2.82	4.12	5.19	5.91	7.42	9.36	11.04	12.46	13.62	14.90	15.69	19.47	21.65	24.74	27.76

* The **upper** bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are **greater** than. ** These precipitation frequency estimates are based on a <u>partial duration series</u>. **ARI** is the Average Recurrence Interval. Please refer to <u>NOAA Atlas 14 Document</u> for more information. NOTE: Formatting prevents estimates near zero to appear as zero.


	* Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																	
ARI** (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	0.36	0.58	0.73	1.00	1.25	1.44	1.53	1.86	2.22	2.67	3.12	3.52	4.07	4.68	6.31	7.79	9.88	11.84
2	0.43	0.69	0.87	1.20	1.50	1.74	1.85	2.24	2.67	3.23	3.77	4.23	4.86	5.56	7.44	9.15	11.55	13.79
5	0.50	0.80	1.01	1.44	1.85	2.15	2.31	2.79	3.35	4.04	4.68	5.21	5.91	6.67	8.78	10.63	13.19	15.57
10	0.55	0.88	1.11	1.61	2.09	2.46	2.64	3.21	3.87	4.68	5.39	5.97	6.73	7.55	9.83	11.77	14.45	16.94
25	0.60	0.96	1.21	1.80	2.39	2.84	3.08	3.76	4.55	5.53	6.35	7.00	7.85	8.70	11.23	13.26	16.07	18.69
50	0.63	1.01	1.28	1.92	2.60	3.12	3.41	4.17	5.09	6.21	7.11	7.82	8.74	9.61	12.32	14.40	17.29	20.00
100	0.66	1.05	1.33	2.04	2.80	3.38	3.73	4.59	5.63	6.90	7.87	8.64	9.63	10.52	13.41	15.52	18.46	21.25
200	0.69	1.08	1.37	2.13	2.99	3.63	4.05	4.99	6.17	7.60	8.65	9.49	10.55	11.44	14.50	16.63	19.61	22.45
500	0.71	1.12	1.41	2.24	3.21	3.94	4.44	5.52	6.88	8.54	9.69	10.64	11.79	12.67	15.97	18.09	21.09	24.00
1000	0.72	1.13	1.42	2.30	3.36	4.16	4.74	5.90	7.41	9.29	10.51	11.53	12.76	13.62	17.10	19.20	22.20	25.16

* The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than. ** These precipitation frequency estimates are based on a <u>partial duration maxima series</u>. **ARI** is the Average Recurrence Interval. Please refer to <u>NOAA Atlas 14 Document</u> for more information. NOTE: Formatting prevents estimates near zero to appear as zero.



Duration			
5-min ——	120-m -	48-hr -×-	30-day 🛶
10-min 🔶	3-hr -* -	4-day 🛶	45-day 🛶
15-min 🕂	6-hr 🔶	7-day 🔶	60-day *
30-min -0-	12-hr 🕂	10-day 🕂	-
60-min -×-	24-hr -8-	20-day -0-	

Partial duration based Point Precipitation Frequency Estimates - Version: 3 35.5050 N 80.3662 W 800 ft

Maps -

Please read disclaimer for more information.

Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOQ) covering this location from TerraServer; USGS Aerial

Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to <u>NOAA Atlas 14 Document</u>.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

+/-30 minute <u>s</u>	OR	+/-1 degree	of this location (35.5050/-80.3662). Digital ASCII data can be obtained directly
from <u>NCDC</u> .			· · · · · · · · · · · · · · · · · · ·

Hydrometeorological Design Studies Center DOC/NOAA/National Weather Service 1325 East-West Highway Silver Spring, MD 20910 (301) 713-1669 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX B: Weighted Runoff Curve Number Calculations

-

CURVE NUMBER INDEX

SOURCE: NRCS Runoff Curve Numbers Table 2-2a, 2-2b and 2-2c, TR-55 SCS CURVE NUMBER METHOD Hydrologic Soil Group (HSG) LU Index Land Cover Description **NRCS Curve Number Table Equivalent** LU Symbol В С D Α Cultivated Row Crops-Straight Row (SR)-Good Condition SR-G 67 78 85 89 1 Brush-brush weed grass mixture with brush the 2 Deciduous Shrubland BR-F 35 56 70 77 major element-Fair Condition Brush-brush weed grass mixture with brush the 3 Evergreen Shrubland BR-G 30 48 65 73 major element-Good Condition Residential Districts - 1 Acre (20% average 68 79 84 4 High Intensity Developed R1 51 impervious) Residential Districts - 2 Acre (12% average 5 Low Intensity Developed R2 46 65 77 82 impervious) Managed Herbaceous Cover Row Crops-Straight Row (SR)-Good Condition SR-G 67 78 85 89 6 7 Mixed Hardwoods/Conifers Woods-Good Condition WO-G 30 55 70 77 Mixed Upland Hardwoods Woods-Good Condition WO-G 30 70 77 8 55 Southern Yellow Pine WO-G 30 55 70 77 9 Woods-Good Condition Farmsteads-building, lanes, driveways and 10 Unmanaged Herbaceous Upland FA 59 74 82 86 surrounding lots WATER 11 Water Bodies Impervious Areas 98 98 98 98

SOILS INDEX

Source: NRCS Web Soil Survey

Soil	CS Web Soil Survey	HSG for	HSG for
Symbol	Soil Description	SCS CN	Rational C
BaB	Badin channery silt loam, 2 to 8 percent slopes	В	
BaC	Badin channery silt loam, 8 to 15 percent slopes	В	
BaD	Badin channery silt loam, 8 to 15 percent slopes (CABARRUS); Badin channery silt loam, 15 to 30 percent slopes (ROWAN)	В	
BaF	Badin channery silt loam, 15 to 45 percent slopes	В	
CeB2	Cecil sandy clay loam, 2 to 8 percent slopes, moderately eroded	В	
ChA	Chewacla sandy loam, 0 to 2 percent slopes, frequently flooded (CABARRUS); Chewacla loam, 0 to 2 percent slopes, frequently flooded (ROWAN)	С	
CmB	Cid-Lignum complex, 1 to 6 percent slopes	С	
EnB	Enon sandy loam, 2 to 8 percent slopes (CABARRUS); Enon fine sandy loam, 2 to 8 percent slopes (ROWAN)	С	
EnC	Enon fine sandy loam, 8 to 15 percent slopes	С	
GeB2	Georgeville silty clay loam, 2 to 8 percent slopes, moderately eroded	В	
GoC	Goldston very channery silt loam, 4 to 15 percent slopes	С	
GoF	Goldston very channery silt loam, 15 to 45 percent slopes	С	
HeB	Herndon silt loam, 2 to 8 percent slopes (CABARRUS); Helena sandy loam, 1 to 6 percent slopes (ROWAN)	С	
KcB	Kirksey-Cid complex, 2 to 6 percent slopes	С	
KkB	Kirksey silt loam, 1 to 6 percent slopes	С	
LdB2	Lloyd clay loam, 2 to 8 percent slopes, moderately eroded	В	
MeB2	Mecklenburg clay loam, 2 to 8 percent slopes, moderately eroded	С	
OkA	Oakboro silt loam, 0 to 2 percent slopes, frequently flooded	С	
PaD	Pacolet sandy loam, 15 to 25 percent slopes	В	
PcE3	Pacolet-Udorthents complex, 12 to 25 percent slopes, gullied	В	
PxB	Poindexter-Rowan complex, 2 to 8 percent slopes	В	
SeB	Sedgefield fine sandy loam, 1 to 6 percent slopes	С	
TaB	Tarrus silt loam, 2 to 8 percent slopes (CABARRUS); Tarrus-Badin complex, 2 to 8 percent slopes (ROWAN)	В	
TaC	Tarrus-Badin complex, 8 to 15 percent slopes	В	
TaD	Tarrus silt loam, 8 to 15 percent slopes	В	
TbB2	Tarrus silty clay loam, 2 to 8 percent slopes, moderately eroded	В	
TbD2	Tarrus silty clay loam, 8 to 15 percent slopes, moderately eroded	В	
Ud	Udorthents, loamy	С	
UwB2	Uwharrie silty clay loam, 2 to 8 percent slopes, moderately eroded	В	
VaB	Vance sandy loam, 2 to 8 percent slopes	С	
VaC	Vance sandy loam, 8 to 15 percent slopes	С	
VnB2	Vance sandy clay loam, 2 to 8 percent slopes, moderately eroded	С	
VnC2	Vance sandy clay loam, 8 to 15 percent slopes, moderately eroded	С	
W	Water	D	
WtB	Wynott-Enon complex, 2 to 8 percent slopes	С	

	EXISTING CONDITIONS										
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN	
84	SUB-1	BR-F	BaC	В	29921.8345	0.687	(Sq.Miles)	56	38.4670049	56	
97	SUB-1	BR-F	BaC	B	4255.00148	0.098		56	5.47015801	56	
101	SUB-1	BR-F	BaC	В	9842.59216	0.226		56	12.6534702	56	
81	SUB-1	BR-F	CmB	С	17485.8932	0.401		70	28.099461	70	
83	SUB-1	BR-F	CmB	С	13067.1532	0.300		70	20.9986392	70	
82	SUB-1	BR-F	TbB2	В	44440.5156	1.020		56	57.1319759	56	
87	SUB-1	BR-F	TbB2	В	8742.94191	0.201		56	11.2397784	56	
95	SUB-1	BR-F	TbB2	В	43714.747	1.004		56	56.1989401	56	
96	SUB-1	BR-F	TbB2	В	48202.7155	1.107		56	61.9685965	56	
100	SUB-1	BR-F	TbB2	B	42615.1435	0.978		56	54.7853084	56	
47 51	SUB-1 SUB-1	R1 SR-G	TbB2 BaC	B	17109.6894 247198.68	0.393 5.675		68 78	26.7093406 442.642264	68 78	
44	SUB-1	SR-G	CeB2	B	60140.1378	1.381		78	107.688952	78	
25	SUB-1	SR-G	CeB2	C	513221.195	11.782		85	107.000952	85	
36	SUB-1	SR-G	CmB	C	85790.2905	1.969		85	167.405296	85	
38	SUB-1	SR-G	CmB	C	303112.564	6.959		85	591.473094	85	
50	SUB-1	SR-G	CmB	С	153368.91	3.521		85	299.273584	85	
55	SUB-1	SR-G	CmB	С	43900.2706	1.008		85	85.6639807	85	
57	SUB-1	SR-G	CmB	С	84282.0154	1.935		85	164.462151	85	
30	SUB-1	SR-G	EnB	С	1146299.92	26.315		85	2236.81114	85	
31	SUB-1	SR-G	EnC	С	372848.773	8.559		85	727.551554	85	
27	SUB-1	SR-G	HeB	С	4496.77854	0.103		85	8.77470561	85	
53	SUB-1	SR-G	LdB2	В	130718.366	3.001		78	234.0687	78	
42	SUB-1	SR-G	OkA ToP	C	66548.2149	1.528		85	129.857628	85	
35 33	SUB-1 SUB-1	SR-G SR-G	TaB TaC	B	3915.63805 51823.8277	0.090		78 78	7.01147309 92.7974876	78 78	
33	SUB-1 SUB-1	SR-G	TaC	B	366193.267	8.407		78	655.717971	78	
48	SUB-1	SR-G	TaC	В	8152.72659	0.187		78	14.5985462	78	
29	SUB-1	SR-G	TbB2	B	593776.166	13.631		78	1063.23556	78	
32	SUB-1	SR-G	TbB2	B	91944.0322	2.111		78	164.638074	78	
34	SUB-1	SR-G	TbB2	В	55714.8713	1.279		78	99.764921	78	
39	SUB-1	SR-G	TbB2	В	373188.787	8.567		78	668.244385	78	
46	SUB-1	SR-G	TbB2	В	152853.736	3.509		78	273.705038	78	
49	SUB-1	SR-G	TbB2	В	2178689.88	50.016		78	3901.23532	78	
54	SUB-1	SR-G	TbB2	В	20736.8871	0.476		78	37.132167	78	
56	SUB-1	SR-G	TbB2	В	71100.4834	1.632	_	78	127.314915	78	
52 45	SUB-1 SUB-1	SR-G SR-G	UwB2 VaC	B C	237387.406	5.450 0.026		78	425.073868	78 85	
45 26	SUB-1 SUB-1	SR-G	VaC VnB2	C	1123.32039 655727.518	15.053		85 85	2.19197046 1279.54176	85	
41	SUB-1	SR-G	VnB2 VnB2	c	711657.865	16.337		85	1388.68041	85	
40	SUB-1	SR-G	VnC2	C	748446.575	17.182		85	1460.46738	85	
43	SUB-1	SR-G	W	D	116908.653	2.684		89	238.862951	89	
28	SUB-1	SR-G	WtB	С	232523.478	5.338		85	453.730386	85	
85	SUB-1	WATER	BaC	В	36003.4029	0.827		98	80.9993913	98	
86	SUB-1	WATER	W	D	33940.2072	0.779		98	76.3576746	98	
19	SUB-1	WO-G	BaC	В	465766.346	10.693		55	588.08882	55	
107	SUB-1	WO-G	BaC	В	150211.783	3.448		55	189.661343	55	
21	SUB-1	WO-G	CeB2	В	22433.8757	0.515		55	28.3256006	55	
0	SUB-1 SUB-1	WO-G WO-G	CmB CmB	C C	226215.265 17953.7791	5.193 0.412		70 70	363.523153 28.8513438	70 70	
17	SUB-1	WO-G	CmB	C	139754.4	3.208		70	224.58237	70	
58	SUB-1	WO-G	CmB	c	8736.42084	0.201		70	14.0392438	70	
62	SUB-1	WO-G	CmB	C	836160.347	19.196		70	1343.69202	70	
74	SUB-1	WO-G	CmB	C	257569.639	5.913		70	413.908969	70	
80	SUB-1	WO-G	CmB	С	26988.5045	0.620		70	43.3699568	70	
5	SUB-1	WO-G	EnB	С	414584.166	9.518		70	666.227998	70	
65	SUB-1	WO-G	EnB	С	8742.94191	0.201		70	14.049723	70	
66	SUB-1	WO-G	EnB	С	71355.7073	1.638		70	114.667115	70	
70	SUB-1	WO-G	EnB EnO	С	8742.96061	0.201		70	14.0497531	70	
6	SUB-1 SUB-1	WO-G WO-G	EnC EnC	C C	75463.9959 137.207843	1.732 0.003		70 70	121.269048 0.22049011	70	
67 2	SUB-1 SUB-1	WO-G WO-G	HeB	C	137.207843 49374.9096	1.133		70	0.22049011 79.3444369	70 70	
16	SUB-1	WO-G	OkA	C	848849.681	19.487		70	1364.08351	70	
98	SUB-1	WO-G	OkA	C	7.4768979	0.000		70	0.01201522	70	
106	SUB-1	WO-G	OkA	c	168934.285	3.878		70	271.473828	70	
10	SUB-1	WO-G	TaB	B	148997.755	3.421		55	188.128478	55	
8	SUB-1	WO-G	TaC	В	2900408.45	66.584		55	3662.13188	55	
22	SUB-1	WO-G	TaC	В	68689.1737	1.577		55	86.7287546	55	
61	SUB-1	WO-G	TaC	В	12603.2124	0.289		55	15.9131469	55	
68	SUB-1	WO-G	TaC	В	395547.015	9.081		55	499.42805	55	
71	SUB-1	WO-G	TaC TaC	B	21903.3113	0.503		55	27.6556961	55	
76	SUB-1	WO-G	TaC	B	17485.8932	0.401		55	22.078148	55	
77 89	SUB-1 SUB-1	WO-G WO-G	TaC TaC	B	86451.1214 8821.82826	1.985 0.203		55 55	109.155456 11.138672	55 55	
89 92	SUB-1 SUB-1	WO-G WO-G	TaC	B	8821.82826 126488.079	2.904		55	11.138672	55 55	
92 102	SUB-1	WO-G	TaC	В	35677.3774	0.819		55	45.0471937	55	
102	SUB-1	WO-G	TaC	B	1188.38692	0.019		55	1.50048853	55	
4	SUB-1	WO-G	TbB2	B	25521.711	0.586		55	32.2243826	55	
7	SUB-1	WO-G	TbB2	B	169166.015	3.884		55	213.593453	55	
9	SUB-1	WO-G	TbB2	В	300407.435	6.896		55	379.302316	55	
12	SUB-1	WO-G	TbB2	В	1186455.83	27.237		55	1498.05029	55	
13	SUB-1	WO-G	TbB2	В	185221.47	4.252		55	233.865492	55	
24	SUB-1	WO-G	TbB2	В	280509.564	6.440		55	354.178743	55	
59	SUB-1	WO-G	TbB2	В	6.53042776	0.000		55	0.00824549	55	
60	SUB-1	WO-G	TbB2	В	6143.53123	0.141		55	7.75698387	55	

				IG COND						
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
63	SUB-1	WO-G	TbB2	В	356814.981	8.191	(-4	55	450.523966	55
69	SUB-1	WO-G	TbB2	В	171195.512	3.930		55	216.155949	55
72	SUB-1	WO-G	TbB2	В	104958.75	2.410		55	132.523675	55
73	SUB-1 SUB-1	WO-G WO-G	TbB2 TbB2	B	66035.029	1.516 2.230		55	83.3775619	55
78 79	SUB-1 SUB-1	WO-G	TbB2 TbB2	В	97150.8458 16726.2518	0.384	-	55 55	122.665209 21.1190048	55 55
88	SUB-1	WO-G	TbB2	B	8742.95126	0.384		55	11.0390799	55
94	SUB-1	WO-G	TbB2	B	33703.1477	0.201		55	42.5544794	55
99	SUB-1	WO-G	TbB2	B	177.997336	0.004		55	0.22474411	55
103	SUB-1	WO-G	TbB2	В	97849.2698	2.246		55	123.547058	55
105	SUB-1	WO-G	TbB2	В	132564.003	3.043		55	167.378791	55
108	SUB-1	WO-G	TbB2	В	27950.0604	0.642		55	35.2904804	55
23	SUB-1	WO-G	VaC	С	35804.9865	0.822		70	57.5378572	70
93	SUB-1	WO-G	VaC	С	163.424489	0.004		70	0.2626197	70
1	SUB-1	WO-G	VnB2	С	9237.39354	0.212		70	14.8442963	70
15 75	SUB-1 SUB-1	WO-G WO-G	VnB2 VnB2	C C	521852.072 101979.437	11.980 2.341		70 70	838.605258 163.878802	70 70
91	SUB-1	WO-G	VnB2 VnB2	c	391839.842	8.995		70	629.67835	70
14	SUB-1	WO-G	VnC2	c	460182.487	10.564		70	739.503537	70
64	SUB-1	WO-G	VnC2	C	21034.0477	0.483		70	33.8012704	70
90	SUB-1	WO-G	VnC2	С	7275.53918	0.167		70	11.6916378	70
18	SUB-1	WO-G	W	D	3206.13191	0.074		77	5.66740489	77
20	SUB-1	WO-G	W	D	68591.2582	1.575		77	121.247174	77
3	SUB-1	WO-G	WtB	С	9949.33984	0.228		70	15.988379	70
	SUB-1 Total	DE -		-	445055 57	522.355	0.816		36552.3024	70
728	SUB-10	BR-F	BaB	B	115896.567	2.661		56	148.994668	56
908 647	SUB-10 SUB-10	BR-F BR-F	BaB BaC	B	199164.931 1695.78085	4.572 0.039		56 56	256.043071 2.1800672	56 56
666	SUB-10 SUB-10	BR-F BR-F	BaC	В	7881.7376	0.039		56	10.1326287	56
671	SUB-10	BR-F	BaC	B	3155.87538	0.181		56	4.05714006	56
673	SUB-10	BR-F	BaC	B	49565.123	1.138		56	63.7200847	56
676	SUB-10	BR-F	BaC	В	3494.37363	0.080		56	4.4923077	56
713	SUB-10	BR-F	BaC	В	9675.94615	0.222		56	12.4392329	56
646	SUB-10	BR-F	BaD	В	39137.4908	0.898		56	50.3144969	56
651	SUB-10	BR-F	BaD	В	4180.45729	0.096		56	5.37432526	56
654	SUB-10	BR-F	BaD	В	8642.74787	0.198		56	11.1109706	56
675	SUB-10	BR-F	BaD	В	5248.58698	0.120		56	6.74749475	56
899 905	SUB-10 SUB-10	BR-F BR-F	BaD BaD	B	26228.8444 6559.26248	0.602 0.151		56 56	33.7193592 8.43247702	56 56
905	SUB-10 SUB-10	BR-F	BaD	B	235.571893	0.151		56	0.30284725	56
919	SUB-10	BR-F	BaD	B	25230.8696	0.579		56	32.4363797	56
930	SUB-10	BR-F	BaD	В	7.16654475	0.000		56	0.00921319	56
911	SUB-10	BR-F	ChA	С	14596.3257	0.335		70	23.4559871	70
929	SUB-10	BR-F	ChA	С	8735.78472	0.201		70	14.0382215	70
645	SUB-10	BR-F	EnB	С	175424.264	4.027		70	281.903087	70
650	SUB-10	BR-F	EnB	С	4075.59012	0.094		70	6.54938724	70
665	SUB-10	BR-F	EnB	С	861.223016	0.020		70	1.3839672	70
670 672	SUB-10 SUB-10	BR-F BR-F	EnB EnB	C C	7748.45965 20378.4777	0.178 0.468		70 70	12.451611 32.7477833	70 70
711	SUB-10	BR-F	EnB	c	78140.2047	1.794		70	125.569659	70
644	SUB-10	BR-F	EnC	C	76814.8191	1.763		70	123.439792	70
652	SUB-10	BR-F	EnC	С	26715.7577	0.613		70	42.9316583	70
655	SUB-10	BR-F	EnC	С	100.194046	0.002		70	0.16100972	70
707	SUB-10	BR-F	EnC	С	8742.94191	0.201		70	14.049723	70
712	SUB-10	BR-F	EnC	С	130757.621	3.002		70	210.124736	70
904	SUB-10	BR-F	GeB2	B	72127.3082	1.656	L	56	92.7256488	56
918 923	SUB-10 SUB-10	BR-F BR-F	GeB2 GeB2	B	184599.942 8742.94191	4.238 0.201		56 56	237.318566 11.2397784	56 56
925	SUB-10 SUB-10	BR-F	GeB2 GeB2	B	8742.94191	0.201		56	11.2397784	56
782	SUB-10	BR-F	PcE3	B	110428.616	2.535		56	141.965164	56
780	SUB-10	BR-F	TbB2	В	29938.6587	0.687		56	38.4886337	56
827	SUB-10	BR-F	TbB2	В	6148.73797	0.141		56	7.90471364	56
912	SUB-10	BR-F	TbB2	В	82727.1406	1.899		56	106.352614	56
781	SUB-10	BR-F	TbD2	В	121921.225	2.799		56	156.739867	56
828	SUB-10	BR-F	TbD2	B	28823.0858	0.662	L	56	37.0544721	56
909 636	SUB-10 SUB-10	BR-F R2	TbD2 EnB	B C	245339.009 11461.9237	5.632 0.263		56 77	315.403684 20.2609762	56 77
641	SUB-10 SUB-10	R2 R2	EnB	C	159.89308	0.263		77	0.28263928	77
635	SUB-10	R2	VaB	c	11959.3204	0.004		77	21.1402128	77
640	SUB-10	R2	VaB	c	537.586213	0.012		77	0.95027866	77
681	SUB-10	SR-G	BaB	B	280256.298	6.434		78	501.836347	78
685	SUB-10	SR-G	BaB	В	267648.42	6.144		78	479.260256	78
692	SUB-10	SR-G	BaB	В	344270.47	7.903		78	616.462273	78
729	SUB-10	SR-G	BaB	В	4616.0539	0.106		78	8.26566126	78
731	SUB-10	SR-G	BaB	В	104531.859	2.400		78	187.17826	78
734	SUB-10	SR-G	BaB	B	817974.556	18.778		78	1464.69273	78
838 840	SUB-10 SUB-10	SR-G SR-G	BaB BaB	B	357256.998 307117.536	8.201 7.050		78 78	639.716388 549.934981	78 78
840	SUB-10 SUB-10	SR-G	BaB	B	667821.353	15.331		78	1195.82336	78
881	SUB-10	SR-G	BaB	B	90597.1526	2.080	-	78	162.226306	78
680	SUB-10	SR-G	BaC	B	176574.535	4.054		78	316.180297	78
684	SUB-10	SR-G	BaC	B	335363.266	7.699		78	600.512736	78
686	SUB-10	SR-G	BaC	В	81698.2125	1.876		78	146.291565	78
691	SUB-10	SR-G	BaC	В	122151.107	2.804		78	218.727878	78
694	SUB-10	SR-G	BaC	В	68613.4154	1.575		78	122.861488	78

EXISTING CONDITIONS											
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN	
730	SUB-10	SR-G	BaC	В	28752.0853	0.660	(equilies)	78	51.4844502	78	
736	SUB-10	SR-G	BaD	В	370572.188	8.507		78	663.559015	78	
836	SUB-10	SR-G	BaD	В	217096.484	4.984		78	388.74026	78	
841	SUB-10	SR-G	BaD BaD	B	720871.457	16.549		78	1290.81666	78	
851 895	SUB-10 SUB-10	SR-G SR-G	BaD	B	222656.965 43512.2038	5.112 0.999		78 78	398.697045 77.9144145	78 78	
900	SUB-10	SR-G	BaD	B	8742.96061	0.201		78	15.6554391	78	
931	SUB-10	SR-G	BaD	В	1908.3297	0.044		78	3.4171193	78	
933	SUB-10	SR-G	BaD	В	7428.39314	0.171		78	13.3015304	78	
937	SUB-10	SR-G	BaD	В	81989.0601	1.882		78	146.812367	78	
747	SUB-10	SR-G	BaF	В	17463.7567	0.401		78	31.2711897	78	
830 860	SUB-10 SUB-10	SR-G SR-G	BaF BaF	B	13273.1696 53792.4016	0.305		78 78	23.7673835 96.3224821	78 78	
839	SUB-10	SR-G	ChA	C	166983.406	3.833		85	325.839979	85	
932	SUB-10	SR-G	ChA	C	34378.0335	0.789		85	67.0829395	85	
936	SUB-10	SR-G	ChA	С	170.921464	0.004		85	0.33352444	85	
605	SUB-10	SR-G	EnB	С	3112.90924	0.071		85	6.07431785	85	
606	SUB-10	SR-G	EnB	С	86.5850581	0.002		85	0.16895615	85	
607 609	SUB-10 SUB-10	SR-G SR-G	EnB EnB	C C	1323063.3 130255.739	30.373 2.990		85 85	2581.73509 254.172126	85 85	
630	SUB-10	SR-G	EnB	c	730187.981	16.763		85	1424.83881	85	
631	SUB-10	SR-G	EnB	C	11899.936	0.273		85	23.2207199	85	
648	SUB-10	SR-G	EnB	С	7184.90242	0.165		85	14.0201264	85	
653	SUB-10	SR-G	EnB	С	1201.85677	0.028		85	2.34522097	85	
678	SUB-10	SR-G	EnB	С	646991.872	14.853		85	1262.49562	85	
679	SUB-10	SR-G	EnB EnB	C	119198.526	2.736		85	232.595838	85	
689 829	SUB-10 SUB-10	SR-G SR-G	EnB EnB	C C	327200.137 57975.7291	7.511 1.331		85 85	638.475932 113.129866	85 85	
832	SUB-10	SR-G	EnB	c	307850.675	7.067		85	600.718718	85	
834	SUB-10	SR-G	EnB	C	911689.991	20.930		85	1779.0094	85	
604	SUB-10	SR-G	EnC	С	9821.29942	0.225		85	19.1646109	85	
610	SUB-10	SR-G	EnC	С	219571.762	5.041		85	428.457294	85	
629	SUB-10	SR-G	EnC	С	54388.0729	1.249		85	106.12916	85	
634 682	SUB-10 SUB-10	SR-G SR-G	EnC EnC	C C	240508.683 118698.221	5.521 2.725		85 85	469.312168 231.619578	85 85	
690	SUB-10	SR-G	EnC	c	74801.5569	1.717		85	145.962634	85	
693	SUB-10	SR-G	EnC	C	94631.5633	2.172		85	184.65755	85	
833	SUB-10	SR-G	GeB2	В	595275.148	13.666		78	1065.91969	78	
934	SUB-10	SR-G	GeB2	В	41671.7367	0.957		78	74.6188122	78	
940	SUB-10	SR-G	GeB2	В	7240.21934	0.166		78	12.9645801	78	
746 845	SUB-10 SUB-10	SR-G SR-G	KkB KkB	C C	218999.751 445368.808	5.028 10.224		85 85	427.341112 869.062183	85 85	
883	SUB-10	SR-G	KkB	C	796.901757	0.018		85	1.5550195	85	
896	SUB-10	SR-G	KkB	C	26431.4063	0.607		85	51.5764356	85	
608	SUB-10	SR-G	MeB2	С	50536.6367	1.160		85	98.6137309	85	
632	SUB-10	SR-G	MeB2	С	467178.061	10.725		85	911.619266	85	
649	SUB-10	SR-G	MeB2	С	9875.92299	0.227		85	19.2711996	85	
612 683	SUB-10 SUB-10	SR-G SR-G	TaB TaB	B	128434.037 6823.00383	2.948 0.157		78 78	229.978303 12.2175	78 78	
687	SUB-10	SR-G	TaB	B	175328.572	4.025		78	313.949234	78	
732	SUB-10	SR-G	TaB	B	29924.9398	0.687		78	53.5846029	78	
741	SUB-10	SR-G	TaB	В	90010.368	2.066		78	161.17559	78	
743	SUB-10	SR-G	TaB	В	9763.05677	0.224		78	17.4820576	78	
745	SUB-10	SR-G	TaB	В	454432.43	10.432		78	813.721982	78	
789 818	SUB-10 SUB-10	SR-G SR-G	TaB TaB	B	6604.2808 17485.8932	0.152 0.401		78 78	11.8258472 31.310828	78 78	
835	SUB-10	SR-G	TaB	B	166715.638	3.827		78	298.526625	78	
837	SUB-10	SR-G	TaB	B	525028.586	12.053		78	940.133832	78	
844	SUB-10	SR-G	TaB	В	392519.474	9.011		78	702.858562	78	
846	SUB-10	SR-G	TaB	В	334474.577	7.678		78	598.921419	78	
847	SUB-10	SR-G	TaB TaB	В	38766.7055	0.890		78	69.4169657	78	
859 935	SUB-10 SUB-10	SR-G SR-G	TaB TaB	B	71814.3971 1299.93775	1.649 0.030		78 78	128.593273 2.32771222	78 78	
935 613	SUB-10 SUB-10	SR-G SR-G	TaB	B	30372.8834	0.030		78	54.3867059	78	
614	SUB-10	SR-G	TaC	B	34889.4737	0.801		78	62.4742641	78	
688	SUB-10	SR-G	TaC	В	46057.1971	1.057		78	82.471565	78	
733	SUB-10	SR-G	TaC	В	53203.3992	1.221		78	95.2677947	78	
742	SUB-10	SR-G	TaC TaD	В	13700.3583	0.315		78	24.532322	78	
735 848	SUB-10 SUB-10	SR-G SR-G	TaD TaD	B	171962.781 381520.922	3.948 8.759		78 78	307.922335 683.164186	78 78	
848	SUB-10 SUB-10	SR-G	TaD	B	14280.4122	0.328		78	25.5709861	78	
868	SUB-10	SR-G	TaD	B	8742.94191	0.328		78	15.6554056	78	
611	SUB-10	SR-G	TbB2	В	141902.141	3.258		78	254.094743	78	
737	SUB-10	SR-G	TbB2	В	525949.477	12.074		78	941.78281	78	
740	SUB-10	SR-G	TbB2	В	504.423106	0.012		78	0.90323697	78	
842	SUB-10	SR-G	TbB2	B	537685.225	12.344		78	962.797236	78	
852 885	SUB-10 SUB-10	SR-G SR-G	TbB2 TbB2	B	767226.711 663359.034	17.613 15.229		78 78	1373.82193 1187.83298	78 78	
915	SUB-10 SUB-10	SR-G	TbB2 TbB2	B	8695.062	0.200		78	15.5696702	78	
917	SUB-10	SR-G	TbB2	B	6687.19802	0.154		78	11.9743215	78	
738	SUB-10	SR-G	TbD2	В	23277.4805	0.534		78	41.6814389	78	
744	SUB-10	SR-G	TbD2	В	74971.9377	1.721		78	134.247271	78	
831	SUB-10	SR-G	TbD2	В	273106.899	6.270		78	489.034391	78	
843 850	SUB-10 SUB-10	SR-G SR-G	TbD2 TbD2	B	88447.4949 981464.626	2.030 22.531		78 78	158.377057 1757.44354	78 78	
000	30D-10	Ori-G	10DZ	D	301404.020	22.001		10	1757.44554	10	

				IG COND						
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
882	SUB-10	SR-G	TbD2	В	110584.235	2.539		78	198.015848	78
884 914	SUB-10 SUB-10	SR-G SR-G	TbD2 TbD2	B	70158.4714 47.8892668	1.611 0.001		78 78	125.628117 0.08575213	78 78
914	SUB-10 SUB-10	SR-G	TbD2 TbD2	В	2055.7439	0.001		78	3.68108411	78
603	SUB-10	SR-G	VaB	C	169084.972	3.882		85	329.940831	85
628	SUB-10	SR-G	VaB	C	58058.5267	1.333		85	113.291432	85
633	SUB-10	SR-G	W	D	186.696069	0.004		89	0.38144973	89
663	SUB-10	WO-G	BaB	В	121923.705	2.799		55	153.944072	55
717	SUB-10	WO-G	BaB	В	15038.0366	0.345		55	18.98742	55
794	SUB-10	WO-G	BaB	В	406097.004	9.323		55	512.748742	55
801	SUB-10	WO-G	BaB	В	64278.8416	1.476		55	81.1601535	55
814	SUB-10	WO-G	BaB	В	28628.9983	0.657		55	36.1477251	55
819	SUB-10	WO-G	BaB	В	8742.95126	0.201		55	11.0390799	55
853 856	SUB-10 SUB-10	WO-G WO-G	BaB BaB	B	43655.5228 26286.4009	1.002 0.603		55 55	55.1206097 33.1899001	55 55
867	SUB-10	WO-G	BaB	B	12954.0672	0.003		55	16.3561454	55
926	SUB-10	WO-G	BaB	B	65779.6308	1.510		55	83.0550894	55
626	SUB-10	WO-G	BaC	В	48.5050034	0.001		55	0.06124369	55
662	SUB-10	WO-G	BaC	В	951901.953	21.853		55	1201.89641	55
677	SUB-10	WO-G	BaC	В	8742.95126	0.201		55	11.0390799	55
699	SUB-10	WO-G	BaC	В	62082.244	1.425		55	78.3866717	55
703	SUB-10	WO-G	BaC	В	185142.162	4.250		55	233.765356	55
715	SUB-10	WO-G	BaC	В	47763.1634	1.096		55	60.3070245	55
716	SUB-10	WO-G	BaC	В	202840.549	4.657		55	256.111804	55
763 767	SUB-10 SUB-10	WO-G WO-G	BaC BaC	B	1012.56461 50710.3058	0.023		55 55	1.27849068	55 55
624	SUB-10 SUB-10	WO-G WO-G	BaD	B	243135.488	1.164 5.582		55	64.0281638 306.989252	55 55
660	SUB-10 SUB-10	WO-G	BaD BaD	B	230247.855	5.286		55	290.716988	55
784	SUB-10	WO-G	BaD	B	89251.6623	2.049	-	55	112.691493	55
799	SUB-10	WO-G	BaD	В	700131.667	16.073		55	884.00463	55
803	SUB-10	WO-G	BaD	В	743963.398	17.079		55	939.347724	55
816	SUB-10	WO-G	BaD	В	248220.595	5.698		55	313.409843	55
854	SUB-10	WO-G	BaD	В	186693.938	4.286		55	235.724669	55
866	SUB-10	WO-G	BaD	В	4531.84471	0.104		55	5.72202615	55
886	SUB-10	WO-G	BaD	В	1943.38029	0.045		55	2.45376299	55
889	SUB-10	WO-G	BaD BaD	В	171808.814	3.944		55	216.93032	55
901 907	SUB-10 SUB-10	WO-G WO-G	BaD BaD	B	8742.94191 3668.45312	0.201 0.084		55 55	11.0390681 4.63188525	55 55
907	SUB-10	WO-G	BaD	B	460797.077	10.578		55	581.814491	55
938	SUB-10	WO-G	BaD	B	6054.88448	0.139		55	7.64505616	55
788	SUB-10	WO-G	BaF	В	82492.2946	1.894		55	104.156938	55
793	SUB-10	WO-G	BaF	В	395081.859	9.070		55	498.840731	55
811	SUB-10	WO-G	BaF	В	788284.677	18.097		55	995.308936	55
862	SUB-10	WO-G	BaF	В	99632.4777	2.287		55	125.798583	55
802	SUB-10	WO-G	ChA	С	870465.932	19.983		70	1398.82037	70
939	SUB-10	WO-G WO-G	ChA EnB	С	2514.97422	0.058		70	4.04151045	70
616 621	SUB-10 SUB-10	WO-G	EnB	C C	298455.821 261943.311	6.852 6.013		70 70	479.612201 420.937369	70 70
623	SUB-10	WO-G	EnB	c	353114.98	8.106		70	567.448315	70
638	SUB-10	WO-G	EnB	C	220254.846	5.056		70	353.944886	70
639	SUB-10	WO-G	EnB	C	2942.47802	0.068		70	4.72850003	70
642	SUB-10	WO-G	EnB	С	8742.96061	0.201		70	14.0497531	70
643	SUB-10	WO-G	EnB	С	8742.95126	0.201		70	14.049738	70
657	SUB-10	WO-G	EnB	С	162751.675	3.736		70	261.538505	70
658	SUB-10	WO-G	EnB	С	23723.8079	0.545		70	38.1236582	70
659	SUB-10	WO-G	EnB	С	24009.6506 48814.4733	0.551		70	38.5830014	70
667	SUB-10	WO-G	EnB EnB	C		1.121		70	78.4438276	70
668 674	SUB-10 SUB-10	WO-G WO-G	EnB EnB	C C	56448.156 14712.6514	1.296 0.338		70 70	90.7109945 23.64292	70 70
695	SUB-10	WO-G	EnB	C	702575.346	16.129		70	1129.02374	70
696	SUB-10	WO-G	EnB	C	175.694147	0.004		70	0.28233678	70
702	SUB-10	WO-G	EnB	С	215387.947	4.945		70	346.123882	70
710	SUB-10	WO-G	EnB	С	498.119469	0.011		70	0.80046747	70
721	SUB-10	WO-G	EnB	С	5100.38764	0.117		70	8.19621521	70
792	SUB-10	WO-G	EnB	C	94189.0857	2.162	L	70	151.359871	70
796 798	SUB-10 SUB-10	WO-G WO-G	EnB EnB	C C	2261.46804 18538.1654	0.052 0.426		70 70	3.63413138 29.7904403	70 70
798 810	SUB-10 SUB-10	WO-G	EnB	C	32.5605853	0.426		70	0.05232417	70
877	SUB-10	WO-G	EnB	c	173.677016	0.001		70	0.2790953	70
618	SUB-10	WO-G	EnC	c	109097.22	2.505		70	175.316928	70
620	SUB-10	WO-G	EnC	C	488337.294	11.211		70	784.747718	70
627	SUB-10	WO-G	EnC	С	33558.9623	0.770		70	53.9285436	70
637	SUB-10	WO-G	EnC	С	222669.341	5.112		70	357.824929	70
656	SUB-10	WO-G	EnC	С	5623.94876	0.129		70	9.03756689	70
661	SUB-10	WO-G	EnC	C	278032.12	6.383		70	446.791745	70
669	SUB-10	WO-G	EnC	C	375599.69	8.623		70	603.580769	70
698 700	SUB-10 SUB-10	WO-G WO-G	EnC EnC	C C	391577.339	8.989 7.311		70 70	629.256513 511.73756	70 70
700	SUB-10 SUB-10	WO-G	EnC	C	318446.973 32061.0709	0.736		70	51.5214637	70
709	SUB-10	WO-G	EnC	c	13437.5048	0.730		70	21.5937864	70
797	SUB-10	WO-G	GeB2	B	79301.2565	1.821		55	100.127849	55
888	SUB-10	WO-G	GeB2	В	12118.1327	0.278		55	15.3006726	55
906	SUB-10	WO-G	GeB2	В	13817.4588	0.317		55	17.4462863	55
913	SUB-10	WO-G	GeB2	В	8742.95126	0.201		55	11.0390799	55
920	SUB-10	WO-G	GeB2	В	8742.95126	0.201		55	11.0390799	55

				IG COND						
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
921	SUB-10	WO-G	GeB2	В	8742.95126	0.201		55	11.0390799	55
922	SUB-10	WO-G	GeB2	В	8742.95126	0.201		55	11.0390799	55
924	SUB-10 SUB-10	WO-G WO-G	GeB2 KkB	B	8742.95126	0.201		55 70	11.0390799	55
757 787	SUB-10 SUB-10	WO-G WO-G	KkB	C	68870.9069 240479.99	5.521	-	70	110.674093 386.446265	70 70
809	SUB-10	WO-G	KkB	c	1491193.92	34.233		70	2396.31713	70
825	SUB-10	WO-G	KkB	C	52333.0929	1.201		70	84.0981749	70
855	SUB-10	WO-G	KkB	C	31881.5489	0.732		70	51.2329757	70
887	SUB-10	WO-G	KkB	С	6799.58033	0.156		70	10.926782	70
890	SUB-10	WO-G	KkB	С	5.6083755	0.000		70	0.00901254	70
894	SUB-10	WO-G	KkB	С	8742.94191	0.201		70	14.049723	70
617	SUB-10	WO-G	MeB2	С	110528.713	2.537	_	70	177.617307	70
622 705	SUB-10 SUB-10	WO-G WO-G	MeB2 PaD	C B	4339.04666 83835.7355	0.100		70 55	6.97275633 105.853201	70 55
703	SUB-10	WO-G	PaD	B	3745.94523	0.086		55	4.72972883	55
761	SUB-10	WO-G	PaD	B	1026.88058	0.024		55	1.29656639	55
764	SUB-10	WO-G	PaD	В	12283.0783	0.282		55	15.5089373	55
769	SUB-10	WO-G	PaD	В	15812.7202	0.363		55	19.9655558	55
765	SUB-10	WO-G	PcE3	В	54925.3397	1.261		55	69.3501765	55
772	SUB-10	WO-G	PcE3	В	72955.2783	1.675		55	92.1152504	55
776	SUB-10	WO-G	PcE3	В	140513.002	3.226		55	177.415406	55
806	SUB-10 SUB-10	WO-G WO-G	PcE3	B	2970.02206	0.068		55 55	3.75002785	55
822 704	SUB-10 SUB-10	WO-G WO-G	PcE3 TaB	В	77018.6093 5045.5745	1.768 0.116		55	97.2457188 6.37067487	55 55
704	SUB-10 SUB-10	WO-G WO-G	ТаВ	В	25780.5643	0.116		55	32.5512175	55
751	SUB-10	WO-G	TaB	B	58880.5736	1.352		55	74.3441586	55
754	SUB-10	WO-G	TaB	B	17108.8017	0.393		55	21.6020224	55
756	SUB-10	WO-G	TaB	В	1364.67903	0.031		55	1.72307959	55
768	SUB-10	WO-G	TaB	В	4344.06017	0.100		55	5.48492445	55
800	SUB-10	WO-G	TaB	В	140460.582	3.225		55	177.34922	55
808	SUB-10	WO-G	TaB	В	504666.994	11.586		55	637.2058	55
812	SUB-10	WO-G	TaB	В	306618.947	7.039		55	387.145135	55
857	SUB-10	WO-G	TaB TaB	B	99644.4536	2.288		55	125.813704	55
863 872	SUB-10 SUB-10	WO-G WO-G	TaB TaB	B	179874.239 6557.59848	4.129 0.151		55 55	227.113938 8.27979606	55 55
874	SUB-10	WO-G	ТаВ	B	3943.20961	0.091		55	4.97880002	55
876	SUB-10	WO-G	TaB	B	31421.7104	0.721		55	39.6738768	55
891	SUB-10	WO-G	TaB	В	10153.2176	0.233		55	12.8197191	55
897	SUB-10	WO-G	TaB	В	5304.14491	0.122		55	6.69715267	55
664	SUB-10	WO-G	TaC	В	11636.5192	0.267		55	14.6925747	55
701	SUB-10	WO-G	TaC	В	447914.581	10.283		55	565.548714	55
706	SUB-10	WO-G	TaC	В	23616.0433	0.542		55	29.8182365	55
718	SUB-10	WO-G	TaC	В	695.196428	0.016	-	55	0.87777327	55
720 723	SUB-10 SUB-10	WO-G WO-G	TaC TaC	B	19176.6459 5781.64422	0.440 0.133	-	55 55	24.2129368 7.30005583	55 55
725	SUB-10	WO-G	TaC	B	8742.96061	0.133		55	11.0390917	55
749	SUB-10	WO-G	TaC	B	8064.49191	0.185		55	10.1824393	55
783	SUB-10	WO-G	TaD	В	46232.6772	1.061		55	58.3745924	55
813	SUB-10	WO-G	TaD	В	861337.675	19.774		55	1087.54757	55
826	SUB-10	WO-G	TaD	В	501.974361	0.012		55	0.63380601	55
858	SUB-10	WO-G	TaD	В	44390.5738	1.019		55	56.0487043	55
864	SUB-10 SUB-10	WO-G WO-G	TaD TaD	B	35239.5192	0.809		55	44.4943424	55
865 873	SUB-10 SUB-10	WO-G WO-G	TaD	B	8742.94191 2185.36213	0.201 0.050		55 55	11.0390681 2.75929562	55 55
875	SUB-10	WO-G	TaD	B	4799.74165	0.030		55	6.06027986	55
878	SUB-10	WO-G	TaD	B	15878.0673	0.365		55	20.0480647	55
879	SUB-10	WO-G	TaD	В	8742.95126	0.201		55	11.0390799	55
880	SUB-10	WO-G	TaD	В	8742.94191	0.201		55	11.0390681	55
697	SUB-10	WO-G	TbB2	В	715440.082	16.424		55	903.333437	55
708	SUB-10	WO-G	TbB2	В	89842.1461	2.062		55	113.437053	55
719	SUB-10	WO-G	TbB2	B	10694.7715	0.246	L	55	13.5034993	55
722 724	SUB-10 SUB-10	WO-G WO-G	TbB2 TbB2	B	31160.1848 8742.95126	0.715 0.201		55 55	39.3436676 11.0390799	55 55
724	SUB-10	WO-G	TbB2 TbB2	В	7319.34264	0.201		55	9.24159425	55
748	SUB-10	WO-G	TbB2	B	45043.6038	1.034		55	56.8732372	55
750	SUB-10	WO-G	TbB2	B	32651.1188	0.750		55	41.2261602	55
752	SUB-10	WO-G	TbB2	В	18297.3248	0.420		55	23.1026828	55
753	SUB-10	WO-G	TbB2	В	188800.801	4.334		55	238.38485	55
758	SUB-10	WO-G	TbB2	В	11287.3572	0.259		55	14.2517136	55
759	SUB-10	WO-G	TbB2	В	7622.15394	0.175		55	9.62393174	55
760 762	SUB-10 SUB-10	WO-G WO-G	TbB2 TbB2	B	4003.67309 1193.10581	0.092 0.027		55 55	5.05514279 1.50644673	55
762	SUB-10 SUB-10	WO-G WO-G	TbB2 TbB2	В	92956.0497	2.134		55	1.50644673	55 55
700	SUB-10	WO-G	TbB2	B	1357.40327	0.031		55	1.71389302	55
773	SUB-10	WO-G	TbB2	B	1217.62856	0.028		55	1.53740979	55
774	SUB-10	WO-G	TbB2	B	16268.2646	0.373		55	20.5407382	55
777	SUB-10	WO-G	TbB2	В	239062.736	5.488		55	301.846889	55
779	SUB-10	WO-G	TbB2	В	43714.747	1.004		55	55.1953876	55
785	SUB-10	WO-G	TbB2	В	109318.287	2.510		55	138.02814	55
790	SUB-10	WO-G	TbB2	В	25236.1416	0.579		55	31.8638151	55
804	SUB-10	WO-G	TbB2	B	86758.043	1.992		55	109.542984	55
817	SUB-10	WO-G WO-G	TbB2	B	911447.8	20.924		55 55	1150.81793	55
820 823	SUB-10 SUB-10	WO-G WO-G	TbB2 TbB2	B	21592.8475 41373.6066	0.496 0.950		55	27.2636963 52.2394023	55 55
871	SUB-10 SUB-10	WO-G	TbB2 TbB2	B	349940.686	8.034		55	441.8443	55

			EVISIIN							
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
893	SUB-10	WO-G	TbB2	В	367.070846			55	0.46347329	55
903 928	SUB-10	WO-G WO-G	TbB2 TbB2	B	31767.5284	0.729 8.075		55	40.1105156 444.11738	55 55
928	SUB-10 SUB-10	WO-G WO-G	TbB2 TbD2	В	351740.965 193192.705	4.435		55 55	243.930184	55
733	SUB-10	WO-G	TbD2 TbD2	B	95625.2477	2.195		55	120.738949	55
775	SUB-10	WO-G	TbD2	B	21556.0298	0.495		55	27.2172093	55
778	SUB-10	WO-G	TbD2	В	1043.98151	0.024		55	1.31815847	55
786	SUB-10	WO-G	TbD2	В	9259.89125	0.213		55	11.6917819	55
791	SUB-10	WO-G	TbD2	В	18478.6241	0.424		55	23.3315961	55
795	SUB-10	WO-G	TbD2	В	798019.601	18.320		55	1007.60051	55
805	SUB-10	WO-G	TbD2	В	161848.167	3.716		55	204.353747	55
807	SUB-10	WO-G	TbD2	В	64503.9642	1.481		55	81.4443993	55
815 821	SUB-10 SUB-10	WO-G WO-G	TbD2 TbD2	B	960966.544 74518.2486	22.061 1.711		55 55	1213.3416	55
821	SUB-10 SUB-10	WO-G WO-G	TbD2 TbD2	В	196038.056	4.500	-	55	94.0886978 247.522799	55 55
869	SUB-10	WO-G	TbD2 TbD2	B	12786.6751	0.294		55	16.1447918	55
870	SUB-10	WO-G	TbD2	B	432881.223	9.938		55	546.567201	55
892	SUB-10	WO-G	TbD2	В	8375.88042	0.192		55	10.5756066	55
898	SUB-10	WO-G	TbD2	В	8742.95126	0.201		55	11.0390799	55
902	SUB-10	WO-G	TbD2	В	3204.28602	0.074		55	4.04581568	55
615	SUB-10	WO-G	VaB	С	3296.26288	0.076		70	5.29702483	70
619	SUB-10	WO-G	VaB	С	96300.8221	2.211		70	154.753387	70
625	SUB-10	WO-G	W	D	33759.6152		1 7 1 0	77	59.6760874	77
1058	SUB-10 Total SUB-10A	SR-G	BaB	В	253237.713	1094.511 5.814	1.710	78	75336.3224 453.45596	69 78
1058	SUB-10A SUB-10A	SR-G SR-G	BaB BaD	B	253237.713 216223.019			78 78	453.45596	78 78
1057	SUB-10A	SR-G	Bab	B	311450.776		-	78	557.694228	78
1063	SUB-10A	SR-G	ChA	C	507886.511	11.659		85	991.054947	85
1062	SUB-10A	SR-G	TaB	В	568662.907	13.055		78	1018.26691	78
1061	SUB-10A	SR-G	TaD	В	203983.32	4.683		78	365.259389	78
1060	SUB-10A	SR-G	TbB2	В	406340.808			78	727.607507	78
1065	SUB-10A	SR-G	TbB2	В	1106431.16	25.400		78	1981.21283	78
1064	SUB-10A	SR-G	TbD2	B	1204616.47	27.654		78	2157.02674	78
1066	SUB-10A	WO-G WO-G	BaD BaD	B	13595.4158 346017.31	0.312 7.943		55 55	17.165929	55
1068 1072	SUB-10A SUB-10A	WO-G	BaD	B	722.183064	0.017	-	55	436.890543 0.9118473	55 55
1072	SUB-10A	WO-G	BaF	B	30807.0271	0.707		55	38.8977615	55
1055	SUB-10A	WO-G	ChA	C	1246.24475	0.029		70	2.00268899	70
1069	SUB-10A	WO-G	ChA	С	28502.9494	0.654		70	45.8036378	70
1076	SUB-10A	WO-G	ChA	С	66881.4454	1.535		70	107.47707	70
1078	SUB-10A	WO-G	ChA	С	173.083213			70	0.27814107	70
1075	SUB-10A	WO-G	TaB	В	168581.166	3.870		55	212.855008	55
1074	SUB-10A	WO-G	TaD	В	182563.019			55	230.508863	55
1056 1067	SUB-10A SUB-10A	WO-G WO-G	TbB2 TbB2	B	1739.28255 26096.8038	0.040		55 55	2.19606382 32.9505099	55
1067	SUB-10A SUB-10A	WO-G	TbB2 TbB2	В	88073.2785	2.022		55	111.203635	55 55
1071	SUB-10A	WO-G	TbD2	B	782.878639	0.018		55	0.98848313	55
1077	SUB-10A	WO-G	TbD2	В	52.9553931	0.001		55	0.06686287	55
	SUB-10A Total					131.650	0.206		9878.95176	75
941	SUB-11	SR-G	BaB	В	305610.132	7.016		78	547.235773	78
943	SUB-11	SR-G	BaD	B	108069.447	2.481		78	193.512784	78
942 946	SUB-11 SUB-11	SR-G SR-G	BaF ChA	B	15672.3452 220635.928	0.360 5.065	-	78 85	28.0634281 430.533836	78 85
944	SUB-11	SR-G	TaB	В	44987.726	1.033		78	80.5565342	78
945	SUB-11	SR-G	TaB	B	194211.141	4.458		78	347.760996	78
949	SUB-11	WO-G	BaB	В	103621.801	2.379		55	130.835607	55
952	SUB-11	WO-G	BaB	В	8394.18813	0.193		55	10.5987224	55
948	SUB-11	WO-G	BaD	В	1477.80579			55	1.86591641	55
951	SUB-11	WO-G	BaD	В	100158.187	2.299		55	126.462357	55
954	SUB-11	WO-G WO-G	BaD	B	107959.284	2.478		55 55	136.312228	55 55
947 950	SUB-11 SUB-11	WO-G WO-G	BaF BaF	B	5940.00563 20638.962	0.136		55 55	7.50000711 26.0592955	55 55
953	SUB-11	WO-G	BaF	B	17054.7232			55	21.5337414	55
955	SUB-11	WO-G	TaB	B	23964.9179			55	30.2587347	55
	SUB-11 Total					29.348	0.046		2119.08996	72
1054	SUB-11A	SR-G	ChA	С	110976.073	2.548		85	216.551107	85
1053	SUB-11A	SR-G	TaB	В	252239.809	5.791		78	451.669079	78
	SUB-11A Total		D C	-	47702 277	8.338	0.013		668.220186	80
141	SUB-2 SUB-2	FA	BaC	B	17766.9552	0.408		74	30.1826144	74
157 139	SUB-2 SUB-2	FA FA	BaC CmB	B C	17917.5907 35831.6496	0.411 0.823		74 82	30.438515 67.4516821	74 82
139	SUB-2	FA	TaC	В	25890.1724			74	43.9823866	74
120	SUB-2	FA	TbB2	B	101151.257	2.322		74	171.836387	74
140	SUB-2	FA	TbB2	В	158556.28	3.640		74	269.356398	74
149	SUB-2	FA	TbB2	В	24.7981233	0.001		74	0.04212721	74
158	SUB-2	FA	TbB2	В	112845.045			74	191.701867	74
160	SUB-2	FA	TbB2	В	1460.83525			74	2.48167604	74
159	SUB-2	FA	Ud	C	6771.45296	0.155		82	12.7469959	82
113 154	SUB-2 SUB-2	SR-G SR-G	BaC BaC	B	159626.962 11147.8466	3.665 0.256		78 78	285.833403 19.9617088	78 78
154 161	SUB-2 SUB-2	SR-G SR-G	BaC BaC	B	22030.2827	0.256		78	19.9617088 39.4481646	78 78
161	SUB-2 SUB-2	SR-G	BaC BaC	В	69881.154	1.604		78	125.131543	78
110	SUB-2	SR-G	CmB	C	615344.371	14.126		85	1200.74085	85
116	SUB-2	SR-G	CmB	C	3387.22578	0.078		85	6.60960034	85
117	SUB-2	SR-G	LdB2	В	184280.474			78	329.978809	78

			EXISTIN	IG COND	THONS					
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
114	SUB-2	SR-G	TaC	В	191814.039	4.403		78	343.468666	78
111	SUB-2	SR-G	TbB2	В	416714.36	9.566		78	746.182739	78
112	SUB-2	SR-G	TbB2	В	707317.586	16.238		78	1266.54664	78
118	SUB-2	SR-G	TbB2	В	400756.018	9.200		78	717.607195	78
155	SUB-2	SR-G	TbB2	В	174457.9	4.005		78	312.390179	78
162 167	SUB-2 SUB-2	SR-G SR-G	TbB2 TbB2	B	401160.098 415.915412	9.209 0.010		78 78	718.330754 0.74475211	78 78
167	SUB-2 SUB-2	SR-G	TbB2 TbB2	B	6224.98464	0.010		78	11.1466667	78
119	SUB-2	SR-G	Ud	C	8005.1771	0.143		85	15.6207542	85
156	SUB-2	SR-G	Ud	C	50453.9565	1.158		85	98.4523944	85
163	SUB-2	SR-G	Ud	C	5762.56281	0.132		85	11.2446703	85
115	SUB-2	SR-G	UwB2	В	72979.8171	1.675		78	130.680113	78
126	SUB-2	WO-G	BaC	В	3046116.79	69.929		55	3846.10706	55
137	SUB-2	WO-G	BaC	В	19024.128	0.437		55	24.0203636	55
138	SUB-2	WO-G	BaC	В	282327.604	6.481		55	356.474247	55
142 146	SUB-2	WO-G WO-G	BaC BaC	B	110426.771 196461.526	2.535 4.510		55 55	139.427742	55
146	SUB-2 SUB-2	WO-G WO-G	BaC BaC	B	7070.7247	0.162		55	248.057482 8.9276827	55 55
136	SUB-2	WO-G	BaD	B	309692.072	7.110		55	391.025343	55
148	SUB-2	WO-G	BaD	B	10904.4593	0.250		55	13.7682567	55
122	SUB-2	WO-G	CmB	C	238167.233	5.468		70	382.729714	70
129	SUB-2	WO-G	CmB	С	242053.981	5.557		70	388.975635	70
150	SUB-2	WO-G	CmB	С	38812.2709	0.891		70	62.3704996	70
130	SUB-2	WO-G	LdB2	В	6029.46143	0.138		55	7.61295634	55
143	SUB-2	WO-G	LdB2	В	20717.507	0.476		55	26.1584684	55
147	SUB-2	WO-G	LdB2	В	8676.10842	0.199		55	10.9546824	55
124 145	SUB-2 SUB-2	WO-G WO-G	OkA OkA	C C	15204.9027 66447.7534	0.349		70 70	24.4339575 106.780136	70 70
145	SUB-2 SUB-2	WO-G WO-G	ОкА ТаВ	B	66447.7534 520025.649	1.525		70 55	106.780136	70 55
132	SUB-2 SUB-2	WO-G	ТаВ	B	358881.71	8.239		55	453.133472	55
100	SUB-2	WO-G	TaC	B	20301.1026	0.466		55	25.6327053	55
109	SUB-2	WO-G	TbB2	В	22094.7216	0.507		55	27.8973757	55
123	SUB-2	WO-G	TbB2	В	142553.872	3.273		55	179.992263	55
125	SUB-2	WO-G	TbB2	В	26387.3857	0.606		55	33.3174062	55
131	SUB-2	WO-G	TbB2	В	312196.715	7.167		55	394.187772	55
133	SUB-2	WO-G	TbB2	В	794597.469	18.241		55	1003.27963	55
144	SUB-2	WO-G	TbB2	В	107252.246	2.462		55	135.419502	55
151	SUB-2	WO-G	TbB2	B	118560.871	2.722		55	149.698069	55
152 165	SUB-2 SUB-2	WO-G WO-G	TbB2 TbB2	B	1672.21721 73270.0195	0.038		55 55	2.11138537 92.5126509	55 55
134	SUB-2	WO-G	Ud	C	481625.49	11.057		70	773.96199	70
166	SUB-2	WO-G	Ud	C	1291.4144	0.030		70	2.07527567	70
128	SUB-2	WO-G	UwB2	В	1768.04683	0.041		55	2.23238236	55
	SUB-2 Total					265.854	0.415		17170.2144	65
424	SUB-3	SR-G	BaC	В	44008.1682	1.010		78	78.802505	78
422	SUB-3	SR-G	TbB2	В	3370.38369	0.077		78	6.03512231	78
423 425	SUB-3	SR-G SR-G	TbB2 TbB2	В	121692	2.794		78	217.905785	78
425	SUB-3 SUB-3	SR-G	TbB2 TbB2	B	2517.97598 8742.94191	0.058		78 78	4.50877241 15.6554056	78 78
417	SUB-3	WO-G	BaB	B	113569.345	2.607		55	143.395638	55
412	SUB-3	WO-G	BaC	B	1287348.95	29.553		55	1625.4406	55
416	SUB-3	WO-G	BaC	В	69627.5205	1.598		55	87.913536	55
420	SUB-3	WO-G	BaC	В	22666.7546	0.520		55	28.6196396	55
411	SUB-3	WO-G	BaD	В	68879.865	1.581		55	86.9695265	55
413	SUB-3	WO-G	BaD	В	913891.079	20.980		55	1153.90288	55
419 421	SUB-3	WO-G	BaD	B	290.156076	0.007		55 55	0.36635868	55 55
421	SUB-3	WO-G WO-G	BaD OkA	-	82248.6512	1.888			103.849307	55 70
409	SUB-3 SUB-3	WO-G	OKA	C C	224006.899 952.887042	5.142 0.022		70	359.974355 1.53126935	70
415	SUB-3	WO-G	TaB	B	55388.8368	1.272		55	69.9354	55
410	SUB-3	WO-G	TbB2	В	544213.3	12.493		55	687.138005	55
414	SUB-3	WO-G	Ud	С	277724.441	6.376		70	446.297311	70
	SUB-3 Total	6-		_		88.180	0.138		5118.24141	58
965	SUB-3A	SR-G	CeB2	В	83186.2451	1.910		78	148.956086	78
971 964	SUB-3A	SR-G	CmB OkA	C	127789.08 79292.6245	2.934		85	249.358856	85 85
964 970	SUB-3A SUB-3A	SR-G SR-G	ОкА ТаВ	C B	79292.6245 38703.2543	1.820 0.889		85 78	154.726196 69.3033479	85 78
966	SUB-3A	SR-G	TaC	B	631326.746	14.493		78	1130.47489	78
993	SUB-3A	SR-G	TaC	B	786.347221	0.018		78	1.40805976	78
968	SUB-3A	SR-G	TbB2	В	143764.464	3.300		78	257.429481	78
969	SUB-3A	SR-G	TbB2	В	393362.741	9.030		78	704.368544	78
994	SUB-3A	SR-G	TbB2	В	51575.1939	1.184		78	92.3522755	78
995	SUB-3A	SR-G	TbB2	В	30765.0814	0.706		78	55.0889888	78
967	SUB-3A	SR-G	VaC	C	43397.2613	0.996		85	84.6824428	85
963 962	SUB-3A	SR-G WO-G	VnB2 CmB	C C	382454.744 130079.834	8.780 2.986		85 70	746.295989	85 70
962 972	SUB-3A SUB-3A	WO-G WO-G	OkA	C	130079.834 342854.278	2.986		70	209.035546 550.959584	70 70
972	SUB-3A SUB-3A	WO-G WO-G	OKA	C	9401.21278	0.216		70	15.1075504	70
961	SUB-3A	WO-G	ТаВ	B	273694.249	6.283		55	345.573547	55
985	SUB-3A	WO-G	TaB	B	7851.99188	0.180		55	9.91413116	55
991	SUB-3A	WO-G	TaB	В	342.46761	0.008		55	0.4324086	55
957	SUB-3A	WO-G	TaC	В	490465.311	11.260		55	619.274383	55
973	SUB-3A	WO-G	TaC	В	307338.405	7.056		55	388.053541	55
070	SUB-3A	WO-G	TaC	В	11784.7567	0.271 0.201		55	14.8797433	55
976 979	SUB-3A	WO-G	TaC	В	8742.94191			55	11.0390681	55

	EXISTING CONDITIONS									
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area	CN	CN*A	Weighted
980	SUB-3A	WO-G	TaC	В	40853.7862	0.938	(Sq.Miles)	55	51.5830634	CN 55
984	SUB-3A	WO-G	TaC	B	890.968733	0.938		55	1.12496052	55
986	SUB-3A	WO-G	TaC	B	7775.63448	0.179		55	9.8177203	55
988	SUB-3A	WO-G	TaC	В	8664.24962	0.199		55	10.9397091	55
990	SUB-3A	WO-G	TaC	В	17143.4443	0.394		55	21.645763	55
992	SUB-3A	WO-G	TaC	В	26228.8444	0.602		55	33.1172278	55
959	SUB-3A	WO-G	TbB2	В	39676.3814	0.911		55	50.0964411	55
960	SUB-3A	WO-G	TbB2	В	79667.6054	1.829		55	100.590411	55
974	SUB-3A	WO-G	TbB2	В	1776.14386	0.041		55	2.24260589	55
975	SUB-3A	WO-G	TbB2	В	275451.533	6.323		55	347.79234	55
977	SUB-3A	WO-G	TbB2	В	73262.3964	1.682		55	92.5030257	55
978	SUB-3A	WO-G	TbB2	В	7510.34018	0.172		55	9.48275275	55
981	SUB-3A	WO-G	TbB2	В	29089.8146	0.668		55	36.7295638	55
983 987	SUB-3A SUB-3A	WO-G WO-G	TbB2 TbB2	B	1803.20164 18453.2287	0.041 0.424		55 55	2.27676975 23.2995311	55 55
989	SUB-3A	WO-G	TbB2	B	78.6922973	0.424		55	0.09935896	55
958	SUB-3A	WO-G	VaC	C	383155.901	8.796		70	615.723441	70
956	SUB-3A	WO-G	VnB2	C	238254.983	5.470		70	382.870726	70
	SUB-3A Total					111.081	0.174		7650.65007	69
223	SUB-4	R2	PxB	В	11375.4127	0.261		65	16.9743303	65
224	SUB-4	R2	PxB	В	43714.7657	1.004		65	65.2309405	65
222	SUB-4	R2	TaC	В	54897.1906	1.260		65	81.9172954	65
221	SUB-4	R2	TbB2	В	47385.7725	1.088		65	70.7087974	65
193	SUB-4	SR-G	BaC	В	274438.236	6.300		78	491.418329	78
237	SUB-4	SR-G	BaC	В	7374.69933	0.169		78	13.2053845	78
244	SUB-4	SR-G	BaC	В	17485.8932	0.401		78	31.310828	78
251 172	SUB-4 SUB-4	SR-G SR-G	BaC CeB2	B	199296.846 449934.038	4.575		78 78	356.867631 805.667011	78 78
172		SR-G SR-G	CeB2 CeB2	B		10.329		78 78		78 78
178 194	SUB-4 SUB-4	SR-G SR-G	CeB2 CmB	C B	603873.547 75.4566111	13.863 0.002		78 85	1081.31627 0.14724086	78 85
194	SUB-4	SR-G	EnB	C	173212.333	3.976		85	337.994682	85
183	SUB-4	SR-G	EnB	c	273740.549	6.284		85	534.158555	85
189	SUB-4	SR-G	EnB	c	97107.066	2.229		85	189.488076	85
234	SUB-4	SR-G	EnB	C	611.474076	0.014		85	1.19318862	85
181	SUB-4	SR-G	EnC	С	258166.212	5.927		85	503.767861	85
187	SUB-4	SR-G	HeB	С	75640.505	1.736		85	147.5997	85
177	SUB-4	SR-G	MeB2	С	275019.442	6.314		85	536.654099	85
176	SUB-4	SR-G	OkA	С	94065.7879	2.159		85	183.553535	85
255	SUB-4	SR-G	OkA	С	1899.49831	0.044		85	3.70655087	85
261	SUB-4	SR-G	OkA	С	8742.94191	0.201		85	17.0603779	85
190	SUB-4	SR-G	PxB	В	360931.451	8.286		78	646.295987	78
174 195	SUB-4	SR-G SR-G	SeB SeB	C C	449908.513	10.328		85 85	877.920652	85 85
252	SUB-4 SUB-4	SR-G SR-G	TaB	B	72468.0705 269713.547	1.664 6.192		78	141.409228 482.958142	85 78
179	SUB-4	SR-G	TaC	B	162838.789	3.738		78	291.584609	78
188	SUB-4	SR-G	TaC	B	483624.871	11.102		78	865.994949	78
219	SUB-4	SR-G	TaC	B	1880.87675	0.043		78	3.36796111	78
240	SUB-4	SR-G	TaC	В	7445.33029	0.171		78	13.3318586	78
242	SUB-4	SR-G	TaC	В	2440.00395	0.056		78	4.36915307	78
247	SUB-4	SR-G	TaC	В	3725.95663	0.086		78	6.67182317	78
253	SUB-4	SR-G	TaC	В	5008.87918	0.115		78	8.96906741	78
256	SUB-4	SR-G	TaC	В	29072.54	0.667		78	52.0582672	78
258	SUB-4	SR-G	TaC	В	6259.79452	0.144		78	11.2089985	78
186	SUB-4	SR-G	TbB2	В	483190.642	11.093		78	865.217404	78
191 218	SUB-4	SR-G SR-G	TbB2	B	240129.352 8742.95126	5.513		78 78	429.983688	78
218	SUB-4 SUB-4	SR-G SR-G	TbB2 TbB2	B		0.201		78	15.6554224 405.275903	78
220	SUB-4 SUB-4	SR-G SR-G	TbB2 TbB2	B	226331.004 8742.95126	5.196 0.201		78	405.275903	78 78
231	SUB-4	SR-G	TbB2 TbB2	B	1301.2291	0.030		78	2.33002455	78
233	SUB-4	SR-G	TbB2	B	195960.262	4.499		78	350.89303	78
235	SUB-4	SR-G	TbB2	В	30556.9976	0.701		78	54.7163869	78
236	SUB-4	SR-G	TbB2	В	1368.24259	0.031		78	2.45002116	78
238	SUB-4	SR-G	TbB2	В	96.1758388	0.002		78	0.17221569	78
239	SUB-4	SR-G	TbB2	В	96172.4639	2.208		78	172.209646	78
241	SUB-4	SR-G	TbB2	В	1297.62097	0.030		78	2.32356373	78
243	SUB-4	SR-G	TbB2	В	6302.94732	0.145		78	11.2862693	78
248	SUB-4	SR-G	TbB2	В	5017.00398	0.115		78	8.98361594	78
249	SUB-4	SR-G	TbB2 TbB2	B	17485.9119	0.401		78 78	31.3108615	78 78
250 254	SUB-4 SUB-4	SR-G SR-G	TbB2 TbB2	B	82629.4652 3734.06273	1.897 0.086		78	147.959098 6.68633822	78
254	SUB-4 SUB-4	SR-G SR-G	TbB2 TbB2	B	113121.906	2.597		78	202.559886	78
259	SUB-4	SR-G	TbB2 TbB2	B	2483.15674	0.057		78	4.44642392	78
182	SUB-4	SR-G	VaB	C	315874.848	7.251		85	616.37654	85
175	SUB-4	SR-G	VnB2	C	842508.194	19.341		85	1644.01277	85
196	SUB-4	SR-G	VnB2	C	80294.9235	1.843		85	156.682013	85
184	SUB-4	SR-G	VnC2	С	238434.816	5.474		85	465.265366	85
180	SUB-4	SR-G	W	D	46338.5803	1.064		89	94.677081	89
185	SUB-4	SR-G	W	D	87419.4791	2.007		89	178.611883	89
192	SUB-4	SR-G	WtB	С	187166.884	4.297		85	365.224635	85
211	SUB-4	WO-G	BaC	В	314292.284	7.215		55	396.833692	55
230	SUB-4	WO-G	BaC	В	143392.919	3.292		55	181.051665	55
262	SUB-4	WO-G	BaC	B	5669.16027	0.130		55	7.15803064	55
198	SUB-4	WO-G	CeB2	В	15627.8227	0.359		55	19.7320993	55
204	SUB-4	WO-G	EnB	C C	62541.9669	1.436		70 70	100.50362	70
209	SUB-4	WO-G	EnB	ι L	205708.714	4.722		70	330.569558	70

			EVISIII	IG COND						
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
215	SUB-4	WO-G	EnB	С	78733.5143	1.807	(-4	70	126.523095	70
202	SUB-4	WO-G	EnC	С	338681.262	7.775		70	544.253634	70
214	SUB-4	WO-G	EnC	С	174812.072	4.013		70	280.919308	70
207	SUB-4	WO-G	HeB	С	86504.4121	1.986		70	139.010763	70
200	SUB-4	WO-G	MeB2	С	42411.1415	0.974		70	68.1538086	70
199	SUB-4	WO-G	OkA	С	411066.047	9.437	-	70	660.574455	70
170 217	SUB-4 SUB-4	WO-G WO-G	PxB PxB	B	36966.258	0.849		55	46.6745682	55
217	SUB-4 SUB-4	WO-G WO-G	PxB PxB	B	17277.1517 5.53776102	0.397		55 55	21.8145855 0.00699212	55 55
212	SUB-4	WO-G	TaB	B	67004.9791	1.538		55	84.6022464	55
263	SUB-4	WO-G	TaB	B	11816.7329	0.271		55	14.9201173	55
200	SUB-4	WO-G	TaC	B	226466.269	5.199		55	285.942259	55
208	SUB-4	WO-G	TaC	В	486873.981	11.177		55	614.739875	55
213	SUB-4	WO-G	TaC	В	4940.82286	0.113		55	6.2384127	55
225	SUB-4	WO-G	TaC	В	135512.312	3.111		55	171.101404	55
227	SUB-4	WO-G	TaC	В	144410.262	3.315		55	182.336189	55
245	SUB-4	WO-G	TaC	В	8727.78028	0.200		55	11.0199246	55
169	SUB-4	WO-G	TbB2	В	52923.204	1.215		55	66.8222272	55
206	SUB-4	WO-G	TbB2	В	228778.83	5.252	-	55	288.862159	55
210	SUB-4	WO-G	TbB2	В	572660.119	13.146		55	723.055706	55
216 226	SUB-4 SUB-4	WO-G WO-G	TbB2 TbB2	B	132585.631 49715.4601	3.044 1.141		55 55	167.4061 62.7720456	55 55
228	SUB-4	WO-G	TbB2 TbB2	B	44423.4204	1.020		55	56.0901772	55
229	SUB-4	WO-G	TbB2	B	15.1709826	0.000		55	0.01915528	55
240	SUB-4	WO-G	TbB2	B	8742.94191	0.000		55	11.0390681	55
197	SUB-4	WO-G	VaB	C	10865.3457	0.249	-	70	17.4603811	70
203	SUB-4	WO-G	VaB	c	31893.5175	0.732		70	51.2522091	70
205	SUB-4	WO-G	W	D	2830.60664	0.065		77	5.00359759	77
171	SUB-4	WO-G	WtB	С	10930.8072	0.251		70	17.5655763	70
	SUB-4 Total					282.642	0.442		20889.0756	74
286	SUB-5	BR-F	BaB	В	57215.6013	1.313		56	73.5554103	56
285	SUB-5	BR-F	BaC	В	7866.75679	0.181		56	10.1133696	56
287	SUB-5	BR-F	BaC	В	38558.9577	0.885		56	49.5707445	56
284	SUB-5	BR-F	BaD	В	876.20382	0.020		56	1.12643283	56
281	SUB-5	SR-G	BaB	В	184687.103	4.240		78	330.706933	78
283 288	SUB-5 SUB-5	SR-G SR-G	BaB BaB	B	10274.1048 173932.069	0.236 3.993		78 78	18.3971573 311.448608	78 78
301	SUB-5	SR-G	ВаВ	B	8742.96061	0.201		78	15.6554391	78
309	SUB-5	SR-G	BaB	B	1366249.2	31.365		78	2446.45173	78
317	SUB-5	SR-G	BaB	B	179139.097	4.112		78	320.772488	78
282	SUB-5	SR-G	BaC	В	117183.845	2.690		78	209.833332	78
289	SUB-5	SR-G	BaD	В	143176.441	3.287		78	256.376546	78
308	SUB-5	SR-G	BaD	В	1292.00049	0.030		78	2.31349949	78
310	SUB-5	SR-G	BaD	В	447802.653	10.280		78	801.85048	78
313	SUB-5	SR-G	BaD	В	280114.142	6.431		78	501.581797	78
314	SUB-5	SR-G	BaD	В	415.510562	0.010	_	78	0.74402718	78
318 299	SUB-5	SR-G SR-G	BaD ChA	В	3073.35221	0.071		78 85	5.50324776	78
299	SUB-5 SUB-5	SR-G	GoC	C C	1414.34529 527.612879	0.032		85	2.75985651 1.02954763	85 85
312	SUB-5	SR-G	GoC	c	256296.528	5.884		85	500.119487	85
290	SUB-5	SR-G	GoF	c	271136.372	6.224		85	529.076942	85
311	SUB-5	SR-G	GoF	C	610300.126	14.011		85	1190.89786	85
300	SUB-5	SR-G	TaB	В	7132.74394	0.164		78	12.772131	78
268	SUB-5	WO-G	BaB	В	98204.8157	2.254		55	123.995979	55
271	SUB-5	WO-G	BaB	В	314167.01	7.212		55	396.675518	55
275	SUB-5	WO-G	BaB	В	16643.2038	0.382		55	21.0141462	55
292	SUB-5	WO-G	BaB	В	251420.588	5.772		55	317.450237	55
303	SUB-5	WO-G	BaB	B	38214.0386	0.877		55	48.2500487	55
319 321	SUB-5 SUB-5	WO-G WO-G	BaB BaB	B	896.101277 156209.309	0.021 3.586		55 55	1.13144101 197.233976	55 55
321	SUB-5 SUB-5	WO-G WO-G	BaB	B	40.2701197	0.001		55	0.05084611	55
267	SUB-5	WO-G	BaD	B	197851.142	4.542		55	249.812047	55
207	SUB-5	WO-G	BaC	B	736620.566	16.910		55	930.076472	55
280	SUB-5	WO-G	BaC	B	92838.76	2.131		55	117.220657	55
269	SUB-5	WO-G	BaD	B	731085.921	16.783		55	923.088284	55
274	SUB-5	WO-G	BaD	В	225361.439	5.174		55	284.547271	55
276	SUB-5	WO-G	BaD	В	38063.268	0.874		55	48.0596818	55
279	SUB-5	WO-G	BaD	В	64534.3627	1.482		55	81.4827812	55
293	SUB-5	WO-G	BaD	В	232127.403	5.329		55	293.090155	55
302	SUB-5	WO-G	BaD	В	5073.85477	0.116		55	6.40638228	55
307	SUB-5	WO-G	BaD	B	10509.913	0.241		55	13.2700921	55
320	SUB-5	WO-G	BaD ChA	B C	231.675155	0.005		55 70	0.29251914	55 70
278 295	SUB-5 SUB-5	WO-G WO-G	ChA	C	5155.02261 269278.005	0.118 6.182		70	8.28401246 432.724067	70
305	SUB-5	WO-G	ChA	c	1495.1219	0.034		70	2.40262931	70
297	SUB-5	WO-G	GoC	c	95199.9711	2.185		70	152.984343	70
298	SUB-5	WO-G	GoC	c	195320.515	4.484		70	313.875942	70
306	SUB-5	WO-G	GoC	c	50365.565	1.156		70	80.9363992	70
316	SUB-5	WO-G	GoC	С	169.916279	0.004		70	0.27305187	70
277	SUB-5	WO-G	GoF	С	23823.2935	0.547		70	38.2835294	70
294	SUB-5	WO-G	GoF	С	767205.888	17.613		70	1232.88366	70
304	SUB-5	WO-G	GoF	С	195614.801	4.491		70	314.348853	70
315	SUB-5	WO-G	GoF	С	17315.9956	0.398		70	27.8264392	70
270	SUB-5	WO-G	KcB	С	180988.823	4.155		70	290.845216	70
264	SUB-5	WO-G	OkA	С	281998.622	6.474		70	453.165829	70

			LAISTIN	IG COND	THONS					
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
266	SUB-5	WO-G	TaB	В	187648.893	4.308		55	236.93042	55
296	SUB-5	WO-G	TaB	В	26710.2815	0.613		55	33.7251029	55
265	SUB-5	WO-G	Ud	С	96378.1807	2.213		70	154.877701	70
273	SUB-5	WO-G	Ud	С	254053.798	5.832		70	408.259088	70
	SUB-5 Total					230.170	0.360		15828.4319	69
1009	SUB-5A	SR-G	BaC	В	1700.42869	0.039		78	3.04484476	78
1025 1030	SUB-5A SUB-5A	SR-G SR-G	ChA ChA	C C	896.633773 70142.7605	0.021		85 85	1.74962972 136.871778	85 85
1030	SUB-5A SUB-5A	SR-G	ChA	c	96942.5963	2.225		85	189.167142	85
1000	SUB-5A	SR-G	EnB	c	11330.0658	0.260		85	22.1087142	85
1001	SUB-5A	SR-G	EnB	C	104631.006	2.402		85	204.169778	85
1012	SUB-5A	SR-G	EnB	C	5560.39965	0.128		85	10.850183	85
1032	SUB-5A	SR-G	GoF	C	11873.4409	0.273		85	23.1690192	85
1022	SUB-5A	SR-G	OkA	С	6775.04543	0.156		85	13.2203595	85
1003	SUB-5A	SR-G	TaB	В	109341.928	2.510		78	195.791331	78
1007	SUB-5A	SR-G	TaB	В	27473.0916	0.631		78	49.1942412	78
1010	SUB-5A	SR-G	TaB	В	245748.043	5.642		78	440.044705	78
1020	SUB-5A	SR-G	TaB	В	315109.029	7.234		78	564.244818	78
1024	SUB-5A	SR-G	TaB	В	27592.2036	0.633		78	49.4075271	78
1026	SUB-5A	SR-G	TaB TaB	B	5429.61256	0.125		78	9.72244673	78
1029 1031	SUB-5A SUB-5A	SR-G SR-G	TaB TaB	B	263.939339 229578.419	0.006 5.270		78 78	0.47261865 411.090833	78 78
1002	SUB-5A SUB-5A	SR-G	ТаС	B	121916.453	2.799		78	218.307699	78
1002	SUB-5A	SR-G	TaC	B	3517.35884	0.081		78	6.29830095	78
1000	SUB-5A	SR-G	TaC	B	98234.5204	2.255		78	175.902034	78
1013	SUB-5A	SR-G	TaC	B	3182.54227	0.073		78	5.69876715	78
1019	SUB-5A	SR-G	TaC	B	13614.772	0.313		78	24.3790684	78
1023	SUB-5A	SR-G	TaC	В	36937.8276	0.848		78	66.1421156	78
1004	SUB-5A	SR-G	TbB2	В	29365.4674	0.674		78	52.5827929	78
1008	SUB-5A	SR-G	TbB2	В	20687.0318	0.475		78	37.0428945	78
1000	SUB-5A	WO-G	ChA	С	2950.52247	0.068		70	4.74142729	70
1027	SUB-5A	WO-G	ChA	С	37382.4615	0.858		70	60.0728261	70
1035	SUB-5A	WO-G	ChA	C	11955.893	0.274		70	19.2128676	70
1015	SUB-5A	WO-G	EnB	C	151.501629	0.003		70	0.24345992	70
1034	SUB-5A SUB-5A	WO-G WO-G	GoF OkA	C C	34365.6647	0.789 9.098		70 70	55.2248974 636.888637	70
996 997	SUB-5A SUB-5A	WO-G	TaB	В	396326.7 87087.6292	1.999		55	109.959128	70 55
999	SUB-5A	WO-G	TaB	B	344987.043	7.920		55	435.589701	55
1016	SUB-5A	WO-G	TaB	B	4288.3542	0.098		55	5.41458864	55
1018	SUB-5A	WO-G	TaB	B	5540.97009	0.127		55	6.99617436	55
1021	SUB-5A	WO-G	TaB	В	8742.95126	0.201		55	11.0390799	55
1028	SUB-5A	WO-G	TaB	В	5816.21948	0.134		55	7.34371146	55
998	SUB-5A	WO-G	TaC	В	797612.449	18.311		55	1007.08643	55
1017	SUB-5A	WO-G	TaC	В	77390.0395	1.777		55	97.7146963	55
1014	SUB-5A	WO-G	TbB2	В	58.656577	0.001		55	0.07406133	55
	SUB-5A Total					78.340	0.122		5368.27532	69
373	SUB-6	BR-F	BaC	B	2192.69416	0.050 2.919		56 56	2.81889056 163.46987	56
374 370		DD F								56
	SUB-6	BR-F	BaD		127156.206					
	SUB-6	BR-F	EnB	С	133522.729	3.065		70	214.568206	70
376	SUB-6 SUB-6	BR-F BR-F	EnB TaB	C B	133522.729 22326.123	3.065 0.513		70 56	214.568206 28.7020865	70 56
376 371	SUB-6 SUB-6 SUB-6	BR-F BR-F BR-F	EnB TaB TaC	C B B	133522.729 22326.123 1415.16326	3.065 0.513 0.032		70 56 56	214.568206 28.7020865 1.81930997	70 56 56
376 371 375	SUB-6 SUB-6 SUB-6 SUB-6 SUB-6	BR-F BR-F	EnB TaB	C B	133522.729 22326.123 1415.16326 25376.6963	3.065 0.513 0.032 0.583		70 56 56 56	214.568206 28.7020865	70 56
376 371	SUB-6 SUB-6 SUB-6	BR-F BR-F BR-F BR-F	EnB TaB TaC TaC	C B B B	133522.729 22326.123 1415.16326	3.065 0.513 0.032		70 56 56	214.568206 28.7020865 1.81930997 32.623852	70 56 56 56
376 371 375 372	SUB-6 SUB-6 SUB-6 SUB-6 SUB-6 SUB-6	BR-F BR-F BR-F BR-F BR-F	EnB TaB TaC TaC TbB2	C B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959	3.065 0.513 0.032 0.583 0.619		70 56 56 56 56	214.568206 28.7020865 1.81930997 32.623852 34.6785989	70 56 56 56 56
376 371 375 372 351 358 364	SUB-6	BR-F BR-F BR-F BR-F SR-G SR-G SR-G SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC	C B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884		70 56 56 56 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075	70 56 56 56 56 78 78 78 78 78
376 371 375 372 351 358	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G SR-G	EnB TaB TaC TaC TbB2 BaC BaC	C B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33	3.065 0.513 0.032 0.583 0.619 3.804 5.831		70 56 56 56 56 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366	70 56 56 56 56 78 78 78
376 371 375 372 351 358 364 389 391	SUB-6	BR-F BR-F BR-F BR-F SR-G SR-G SR-G SR-G SR-G SR-G SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC	C B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207		70 56 56 56 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332	70 56 56 56 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396	SUB-6	BR-F BR-F BR-F BR-F SR-G SR-G SR-G SR-G SR-G SR-G SR-G	EnB TaB TaC TaC BaC BaC BaC BaC BaC BaC BaC BaC	C B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023		70 56 56 56 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaC BaD	C B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 355 358 358 364 389 391 396 328 352	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TbB2 BaC BaC BaC BaC BaC BaC BaC BaD BaD	C B B B B B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 355 358 358 364 389 391 396 328 352 359	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC BaC BaC BaC BaC BaC BaC BaC BaD BaD BaD	C B B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 171803.633	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.902879 16.1315332 1.80683661 4.75691795 134.386843 307.63736	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 351 358 364 389 391 396 328 352 359 365	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaC BaD BaD BaD	C B B B B B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 2749.8831 171803.633 23349.5831	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.6373 41.8105483	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 355 358 358 364 389 391 396 328 352 359	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC BaC BaC BaC BaC BaC BaC BaC BaD BaD BaD	C B B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 171803.633	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.902879 16.1315332 1.80683661 4.75691795 134.386843 307.63736	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 351 358 364 389 391 396 328 352 359 365 393	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD	C B B B B B B B B B B B B B B B B B B B	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 17180.3633 23349.5831 6.73385362	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.131532 1.80683661 4.76691795 134.386843 307.63736 41.8105483 0.01205786	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 351 358 364 389 391 396 328 352 359 365 393 399	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD	C B B B B B B B B B B B B B B C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 1009.04876 2656.55571 75049.8829 171803.633 23349.5831 23349.5831 186457.208	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 399 399 399 397 405	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD ChA ChA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 186457.208 239.520332 214659.717	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 454.814366 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 389 365 399 399 392 397 405 324	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA EnB	C B B B B B B B B B B B B B B C C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 171803.633 23349.5831 23349.5831 23349.5831 23349.5831 23349.5832 186457.208 239.520932 465425.315 214659.717 47317.2784	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 1.086		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 399 391 396 328 359 365 365 393 399 399 399 399 399 397 405 324 327	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA EnB EnB	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8229 23349.5831 6.73385362 186457.208 233.520932 465425.315 214659.717 214659.717 21459.72784 3.787056	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957 0.0073898	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 359 365 365 393 399 399 399 399 399 399 397 405 324 324 327 361	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD ChA ChA ChA EnB EnB EnB	C B B B B B B B B B B B B B B C C C C C	133522.729 22326.123 1415.16326 25376.6863 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 1865425.2098 239.520932 2465425.315 214659.717 47317.2784 3.787056 64914.1673	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.131532 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316867 92.3316867	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 399 392 399 392 399 392 397 405 324 327 361 367	SUB-6	BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA EnB EnB EnB EnB	C B B B B B B B B B B B B B B C C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 23349.5831 23349.583522 186457.208 233.520932 146592.717 47317.2784 3.787056 64914.1673 88823.0468	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 92.3316957 0.0073898 126.669059 159.420546	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 351 358 364 389 391 396 328 355 365 393 399 392 397 405 327 361 367 404	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaC TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA EnB EnB EnB EnB EnB	C B B B B B B B B B B B B B B B B C C C C C C C C C C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 253996.33 125610.328 18378.0131 25040.328 1009.04876 2656.55571 75049.8829 9008.84086 1009.04876 2656.55571 75049.8829 23349.5831 6.73385362 23349.5831 6.73385362 23349.5831 6.73385362 24655.717 75049.8829 23349.5831 6.73385362 24655.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 24565.717 75049.8239 25056 241659.717 75049.8239 261657.728 261677.728 261777.728 261777.728 261777.728 261777.728 261777.728 2617777	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 16.1315332 11.80683661 4.75691795 134.386843 0.01205786 41.8105483 0.46738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 129.42546 3.29384896	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 371 351 358 364 389 391 396 328 3559 365 393 399 392 397 405 324 327 361 329	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA EnB EnB EnB EnB EnB EnB EnB	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 75049.8829 2656.55571 776049.8829 23349.5831 6.73385362 218657.2083 2465425.315 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 345977.683	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 333.876543 908.199076 418.872266 92.3316957 0.0073898 126.669059 159.42054	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 397 405 324 367 404 329 388	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA EnB EnB EnB EnB EnB GoF MBE2 OkA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6863 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 1865425.208 239.520932 2465425.315 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 84597.683	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.993 0.039 7.943 0.102		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.131532 24.922075 32.9082879 16.131532 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 0.04205786 418.872266 92.3316957 0.0073898 105.405959 169.420546 3.2934896 675.11715 8.70394696	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 399 392 399 392 397 405 324 327 361 367 404 404 329 388 362	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA EnB EnB EnB EnB EnB EnB CoF MeB2 OkA TaB	C B B B B B B B B B B B B B B B B C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 186457.208 233.49.5831 2465425.315 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 345977.683 1688.0071	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 454.814366 224.922075 32.9082879 16.1315332 1.80683661 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957 0.0073898 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 3.29384896 675.11715 8.70394696 135.118991	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 351 358 364 389 391 396 328 3559 365 393 399 397 405 327 361 367 404 329 388 362 368	SUB-6 SUB-6 </td <td>BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TaC TbB2 BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA EnB EnB EnB EnB EnB EnB EnB TaB TaB</td> <td>C B B B B B B B B B B B B B B B B C</td> <td>133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 7504.8269 9008.84086 1009.04876 2656.55571 7504.8269 23349.5831 6.73385362 23349.5831 6.73385362 2465425.315 214659.717 218659.7177 218659.7177 218659.7177 218659.7177 218659.717</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 5.22334896 675.11715 8.70394696 675.11715</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F SR-G SR-G	EnB TaB TaC TaC TaC TbB2 BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA EnB EnB EnB EnB EnB EnB EnB TaB TaB	C B B B B B B B B B B B B B B B B C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 1009.04876 2656.55571 7504.8269 9008.84086 1009.04876 2656.55571 7504.8269 23349.5831 6.73385362 23349.5831 6.73385362 2465425.315 214659.717 218659.7177 218659.7177 218659.7177 218659.7177 218659.717	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 5.22334896 675.11715 8.70394696 675.11715	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 399 392 399 392 397 405 324 327 361 367 404 404 329 388 362	SUB-6	BR-F BR-F BR-F BR-F BR-F SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA EnB EnB EnB EnB EnB EnB CoF MeB2 OkA TaB	C B B B B B B B B B B B B B B B B C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 186457.208 233.49.5831 2465425.315 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 345977.683 1688.0071	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 454.814366 224.922075 32.9082879 16.1315332 1.80683661 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957 0.0073898 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 3.29384896 675.11715 8.70394696 135.118991	70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 3559 365 393 399 392 397 405 324 327 361 367 404 329 388 362 368 362 368 362	SUB-6 SUB-6 </td <td>BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA</td> <td>C B B B B B B B B B B B B B B B C C C C</td> <td>133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5531 6.73385362 186545.208 239.520932 465425.315 214659.717 47317.2784 3.787056 64914.1673 88823.0468 1688.00071 345977.683 4460.51682 75458.7594</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 10.04738474 908.199076 418.872266 3.29384896 675.11715 8.70394696 135.118991</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F SR-G SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5531 6.73385362 186545.208 239.520932 465425.315 214659.717 47317.2784 3.787056 64914.1673 88823.0468 1688.00071 345977.683 4460.51682 75458.7594	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 10.04738474 908.199076 418.872266 3.29384896 675.11715 8.70394696 135.118991	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 393 399 392 392 393 399 392 393 399 392 393 399 392 393 397 405 324 327 361 367 404 329 388 362 368 379 385	SUB-6 SUB-6 </td <td>BR-F BR-F BR-F BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA</td> <td>C B B B B B B B B B B B B B B B B C</td> <td>133522.729 22326.123 1415.16326 5376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5531 6.73385362 186457.208 23349.5531 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 47317.2784 3.8597.7683 34460.51682 75458.7594 30697.2766</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288 0.105</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.131532 224.922075 32.9082879 16.131532 224.922075 32.9082879 16.131532 1.80683661 4.75691795 134.386843 30.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957 0.0073898 109.420546 3.29344896 675.11715 8.70394696 135.118991 54.9675751 178.491843 8.22542168</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F BR-F BR-F BR-F BR-F SR-G SR-G	EnB TaB TaC TaC TbB2 BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA	C B B B B B B B B B B B B B B B B C	133522.729 22326.123 1415.16326 5376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5531 6.73385362 186457.208 23349.5531 214659.717 47317.2784 3.787056 64914.1673 86823.0468 1688.00071 47317.2784 3.8597.7683 34460.51682 75458.7594 30697.2766	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288 0.105		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.131532 224.922075 32.9082879 16.131532 224.922075 32.9082879 16.131532 1.80683661 4.75691795 134.386843 30.63736 41.8105483 0.01205786 333.876543 0.46738474 908.199076 418.872266 92.3316957 0.0073898 109.420546 3.29344896 675.11715 8.70394696 135.118991 54.9675751 178.491843 8.22542168	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 397 405 324 327 361 327 361 367 404 329 388 362 368 379 385 387	SUB-6 SUB-6 </td <td>BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA</td> <td>C B B B B B B B B B B B B B B B C C C C</td> <td>133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 253996.33 125610.328 18378.0131 253996.33 125610.328 18378.0131 25361.2571 75049.8829 9008.84086 1009.04876 28349.5831 6.73385362 214659.717 21459.756 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787058 1688.00071 3.45977.683 4460.51682 75458.7594 30697.2766 99680.8293 30697.2766</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.102 1.732 0.705 2.288 0.105 4.992</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 16.1315332 16.1315332 11.80683661 4.76591795 134.386843 0.01205786 41.8105483 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 126.669059 126.42546 3.29384896 675.11715 8.70394696 675.11715 8.70394696 135.118991 54.9675751 178.491843 8.22542188 8.22542188 8.22542188</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F SR-G SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 18378.0131 253996.33 125610.328 18378.0131 253996.33 125610.328 18378.0131 25361.2571 75049.8829 9008.84086 1009.04876 28349.5831 6.73385362 214659.717 21459.756 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787056 49414.1673 3.787058 1688.00071 3.45977.683 4460.51682 75458.7594 30697.2766 99680.8293 30697.2766	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.102 1.732 0.705 2.288 0.105 4.992		70 56 56 56 78 78 78 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 16.1315332 16.1315332 11.80683661 4.76591795 134.386843 0.01205786 41.8105483 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 126.669059 126.42546 3.29384896 675.11715 8.70394696 675.11715 8.70394696 135.118991 54.9675751 178.491843 8.22542188 8.22542188 8.22542188	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 397 405 324 327 361 367 404 329 388 362 368 379 385 387 390 394 395	SUB-6 SUB-6 </td <td>BR-F BR-F BR-F BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA</td> <td>C B B B B B B B B B B B B B B B C C C C</td> <td>133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 1378.0131 125610.328 1378.0131 253996.33 125610.328 1378.0131 25040.328 109.04876 2656.55571 75049.8829 2004876 23349.5831 6.73385362 23349.5831 6.73385362 2344525.315 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 21455.7594 30697.2766 99680.8293 217445.375 78664.3763 217445.375</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.0611 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.732 0.039 7.943 0.102 1.732 0.705 2.288 0.105 4.992 1.742 0.105 4.992 1.742 0.024 0.027</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 41.8105483 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 126.469059 126.469059 126.469059 126.469059 135.118991 54.9075751 178.41843 8.22542168 38.23242168 38.23242168 38.23242168 38.23242168 38.32542168 38.3</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F BR-F BR-F BR-F BR-F SR-G SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6963 26974.9959 165681.111 253996.33 125610.328 1378.0131 125610.328 1378.0131 253996.33 125610.328 1378.0131 25040.328 109.04876 2656.55571 75049.8829 2004876 23349.5831 6.73385362 23349.5831 6.73385362 2344525.315 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 214659.717 21455.7594 30697.2766 99680.8293 217445.375 78664.3763 217445.375	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.0611 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.732 0.039 7.943 0.102 1.732 0.705 2.288 0.105 4.992 1.742 0.105 4.992 1.742 0.024 0.027		70 56 56 56 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 454.814366 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 41.8105483 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 126.469059 126.469059 126.469059 126.469059 135.118991 54.9075751 178.41843 8.22542168 38.23242168 38.23242168 38.23242168 38.23242168 38.32542168 38.3	70 56 56 56 78 78 78 78 78 78 78 78 78 78
376 371 375 372 351 358 364 389 391 396 328 352 359 365 393 399 392 397 405 324 327 361 367 404 329 388 362 368 367 388 362 388 362 388 362 388 362 388 367 387 387 390 394	SUB-6 SUB-6 </td <td>BR-F BR-F BR-F BR-F BR-F SR-G SR-G</td> <td>EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA</td> <td>C B B B B B B B B B B B B B B B C C C C</td> <td>133522.729 22326.123 1415.16326 25376.6863 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 186457.208 239.520932 465425.315 214659.717 47317.2784 3.787056 64914.1673 88823.0468 1688.00071 88823.0468 1688.0071 88823.0468 1688.0071 84597.7683 4460.51682 75458.7594 30697.2766 99680.8293 4593.58165 217445.3754</td> <td>3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288 0.105 4.992 1.742 0.024</td> <td></td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td> <td>214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 3.2934695 154.9675751 178.491843 8.22542168 389.364997 135.845302 1.90568932</td> <td>70 56 56 56 78 78 78 78 78 78 78 78 78 78</td>	BR-F BR-F BR-F BR-F BR-F SR-G SR-G	EnB TaB TaC TaC TaC BaC BaC BaC BaC BaC BaD BaD BaD BaD BaD BaD BaD ChA ChA ChA ChA ChA ChA ChA ChA ChA ChA	C B B B B B B B B B B B B B B B C C C C	133522.729 22326.123 1415.16326 25376.6863 26974.9959 165681.111 253996.33 125610.328 18378.0131 9008.84086 2656.55571 75049.8829 171803.633 23349.5831 6.73385362 186457.208 239.520932 465425.315 214659.717 47317.2784 3.787056 64914.1673 88823.0468 1688.00071 88823.0468 1688.0071 88823.0468 1688.0071 84597.7683 4460.51682 75458.7594 30697.2766 99680.8293 4593.58165 217445.3754	3.065 0.513 0.032 0.583 0.619 3.804 5.831 2.884 0.422 0.207 0.023 0.061 1.723 3.944 0.536 0.000 4.280 0.005 10.685 4.928 1.086 0.000 1.490 1.993 0.039 7.943 0.102 1.732 0.705 2.288 0.105 4.992 1.742 0.024		70 56 56 56 78 78 78 78 78 78 78 78 78 78	214.568206 28.7020865 1.81930997 32.623852 34.6785989 296.674166 224.922075 32.9082879 16.1315332 1.80683661 4.75691795 134.386843 307.63736 41.8105483 0.01205786 333.876543 0.046738474 908.199076 418.872266 92.3316957 0.0073898 126.669059 169.420546 3.2934695 154.9675751 178.491843 8.22542168 389.364997 135.845302 1.90568932	70 56 56 56 78 78 78 78 78 78 78 78 78 78

	EXISTING CONDITIONS									
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area	CN	CN*A	Weighted
						. ,	(Sq.Miles)		295.051271	CN
406 326	SUB-6 SUB-6	SR-G SR-G	TaB TaC	B	164774.787 273608.246	3.783 6.281		78 78	489.932122	78 78
330	SUB-6	SR-G	TaC	B	142128.011	3.263		78	254.499192	78
350	SUB-6	SR-G	TaC	B	14321.2402	0.329		78	25.644094	78
360	SUB-6	SR-G	TaC	B	50205.5524	1.153		78	89.8997495	78
366	SUB-6	SR-G	TaC	В	49526.024	1.137		78	88.682963	78
377	SUB-6	SR-G	TaC	В	1493.67218	0.034		78	2.67461961	78
384	SUB-6	SR-G	TaC	В	4149.36962	0.095		78	7.43000069	78
386	SUB-6	SR-G	TaC	В	4524.23271	0.104		78	8.10124315	78
325	SUB-6	SR-G	TbB2	В	33665.8442	0.773		78	60.2831922	78
349	SUB-6	SR-G	TbB2	В	146228.376	3.357		78	261.841444	78
357	SUB-6	SR-G	TbB2	В	83970.6364	1.928		78	150.360644	78
363	SUB-6	SR-G	TbB2	В	109300.705	2.509		78	195.717515	78
369 378	SUB-6 SUB-6	SR-G SR-G	TbB2 TbB2	B	4414.80745 175661.62	0.101 4.033		78 78	7.9053026 314.545601	78 78
323	SUB-6	SR-G	VaB	C	270688.104	6.214		85	528.202223	85
336	SUB-6	WO-G	BaC	В	8982.16808	0.214		55	11.3411213	55
342	SUB-6	WO-G	BaC	B	10509.538	0.200		55	13.2696187	55
347	SUB-6	WO-G	BaC	B	170099.756	3.905		55	214.772419	55
354	SUB-6	WO-G	BaC	В	144367.353	3.314		55	182.282012	55
401	SUB-6	WO-G	BaC	В	1354.94385	0.031		55	1.71078769	55
337	SUB-6	WO-G	BaD	В	1367360.82	31.390		55	1726.46568	55
348	SUB-6	WO-G	BaD	В	16.8435963	0.000		55	0.02126717	55
355	SUB-6	WO-G	BaD	В	4084.85255	0.094		55	5.15764211	55
403	SUB-6	WO-G	BaD	В	21753.8884	0.499		55	27.4670308	55
402	SUB-6	WO-G	ChA	С	73.8942154	0.002		70	0.11874644	70
408	SUB-6	WO-G	ChA	С	3228.27238	0.074		70	5.18776553	70
332	SUB-6	WO-G	EnB	C	1718.72437	0.039		70	2.76195377	70
335 356	SUB-6 SUB-6	WO-G WO-G	EnB EnB	C C	187800.641	4.311 0.803		70 70	301.791664 56.2372766	70 70
		WO-G WO-G	GoF	C	34995.6538			70	4.31533081	
407 338	SUB-6 SUB-6	WO-G WO-G	GoF MeB2	C	2685.36872 50757.406	0.062		70	4.31533081 81.5660795	70 70
346	SUB-6	WO-G	OkA	c	112261.3	2.577		70	180.401537	70
340	SUB-6	WO-G	TaB	B	390492.734	8.964		55	493.046381	55
344	SUB-6	WO-G	TaB	В	807897.748	18.547		55	1020.07291	55
345	SUB-6	WO-G	TaB	В	218197.521	5.009		55	275.50192	55
381	SUB-6	WO-G	TaB	В	333999.482	7.668		55	421.716518	55
383	SUB-6	WO-G	TaB	В	98948.1462	2.272		55	124.934528	55
334	SUB-6	WO-G	TaC	В	68694.2678	1.577		55	86.7351866	55
339	SUB-6	WO-G	TaC	В	1848402.32	42.433		55	2333.84132	55
343	SUB-6	WO-G	TaC	В	835.52787	0.019		55	1.05495943	55
380	SUB-6	WO-G	TaC	В	595557.203	13.672		55	751.966166	55
382	SUB-6	WO-G	TaC	В	189569.236	4.352	_	55	239.355096	55
333	SUB-6	WO-G	TbB2	В	62844.396	1.443		55	79.3489849	55
341	SUB-6 SUB-6	WO-G WO-G	TbB2 TbB2	B	310921.57	7.138 2.375		55 55	392.57774 130.640878	55
353 331	SUB-6	WO-G	VaB	C	103467.576 101191.327	2.375		70	162.612326	55 70
331	SUB-6 Total	W0-0	Vab	Ŭ	1011131.321	281.685	0.440	70	18425.2147	65
434	SUB-7	SR-G	BaB	В	14311.7216	0.329		78	25.6270497	78
435	SUB-7	SR-G	BaD	В	708.814007	0.016		78	1.26922618	78
428	SUB-7	SR-G	ChA	С	5150.07887	0.118		85	10.0495111	85
427	SUB-7	SR-G	GoF	С	32200.2265	0.739		85	62.8333161	85
430	SUB-7	WO-G	BaB	В	3813.96258	0.088		55	4.81560932	55
436	SUB-7	WO-G	BaB	В	20.9035086	0.000		55	0.02639332	55
438	SUB-7	WO-G	BaB	В	32924.7569	0.756		55	41.5716628	55
441	SUB-7	WO-G	BaB	В	333839.902	7.664		55	421.515027	55
444	SUB-7	WO-G	BaB	В	13441.2382	0.309		55	16.9712604	55
450 453	SUB-7 SUB-7	WO-G WO-G	BaB BaB	B	54070.8616 1522.79899	1.241 0.035		55 55	68.2712899	55
453	SUB-7	WO-G	Вав	B	0.36427923	0.035		55	1.922726 0.00045995	55 55
457	SUB-7	WO-G	BaB	B	5654.45375	0.130		55	7.1394618	55
433	SUB-7	WO-G	BaD	B	96613.5839	2.218		55	121.986848	55
437	SUB-7	WO-G	BaD	В	8722.04776	0.200		55	11.0126866	55
439	SUB-7	WO-G	BaD	В	1150.94684	0.026		55	1.45321571	55
442	SUB-7	WO-G	BaD	В	49608.1222	1.139		55	62.6365179	55
446	SUB-7	WO-G	BaD	В	4629.18612	0.106		55	5.84493197	55
448	SUB-7	WO-G	BaD	В	8728.73906	0.200		55	11.0211352	55
451	SUB-7	WO-G	BaD	В	22868.2438	0.525		55	28.8740452	55
432	SUB-7	WO-G	ChA	C	359.676447	0.008		70	0.57799245	70
429	SUB-7	WO-G	GoC	C	8747.74583	0.201		70	14.0574428	70
440 443	SUB-7 SUB-7	WO-G WO-G	GoC GoC	C C	43319.5258 122492.763	0.994 2.812		70 70	69.613563 196.843283	70 70
443	SUB-7	WO-G	GoC	C	14.2122086	0.000		70	0.02283872	70
447	SUB-7	WO-G	GoC	c	25406.3642	0.583		70	40.8274906	70
452	SUB-7	WO-G	GoC	c	23500.6521	0.540		70	37.7650516	70
455	SUB-7	WO-G	GoC	C	17611.542	0.404		70	28.301376	70
456	SUB-7	WO-G	GoC	C	3088.48816	0.071		70	4.96313525	70
458	SUB-7	WO-G	GoC	С	1970.96102	0.045		70	3.16729274	70
459	SUB-7	WO-G	GoC	С	4113.45677	0.094		70	6.61023815	70
460	SUB-7	WO-G	GoC	С	6821.47847	0.157		70	10.9619718	70
461	SUB-7	WO-G	GoC	С	3535.62629	0.081		70	5.68167678	70
462	SUB-7	WO-G	GoC	С	36.055854	0.001		70	0.057941	70
431	SUB-7	WO-G	GoF	C	130597.163	2.998	L	70	209.866882	70
445	SUB-7	WO-G	GoF	С	5892.7769	0.135	0.000	70	9.46956803	70
	SUB-7 Total					24.965	0.039		1543.63012	62

	EXISTING CONDITIONS									
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area	CN	CN*A	Weighted
1037	SUB-7A	SR-G	ChA	С	232386.129	5.335	(Sq.Miles)	85	453.462372	CN 85
1037	SUB-7A	SR-G	GoF	c	7927.69275	0.182		85	15.4695566	85
1038	SUB-7A	SR-G	TaB	B	135914.776	3.120		78	243.373566	78
1040	SUB-7A	WO-G	ChA	C	1362.4181	0.031		70	2.18937711	70
1039	SUB-7A	WO-G	GoF	C	1682.03237	0.039		70	2.7029905	70
	SUB-7A Total					8.707	0.014		717.197862	82
512	SUB-8	BR-F	BaB	В	3061.67786	0.070		56	3.93604133	56
515	SUB-8	BR-F	BaB	В	150115.801	3.446		56	192.986337	56
473	SUB-8	BR-F	BaC	В	115115.333	2.643		56	147.990328	56
478	SUB-8	BR-F	BaC	В	33603.1148	0.771		56	43.1995967	56
504	SUB-8	BR-F	BaC	В	7563.79948	0.174		56	9.72389281	56
511	SUB-8	BR-F	BaC	В	6919.73811	0.159		56	8.8958984	56
514 525	SUB-8 SUB-8	BR-F BR-F	BaD BaD	B	346644.259 8742.94191	7.958 0.201		56 56	445.640002 11.2397784	56 56
471	SUB-8	BR-F	EnB	C	294248.488	6.755		70	472.851106	70
477	SUB-8	BR-F	EnB	c	10111.6321	0.232		70	16.2491793	70
481	SUB-8	BR-F	EnB	C	32810.4119	0.753		70	52.725639	70
513	SUB-8	BR-F	TaB	В	8101.2726	0.186		56	10.4148592	56
516	SUB-8	BR-F	TaB	В	26161.1631	0.601		56	33.6323493	56
472	SUB-8	BR-F	TbB2	В	7753.39604	0.178		56	9.96763495	56
496	SUB-8	SR-G	BaB	В	430196.185	9.876		78	770.323747	78
519	SUB-8	SR-G	BaB	В	6085.87054	0.140		78	10.8975643	78
521	SUB-8	SR-G	BaB	В	86874.2719	1.994		78	155.559991	78
530	SUB-8	SR-G	BaB	В	64466.6892	1.480		78	115.43622	78
532	SUB-8	SR-G	BaB	B	253899.556	5.829	L	78	454.641079	78
476 494	SUB-8 SUB-8	SR-G SR-G	BaC BaC	B	37883.2628	0.870 2.858		78 78	67.8350436 222.908713	78 78
494 506	SUB-8 SUB-8	SR-G SR-G	BaD	B	124485.943 69139.4077	2.858		78	123.803347	78 78
506	SUB-8	SR-G	BaD	В	97592.4254	2.240		78	174.752277	78
529	SUB-8	SR-G	BaD	B	226921.427	5.209		78	406.333134	78
527	SUB-8	SR-G	ChA	C	256880.733	5.897		85	501.259465	85
493	SUB-8	SR-G	EnB	С	394385.087	9.054		85	769.576042	85
526	SUB-8	SR-G	GoF	С	19.9132533	0.000		85	0.03885736	85
495	SUB-8	SR-G	TaB	В	222258.555	5.102		78	397.983639	78
502	SUB-8	SR-G	TaB	В	10806.8649	0.248		78	19.3511355	78
503	SUB-8	SR-G	TaB	В	444.931089	0.010		78	0.79670856	78
505	SUB-8	SR-G	TaB	В	433813.508	9.959		78	776.801047	78
522	SUB-8 SUB-8	SR-G SR-G	TaB TaB	B	84267.0604	1.935 10.993		78 78	150.891431	78
528 531	SUB-8 SUB-8	SR-G SR-G	ТаВ	B	478865.795 579573.322	13.305		78	857.473186 1037.80347	78 78
475	SUB-8	SR-G	TbB2	B	388225.082	8.912		78	695.16888	78
468	SUB-8	WO-G	BaB	B	72581.2535	1.666		55	91.6429969	55
518	SUB-8	WO-G	BaB	B	111.621521	0.003		55	0.14093626	55
465	SUB-8	WO-G	BaC	В	1702753.75	39.090		55	2149.94161	55
480	SUB-8	WO-G	BaC	В	33.2856273	0.001		55	0.04202731	55
484	SUB-8	WO-G	BaC	В	10570.6036	0.243		55	13.3467217	55
486	SUB-8	WO-G	BaC	В	8742.95126	0.201		55	11.0390799	55
487	SUB-8	WO-G	BaC	В	8742.94191	0.201		55	11.0390681	55
489	SUB-8	WO-G	BaC	В	130342.435	2.992		55	164.573782	55
491 498	SUB-8 SUB-8	WO-G WO-G	BaC BaC	B	18854.3442 19660.9142	0.433 0.451		55 55	23.8059902 24.8243867	55 55
508	SUB-8	WO-G	BaC	B	668.276124	0.451		55	0.84378298	55
517	SUB-8	WO-G	BaC	B	4358.12353	0.100		55	5.50268122	55
470	SUB-8	WO-G	BaD	В	108.653081	0.002		55	0.13718823	55
510	SUB-8	WO-G	BaD	В	5520.03571	0.127		55	6.96974205	55
524	SUB-8	WO-G	BaD	В	87135.9198	2.000		55	110.020101	55
535	SUB-8	WO-G	BaD	В	68900.6525	1.582		55	86.9957733	55
533	SUB-8	WO-G	ChA	С	49203.8769	1.130		70	79.0695911	70
463	SUB-8	WO-G	EnB Exp	С	71458.4659	1.640		70	114.832245	70
474 479	SUB-8 SUB-8	WO-G WO-G	EnB EnB	C C	78626.2662	1.805 0.401		70 70	126.350749 28.0459717	70 70
479 482	SUB-8 SUB-8	WO-G WO-G	EnB	C	17452.6076 8742.95126	0.401		70	28.0459717 14.049738	70
485	SUB-8	WO-G	EnB	C	11516.2024	0.201		70	18.5062941	70
466	SUB-8	WO-G	TaB	В	212794.032	4.885		55	268.679333	55
467	SUB-8	WO-G	TaB	B	32002.0561	0.735		55	40.4066365	55
469	SUB-8	WO-G	TaB	B	429.375503	0.010		55	0.54214079	55
500	SUB-8	WO-G	TaB	В	527178.257	12.102		55	665.629113	55
501	SUB-8	WO-G	TaB	В	1152.95734	0.026		55	1.45575422	55
507	SUB-8	WO-G	TaB	В	15923.2819	0.366		55	20.1051539	55
509	SUB-8	WO-G	TaB	В	43191.5676	0.992		55	54.5348075	55
523	SUB-8	WO-G	TaB T-D	B	293.583482	0.007		55	0.37068621	55
534	SUB-8	WO-G	TaB	B	56754.5146	1.303		55	71.6597406 15.7708154	55
499 464	SUB-8 SUB-8	WO-G WO-G	TaC TbB2	B	12490.4858 447164.191	0.287 10.265		55 55	15.7708154 564.601251	55 55
464	SUB-8 SUB-8	WO-G	TbB2 TbB2	B	6915.30827	0.159		55	8.73144983	55
488	SUB-8	WO-G	TbB2 TbB2	B	35773.6295	0.139		55	45.1687241	55
488	SUB-8	WO-G	TbB2 TbB2	B	33603.3727	0.821		55	42.4285009	55
492	SUB-8	WO-G	TbB2	B	8742.95126	0.201		55	11.0390799	55
497	SUB-8	WO-G	TbB2	В	6567.9302	0.151		55	8.29284116	55
	SUB-8 Total					209.254	0.327		14070.2241	67
582	SUB-9	BR-F	BaB	В	146698.574	3.368		56	188.593208	56
584	SUB-9	BR-F	BaB	В	258772.715	5.941		56	332.673831	56
587	SUB-9	BR-F	BaB	В	17485.9119	0.401		56	22.4795929	56
581	SUB-9	BR-F	BaD	B	71875.2078	1.650	L	56	92.4015527	56
583	SUB-9	BR-F	BaD	В	3515.82253	0.081		56	4.51988204	56

			EVISIIN		CITIONS 1					
ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
589	SUB-9	BR-G	BaB	В	164991.327	3.788		48	181.808625	48
588	SUB-9 SUB-9	BR-G SR-G	BaD BaB	В	6582.15326	0.151 10.304	ł	48	7.25306145	48
537 538	SUB-9 SUB-9	SR-G	BaB	B	448851.048 366280.515	8.409		78 78	803.727772 655.8742	78 78
554	SUB-9	SR-G	BaB	B	382262.829	8.776		78	684.49267	78
557	SUB-9	SR-G	BaB	B	158366.326	3.636		78	283.576065	78
558	SUB-9	SR-G	BaB	В	62661.5482	1.439		78	112.203874	78
591	SUB-9	SR-G	BaB	В	89493.1528	2.054	 	78	160.249447	78
601	SUB-9	SR-G	BaB	В	148704.259	3.414	l	78	266.274843	78
536 553	SUB-9 SUB-9	SR-G SR-G	BaD BaD	B	590245.565 95212.0978	13.550 2.186		78 78	1056.91355 170.489982	78 78
556	SUB-9	SR-G	BaD	B	18523.6647	0.425		78	33.1690965	78
590	SUB-9	SR-G	BaD	В	253670.696	5.823		78	454.231274	78
600	SUB-9	SR-G	BaD	В	8069.52202	0.185		78	14.4495573	78
543	SUB-9	SR-G	ChA	С	5112.90019	0.117		85	9.97696318	85
542	SUB-9	SR-G	GoF	С	22503.4164	0.517		85	43.9116252	85
541	SUB-9 SUB-9	SR-G	TaB TaB	B	1261072.59	28.950	l	78	2258.11897	78
555 602	SUB-9 SUB-9	SR-G SR-G	TaB TaB	B	116789.661 206889.939	2.681 4.750	1	78 78	209.127493 370.464079	78 78
539	SUB-9	SR-G	W	D	5.4874182	0.000		89	0.01121167	89
540	SUB-9	SR-G	Ŵ	D	7287.77146	0.167		89	14.8900748	89
592	SUB-9	SR-G	W	D	2893.66831	0.066		89	5.91222405	89
593	SUB-9	SR-G	W	D	3660.53341	0.084		89	7.47905128	89
595	SUB-9	WATER	BaB	В	3808.44378	0.087	L	98	8.5681242	98
596	SUB-9	WATER	BaB	B	14062.307	0.323		98	31.6369624	98
594 599	SUB-9 SUB-9	WATER WATER	BaD TaB	B	147140.084 109074.294	3.378 2.504		98 98	331.031409 245.392123	98 98
599 597	SUB-9 SUB-9	WATER	W	D	223230.797	5.125		98	502.218048	98
598	SUB-9	WATER	W	D	27261.1963	0.626		98	61.3314334	98
547	SUB-9	WO-G	BaB	В	1648821.63	37.852		55	2081.84549	55
548	SUB-9	WO-G	BaB	В	18745.8152	0.430		55	23.6689585	55
550	SUB-9	WO-G	BaB	В	150914.869	3.465	 	55	190.549078	55
561	SUB-9	WO-G	BaB	B	53422.3137	1.226	ł	55	67.4524163	55
566 545	SUB-9 SUB-9	WO-G WO-G	BaB BaD	B	38592.6846 2355918.33	0.886 54.084		55 55	48.7281372 2974.64436	55 55
559	SUB-9	WO-G	BaD	B	27207.3724	0.625		55	34.3527429	55
564	SUB-9	WO-G	BaD	B	338.394449	0.008		55	0.42726572	55
552	SUB-9	WO-G	ChA	С	19672.6987	0.452		70	31.6136114	70
546	SUB-9	WO-G	GoC	С	134016.025	3.077		70	215.360922	70
560	SUB-9	WO-G	GoC	С	26854.9672	0.617	ļ	70	43.155365	70
562	SUB-9	WO-G	GoC	C	851.322389	0.020	l	70	1.3680571	70
563 565	SUB-9 SUB-9	WO-G WO-G	GoC GoC	C C	27434.2471 151135.13	0.630 3.470		70 70	44.0862557 242.870962	70 70
568	SUB-9	WO-G	GoC	c	22665.1316	0.520		70	36.4223878	70
570	SUB-9	WO-G	GoC	c	1811.65844	0.042		70	2.91129685	70
571	SUB-9	WO-G	GoC	С	5207.33432	0.120		70	8.36807627	70
572	SUB-9	WO-G	GoC	С	43678.7005	1.003		70	70.1907491	70
573	SUB-9	WO-G	GoC	С	8633.46273	0.198		70	13.8737923	70
574	SUB-9	WO-G	GoC	С	8742.95126	0.201		70	14.049738	70
575	SUB-9	WO-G WO-G	GoC	C C	8742.94191 4424.48342	0.201	ł	70 70	14.049723	70
576 578	SUB-9 SUB-9	WO-G	GoC GoC	C C	8187.47209	0.102 0.188	1	70	7.11005141 13.1570947	70
585	SUB-9	WO-G	GoC	c	2433.66605	0.056		70	3.91084994	70
551	SUB-9	WO-G	GoF	C	1010453.55	23.197		70	1623.77751	70
567	SUB-9	WO-G	GoF	С	37209.8803	0.854		70	59.7954917	70
569	SUB-9	WO-G	GoF	С	75187.0775	1.726		70	120.824046	70
577	SUB-9	WO-G	GoF	C	1148.49198	0.026	<u>↓</u>	70	1.84560236	70
579	SUB-9	WO-G	GoF	C	29607.479	0.680		70	47.5785934	70
580 586	SUB-9 SUB-9	WO-G WO-G	GoF GoF	C C	8742.96061 6309.27587	0.201 0.145		70 70	14.0497531 10.1388731	70 70
544	SUB-9	WO-G	TaB	В	127933.325	2.937		55	161.531976	55
549	SUB-9	WO-G	W	D	6061.82539	0.139		77	10.7153479	77
	SUB-9 Total					264.329	0.413		17859.8764	68
1088	SUB-9A	SR-G	ChA	С	12590.9734	0.289	L	85	24.569163	85
1087	SUB-9A	SR-G	GoF	C	23396.3788	0.537	 	85	45.6540908	85
1091	SUB-9A	WO-G WO-G	ChA GoC	C C	58848.4545	1.351	1	70 70	94.5682235	70
1089 1092	SUB-9A SUB-9A	WO-G WO-G	GoC GoC	C	105975.064 24180.3363	2.433 0.555		70	170.29969 38.8572898	70
1092	SUB-9A SUB-9A	WO-G	GoC	C	27947.4864	0.555		70	44.9110204	70
1094	SUB-9A	WO-G	GoC	c	85117.3796	1.954		70	136.781831	70
1097	SUB-9A	WO-G	GoC	C	6771.99959	0.155		70	10.8824603	70
1098	SUB-9A	WO-G	GoC	С	4629.4945	0.106		70	7.43949988	70
1099	SUB-9A	WO-G	GoC	С	109.814354	0.003	L	70	0.17646935	70
1100	SUB-9A	WO-G	GoC	C	8742.94191	0.201		70	14.049723	70
1101 1102	SUB-9A	WO-G WO-G	GoC	C C	109.479185	0.003 0.201	l	70 70	0.17593074	70
1102	SUB-9A SUB-9A	WO-G WO-G	GoC GoC	C	8742.96061 11912.9365	0.201		70	14.0497531 19.1438373	70
1103	SUB-9A SUB-9A	WO-G	GoC	c	5919.79589	0.273		70	9.51298697	70
1090	SUB-9A	WO-G	GoF	C	242531.688	5.568		70	389.743301	70
1093	SUB-9A	WO-G	GoF	С	21708.6365	0.498		70	34.8853204	70
1096	SUB-9A	WO-G	GoF	С	506.729712	0.012		70	0.81430394	70
	SUB-9A Total					14.916	0.023		1056.51489	71
4.000		<u></u>								
1083 1081	SUB-9B SUB-9B	SR-G SR-G	BaB BaD	B	565221.945 8894.70532	12.976 0.204		78 78	1012.10541 15.9271583	78 78

DDD <thd< th="">DDDDD</thd<>		EXISTING CONDITIONS									
OTO SUB-00 SUB-00 CD SUB-200 SUB-200 </th <th>ID</th> <th>DA</th> <th>Cover</th> <th>Soils</th> <th>HSG</th> <th>Area</th> <th>Area (Acres)</th> <th></th> <th>CN</th> <th>CN*A</th> <th></th>	ID	DA	Cover	Soils	HSG	Area	Area (Acres)		CN	CN*A	
1000 S.B.6.8 WG.3 Tag. Tag. <thtag.< th=""> Tag. Tag. <</thtag.<>	1079	SUB-9B	SR-G	GoF	С	9499.48507	0.218	(04.11103)	85	18.5366444	
986 980-66 Wy-G Orbit CC 263.16 9.20 P/0 26.47160 P/0 988 86.48 Wy-G Orbit CC 100.10 P/0 26.47160 P/0 26.47160 P/0 26.47160 P/0 26.47160 P/0 100.25177 P/0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
9984 SUR-PE WO-G Char F P< P< <											
1984 50.06 90.7 10.02 10.01 10.70 20.000 10.00 1910 3.00.92 90.9 5.000 10.20 17.0 10.000 10.000 17.0 10.0											-
UNI SNA 67 Col SA 60 Bod Add Add Add Corr Tot Dist Tot Dist Tot Dist STA Dist Dist <thdist< th=""> <thdist< th=""> Dist</thdist<></thdist<>											70
1046 60.96.C 86.4 86.7 6.26 7.26 7.2668000 7.2668000 7.2668000		SUB-9B Total					45.696	0.071			80
1962 SR-BGC SR-G Bool B 40270 SS1 0.48 TR TS 25016 TR 1000 1007 SR-BCC SR-G Color 1 1000 Color 1 1000 Color 1 10000 1000 1000 1	1041		SR-G	BaB	В	582002.553	13.361		78		78
1947 SUB-AC SK-AC Back 1.16 11.16 97.3 1.26 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.8 12.97280.00 7.9 7.9 7.9 <	1046			BaB	В				78		78
9940 SH60 CM C 4272-407 9973 He He Resultation 9043 SUB-4C SFG Tell S SUB-4C Tell Tell Tell Tell SUB-4C Tell Tell SUB-4C Tell Tell SUB-4C Tell	1042	SUB-9C	SR-G	BaD	В	420270.823	9.648		78	752.55106	78
1943 0.09AC 0.95C 0.0000A 17.00 77.6 17.00007 78. 1948 0.000A	1047	SUB-9C	SR-G	BaD	В		0.256		78	19.9780953	78
1948 80.9.4C 95.6. 178. 8.7. 21.15 7.8. 7.2.8.027 7.0.2002	1045	SUB-9C	SR-G	ChA	С	42373.407	0.973		85	82.6845638	85
1144 SIB 40 8K-0 W D 36004 SIB 50 V 80 74.586.20 80 1050 SIB 50 WG 50 WG 50 SIB 50	1043	SUB-9C	SR-G	GeB2	В	530552.425	12.180		78	950.025004	78
1060 56.8 56.4 75.0 <th< td=""><td>1048</td><td>SUB-9C</td><td>SR-G</td><td>TaB</td><td>В</td><td>965055.253</td><td>22.155</td><td></td><td>78</td><td>1728.06037</td><td>78</td></th<>	1048	SUB-9C	SR-G	TaB	В	965055.253	22.155		78	1728.06037	78
1912 SUB-9C WO-0 O-N C PH 19077 0.211 PM 15.91 15.945388 70 1091 SUB-9C WO-6 Gel2 B 1501002 0.023 0.021 F 15.11158 55 10.12855 55 1192 SUB-9C WO-6 Fab B 1502.1115 0.004 76 22.125767 71 4.84575 71 2.13529472 71 2.13529472 71 2.13529472 71 2.13529472 71 2.13529472 71 2.13529472 71 2.13529472 71 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 2.13529472 78 77 2.13529472 78 7.13529472 78 77 <td>1044</td> <td>SUB-9C</td> <td>SR-G</td> <td>W</td> <td>D</td> <td>36504.3018</td> <td>0.838</td> <td></td> <td>89</td> <td>74.5840877</td> <td>89</td>	1044	SUB-9C	SR-G	W	D	36504.3018	0.838		89	74.5840877	89
1048 SUB-BC WO-G Gall B 1199-10022 0.004 File 5 1.5141588 55 1051 SUB-BC Tail N	1050	SUB-9C	WO-G	BaD	В	6544.47565	0.150		55	8.26322683	55
1915 SLB&C WO-G Tab B B0/1 4727 C.144 C B0/1 Control B220 R Control R B220 R Control B220 R B220 R B220 R B220 R B220 B210 B220 B210 B220 B210	1052	SUB-9C	WO-G	ChA	С	9641.90557	0.221		70	15.4943386	70
BBB-AC Total Image Image BC 220 90.90 78 789.2728 78 11105 SUB-40 SR-6 BaD B 1242.0116 0.029 78 2.1332.072 78 11105 SUB-40 SR-6 CA C 1794.4477 0.815 0.937 78 2.1332.072 78 11141 SUB-40 SR-6 CA C 17956.502 4.400 R5 5.343.4522 45 11114 SUB-40 SR-6 CAA C 17956.502 4.400 R5 5.824.5927 45 11112 SUB-40 SR-6 CAA C 674.29159 0.201 R5 17.665.173 85 17.665.173 85 17.655.173 85 17.655.173 85 17.655.173 85 15.656.173 78 15.656.124 78 15.656.124 78 15.656.124 78 15.656.124 78 15.656.123 78 15.656.123 78 15.656.123 78 15.656.	1049	SUB-9C	WO-G	GeB2	В	1199.10052	0.028		55	1.51401581	55
1119 SUB-80 SPA 6 BaD B 1242-20118 0.000 TPA 2.2280188 TPA 1117 SUB-80 SPA 6 BuD B 1232-276 D.227 TPA 2.2801082 TPA 1117 SUB-80 SPA 6 C C.797 SUB-80 SPA C 1000 SPA SUB-80 SPA C 1000 SUB-80 SPA SUB-80 SPA C 1000 SUB-80 SPA SUB-80 SPA SUB-80 SPA C 3000 A SUB-80 SPA SUB-80 SPA C 3000 SPA SUB-80	1051	SUB-9C	WO-G	TaB	В	8001.47267	0.184		55	10.1028695	55
1115 SUB-BO SR-G BaD B 1282.3786 0.287 78 22.138/27 78 1107 SUB-BO SR-G DAA C 204445/87 6.511 St. 10440005 78 1116 SUB-BO SR-G DAA C 204445/87 6.511 St. 1250/778 6.51 1111 SUB-BO SR-G CAA C 776/24/181 C. 81 592.7797 8.5 1116 SUB-BO SR-G CR-B2 S 1022.5244 37.46 78 1251.8414 78 1116 SUB-BO SR-G CR-B2 S 197.2744 5.22 78 1251.8414 78 1117 SUB-BO SR-G GR-B2 S 197.7441 5.22 78 1250.5023 78 1113 SUB-BO SR-G GR-B S 1450.7441 5.03 174.933.945 5.0 127.933.941 5.0 127.933.941 5.0 127.933.941 5.0 128.93		SUB-9C Total					60.220	0.094		4703.07795	78
1110*// SUB-80 SR-G CA C 238.44.878 6.8.1 6.8.5 52.27007 65 1116 SUB-80 SR-G CAA C 234.44.878 6.8.1 6.8.5 652.27007 65 1118 SUB-80 SR-G CAA C 17956.562 4.040 85 63.415647 65 1110 SUB-80 SR-G CAA C 437.145 10.800 86 42.45547 65 11.555.8414 78 11.255.8414 78 11.255.8414 7	1109	SUB-9D	SR-G	BaD	В	1244.26118	0.029		78	2.22801588	78
1116 SUB-00 SR-G CPA C 288448/878 6.851 6.8 582.27807 68 1114 SUB-00 SR-G CPA C 1756.652 4.040 85 68.145687 65 1118 SUB-00 SR-G CPA C 3474.855 0.603 85 68.245647 85 1112 SUB-00 SR-G CPA SUB-01 86 1700377 68 1112 SUB-00 SR-G CeB2 B 1992.145 10.900 78 1555.4524 78 1116 SUB-00 SR-G CeB2 B 1992.165 10.77 78 2.6905500 78 1112 SUB-00 SR-G 178 8 4.907.982 10.03 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131		SUB-9D		BaD	В		0.297		78	23.1392472	78
1116 SUB-00 SR-G CPA C 288448/878 6.851 6.8 582.27807 68 1114 SUB-00 SR-G CPA C 1756.652 4.040 85 68.145687 65 1118 SUB-00 SR-G CPA C 3474.855 0.603 85 68.245647 85 1112 SUB-00 SR-G CPA SUB-01 86 1700377 68 1112 SUB-00 SR-G CeB2 B 1992.145 10.900 78 1555.4524 78 1116 SUB-00 SR-G CeB2 B 1992.165 10.77 78 2.6905500 78 1112 SUB-00 SR-G 178 8 4.907.982 10.03 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131 1.981.131											
1114 SUB-90 SR-0 CM C 17995-522 4.040 86 34.4252 8.5 1121 SUB-90 SR-0 CM C 87491-851 0.021 85 172											
1111 SUB-90 SR-0 ChA C 34971,853 0.053 85 0.543 7.0852779 85. 1112 SUB-90 SR-0 GeB2 B 16223244 37.245 78 205.05023 78. 1112 SUB-90 SR-0 GeB2 B 16223244 37.245 78 220.560233 78. 1117 SUB-90 SR-0 GeB2 B 16223244 37.245 78 122.1533147 78 220.560233 78 1116 SUB-90 SR-0 GBB B 1207.0118 50.047 78 220.56023 70 1112 SUB-90 WO-3 BBF B 1499.7297 0.054 70 72.556933 70 70 1.557832 70 1111 SUB-90 WO-3 CAA C 27.01314 30.53 70 70 1.5578952 70 1.1579382 70 1.1597382 70 1.15973852 70 1.1597382 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
1111 SUB-90 SR-0 Cell Fr/2_9419 0.201 88 17.083779 85 1115 SUB-90 SR-0 Cell B 12.023244 37.24 7.8 2005.0232.7 7.8 2005.0232.7 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 7.8 12.053.07 7.8 7.8 12.053.07 7.8 7.8 12.053.07 7.8 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 7.8 12.053.07 12.053.07 12.053.07 12.053.07 12.053.07 12.053.07 7.0 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.07.07 12.053.0											
1110 SUB-60 SR-6 GeB2 8 1622382.4 37.245 78 2005.02233 78 11112 SUB-90 SR-6 GeB2 B 6974.2013 0.01 78 15564224 78 1110 SUB-90 SR-6 GeB2 B 1674.2013 0.01 78 15564224 78 1111 SUB-90 SR-6 GeB2 B 1674.2013 0.01 78 12208073 78 12208073 78 12208073 78 12208073 78 12208073 78 12208073 78 1220807 70 52466424 70 111 SUB-90 WO-6 C 1273134 1316 70 70 52466446 70 1020833 70 1020833 70 1020833 70 1020833 70 10208333 70 1020833 70 10208333 70 10208333 70 10208333 70 10208333 70 10238399 1020833 70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
1112 SUB-90 SR-6 GeB2 8 69472-13 16.060 70 1251.8414 78. 1117 SUB-90 SR-6 GeB2 8 742-9212 0.034 78 26006903 78 11105 SUB-80 SR-6 TaB B 2607-165 SuB-77 26006903 78 1113 SUB-80 SR-6 TaB B 1907-164 0.027 78 77.7333713 77.8 1113 SUB-80 WO-6 CHA C 13741741 3155 70 20.84923 70 1119 SUB-90 WO-6 CHA C 13741741 3155 70 10.353335 70 1123 SUB-90 WO-6 CHA C 14441501 0.817 70 15.9549444 70 15.9569247 70 11697982 70 70 15.9569247 70 15.957247 70 70 15.9569247 70 70 15.9569247 70 70											
1111 SUB-0D SR-G GeB2 8 872.291/26 0.201 78 15.6554224 78 1110 SUB-0D SR-G TaB B 22070.105 5.067 78 22080503 78 1113 SUB-9D SR-G TaB B 2222 78 72.39873 78 1122 SUB-9D WC-G BaF 8 117.0748 0.021 55 1.4765188 56 1123 SUB-9D WC-G BaF 8 10.075 70 1.055365 70 1120 SUB-9D WC-G CAL C 1.9701 1.9709 58.507232 70 1124 SUB-9D WC-G CAL C 1.4853805 0.017 70 1.5857852 70 1124 SUB-9D WC-G CAL C 1.48338056 0.018 C5 2.705518 55 1124 SUB-9D WC-G BaB 9 1.222.0176 78											
1117 SUB-00 SR-G GeB2 B 1502/1427 0.0.44 P78 28005005 76 1110 SUB-90 SR-G TaB B 20700.165 5.047 78 381313 78 1112 SUB-90 SR-G TaB B 9807.043 0.222 78 17.233873 78 1112 SUB-90 WO-G BuF B 1497.0227 0.034 55 1.4785184 55 1111 SUB-90 WO-G ChA C 207.0111 0.015 70 52.946463 70 1123 SUB-90 WO-G ChA C 202.0111 0.015 70 52.946463 70 1124 SUB-90 WO-G GhA C 1748.38630 0.033 770 1.1867822 70 1128 SUB-90 WO-G GhA C 1748.38630 0.033 770 2.11684578 79 1179 SUB-96 SR-G Ba											-
1106 SUB-0D SR-G TaB B 22070.165 5.067 78 78.93733 78 1113 SUB-0D WO-G BaF B 117.07645 0.027 55 1.47863188 55 1112 SUB-0D WO-G BaF B 1170.7645 0.027 55 1.47863188 55 1111 SUB-0D WO-G ChA C 13743.341 3.155 70 2.2044923 70 1120 SUB-0D WO-G ChA C 6414.3614 0.075 70 0.805322 70 1123 SUB-0D WO-G ChA C 6414.3614 0.147 70 0.1055325 70 1124 SUB-0D WO-G ChA C 718.55364 0.017 70 1.1867982 70 1130 SUB-0F Total WO-G ChA C 718.477 71 78 77 78 717 72.202.0317 6 717 717 <td></td>											
1113 SUB-90 SR-G TaB B 9867.443 0.222 P8 17.2938373 76 1122 SUB-90 WO-G BaF B 1170.7645 0.027 55 1.4785188 55 1125 SUB-90 WO-G BuF B 1497.72877 0.034 55 1.94312231 55 1111 SUB-90 WO-G ChA C 32743241 3.155 70 5.2848444 70 1120 SUB-90 WO-G ChA C 30412014 0.837 70 0.28489444 70 1123 SUB-90 WO-G ChA C 30412014 0.837 70 0.8469786 70 1120 SUB-90 WO-G GhA C 1451.8666 0.033 77 2.2050319 56 1170 SUB-90 WO-G GhA B 823.280074 0.011 78 2.01132221 78 11727 SUB-96 SR-G											
1122 SUB-90 WO-G BeF B 1110.7745 0.027 55 1.47863188 55 1111 SUB-80 WO-G ChA C 137431.341 3.155 7.0 2.20.44223 7.0 1119 SUB-80 WO-G ChA C 137431.341 3.155 7.0 2.20.44223 7.0 1123 SUB-80 WO-G ChA C 642.26115 0.147 7.0 1.305532 7.0 1124 SUB-80 WO-G ChA C 7.8483388 0.017 7.0 1.5686732 7.0 1128 SUB-80 WO-G CHA C 7.8437 0.051 7.5 7.7 7.8 2806729 7.0 1120 SUB-80 Total SPA B.9 P.1622424 7.0 1.16 7.8 7.8 0.2062192 7.6 1120 SUB-90 SPA G B.9 B.162812241 0.001 7.8 0.206620 7.8 0.113232											
1110 SUB-90 WO-G BaF BA M4377237 0.034 65 1.4841231 65 1111 SUB-90 WO-G ChA C 3770.211 0.075 7.0 2.2044228 7.0 1120 SUB-90 WO-G ChA C 3770.211 0.075 7.0 1.52548544 7.0 1124 SUB-90 WO-G ChA C 8441.5014 0.837 7.0 1.5574552 7.0 1124 SUB-90 WO-G ChA C 1463.89606 0.033 7.0 1.557452 7.0 1124 SUB-90 WO-G ChA C 1463.89606 0.031 7.0 1.557452 7.0 1120 SUB-90 SWG-6 BaB B 16222.0471 0.71 7.0 0.052002 7.6 1120 SUB-91 SWG-6 BaB B 49314.0641 15.003 7.8 1522.6026 7.6 1131 SUB-92 SR-G											
1111 SUB-90 WO-G ChA C 137431.341 3.155 70 22.084628 70 1120 SUB-90 WO-G ChA C 3270.0211 0.075 70 52.848548 70 1123 SUB-90 WO-G ChA C 944.15414 0.437 70 65.560722 70 1124 SUB-90 WO-G ChA C 1483.8950 0.033 70 2.3387865 70 1126 SUB-90 WO-G ChA C 1483.8950 0.051 75 7.0518 70 2.3387865 70 1120 SUB-90 SUB-90 SR-G BaB 8 63.236074 71 78 205.2021 78 1179 SUB-96 SR-G BaB 8 63.236074 0.001 78 70 112822 78 1130 SUB-96 SR-G BaD 8 63843.04 15.03 78 122.60026 78 112.22.60											
1119 SUB-9D WO-G ChA C 3270 0211 0.017 70 5.55489440 70 1123 SUB-9D WO-G ChA C 6412.0118 0.147 70 5.55489440 70 1124 SUB-9D WO-G ChA C 718.35380 0.017 70 1.5678952 70 1126 SUB-9D WO-G ChA C 1453.38566 0.031 70 2.3367865 70 1110 SUB-9D WO-G GeA2 78 2.700312 78 70.11322327 78 1128 SUB-9E SR-G BaB 6 622402.074 0.011 78 0.11322327 78 1177 SUB-9E SR-G BaB 8 16322402.41 3.733 70 2.7367356 76 1130 SUB-9E SR-G ChA C 2.8224.44 3.7347 78 70.1322427 78 459.41737356 76 773 78.32776 78 </td <td></td>											
1120 SUB-9D WO-G ChA C 9412,6118 0.147 TO 10.303325 70 1124 SUB-9D WO-G ChA C 3944,1514 0.837 TO 11.66,8692,27 70 1126 SUB-9D WO-G ChA C 1438,3563 0.017 TO 1.166,78962,7 70 1110 SUB-9D WO-G GeB2 B 2202,19078 0.018 E5 2.3837865 70 11128 SUB-9D Fotal T TO 1.65,8697232 78 70 1.112,73 2.05,29021 78 1170 SUB-9E SR-G BaD B 4531,6009 1.016 78 72,117941 78 122,20027 78 1132 SUB-9E SR-G BaD B 4331,6009 0.49 78 62,240444 78 122,80026 78 1133 SUB-9E SR-G ChA C 22,224,44 51,100,20 48 433,87385 88 1133											
1122 SUB-9D WO-G ChA C 39441.5014 0.837 Model 7D 58.5697232 7D 1126 SUB-9D WO-G ChA C 179.83389 0.017 7D 2.3837865 7D 1110 SUB-9D WO-G GeB2 B2 220.1078 0.051 7D 2.3837865 7D 1110 SUB-9D Total F 7A 0.118 590.86879 79 1122 SUB-9E SR-G BaB B1 1621.244 37.247 78 0.1132222.7 78 1132 SUB-9E SR-G BaD B 1621.244 37.33 78 201.792.27 78 1132 SUB-9E SR-G BaD B 632.360074 0.016 78 78.1232.06 78 78.1232.06 78 172.360076 78 172.360076 78 172.360076 78 173.33177 78 153.31477 78 153.31477 78 1134											
1124 SUB-9D WO-G ChA C 179.85383 0.071 70 1.15678952 70 1110 SUB-9D WO-G GeB2 B 2202.10078 0.033 70 2.3837865 70 1110 SUB-9D WO-G GeB2 B 2202.10078 0.031 70 2.3837865 70 1128 SUB-9D SUB-9D SR-G BaB B 2202.10074 0.011 76 2005.29021 78 1170 SUB-9E SR-G BaB B 632.30074 0.011 78 201.179461 78 1130 SUB-9E SR-G BaD B 48330.94 158.033 76 122.20026 78 1131 SUB-9E SR-G GAA C 2224.44 5.102 B5 433.673355 B5 1133 SUB-9E SR-G GAA C 2224.44 5.102 D61 76 449.447 78 1135											
1110 SUB-90 WO-G CA C 1453.8966 0.033 P0 2.3837865 P70 1110 SUB-90 Total WO-G GeB2 2218778 0.061 5 2.78057129 55 1128 SUB-96 Total SP-G BaB B 1622492.64 3.7.477 V 7.8 2015.2021 7.8 1179 SUB-96 SP-G BaB B 1632492.64 3.7.477 7.8 2211.17411 7.8 1127 SUB-96 SP-G BaD B 16321.641 3.7.33 7.8 221.17411 7.8 1130 SUB-96 SP-G BaD B 8959.84 16.0016 7.8 123.20216 7.8 1131 SUB-96 SP-G CAA C 224.44 5.102 0.85 43.87355 85 1136 SUB-96 SP-G CAA C 229.444 5.102 7.8 43.94147 78 1136 SUB-96 SP											
1110 SUB-90 Total row 75.437 Ot16 55 2.78053129 55 1128 SUB-96 SR-G BaB B 2005.20021 78 1170 SUB-96 SR-G BaB B 63.280074 0.001 78 0.1132322 78 1177 SUB-96 SR-G BaD B 63.280074 0.001 78 0.1132322 78 1130 SUB-96 SR-G BaD B 4361.609 10.016 78 73.37 78 78 73.3779 85 1130 SUB-96 SR-G CAA C 222.44.84 78 73.34.3779 78 74.34.3779 78 74.34.94147 78 1131											
SUB-90 Total Number Part			WO-G	GeB2	В				55		55
1128 SUB-9E SR-6 BaB B 1622492.44 97.47 78 2905.29021 78 1177 SUB-9E SR-6 BaB B 1622402.44 J.010 78 211.79481 78 1120 SUB-9E SR-6 BaD B 162812.541 3.733 78 221.179481 78 1132 SUB-9E SR-6 BaD B 688359.84 15.003 78 122.20025 78 1136 SUB-9E SR-6 ChA C 22244.84 5.102 85 433.67355 85 1146 SUB-9E SR-6 ChA C 2224.44 5.102 85 433.67355 85 1136 SUB-9E SR-6 ChA C 2226.44 5.102 85 433.67355 85 1133 SUB-9E SR-6 TaB B 226696.51 5.867 78 459.41467 79 1133 SUB-9E SR-6 Ta		SUB-9D Total					75.437	0.118			79
1127 SUB-BE SR-G BaD B 162612.541 3.733 778 221.174441 778 1130 SUB-BE SR-G BaD B 483016.069 10.106 778 778 122.800.06 778 1131 SUB-BE SR-G BaF B 36984.0399 0.849 778 162.248648 778 1136 SUB-BE SR-G ChA C 2224.44 5.102 85 0.17287099 85 1136 SUB-BE SR-G ChA C 2224.44 5.102 85 0.17287099 85 1134 SUB-BE SR-G TaB B 287664.26 6.602 778 514.341479 78 1133 SUB-BE SR-G TaB B 2206613.05 5.877 778 454.941477 78 1133 SUB-BE WATER BaB B 2221.94614 0.051 798 44.99891253 98 1176 SUB-BE<	1128		SR-G	BaB	В	1622492.84			78		
1130 SUB-9E SR-G BaD B 443616089 10.016 778 781.282.16 78 1131 SUB-9E SR-G BaF B 3684359.84 150.30 778 622.40648 78 1131 SUB-9E SR-G ChA C 222.44.84 5.102 85 433.673355 85 1146 SUB-9E SR-G ChA C 222.44.84 5.102 85 433.673355 85 1135 SUB-9E SR-G GoF C 889616.921 20.427 85 173.63.6778 85 1130 SUB-9E SR-G TaB B 2260.65126 0.051 78 3.9406601 78 1133 SUB-9E WATER BaD B 10032.08 2.303 98 22.5704.49 98 1176 SUB-9E WATER BaD B 10032.08 2.303 98 2.4784470 98 1177 SUB-9E WATER	1179	SUB-9E	SR-G	BaB	В	63.2360074	0.001		78	0.11323252	78
1132 SUB-9E SR-G BaD B 688359.44 15.003 778 1232.0026 778 1131 SUB-9E SR-G ChA C 222244 5.102 85 63224684 78 1136 SUB-9E SR-G ChA C 282444 5.102 85 0.1728709 85 1146 SUB-9E SR-G ChA C 886915.21 2.0427 85 0.1728709 85 1134 SUB-9E SR-G TaB B 286695.631 5.567 778 454.94147 78 1133 SUB-9E SR-G TaB B 2206515.61 0.551 78 459.941487 78 1133 SUB-9E WATER BaB B 2210651 0.551 78 459.941487 78 1175 SUB-9E WATER BaD B 100322.08 2.233 98 24.7844701 98 1177 SUB-9E WATER <td< td=""><td>1127</td><td>SUB-9E</td><td>SR-G</td><td>BaD</td><td>В</td><td>162612.541</td><td>3.733</td><td></td><td>78</td><td>291.179481</td><td>78</td></td<>	1127	SUB-9E	SR-G	BaD	В	162612.541	3.733		78	291.179481	78
1131 SUB-9E SR-G Bar B 3994 0.849 P8 66 224848 78 1136 SUB-9E SR-G ChA C 222244.84 S102 85 0.17287099 85 1135 SUB-9E SR-G ChA C 285913 0.002 85 0.17287099 85 1135 SUB-9E SR-G TaB B 287564.426 6.602 78 514.331779 78 1134 SUB-9E SR-G TaB B 2200.65126 0.051 78 459.941487 78 1133 SUB-9E WATER BaB B 2221.96561 0.051 98 4.99941223 98 1175 SUB-9E WATER BaD B 10022.08 2.303 98 22.701649 98 1177 SUB-9E WATER W D 5255753 1.207 98 118.23797 98 1143 SUB-9E WO-G BaB B<	1130	SUB-9E	SR-G	BaD	В	436316.069	10.016		78	781.282216	78
1136 SUB-9E SR-G ChA C 2224.44 5.102 85 433.67335 85 1146 SUB-9E SR-G ChA C 285.613 0.002 85 0.1722709 85 1129 SUB-9E SR-G GAF C 889816.921 20.427 85 1738.32778 85 1129 SUB-9E SR-G Tab B 226689.631 5.897 78 459.941497 78 1130 SUB-9E SR-G Tab B 2266856.10 1.5897 78 459.941497 78 1133 SUB-9E SR-G Tab B 2266856.10.051 78 12.5406061 89 1175 SUB-9E WATER Bab B 100322.08 2.303 98 42.750464 98 1177 SUB-9E WATER Bab B 16133268 3.470 55 190.92739 55 1161 SUB-9E WO-G Bab	1132	SUB-9E	SR-G	BaD	В	688359.84	15.803		78	1232.60026	78
1146 SUB-9E SR-G ChA C 8.913 0.002 85 0.17287099 85 1135 SUB-9E SR-G GoF C 890816.021 20.427 85 1738.32778 85 1129 SUB-9E SR-G TaB B 28769.425 6.602 78 514.931479 78 1134 SUB-9E SR-G TaB B 220.65712 0.051 78 3406601 78 1133 SUB-9E WATER BaB 221.96661 0.051 98 439991253 98 1175 SUB-9E WATER BaD B 100232.08 2.303 98 225.701649 98 1176 SUB-9E WATER BaD B 100322.08 2.303 98 225.701649 98 1177 SUB-9E WATER BaD B 1023726 3.433 55 180.82736 55 180.82736 55 180.827369 55 1818.237979	1131	SUB-9E	SR-G	BaF	В	36984.0399	0.849		78	66.2248648	78
1135 SUB-9E SR-G GoF C 83769.921 20.427 85 1736.32778 85 1129 SUB-9E SR-G TaB B 256859.631 5.897 78 514.931479 78 1134 SUB-9E SR-G TaB B 256859.631 5.897 78 459.941487 78 1180 SUB-9E SR-G TaB B 2266859.631 5.897 78 459.941487 78 1176 SUB-9E SR-G TaB B 2260561 0.051 78 3.9406601 78 1177 SUB-9E WATER BaD B 22303 98 24.7844701 98 1177 SUB-9E WATER BaD B 151135.268 3.470 55 190.827559 55 1143 SUB-9E WO-G BaB B 15135.268 3.470 55 55 190.827559 55 11337518 55 190.827559 55	1136	SUB-9E	SR-G	ChA	С	222244.84	5.102		85	433.673355	85
1129 SUB-9E SR-G TaB B 28769426 6 602 78 514.931479 78 1134 SUB-9E SR-G TaB B 25689.96 5.807 78 459.91487 78 1130 SUB-9E SR-G TaB B 2200.65126 0.051 78 459.91487 78 1133 SUB-9E WATER BaB B 221.96561 0.051 98 4.9981253 98 1176 SUB-9E WATER BaD B 100322.08 2.033 98 22.701649 98 1177 SUB-9E WATER GoF C 11016.4441 0.253 98 24.784701 98 1177 SUB-9E WATER GoF C 11016.4441 0.253 98 24.784701 98 1143 SUB-9E WO-G BaB B 151135.268 3.470 55 190.827367 55 1183 SUB-9E	1146	SUB-9E	SR-G	ChA	С	88.5913	0.002		85	0.17287099	85
1134 SUB-9E SR-G TaB B 258899.631 5.897 78 459.941487 78 1180 SUB-9E SR-G TaB B 2200.65126 0.051 78 3.906601 78 1175 SUB-9E WATER BaB B 2220.9561 0.051 98 4.99891253 98 1176 SUB-9E WATER BaB B 10032.20 2.303 98 2.25.701649 98 1178 SUB-9E WATER GoF C 11016.4441 0.253 98 2.27.01649 98 1177 SUB-9E WATER GoF C 11016.4441 0.233 98 2.27.01649 98 1143 SUB-9E WO-G BaB B 151135.288 3.470 55 190.827359 55 1183 SUB-9E WO-G BaB B 4224.3322 0.097 55 54.14267 55 1184 SUB-9E WO-G	1135	SUB-9E	SR-G	GoF	С	889816.921	20.427		85	1736.32778	85
1180 SUB-9E SR-G TaB B 2200.65126 0.061 78 3.940601 78 1133 SUB-9E SR-G W D 6141.91403 0.141 89 12.548061 89 1175 SUB-9E WATER BaB B 2221.96561 0.051 98 425.701649 98 1176 SUB-9E WATER BaD B 100322.08 2.303 98 225.701649 98 1177 SUB-9E WATER GoF C 11014.441 0.253 98 24.7844701 98 1177 SUB-9E WO-G BaB B 15037.266 3.453 150 190.82739 55 1183 SUB-9E WO-G BaB B 31207 98 118.23757 55 1183 SUB-9E WO-G BaD B 3224.2322 0.097 55 5.3376318 55 1144 SUB-9E WO-G BaD B<	1129	SUB-9E	SR-G	TaB	В	287569.426	6.602		78	514.931479	78
1133 SUB-9E SR-G W D 6141-91403 0.141 89 12.5489061 89 1175 SUB-9E WATER BaB B 2221.96561 0.051 98 4.989123 98 1176 SUB-9E WATER GoF C 11016.4441 0.253 98 225.701649 98 1177 SUB-9E WATER GoF C 11016.4441 0.253 98 24.7844701 98 1177 SUB-9E WATER W D 5255.5753 1.207 98 118.27379 98 1143 SUB-9E WO-G BaB B 15037.296 3.453 55 190.827389 55 1183 SUB-9E WO-G BaB B 3128.7108 0.731 55 40.1806919 55 1142 SUB-9E WO-G BaD B 23569.689 5.410 55 95.114276 55 1144 SUB-9E WO-G	1134	SUB-9E		TaB	В	256859.631	5.897		78	459.941487	78
1175 SUB-9E WATER BaB B 2221 96561 0.051 98 4.99891253 98 1176 SUB-9E WATER BaD B 100322.08 2.303 98 225.701649 98 1177 SUB-9E WATER GoF C 11016.4441 0.253 98 24.7844701 98 1143 SUB-9E WO-G BaB B 151135.288 3.470 55 190.827395 55 1183 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.5 40.180919 55 1183 SUB-9E WO-G BaB B 7331 55 40.180919 55 1142 SUB-9E WO-G BaD B 2375.876 5.5 1144 55 93.412576 55 1142 SUB-9E WO-G BaD B 23680.698 5.410 55 93.4142576 55 1144 SUB-9E W	1180	SUB-9E	SR-G	TaB	В	2200.65126	0.051		78	3.9405601	78
1176 SUB-9E WATER BaD B 10032.08 2.303 98 225.701649 98 1178 SUB-9E WATER GoF C 11016.4441 0.253 98 24.7844701 98 1177 SUB-9E WATER W D 5255.5753 1.207 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.23797 98 118.3 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.33375318 55 118.9 SUB-9E WO-G BaD B 2678.3048 0.061 55 95.1142576 55 1144 SUB-9E WO-G BaD B 2678.3048 0.061 55 297.562714 55 11.145065 55	1133	SUB-9E	SR-G	W	D	6141.91403	0.141		89	12.5489061	89
1178 SUB-9E WATER GoF C 11016.4441 0.253 98 24.7844701 98 1177 SUB-9E WATER W D 5255.5753 1.207 98 118.237979 98 1143 SUB-9E WO-G BaB B 15135.268 3.470 55 190.827359 55 1161 SUB-9E WO-G BaB B 15037.296 3.463 55 189.895676 55 1183 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.3375318 55 1117 SUB-9E WO-G BaD B 75351.876 1.730 55 95.1412576 55 1142 SUB-9E WO-G BaD B 5077.1411 1.264 55 95.4142576 55 1144 SUB-9E WO-G BaD B 23569.669 5.410 55 125.39689 55 1147 SUB-9E WO-G											
1178 SUB-9E WATER GoF C 11016.4441 0.253 98 24.7844701 98 11177 SUB-9E WATER W D 5255.5753 1.207 98 118.237979 98 11143 SUB-9E WO-G BaB B 15135.268 3.473 55 190.827359 55 1161 SUB-9E WO-G BaB B 15037.226 3.453 55 198.98576 555 1183 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.3375318 555 1187 SUB-9E WO-G BaD B 7581.876 1.730 55 95.1412676 555 1142 SUB-9E WO-G BaD B 2678.3048 0.061 55 297.562.714 555 1144 SUB-9E WO-G BaD B 23569.6669 5.410 55 127.339689 555 1155 SUB-9E WO-G	1176	SUB-9E	WATER	BaD	В	100322.08	2.303		98	225.701649	98
1177 SUB-9E WATER W D 52555,753 1.207 98 118,237979 98 11143 SUB-9E WO-G BaB B 151135,268 3.470 55 198,29739 55 11161 SUB-9E WO-G BaB B 150397.296 3.453 55 198,295753 55 1183 SUB-9E WO-G BaB B 4224,33252 0.097 55 5.3375318 55 1187 SUB-9E WO-G BaB B 31823.108 0.731 55 4.01806919 55 1139 SUB-9E WO-G BaD B 2678.3048 0.061 55 3.3816978 55 1144 SUB-9E WO-G BaD B 23669.669 5.410 55 125.39869 55 1150 SUB-9E WO-G BaD B 89269.033 2.279 55 125.39869 55 1155 SUB-9E WO-G	1178	SUB-9E	WATER	GoF	С	11016.4441			98	24.7844701	98
1161 SUB-9E WO-G BaB B 150397.296 3.453 55 189.895576 55 1183 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.33375318 55 1187 SUB-9E WO-G BaB B 31823.108 0.731 55 40.1806919 55 1139 SUB-9E WO-G BaD B 75351.876 1.730 55 95.1412576 55 1142 SUB-9E WO-G BaD B 2578.3048 0.061 55 338169798 55 1144 SUB-9E WO-G BaD B 25766.669 5.410 55 297.562714 55 1150 SUB-9E WO-G BaD B 9269.0339 2.279 55 1125.339689 55 1153 SUB-9E WO-G BaD B 8742.9411 0.201 55 11.0390681 55 1163 SUB-9E WO-G						52555.5753					98
1183 SUB-9E WO-G BaB B 4224.33252 0.097 55 5.33375318 55 1187 SUB-9E WO-G BaB B 31823.108 0.731 55 40.1806919 55 1139 SUB-9E WO-G BaD B 75518.876 1.730 55 95.141257 55 1142 SUB-9E WO-G BaD B 2678.3048 0.061 55 3.38169798 55 1144 SUB-9E WO-G BaD B 55077.1411 1.264 55 09.5414257 55 1147 SUB-9E WO-G BaD B 92660.039 2.279 55 125.339689 55 1153 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.1845066 55 1163 SUB-9E WO-G BaD B 1874.251 4.305 55 232.751581 55 1163 SUB-9E WO-G											
1187 SUB-9E WO-G BaB B 31823.108 0.731 55 40.1806919 55 1139 SUB-9E WO-G BaD B 75351.876 1.730 55 95.1412576 55 1142 SUB-9E WO-G BaD B 2678.3048 0.061 55 3.38169798 55 1144 SUB-9E WO-G BaD B 56077.1411 1.264 55 695.41448 55 1147 SUB-9E WO-G BaD B 23669.669 5.410 55 125.339689 55 1150 SUB-9E WO-G BaD B 8885.12917 0.203 55 11.1845065 55 1153 SUB-9E WO-G BaD B 187544.251 4.305 55 236.798297 55 1163 SUB-9E WO-G BaD B 1847.2932 0.423 55 236.798297 55 1163 SUB-9E WO-G											
1139 SUB-9E WO-G BaD B 75351.876 1.730 55 95.1412576 55 1142 SUB-9E WO-G BaD B 2678.3048 0.061 55 3.38169798 55 1144 SUB-9E WO-G BaD B 25077.1411 1.264 55 69.5418448 55 1147 SUB-9E WO-G BaD B 235669.669 5.410 55 125.39689 55 1150 SUB-9E WO-G BaD B 99269.0339 2.279 55 115.339689 55 1153 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 18754.251 4.305 55 226.79297 55 1183 SUB-9E WO-G BaD B 18417.2932 0.423 55 23.2541581 55 1192 SUB-9E WO-G											
1142 SUB-9E WO-G BaD B 2678.3048 0.061 55 3.38169798 55 1144 SUB-9E WO-G BaD B 55077.1411 1.264 55 69.5418448 55 1147 SUB-9E WO-G BaD B 23669.669 5.410 55 297.562714 55 1150 SUB-9E WO-G BaD B 9269.0339 2.279 55 115.5 114.845065 55 1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 8742.94191 0.201 55 23.6798297 55 1163 SUB-9E WO-G BaD B 18417.232 0.423 55 23.6794297 55 1189 SUB-9E WO-G BaD B 1007.81513 0.002 55 0.13126247 55 1162 SUB-9E											55
1144 SUB-9E WO-G BaD B 55077.1411 1.264 55 69.5418448 55 1147 SUB-9E WO-G BaD B 235669.669 5.410 55 297.562714 55 1150 SUB-9E WO-G BaD B 99269.0339 2.279 55 115.348506 55 1153 SUB-9E WO-G BaD B 8858.12917 0.203 55 11.14505 55 1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 18754.251 4.305 55 23.2541811 55 1189 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.27249385 55 1158 SUB-9E WO-G BaF B 103.959874 0.002 55 415.28013273 55 1162 SUB-9E WO-G											
1147 SUB-9E WO-G BaD B 23669.669 5.410 55 297.562714 55 1150 SUB-9E WO-G BaD B 99269.0339 2.279 55 125.339889 55 1153 SUB-9E WO-G BaD B 8858.12917 0.203 55 11.184066 55 1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.030681 55 1163 SUB-9E WO-G BaD B 18754.251 4.305 55 236.798297 55 1189 SUB-9E WO-G BaD B 18417.2932 0.423 55 1.12494385 55 1192 SUB-9E WO-G BaP B 1007.81513 0.023 55 1.3126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.20139 55 1161 SUB-9E WO-G BaF B 328901.87 7.551 55 44.233273 55 1											
1150 SUB-9E WO-G BaD B 99269.0339 2.279 55 125.339689 55 1153 SUB-9E WO-G BaD B 8858.12917 0.203 55 11.1845065 55 1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390817 55 1163 SUB-9E WO-G BaD B 187544.251 4.305 55 236.79297 55 1189 SUB-9E WO-G BaD B 187544.251 4.305 55 23.2541581 55 1192 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.12749385 55 1162 SUB-9E WO-G BaF B 103.959874 0.002 55 0.13126247 55 1167 SUB-9E WO-G BaF B 3503.27952 0.080 55 44.233273 55 1170 SUB-9E WO-G											
1153 SUB-9E WO-G BaD B 8858.12917 0.203 55 11.1845065 55 1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 187544.251 4.305 55 236.798297 55 1189 SUB-9E WO-G BaD B 18417.2932 0.423 55 23.2541581 55 1192 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.3126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.280139 55 1167 SUB-9E WO-G BaF B 3503.27952 0.080 55 43.233273 55 1170 SUB-9E WO-G											
1155 SUB-9E WO-G BaD B 8742.94191 0.201 55 11.0390681 55 1163 SUB-9E WO-G BaD B 187544.251 4.305 55 236.798297 55 1189 SUB-9E WO-G BaD B 187544.251 4.305 55 232.678297 55 1192 SUB-9E WO-G BaD B 1847.2932 0.423 55 1.2749385 55 1158 SUB-9E WO-G BaF B 103.959874 0.002 55 0.13126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.280139 55 1167 SUB-9E WO-G BaF B 328901.87 7.551 55 44233273 55 1170 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1173 SUB-9E WO-G											
1163 SUB-9E WO-G BaD B 187544.251 4.305 55 236.798297 55 1189 SUB-9E WO-G BaD B 18417.2932 0.423 55 23.2541581 55 1192 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.27249385 55 1158 SUB-9E WO-G BaF B 1003.959874 0.002 55 0.13126247 55 1162 SUB-9E WO-G BaF B 3503.27952 0.080 55 4.42332273 55 1170 SUB-9E WO-G BaF B 27536.3064 0.632 55 34.7680637 55 1173 SUB-9E WO-G BaF B 2392.5083 0.549 55 30.208449 55 1181 SUB-9E WO-G BaF B 2392.5083 0.549 55 3.2384449 55 1184 SUB-9E WO-G											
1189 SUB-9E WO-G BaD B 18417.2932 0.423 55 23.2541581 55 1192 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.27249385 55 1158 SUB-9E WO-G BaF B 103.959874 0.002 55 0.13126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.200139 55 1167 SUB-9E WO-G BaF B 3503.27952 0.080 55 4.42333273 55 1170 SUB-9E WO-G BaF B 2536.064 0.632 55 34.7680637 55 1173 SUB-9E WO-G BaF B 35919.0037 0.825 55 35.02774 55 1181 SUB-9E WO-G BaF B 23925.083 0.549 55 30.2084449 55 1184 SUB-9E WO-G											
1192 SUB-9E WO-G BaD B 1007.81513 0.023 55 1.27249385 55 1158 SUB-9E WO-G BaF B 103.959874 0.002 55 0.13126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.280139 55 1167 SUB-9E WO-G BaF B 32801.87 7.551 55 415.280139 55 1170 SUB-9E WO-G BaF B 32503.27952 0.080 55 4.42333273 55 1170 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1181 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1184 SUB-9E WO-G BaF B 23925.0883 0.549 55 5.0284409 55 1184 SUB-9E WO-G											
1158 SUB-9E WO-G BaF B 103.959874 0.002 55 0.13126247 55 1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.280139 55 1167 SUB-9E WO-G BaF B 328901.87 7.551 55 4145.280139 55 1167 SUB-9E WO-G BaF B 3503.27962 0.080 55 4.4233273 55 1170 SUB-9E WO-G BaF B 27536.3064 0.632 55 43.7680637 55 1173 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1181 SUB-9E WO-G BaF B 23925.0883 0.549 55 30.2084449 55 1184 SUB-9E WO-G BaF B 2131.3515 0.489 55 26.9107973 55 1188 SUB-9E WO-G											
1162 SUB-9E WO-G BaF B 328901.87 7.551 55 415.280139 55 1167 SUB-9E WO-G BaF B 3503.27952 0.080 55 4.4233273 55 1170 SUB-9E WO-G BaF B 27536.3064 0.632 55 4.4233273 55 1173 SUB-9E WO-G BaF B 27536.3064 0.632 55 4.522774 55 1173 SUB-9E WO-G BaF B 2392.5083 0.549 55 30.208449 55 1184 SUB-9E WO-G BaF B 2392.5083 0.549 55 5.23843015 55 1184 SUB-9E WO-G BaF B 21313.3515 0.489 55 26.9107973 55 1188 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G											
1167 SUB-9E WO-G BaF B 3503.27952 0.080 55 4.4233273 55 1170 SUB-9E WO-G BaF B 27536.3064 0.632 55 34.7680637 55 1173 SUB-9E WO-G BaF B 27536.3064 0.632 55 34.7680637 55 1173 SUB-9E WO-G BaF B 23925.0883 0.549 55 30.208449 55 1184 SUB-9E WO-G BaF B 23925.0883 0.549 55 5.23843015 55 1188 SUB-9E WO-G BaF B 21313.3515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75768647 70 1141 SUB-9E WO-G											
1170 SUB-9E WO-G BaF B 27536.3064 0.632 55 34.7680637 55 1173 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1181 SUB-9E WO-G BaF B 23925.0883 0.549 55 30.208449 55 1184 SUB-9E WO-G BaF B 4148.83668 0.095 55 5.23843015 55 1188 SUB-9E WO-G BaF B 2131.3515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.72318 70											
1173 SUB-9E WO-G BaF B 35919.0037 0.825 55 45.3522774 55 1181 SUB-9E WO-G BaF B 23925.0883 0.549 55 30.2084449 55 1184 SUB-9E WO-G BaF B 4148.3668 0.095 55 5.23843015 55 1188 SUB-9E WO-G BaF B 2131.3515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 775.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.72318 70											
1181 SUB-9E WO-G BaF B 23925.0883 0.549 55 30.2084449 55 1184 SUB-9E WO-G BaF B 4148.83668 0.095 55 5.23843015 55 1188 SUB-9E WO-G BaF B 2131.33515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75768447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1184 SUB-9E WO-G BaF B 4148.83668 0.095 55 5.23843015 55 1188 SUB-9E WO-G BaF B 21313.3515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1188 SUB-9E WO-G BaF B 21313.3515 0.489 55 26.9107973 55 1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1191 SUB-9E WO-G BaF B 7735.14548 0.178 55 9.76659783 55 1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1138 SUB-9E WO-G ChA C 4827.60824 0.111 70 7.75786447 70 1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1141 SUB-9E WO-G ChA C 182157.539 4.182 70 292.723318 70											
1152 SUB-9E WO-G ChA C 1233.28372 0.028 70 1.9818609 70											
	1150	SUB-9E	WO-G	ChA	С	1233.28372	0.028		70	1.9818609	70

ID	DA	Cover	Soils	HSG	Area	Area (Acres)	Area (Sq.Miles)	CN	CN*A	Weighted CN
1157	SUB-9E	WO-G	ChA	С	3606.42148	0.083		70	5.79544314	70
1160	SUB-9E	WO-G	ChA	С	17932.7671	0.412		70	28.817578	70
1166	SUB-9E	WO-G	ChA	С	8291.84581	0.190		70	13.3248211	70
1168	SUB-9E	WO-G	ChA	С	10712.6113	0.246		70	17.21494	70
1169	SUB-9E	WO-G	ChA	С	2330.09008	0.053		70	3.74440555	70
1172	SUB-9E	WO-G	ChA	С	9700.1882	0.223		70	15.5879976	70
1174	SUB-9E	WO-G	ChA	С	7075.88971	0.162		70	11.3708053	70
1186	SUB-9E	WO-G	ChA	С	204.432405	0.005		70	0.32851856	70
1137	SUB-9E	WO-G	GoF	С	0.08897791	0.000		70	0.00014299	70
1140	SUB-9E	WO-G	GoF	С	433516.628	9.952		70	696.652065	70
1145	SUB-9E	WO-G	GoF	С	219513.898	5.039		70	352.754197	70
1149	SUB-9E	WO-G	GoF	С	182110.475	4.181		70	292.647687	70
1151	SUB-9E	WO-G	GoF	С	48127.8351	1.105		70	77.3404146	70
1154	SUB-9E	WO-G	GoF	С	8627.78271	0.198		70	13.8646646	70
1156	SUB-9E	WO-G	GoF	С	13879.4904	0.319		70	22.3040479	70
1159	SUB-9E	WO-G	GoF	С	16935.0781	0.389		70	27.2143128	70
1165	SUB-9E	WO-G	GoF	С	35944.8008	0.825		70	57.7625358	70
1164	SUB-9E	WO-G	TaB	В	15910.0117	0.365		55	20.0883987	55
1171	SUB-9E	WO-G	TaB	В	3837.49823	0.088		55	4.84532605	55
1182	SUB-9E	WO-G	TaB	В	2303.76545	0.053		55	2.90879477	55
1185	SUB-9E	WO-G	TaB	В	1476.04361	0.034		55	1.86369142	55
1190	SUB-9E	WO-G	TaB	В	966.10688	0.022		55	1.21983192	55
1148	SUB-9E	WO-G	W	D	1881.50739	0.043		77	3.32589689	77
	SUB-9E Total					172.044	0.269		12658.2217	74
	Grand Total					3999.723	6.250		277183.473	

APPENDIX C: Watershed Lag Time and Time of Concentration Calculations

=

WATERSHED LA	G TIME CALCUL	ATIONS	
SUB-AREA NUMBER	SUB-1		
total contour length, C (Ft) =	98189.52		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	22753794.72		
Average watershed slope, Y (%) =	8.63		
watershed hydraulic length, I (Ft)=	8297.60		
Weighted CN (Dimensionless) =	70.00		
Time of Concentration, T _c (Hours)	1.31		
Time of Concentration, T _c (Minutes)	78.44		
Watershed Lag Time, T _L (Minutes)	47.07	(0.6*T _c)	

WATERSHED LA	G TIME CALCUL	ATIONS	
SUB-AREA NUMBER	SUB-2		
total contour length, C (Ft) =	66281.62		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	11580583.53		
Average watershed slope, Y (%) =	11.45		
watershed hydraulic length, I (Ft)=	6099.48		
Weighted CN (Dimensionless) =	65.00		
Time of Concentration, Tc (Hours)	1.01		
Time of Concentration, Tc (Minutes)	60.78		
Watershed Lag Time, TL (Minutes)	36.47	(0.6*Tc)	

WATERSHED LA	G TIME CALCUI	ATIONS	
SUB-AREA NUMBER	SUB-3		
total contour length, C (Ft) =	28930.78		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	3841129.13		
Average watershed slope, Y (%) =	15.06		
watershed hydraulic length, I (Ft)=	3509.25		
Weighted CN (Dimensionless) =	58.00		
Time of Concentration, Tc (Hours)	0.68		
Time of Concentration, Tc (Minutes)	40.71		
Watershed Lag Time, TL (Minutes)	24.42	(0.6*Tc)	

WATERSHED LAG TI	ME CALCULATI	IONS	
SUB-AREA NUMBER	SUB-3A		
total contour length, C (Ft) =	20427.58		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	4838696.36		
Average watershed slope, Y (%) =	8.44		
watershed hydraulic length, I (Ft)=	6161.76		
Weighted CN (Dimensionless) =	69.00		
Time of Concentration, Tc (Hours)	1.07		
Time of Concentration, Tc (Minutes)	64.21		
Watershed Lag Time, TL (Minutes)	38.53	(0.6*Tc)	

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-4			
total contour length, C (Ft) =	56620.45			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	12311878.99			
Average watershed slope, Y (%) =	9.20			
watershed hydraulic length, I (Ft)=	6258.00			
Weighted CN (Dimensionless) =	74.00			
Time of Concentration, Tc (Hours)	0.90			
Time of Concentration, Tc (Minutes)	54.29			
Watershed Lag Time, TL (Minutes)	32.57	(0.6*Tc)		

WATERSHED LAG T		ONS	
SUB-AREA NUMBER	SUB-5		
total contour length, C (Ft) =	76290.6806		
contour interval, I (Ft)	20		
Drainage area, A (Sq.Ft) =	10026217.06		
Average watershed slope, Y (%) =	15.22		
watershed hydraulic length, I (Ft)=	7191.86		
Weighted CN (Dimensionless) =	69		
Time of Concentration, Tc (Hours)	0.90		
Time of Concentration, Tc (Minutes)	54.12		
Watershed Lag Time, TL (Minutes)	32.47	(0.6*Tc)	

WATERSHED LAG TI	ME CALCULATI	IONS	
SUB-AREA NUMBER	SUB-5A		
total contour length, C (Ft) =	11603.90		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	3412497.50		
Average watershed slope, Y (%) =	6.80		
watershed hydraulic length, I (Ft)=	6829.54		
Weighted CN (Dimensionless) =	69.00		
Time of Concentration, Tc (Hours)	1.29		
Time of Concentration, Tc (Minutes)	77.68		
Watershed Lag Time, TL (Minutes)	46.61	(0.6*Tc)	

WATERSHED LAG T		ONS	
SUB-AREA NUMBER	SUB-6		
total contour length, C (Ft) =	59797.37		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	12270184.78		
Average watershed slope, Y (%) =	9.75		
watershed hydraulic length, I (Ft)=	8637.78		
Weighted CN (Dimensionless) =	65.00		
Time of Concentration, Tc (Hours)	1.45		
Time of Concentration, Tc (Minutes)	87.00		
Watershed Lag Time, TL (Minutes)	52.20	(0.6*Tc)	

WATERSHED LAG TI	WATERSHED LAG TIME CALCULATIONS			
SUB-AREA NUMBER	SUB-7			
total contour length, C (Ft) =	6466.06			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	1087484.57			
Average watershed slope, Y (%) =	11.89			
watershed hydraulic length, I (Ft)=	2052.77			
Weighted CN (Dimensionless) =	62.00			
Time of Concentration, Tc (Hours)	0.45			
Time of Concentration, Tc (Minutes)	26.95			
Watershed Lag Time, TL (Minutes)	16.17	(0.6*Tc)		

WATERSHED LAG TIN	IE CALCULATI	ONS	
SUB-AREA NUMBER	SUB-7A		
total contour length, C (Ft) =	1210.57		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	379273.05		
Average watershed slope, Y (%) =	6.38		
watershed hydraulic length, I (Ft)=	1442.02		
Weighted CN (Dimensionless) =	82.00		
Time of Concentration, Tc (Hours)	0.26		
Time of Concentration, Tc (Minutes)	15.81		
Watershed Lag Time, TL (Minutes)	9.49	(0.6*Tc)	

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-8			
total contour length, C (Ft) =	35909.77			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	9115103.55			
Average watershed slope, Y (%) =	7.88			
watershed hydraulic length, I (Ft)=	7098.37			
Weighted CN (Dimensionless) =	67.00			
Time of Concentration, Tc (Hours)	1.31			
Time of Concentration, Tc (Minutes)	78.49			
Watershed Lag Time, TL (Minutes)	47.10	(0.6*Tc)		

WATERSHED LAG TI	ME CALCULATIO	NS	
SUB-AREA NUMBER	SUB-9		
total contour length, C (Ft) =	59663.16		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	11514139.70		
Average watershed slope, Y (%) =	10.36		
watershed hydraulic length, I (Ft)=	6399.65		
Weighted CN (Dimensionless) =	68.00		
Time of Concentration, Tc (Hours)	1.02		
Time of Concentration, Tc (Minutes)	61.35		
Watershed Lag Time, TL (Minutes)	36.81	(0.6*Tc)	

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-9A			
total contour length, C (Ft) =	3789.05			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	649740.40			
Average watershed slope, Y (%) =	11.66			
watershed hydraulic length, I (Ft)=	2374.57			
Weighted CN (Dimensionless) =	71.00			
Time of Concentration, Tc (Hours)	0.40			
Time of Concentration, Tc (Minutes)	24.14			
Watershed Lag Time, TL (Minutes)	14.48	(0.6*Tc)		

WATERSHED LAG TIM	WATERSHED LAG TIME CALCULATIONS			
SUB-AREA NUMBER	SUB-9B			
total contour length, C (Ft) =	4407.92			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	1990520.39			
Average watershed slope, Y (%) =	4.43			
watershed hydraulic length, I (Ft)=	2750.50			
Weighted CN (Dimensionless) =	80.00			
Time of Concentration, Tc (Hours)	0.57			
Time of Concentration, Tc (Minutes)	33.92			
Watershed Lag Time, TL (Minutes)	20.35	(0.6*Tc)		

WATERSHED LAG TIN	IE CALCULATIO	ONS	
SUB-AREA NUMBER	SUB-9C		
total contour length, C (Ft) =	6788.04		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	2623135.26		
Average watershed slope, Y (%) =	5.18		
watershed hydraulic length, I (Ft)=	3871.68		
Weighted CN (Dimensionless) =	78.00		
Time of Concentration, Tc (Hours)	0.73		
Time of Concentration, Tc (Minutes)	43.86		
Watershed Lag Time, TL (Minutes)	26.32	(0.6*Tc)	

WATERSHED LAG TIM	IE CALCULATIO	ONS	
SUB-AREA NUMBER	SUB-9D		
total contour length, C (Ft) =	8497.13		
contour interval, I (Ft)	20.00		
Drainage area, A (Sq.Ft) =	3286019.25		
Average watershed slope, Y (%) =	5.17		
watershed hydraulic length, I (Ft)=	5317.00		
Weighted CN (Dimensionless) =	79.00		
Time of Concentration, Tc (Hours)	0.91		
Time of Concentration, Tc (Minutes)	54.86		
Watershed Lag Time, TL (Minutes)	32.92	(0.6*Tc)	

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-9E			
total contour length, C (Ft) =	40222.61			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	7494223.71			
Average watershed slope, Y (%) =	10.73			
watershed hydraulic length, I (Ft)=	5247.63			
Weighted CN (Dimensionless) =	74.00			
Time of Concentration, Tc (Hours)	0.73			
Time of Concentration, Tc (Minutes)	43.65			
Watershed Lag Time, TL (Minutes)	26.19	(0.6*Tc)		

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-10			
total contour length, C (Ft) =	243977.39			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	53435661.84			
Average watershed slope, Y (%) =	9.13			
watershed hydraulic length, I (Ft)=	13559.06			
Weighted CN (Dimensionless) =	69.00			
Time of Concentration, Tc (Hours)	1.93			
Time of Concentration, Tc (Minutes)	116.04			
Watershed Lag Time, TL (Minutes)	69.62	(0.6*Tc)		

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-10A			
total contour length, C (Ft) =	30689.94			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	5734662.48			
Average watershed slope, Y (%) =	10.70			
watershed hydraulic length, I (Ft)=	5952.11			
Weighted CN (Dimensionless) =	75.00			
Time of Concentration, Tc (Hours)	0.78			
Time of Concentration, Tc (Minutes)	46.99			
Watershed Lag Time, TL (Minutes)	28.19	(0.6*Tc)		

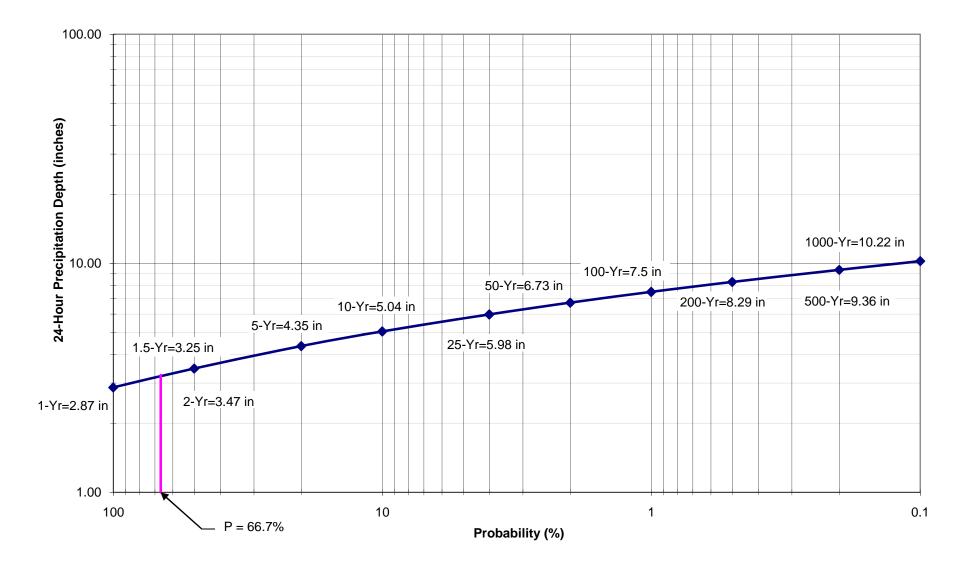
WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-11			
total contour length, C (Ft) =	5420.67			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	1278396.60			
Average watershed slope, Y (%) =	8.48			
watershed hydraulic length, I (Ft)=	2438.02			
Weighted CN (Dimensionless) =	72.00			
Time of Concentration, Tc (Hours)	0.47			
Time of Concentration, Tc (Minutes)	28.13			
Watershed Lag Time, TL (Minutes)	16.88	(0.6*Tc)		

WATERSHED LAG TIME CALCULATIONS				
SUB-AREA NUMBER	SUB-11A			
total contour length, C (Ft) =	1164.45			
contour interval, I (Ft)	20.00			
Drainage area, A (Sq.Ft) =	363215.87			
Average watershed slope, Y (%) =	6.41			
watershed hydraulic length, I (Ft)=	1149.13			
Weighted CN (Dimensionless) =	80.00			
Time of Concentration, Tc (Hours)	0.23			
Time of Concentration, Tc (Minutes)	14.02			
Watershed Lag Time, TL (Minutes)	8.41	(0.6*Tc)		

APPENDIX D: Hydrologic Reach Routing Calculations

_

HYDROLOGIC REACH LENGTH CALCULATIONS							
Reach Location	POI-1 to POI-2	POI-2 to POI-3	POI-3 to POI-4	POI-4 to POI-5	POI-5 to POI-6	POI-6 to POI-7	POI-7 to POI-8
Reach Length (Ft)	2504.46	4568.61	912.18	1496.37	962.03	3588.25	232.22
Upstream Invert Elevation (Ft)	671.00	658.60	633.53	629.59	623.98	620.50	605.33
Downstream Invert Elevation (Ft)	658.60	633.53	629.59	623.98	620.50	605.33	605.30
Reach Slope (Ft/Ft)	0.0050	0.0055	0.0043	0.0037	0.0036	0.0042	0.0001


APPENDIX E: 1.5 Year 24-Hour Precipitation Depth Calculations

1.5 Year 24 Hour Precipitation Depth Calculations

Selected Precipitation Values by Recurrence Intervals (from NOAA)					
Frequency	Probability (%)	24-Hr Precipitation Depths (inches)			
1 -Year	100	2.87			
2 -Year	50	3.47			
5 -Year	20	4.35			
10 -Year	10	5.04			
25 -Year	4	5.98			
50 -Year	2	6.73			
100 -Year	1	7.50			
200 -Year	0.5	8.29			
500 -Year	0.2	9.36			
1000 -Year	0.1	10.22			

24-Hr Precipitation Depth Estimate (See Attached Logarithmic Plot)				
Frequency	24-Hr Precipitation Depths (inches)			
1.5 -Year	66.7	1.00		
1.5 -Year	66.7	3.25		

1.5 Year 24-Hour Precipitation Depth Estimate

APPENDIX F: HEC-HMS Peak Flows Summary

LITTLE BUFFALO CREEK - EXISTING CONDITIONS FLOW SUMMARY - 1.5 YEAR									
CONTRIBUTING HYDROLOGIC ELEMENT	DGIC ELEMENT AREA (MI ²) DISCHARG (CFS)		VOLUME (IN)						
SUB-1	0.816	181.30	0.86						
SUB-2	0.415	71.30	0.62						
POI-1	1.231	248.90	0.78						
POI-1 TO POI-2	1.231	247.80	0.78						
SUB-4	0.442	171.80	1.07						
SUB-3A	0.174	38.90	0.81						
SUB-3	0.138	12.80	0.36						
POI-2	1.985	425.40	0.82						
POI-2 TO POI-3	1.985	422.20	0.82						
SUB-6	0.440	58.50	0.62						
SUB-5	0.360	96.90	0.81						
SUB-5A	0.122	25.20	0.81						
POI-3	2.907	568.30	0.79						
POI-3 TO POI-4	2.907	567.20	0.79						
SUB-8	0.327	56.50	0.71						
SUB-7	0.039	8.50	0.50						
SUB-7A	0.014	18.00	1.58						
POI-4	3.287	626.70	0.78						
POI-4 TO POI-5	3.287	624.00	0.78						
SUB-9	0.413	93.20	0.76						
SUB-9B	0.071	54.40	1.44						
SUB-9A	0.023	12.70	0.91						
POI-5	3.794	705.70	0.79						
POI-5 TO POI-6	3.794	703.70	0.79						
SUB-9C	0.094	54.30	1.31						
POI-6	3.888	722.70	0.80						
POI-6 TO POI-7	3.888	717.30	0.80						
SUB-10	1.710	262.20	0.81						
SUB-9E	0.269	122.30	1.07						
SUB-10A	0.206	94.80	1.13						
SUB-9D	0.118	61.50	1.37						
POI-7	6.191	1068.50	0.84						
POI-7 TO POI-8	6.191	1062.40	0.84						
SUB-11	0.046	24.70	0.96						
SUB-11A	0.013	15.90	1.44						
POI-8	6.250	1067.10	0.84						

LITTLE BUFFALO CREEK -	EXISTING CONDI		ARY - 2 YEAR
CONTRIBUTING HYDROLOGIC ELEMENT	DRAINAGE AREA (MI ²)	PEAK DISCHARGE (CFS)	VOLUME (IN)
SUB-1	0.816	214.70	0.99
SUB-2	0.415	87.80	0.74
POI-1	1.231	297.80	0.90
POI-1 TO POI-2	1.231	296.50	0.90
SUB-4	0.442	198.70	1.22
SUB-3A	0.174	46.40	0.94
SUB-3	0.138	17.40	0.44
POI-2	1.985	507.10	0.94
POI-2 TO POI-3	1.985	503.30	0.94
SUB-6	0.440	71.80	0.74
SUB-5	0.360	115.60	0.94
SUB-5A	0.122	30.00	0.94
POI-3	2.907	680.70	0.91
POI-3 TO POI-4	2.907	679.30	0.91
SUB-8	0.327	68.30	0.83
SUB-7	0.039	10.90	0.60
SUB-7A	0.014	20.10	1.76
POI-4	3.287	751.30	0.90
POI-4 TO POI-5	3.287	748.20	0.90
SUB-9	0.413	112.00	0.88
SUB-9B	0.071	61.20	1.61
SUB-9A	0.023	14.80	1.04
POI-5	3.794	847.20	0.92
POI-5 TO POI-6	3.794	844.70	0.92
SUB-9C	0.094	61.60	1.47
POI-6	3.888	866.90	0.93
POI-6 TO POI-7	3.888	860.50	0.93
SUB-10	1.710	311.80	0.94
SUB-9E	0.269	141.40	1.22
SUB-10A	0.206	109.00	1.28
SUB-9D	0.118	69.50	1.54
POI-7	6.191	1276.10	0.97
POI-7 TO POI-8	6.191	1269.10	0.97
SUB-11	0.046	28.80	1.10
SUB-11A	0.013	17.80	1.61
POI-8	6.250	1274.50	0.97

LITTLE BUFFALO CREEK -	EXISTING CONDI		IARY - 5 YEAR	
CONTRIBUTING HYDROLOGIC ELEMENT	DRAINAGE AREA (MI ²)	PEAK DISCHARGE (CFS)	VOLUME (IN)	
SUB-1	0.816	362.00	1.57	
SUB-2	0.415	164.70	1.24	
POI-1	1.231	517.20	1.46	
POI-1 TO POI-2	1.231	515.00	1.46	
SUB-4	0.442	314.10	1.86	
SUB-3A	0.174	79.70	1.50	
SUB-3	0.138	41.80	0.83	
POI-2	1.985	872.80	1.51	
POI-2 TO POI-3	1.985	866.50	1.51	
SUB-6	0.440	133.90	1.24	
SUB-5	0.360	198.70	1.50	
SUB-5A	0.122	51.60	1.50	
POI-3	2.907	1190.00	1.46	
POI-3 TO POI-4	2.907	1187.30	1.46	
SUB-8	0.327	122.00	1.37	
SUB-7	0.039	22.20	1.05	
SUB-7A	0.014	28.50	2.50	
POI-4	3.287	1316.60	1.45	
POI-4 TO POI-5	3.287	1311.10	1.45	
SUB-9	0.413	196.40	1.43	
SUB-9B	0.071	89.60	2.33	
SUB-9A	0.023	24.30	1.64	
POI-5	3.794	1493.00	1.47	
POI-5 TO POI-6	3.794	1488.30	1.47	
SUB-9C	0.094	92.40	2.17	
POI-6	3.888	1525.60	1.49	
POI-6 TO POI-7	3.888	1513.40	1.48	
SUB-10	1.710	534.10	1.50	
SUB-9E	0.269	223.00	1.86	
SUB-10A	0.206	169.80	1.93	
SUB-9D	0.118	103.20	2.25	
POI-7	6.191	2216.10	1.53	
POI-7 TO POI-8	6.191	2204.00	1.53	
SUB-11	0.046	46.50	1.71	
SUB-11A	0.013	25.90	2.33	
POI-8	6.250	2212.60	1.54	

LITTLE BUFFALO CREEK - E	LITTLE BUFFALO CREEK - EXISTING CONDITIONS FLOW SUMMARY - 100 YEAR									
CONTRIBUTING HYDROLOGIC ELEMENT	OGIC ELEMENT AREA (MI ²) DISCHA		VOLUME (IN)							
SUB-1	0.816	989.30	4.04							
SUB-2	0.415	517.40	3.49							
POI-1	1.231	1476.10	3.85							
POI-1 TO POI-2	1.231	1470.10	3.85							
SUB-4	0.442	781.10	4.48							
SUB-3A	0.174	223.30	3.93							
SUB-3	0.138	173.70	2.76							
POI-2	1.985	2461.60	3.92							
POI-2 TO POI-3	1.985	2445.90	3.92							
SUB-6	0.440	420.90	3.49							
SUB-5	0.360	555.00	3.93							
SUB-5A	0.122	144.60	3.93							
POI-3	2.907	3435.20	3.86							
POI-3 TO POI-4	2.907	3428.30	3.86							
SUB-8	0.327	361.20	3.71							
SUB-7	0.039	75.80	3.17							
SUB-7A	0.014	59.90	5.39							
POI-4	3.287	3813.60	3.84							
POI-4 TO POI-5	3.287	3798.30	3.84							
SUB-9	0.413	564.40	3.82							
SUB-9B	0.071	197.30	5.16							
SUB-9A	0.023	63.30	4.15							
POI-5	3.794	4356.40	3.86							
POI-5 TO POI-6	3.794	4342.90	3.86							
SUB-9C	0.094	211.80	4.93							
POI-6	3.888	4445.00	3.89							
POI-6 TO POI-7	3.888	4412.50	3.89							
SUB-10	1.710	1498.70	3.93							
SUB-9E	0.269	553.20	4.48							
SUB-10A	0.206	412.90	4.59							
SUB-9D	0.118	232.70	5.04							
POI-7	6.191	6341.10	3.97							
POI-7 TO POI-8	6.191	6310.30	3.97							
SUB-11	0.046	119.10	4.26							
SUB-11A	0.013	56.00	5.16							
POI-8	6.250	6333.00	3.97							

APPENDIX G: Peak Flows for HEC-RAS Hydraulic Analysis

		LITTLE BUFFA	LO CREEK - HE	C-RAS LOADI	NG POINTS SU	MMARY	
River Reach Name	Reach Number	River Station Number	100-Year Discharge (CFS)	5-Year Discharge (CFS)	2-Year Discharge (CFS)	1.5-Year Discharge (CFS)	HEC-HMS CONTRIBUTING HYDROLOGIC ELEMENTS
LBC Main Stream	1	6	3161.20	1123.10	652.70	547.50	POI-2 + SUB-5 + SUB-5A
LBC Main Stream	1	2.5	3570.90	1240.70	711.70	594.80	POI-3 + SUB-7A + SUB-7
LBC Main Stream	2	3	4074.20	1430.50	827.30	693.80	POI-4 + SUB-9A + SUB-9B
LBC Main Stream	4	2	4356.40	1493.00	847.20	705.70	POI-5
LBC Main Stream	3	5	5230.90	1851.80	1077.80	906.50	POI-6 + SUB-9D + SUB-9E
LBC Main Stream	5	2 (4*)	6333.00	2212.60	1274.50	1067.10	POI-8
LBC Trib 1	1	2	361.20	122.00	68.30	56.50	SUB-8
LBC Trib 2	1	6	211.80	92.40	61.60	54.30	SUB-9C
LBC Trib 3	1	3	564.40	196.40	112.00	93.20	SUB-9
LBC Trib 4	1	4	1498.70	534.10	311.80	262.20	SUB-10
LBC Trib 5	1	5	412.90	169.80	109.00	94.80	SUB-10A
LBC Trib 6	1	1 (4*)	1911.60	703.90	420.80	357.00	SUB-10 + SUB-10A

* The proposed condition river station name for the cross-section.

APPENDIX H: HEC-RAS Computed Water Surface Elevations and Flow Velocities Summary

н	EC-RAS Comput	ed Water Surfac	e Elevation and Ve	locity Summa	ary for Work A	Area 1
		Existing	and Proposed Con	ditions		
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
N	1ain-Reach 1 River S	tation 4.9 (Cross-sec	tion Upstream of Realig	ned Channel of p	proposed project	reach)
100-Year Storm	647.96	648.1	0.14	3.96	3.99	0.03
5-Year Storm	645.2	644.87	-0.33	3.73	4.53	0.8
2-Year Storm	643.94	643.6	-0.34	3.69	4.53	0.84
1.5-Year Storm	643.6	643.28	-0.32	3.58	4.46	0.88
N	lain-Reach 1 River S	tation 4.8 (Cross-sec	tion Upstream of Realig	ned Channel of r	proposed project	reach)
100-Year Storm	646.62	645.92	-0.7	10.76	14.6	3.84
5-Year Storm	644.81	644.13	-0.68	6.01	8.42	2.41
2-Year Storm	643.67	643.02	-0.65	5.07	7.24	2.41
1.5-Year Storm	643.34	642.71	-0.63	4.74	6.97	2.23
		•	tion Upstream of Realig			
	1	•	-0.06	· · ·		-0.18
100-Year Storm 5-Year Storm	646.86 644.78	646.8 644.1	-0.68	5.83 5.2	5.65 6.89	-0.18
2-Year Storm	643.56	642.96	-0.68	4.84	5.5	0.66
1.5-Year Storm	643.25	642.65	-0.6	4.84	5.18	0.88
1.5-fear Storm						0.71
			I.6 (Cross-section 11+16			
100-Year Storm	646.5	646.55	0.05	7.15	5.85	-1.3
5-Year Storm	643.55	643.92	0.37	9.14	4.91	-4.23
2-Year Storm	642.62	642.78	0.16	7.52	3.96	-3.56
1.5-Year Storm	642.33	642.46	0.13	7.16	3.72	-3.44
	Main-R	each 1 River Station	4 (Cross-section 11+73 of	of proposed proj	ect reach)	
100-Year Storm	646.48	646.48	0	6.19	5.32	-0.87
5-Year Storm	643.81	643.86	0.05	6.09	4.17	-1.92
2-Year Storm	642.71	642.7	-0.01	5.39	3.45	-1.94
1.5-Year Storm	642.42	642.37	-0.05	4.99	3.27	-1.72
	Main-Re	ach 1 River Station 3	8.8 (Cross-section 13+41	of proposed pro	ject reach)	
100-Year Storm	646.43	646.36	-0.07	4.2	3.85	-0.35
5-Year Storm	643.81	643.76	-0.05	3.49	2.7	-0.79
2-Year Storm	642.65	642.58	-0.07	3.23	2.24	-0.99
1.5-Year Storm	642.32	642.25	-0.07	3.19	2.12	-1.07
	Main-Re	ach 1 River Station 3	8.7 (Cross-section 13+90	of proposed pro	ject reach)	
100-Year Storm	645.68	646.29	0.61	8.41	8.6	0.19
5-Year Storm	643	643.7	0.7	6.91	7.23	0.32
2-Year Storm	642.12	642.53	0.41	5.15	5.33	0.18
1.5-Year Storm	641.85	642.2	0.35	4.71	4.86	0.15
	Main-Re	ach 1 River Station 3	3.6 (Cross-section 14+40	of proposed pro	ject reach)	
100-Year Storm	646.35	645.66	-0.69	4.45	4.23	-0.22
5-Year Storm	643.75	643.01	-0.74	3.46	3.05	-0.41
2-Year Storm	642.6	642.13	-0.47	3.06	2.51	-0.55
1.5-Year Storm	642.27	641.86	-0.41	2.93	2.36	-0.57
	Main-Reach 1		nstream of Realigned Cl			*
100-Year Storm	645.21	645.21	0	2.41	2.41	0
5-Year Storm	641.47	641.47	0	3	3	0
2-Year Storm	639.87	639.87	0	3.64	3.64	0
1.5-Year Storm	639.49	639.49	0	3.65	3.65	0

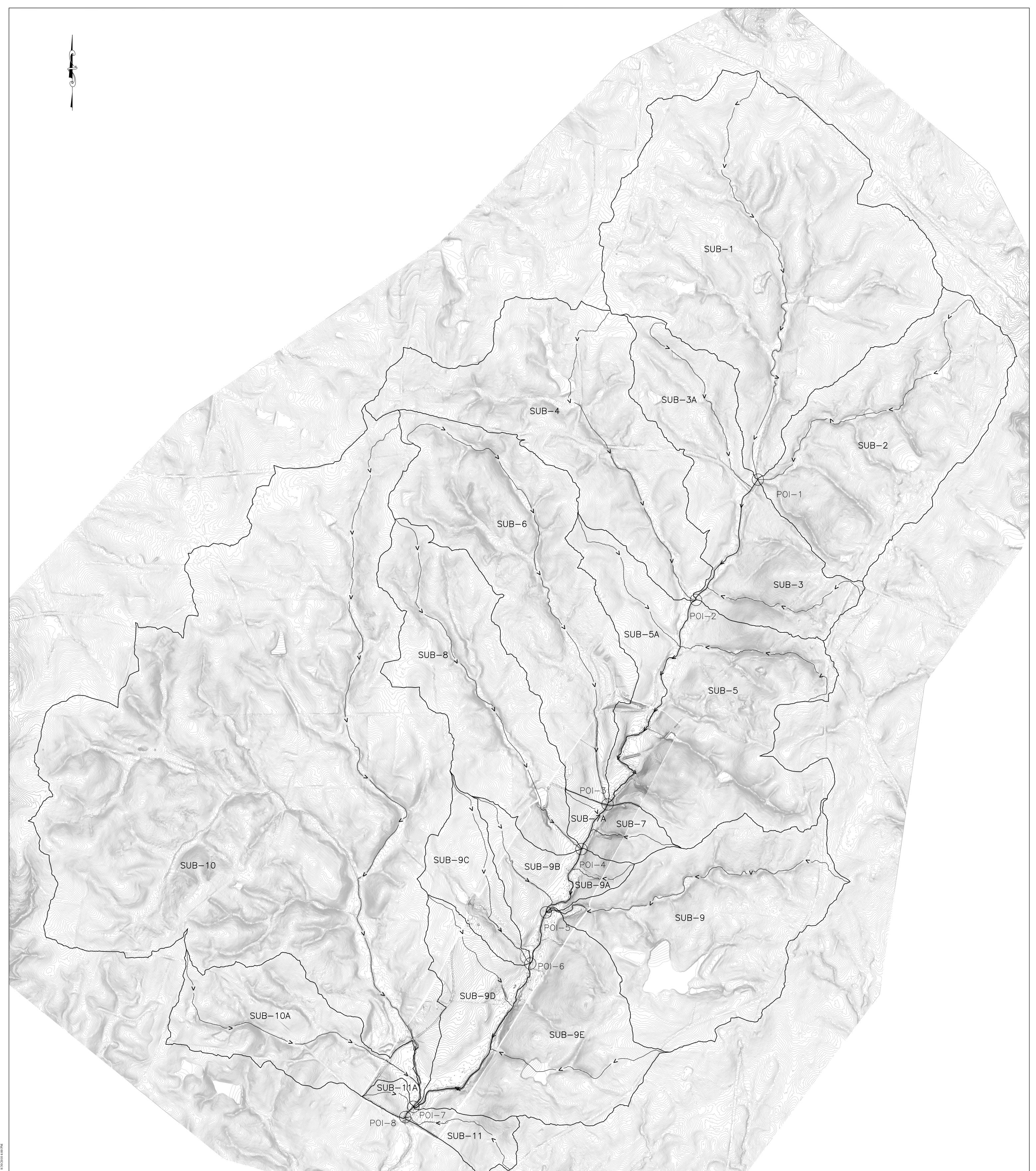
н	EC-RAS Comput	ed Water Surfac	e Elevation and Ve	locity Summa	ary for Work A	irea 2
		Existing	and Proposed Con	ditions		
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
I	Main-Reach 2 River	Station 3 (Cross-sect	ion Upstream of Realigr	ned Channel of p	roposed project re	each)
100-Year Storm	638.06	638.06	0	8.12	8.11	-0.01
5-Year Storm	636.24	636.24	0	5.65	5.66	0.01
2-Year Storm	635.36	635.34	-0.02	4.55	4.57	0.02
1.5-Year Storm	635.1	635.08	-0.02	4.21	4.24	0.03
	Main-R	each 2 River Station	2 (Cross-section 10+05	of proposed proj	ect reach)	
100-Year Storm	635.76	635.38	-0.38	7.01	9.22	2.21
5-Year Storm	634.31	633.75	-0.56	5.26	5.6	0.34
2-Year Storm	633.64	632.94	-0.7	4.38	3.92	-0.46
1.5-Year Storm	633.42	632.66	-0.76	4.09	3.57	-0.52
	Main-Re	ach 2 River Station 1	1.5 (Cross-section 11+08	of proposed pro	ject reach)	
100-Year Storm	635.32	634.97	-0.35	8.02	8.88	0.86
5-Year Storm	633.93	633.51	-0.42	6.13	5.35	-0.78
2-Year Storm	633.27	632.78	-0.49	5.13	3.86	-1.27
1.5-Year Storm	633.03	632.51	-0.52	4.93	3.47	-1.46
	Main-Re	ach 2 River Station	L.3 (Cross-section 12+60	of proposed pro	ject reach)	
100-Year Storm	634.54	634.51	-0.03	8.45	7.32	-1.13
5-Year Storm	633.09	633.15	0.06	7.74	5.07	-2.67
2-Year Storm	632.4	632.49	0.09	7.07	3.93	-3.14
1.5-Year Storm	632.18	632.25	0.07	6.63	3.62	-3.01
	Main-Reach 2 I	River Station 1 (Dow	nstream of Realigned Cl	nannel of propos	ed project reach)	
100-Year Storm	634.43	634.42	-0.01	5.55	5.56	0.01
5-Year Storm	633.12	633.11	-0.01	3.81	3.82	0.01
2-Year Storm	632.42	632.41	-0.01	3.52	3.54	0.02
1.5-Year Storm	632.15	632.14	-0.01	3.63	3.66	0.03

HE	C-RAS Compute		e Elevation and Ve and Proposed Cor		ary for Work	Area 3
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
			Upstream of Realigned		-	•
100-Year Storm	624.82	624.82	0	4.32	4.32	0
5-Year Storm	621.89	621.89	0	2.83	2.83	0
2-Year Storm	620.06	620.06	0	2.83	2.83	0
1.5-Year Storm	619.59	619.59	0	2.85	2.85	0
	LBC	4 River Station 2.9 (Cross-section 10+03 of	proposed project	reach)	
100-Year Storm	619.86	619.86	0	6.47	6.47	0
5-Year Storm	618.32	618.35	0.03	5.31	5.25	-0.06
2-Year Storm	617.9	617.88	-0.02	3.52	3.55	0.03
1.5-Year Storm	617.65	617.69	0.04	3.23	3.18	-0.05
400.14		•	ross-section 10+59 of p	,	•	0.55
100-Year Storm 5-Year Storm	619.22	619.19	-0.03 0.02	3.84	3.06 2.52	-0.78 -0.54
2-Year Storm	618.36 617.81	618.38 617.75	-0.06	3.06 3.32	3.34	-0.54
1.5-Year Storm	617.46	617.5	0.04	3.72	3.54	-0.15
210 100 000111			Cross-section 12+52 of p			0.10
100-Year Storm	618.37	618.48	0.11	7.34	5.97	-1.37
5-Year Storm	617.77	617.08	-0.69	5.36	5.82	0.46
2-Year Storm	616.76	616.54	-0.22	6.18	4.28	-1.9
1.5-Year Storm	616.49	616.38	-0.11	5.75	3.89	-1.86
	LBC	4 River Station 1.7 (Cross-section 14+20 of	proposed project	reach)	
100-Year Storm	617.74	617.7	-0.04	6.72	5.51	-1.21
5-Year Storm	616.6	616.67	0.07	6.85	3.38	-3.47
2-Year Storm	615.78	616.2	0.42	6.47	2.49	-3.98
1.5-Year Storm	615.47	616.05	0.58	6.22	2.24	-3.98
	LBC	4 River Station 1.5 (Cross-section 16+37 of ا	proposed project	reach)	
100-Year Storm	617.13	617.21	0.08	4.97	4.19	-0.78
5-Year Storm	615.67	616.33	0.66	5.49	2.34	-3.15
2-Year Storm 1.5-Year Storm	614.98 614.5	615.94 615.81	0.96	4.87 5.03	1.7 1.53	-3.17 -3.5
1.5-1601 510111			-			-5.5
100.14		-	Cross-section 17+12 of		-	244
100-Year Storm 5-Year Storm	617.03 615.2	616.6 615.83	-0.43 0.63	4.77 5.9	7.91 6.16	3.14
2-Year Storm	614.87	615.42	0.55	4.12	5.69	1.57
1.5-Year Storm	614.34	615.34	1	4.28	5.29	1.01
	LBC	6 River Station 3 (C	ross-section 18+78 of p	roposed project	reach)	•
100-Year Storm	616.91	616.64	-0.27	3.74	2.37	-1.37
5-Year Storm	614.97	614.72	-0.25	4.2	7.32	3.12
2-Year Storm	614.76	614.55	-0.21	2.85	5.81	2.96
1.5-Year Storm	614.14	614.48	0.34	3.21	5.6	2.39
	LBC	6 River Station 2 (C	ross-section 19+47 of p	roposed project	reach)	
100-Year Storm	616.91	616.63	-0.28	2.71	1.64	-1.07
5-Year Storm	614.94	614.78	-0.16	3.2	2.23	-0.97
2-Year Storm	614.75	614.27	-0.48	2.18	1.07	-1.11
1.5-Year Storm	614.09	613.65	-0.44	2.67	0.84	-1.83
		-	Cross-section 20+00 of		-	
100-Year Storm	616.94	616.62	-0.32	1.52	1.17	-0.35
5-Year Storm	614.96	614.67	-0.29	2.44	2.13	-0.31
2-Year Storm 1.5-Year Storm	614.75 613.97	614.18 613.42	-0.57 -0.55	1.91 3.53	1.03 0.79	-0.88 -2.74
1.J-1Edi SLUIIII			-0.55 ross-section 21+56 of p			-2.74
100 Voor Ctower		-			-	4.05
100-Year Storm	616.9	616.61	-0.29	1.99	0.94	-1.05
5-Year Storm 2-Year Storm	614.92 614.73	614.67 614.23	-0.25 -0.5	1.96 1.33	0.8 0.59	-1.16 -0.74
1.5-Year Storm	614.01	613.57	-0.44	1.55	0.63	-1.07

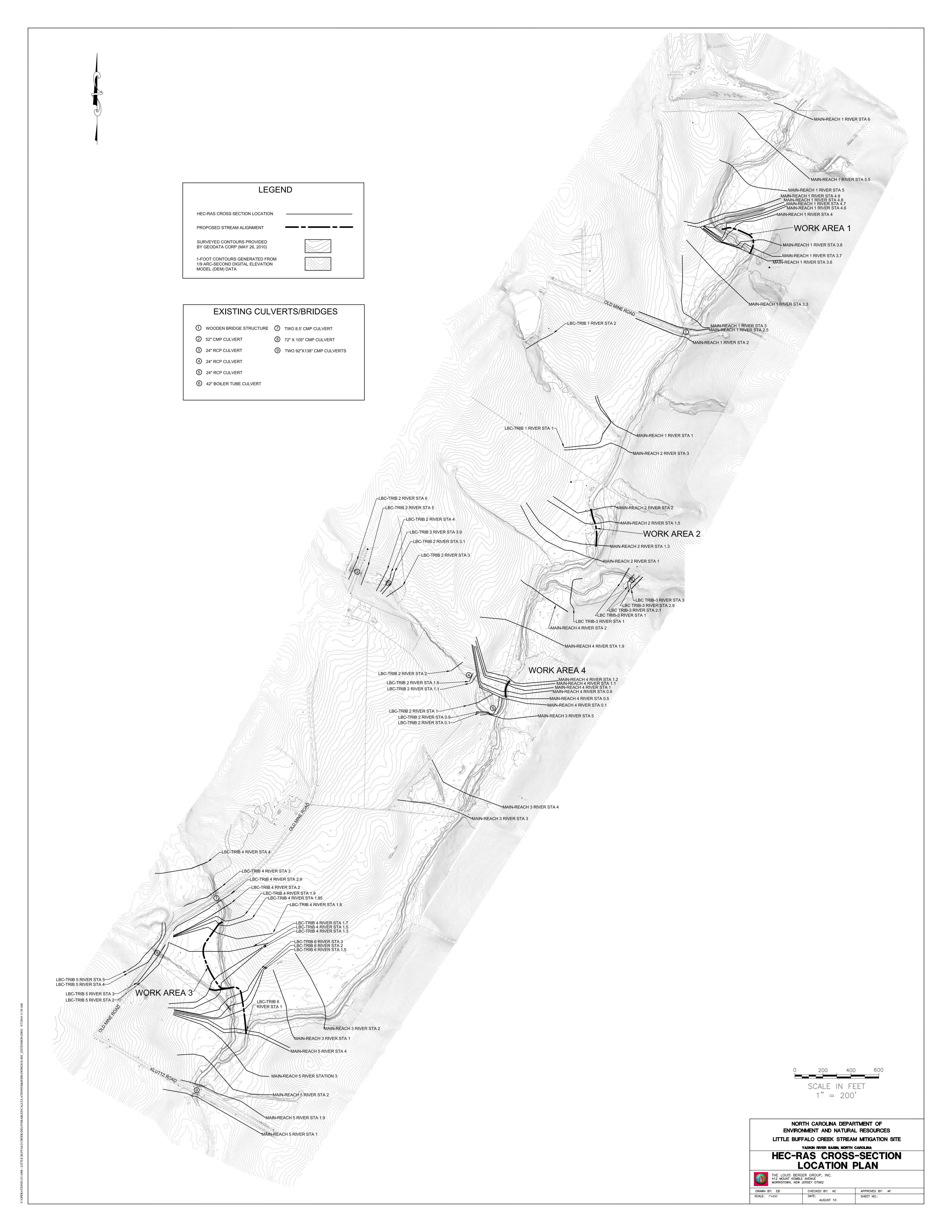
н	EC-RAS Comput	ed Water Surfac	e Elevation and Ve	locity Summa	ary for Work A	irea 4
		Existing	and Proposed Con	ditions		
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
Mai	in-Reach 4 River Stat	tion 1.2 (Cross-section	on 25 ft. Upstream of Re	stored Channel o	of proposed proje	ct reach)
100-Year Storm	630.35	629.6	-0.75	4.64	6.24	1.6
5-Year Storm	628.51	627.73	-0.78	3.33	5.02	1.69
2-Year Storm	627.74	626.95	-0.79	2.89	5.23	2.34
1.5-Year Storm	627.44	626.62	-0.82	2.98	5.62	2.64
		Mai	n-Reach 4 River Station	1.1		
100-Year Storm	630.24	629.43	-0.81	6.05	6.33	0.28
5-Year Storm	628.39	627.29	-1.1	4.54	6.37	1.83
2-Year Storm	627.61	626.55	-1.06	4.08	5.7	1.62
1.5-Year Storm	627.29	626.34	-0.95	4.14	5.25	1.11
		Ma	in-Reach 4 River Station	1		
100-Year Storm	629.19	629.43	0.24	11.53	5.49	-6.04
5-Year Storm	627.72	627.38	-0.34	8.09	4.42	-3.67
2-Year Storm	626.8	626.67	-0.13	7.83	3.62	-4.21
1.5-Year Storm	626.41	626.42	0.01	7.92	3.44	-4.48
		Mai	n-Reach 4 River Station	0.9		
100-Year Storm	629.26	629.29	0.03	7	5.11	-1.89
5-Year Storm	627.05	627.2	0.15	7.45	4.31	-3.14
2-Year Storm	626.32	626.54	0.22	6.87	3.36	-3.51
1.5-Year Storm	626.06	626.3	0.24	6.81	3.14	-3.67
		Mai	n-Reach 4 River Station	0.5		
100-Year Storm	629.17	629.21	0.04	6.18	5.01	-1.17
5-Year Storm	626.87	627.01	0.14	6.36	4.99	-1.37
2-Year Storm	626.17	626.33	0.16	5.57	4.31	-1.26
1.5-Year Storm	625.93	626.07	0.14	5.34	4.22	-1.12
Main	-Reach 4 River Statio	on 0.1 (Cross-section	21 ft. Downstream of R	estored Channe	of proposed proj	ect reach)
100-Year Storm	629.17	629.17	0	5.06	5.06	0
5-Year Storm	626.79	626.78	-0.01	6.03	6	-0.03
2-Year Storm	626.01	626.01	0	5.8	5.75	-0.05
1.5-Year Storm	625.8	625.81	0.01	5.41	5.37	-0.04

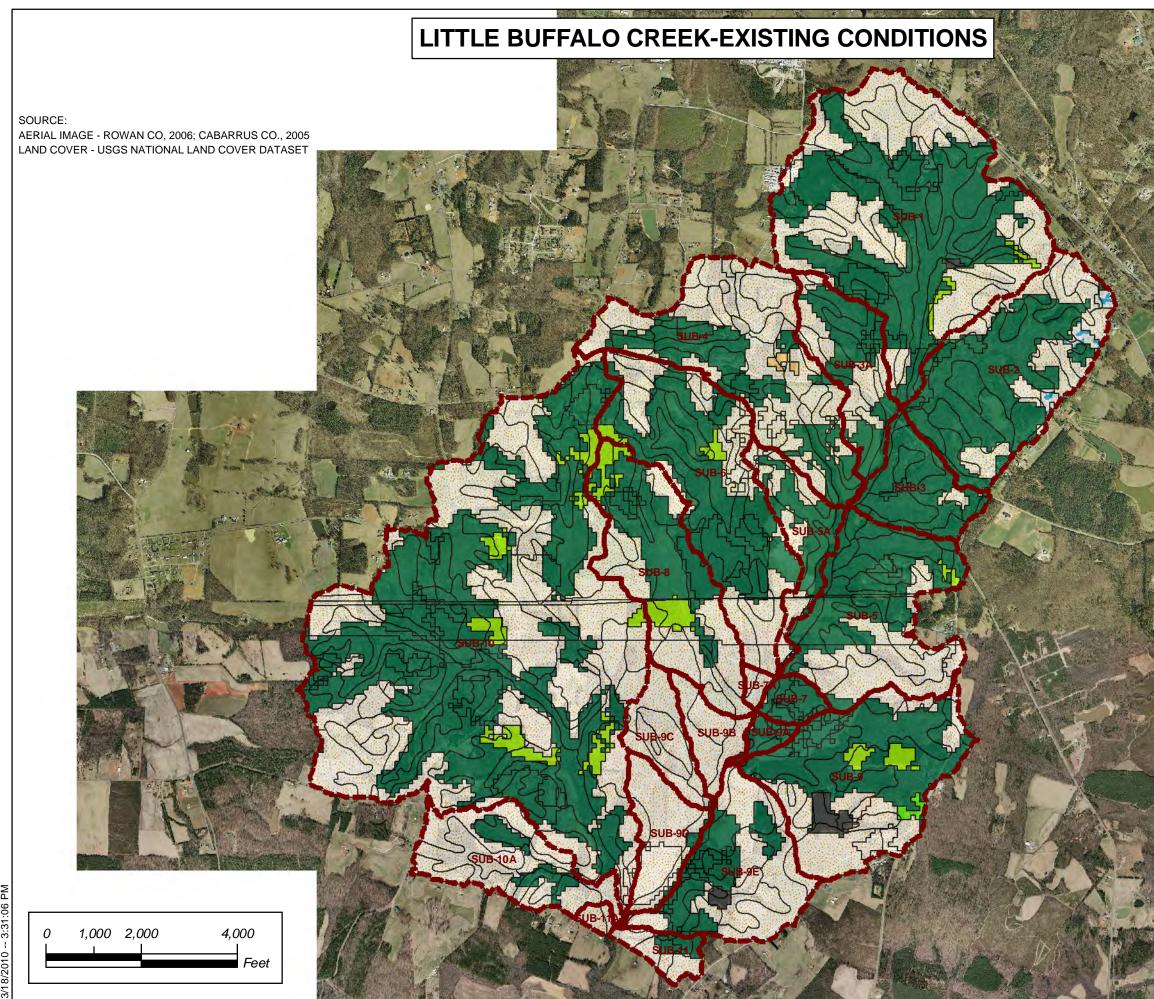
		Existing	and Proposed Con	ditions		
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
	M	ain-Reach 1 River Sta	ation 2.5 (Upstream Bou	Inding Cross-sect	ion)	
100-Year Storm	645.04	645.04	0	4.69	4.69	0
5-Year Storm	640.93	640.93	0	6.05	6.05	0
2-Year Storm	639.34	639.34	0	5.49	5.49	0
1.5-Year Storm	638.98	638.98	0	5.27	5.27	0
	Ma	iin-Reach 1 River Sta	tion 2 (Downstream Bo	unding Cross-sec	tion)	
100-Year Storm	642.7	642.7	0	7.74	7.74	0
5-Year Storm	639.82	639.82	0	6.25	6.25	0
2-Year Storm	638.48	638.48	0	5.34	5.34	0
1.5-Year Storm	638.09	638.1	0.01	5.02	5.01	-0.01

HEC-RAS Computed Water Surface Elevation for Two 8.5' CMP Culverts along Old Mine Road (Upstream of											
Work Area 3)											
Existing and Proposed Conditions											
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)					
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec					
		LBC Trib 4 River Sta	tion 3 (Upstream Bound	ing Cross-section	ı)						
100-Year Storm	624.82	624.82	0	4.32	4.32	0					
5-Year Storm	621.89	621.89	0	2.83	2.83	0					
2-Year Storm	620.06	620.06	0	2.83	2.83	0					
1.5-Year Storm	619.59	619.59	0	2.85	2.85	0					
	LE	C Trib 4 River Statio	n 2.9 (Downstream Bou	nding Cross-secti	ion)						
100-Year Storm	619.86	619.86	0	6.47	6.47	0					
5-Year Storm	618.32	618.35	0.03	5.31	5.25	-0.06					
2-Year Storm	617.9	617.88	-0.02	3.52	3.55	0.03					
1.5-Year Storm	617.65	617.69	0.04	3.23	3.18	-0.05					


HEC-RAS Computed Water Surface Elevation for 72"x108" CMP Culvert along Old Mine Road (Upstream of										
Work Area 3)										
Existing and Proposed Conditions										
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)				
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec				
		LBC Trib 5 River Sta	tion 4 (Upstream Bound	ing Cross-sectior	ı)					
100-Year Storm	624.68	624.68	0	3.22	3.22	0				
5-Year Storm	622.31	622.31	0	4.68	4.68	0				
2-Year Storm	621.29	621.29	0	4.47	4.47	0				
1.5-Year Storm	621.06	621.06	0	4.31	4.31	0				
	L	BC Trib 5 River Stati	on 3 (Downstream Boun	ding Cross-section	on)					
100-Year Storm	622.49	622.49	0	10.96	10.96	0				
5-Year Storm	620.8	620.8	0	8.24	8.24	0				
2-Year Storm	620.69	620.69	0	5.57	5.57	0				
1.5-Year Storm	620.57	620.57	0	5.15	5.15	0				

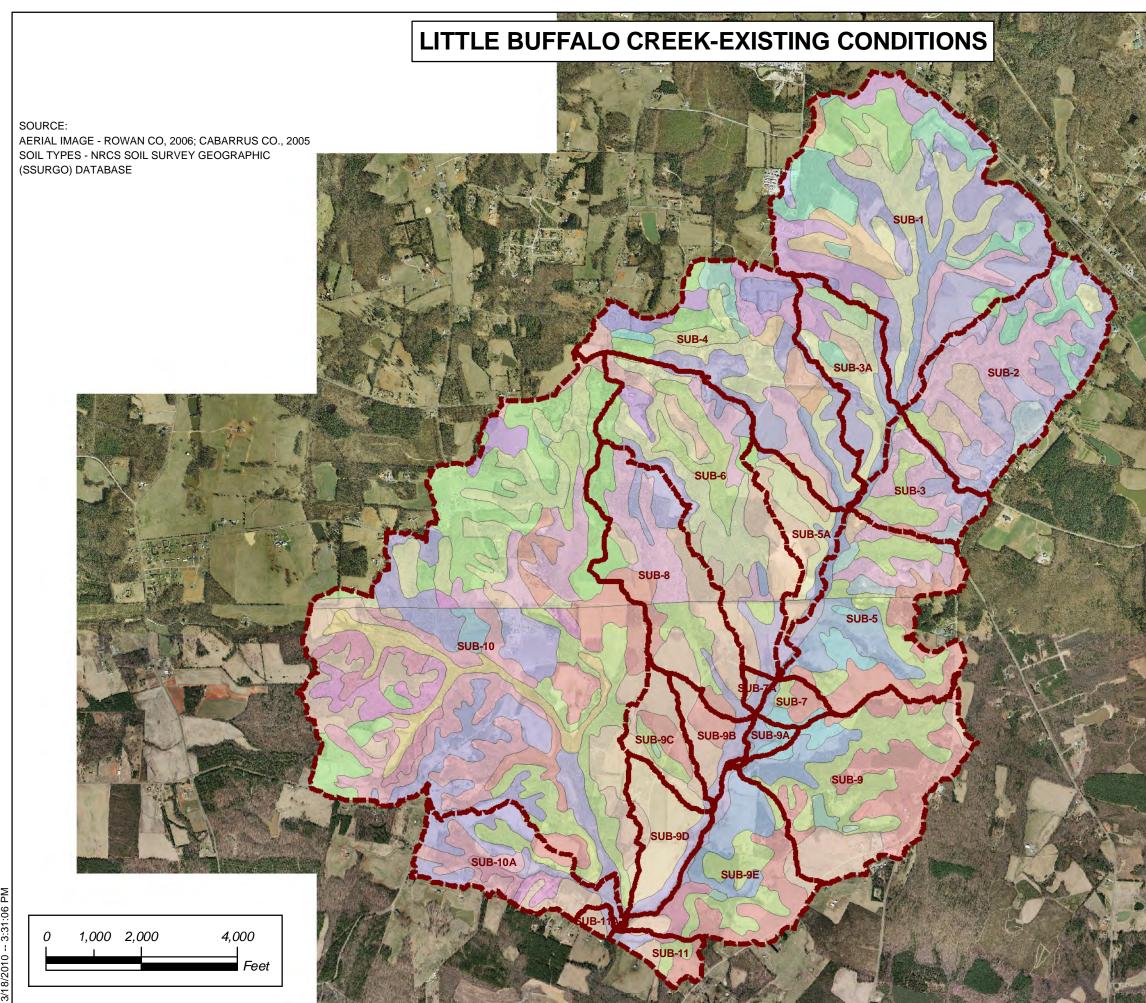
HEC-RAS Computed Water Surface Elevation for two 92"x138" CMP Culverts along Kluttz Road Downstream of Project Site						
		Existing	and Proposed Con	ditions		
Storm Frequency Water Surface Condition Water Proposed minus Condition Condition (Proposed minus					Velocity Difference (Proposed minus Existing)	
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
	M	ain-Reach 5 River Sta	ation 1.9 (Upstream Bou	Inding Cross-sect	ion)	
100-Year Storm	615.67	615.67	0	4.7	4.7	0
5-Year Storm	614.01	614.01	0	2.5	2.5	0
2-Year Storm	613.51	613.51	0	5.06	5.06	0
1.5-Year Storm	612.85	612.85	0	4.57	4.57	0
	Ma	in-Reach 5 River Sta	tion 1 (Downstream Bo	unding Cross-sect	tion)	
100-Year Storm	613.01	613.01	0	7.87	7.87	0
5-Year Storm	609.34	609.34	0	9.75	9.75	0
2-Year Storm	607.79	607.79	0	8.26	8.26	0
1.5-Year Storm	607.38	607.38	0	7.81	7.81	0


HEC-RAS Computed Water Surface Elevation and Velocity Summary Upstream and Downstream of Overall Project Site


Existing and Proposed Conditions						
Storm Frequency	Existing Condition Water Surface Elevation	Proposed Condition Water Surface Elevation	Difference in Water Surface Elevation (Proposed minus Existing)	Existing Condition Velocity	Proposed Condition Velocity	Velocity Difference (Proposed minus Existing)
	(ft, NAVD 1988)	(ft, NAVD 1988)	(ft)	ft/sec	ft/sec	ft/sec
Main-Reach 1 River Station 6 (Most Upstream Cross-section of Overall Project Site						
100-Year Storm	651.12	651.13	0.01	6.39	6.38	-0.01
5-Year Storm	648.66	648.66	0	5.08	5.09	0.01
2-Year Storm	647.67	647.67	0	4.18	4.18	0
1.5-Year Storm	647.38	647.38	0	3.99	3.99	0
Main-Reach 5 River Station 1 (Most Downstream Cross-section of Overall Project Site						
100-Year Storm	613.01	613.01	0	7.87	7.87	0
5-Year Storm	609.34	609.34	0	9.75	9.75	0
2-Year Storm	607.79	607.79	0	8.26	8.26	0
1.5-Year Storm	607.38	607.38	0	7.81	7.81	0

APPENDIX I: Maps and Exhibits

>	DRAINAGE AREA BOUNDARIES FLOW PATH FOR WATERSHED HYDRAULIC FLOW LENGTH		ENVIR	ORTH CAROLINA DEPARTMENT OF ONMENT AND NATURAL RESOURCES FFALO CREEK STREAM MITIGATION SITE
	SURVEYED CONTOURS PROVIDED BY GEODATA CORP (MAY 26, 2010)	0 550 1100 1650	DR/	VADKIN RIVER BASIN, NORTH CAROLINA
	1-FOOT CONTOURS GENERATED FROM ½ ARC-SECOND DIGITAL ELEVATION MODEL (DEM) DATA	SCALE IN FEET 1" = 550'	THE LOUIS BEI 412 MOUNT KEME MORRISTOWN, NEW DRAWN BY: EB SCALE: AS SHOWN	RGER GROUP, INC. BLE AVENUE W JERSEY 07962 CHECKED BY: AC APPROVED BY: AF DATE: SHEET NO.: AUGUST 10

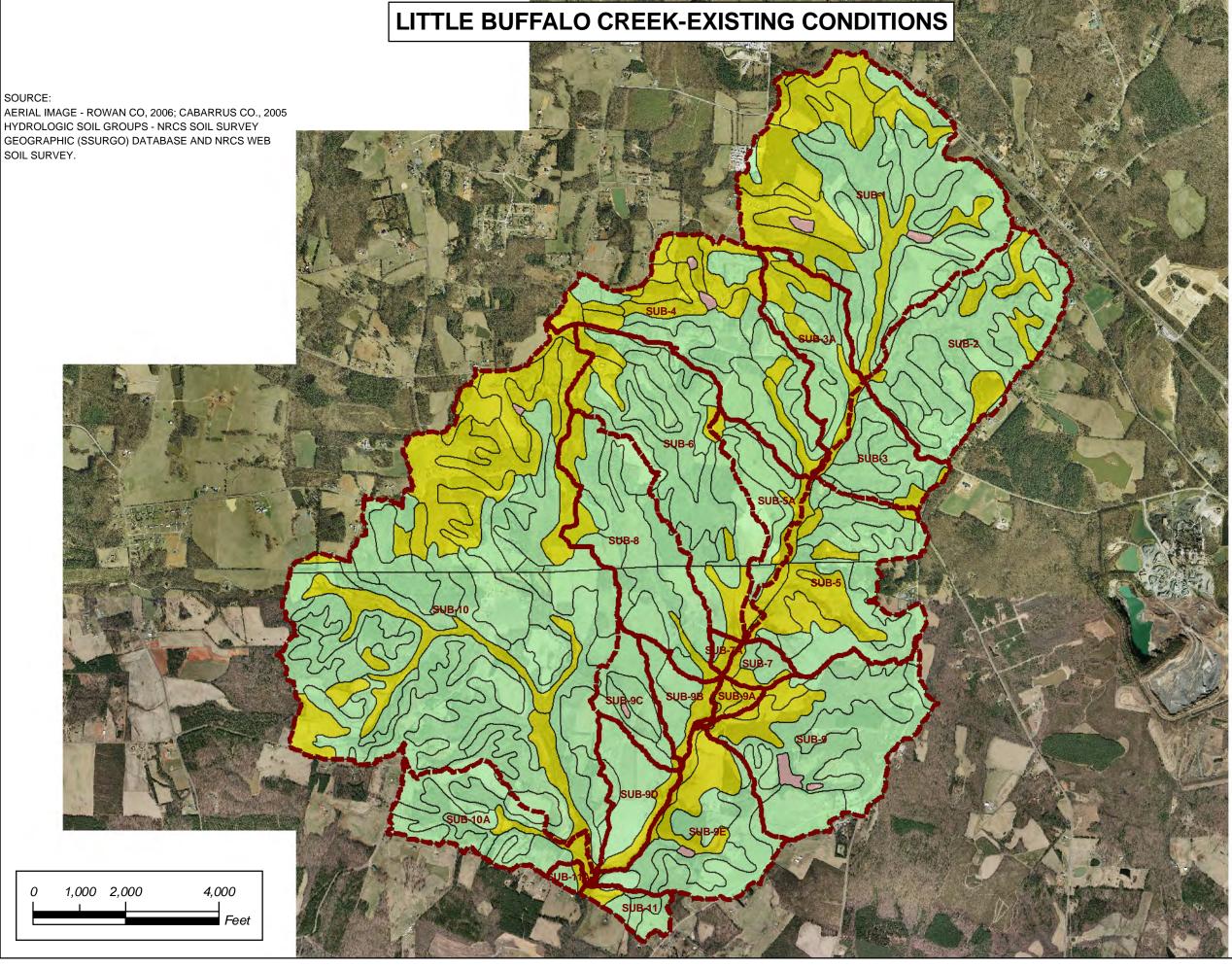

LEGEND

EXISTING DRAINAGE AREAS

Categories

1

	BR-F
	BR-G
	DIRT
17	FA
	R1
	R2
	SR-G
	WATER
	WO-G

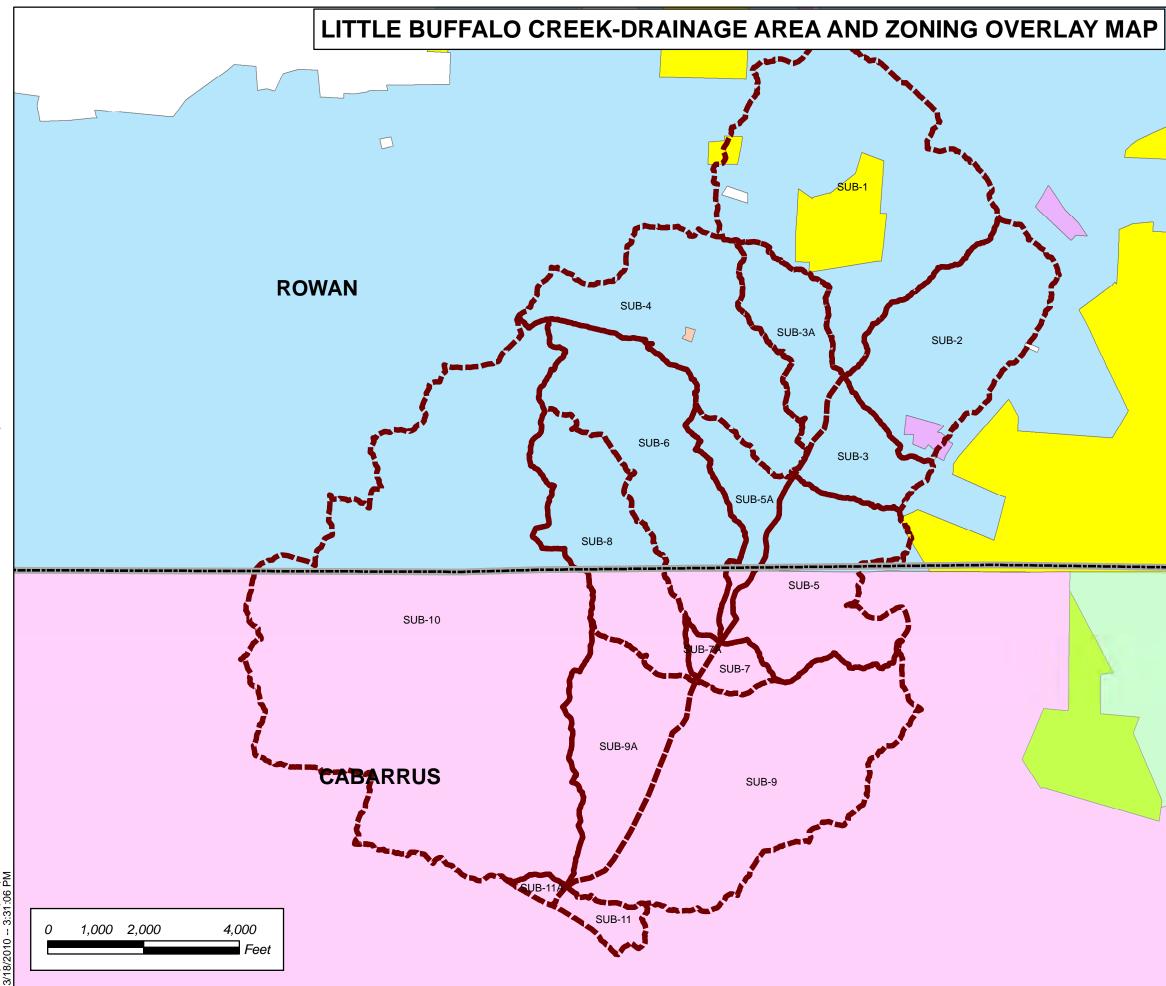


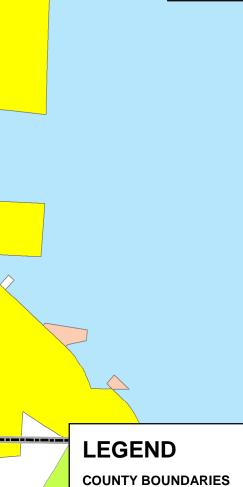
LEGEND	
EXISTING DRAINAGE AREAS	
EXISTING NRCS SOIL TYPES	
Categories	
BaB	
BaC	
BaD	
BaF	
CeB2	
ChA	
CmB	
EnB	
EnC	
GeB2	
GoC	
GoF	
HeB	
КсВ	
KkB	
LdB2	
MeB2	
OkA	
PaD	
PcE3	
PxB	
SeB	
ТаВ	
TaC	
TaD	
TbB2	
TbD2	
Ud	
UwB2	
VaB	
VaC	
VnB2	
VnC2	
W	
WtB	

AERIAL IMAGE - ROWAN CO, 2006; CABARRUS CO., 2005 HYDROLOGIC SOIL GROUPS - NRCS SOIL SURVEY GEOGRAPHIC (SSURGO) DATABASE AND NRCS WEB SOIL SURVEY.

(pxm.

LEGEND


EXISTING DRAINAGE AREAS HYDROLOGIC SOIL GROUPS


Categories

С

D

County Name

ROWAN

DRAINAGE AREAS NEW

CABARRUS CO. ZONING

ZONING CODE

AO GI

OI

ROWAN CO. ZONING ZONING CODE

NB

RA

Residential Zoning Districts

AO- AGRICULTURAL/OPEN SPACE

Due to physical characteristics such as soil type, topography, etc., this district should remain agrarian. To a lesser degree, these are also those lands which are conducive to providing recreationally oriented open space. These land areas should remain the farmland and undeveloped forested land of the County. Public utilities will not be planned for these areas.

CR- COUNTRYSIDE RESIDENTIAL

Comprised of land having a strong rural, pastoral feel. Natural environmental elements such as tree lines, small ponds, rock formations, and manmade elements such as pasture fencing are to be retained, if at all possible. Development only includes standard single family detached dwelling.

LDR-LOW DENSITY RESIDENTIAL

Intended to promote development with a low density feel. This district allows conventional, open space and amenity subdivisions. These zones are located where public utilities either are available or are envisioned available within the next two to five years.

MDR- MEDIUM DENSITY RESIDENTIAL

Intended to permit development with a moderately high density community character. This district allows open space and amenity subdivisions. These zones are located where public utilities either are available or are envisioned available within the next ten years. These districts are located adjacent to municipalities.

HDR- HIGH DENSITY RESIDENTIAL

Intended to allow for a wide range of residential uses and will be the primary location for multifamily development. This district allows amenity and open space subdivisions. This district is typically located near muncipal boundary lines and are adjacent to mixed use areas. Both water and sewer are available and transportation networks are capable of supporting high density development.

Non-Residential Zoning Districts

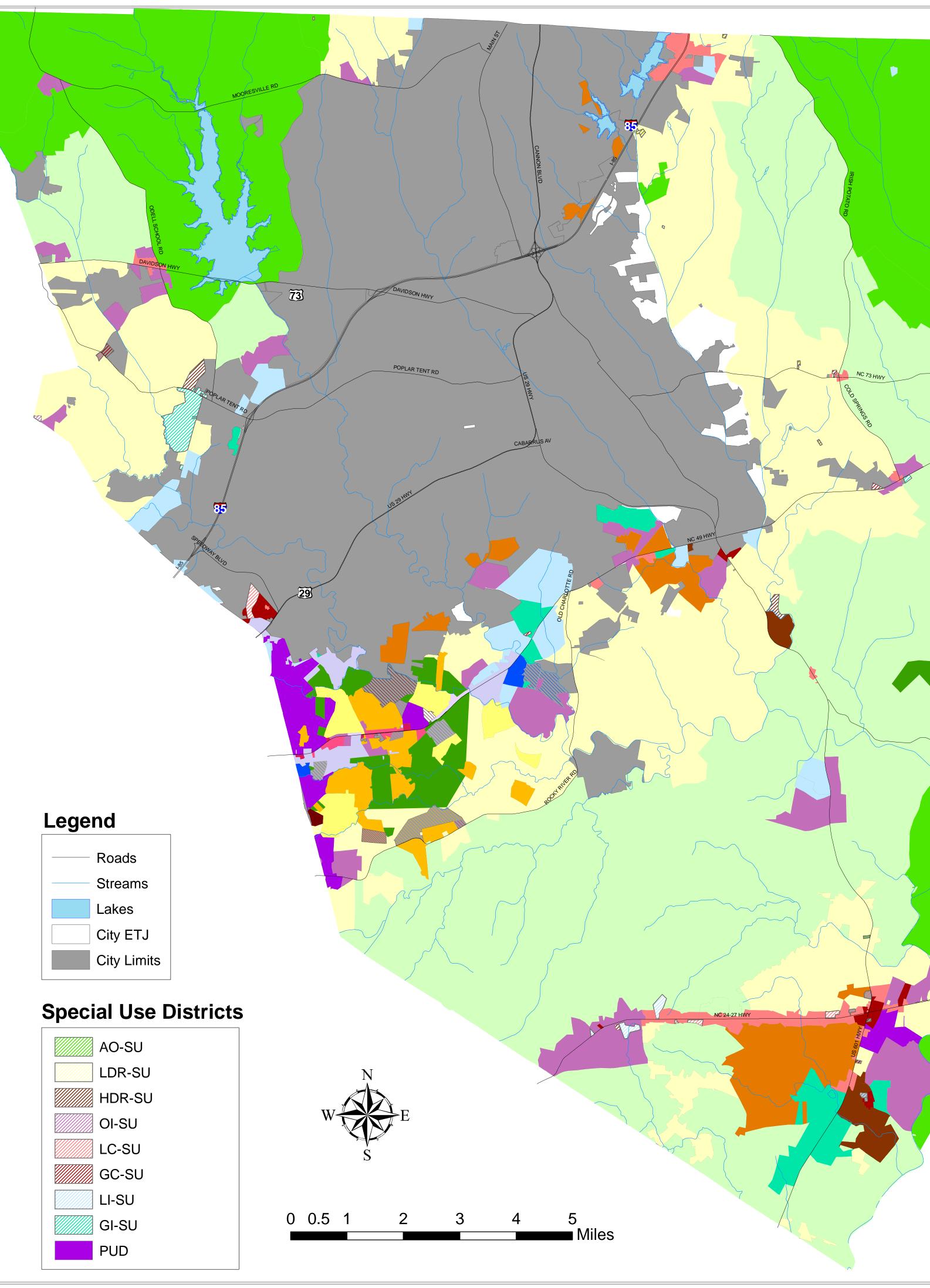
OI- OFFICE/INSTITUTIONAL

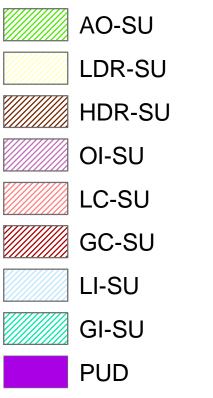
Intended to accomodate relatively low intensity office and institutional uses at an intensity complementary to residential land use. Where appropriate, this district can serve as a transition between residential land use and higher intensity non-residential land use.

LC- LIMITED COMMERCIAL

Intended to accomodate relatively small scale commercial and office development at an intensity complementary to residential land use.

GC- GENERAL COMMERCIAL

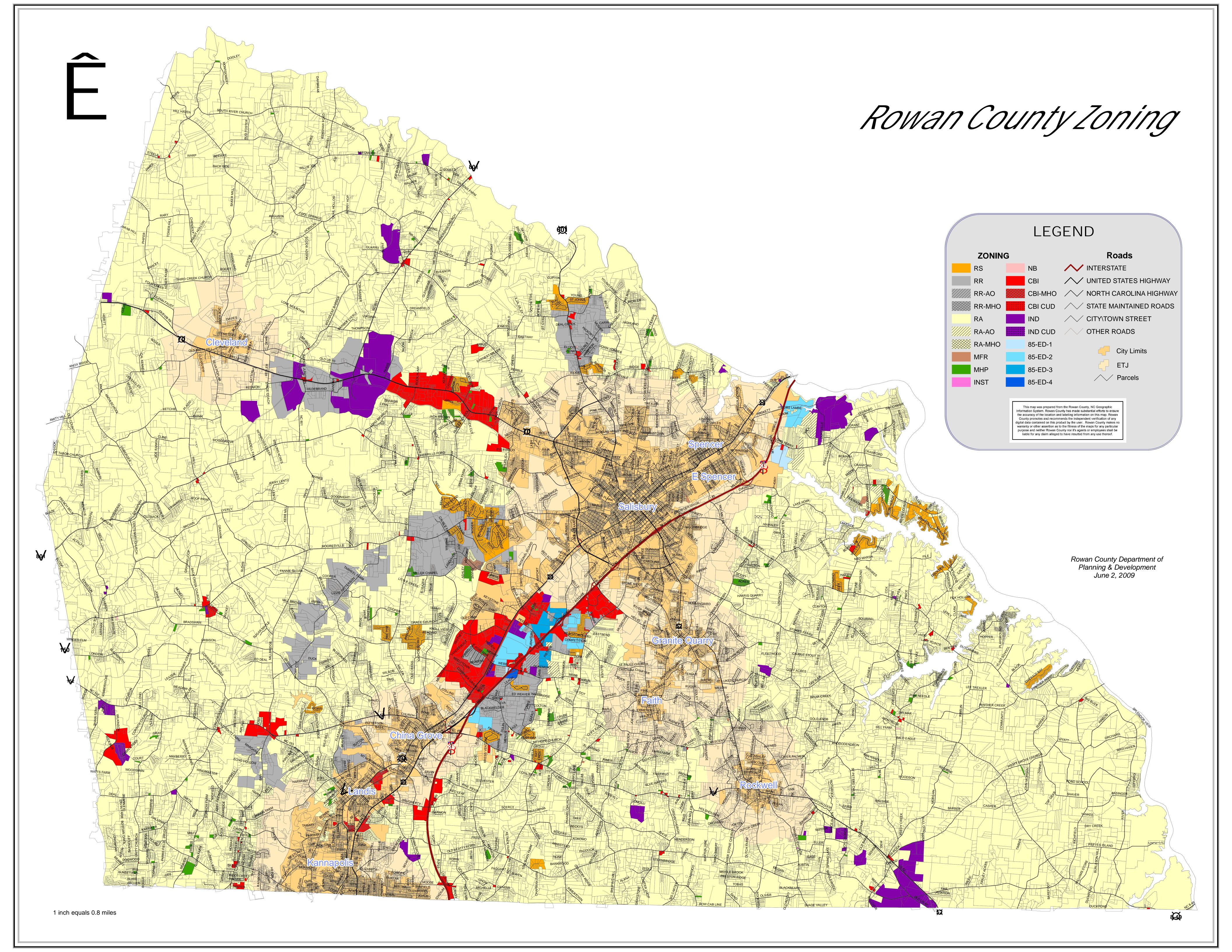

Provides location for large scale commercial activities. The zone will accomodate a wide variety of office, retail, and lodging land uses. It may border the other less intense commercial zone or either of the two industrial zones. It may border a high intensity residential zone, but must have the proper buffers.


LI- LIGHT INDUSTRIAL

Provides for both large and small scale industrial and office development. The primary distinguishing feature is that it is geared towards indoor industrial activities which do not generate high levels of noise, soot, odors, or orther potential nuisances/pollutants for impacting adjoining properties. It is located within the county where proper infrastructure is provided.

GI- GENERAL INDUSTRIAL

While this zone permits both large and small scale industrial/office development, its primary purpose is to provide a clocation for large scale development. It is designed to permit a wide variety of industrial uses which may occur both indoors and outdoors, including land uses which are permitted in no other zoning district between of their potential to create nuisances for adjoining properties.



Cabarrus County Zoning Districts

49

Cabarrus County shall not be held liable for any errors in these data. This includes errors of omission, commission, errors concerning the content of the data, and relative and positional accuracy of the data. These data cannot be construed to be a legal document . Primary sources from which these data were compiled must be consulted for verification of information contained in in the data.

Map Prepared by Cabarrus County Planning Services, December 2005.

General zoning districts (Per Section 21-32)

- (a) Rural Agricultural, RA. This district is developed to provide for a minimum level of land use regulations appropriate for outlying areas of the county. These outlying areas typically consist of rural single-family housing, larger tracts of land used for agriculture or in fields and forest land, with some nonresidential uses intermingled. Multifamily uses are discouraged in this district. This district would provide for protection from the most intensive land uses while containing provisions for a variety of less intensive land uses. It is the intent of this district to rely upon development standards to protect residences from potential adverse impacts of allowed nonresidential uses. The most intensive land uses would not be allowed in this district.
- (b) Rural Residential, RR. This zoning district is comprised of areas of the county in which moderate levels of single-family housing has occurred or is occurring. In this district, agricultural uses have been replaced to a significant degree with single-family housing. The regulations in this district are intended to provide a land owner with an opportunity to engage in limited business or commercial activities. Multifamily uses are not allowed.
- (c) Residential Suburban, RS. The purpose of this zoning district is to protect existing residential neighborhoods and promote the creation of more residential neighborhoods. These areas are typically near major thoroughfares and have or could be provided significant infrastructure. Commercial uses, business uses and multifamily uses are generally not allowed.
- (d) Multifamily Residential, MFR. This district is intended to allow for a wide range of residential uses and will be the primary location for multifamily development. This district will typically be located near arterials or collectors. The development of multifamily developments within this district cannot be predetermined and cannot be adequately controlled by general district standards. Therefore specific development proposals for multifamily developments in this district shall be reviewed and approved by the board of commissioners. Approval of the site plan may include the addition of fair and reasonable standards to the site plan. No other uses allowed in the MFR district shall require site plan approval by the board of commissioners unless expressly required by this chapter. Additional approval standards for multifamily residential developments are listed in article III. The requirements of this district shall not apply to duplexes on individual lots but shall apply to multiple duplexes on an individual lot.

(e) Manufactured Home Park, MHP.

- (1) This district is established in order to provide for the proper location and planning of manufactured home parks, excluding family manufactured home parks. Special requirements shall be applied to these parks which shall specify improvements to the park to ensure the public health, safety and welfare of the park inhabitants as well as the surrounding area. Designation of an area as being in the MHP district provides design and appearance criteria which are more appropriate for rental manufactured housing and/or spaces, including vinyl or similar skirting, clustering of units and reduced road construction standards. These standards are not applicable to manufactured homes and/or lots located outside a MHP district. This district requires site plan review for development of manufactured home parks by the board of commissioners. This review is required because the use may have particular impacts on the surrounding area and the county as a whole. Approval of the site plan may include the addition of fair and reasonable standards to the site plan. No other uses allowed in the MHP district shall require site plan approval by the board of commissioner unless expressly required by this chapter.
- (2) Manufactured home parks, existing at the effective date of this chapter and registered

as provided by the county mobile home park ordinance are zoned as conforming uses, even though they may not meet the development standards of this chapter. Expansions of the existing registered manufactured home parks or construction of new manufactured home parks, approved under the county mobile home park ordinance may be initiated or continue unless no work has begun within six (6) months of the date of issuance of a "permit to develop" under that ordinance, or work has ceased for a period of twelve (12) months.

- (3) Other manufactured home parks, which meet the intent of this section by having improvements similar to the requirements of this chapter may also be zoned as conforming uses. However, all expansions of any manufactured home park, existing at the effective date of this chapter shall meet all requirements of this chapter unless expressly provided otherwise. Development standards for a manufactured home park are listed in article III.
- (f) Commercial, Business, Industrial, CBI. This zone allows for a wide range of commercial, business and light industrial activities which provide goods and services. This district is typically for more densely developed suburban areas, major transportation corridors, and major cross-roads communities. However this district may also exist or be created in an area other than listed in this subsection if the existing or proposed development is compatible with the surrounding area and the overall public good is served.
- (g) Industrial, IND. This district is intended to provide for industrial activities involving extraction, manufacturing, processing, assembling, storage, and distribution of products. The district is also designed to accommodate other, more intense nonresidential uses which generate adverse side effects such as noise, odor or dust. The district is typically applied in areas with maximum accessibility to major highways, rail lines, and other significant transportation systems. However this district may also exist or be created in an area other than listed in this subsection if the existing or proposed development is compatible with the surrounding area and the overall public good is served.
- (h) Neighborhood Business, NB. This district is designed for retail, limited small manufacturing facilities and service oriented business centers which serve small trading areas. As a result the list of allowed uses is more limited than those in the CBI district. The development standards for these business areas are designed to promote sound, permanent business development and to protect abutting and surrounding residential areas from undesirable aspects of nearby commercial development. This district is also designed to provide opportunities for potential development within the NB district.

Areas zoned NB shall be so located as to conveniently serve the community population. The establishment and subsequent development of this district shall not create or expand problems associated with traffic volumes or circulation. As the district is established to provide for small neighborhood oriented business areas limitations on gross floor area is established. Limitations on total impervious surface are established to minimize the adverse impacts of this type of development on adjacent residential areas. Generally, the NB district shall be two (2) acres or larger. However a lot of record, smaller than two (2) acres may be considered for rezoning to NB if the owner of the lot does not own adjacent property which may be included in the rezoning request.

(i) **Institutional**, **INST**. The purpose of the Institutional district is to recognize and permit the creation of defined areas for the unified and orderly development of major cultural, educational, medical, governmental, religious and other institutions in order to support and enhance their benefits to the community in a manner which protects adjacent residential uses. Trade school facilities teaching a trade, for example truck driving or welding, which have that activity on site, shall meet zoning requirements for that use.

Economic development districts established for I-85 (Per Section 21-34)

- (a) The following districts are hereby established to preserve, encourage and enhance the economic development opportunities in areas adjacent and near I-85 in accordance to plans adopted by the county board of commissioners. It is recognized that I-85 is uniquely important in the future of the county because of the great potential for development of all types that exist along this corridor. Development within these districts shall be of types which maximize the economic benefits to the county while minimizing the potential impacts.
- (b) The district are designed to accommodate, as appropriate, uses such as manufacturing, distribution, retail, service industries, corporate parks. Certain individual uses may be allowed as uses by right in some districts, while other more intensive uses may require a higher level of review and approval by the county. The districts encourage and allow more creative design of land development than may be provided on other general zoning districts. This flexibility is provided for planned unit developments.
- (c) The district are labeled as 85-ED 1 through 4. "85" represents the relationship to I-85. "ED" represents the economic development designation for the sites.
 - (1) 85-ED-1. The purpose of the 85-ED-1 district is to encourage the location of "high capital investment/high wage/low employment/clean" industries. Certain industries shall be allowed as permitted uses standards provided to protect adjacent neighborhoods. Other heavy industries may be allowed as conditional uses. If part of a larger master plan limited accessory and ancillary retail and service uses may be allowed.
 - a. In the 85-ED-1 district the following uses are permitted by right with a minimum lot size of five (5) acres:

Manufacturing group:

Printing and publishing (SIC 27).

Rubber and miscellaneous plastics products (SIC 30).

Fabricated metal products (SIC 34), except:

Ammunition, except for small arms (SIC 3483).

Ordnance and accessories (SIC 3489).

Industrial machinery and equipment (SIC 35).

Electrical and electronic equipment (SIC 36), except:

Power distribution and specialty transformers (SIC 3612).

Transportation equipment (SIC 37).

Instruments and related products (SIC 38).

Miscellaneous manufacturing industries (SIC 39).

b. The following are allowed with the issuance of a conditional use permit:

Manufacturing group:

Lumber and wood products (SIC 24).

Furniture and fixtures (SIC 25).

Plastic materials, synthetic resins, etc. (SIC 282).

Drugs (SIC 283).

Paper and allied products (SIC 26).

Stone, clay, glass, and concrete products (SIC 32).

Primary metal industries (SIC 33).

Services group:

Racing, including track operation (SIC 7948).

c. Approval of a PUD with a minimum lot size of twenty (20) acres will allow the above uses in addition to accessory and ancillary uses on up to ten (10) percent of the total acreage.

Transportation, communication, and utilities group:

Local and interurban passenger transit (SIC 41).

Transportation services (SIC 47).

Retail trade group:

General merchandise stores (SIC 53).

Food stores (SIC 54).

Eating and drinking places (SIC 58).

Miscellaneous retail (SIC 59).

Finance, insurance, and real estate group:

Depository institutions (SIC 60).

Service industries group:

Hotels, rooming houses, camps, and other lodging places (SIC 70).

Personal services (SIC 72).

Business services (SIC 73).

Automotive repair, services, and parking (SIC 75).

- (2)85-ED-2. In areas where existing conditions such as surrounding development, access etc. may make the area less marketable for uses listed exclusively in the 85-ED-1 district then the 85-ED-2 district may be appropriate. The primary additions to this district are distribution and wholesaling operations.
 - a. Certain industries shall be allowed as permitted uses with standards provided to protect adjacent neighborhoods. Other heavy industries and distribution and wholesale operations may be allowed as conditional uses. If part of a larger master plan limited accessory and ancillary retail and service uses may be allowed.

Manufacturing group:

Printing and publishing (SIC 27).

Rubber and miscellaneous plastics products (SIC 30).

Fabricated metal products (SIC 34), except:

Ammunition, except for small arms (SIC 3483).

Ordnance and accessories (SIC 3489).

Industrial machinery and equipment (SIC 35).

Electrical and electronic equipment (SIC 36), except:

Power distribution and specialty transformers (SIC 3612).

Transportation equipment (SIC 37).

Instruments and related products (SIC 38).

Miscellaneous manufacturing industries (SIC 39).

Service industries group:

Engineering and management services (SIC 87).

b. The following are allowed with the issuance of a conditional use permit: *Manufacturing group:*

Lumber and wood products (SIC 24).

Furniture and fixtures (SIC 25).

Plastic materials, synthetic resins, etc. (SIC 282).

Drugs (SIC 283).

Paper and allied products (SIC 26).

Stone, clay, glass, and concrete products (SIC 32).

Primary metal industries (SIC 33).

Transportation, communication, and utilities group:

Local and interurban passenger transit (SIC 41).

Motor freight transportation and warehousing (SIC 42).

Transportation services (SIC 47).

Wholesale trade group:

Wholesale trade--durable goods (SIC 50).

Wholesale trade--nondurable goods (SIC 51).

Services group:

Racing, including track operation (SIC 7948).

c. Approval of a PUD with a minimum lot size of twenty (20) acres will allow the above uses in addition to accessory and ancillary uses on up to ten (10) percent of the total acreage.

Transportation, communication, and utilities group:

Local and interurban passenger transit (SIC 41).

Transportation services (SIC 47).

Retail trade group:

General merchandise stores (SIC 53).

Food stores (SIC 54).

Eating and drinking places (SIC 58).

Miscellaneous retail (SIC 59).

Finance, insurance, and real estate group:

Depository institutions (SIC 60).

Service industries group:

Hotels, rooming houses, camps, and other lodging places (SIC 70).

Personal services (SIC 72).

Business services (SIC 73).

Automotive repair, services, and parking (SIC 75).

- (3) 85-ED-3 Corporate Park District. Some areas with good interstate visibility, good access and good surrounding environment may be suitable for high-end corporate headquarters. This may or may not include manufacturing. The purpose of the district is to provide for a high-quality mixture of employment uses of varying types in a single coordinated development. Minimum development size is twenty (20) acres and will require approval of a PUD.
 - a. Allowed primary uses are:

Manufacturing group:

Lumber and wood products (SIC 24).

Furniture and fixtures (SIC 25).

Paper and allied products (SIC 26).

Printing and publishing (SIC 27).

Plastic materials, synthetic resins, etc. (SIC 282).

Drugs (SIC 283).

Rubber and miscellaneous plastics products (SIC 30).

Stone, clay, glass, and concrete products (SIC 32).

Primary metal industries (SIC 33).

Fabricated metal products (SIC 34), except:

Ammunition, except for small arms (SIC 3483).

Ordnance and accessories (SIC 3489).

Industrial machinery and equipment (SIC 35).

Electrical and electronic equipment (SIC 36), except:

Power distribution and specialty transformers (SIC 3612).

Transportation equipment (SIC 37).

Instruments and related products (SIC 38).

Miscellaneous manufacturing industries (SIC 39).

Transportation, communication, and utilities group:

Local and interurban passenger transit (SIC 41).

Motor freight transportation and warehousing (SIC 42).

Transportation services (SIC 47).

Service industries group:

Hotels, rooming houses, camps, and other lodging places (SIC 70).

Personal services (SIC 72).

Business services (SIC 73).

Automotive repair, services, and parking (SIC 75).

Health services (SIC 80).

Legal services (SIC 81).

Educational services (SIC 82).

Membership organizations (SIC 86).

Engineering and management services (SIC 87).

b. Allowed accessory and ancillary uses on up to twenty (20) percent of the total acreage:

Transportation, communication, and utilities group:

Local and interurban passenger transit (SIC 41).

Transportation services (SIC 47).

Wholesale trade group:

Wholesale trade--durable goods (SIC 50).

Wholesale trade--nondurable goods (SIC 51).

Retail trade group:

General merchandise stores (SIC 53).

Food stores (SIC 54).

Eating and drinking places (SIC 58).

Miscellaneous retail (SIC 59).

Finance, insurance, and real estate group:

Depository institutions (SIC 60).

Service industries group:

Hotels, rooming houses, camps, and other lodging places (SIC 70).

Personal services (SIC 72).

Business services (SIC 73).

Automotive repair, services, and parking (SIC 75).

- (4) 85-ED-4 Retail Center. Many areas near the interstate will draw interest from retailers. It is often appropriate or desirable to have a portion of an area zoned for larger retail development. This helps ensure availability of most retail and service needs in a location nearby and accessible to major employment and residential areas. Minimum development size is twenty (20) acres and will require approval of a PUD.
 - a. Allowed primary and accessory uses are:

Retail trade group:

Building materials, hardware, garden supply, and mobile (SIC 52).

General merchandise stores (SIC 53).

Food stores (SIC 54).

Automotive dealers and gasoline service stations (SIC 55).

Apparel and accessory stores (SIC 56).

Furniture, home furnishings and equipment stores (SIC 57).

Eating and drinking places (SIC 58).

Miscellaneous retail (SIC 59).

Finance, insurance, and real estate group:

Depository institutions (SIC 60).

Nondepository credit institutions (SIC 61).

Security, commodity brokers, and services (SIC 62).

Insurance carriers (SIC 63).

Insurance agents, brokers, and service (SIC 64).

Real estate (SIC 65).

Holding and other investment offices (SIC 67).

Service industries group:

Hotels, rooming houses, camps, and other lodging places (SIC 70).

Personal services (SIC 72).

Business services (SIC 73).

Automotive repair, services, and parking (SIC 75).

Miscellaneous repair services (SIC 76).

Motion pictures (SIC 78).

Amusement and recreational services (SIC 79).

Health services (SIC 80).

Legal services (SIC 81).

Educational services (SIC 82).

Social services (SIC 83).

Museums, art galleries, botanical and zoological garden (SIC 84).

Membership organizations (SIC 86).

Engineering and management services (SIC 87).

Miscellaneous services (SIC 89).

- (5) Approval process for PUDs. All PUDs shall be reviewed and approved as required for conditional use permits in article III of this chapter. Uses included in PUDs which require conditional use approval as freestanding uses shall not require separate a separate conditional use permit approval if approved as part of a PUD.
- (6) Other zoning criteria. Notwithstanding limits on reduction of setbacks in article XIII of this chapter, all standards are subject to modification in site plan approval process. However, in no situation shall the required buffer from project perimeter be reduced if adjacent to a residentially zoned area.
 - a. Buffers. Forty (40) feet from project perimeter.
 - b. *Screening.* In accordance with article IX, screening for a PUD shall be determined using the predominant use of the PUD or relevant portion thereof.
 - c. *Street frontage.* Minimum of one hundred (100) feet for development.
 - d. Maximum lot coverage. Eighty (80) percent of lot area.
 - e. *Development size.* Development sizes are as permitted below. Permitted and conditional uses on lots five (5) acres or more but less than twenty (20) acres in size are only allowed on lots of record existing at the effective date of the ordinance from which this chapter derives, or on aggregations of lots existing at the effective date of the ordinance, creating a lot five (5) acres or larger in size.
 - 1. 85-ED-1.

	Permitted used	. 5 acres
	Conditional uses	. 5 acres
	PUDs 2	0 acres
2.	85-ED-2.	
	Permitted used	. 5 acres
	Conditional uses	. 5 acres
	PUDs 2	0 acres
3.	85-ED-3.	
	PUDs 2	0 acres
4.	85-ED-3.	
	PUDs 2	0 acres

- f. Subdivision requirements. All subdivisions of property must be approved as a PUD.
- g. Maximum building height. No maximum height.
- h. Parking. As required in zoning ordinance.
- i. *Signs.* As provided in zoning ordinance.

- j. *Circulation system.* Requires access to major or minor thoroughfare or interstate service road. No access to local streets is allowed. Interior streets are designed to connect to other adjoining property within a 85-ED district. This requirement may be waived if it is found that connection to adjoining property is not appropriate due to incompatibility of adjacent development.
- k. *Nuisance conditions.* The project shall no cause detrimental levels of noise, dust, odor etc. to nearby areas.
- I. Loading, maintenance and outdoor storage areas. All loading, maintenance and outdoor storage areas shall be located to the rear or side of the building, but shall not face a side street.
- m. *Open space.* Open space shall be suitably landscaped with grass and/or trees and shrubs. Within a PUD the open space shall be pedestrian oriented. Parking or vehicular access is not allowed.
- n. *Lighting.* Lighting shall be provided at intersections, along walkways and in parking lots. The maximum height of lighting is twenty-five (25) feet. Spacing of lighting shall be four (4) times the height.
- o. *Building character and style.* Building designs within a PUD shall strive to establish a distinctive style and maintain a high quality development standard. Buildings should include similar architectural styles but should not be identical throughout the development. The site plan shall at a minimum describe building materials colors and architectural features of the development.
- p. *Pedestrian facilities and design.* Within a PUD, the site plan shall provide for a unified and well-organized arrangement of buildings, service areas, parking, etc., to provide a high level of convenience and safety for pedestrians, employees, and visitors.
- q. Landscaping. Approval of PUD shall include at a minimum the following:
 - 1. Trees shall be planted on both sides of interior access streets used by the public. These trees shall be ten (10) feet tall at planting and a minimum of twenty (20) feet tall at maturation, and shall be of similar size and shape. The trees shall be planted no further than forty (40) feet apart.
 - 2. Entranceways and medians shall be landscaped with trees and/or shrubs as appropriate for the type of development.

APPENDIX 9

EEP FLOODPLAIN REQUIREMENTS CHECKLIST

EEP Floodplain Requirements Checklist

This form was developed by the National Flood Insurance program, NC Floodplain Mapping program and Ecosystem Enhancement Program to be filled for all EEP projects. The form is intended to summarize the floodplain requirements during the design phase of the projects. The form should be submitted to the Local Floodplain Administrator with three copies submitted to NFIP (attn. Edward Curtis), NC Floodplain Mapping Unit (attn. John Gerber) and NC Ecosystem Enhancement Program.

Project Location

Name of project:	Little Buffalo Creek (Stream Restoration)
Name if stream or feature:	Little Buffalo Creek
County:	Cabarrus

Name of river basin:	Yadkin
Is project urban or rural?	Rural
Name of Jurisdictional	Gold Hill
municipality/county:	
DFIRM panel number for	3710568200J (11/05/08)
entire site:	
Consultant name:	The Louis Berger Group, Inc.
Phone number:	919.866.4400
Address:	1001 Wade Avenue – Suite 400
	Raleigh, NC 27605

Design Information

Provide a general description of project (one paragraph). Include project limits on a reference orthophotograph at a scale of $1^{"} = 500"$.

Summarize stream reaches or wetland areas according to their restoration priority.

See attached Restoration Plan.

Floodplain Information

project located in a Special Flood Hazard Area (SFHA)?
Yes 🖸 No
project is located in a SFHA, check how it was determined:
Redelineation
Detailed Study
Limited Detail Study

Approximate Study			
Don't know			
List flood zone designation:			
Check if applies:			
AE Zone			
🖾 Floodway			
C Non-Encroachment			
C None			
A Zone			
Local Setbacks Required			
C No Local Setbacks Required			
If local setbacks are required, list how many	y feet:		
Does proposed channel boundary encroachment/setbacks?	encroach	outside	floodway/non-

C Yes C No
Land Acquisition (Check)
State owned (fee simple)
Conservation easment (Design Bid Build)
Conservation Easement (Full Delivery Project)
Note: if the project property is state-owned, then all requirements should be
addressed to the Department of Administration, State Construction Office (attn
Herbert Neily, (919) 807-4101)
Is community/county participating in the NFIP program?
🖸 Yes 🖸 No
Note: if community is not participating, then all requirements should be addressed
to NFIP (attn: Edward Curtis, (919) 715-8000 x369)
Name of Local Floodplain Administrator: Robbie Fox
Phone Number: (704) 920-2138

Floodplain Requirements

This section to be filled by designer/applicant following verification with the LFPA

No Action

🗖 No Rise

□ Letter of Map Revision

Conditional Letter of Map Revision

C Other Requirements

List other requirements:

Comme	nts:		
Name:	Edward Samanns	Signature: _	hulfun

Title: Director of Environmental Sciences Date: April 5, 2013

APPENDIX 10

BENTHOS SURVEY RESULTS

Appendix 10 Table 1: Benthos Survey Results Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147						
1.1.1.	SPECIES	T.V.	F.F.G.	UT7	LBC	LBC
1.1.1.	SILCIES	1	F.F.G.	017	Restoration	Reference
NEMAT	ODA	6			Restoration	1
MOLLU		•				1
Bivalvia						
Venero						
Sphaer			FC			
	um sp.	6.5	FC	1		
Gastrop		0.0	10	-		
-	matophora					
Physic	-					
	ella sp.	8.8	CG	32		1
ANNEL	<u>.</u>	0.0		52		1
Oligoch						
Tubifi						
Naidid						
Dero		10	CG		2	1
	cidae w.o.h.c.	7.1	CG	1	7	2
ARTHR		7.1	CU	1	1	2
Crustac						
Cladoo						
Daphn						
	daphnia sp.				1	
	· · ·				1	
Decapo Camba		7.5		1	1	
			CC	1	1	1
	parus sp.	7.6	CG			2
	ımbarus sp.	/	SH			2
Insecta						
Collen						2
	neroptera					
	geniidae	=	00			4
	nema femoratum	7.2	SC			4
Odona						
*	terygidae					
	oteryx sp.	7.8	Р			2
	grionidae					
	agma sp.	8.9	Р			1
Libellu						
	iemis tenera	9.9	Р			1
Hemip						
	omatidae					
	toma sp.	9.8	Р		1	
Corixi	dae	9		1	1	

Appendix 10 Table 1: Benthos Survey Results Little Buffalo Creek Stream Mitigation Project EEP Project No. 94147					
Veliidae	l llojt				
Microvelia sp.		Р		1	
Megaloptera					
Corydalidae		Р			
Nigronia serricornis	5	Р			1
Sialidae		Р			
Sialis sp.	7.2	Р			4
Coleoptera					
Cucurlionidae					1
Dytiscidae					
Neoporus sp.	8.6		1		1
Elmidae		CG			
Stenelmis sp.	5.1	SC			3
Diptera					
Ceratopogonidae				1	1
Chironomidae					
Ablabesmyia mallochi	7.2	Р			4
Chironomus sp.	9.6	CG	100	239	49
Conchapelopia sp.	8.4	Р			27
Cryptochironomus sp.	6.4	Р			6
Goeldichironomus sp.		CG	1	6	
Microtendipes pedellus gp.	5.5	CG			5
Natarsia sp.	10	Р	2		2
Parachironomus sp.	9.4	Р		1	1
Paratanytarsus sp.	8.5	CG			1
Polypedilum flavum (convictum)	4.9	SH			11
Polypedilum illinoense	9	SC		2	17
Polypedilum scalaenum	8.4				7
Procladius sp.	9.1	Р	2		1
Tanytarsus sp.	6.8	FC		6	36
Culicidae			29	14	1
Anopheles sp.	8.6	FC	1		1
Culex sp.	10	FC	8	46	2
Sciomyzidae			1		
Tipulidae		SH			
Hexatoma sp.	4.3	Р			2
TOTAL NO. OF ORGANISMS			181	329	202
TOTAL NO. OF SPECIES			14	15	34
ЕРТ			0	0	1
BIOTIC INDEX assigned values			9.05	9.14	7.59

*North Carolina Tolerance Values (T.V.) range from 0 for organisms very intolerant of organic wastes to 10 for organisms very tolerant of organic wastes

*F.F.G.-Functional Feeding Group: CG=Collector/Gatherer, FC=Filtering/Collectors, SC=Scrapers, SH=Shredders, P=Predators and PI=Piercer

APPENDIX 11

AGENCY CORESPONDENCE

March 23, 2010

Mr. Michael O'Rourke The Louis Berger Group, Inc. 1001 Wade Avenue, Suite 400 Raleigh, North Carolina 27605

Subject: Categorical Exclusion Form for Little Buffalo Creek – Full Delivery Project Yadkin River Basin – CU# 03040105 Cabarrus County Contract No. 002029

Dear Mr. O'Rourke:

Attached please find the approved Categorical Exclusion Form for the subject full delivery project. Please include a copy of the signed form in your Restoration Plan. You may submit an invoice in the amount of \$ 92,550.00 (5% of contract) for completion of the Task 1 deliverable.

If you have any questions, or wish to discuss this matter further, please contact me at any time. I can be reached at (919) 715-1656, or email me at <u>guy.pearce@ncmail.net</u>.

Sincerely,

Guy C. Pearce EEP Full Delivery Program Supervisor

cc: file

Restoring ... Enhancing ... Protecting Our State

North Carolina Ecosystem Enhancement Program, 1652 Mail Service Center, Raleigh, NC 27699-1652 / 919-715-0476 / www.nceep.net

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Par	t 1: General Project Information			
Project Name:	Little Buffalo Creek Stream Restoration			
County Name:	Cabarrus County			
EEP Number:	NCDENR Contract # 2029			
Project Sponsor:	The Louis Berger Group			
Project Contact Name:	Michael O'Rourke, The Louis Berger Group			
Project Contact Address:	1001 Wade Avenue Suite 400, Raleigh, NC 27605			
Project Contact E-mail:	morourke@louisberger.com			
EEP Project Manager:	Guy Pearce			
	Project Description			
	For Official Use Only			
Reviewed By:	And the second			
3/23/2010 Date Conditional Approved By:	EEP Project Manager			
Date	For Division Administrator FHWA			
Check this box if there are outstanding issues				
Final Approval By:				
<u>3-16-10</u> Date	For Division Administrator FHWA			

North Carolina Department of Cultural Resources

State Historic Preservation Office

Peter B. Sandbeck, Administrator

Beverly Eaves Perdue, Governor Linda A. Carlisle, Secretary Jeffrey J. Crow, Deputy Secretary

February 3, 2010

Eric Voigt The Louis Berger Group, Inc. 801 East Main Street Suite 500 Richmond, VA 23219

Re: Little Buffalo Creek Stream Mitigation, Cabarrus County, ER 10-0183

Dear Mr. Voigt:

Thank you for your letter of January 22, 2010, concerning the above project.

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, please contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579. In all future communication concerning this project, please cite the above-referenced tracking number.

Sincerely,

Kense Gudhill-Earley

Peter Sandbeck

Office of Archives and History Division of Historical Resources David Brook, Director

THE LOUIS BERGER GROUP, INC.

1001 Wade Ave. Raleigh, North Carolina 27605 Tel (919) 866-4400 Fax (919) 755-3502 www.louisberger.com

November 16, 2009

Marella Buncick US Fish and Wildlife Service Asheville Field Office 160 Zillicoa Field Office Asheville, NC 28801

Subject: EEP Stream Restoration Project in Cabarrus County, Yadkin-Pee Dee River Basin 03040105

Dear Ms. Buncick,

The Little Buffalo Creek Stream Mitigation Project is an EEP Full Delivery Project. The Little Buffalo Creek Stream Mitigation Site has been identified for the purpose of providing in-kind mitigation for unavoidable stream channel impacts. Within the proposed project site Little Buffalo Creek and its tributaries have impaired water quality due to stressors that are biological (bacteria such as fecal coliform), chemical (fertilizers) and physical (cattle on streambanks and riparian zone) in origin. Coupled with the poor water quality, the lack of riparian buffers throughout much of the site has greatly devalued both aquatic and terrestrial habitat. Additionally, the site has diminished capacity to manage flood flows due to the erosion of, and damage to, many of the streambanks onsite. The Louis Berger Group (Berger) proposes to restore, enhance, and preserve up to nearly 14,000 linear feet of stream channel along Little Buffalo Creek and its tributaries. The project will also include the restoration of 50 foot riparian buffers on both sides Little Buffalo Creek and its tributaries. Anticipated benefits are enhanced wildlife habitats, improved water quality and improved flood storage along Little Buffalo Creek.

We have already obtained an updated species list for Cabarrus County from your web site (<u>http://nc-es.fws.gov/es/countyfr.html</u>). The threatened or endangered species are:

Carolina heelsplitter	Lasmigona decorate	Historic
Schweinitz's sunflower	Helianthus schweinitzii	Current

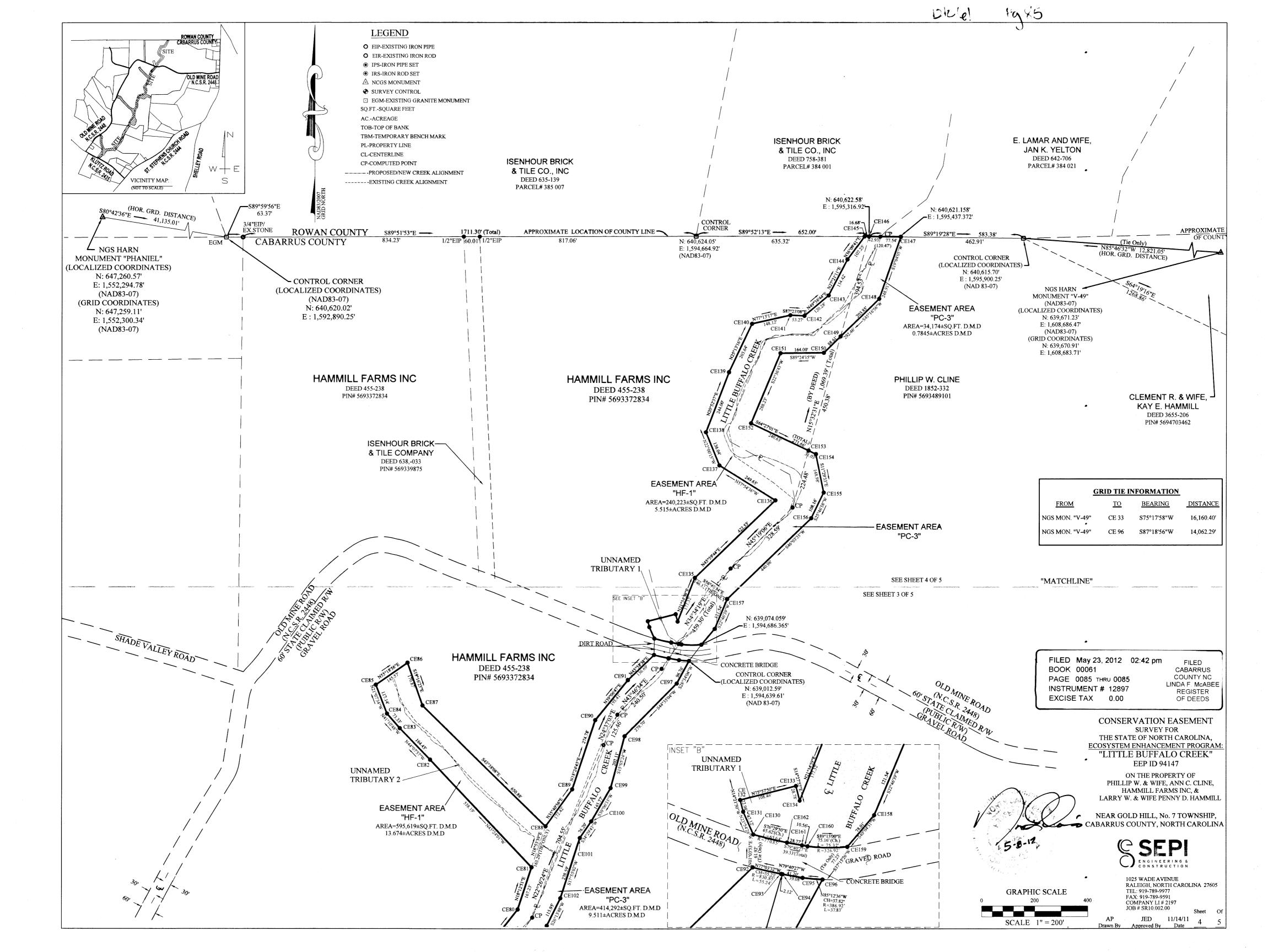
We are requesting that you please provide any known information for each species in the county. The USFWS will be contacted if suitable habitat for any listed species is found or if we determine that the project may affect one or more federally listed species or designated critical habitat.

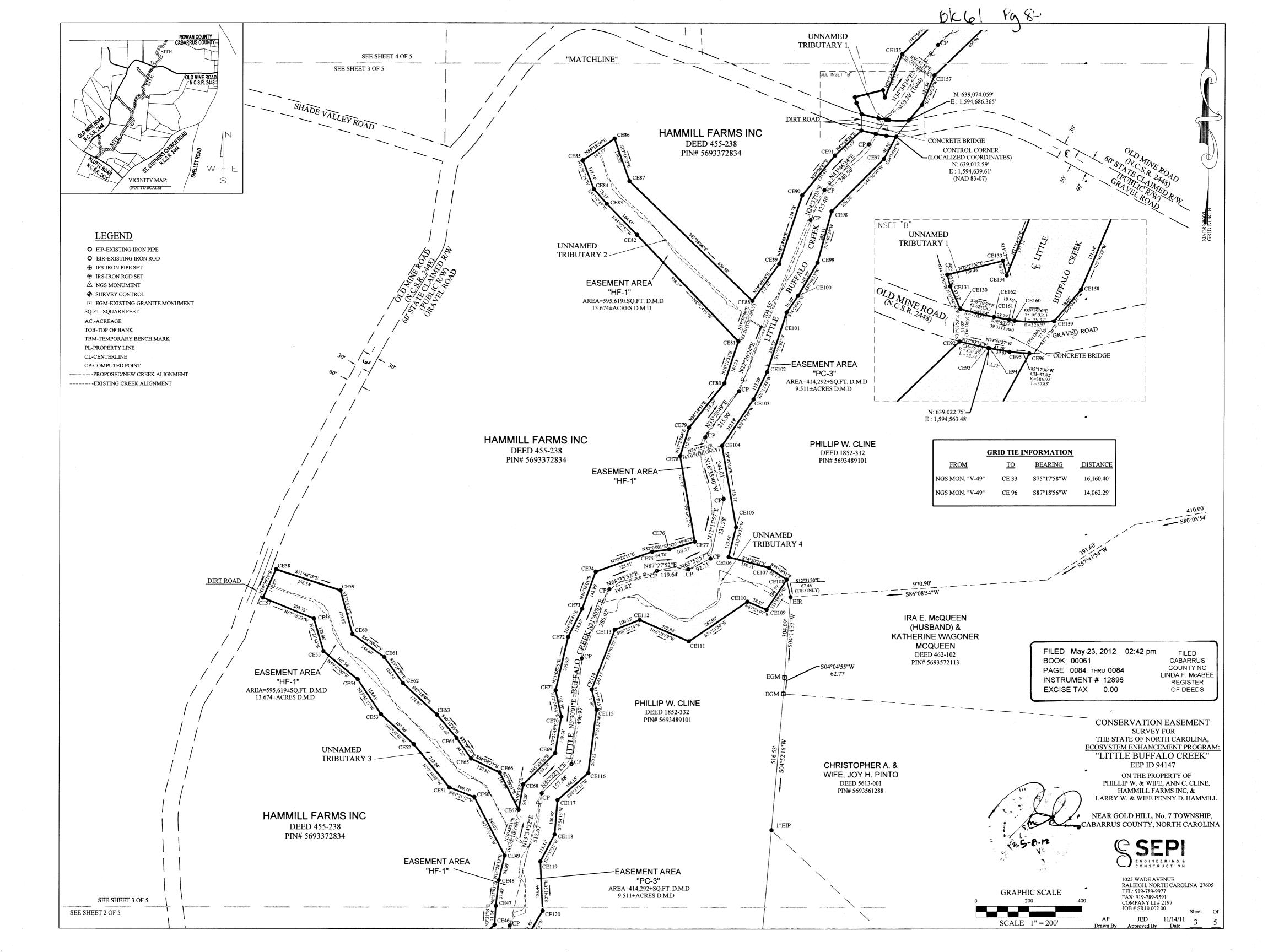
Please provide comments on any possible issues that might emerge with respect to endangered species, migratory birds or other trust resources from construction of the stream restoration project on the subject property. A USGS map showing the approximate property lines and areas of potential ground disturbance is enclosed.

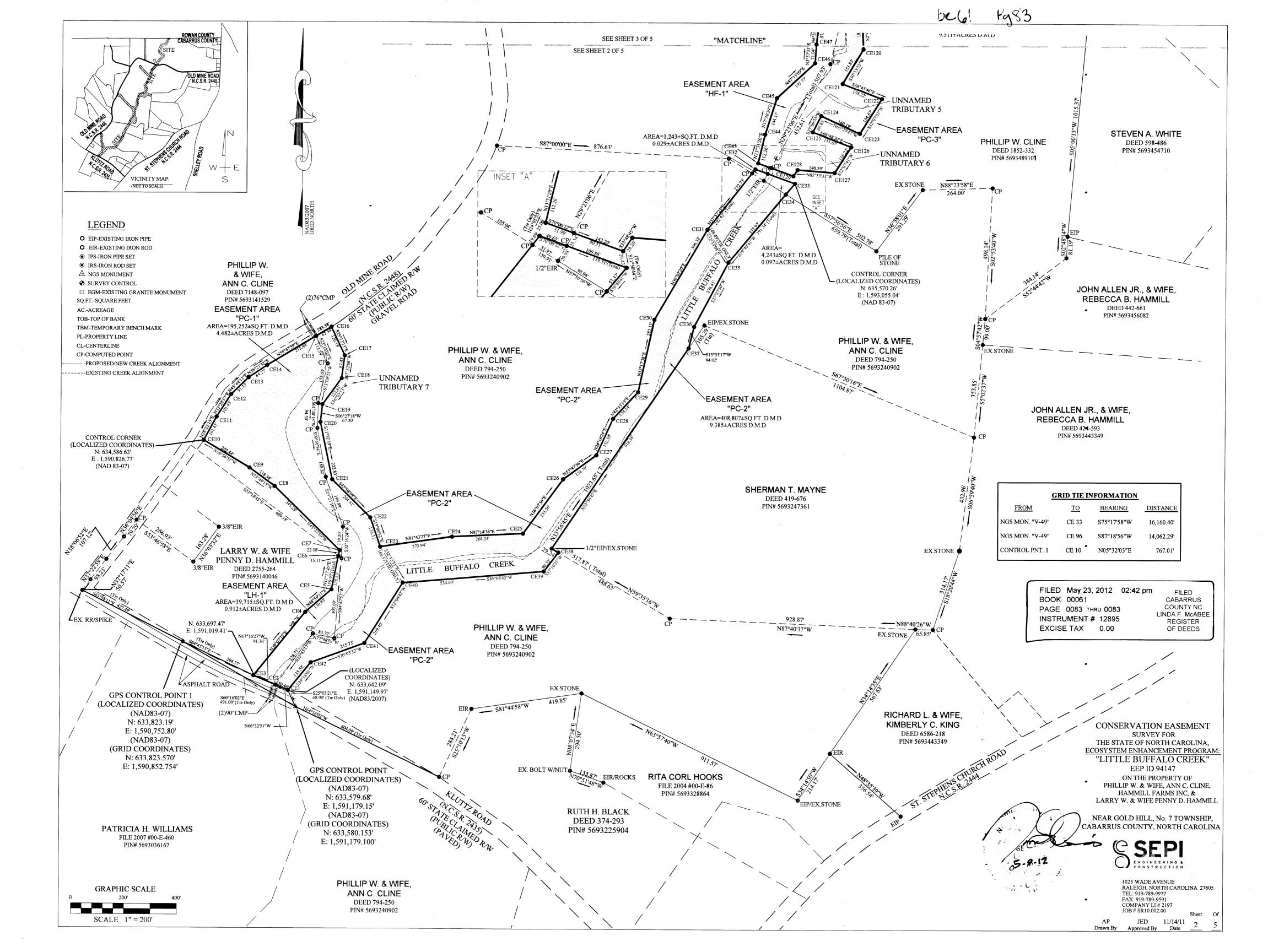
If we have not heard from you in 30 days we will assume that our species list is correct, that you do not have any comments regarding associated laws, and that you do not have any information relevant to this project at the current time.

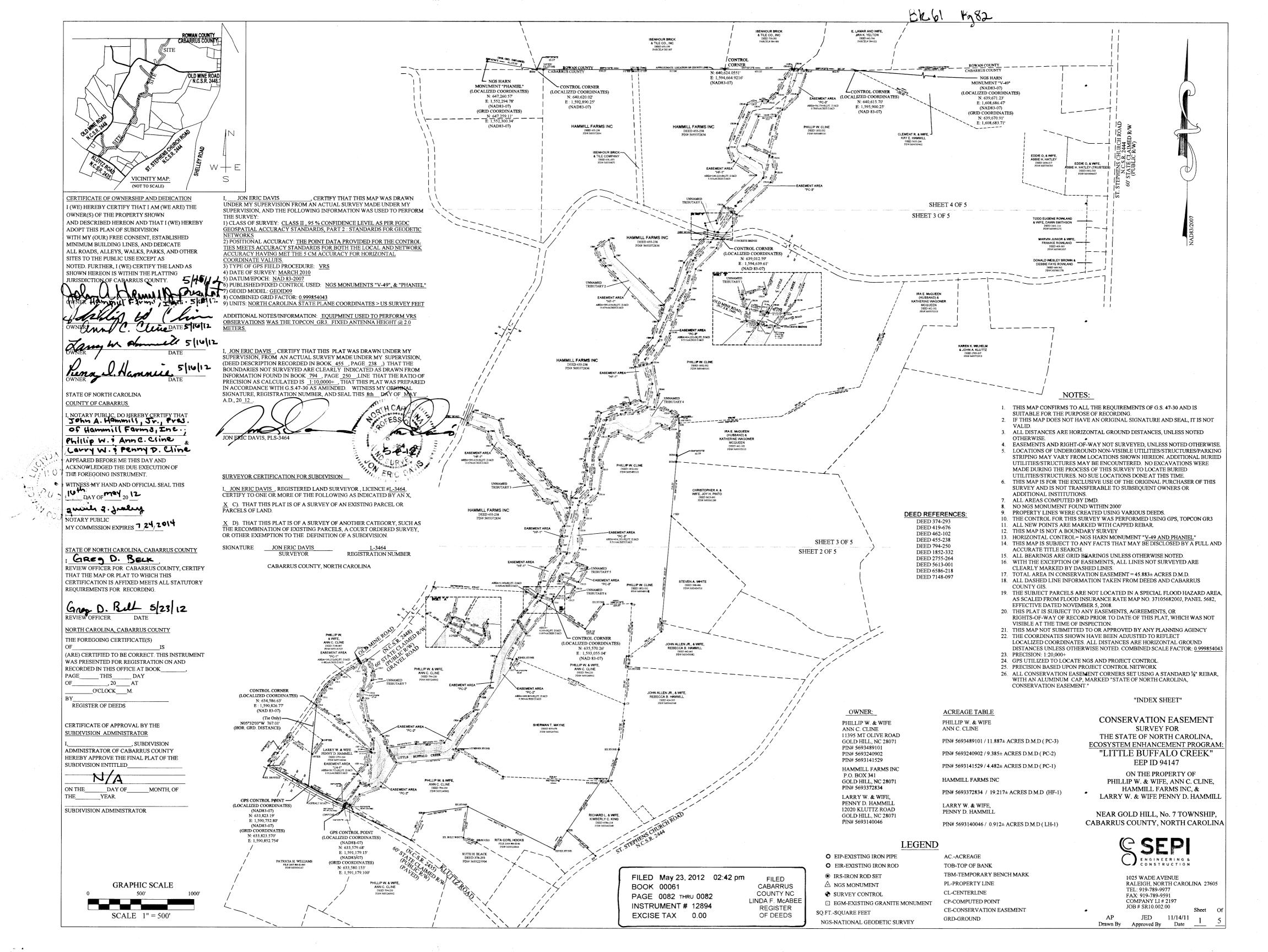
We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the extent of site disturbance associated with this project.

Sincerely,


Michael O'Rahe (MICHAEL O'ROURKE FOR TINA SEICULA)


Tina Sekula Senior Environmental Scientist Louis Berger Group, Inc. 1001 Wade Avenue, Suite 400 Raleigh, NC 27605


Michael O'Rourke (Berger) cc: Guy Pearce (NCEEP)


APPENDIX 12

CONSERVATION EASEMENT DOCUMENTATION

