
June 6, 2022 *Methods to Assess PFAS*

Frannie Nilsen, PhD DEQ Environmental Toxicologist

PFAS in North Carolina

DEQ's Priority PFAS Group 1

- These are PFAS that are specific to NC and the waterbodies sampled in the lower Cape Fear region.
- There is not much existing toxicity information for these PFAS.

Priority PFAS – Group 1

• There is not much existing toxicity information for these PFAS.

PFAS Compound	Exposure Data	Toxicology References	Human Biomonitoring Studies
PFMOAA	DEQ, NCSU	3 (1-3)	2 ^(2,4,5)
PMPA	DEQ, NCSU	0	1 (7)
PF02HxA	DEQ, NCSU	0	2 (4,7)
PEPA	DEQ, NCSU	0	1 (7)
PFO3OA	DEQ, NCSU	0	2 (4,7)

Priority PFAS – Group 1

• How can we regulate PFAS that have no toxicity data?

PFAS Compound	Exposure Data	Toxicology References	Human Biomonitoring Studies
PFMOAA	DEQ, NCSU	3 (1–3)	2 (2,4,5)
PMPA	DEQ, NCSU	0	1 (7)
PF02HxA	DEQ, NCSU	0	2 (4,7)
PEPA	DEQ, NCSU	0	1 (7)
PFO3OA	DEQ, NCSU	0	2 (4,7)

- "Grouping" PFAS is complicated and should be done using scientifically sound and defensible methods that utilize as much toxicological and biochemical data as possible.
- The SAB has heard from multiple researchers, states, and government agencies regarding methods to group and/or regulate PFAS compounds
- There are 2 that utilize much of the toxicological information available to extrapolate through data-heavy methods.

1- Relative Potency Factor Approach - builds on the assumption that the combined toxicity of two or more substances can be calculated based on the concept of dose addition, whereby the substances have the same effect, but differ only in their toxic potencies.

2- Grouping by Adverse Effects/ Mechanism of Action - The most demanding grouping approach would be to only group PFAS that have the same adverse effects, modes and mechanisms of action, and toxicokinetics for risk assessment.

1- Relative Potency Factor Approach - builds on the assumption that the combined toxicity of two or more substances can be calculated based on the concept of dose addition, whereby the substances have the same effect, but differ only in their toxic potencies.

2- Grouping by Adverse Effects/ Mechanism of Action - The most demanding grouping approach would be to only group PFAS that have the same adverse effects, modes and mechanisms of action, and toxicokinetics for risk assessment.

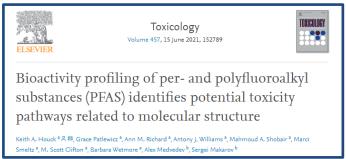
Individual approaches*	PFAS grouped	Data requirements	Advantages	Limitations	Note
Relative potency factor approach	multiple PFAAs	toxicity (including potency), toxicokinetics	cumulative risk assessment approach that accounts for differences in toxicokinetics & toxic potencies	limited to increasing liver size and to PFAAs now, while other endpoint(s) may be more important; resource & data intensive	high throughput testing methods being explored for potential expansion of the scope
Grouping only PFAS with similar adverse effects, mode/mechanism of action and toxicokinetics	limited PFAAs	toxicity, modes/ mechanisms of action, toxicokinetics	cumulative risk assessment that is scientifically stringent	resource & data very intensive; variabilities of these properties across PFAS not well understood	

How do we collect the existing PFAS toxicology data and use it to extrapolate the data for PFAS without their own toxicity information?

How do we collect the existing PFAS toxicology data and use it to extrapolate the data for PFAS without their own toxicity information?

EPA's Center for Computational Toxicology and Exposure

- 1. Created a PFAS Screening Library
 - Identified 75 PFAS to conduct high-throughput toxicity testing
- 2. Conducted Bioactivity Profiling related to Molecular Structure
 - 142 PFAS screened in human liver cells
 - Examined new and known PFAS targets for activation
 - PFAS structural features were correlated with biological targets.



EPA's Center for Computational Toxicology and Exposure

- 1. Created a PFAS Screening Library
 - Identified 75 PFAS to conduct high-throughput toxicity testing on

A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing Grace Patlewicz,¹ Ann M. Richard,¹ Antony J. Williams,¹ Christopher M. Grulke,¹ Reeder Sams,¹ Jason Lambert,² Pamela D. Noyes,³ Michael J. DeVito,⁴ Ronald N. Hines,⁵ Mark Strynar,⁶ Annette Guiseppi-Elie,⁶ and Russell S. Thomas¹

- 2. Conducted Bioactivity Profiling related to Molecular Structure
 - 142 PFAS screened in human liver cells
 - Examined new and known PFAS targets for activation
 - PFAS structural features were correlated with biological targets.

Request to the Science Advisory Board

Request tabled until after potential presentation from the EPA

Thank you

Frannie Nilsen, PhD Environmental Toxicologist, Office of the Secretary North Carolina Department of Environmental Quality (919) 707-8217 | (919) 368-0205 Frannie.Nilsen@ncdenr.gov

