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The Colon 7.5-minute Quadrangle lies in the east central-portion of the North Carolina Piedmont. The unincorporated communities of Colon ) s . i Zhelpl N\ @ ‘I/Q%e
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Triassic Sedimentary Rocks Pre-Mesozoic crystalline rocks in the Colon Quadrangle are part of the redefined Hyco Arc (Hibbard et al., 2013) within the Neoproterozoic to
kS) Deep River Basin: Sanford Sub-basin Cambrian Carolina terrane (Hibbard et al., 2002; and Hibbard et al., 2006). In the region of the map area, the Carolina terrane can be
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The southern portion of the quadrangle is underlain by Triassic-aged sedimentary rocks of the Deep River Mesozoic basin which is separated ﬁ’&?\ %g@ﬂ o e *’"% g_/ ol
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The Hyco Arc and Aaron Formation lithologies were folded and subjected to low grade metamorphism during the ca. 578 to 554 Ma (Pollock, P 5’\ ‘é% B2 ° O] /_/: 7
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The historic Clegg Copper Mine (Kerr and Hanna, 1893) is present within a quartz mineralized zone that is interpreted to have been a pre- L 84\/28 ‘\ \\ l
metamorphic fault — the Copper Mine Fault (Babiker, 1978). The Copper Mine Fault is oriented parallel to later Mesozoic brittle faulting. \ = & M S ® : \\ \\ \15 JJ
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Reinemund (1955), is an important work, that has laid the foundation for the geology with in the Triassic basin. For this mapping effort, Reinemund’s maps were georeferenced to a digital elevation model from Hillshade LiDAR. ,""BDH\10 [ i -F“_L,‘-“) e, \§\ “57;,/ \'9@-}(:\ N N at f") VIS Zhimelpl /‘> \ ) sl . - PR Yo A l 5P /: :J. NS //l/ // \\ )
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Copper Mines

Two historic copper deposits are present in the map area and include the Clegg Copper Mine and the Sloan Mine. Descriptions of the deposits are provided in Kerr and Hanna (1893), Berry (1943) and Carpenter (1976).
Babiker (1978) conducted a detailed study of the Clegg Copper Mine.

The Clegg Copper Mine is present within a quartz mineralized zone along the Copper Mine Fault. The workings were reported to have been extensive and included four vertical shafts reaching a depth of 200 feet with mining
ending in 1890 (Kerr and Hanna, 1893). Babiker (1978) reported multiple copper-bearing sulfides with chalcopyrite as the principal copper mineral with secondary minerals of chalcocite, covellite and malachite. The Clegg
Copper Mine area appears to have been reclaimed with little evidence of past mining remaining.

Kerr and Hanna (1893) briefly mention the Sloan Mine as consisting of a two foot thick vein that was worked to a depth of 40 feet prior to 1888. Berry (1943) and Carpenter (1976) have limited information on the mine.

Clay Products

The red claystones of the Pekin and Sanford Formations continue to supply area brick manufactures raw material. In the 1950’s, it was reported that 6 brick and tile producers were active in the map and nearby areas
(Reinemund, 1955). It has been and continues to be an important location for clay products. Several abandoned and active clay pits are present in the map and are identified.

Coal Deposits

Coal has been mined within the map area since before the Revolutionary War — ca. 1750’s. Reinemund (1955) estimates the total production in the Deep River Coal Field exceeded 1 million tons. The majority of the production
was from two mines with extensive underground workings — the Carolina Mine and the Cumnock (also known as the Egypt) Mine. Reinemund (1955) provides an extensive review of the coal deposits and geology of the Deep

River Coal Field. \ ;
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No natural gas exploration wells have been drilled within Colon Quadrangle, however several have been drilled in the adjacent Goldston Quadrangle. A summary of the natural gas potential of the Sanford sub-basin is provided \Qg*\<\§\ < = \p@\ ) = \\———r‘§ —r QQ}’L KON N A 5 DY A P N\ 2P \\ ,///// // 5}."\ Qal =T
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Quaternary deposits in the Colon Quadrangle were previously mapped by Reinemund (1955), along with bedrock mapping; however, the mapping was conducted prior to 1:24,000 topographic map availability. The Quaternary \ YA //‘1\7\ \' A S \\7\3\\\ = // N é’\ YA = 7~y Y ///// o ,ﬁ’// ot
mapping for this project utilized digital county soil survey parent material maps (Soil Survey Staff, 2019), high resolution LIiDAR surface topography, data from Reinemund (1955), and new field observations (outcrops and hand 7 /\v/ AN \ o T L) %\)(\\\ Vs ) // \ N AR s %/ B \// = e /// ///// CLY 42 v N d ,\
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The oldest and highest terrace deposits (Qth) contains fluvial deposits of an ancestral Deep River, which has since incised to its present level. The elevation of this terrace level ranges from as high as 305 feet to 240 feet asl, v 75} A ‘\/Jd \ = N i\ AN [ \;) Jd \ 2% —/\\/ \ ,//:// // ~ - ;,//’/ /' ////’//(
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lithological differences were not readily observed. Possible causes for the river’s overall incision during the Quaternary include tectonic, glacial isostatic adjustment (forebulge of Laurentide Ice Sheet) and climatic processes. o \ M\ [ 87—\ \ & — \ \\\35 \ \ /\ //// v 5/ ////// // fm -'/I’.l /’ / [ ,SDG
The age of deposits within the high terrace unit are speculatively middle Pleistocene based on the terrace height above the modern floodplain (Mills, 2000), degree of dissection, and weathering characteristics (Suther et al., \ \ WL c S | L/ D N \\\ Wats _\5”? (ARDg%//\// 2 A 4 Va7 ,'/,/',’ /) / Yol
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The low terrace deposits (Qtl) contain younger Deep River fluvial deposits, with terrace elevations ranging from 240 feet to 220 feet asl, typically about 10 to 15 feet above the modern Deep River floodplain. The age of deposits )_.\- N \\ ( = \\ 4022’* \\\ (é “\J & S%\‘\O _// ) \\‘\Q //\\ /,\f;‘yf~{/ //// / ///-/ I;I ,',/"/ //”///’/ A
within the low terrace unit are speculatively late Pleistocene to early Holocene based on the terrace height above the modern floodplain (Mills, 2000; Suther et al., 2011). In some areas, the landforms appears to be a strath &//,/’",-\ \ QU RN \12\5\5\ \\Northview & w“o C\ (/ \\\ ‘ | \’ 5 \\ \ SN s 1% Jox /’I /,,{l /,',’,/'/'
terraces with thin fluvial deposits (silty to sandy; < 4 feet thick) above residuum developed in Triassic bedrock. In other areas, the terrace may be the cut-and-fill variety, but thicknesses are unknown without test cores. /(<‘ ]) \§\ \,\\\ SN Y \\ A~ ‘:Aﬂ ) N \ ( >\ ok, £) \ ,},)\/h’ \ A // ,’l/l/ //I///,/, (
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Alluvial deposits on the modern (Holocene) floodplain (Qal) consist mainly of silt loam to silty clay loam where exposed along the Deep River or its tributaries in the Triassic Basin. Fine to medium sand occurs in points bars and 12 ’,7//5\/’ — \\ % \2’2\\\ N \\ \ \ \\ -, \\' x //// \ // //// ,///// [ ///’
river channels, along smaller creeks in crystalline terrain (where it can be gravelly) and likely at depth from reworking of Pleistocene and older sediments. Along the Deep River valley, the modern floodplain ranges in elevation S =AU ST <\ Y = s \)\\\ Tre \\ 1Y { [ A AN I \,/ \ \ s // %, ,; ,’/
from about 225 feet asl to 195 feet asl (northeastern part of Colon Quadrangle). This map unit likely also includes very low terraces which are blanketed by modern overbank flood deposits from times of high water levels. =7 \\ \ S N —h 7 Jd \\\\ \\\ J Qal (\ \ N\ " SR\ \ A /4/ ,/// /// :4,\ ;
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All pre-Mesozoic rocks in the map area have been metamorphosed to at least the chlorite zone of the greenschist metamorphic facies. Many of the rocks display a weak or strong metamorphic foliation. Although subjected to L= U,// /([ ) \\' \e\\ old shaft o \\ ) \ | ><CLY A2 ,’ A\ ) P\ //j/ ////’f\ =~
metamorphism, the rocks retain relict igneous, pyroclastic, and sedimentary textures and structures that allow for the identification of protolith rocks. As such, the prefix “meta” is not included in the nomenclature of the pre- #20 El/ 207/ ) ) A\ y \\ iy 5 \E\\ z\ B \\\\ = \ | e A X 7 // \\ \ \ Jd //,// Y Qa'(
Mesozoic rocks described in the quadrangle. Dikes of Jurassic-aged diabase intrude the crystalline rocks and Triassic sediments of the map area. Triassic-aged sediments and Jurassic diabase dikes are not metamorphosed. \ \\,/ N < W \ \ \,_,// TN }b\ ?2\ \\\\\ & \3\ § / / \ \ I // \ \/ //////'/ ) ./// / VAN
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Map units of metavolcanic and metavolcaniclastic rocks include various lithologies that when grouped together are interpreted to indicate general environments of deposition. The dacitic lavas and tuffs unit is interpreted to | \ 2 2\ \\\ S5 LOMAS w\LL"*M O \\/7\ \\ns N \ _____\ KEVTN SN //j// % \\ /// /// / 71\
represent dacitic domes and proximal pyroclastics. The andesitic to basaltic lavas (with tuffs or conglomerates) units are interpreted to represent eruption of intermediate to mafic lava flows and associated pyroclastic and/or )\ \\> \ N} \\ = k\\\\\\\“fo \ )\ ) \C ) A1 _ g == \\L_/. \‘L";’:/ %fq S\ \ R /// / /’/ \
epiclastic deposits. The epiclastic/pyroclastic units are interpreted to represent deposition from the erosion of dormant and active volcanic highlands. Some of the metavolcaniclastic units within the map area display lithologic -~ | \N (% % = AT\ 53\ SO \\ Jad A\ ( D) \ S~ <= _'Trp “~-\*\—~—”%~;¢\\:\ % //,L/>\/ // ;/
relationships similar to dated units present in northern Orange and Durham Counties. Due to these similarities, the metavolcanic and metavolcaniclastic units have been tentatively separated into upper and lower portions of the \ \\ \ \\\\\ 4 \)/7/72% ~o K< ‘\\\\ \\U /1\8/\ \'ud NN QN PS \\\d ,§
Hyco Formation; geochronologic data in the map area is needed to confirm this interpretation. A review of the regional lithologies is summarized in Bradley (2013). \/}5{\ i ) \ \ \\\\:\\ ;:.\.\_20 ) % \\ L DY { \ 3 ‘( \ 3 \\\ \\\ Sex ,_/,// \XISL 3/{///
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Unit descriptions common to Rice et al. (2020) and Bradley et al. (2014) from the Goldston and Pittsboro geologic maps, respectively were used for conformity with on strike units in neighboring quadrangles. Unit descriptions /) S Trs L/ \\ o A\ — ‘@0 SN \ /;‘K\ Sig Trc\ VZ \ 20 \_\\ RIDDLE,RD. Nl R S P X \\:‘\\\\\ \“\—4?“ \ﬁ)
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(IUGS) after Le Maitre (2002) is used in classification and naming of the units. The classification and naming of the rocks is based on relict igneous textures, modal mineral assemblages, or normalized mineral assemblages 0 i \\ A\ \\ \ SR i ST oA \ \\\ ) y \\_ _\\ Y L) 22 NS h e m g Sy \ =<\ R SEaSSS l K ///
when whole-rock geochemical data is available. Pyroclastic rock terminology follows that of Fisher and Schminke (1984). >) ?\ \\\ =~ S ,}\ \\ -\\ o \\ N NN N /\/,, l,(\ Te N\ X _\“‘\\\ ‘\ \ N~ 2 /,/////T "//,’
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Qal - Modern (Holocene) floodplain deposits: silt loam to silty clay loam, with fine to medium sand deposits in point bars and channels deposits in the Deep River valley; smaller tributaries in the Carolina terrane ) Y\|[Jd N \ \\ \ ?SANFD L= ‘\ \\\@ Trs \% 5 o \\:‘ -D—P\\ \v\\ £ \\_‘__\ ---------- A Jd /\ \?j_—‘—_—;:// /,/’vg*\/// ’K‘\L/
Qal can have more sandy or gravelly alluvium; brown to gray; soft; crudely stratified; observed as much as 10 feet thick, but likely thicker in the Deep River Valley. Includes very low terraces that are periodically = W\ \ A W S\ \S A TC4s z \7*5—\‘{‘;\ T \ D\\U ) r—\—""g\/\ -(‘\‘5“\:(\\ % X ) /
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inundated by modern floods. Contains weak to moderately developed soil profiles. Structural measurements depicted on the map within Qal represent outcrops of crystalline rock inliers surrounded by alluvium. 2 AN N \12 \ e / )CANTERBURY RD \ S = 8= 2 — Ly I/ & — =G \ // 7 \ \\20 )?OX NES NSNS \.__ e~ / f
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Qth — Quaternary high terrace deposits: silt loam to sandy loam to gravelly loamy sand (up to 40 % gravel); yellowish brown to reddish brown; gravel consists primarily of white, rounded to subrounded quartz 35°30' 00 et~ = — L
Qth pebbles, with rare cobbles; the fluvial depositional sequence generally fines upwards, with gravelly zones typically revealed along eroding slopes; total thickness of map unit is typically 2 to 10 feet; may consist of 79°15'00 79 07" 30"
a lag deposit in strath terraces over a red, silty clay to clay residuum developed into fine-grained Triassic bedrock. Mapped areas may include multiple, undifferentiated high terrace levels. Contains E and Bt
horizons of an Ultisol soil profile, with significant alteration extending several feet into the unit. May exhibit crude stratification or cross bedding at depth. [this unit is similar in concept to Qg3 of Reinemund
(1955)]
Triassic Sediments
ULz Trs — Sanford Formation: Mainly red to brown, locally purple, coarse-grained, arkosic sandstones and conglomerates. Subordinate amounts of claystone, siltstone and fine-grained sandstone (Reinemund, 1955).
Trc Trc — Cumnock Formation: Gray and black claystone, shale and siltstone. Gray sandstone. Contains beds of coal and carbonaceous (organic-rich) shale (Reinemund, 1955). Includes coal horizons. Altered by the North. Carolina Geologlci-zl Survey for use with map. g
Produced by the United States Geological Survey - SCALE 1:24 000 ROAD CLASSIFICATION
- Trp — Eekin Formation:. Gray, Brown to maroon, Yvhite m.ica b.earing, interbedded mudstones, silt.stones a.r.kosic sandstorjes and chally conglomerates. Outcrops and boulders of float identified as part of Pekin \';‘V‘;rrtl'; ‘g;‘:;‘:;: E;str:q%ffz%%i((wgfgj)_ Projection and : N 5 e § TR 5 —-— — Local Connector
Formation are strongly indurated compared to sediments identified as part of the Durham sub-basin. Identified as the Pekin Formation by Reinemund (1955). 1 000-meter grid:Universal Transverse Mercator, Zone 175 ] ; 10? = '—5'00 = = = ETERS — AROLINA Local Road
. o . . . . . . This map is not a l_egal document._Boundaries may be % 1 0.5 0 4WD
Trpc — Conglomerate of the Pekin Formation: Reddish-brown to dark brown to purplish-red, irregularly bedded, poorly sorted, cobble to boulder conglomerate. Clasts are chiefly miscellaneous felsic and generalized for this map scale. Private lands within government e
intermediate metavolcanic rocks and quartz. Typically present adjacent to border faults. Outcrops and boulders of float identified as part of Pekin Formation are strongly indurated compared to conglomerates reste“_’at'm_s ”‘tayl"°;be shown. Obtain permnission before 19 MILS MILES ' Interstate Route B US Route O State Route
identified as part of Durham sub-basin. Identified as the Pekin Formation-basal conglomerate by Reinemund (1955). SnESADE RRYACE ANCSS 1000 0 1000 2000 3000 4000 5000 6000 7000 QUARRANSLELOCATION
g T N NAIP, June 2016 - November 2016 FEET
. . . . Roads........ u.s. Census Bureau, 2016
Intrusive and Metaintrusive Units NETES. .. oo e GNS, 1980 - 2017 D R e L NO T ! SIS
ydrography ..Mational Hydrography Dataset, % 1 3 ittshoro
W Jd - Diabase: Black to greenish-black, fine- to medium-grained, dense, consists primarily of plagioclase, augite and may contain olivine. Locally has gabbroic texture. Occurs as dikes up to 100 ft wide. Diabase Contours..., Mafional =~ Elevanon — Dataset, LJ00B U5, National Grid NORTH fﬁ?&ggﬁ TET;TT& E)g'IESEATOF 1988 3 Merry Oaks
e typically occurs as spheriodally weathered boulders with a grayish-brown weathering rind. Red station location indicates outcrop or boulders of diabase. Purple station locations indicate outcrop or boulders of Boundatiesssss i e medata, Wle 200 = 20IR 100,000 - m Sguare 1D 4 5 | 4 Goldston
gabbroic textured diabase. WEtlANGS e e, Watlands Inventory 1983 This map was produced to conform with the zm?::ﬁll
Py National Ggospatia! Progra_m us _Topo Prodl_.lct Standarc_l, 2011. 6 8 7 Sanford
Zdi Zdi — Diorite: Mesocratic (CI~50), greenish-gray to grayish-green, fine- to medium-grained, metamorphosed, hypidiomorphic granular diorite. Major minerals include plagioclase and amphibole. Plagioclase Ametadata file associated with this product is draft version 0.6.18 8 Broadway COLON, NC
crystals are typically sericitized and saussuritized. Amphiboles are typically altered to chlorite and actinolite masses. Includes microdiorite textured rock. Locally, amphiboles are acicular up to 1 cm long. T ADJOINING QUADRANGLES 2019
175
Zgr Zgr — Granite: Leucocratic, locally pale pink; medium- to coarse-grained, equigranular metamorphosed granite and granodiorite; locally contains epidote and/or chlorite clots possibly pseudomorphic after
hornblende. Deep Ri
. p River Deep
A Indl?:n (‘Ireek Fault  River
Metavolcanic and Metavolcaniclastic Units Trp Qal al‘”t Qal Trpc,
430" — | % o
Zabsi - Andesitic to basaltic shallow intrusive: Grayish-green to light green, ranges from aphanitic to plagioclase porphyritic and locally amphibole/pyroxene porphyritic, metamorphosed, andesite to basalt. May 0" —1 Zzhelplaws-. Za Zhel B
exhibit a granular-textured groundmass with microdioritic to microgabbroic texture (visible with 7x hand lens). Dark green to black colored amphibole/pyroxene phenocrysts, when present, occurs as masses (up o P g Zdi Zabsi e
to 4 mm). Interpreted to intrude Hyco and Aaron Formations. May be an apophysis of the Zdi unit in map area. Occurs as spheroid-shaped boulders and massive outcrop in map area. o= = \ EraE
- N . e
& Zhelpl -
Aaron Formation o= = S i Al slles
N e / //(\ Zhimel/pl T s
Za — Aaron Formation: Distinctive metasedimentary package that ranges from fine-grained siltstones to coarse-grained sandstones, pebbly sandstones and conglomerates. Siltstones are similar in appearance to -1500 b e % N ! skl o b
Za Hyco Formation lithologies. The sandstones, pebbly sandstones and conglomerates (classified as litharenite, feldspathic litharenite and lithic feldsarenite by Harris (1984)) are distinctive and commonly contain i . B \\\\\\ //’//,,,/ § E] Wi, il o
rounded to subrounded clasts of quartz ranging from sand- to gravel-sized. In the sandstones, feldspar is the most prominent mineral grain; quartz varies from sparse to abundant in hand sample. Lithic clasts are e ke e_ﬁ l Zhimelpl § _ r//////////////m||\\\\\\\\\\\ ////’//// \\\\\\\\\\ ///,,//// -\ \ P
typically prominent and range from sand- to gravel-size. Harris (1984), performed a detailed sedimentary study of the Aaron Formation to the west of the map area. Harris (1984) interpreted the Aaron Formation NS S : \\\\\\\\““””’//,,n“\\\\\‘\ S " /25 ; "\ N At
to have been deposited by turbidity currents in a retrogradational submarine fan setting. B s W Zhe/pl B 1 2 Zhime/pl - b EN
-3000" — R Sl | o ket Zhelpl 3 Zhdlt (u) st
. . s, S, b, = Zhdlt(u)-= = %, e At |
Hyco Formation — Upper Portion e - e - e - #.,-u:_ “,,. . e e
Zhel - Epiclastic rocks and lavas: Conglomerate, conglomeratic sandstone, sandstone, siltstone and mudstone. Siltstones and mudstones typically display bedding ranging from mm-scale up to 10 cm, bedding ; : ;
p ; . ; A 2 - ) i no vertical exaggeration for bedrock units
Zhel layers traceable for several feet locally, may exhibit soft sediment deformation. Locally tuffaceous with a relict vitric texture. Locally contain interbedded dacitic to basaltic lavas. Conglomerates and conglomeratic Qal thickness exaggerated to be visible
sandstones typically contain subrounded to angular clasts of dacite in a clastic matrix. Deposition interpreted as distal from volcanic center, in deep water(?), and via turbidite flows. 99
Zhime/pl - Mixed intermediate to mafic epiclastic-pyroclastic rocks with interlayered intermediate to mafic lavas: Grayish-green to green, locally with distinctive reddish-gray or maroon to lavender coloration; EquaI-Area SChmldt Net PrOJectlons
Zhime/ol ; - - . - . - oo ) .
p metamorphosed: conglomerate, conglomeratic sandstone, sandstone, siltstone and mudstone. Lithologies are locally bedded; locally tuffaceous with a cryptocrystalline-like groundmass. Siltstones are locally and Rose Dlagram
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CONTACTS, FAULTS, AND OTHER FEATURES

— o —2— fault-high angle reverse - Identity or

——————— inferred contact . . . .
existence questionable, location approximate

'''''''''''' concealed contact --= $ —-——- fold axis - inferred (anticline)
nmmmnnnmn - inferred gradationa| contact

- Y- - —- overturned fold axis - inferred (syncline)
———— inferred diabase contact ~ -~ coal bed (Reinemund, 1955)
------------ concealed diabase contact ____ .. conglomerate beds within Pekin and

_______ inferred fault p 'Sanford Formations (Reinemund, 1955)

r tion lin
------------ concealed fault cross section line

coal underground workings outline

—-—=-- lineament - lidar inferred @ ---ece-ee- (Reinemund, 1955)

IN CROSS SECTION

contact — topographic profile
—+—-— = inferred fold axis — diabase inferred
———— fold form lines —-—-- lineament - lidar inferred

strike of vertical bedding or layering

strike and dip of Triassic bedding
(from USGS PP 246)

welding/compaction foliation
strike and dip of foliation

strike and dip of foliation
(multiple observations at one location)

strike and dip of cleavage

strike and dip of cleavage @
(multiple observations at one location)

I gradationa| contact

PLANAR AND LINEAR FEATURES

strike and dip of bedding or layering };37 fault plane

* 80 strike and dip of inclined joint

strike and dip of bedding or layering
(multiple observations at one location) || 71 |. strike and dip of inclined joint surface
68

(multiple observations at one location)
strike of vertical joint

strike of vertical joint surface
(multiple observations at one location)

— & =

quartz vein
bearing and plunge of crenulation lineation

bearing and plunge of slickenline

® —ex —$>X —=

observation station location
® diabase station location

horizontal Triassic bedding

PROSPECTS, QUARRIES AND OTHER FEATURES

Clay pit-brick clay, active (DEQ, DEMLR permitted mines database)

Clay pit-brick clay, abandoned, (DEQ, DEMLR permitted mines database and
Reinemund, 1955)

Coal pits — abandoned (Reinemund, 1955)
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Carolina Mine — abandoned with extensive underground workings (Reinemund, 1955)

X
R
% Cumnock Mine - abandoned with extensive underground workings (Reinemund, 1955)
% Mclvor Mine - abandoned (Reinemund, 1955)

2 Mine shafts (Reinemund, 1955)

P Old shaft (Reinemund, 1955)

Gravel

> Gravel pit - abandoned
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phyllitic. Locally contain interbedded intermediate to mafic lavas identical to the Zhable unit. Contains lesser amounts of fine- to coarse tuff and lapilli tuff with a cryptocrystalline-like groundmass. Pyroclastics,
lavas, and epiclastics are mainly intermediate to mafic in composition. Minor dacitic lavas and tuffs present. Silicified and/or sericitized altered rock are locally present. Conglomerates and conglomeratic
sandstones typically contain subrounded to angular clasts of andesite and basalt in a clastic matrix. Generally interpreted to have been deposited proximal to active intermediate to mafic composition volcanic
centers and/or record the erosion of proximal intermediate to mafic composition volcanic centers after cessation of active volcanism.

Zhable — Andesitic to basaltic lavas with interlayered epiclastic rocks: Light green, gray-green, gray, and dark gray; typically unfoliated, amygdaloidal, plagioclase porphyritic, amphibole/pyroxene porphyritic and
aphanitic; metamorphosed: andesitic to basaltic lavas and shallow intrusions. Hyaloclastic texture is common and imparts a fragmental texture on some outcrops and float boulders. Contains lesser amounts of
grayish-green, light green, and light gray to white; metamorphosed conglomerate, conglomeratic sandstone, sandstone, siltstone and mudstone.

Zhe/pl - Mixed epiclastic-pyroclastic rocks with interlayered dacitic lavas: Grayish-green to greenish-gray, locally with distinctive reddish-gray or maroon to lavender coloration; metamorphosed: conglomerate,
conglomeratic sandstone, sandstone, siltstone and mudstone. Lithologies are locally bedded; locally tuffaceous with a cryptocrystalline-like groundmass. Siltstones are locally phyllitic. Locally contain interbedded
dacitic lavas identical to Zhdlt unit (not present in quadrangle). Contains lesser amounts of fine- to coarse tuff and lapilli tuff with a cryptocrystalline-like groundmass. Pyroclastics, lavas, and epiclastics are mainly
felsic in composition. Minor andesitic to basaltic lavas and tuffs present. Silicified and/or sericitized altered rock are locally present. Conglomerates and conglomeratic sandstones typically contain subrounded to
angular clasts of dacite in a clastic matrix. Portions of the Zhe/pl unit are interpreted to have been deposited proximal to active volcanic centers represented by the Zhdlt unit but are also interpreted to record the
erosion of proximal volcanic centers after cessation of active volcanism.

Zhdlt (u) — Dacitic lavas and tuffs of the upper portion of the Hyco Formation: Greenish-gray to dark gray, siliceous, metamorphosed: aphanitic dacite, porphyritic dacite with plagioclase phenocrysts, and flow
banded dacite. Dacite with hyaloclastic textures are common. Welded and non-welded tuffs associated with the lavas include: greenish-gray to grayish-green, fine tuff, coarse plagioclase crystal tuff and lapilli tuff.
Locally, interlayers of immature conglomerate and conglomeratic sandstone with abundant dacite clasts are present. The dacites are interpreted to have been coherent extrusives or very shallow intrusions
associated with dome formation. The tuffs are interpreted as episodic pyroclastic flow deposits, air fall tuffs or reworked tuffs generated during formation of dacite domes. Wortman et al. (2000) reports an age of
615.7+3.7/-1.9 Ma U-Pb zircon date for a dacitic tuff from the unit in the Rougemont quadrangle.
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