

DATE: August 18, 2023 MID-ATLANTIC PE LICENSE: F-0967 PROJECT NO: R4370.00

SOIL ASSESSMENT REPORT

CITY OF DURHAM PARKS

East End Park, Walltown Park, East Durham Park, Lyon Park, & Northgate Park Durham, Durham County, North Carolina

ENGINEERING & ENVIRONMENTAL SOLUTIONS

PREPARED FOR:

City of Durham Attn: Risk Management 101 City Hall Plaza Durham, North Carolina 27701

PREPARED BY:

Mid Atlantic Associates, Inc. 409 Rogers View Court, Raleigh, North Carolina 27610 919-250-9918 | MAAONLINE.COM

409 Rogers View Court Raleigh, NC 27610 office 919.250.9918 facsimile 919.250.9950

MAAONLINE.COM

SOIL ASSESSMENT REPORT CITY OF DURHAM PARKS EAST END PARK, WALLTOWN PARK, EAST DURHAM PARK, LYON PARK & NORTHGATE PARK DURHAM, DURHAM COUNTY, NORTH CAROLINA

Mid-Atlantic Project No. R4370.00 August 18, 2023

Prepared For:

Prepared By:

City of Durham Attn: Risk Management 101 City Hall Plaza Durham, North Carolina 27701

MID-ATLANTIC ASSOCIATES, INC.

Charles B. Hoffman, P.G. Principal Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	2
3.0	SUMMARY OF FIELD ACTIVITIES	4
3.1	1 Northgate Park	6
	2 <u>Lyon Park</u>	
	3 <u>Walltown Park</u>	
	4 East Durham Park	
3.5	5 East End Park	8
	QUALITY ASSURANCE & QUALITY CONTROL	
4.1	1 QA/QC Procedures	10
4.2	2 Deviations from the Work Plan	10
5.0	DISCUSSION OF RESULTS	11
	1 Northgate Park	
	2 Lyon Park	
	3 Walltown Park	
	4 East Durham Park	
5.5	5 <u>East End Park</u>	16
6.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	17

FIGURES

Figure 1	Park Location Map
Figure 2A	Soil Screening Location Map for the Northern Portion of Northgate Park
Figure 2B	Soil Screening Location Map for the Southern Portion of Northgate Park
Figure 2C	Soil Sample Location Map for Northgate Park
Figure 3A	Soil Screening Location Map for Lyon Park
Figure 3B	Soil Sample Location Map for Lyon Park
Figure 4A	Soil Screening Location Map for the Northern Portion of Walltown Park
Figure 4B	Soil Screening Location Map for the Southern Portion of Walltown Park
Figure 4C	Soil Sample Location Map for Walltown Park
Figure 5A	Soil Screening Location Map for East Durham Park
Figure 5B	Soil Sample Location Map for East Durham Park
Figure 6A	Soil Screening Location Map for the Northern Portion of East End Park
Figure 6B	Soil Screening Location Map for the Southern Portion of East End Park
Figure 6C	Soil Sample Location Map for East End Park

TABLE OF CONTENTS (CONTINUED)

TABLES

- Table 1Summary of Field Assessment Activities
- Table 2Summary of XRF Field Screening Results and Lead Concentrations Detected
in Soil Northgate Park
- Table 3Summary of XRF Field Screening Results and Lead Concentrations Detected
in Soil Lyon Park
- Table 4Summary of XRF Field Screening Results and Lead Concentrations Detected
in Soil Walltown Park
- Table 5Summary of XRF Field Screening Results and Lead Concentrations Detected
in Soil East Durham Park
- Table 6Summary of XRF Field Screening Results and Lead Concentrations Detected
in Soil East End Park
- Table 7Quality Control Summary
- Table 8
 Summary of Metals and Semi-Volatile Organic Compounds Detected in Soil

APPENDICES

- Appendix A Selected Historical Background Information
- Appendix B Laboratory Analytical Results and Chain of Custody Record

1.0 INTRODUCTION

The City of Durham retained Mid-Atlantic Associates, Inc. (Mid-Atlantic) to complete soil assessment activities at the following five city-owned parks: East End Park, Walltown Park, East Durham Park, Lyon Park, and Northgate Park (Figure 1). The assessments were conducted in response to the results of a recent Duke University field study and in general accordance with Mid-Atlantic's *Soil Assessment Work Plan* and approved by the NC Department of Environmental Quality (NCDEQ), Division of Waste Management (DWM) Inactive Hazardous Sites Branch (IHSB) on July 14, 2023. Additional property information for the five parks in reference and included under this investigation is further described below:

Park ID	Address	PIN	Acres
	300 W. Club Boulevard	0832-06-76-4281	16.963
Northgate Park	404 W. Lavender Avenue	0822-97-83-8916	8.434
	2623 Acadia Street	0822-97-87-8798	1.763
Lyon Dark	1101 Cornell Street	0831-84-30-4104	7.691
Lyon Park	1200 W. Lakewood Avenue	0821-34-90-6672	1.223
Walltown Park	1308 W. Club Boulevard	0822-55-35-6908	7.728
East Durham Park	2601 E. Main Street	0831-84-43-6444	1.607
East Duffiant Faik	300 Gary Street	0831-84-30-4104	2.214
East End Park	1200 N. Alston Avenue	0831-47-08-2738	9.206

Three of the five target parks (East End Park, Walltown Park, and East Durham Park) were the subject of a previous field study conducted by Enikoe Bihari, a master's degree candidate at Duke University. These parks were selected due to the historical (pre-1950) operation of trash incinerators at each of these locations. The results of the field screening were documented in a December 16, 2022 paper (Duke Study): *Legacy Pb contamination in the soils of three Durham city parks: Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration?* The Duke Study included screening of soils from these three parks using a handheld X-Ray Fluorescence (XRF) analyzer. A majority of the sampling focused on the upper 1-inch of soil below land surface (BLS) and targeted the mineral soil layer (the A horizon of soil).

The DWM IHSB has established Preliminary Soil Remediation Goals (PSRGs) for lead and other soil contaminants. The Residential Health-Based PSRG typically applies for park settings where the general public has access. For lead, this value is 400 mg/kg (milligrams per kilogram and equivalent to 400 parts per million (ppm)). During the Duke Study, 29 of the 269 field screening locations exhibited XRF measurements greater than 400 mg/kg for lead. XRF measurements exceeding the 400 mg/kg PSRG were identified at each of these three parks. The Duke Study did not include the confirmatory laboratory analytical testing associated with XRF field sampling, therefore, it is presumed that verification analysis using EPA Method 6010D and/or 6020B was not conducted as part of the previous site evaluations.

The Duke Study contains XRF data collected from East End Park, Walltown Park, and East Durham Park. Although the primary objective of the Duke Study was intended to evaluate lead uptake in organic horizons at the three target parks, the XRF field screening measurements indicated that, from a public health perspective, further assessment and laboratory testing in select areas of these parks was warranted. Lyon Park was identified as a fourth park with historical incinerator operations conducted on an adjacent, off-site property; however, XRF measurements were not collected from Lyon Park during the Duke Study due to timeline constraints. A circa-1950's newspaper article excerpt also indicated that a fifth park, Northgate Park, received ash and cinders from Walltown Park (a former incinerator location) for use as fill material during its construction. As such, assessment of these two additional parks was included as part of this investigation.

The overall objective of this investigation was to rapidly assess surface soil in these five parks for the presence of lead and other potential contaminants, since contact with these soils appears to be the most likely exposure pathway to the public. The scope of work was approved by the DWM IHSB and included the following: (a) verification of select XRF-derived data contained in the Duke University field study at East End, Walltown, and East Durham Parks; (b) soil assessment of the previously unassessed Lyon and Northgate Parks; and (c) creation of a database for comparison to the applicable PSRGs established by the DWM IHSB. The scope of work also included the analysis of select samples for semi-volatile organics to determine the potential for additional impacts from incineration activities and/or deposition.

In general accordance with the procedures outlined in the approved *Soil Assessment Work Plan*, Mid-Atlantic has prepared this Soil Assessment Report to document the results of the field activities conducted at the above-referenced parks in July 2023. The opinions included herein are based on our experience and the information obtained during the study. This report is based on observations made on the dates noted using the procedures described herein. If additional information becomes available, we request the opportunity to review the information, reassess the potential environmental concerns and modify our conclusions and recommendations, if appropriate.

2.0 BACKGROUND INFORMATION

The following sections provide additional details and historical site information associated with each of the five city-owned parks included under this assessment. Selected historical background information is included in **Appendix A** for reference.

2.1 Northgate Park

The portion of Northgate Park included under this assessment consists of three parcels located west of Acadia Street. This area is comprised of three separate playground areas, two dog parks, walking trails, greenway access, open fields/grassland, and several

wooded/undeveloped areas along the western boundary of the park. Ellerbe Creek bisects the park and runs northwest-southeast across the central portions of the site. Based on available historical information, incinerator operations do not appear to have been conducted on the site or in the vicinity of the park. However, a circa-1950s newspaper article excerpt indicated Northgate Park received approximately 500 truckloads of ash and cinders from Walltown Park (a former incinerator location) for use as fill material in the low-lying areas of Northgate Park. The screening of this park was not included as part of the previous Duke Study.

2.2 Lyon Park

The portion of Lyon Park included under this assessment consists of two parcels located north of West Lakewood Avenue. This area is comprised of two playgrounds, a baseball field, basketball court, community center, walking trails, and open fields/grassland. The northeast and southwest portions of the site are wooded and undeveloped, and an unnamed tributary (UT) to Third Fork Creek bisects the park and runs northeast-southwest across the central portion of the site. Sanborn Fire Insurance Maps from 1937 and 1950 indicate the historical off-site incinerator operations were conducted on the eastern adjacent property (1228 Carroll Street). The screening of this park was not included as part of the previous Duke Study.

2.3 <u>Walltown Park</u>

Walltown Park is comprised of a playground area, three basketball courts, a recreation center, and open fields/grassland. A UT to Ellerbe Creek bisects the park and runs southnorth across the central portion of the site. The 1937 Sanborn Fire Insurance Map indicates the historical incinerator operations were conducted east of the UT to Ellerbe Creek on the central portion of the site. The Duke Study included a total of 99 XRF screening locations, 14 of which exhibited XRF measurements above the adjusted target field screening and sample collection threshold of 280 mg/kg¹.

2.4 East Durham Park

The portion of East Durham Park included under this assessment consists of two parcels located north of East Main Street. The northernmost parcel is currently wooded and undeveloped with no apparent public access. The southernmost parcel (adjacent to East

¹ As noted in EPA Operating Procedure LSADPROC-107-R6 titled "*Field X-Ray Fluorescence Measurement*" (EPA Operating Procedure for XRF Measurements), "Of the samples that screen at or within 20-30% of the action level, most all, with a high degree of confidence, exceed the action level." Therefore, as a protective measure, previous locations exhibiting XRF field screening values of 280 mg/kg (70% of 400 mg/kg) or above were collected and submitted to the laboratory for analysis of lead according to EPA Method 6010D and/or 6020B.

Main Street) includes the park amenities, recreational areas, and public access areas. In addition, a UT to Ellerbe Creek bisects the park and runs southwest-northeast across the central portion of the site. The area west of the UT on this portion of the park is comprised of two playgrounds, a recreational shelter, and open fields/grassland. The area east of the UT on this portion of the park includes an open field adjacent to an off-site multi-family residential property (2607 East Main Street). The 1937 Sanborn Fire Insurance Map indicates that historical incinerator operations were conducted west of the UT along the western property boundary for the park, adjacent to Gary Street. The Duke Study included a total of 62 XRF screening locations, 16 of which exhibited XRF measurements above the target field screening and sample collection threshold of 280 mg/kg.

2.5 East End Park

The portion of East End Park included under this assessment is comprised of two tennis courts, a soccer field, two playground areas, and a former community center. The eastern portion of the park includes wooded, undeveloped land with no apparent public access. The park shares a parcel with a vacant, partially paved lot with a former city-owned sign and signal shop on the southern portion of the parcel. These areas are fenced and gated off from the park with access restricted to the general public. Sanborn Fire Insurance Maps from 1937 and 1950 indicate the historical incinerator operations were conducted on the northwest portion of the park. The Duke Study included a total of 108 XRF field screening locations, nine of which exhibited XRF measurements above the target field screening and sample collection threshold of 280 mg/kg. Eight of these locations were located outside the footprint of the park and within the gated area with restricted access to the general public.

3.0 SUMMARY OF FIELD ACTIVITIES

Mid-Atlantic performed XRF field screening and confirmatory soil sampling at five cityowned parks from July 19-26, 2023. The field activities were performed in general accordance with the approved *Soil Assessment Work Plan* and a general overview of the assessment activities completed for each park is also included in **Table 1**. In accordance with the EPA Operating Procedure LSADPROC-107-R6, *"Field X-Ray Fluorescence Measurement"* (referred to herein as the *EPA Operating Procedure for XRF Measurements*), Mid-Atlantic cleared an approximate 6" x 6" area of vegetation at each screening location; excavated the upper 0.5 inches of soil using a decontaminated trowel; and covered the exposed mineral soil layer with a thin Mylar[®] film. The XRF was then pressed against the Mylar[®] film for forty-five to sixty seconds to screen in-situ soil for lead. Field screening was performed using a SciAps X-550 XRF analyzer set on the soil analysis mode. Ambient temperature readings were also regularly collected using a TSI 9565 with a 964 probe.

The *EPA Operating Procedure for XRF Measurements* indicates that "Of the samples that screen at or within 20-30% of the action level, most all, with a high degree of confidence, exceed the action level." Therefore, as a protective measure, locations which exhibited XRF field screening values of 280 mg/kg (70% of 400 mg/kg) and above during both the current assessment and/or the previous Duke Study were selected for in-situ field screening and confirmatory laboratory testing. Approximately ten percent of the samples from the XRF screening measurements under the 280 mg/kg target threshold were also verified using in-situ XRF field screening and confirmatory laboratory testing and confirmatory testing at each park. The samples collected for laboratory analysis with field screening values below 280 mg/kg were selected based on their locations within the park, field screening measurements, and/or achieving spatial coverage. In order to assess the vertical extent of potential lead impacts to soil, soil samples were also collected from approximately 12 inches below land surface (BLS) using a decontaminated hand auger at select locations within each park. These locations were selected based on the associated XRF field screening values for the paired surface soil samples and their associated locations within the park.

Additionally, to evaluate the potential presence of other targeted constituents of concern, the samples exhibiting both the highest (and/or elevated) XRF measurement as well as one sample exhibiting an XRF measurement below the 280 mg/kg threshold from each park were selected for additional laboratory analysis of Semi-Volatile Organic Compounds (SVOCs) according to EPA Method 8270 and the full suite of hazardous substance list (HSL) metals identified in IHSB's "*Guidance for Assessment and Cleanup of Contaminated Sites*" (September 2022) according to EPA Methods 6020B and 7471B. In addition to lead, the HSL metals include antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, manganese, mercury, nickel, selenium, silver, thallium, vanadium, and zinc. The samples which exhibited XRF measurements below 280 mg/kg were selected for SVOC and HSL metals analyses based on their locations within the park and the reported screening values of adjoining samples.

Soil sampling for potential lead impacts was also conducted at playground areas in which synthetic liners or artificial turf were encountered during field assessment activities. A total of nine playground areas were evaluated within the parks, seven of which exhibited the presence of artificial turf or synthetic liners. Soil samples were collected from the two playground areas (located in Northgate Park and East End Park) that did not exhibit evidence of artificial turf or synthetic liners. The samples were collected from beneath the overlying mulch (~12 inches of overburden) and submitted for laboratory analysis of lead according to EPA Method 6010D. Additional discussion regarding the playground areas at each park location is provided in the sections below.

Soil samples for laboratory confirmation analysis were collected from the upper inch of the soil profile, placed into laboratory-supplied containers, and packed into an ice-filled cooler within 15 minutes of sample collection. Samples were then submitted under proper chain-of-custody control to Waypoint Analytical (Waypoint, NC Certification Number 402) for laboratory analysis of lead according to EPA Method 6010D; SVOCs according to EPA

Method 8270; and/or HSL metals according to EPA Methods 6020B and 7471B. **Table 1** provides a general overview and summary of the screening and sampling activities completed at each park. The site-specific sample locations and analytical testing results are summarized on **Figures 2A through 6C**, **Tables 2 through 6**, **and Table 8**.

3.1 Northgate Park

The field screening locations and associated XRF measurements for the assessment activities completed at Northgate Park are summarized in **Table 2** and illustrated on **Figures 2A and 2B.** The locations of soil samples collected for laboratory analysis are shown on **Figure 2C**.

As indicated, the July 2023 assessment included a total of 259 XRF field screening locations; 32 soil samples (30 primary and two duplicate) collected from the upper inch of the soil profile for laboratory analysis of lead; one paired soil sample collected from 12 inches BLS below the surface soil location exhibiting the highest XRF field screening measurement [SS-NG-226 (1')] for laboratory analysis of lead; two soil samples for additional laboratory analysis of SVOCs and HSL metals (SS-NG-226 and SS-NG-153); and one soil sample from beneath a playground area in which a liner was not encountered beneath the mulch (SS-NG-Playground). Additionally, a total of 24 proposed XRF screening locations were deemed inaccessible due to dense poison ivy and heavy forestation.

Native soils were encountered to a depth of approximately 12 inches BLS in the location of the highest XRF surface soil field screening measurement [SS-NG-226 (1')], and visual/ olfactory evidence of ash deposition or impacted materials was not observed at this depth.

Northgate Park includes three playground areas, two of which were equipped with a fabric liner and overlain by approximately one foot of mulch (restricting access to the underlying soils). Mid-Atlantic did not encounter a liner beneath the third playground area and, therefore, one soil sample (SS-NG-Playground) was collected from beneath the base of the mulch at a depth of approximately 12-18 inches BLS for laboratory analysis of lead according to EPA Method 6010D.

3.2 Lyon Park

The field screening locations and associated XRF measurements for the assessment activities completed at Lyon Park are summarized in **Table 3** and illustrated on **Figure 3A**. The locations of soil samples collected for laboratory analysis are shown on **Figure 3B**.

As indicated, the July 2023 assessment included a total of 81 XRF field screening locations; 14 soil samples (13 primary and one duplicate) collected from the upper inch of the soil profile for laboratory analysis of lead; one paired soil sample collected from 12 inches BLS below the surface soil location exhibiting the highest XRF field screening

Soil Assessment Report East End, Walltown, East Durham, Lyon & Northgate Parks Durham. Durham County. North Carolina

measurement [SS-LY-45 (1')] for laboratory analysis of lead; and two soil samples for additional laboratory analysis of SVOCs and HSL metals (SS-LY-45 and SS-LY-61). Additionally, a total of 13 proposed XRF screening locations were deemed inaccessible due to dense poison ivy and heavy forestation.

Native soils were encountered to a depth of approximately 12 inches BLS in the location of the highest XRF field screening measurement [SS-LY-45 (1')], and visual/olfactory evidence of ash deposition or impacted materials was not observed at this depth.

Lyon Park includes one playground area that was equipped with a fabric liner and overlain by approximately one foot of mulch (restricting access to the underlying soils). As such, a sample was not collected for laboratory analysis at this location.

3.3 <u>Walltown Park</u>

The field screening locations and associated XRF measurements for the assessment activities completed at Walltown Park are summarized in **Table 4** and illustrated on **Figures 4A and 4B**. The locations of soil samples collected for laboratory analysis are shown on **Figure 4C**.

As indicated, the July 2023 assessment included in-situ XRF screening and confirmation soil sampling at various locations which exhibited elevated XRF values above the target field screening and sample collection threshold of 280 mg/kg during the Duke Study. The Duke Study included a total of 99 XRF field screening locations, five of which reportedly contained lead at concentrations above the Residential PSRG of 400 mg/kg.

The July 2023 assessment included a total of 23 XRF field screening locations; 24 soil samples (23 primary and one duplicate) collected from the upper inch of the soil profile for laboratory analysis of lead; three paired soil samples collected from 12 inches BLS below three surface soil locations exhibiting the highest (or elevated) XRF field screening measurements [SS-WT-43 (1'), SS-WT-79 (1'), and SS-WT-93 (1')] for laboratory analysis of lead; and two soil samples for additional laboratory analysis of SVOCs and HSL metals (SS-WT-18 and SS-WT-50).

Glass and porcelain fragments were encountered to a depth of approximately 12 inches BLS at each of the three locations exhibiting elevated XRF field screening values in surface soils [SS-WT-43 (1'), SS-WT-79 (1'), and SS-WT-93 (1')]. These materials are often considered to be characteristic of incinerator ash deposits.

Walltown Park includes one playground area that was equipped with a fabric liner overlain with approximately one foot of mulch (restricting access to the underlying soils). As such, a sample was not collected for laboratory analysis at this location.

3.4 East Durham Park

The field screening locations and associated XRF measurements for the assessment activities completed at East Durham Park are summarized in **Table 5** and illustrated on **Figure 5A**. The locations of soil samples collected for laboratory analysis are shown on **Figure 5B**.

As indicated, the July 2023 assessment included in-situ XRF screening and confirmation soil sampling at various locations which exhibited elevated XRF values above the target field screening and sample collection threshold of 280 mg/kg during the Duke Study. The Duke Study included a total of 62 XRF field screening locations, 15 of which exhibited lead at concentrations above the Residential PSRG of 400 mg/kg.

The July 2023 assessment included a total of 14 XRF field screening locations; 15 soil samples (14 primary and one duplicate) collected from the upper inch of the soil profile for laboratory analysis of lead; four paired soil samples collected from 12 inches BLS for laboratory analysis of lead, with three of the surface soil locations exhibiting elevated XRF field screening values [SS-ED-40 (1'), SS-ED-51 (1'), and SS-ED-55 (1')] and one exhibiting an XRF field screening measurement below the Residential PSRG for lead [SS-ED-39 (1')]; and two soil samples for additional laboratory analysis of SVOCs and HSL metals (SS-ED-48 and SS-ED-51). Additionally, a total of 10 proposed XRF screening locations were deemed inaccessible due to field interference associated with dense poison ivy and heavy forestation.

Glass and porcelain fragments were encountered to a depth of approximately 12 inches BLS at each of the three locations exhibiting elevated XRF field screening values in surface soils [SS-ED-40 (1'), SS-ED-51 (1'), and SS-ED-55 (1')]. These materials were not observed during hand auger boring advancement for the fourth sample [SS-ED-39 (1')], which exhibited a XRF field screening measurement below the Residential PSRG for lead in surface soils. As indicated, these materials are often considered to be characteristic of incinerator ash deposits.

East Durham Park includes one playground area partially covered with an artificial turf/mat surface and partially equipped with a fabric liner overlain by approximately one foot of mulch (restricting access to the underlying soils). As such, a sample was not collected for laboratory analysis at this location.

3.5 East End Park

The field screening locations and associated XRF measurements for the assessment activities completed at East End Park are summarized in **Table 6** and illustrated on **Figures 6A and 6B**. The locations of soil samples collected for laboratory analysis are shown on **Figure 6C**.

As indicated, the July 2023 assessment included in-situ XRF screening and confirmation soil sampling at various locations which exhibited elevated XRF values above the target field screening and sample collection threshold of 280 mg/kg during the Duke Study. The Duke Study included a total of 108 XRF field screening locations, eight of which identified lead at concentrations above the Residential PSRG of 400 mg/kg.

The July 2023 assessment included a total of 12 XRF field screening locations; 20 soil samples (19 primary and one duplicate) collected from the upper inch of the soil profile for laboratory analysis of lead; two paired soil samples collected from 12 inches BLS below accessible areas (i.e. not underlain by asphalt) exhibiting elevated surface soil XRF field screening measurements [SS-EE-81 (1') and SS-EE-82 (1')] for laboratory analysis of lead; two soil samples for additional laboratory analysis of SVOCs and HSL metals (SS-EE-54 and SS-EE-104); and one soil sample from beneath a playground area in which a liner was not encountered beneath the mulch (SS-EE-Playground).

XRF equipment issues were encountered in the field prior to screening the final eight locations which had previously exhibited XRF screenings below 280 mg/kg during the Duke Study. In response, Mid-Atlantic implemented a conservative approach in which soil samples from these final locations were collected/submitted for laboratory analysis in lieu of field screening. As such, a total of 19 primary soil samples (eight of which had previously screened below 280 mg/kg during the Duke Study) were collected from East End Park and submitted for laboratory analysis of lead according to EPA Method 6010D.

Sample locations SS-95, SS-101, and SS-104 were located in an area underlain by asphalt pavement and located inside the restricted area associated with the former sign and signal shop on the southern portion of the property. Mid-Atlantic screened and sampled the soils above the pavement at each of these locations. White and yellow paint were visibly mixed into these soils. Since these materials appeared to contain lead-based paint, efforts were made to prevent inclusion of these materials in the samples collected from this area and submitted for laboratory analysis.

East End Park includes two playground areas, one of which was equipped with a fabric liner and approximately one foot of mulch overburden (restricting access to the underlying soils). Mid-Atlantic did not observe the presence of a liner beneath the second playground area and, therefore, one soil sample (SS-EE-Playground) was collected from beneath the base of the mulch at a depth of approximately 12-18 inches BLS for laboratory analysis of lead according to EPA Method 6010D.

4.0 QUALITY ASSURANCE & QUALITY CONTROL

4.1 <u>QA/QC Procedures</u>

The *Soil Assessment Work Plan,* approved by NCDEQ on July 14, 2023, established the procedures and methodologies for data collection and defined the specific procedures and adjustments necessary to maintain data quality to support project execution. The Work Plan was prepared using protocols outlined in the *EPA Operating Procedure for XRF Measurements*. In general accordance with these protocols and the NCDEQ approved Work Plan, the following operational checks and calibration/recalibrations procedures were performed throughout the July 2023 field activities:

- Prior to soil analysis at the beginning of each day, a performance check was conducted by comparing the XRF outputs to a traceable standard reference material. An instrument blank was also analyzed to evaluate whether the instrument registered false positives;
- A reference standard and blank were analyzed every 4 to 5 hours of screening time, after the instrument had been deactivated for an hour, following battery changes, and at the end of each day;
- Ambient air temperature was recorded regularly. If the ambient air temperature changed by more than 10°F, the instrument was recalibrated;
- A duplicate screening was performed once every twenty samples; and,
- A precision check was performed on a screening location once per day by screening a location seven times in replicate.

One duplicate sample was collected at each park and/or per day of sampling and submitted for analysis of lead according to EPA Method 6010D. Duplicate samples and XRF screenings are referenced and provided as notes on **Tables 2 through 6**, with the outcome of the XRF quality control procedures summarized on **Table 7**.

4.2 <u>Deviations from the Work Plan</u>

The following adjustments and/or deviations to Mid-Atlantic's *Soil Assessment Work Plan* were documented during completion of the July 2023 field activities:

- A total of 24 of the 283 proposed screening locations at Northgate Park were deemed inaccessible due to dense poison ivy and heavy forestation;
- A total of 13 of the 94 proposed screening locations at Lyon Park were deemed inaccessible due to dense poison ivy and heavy forestation;
- A total of 10 of the 24 proposed screening/sampling locations at East Durham Park were deemed inaccessible due to dense poison ivy and heavy forestation;
- The XRF screening result for sample location SS-65 at Walltown Park was

inadvertently not recorded during field activities; however, a soil sample was collected from this location and submitted for laboratory analysis of lead;

- Multiple screening/sampling locations were offset and/or substituted for alternate locations (within the same general proximity) as those previously screened in the Duke Study due to dense poison ivy or vegetation encountered at the respective park locations;
- There were two instances in which the interval between duplicate screenings (including precision checks) exceeded 20 samples. One instance occurred at Lyon Park (23 samples prior to duplicate screening) and one instance occurred at Northgate Park (38 samples prior to a duplicate screening);
- Shallow refusal (e.g., the hand auger could not be advanced) was encountered at East End Park for sample locations SS-101 and SS-104. In response, sample locations SS-81 and SS-82 were sampled at 12 inches BLS based on their field screening values and ability of Mid-Atlantic personnel to hand auger to 12 inches BLS at these sample locations;
- Field XRF measurements collected at Lyon, Walltown, East Durham, and East End Parks were collected over a 45-second duration per screening location (in lieu of the initial 60-second duration proposed in the approved Work Plan) due to field time constraints; and,
- The XRF malfunctioned during screening at East End Park. In response, a conservative approach was implemented with the remaining eight locations (which had previously screened below 280 mg/kg during the Duke Study) sampled and submitted for laboratory analysis of lead in lieu of proposed XRF field screening.

Mid-Atlantic does not consider the above deviations to be significant with respect to the overall project execution given that duplicate screenings, performance checks, and precision checks indicated XRF field screening values were generally consistent over the course of the assessment. As such, these deviations did not prevent Mid-Atlantic from completing the overall objective of this assessment.

5.0 DISCUSSION OF RESULTS

A general summary of the overall field assessment activities is provided as **Table 1** and includes the total number of XRF field screening locations, soil sample locations, playground areas, and the number of soil samples exceeding the Residential PSRG for lead at each park. Site-specific quantitative results from the XRF field screening and confirmatory lead soil sampling at each park are summarized in **Tables 2 through 6**, with the results of additional SVOC and HSL metals analyses summarized in **Table 8** for all five parks. Laboratory analytical results and chain of custody records are included in **Appendix B**. Additional discussion for each park is provided in the following sections.

5.1 Northgate Park

The XRF field screening values and laboratory confirmation results for lead at Northgate Park are summarized in **Table 2** with the results and sample locations illustrated on **Figures 2A, 2B and 2C.** Results of the additional SVOC and HSL metals analyses are summarized in **Table 8**.

As indicated, XRF field screening and laboratory confirmation testing of surface soils did not identify lead concentrations above the Residential PSRG of 400 mg/kg. Of the 259 screening locations, four locations (SS-72, SS-91, SS-92, and SS-226) exhibited elevated XRF values above the target field screening and soil sample collection threshold of 280 mg/kg but below the Residential PSRG of 400 mg/kg for lead. The laboratory analytical results also did not identify concentrations of lead above the Residential PSRG for the paired sample collected at depth from approximately 12 inches BLS [SS-NG-226 (1')], and no field evidence of incinerator ash deposits (including glass/porcelain fragments) was encountered during hand auger boring advancement at this location. However, lead was reported in the sample collected from the unlined playground (SS-NG-Playground) above its Residential PSRG and at a concentration of 1,430 mg/kg. This sample was collected from beneath an overlying layer of mulch at a sample depth of approximately 12-18 inches BLS.

Arsenic was reported in soil samples SS-NG-153 (1.11 mg/kg) and SS-NG-226 (2.26 mg/kg) at concentrations above the Residential PSRG of 0.68 mg/kg for arsenic. Sample SS-NG-153 also exhibited manganese and cobalt at concentrations above their respective Residential PSRGs of 380 mg/kg and 4.7 mg/kg. The sample which exhibited a lower/background lead concentration (SS-NG-153, 12.7 mg/kg) reported a higher manganese concentration of 726 mg/kg and, conversely, the sample which exhibited a higher lead concentration (SS-NG-226, 300 mg/kg) reported a lower manganese concentration of 209 mg/kg, reflecting an inverse relationship between the reported manganese and lead concentrations based on this sample comparison. A similar relationship is apparent for cobalt in these samples with reported concentrations of 7.72 mg/kg in SS-NG-153 and 3.19 mg/kg in SS-NG-226.

For arsenic, the NC Department of Agriculture and Consumer Services publication *"Heavy Metals in North Carolina Soils: Occurrence & Significance"* references an average arsenic concentration of 4.5 mg/kg in North Carolina. With respect to manganese, the Agency for Toxic Substances and Disease Registry (ASTDR) publication *"Toxicological Profile for Manganese"* indicates average natural background levels of manganese in soils range from around 40 to 900 mg/kg, with an estimated mean background concentration of 330 mg/kg. The ASTDR publication *"Toxicological Profile for Cobalt"* also indicates typical cobalt concentrations in soil range between 1 mg/kg to 40 mg/kg and notes an average concentration of 7.2 mg/kg in US soils. As such, the detections of

arsenic, manganese, and cobalt reported in these samples do not appear to be attributed to anthropogenic causes or historical use of the park, but rather a byproduct of the natural environment.

The SVOC benzo(b)fluoranthene was reported in sample SS-NG-153 at an estimated ("J-value") concentration equal to its Residential PSRG when adjusting for significant digits. Several other SVOCs and/or HSL metals were also reported in samples SS-NG-153 and SS-NG-226, but at concentrations below their respective PSRGs.

Based on the results of the field screening and confirmatory soil sampling activities performed to date, the Residential PSRG exceedance of lead reported in the sample collected from beneath the mulch (approximately 12-18 inches BLS) of the unlined playground area appears to be an isolated occurrence at Northgate Park. However, elevated lead concentrations (e.g., greater than 280 mg/kg) were confirmed at locations SS-72, SS-91, SS-92, SS-184, and SS-226 (both the paired shallow and deep samples), but at concentrations below the Residential PSRG of 400 mg/kg. Four of these samples (SS-72, SS-91, SS-92, and SS-226) were located on the eastern portion of the park near Acadia Street and along the perimeter of a parking lot. The fifth sample location (SS-184) was located along the southernmost boundary of the park, immediately adjacent to West Club Boulevard. The relatively close proximity of these screening locations to a roadway and parking area suggests historical automobile traffic could be a potential source of the lead deposition observed at these locations.

5.2 Lyon Park

The XRF field screening values and laboratory confirmation results for lead at Lyon Park are summarized on **Table 3** with the results and sample locations illustrated on **Figures 3A and 3B.** Results of the additional SVOC and HSL metals analyses are summarized in **Table 8**.

As indicated, XRF field screening and laboratory confirmation testing of surface soils did not identify lead concentrations above the Residential PSRG of 400 mg/kg, with exception of the duplicate sample collected at SS-45 (553 mg/kg, with the lead concentration in the primary sample from this location reported at 384 mg/kg and below the Residential PSRG). The paired sample collected from approximately 12 inches BLS at this location [SS-LY-45 (1')] exhibited a lead concentration of 248 mg/kg, below the Residential PSRG. Additionally, no evidence of incinerator ash deposits (including glass/porcelain fragments) was encountered during hand auger boring advancement at this location.

Surface soil samples at location SS-45 were also submitted for laboratory analysis of SVOCs and HSL metals. The results reported arsenic (5.04 mg/kg) and cobalt (5.95 mg/kg) above their Residential PSRGs but at concentrations considered to be naturally occurring. Paired samples SS-LY-45 and SS-LY-45 (1') were collected along the eastern

boundary of the site, adjacent to the property that formerly housed the historical off-site incinerator operations. The samples were collected on the eastern side of the UT to Third Fork Creek near the historical off-site incinerator property and opposite the accessible recreation areas within the park. Please also note there is a significant topographic gradient between Lyon Park (downgradient) and the historical off-site incinerator property (upgradient). Several proposed screening locations in the vicinity of SS-45 were also inaccessible during the July 2023 assessment due to dense poison ivy and/or heavy forestation in these areas.

The sample collected from approximately 12 inches BLS for the paired shallow/deep location at SS-61 (which exhibited background concentrations of lead at 5.14 mg/kg) did not exhibit SVOCs or HSL metals at concentrations above the Residential PSRGs, with exception of arsenic at naturally occurring background concentrations. In general, the reported HSL metals and lead concentrations appear to reflect a direct proportional relationship based on comparison of the two paired sample locations within Lyon Park.

Based on the results of the field screening and confirmatory soil sampling activities performed to date, the Residential PSRG exceedance of lead reported in the sample along the eastern property boundary, located adjacent to the former off-site incinerator property, appears to be an isolated occurrence on the opposite side of the UT to Third Fork Creek from the baseball field and other associated recreation areas within the park. Additionally, while the vegetated northeast portion of the park was not accessible, screening and sampling performed around the perimeter of this area did not suggest elevated lead concentrations indicative of an unacceptable exposure risk to the public.

5.3 <u>Walltown Park</u>

The XRF field screening values and laboratory confirmation results for lead at Walltown Park are summarized in **Table 4** with the results and sample locations illustrated on **Figures 4A, 4B, and 4C.** Results of the additional SVOC and HSL metals analyses are summarized in **Table 8**.

As indicated, XRF field screening and laboratory confirmation testing of surface soils performed to date identified several areas with lead concentrations above the Residential PSRG. A total of eight surface soil sample locations were identified with lead concentrations above the Residential PSRG, with seven of these locations located within 50 feet of the UT to Ellerbe Creek. The exception is sample location SS-53, located adjacent to a basketball court on the western portion of the park, which reported a lead concentration of 459 mg/kg.

Arsenic, cadmium, cobalt, lead, and manganese were reported at concentrations above their respective Residential PSRGs in one of the two soil samples collected for additional SVOC and HSL metals analyses (SS-WT-50, collected from a location exhibiting a lead concentration of 1,780 mg/kg). While typical naturally occurring concentrations of arsenic are above the Residential PSRG, the concentration of arsenic reported in SS-WT-50 (16.8 mg/kg) appears to be elevated above what would be considered naturally occurring background concentrations. No additional HSL metals or SVOCs were reported above the Residential PSRGs for sample SS-WT-50 or sample SS-WT-18, with the exception of arsenic (2.10 mg/kg) and cobalt (4.70 mg/kg; equal to its Residential PSRG) reported at naturally occurring background concentrations in sample SS-WT-18. In general, the reported HSL metals and lead concentrations appear to reflect a direct proportional relationship based on comparison of the above sample locations within Walltown Park.

The soil samples collected from 12 inches BLS for the paired shallow/deep sample locations at SS-43, SS-79, and SS-93 (locations with surface soil lead concentrations above 400 mg/kg) also exhibited lead concentrations above the Residential PSRG in the deep (12 inches BLS) samples. Two of the paired soil sample locations (SS-79 and SS-93) exhibited higher lead concentrations in the samples collected at depth when compared to those reported in the surface samples (3,480 mg/kg vs. 1,330 mg/kg for SS-79 and 2,290 mg/kg vs. 653 mg/kg for SS-93). Glass and porcelain fragments were also encountered during hand auger boring advancement at each of the deep sample locations (SS-43, SS-79, and SS-93). These materials are often considered to be characteristic of incinerator ash deposits, as these fragments suggest the disposal of non-combustible products and/or byproducts from the historical on-site incinerator operations.

5.4 East Durham Park

The XRF field screening values and laboratory confirmation results for the lead at East Durham Park are summarized in **Table 3** with the results and sample locations illustrated on **Figures 5A and 5B**. Results of the additional SVOC and HSL metals analyses are summarized in **Table 8**.

As indicated, XRF field screening and laboratory confirmation testing of surficial soils performed to date have identified several locations with elevated lead concentrations above the Residential PSRG. These locations appear to be primarily associated with two separate areas: an open field on the southeast portion of the property (sample locations SS 44, SS-45, SS-51, SS-54, SS-55, SS-60, and SS-61), located adjacent to a multifamily residential property and separated from the main access and recreation areas of the park by the UT to Ellerbe Creek; and an open field on the western portion of the park located adjacent to an on-site recreation shelter (sample location SS-40).

Sample location SS-48 was selected for analysis of HSL metals and SVOCs based on the low lead concentration suggested by field screening and SS-51 was selected based on lead concentration reported during the previous field screening.

Cadmium, cobalt, copper, lead, and manganese were reported at concentrations above their respective Residential PSRGs in one of the two soil samples collected for additional SVOC and HSL metals analyses (SS-ED-51, collected from a location exhibiting a lead concentration of 1,510 mg/kg). Arsenic was also reported in SS-ED-51 at a naturally occurring concentration, but above its Residential PSRG. HSL metals were not reported above their respective Residential PSRGs for sample SS-ED-48, which exhibited a lower/background lead concentration of 7.95 mg/kg, and SVOCs were not reported in either of the samples at concentrations above laboratory detection limits. In general, the reported HSL metals and lead concentrations appear to reflect a direct proportional relationship based on comparison of the above soil sample locations within East Durham Park.

Three of the four soil samples collected from 12 inches BLS for the paired shallow/deep samples were collected from locations that exhibited surface concentrations of lead above the Residential PSRG (SS-40, SS-51, and SS-55). These paired samples collected at depth also exhibited lead concentrations above the Residential PSRG. Two of the paired locations (SS-40 and SS-51) exhibited higher lead concentrations in the samples at depth when compared to those reported in the surface samples [3,180 mg/kg vs. 860 mg/kg at SS-40 and 2,530 mg/kg vs. 1,510 mg/kg (primary) and 2,210 mg/kg (duplicate) at SS-51]. The fourth sample collected from 12 inches BLS for the paired shallow/deep samples was collected from a location that exhibited a surficial concentration of lead (184 mg/kg) beneath the Residential PSRG. The deep sample collected from this location indicated a decreasing trend for lead concentrations when compared to the results of the shallow soil sample (184 mg/kg in the shallow sample vs. 12.8 mg/kg in the deep sample). Glass and porcelain fragments were encountered during hand auger boring advancement at each of the paired sample locations that exhibited lead concentrations above the Residential PSRG (SS-40, SS-51, and SS-55). These materials are often considered to be characteristic of incinerator ash deposits, as these fragments suggest the disposal of noncombustible products and/or byproducts from the historical on-site incinerator operations.

5.5 East End Park

The XRF field screening values and laboratory confirmation results for lead at East End Park are summarized in **Table 6** with the results and sample locations illustrated on **Figures 6A and 6B.** Results of the additional SVOC and HSL metals analyses are summarized in **Table 8**.

As indicated, XRF field screening and laboratory confirmation testing of surficial soils performed to date have identified several soil sample locations above the Residential PSRG. Of the 20 surface soil samples collected for lead analysis during the July 2023 field assessment activities, three sample locations (SS-24, SS-90, and SS-101) exhibited lead above the Residential PSRG. Two of these sample locations (SS-90 and SS-101) were located within the gated/restricted area (i.e. not accessible to the public or included in park operations) on the southern portion of the property. The laboratory analytical results also did not identify concentrations of lead above the Residential PSRG for the paired samples collected at depth from approximately 12 inches BLS [SS-EE-81 (1') and SS-EE-82 (1')]. Field evidence of incinerator ash deposits such as glass or porcelain fragments was also not encountered during hand auger boring advancement at these locations. Finally, a natural/background lead concentration of 13.2 mg/kg was reported in the soil sample collected from beneath the unlined playground (SS-EE-Playground) and associated overlying mulch layer.

Cobalt and arsenic were reported at concentrations above their respective Residential PSRGs in one of the two soil samples collected for additional SVOC and HSL metals analyses (SS-EE-54, collected from a location exhibiting a natural/background lead concentration of 24.8 mg/kg) but at concentrations considered to be naturally occurring. HSL metals were not reported above their respective Residential PSRGs for sample SS-EE-104, which exhibited a higher lead concentration of 134 mg/kg. SVOCs were not reported in either of the samples at concentrations above laboratory detection limits. In general, the reported HSL metals and lead concentrations appear to reflect an inverse relationship based on comparison of the above soil samples for East End Park.

Based on the results of the field screening and confirmatory soil sampling activities performed to date, the Residential PSRG exceedance of lead reported at sample location SS-24 (772 mg/kg) appears to be an isolated occurrence with respect to the accessible and/or unrestricted areas within the park. This sample was collected from an area located adjacent to the former community center (a painted cinderblock structure within the park). Historical aerial images show this building was present at the park beginning in the early to mid 1960's and, therefore, a potential source of lead found in the surface soil sample collected at SS-24 may potentially be associated with peeling and/or chipping of paint from the nearby structure.

6.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The overall objective of this investigation was to rapidly assess surface soil in these five parks for the presence of lead and other potential contaminants, since contact with these soils appears to be the most likely exposure pathway to the public. As such, Mid-Atlantic offers the following summary of assessment activities and results:

- Northgate Park: Mid-Atlantic screened and/or sampled 259 locations at Northgate Park and collected a paired sample for lead analysis at 12 inches BLS at sample location SS-226. A sample from 12-18 inches BLS was also collected beneath a playground area which exhibited lead impacts above its Residential PSRG. The other two playgrounds at the park were equipped with a fabric liner and overlain by approximately one foot of mulch (restricting access to the underlying soils). Of the 34 samples collected, one exhibited lead impacts above the Residential PSRG. Three HSL metals (arsenic, cobalt, manganese) were reported in sample SS-NG-153 above their Residential PSRGs. The reported concentrations of these metals appear to be consistent with natural background levels. Elevated lead concentrations in soil (above 280 mg/kg but below 400 mg/kg) on the eastern portion of the park near Acadia Street and along the perimeter of an adjoining parking lot suggests lead deposition from historical automobile traffic as a potential source of lead impacts.
- Lyon Park: Assessment at Lyon Park included screening at 81 locations. In addition, one sample was taken 12 inches BLS at sample location SS-45. The two playgrounds at the park were equipped with fabric liners underneath the mulch and were not sampled for lead. One of the 15 samples collected, the duplicate for sample SS-LY-45 (located adjacent to the upgradient former off-site incinerator property), exhibited lead at a concentration (553 mg/kg) above its Residential PSRG. The remaining samples did not exhibit lead at concentrations above its Residential PSRG. Other HSL metals, except for arsenic and cobalt at reported concentrations consistent with naturally occurring background levels, and SVOCs were not reported at concentrations above their respective Residential PSRGs.
- Walltown Park: Eleven samples at Walltown Park exhibited lead impacts to soil above its Residential PSRG out of the 27 samples collected. A total of eight surface sample locations were identified with lead concentrations above its Residential PSRG, with seven of these locations located within 50 feet of the UT to Ellerbe Creek which bisects the central portion of the park. The three paired samples from 12 inches BLS also exhibited lead at concentrations above its Residential PSRG, two of which exhibited greater lead concentrations at depth. Materials often considered to be characteristic of incinerator ash deposits were encountered during hand auger advancement at the park. Arsenic, cadmium, and lead were identified in sample SS-WT-50 at concentrations above their respective Residential PSRGs. Cobalt and manganese were also reported in the sample above their Residential PSRGs, but at concentrations consistent with naturally occurring background levels SVOCs were not reported in soil above laboratory method detection limits. Since the playground at the park was equipped with a fabric liner under approximately one foot of much, a playground sample was not collected at the park.

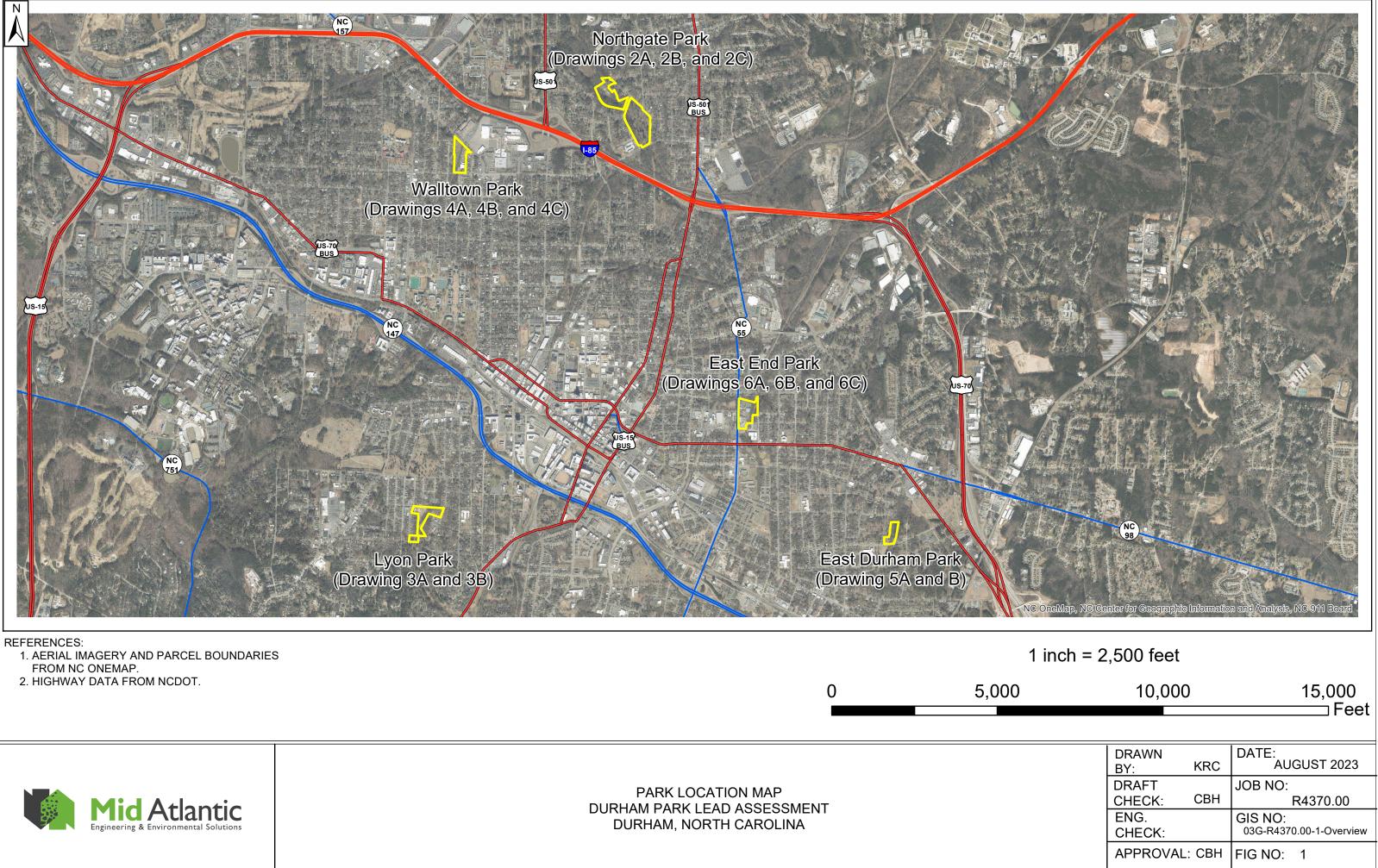
- <u>East Durham Park:</u> Out of 19 soil samples collected at East Durham Park, laboratory confirmation testing indicated the presence of lead above its Residential PSRG in eleven samples. The laboratory reported lead concentrations above its Residential PSRG in three of the four paired samples from 12 inches BLS, with two of these locations exhibiting increasing lead concentrations in the samples collected at depth. Materials often considered to be characteristic of incinerator ash deposits were encountered during hand auger advancement at these three locations. Elevated lead impacts appear to be primarily located in an open field on the southeast portion of the property and an open field on the western portion of the park located adjacent to the recreational shelter. HSL metals including arsenic, cadmium, cobalt, copper, and manganese were also present at concentrations above their respective Residential PSRGs. The reported concentrations of arsenic, cobalt, and manganese were consistent with naturally occurring background levels. SVOCs were not reported in soil above laboratory method detection limits.
- East End Park: Of the 23 soil samples collected for lead analysis at East End Park, • three exhibited lead above its Residential PSRG. One of these samples was collected adjacent to a former community center on the park grounds and two consisted of soil collected at a former sign and signal shop south of the public access areas for the park. White and yellow strips of road paint on the pavement next to the paint shop and the paint applied to the park structure adjacent to SS-24 are possible sources of lead that has migrated to soil. The two paired samples collected from 12 inches BLS located at the former paint shop did not exhibit lead at concentrations above its Residential PSRG. Except for arsenic and cobalt at concentrations consistent with natural background levels, HSL metals nor SVOCs were reported in soil above their respective Residential PSRGs. Two playground areas were encountered at the park, one of which was equipped with a fabric liner and approximately one foot of mulch overburden and one that was not. The sample collected beneath the playground without a liner did not exhibit lead impacts to soil above its Residential PSRG.

Based on these results, Mid-Atlantic offers the following conclusions:

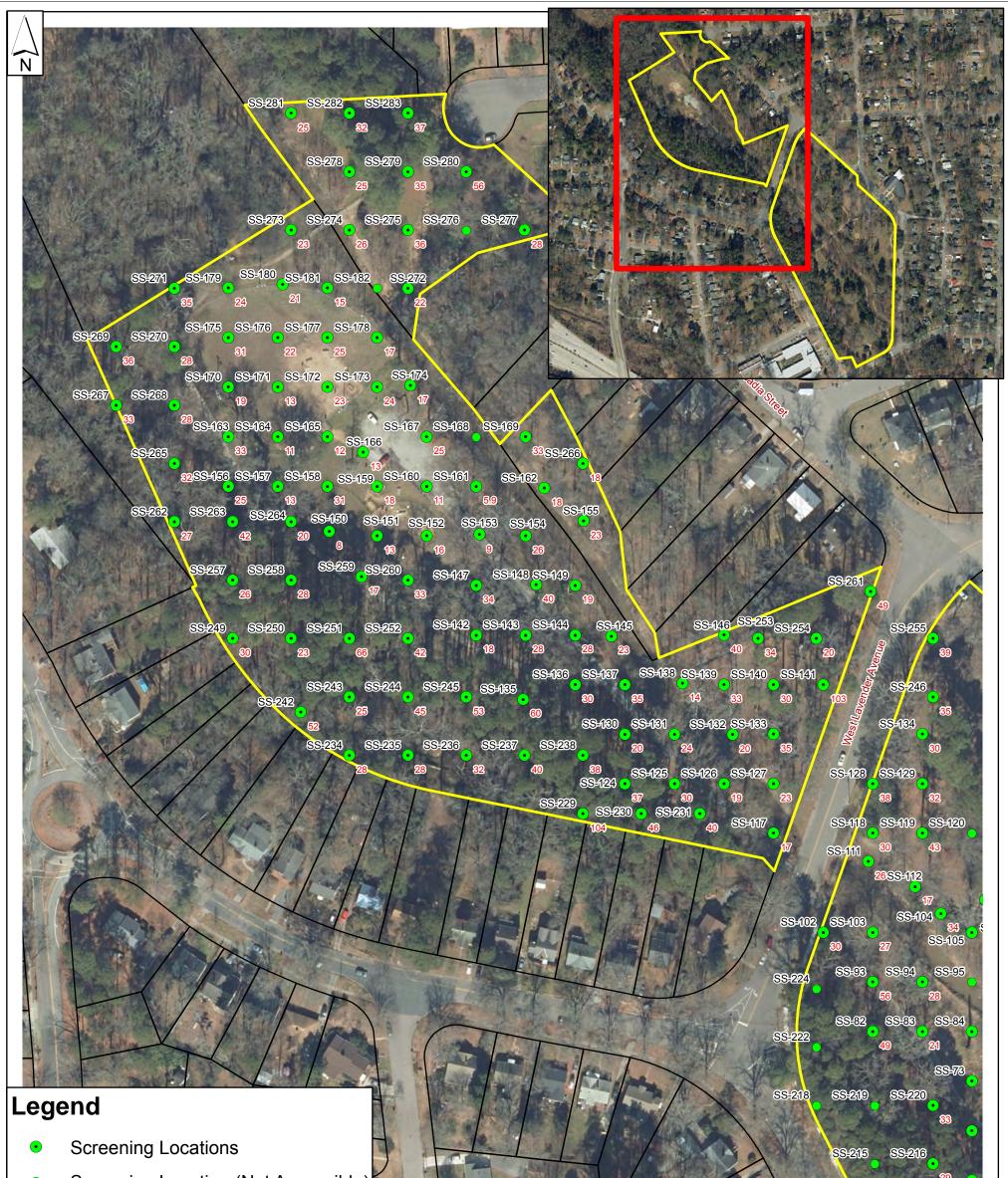
- Based on surficial XRF screening, laboratory confirmation testing and field observations, widespread surficial lead impacts to soil do not appear to be present at Northgate Park or Lyon Park which would present a potential exposure risk to the public. The elevated lead in the playground at Northgate Park was located under approximately 1-foot of mulch while sample location SS-45 at Lyon Park was located east of the on-site UT to Third Fork Creek and on the opposite side of the UT from the baseball field and other main access areas within the park.
- Based on surficial XRF screening, laboratory confirmation testing and field observations, widespread surficial lead impacts to soil do not appear to be present within the accessible/unrestricted areas of East End Park. It appears lead-based

paint may have contributed to lead concentrations reported in samples collected from the sign and signal shop (a fenced area not accessible to the public) on the southern portion of the property and/or in the vicinity of sample location SS-24.

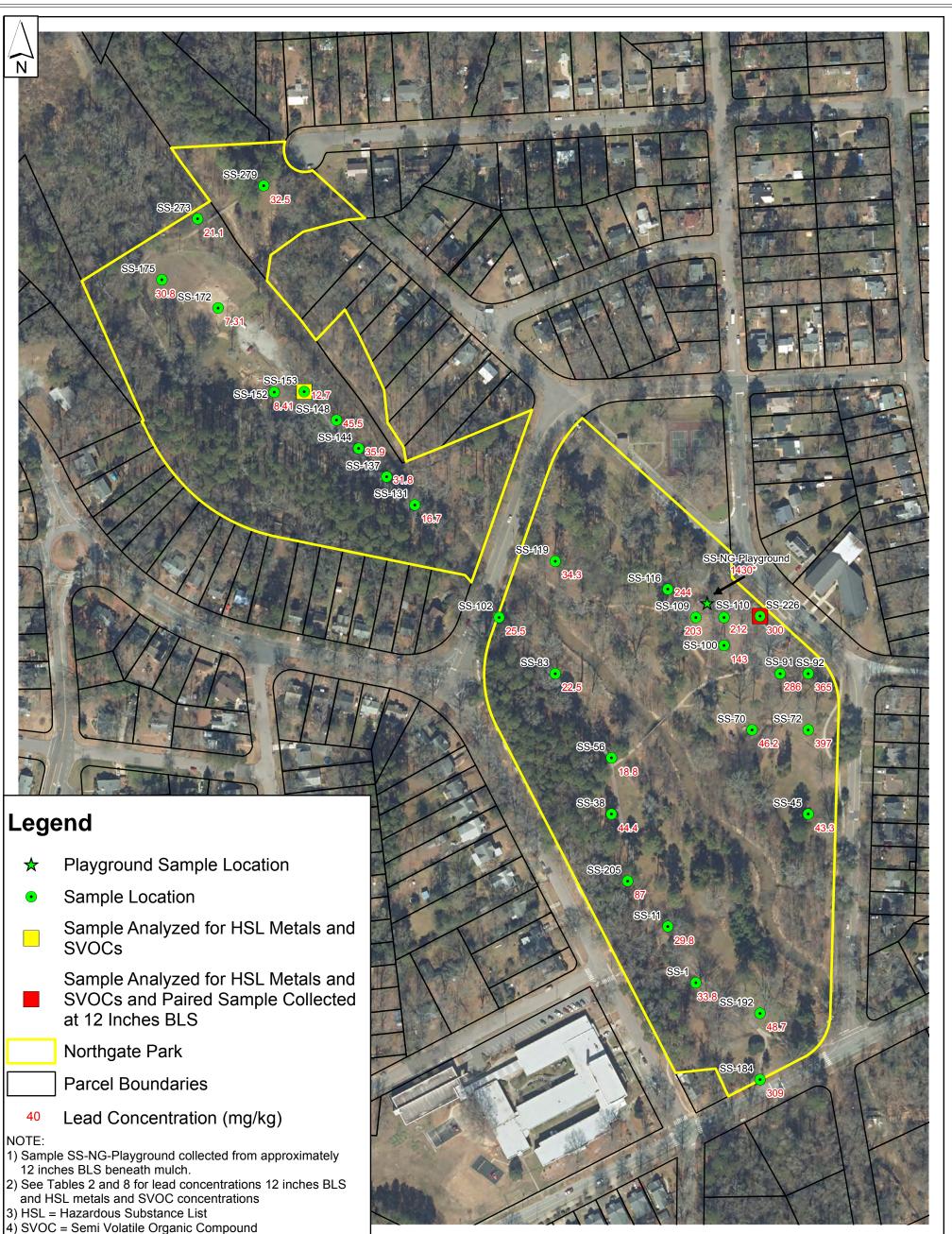
- Arsenic, cobalt, and/or manganese were reported in soil samples collected from Northgate Park, Lyon Park, and East End Park above their respective Residential PSRGs but at concentrations considered to be naturally occurring.
- Based on surficial XRF screening, laboratory confirmation testing, paired shallow/ deep soil sample analyses and field observations, incinerator ash/debris appears to have been disposed at Walltown Park and East Durham Park.
- HSL metals appear to exhibit a direct proportional relationship to elevated lead concentrations at the parks which exhibited apparent incinerator ash deposition (Walltown Park and East Durham Park).
- SVOCs were not detected at concentrations above their respective laboratory detection limits and/or Residential PSRGs. As such, it appears that lead is the main contaminant of concern associated with the former incineration activities.


Based on these conclusions, Mid-Atlantic offers the following recommendations:

- Submit this report to the NCDEQ IHSB for review.
- Restrict access to areas where lead impacts to soil were identified above its Residential PSRG to prevent exposure.
- Further investigation to delineate lead impacts to soil and confirm whether leadbased paint is a source contributing to lead impacts.
- Evaluate remedial and/or mitigation strategies to prevent potential future exposure to the lead impacted soil. These options may include excavation of lead-impacted soil, access and/or land use restrictions, placement of a cap over impacted soil, and/or lead stabilization.



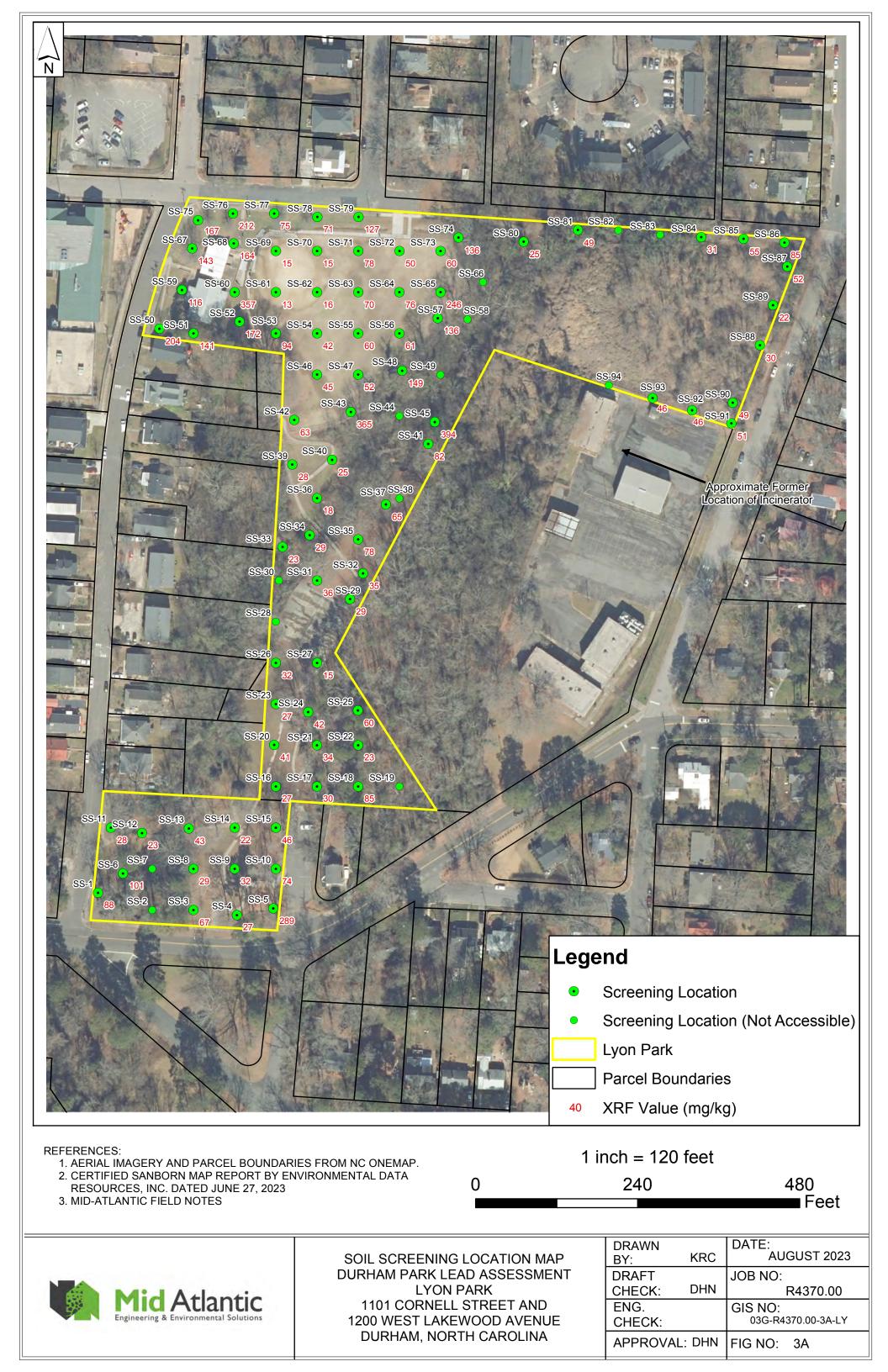
FIGURES

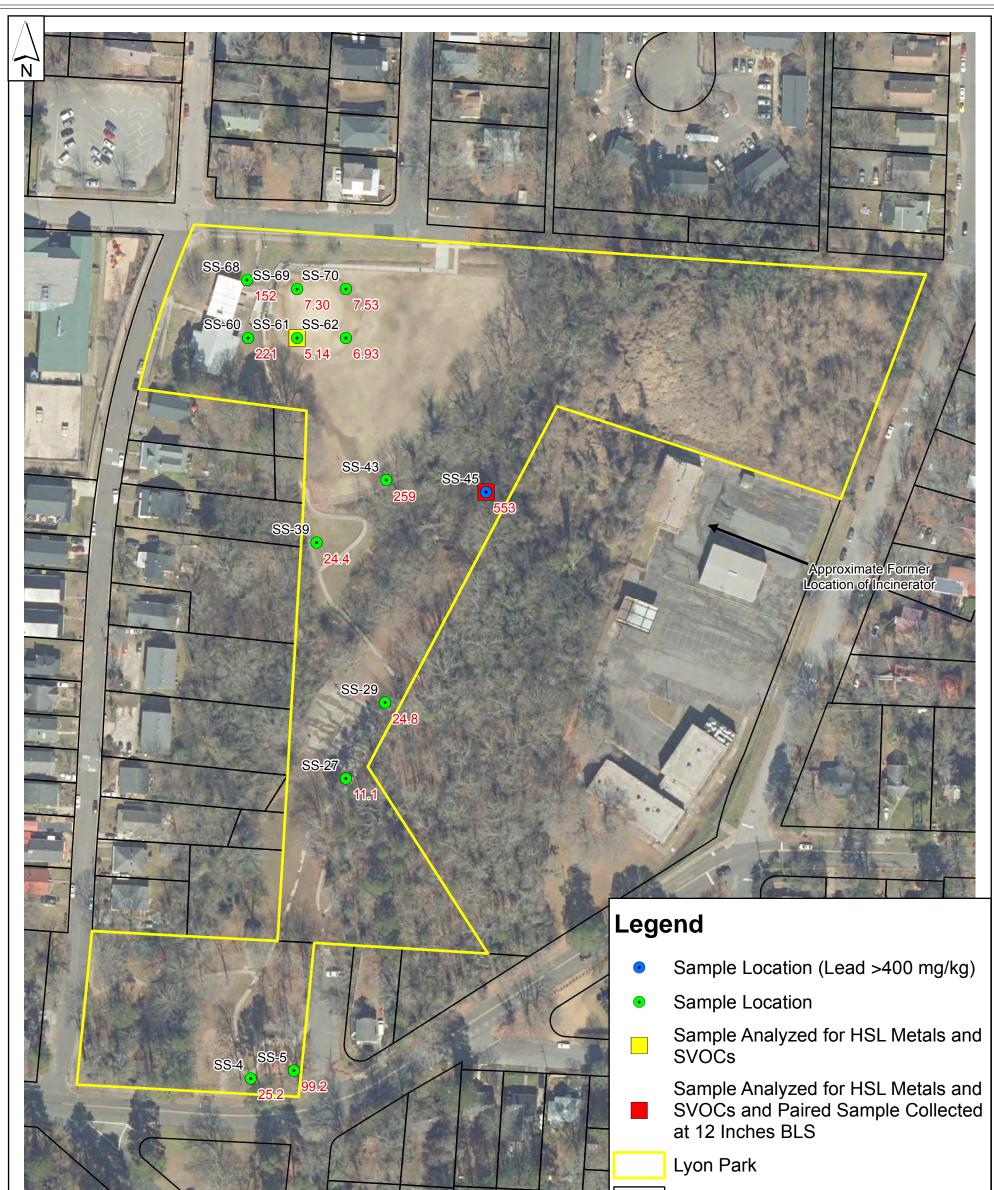


 Screening Location (Not Access Northgate Park Parcel Boundaries 40 XRF Value (mg/kg) 	sible)	Contraction of the second seco	29 35-212 SS-213 SS-213 32 24 25 25 25 210
REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. MID-ATLANTIC FIELD NOTES.	5 1 in 0	ch = 120 feet 240	480 Feet
Mid Atlantic Engineering & Environmental Solutions	SOIL SCREENING LOCATION MAP DURHAM PARK LEAD ASSESSMENT NORTHERN PORTION OF NORTHGATE PARK 300 WEST CLUB BOULEVARD 404 WEST LAVENDER AVENUE AND 2623 ACADIA STREET	DRAWN BY: KRC DRAFT CHECK: CBH ENG. CHECK: APPROVAL: CBH	DATE: AUGUST 2023 JOB NO: R4370.00 GIS NO: 03G-R4370.00-2A-NG_N FIG NO: 2A

 Screening Location (Not Access Northgate Park Parcel Boundaries 	ible) ⁴⁹ ³⁵ ³⁷ ⁴¹ ^{5S-183} ⁶⁵ ²⁶⁹ ^{NESIGID} ^{BOI} ^{COID} ^{BOI} ^{COID}	levard	
40 XRF Value (mg/kg)			
REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP.	1 i	nch = 120 feet	
2. MID-ATLANTIC FIELD NOTES.	0	240	480
			Feet
	SOIL SCREENING LOCATION MAP	DRAWN BY: KRC	DATE: AUGUST 2023
	DURHAM PARK LEAD ASSESSMENT SOUTHERN PORTION OF	DRAFT CHECK: CBH	JOB NO: R4370.00
Mid Atlantic Engineering & Environmental Solutions	NORTHGATE PARK 300 WEST CLUB BOULEVARD	ENG. CHECK:	GIS NO: 03G-R4370.00-2B-NG_S
	404 WEST LAVENDER AVENUE AND 2623 ACADIA STREET	APPROVAL: CBH	FIG NO: 2B

⁴⁰ Lead Concentration (mg/kg)
NOTE:
1) Sample SS-NG-Playground collected from approximately
12 inches BLS beneath mulch.
2) See Tables 2 and 8 for lead concentrations 12 inches BLS
and HSL metals and SVOC concentrations
3) HSL = Hazardous Substance List
 SVOC = Semi Volatile Organic Compound


1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. MID-ATLANTIC FIELD NOTES.

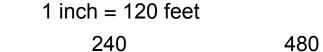

1 inch = 200 feet 400

800 Feet

	SOIL SAMPLE LOCATION MAP	DRAWN BY: KRO	DATE: AUGUST 2023
Mid Atlantia	DURHAM PARK LEAD ASSESSMENT NORTHGATE PARK	DRAFT CHECK: CBH	JOB NO: R4370.00
Mid Atlantic Engineering & Environmental Solutions	300 WEST CLUB BOULEVARD 404 WEST LAVENDER AVENUE AND	ENG. CHECK:	GIS NO: 03G-R4370.00-2C-NG_LB
	2623 ACADIA STREET	APPROVAL: CB	FIG NO: 2C

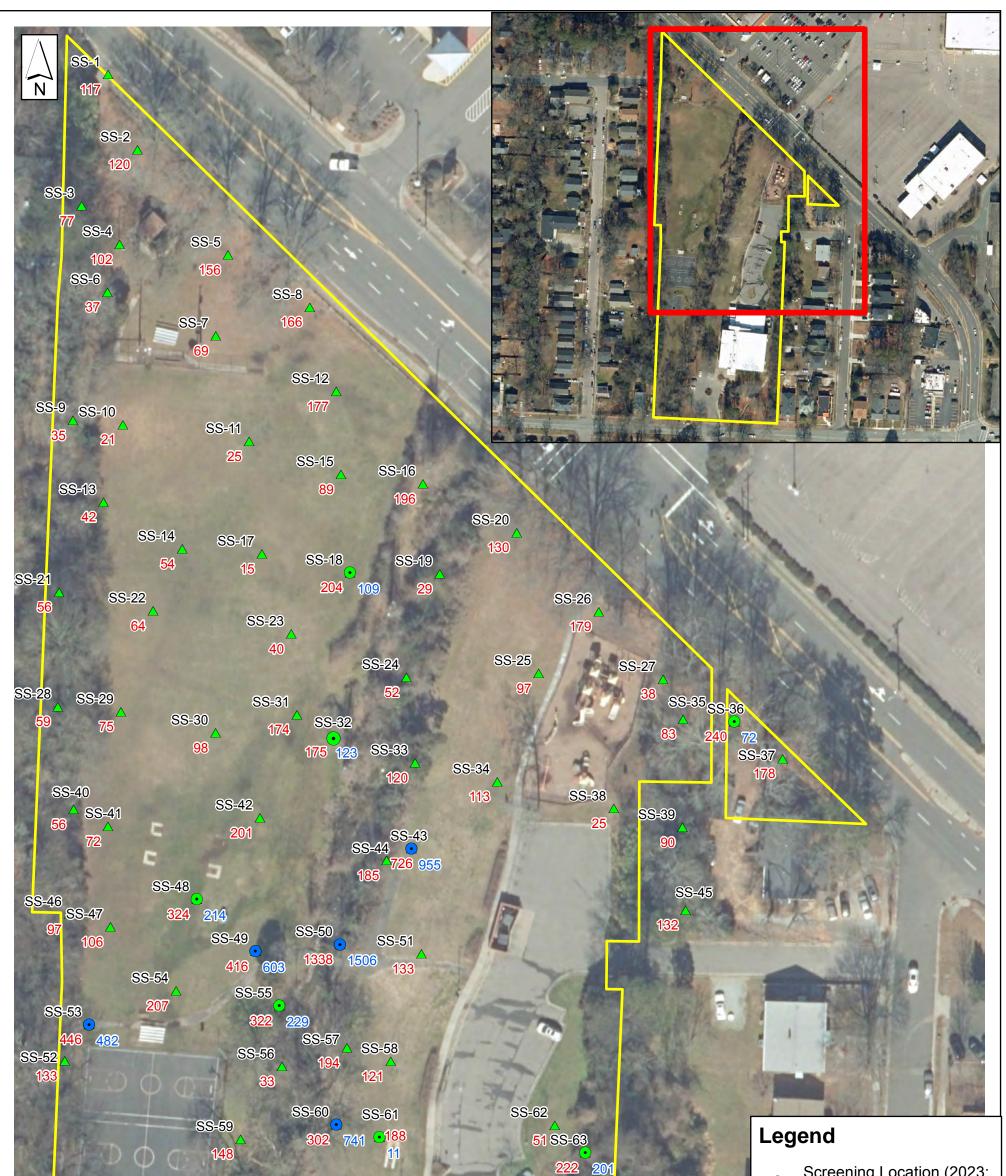
0

Parcel Boundaries


40 Lead Concentration (mg/kg)

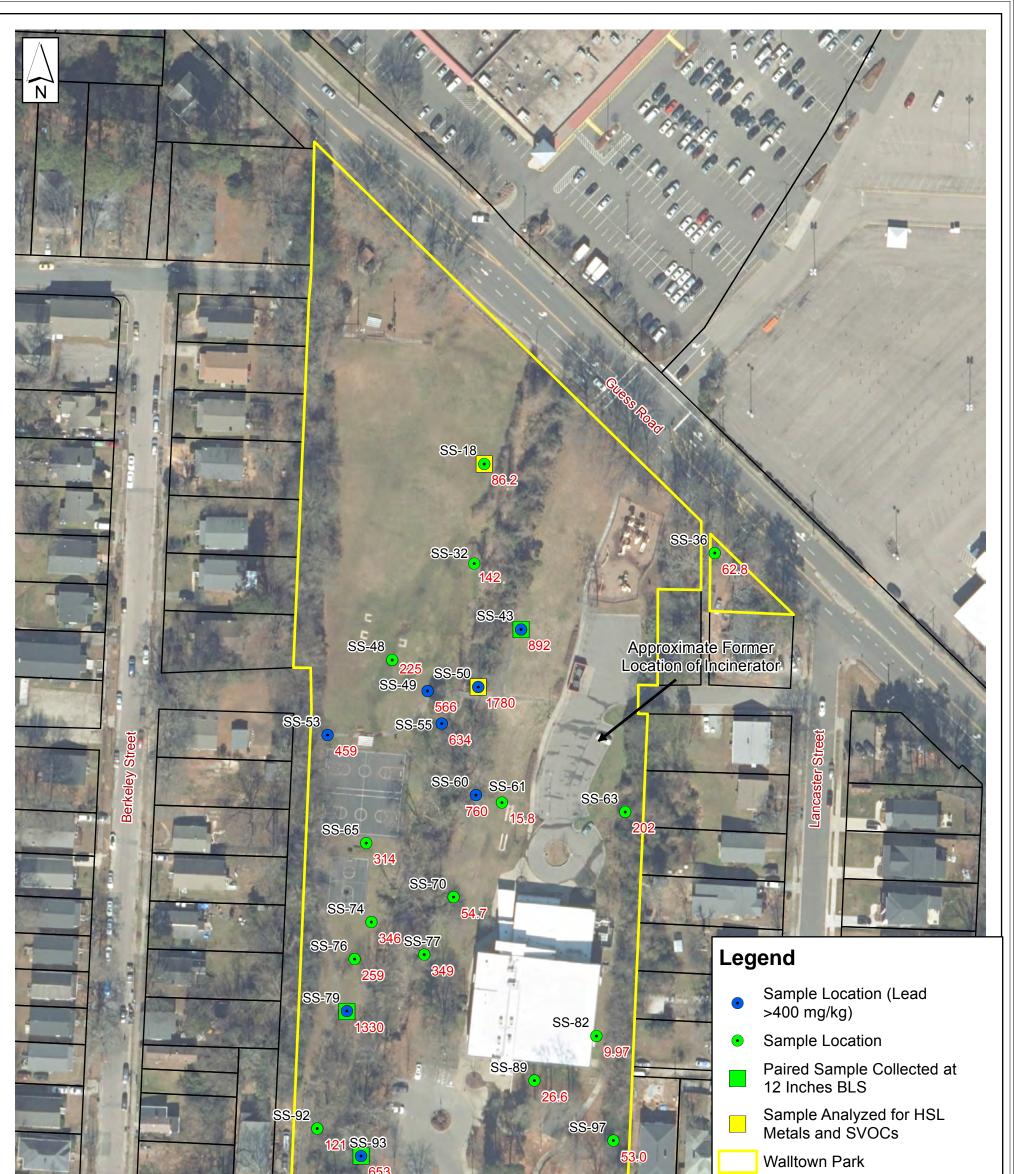
NOTE:

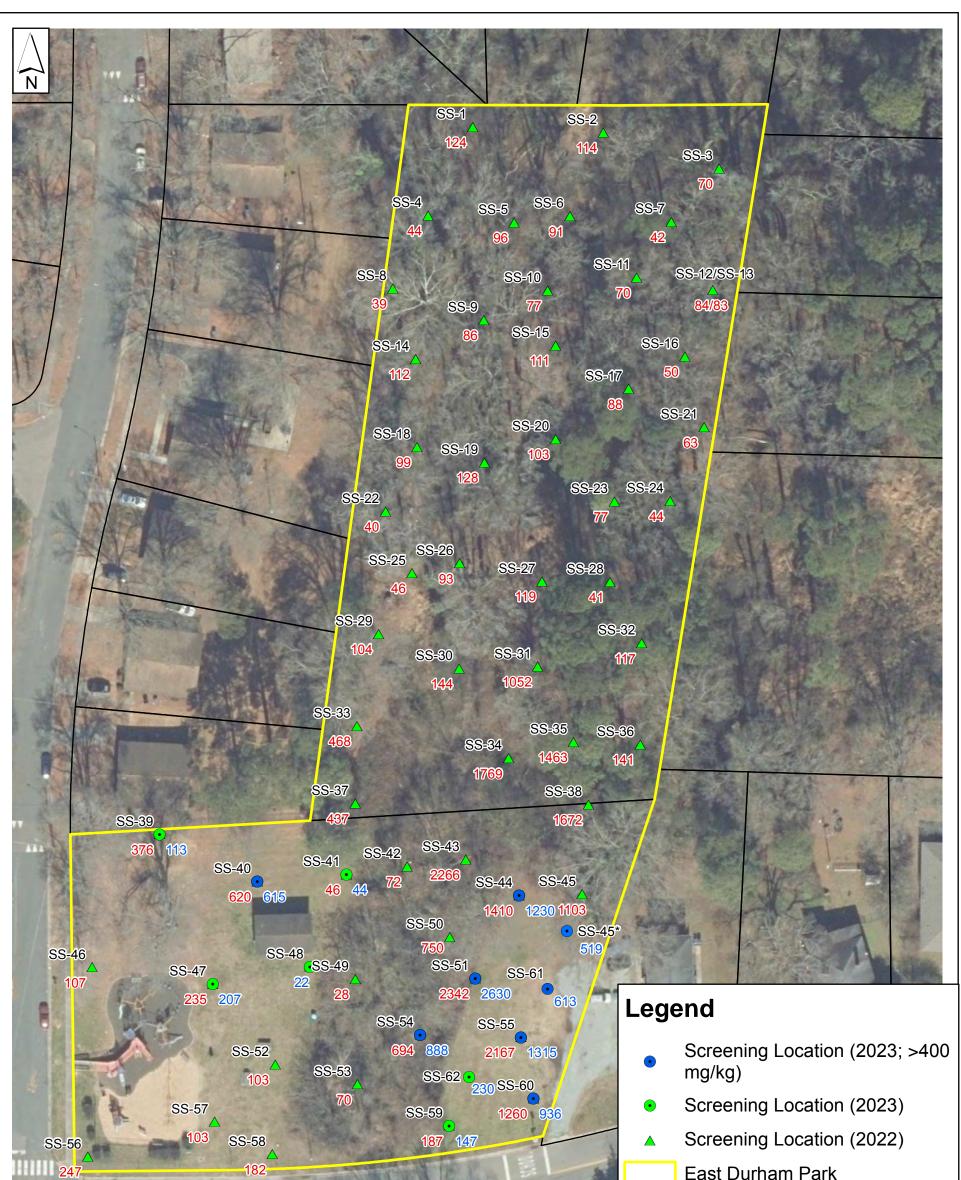
 See Tables 3 and 8 for lead concentrations 12 inches BLS and HSL metals and SVOC concentrations
 HSL = Hazardous Substance List
 SVOC = Semi Volatile Organic Compound

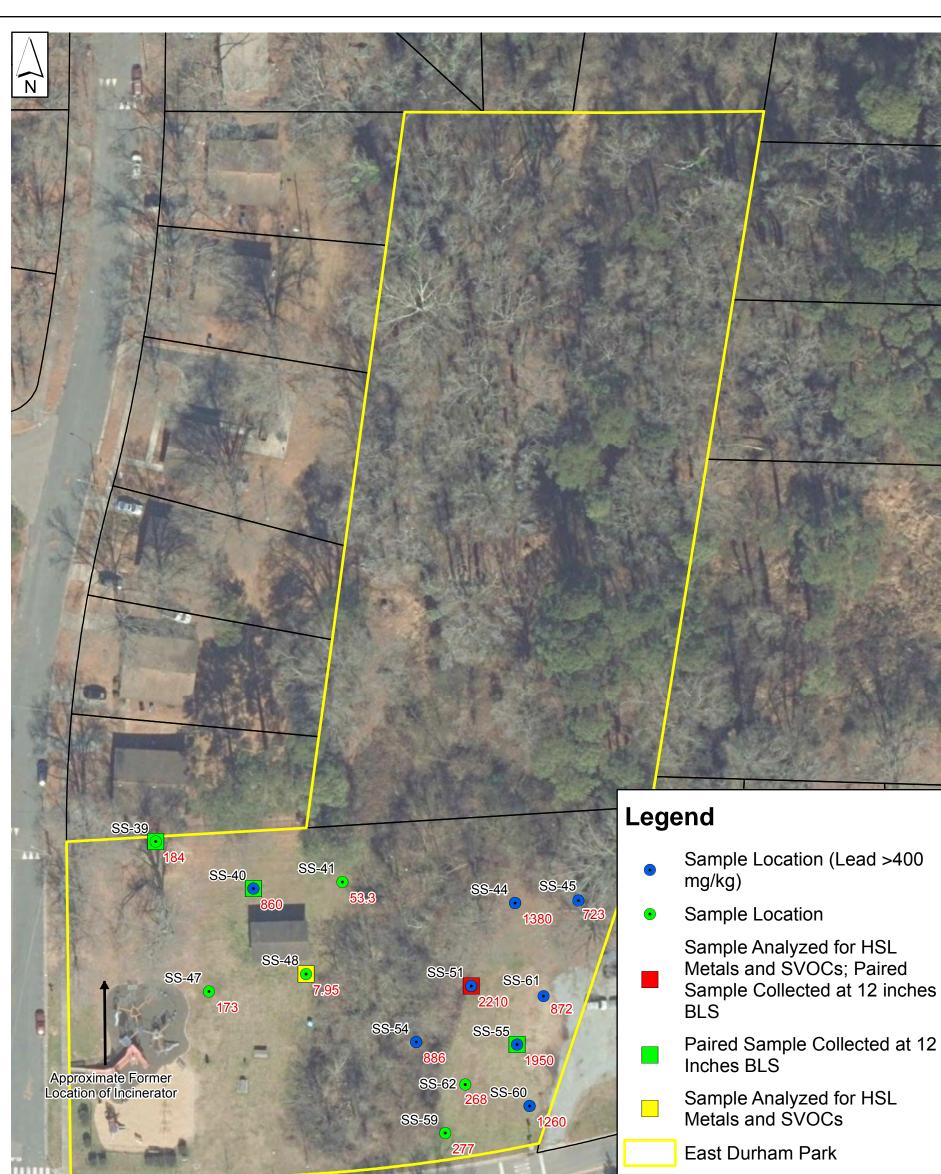

Feet

- **REFERENCES**:
 - 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP.
 - 2. CERTIFIED SANBORN MAP REPORT BY ENVIRONMENTAL DATA RESOURCES, INC. DATED JUNE 27, 2023
 - 3. MID-ATLANTIC FIELD NOTES

DATE: DRAWN AUGUST 2023 KRC SAMPLE LOCATION MAP BY: DURHAM PARK LEAD ASSESSMENT DRAFT JOB NO: DHN LYON PARK CHECK: R4370.00 Mid Atlantic **1101 CORNELL STREET AND** ENG. GIS NO: 1200 WEST LAKEWOOD AVENUE 03G-R4370.00-3B-LY CHECK: DURHAM, NORTH CAROLINA APPROVAL: DHN FIG NO: 3B


0


SS-64 103 SS-65 SS-66 SS-66 114 SS-70 308 54	SS-68 57 35 4 222 201 SS-69 35 35 22 SS-71	 >400 Screit Screit 40 XRF 	ening Location (2023;) mg/kg) ening Location (2023) ening Location (2022) Value (2022; mg/kg) Value (2023; mg/kg)
 REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. Legacy Pb contamination in the soils of three Durham city part Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022 3. MID-ATLANTIC FIELD NOTES. 		inch = 60 feet 120	240 Feet
Mid Atlantic Engineering & Environmental Solutions	SCREENING LOCATION MAP DURHAM PARK LEAD ASSESSMENT NORTHERN PORTION OF WALLTOWN PARK 1308 WEST CLUB BOULEVARD DURHAM, NORTH CAROLINA	DRAWN BY: KRC DRAFT CHECK: CBH ENG. CHECK: APPROVAL: CBH	DATE: AUGUST 2023 JOB NO: R4370.00 GIS NO: 03G-R4370.00-4A-Walltown FIG NO: 4A


	29 58-99 SS-98 5S-99 24 40	 ▲ 40 	Screening Location (2023; >400 mg/kg) Screening Location (2023) Screening Location (2022) XRF Value (2022; mg/kg) XRF Value (2023; mg/kg)
 REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. Legacy Pb contamination in the soils of three Durham city par Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022 3. MID-ATLANTIC FIELD NOTES. 		inch = 60 fe 120	eet 240 Feet
Mid Atlantic Engineering & Environmental Solutions	SCREENING LOCATION MAP DURHAM PARK LEAD ASSESSMENT SOUTHERN PORTION OF WALLTOWN PARK 1308 WEST CLUB BOULEVARD DURHAM, NORTH CAROLINA	DRAFT	CRCDATE: AUGUST 2023JOB NO: CBHJOB NO: R4370.00GIS NO: 03G-R4370.00-4B-WalltownCBHFIG NO: 4B

	653 West Club Boulevard	NOTE: 1) See Tables 3 and 12 inches BLS and HSL metals a 2) HSL = Hazardous	entration (mg/kg) d 8 for lead concentrations and SVOC concentrations
 REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. Legacy Pb contamination in the soils of three Durham city par Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022 3. MID-ATLANTIC FIELD NOTES. 		inch = 100 feet 200	400 Feet
Mid Atlantic Engineering & Environmental Solutions	SCREENING LOCATION MAP DURHAM PARK LEAD ASSESSMENT SOUTHERN PORTION OF WALLTOWN PARK 1308 WEST CLUB BOULEVARD DURHAM, NORTH CAROLINA	DRAWN BY: KRC DRAFT CHECK: CBH ENG. CHECK: APPROVAL: CBH	DATE: AUGUST 2023 JOB NO: R4370.00 GIS NO: 03G-R4370.00-4C-Walltown FIG NO: 4C

247 182	I APRILIA A A A A A A A A A A A A A A A A A A	East Durham	Park
Ta due!		Parcel Bounda	aries
		40 XRF Value (20	022; mg/kg)
		40 XRF Value (20	023; mg/kg)
		NOTE: Sample Location SS riginal location due to acces	
 REFERENCES: 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. 2. Legacy Pb contamination in the soils of three Durham city p Do secondary forest organic horizons effectively blanket Pb 	arks: 0	ch = 60 feet 120	240
in city park soils contaminated by historic waste incineration Enikoe Bihari, December 16, 2022 3. MID-ATLANTIC FIELD NOTES			Feet
	SCREENING LOCATION MAP	DRAWN BY: KRC	DATE: AUGUST 2023
Mid Atlantia	EAST DURHAM PARK 2601 EAST MAIN STREET AND	DRAFT CHECK: CBH	JOB NO: R4370.00
Mid Atlantic Engineering & Environmental Solutions	300 GARY STREET DURHAM, NORTH CAROLINA	ENG. CHECK:	GIS NO: 03G-R4370.00-5A-East_Durham_Park
		APPROVAL: CBH	

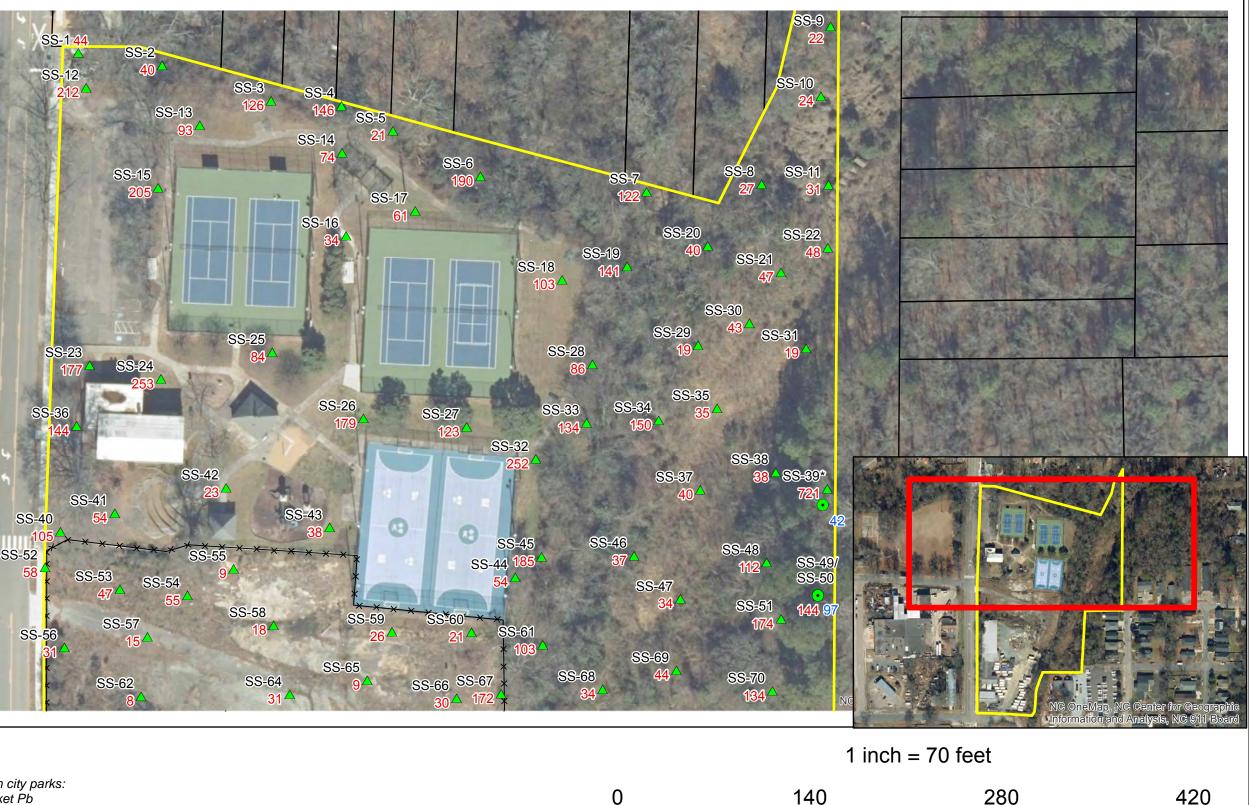
	NC OneMap,	Parcel Bounds 40 Lead Concent NOTE: 1) See Tables 3 and 8 for le 12 inches BLS and HSL metals and SVC 2) HSL = Hazardous Substa 3) SVOC = Semi Volatile Or	ad concentrations OC concentrations
 REFERENCES: AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP. MID-ATLANTIC FIELD NOTES Legacy Pb contamination in the soils of three Durham city pa Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022 	rks: 0	nch = 60 feet 120	240 Feet
	SAMPLE LOCATION MAP	DRAWN BY: KRC	DATE: AUGUST 2023
	EAST DURHAM PARK	DRAFT CHECK: CBH	JOB NO: R4370.00
Mid Atlantic Engineering & Environmental Solutions		ENG. CHECK:	GIS NO: 03G-R4370.00-5B-East_Durham_Pa
		APPROVAL: CBH	FIG NO: 5B

Legend

- Screening Location (2023; >400 • mg/kg)
- Screening Location (2023) •
- Screening Location (2022) \land
- East End Park

Parcel Boundaries

- Approximate Location of Fencing
- XRF Value (2022; mg/kg) 40
- XRF Value (2023; mg/kg) 40


NOTE:

1) Locations denoted with an asterisk (*) indicate screening locations where the planned sample location had to be offset due to access issues.

REFERENCES:

- 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP.
- 2. Legacy Pb contamination in the soils of three Durham city parks: Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022
- 3. MID-ATLANTIC FIELD NOTES

140

SCREENING LOCATION MAP DURHAM PARK LEAD ASSESSMENT NORTHERN PORTION OF EAST END PARK 2300 NORTH ALSTON AVENUE DURHAM, NORTH CAROLINA

DRAWN BY:	KRC	DATE: AUGUST 2023
DRAFT CHECK:	СВН	JOB NO: R4370.00
ENG. CHECK:		GIS NO: 03G-R4370.00-6A-East_End
APPROVAL	: CBH	FIG NO: 6A

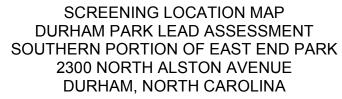
Feet

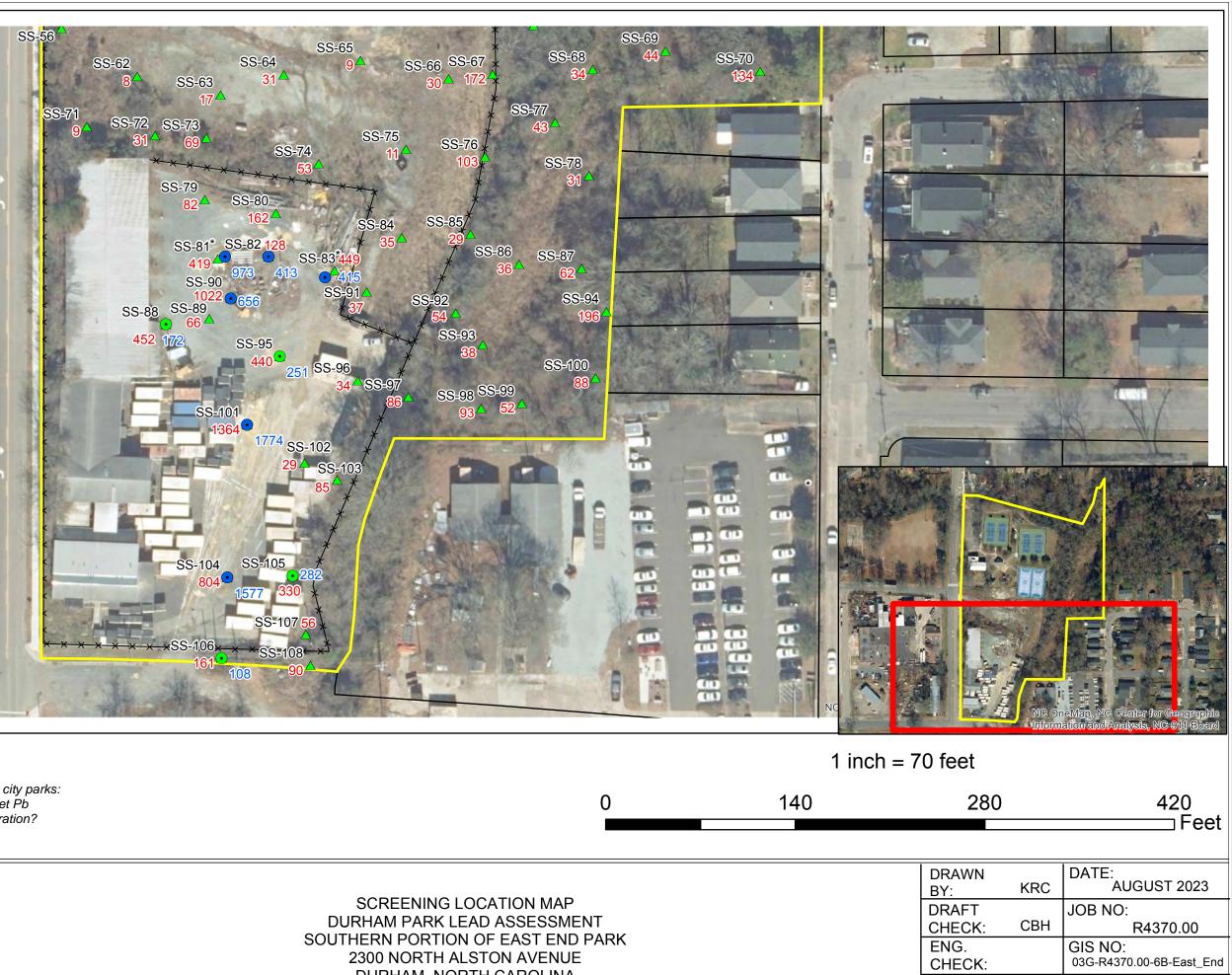
Legend

- Screening Location (2023; >400 • mg/kg)
- Screening Location (2023) •
- Screening Location (2022) \land
- East End Park

Parcel Boundaries

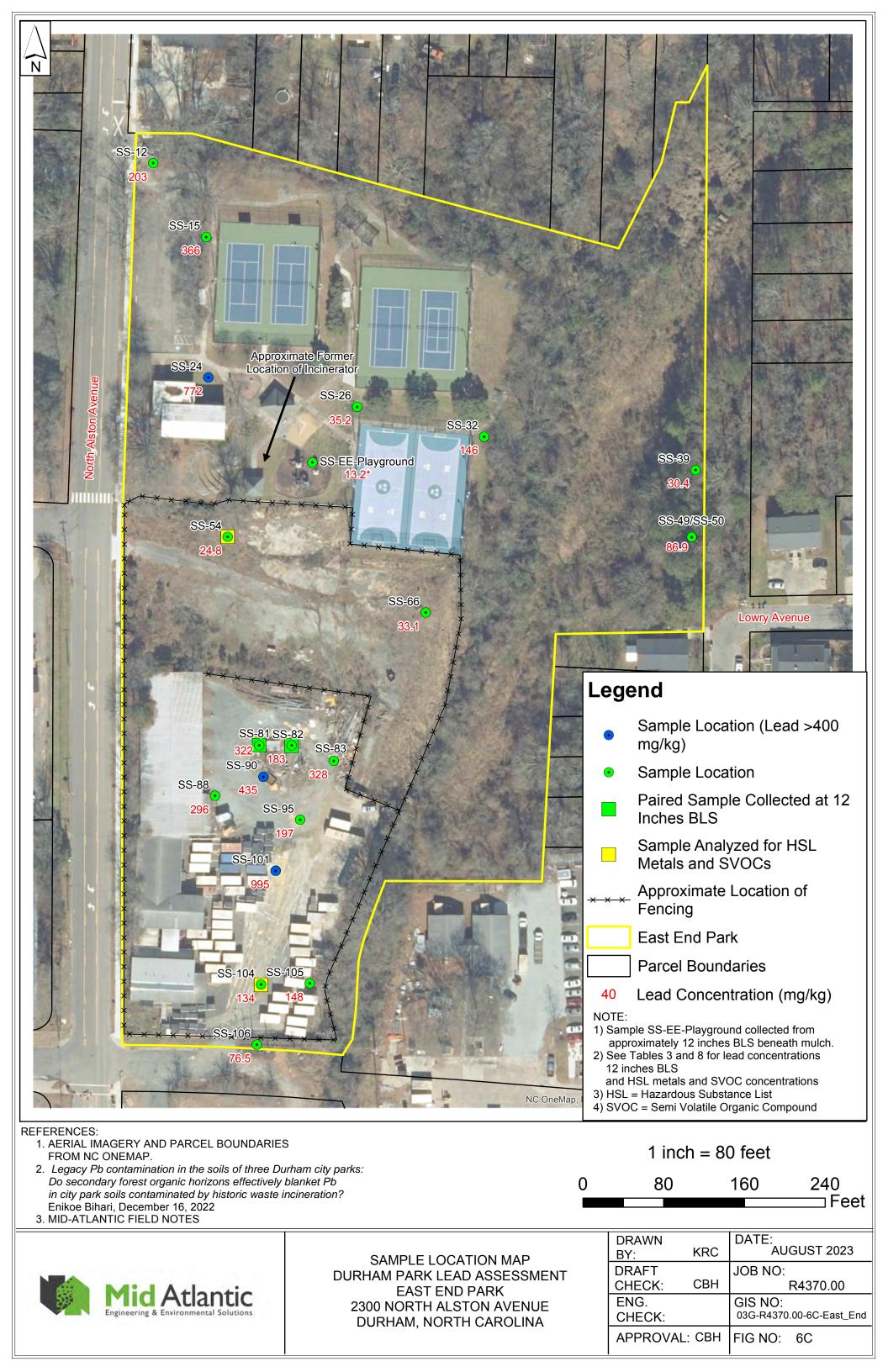
- Approximate Location of Fencing
- XRF Value (2022; mg/kg) 40
- 40 XRF Value (2023; mg/kg)


NOTE:


1) Locations denoted with an asterisk (*) indicate screening locations where the planned sample location had to be offset due to access issues.

REFERENCES:

- 1. AERIAL IMAGERY AND PARCEL BOUNDARIES FROM NC ONEMAP.
- 2. Legacy Pb contamination in the soils of three Durham city parks: Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration? Enikoe Bihari, December 16, 2022
- 3. MID-ATLANTIC FIELD NOTES



APPROVAL: CBH

FIG NO: 6B

TABLES

	TABLE 1 SUMMARY OF FIELD ASSESSMENT ACTIVITIES CITY OF DURHAM PARKS DURHAM, DURHAM COUNTY, NORTH CAROLINA													
		Summ	nary of Field Activition	es - XRF Field Screer	ning and Soil Samplir	ng Activities			Summary of Asse	essment Results		Summary of Playground Areas		
DURHAM PARKS	# Initial XRF Screening Locations (Duke 2022)	# Confirmatory XRF Screening Locations (July 2023)	# Locations Inaccessible for the July 2023 Assessment*	# Surface Soil Samples for Lead Analysis (EPA 6010D/6020B)	Metals and SVOC Analyses	# Soil Samples for Characterization of Vertical Extent (~12 inches BLS)	# Soil Samples Collected from Playground Areas (EPA 6010D)	Total # Areas Assessed via Screening or Sampling	Total # Soil Samples for Laboratory Analysis	Total # Sample Locations Exceeding Lead > 400 mg/kg	% Assessed vs. Locations Exceeding Lead > 400 mg/kg	Total # of Playground Areas	Lined Playground Areas	Unlined Playground Areas (Sampled for Lead 6010D)
Northgate	N/A	259	24	32	2	1	1	261	34	1	0.38%	3	2	1
Lyon	N/A	81	13	14	2	1	0	83	15	1	1.20%	1	1	
Walltown	99	23		24	2	3	0	102	27	11	10.78%	2	2	
East Durham	62	14	10	15	2	4	0	66	19	11	**28.79%	1	1	
East End	108	12		20	2	2	1	111	23	3	2.70%	2	1	1

Notes:

mg/kg = milligrams per kilogram

N/A = Not Applicable (Northgate Park and Lyon Park not included in the 2022 Duke Study)

BLS = Below Land Surface

XRF = X-Ray Fluorescence (field screening instrument for lead)

HSL = Hazardous Substance List (HSL) metals identified in IHSB's "Guidance for Assessment and Cleanup of Contaminated Sites" (September 2022) and analyzed according to EPA Methods 6020B and 7471B

SVOCs = Semi-Volatile Organic Compounds analyzed according to EPA Method 8270D

Soil samples submitted for laboratory analysis of lead only analyzed according to EPA Method 6010D

Surface soil samples collected from upper inch of the soil profile

* Locations deemed inaccessbile during the July 2023 field activities due to interference from dense poison ivy and heavy forestation

** A total of 10 proposed sample locations previously screened by Duke were inaccessible during the July 2023 field activities; eight of these locations screened > 400 mg/kg during the Duke Study; as such, these eight locations were included in the percentage calculation

TABLE 2 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL NORTHGATE PARK 300 WEST CLUB BOULEVARD, 404 WEST LAVENDAR AVENUE, 2623 ACADIA STREET DURHAM, DURHAM COUNTY, NORTH CAROLINA

DURHAM, DURHAM COUNTY, NORTH CAROLINA					
Sample Name	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Lead by EPA 6010D (Laboratory Testing; mg/kg or ppm)	Comments		
SS-NG-1	33	33.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
SS-2	27	N/A	N/A		
iS-3	40	N/A	N/A		
S-4	39	N/A	N/A		
S-5	41	N/A	N/A		
S-6	18	N/A	N/A		
S-7	20	N/A	N/A		
S-8	32	N/A	N/A		
S-9	25	N/A	N/A		
S-10	9.8	N/A	N/A		
S-NG-11	30	29.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-12	33	N/A	N/A		
S-13	35	N/A	N/A		
S-14	25	N/A	N/A		
S-15	23	N/A N/A	N/A		
S-16	50		· · · · · · · · · · · · · · · · · · ·		
		N/A	N/A		
S-17	46	N/A	N/A		
5-18	20	N/A	N/A		
5-19	27	N/A	N/A		
5-20	33	N/A	N/A		
5-21	7.3	N/A	N/A		
5-22	39	N/A	N/A		
S-23	27	N/A	N/A		
S-24	47	N/A	N/A		
S-25	28	N/A	N/A		
5-26	15	N/A	N/A		
S-27	30	N/A	N/A		
5-28	21	N/A	N/A		
5-29	46	N/A	N/A		
5-30	26	N/A	N/A		
5-31	17	N/A N/A	N/A		
5-32	23	N/A	N/A		
5-33	18	N/A	N/A		
5-34	N/A	N/A	Sample location not accessible		
S-35	24	N/A	N/A		
S-36	29	N/A	N/A		
S-37	40	N/A	N/A		
S-NG-38	41, 39 (Duplicate)	44.4	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-39	24	N/A	N/A		
S-40	21	N/A	N/A		
S-41	10	N/A	N/A		
S-42	17	N/A	N/A		
S-43	23	N/A	N/A		
S-44	33	N/A	N/A		
S-NG-45	34	43.3	N/A		
5-46	41	N/A	N/A		
5-47	18	N/A	N/A		
5-47					
	24	N/A	N/A		
5-49	23	N/A	N/A		
S-50	21	N/A	N/A		
5-51	25	N/A	N/A		
S-52	27	N/A	N/A		
5-53	25	N/A	N/A		
5-54	73	N/A	N/A		
S-55	21	N/A	N/A		
S-NG-56	19	18.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-57	18	N/A	N/A		
S-58	16	N/A	N/A		
S-59	20	N/A	N/A		
S-60	N/A	N/A	Sample location not accessible		
S-61	30	N/A N/A	N/A		
5-62	39	N/A N/A			
5-63			N/A		
	48	N/A	N/A		
S-64	26	N/A	N/A		
6-65	25	N/A	N/A		
5-66	25	N/A	N/A		
5-67	19	N/A	N/A		
5-68	24	N/A	N/A		
S-69	29	N/A	N/A		
S-NG-70	47	46.2	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-71	29	N/A	N/A		
	335, 338 (Duplicate)	397	Lead confirmation sampling (sample screened above 280 mg/kg)		
	000) 000 (Dublicate)				
S-NG-72		N/A	N/A		
S-NG-72 S-73 S-74	29 28	N/A N/A	N/A N/A		

			TABLE 2 ILTS AND LEAD CONCENTRATIONS DETECTED IN SOIL
		NOR BOULEVARD, 404 W	ETG AND LEAD CONCENTRATIONS DEFECTED IN SOLE THGATE PARK EST LAVENDAR AVENUE, 2623 ACADIA STREET I COUNTY, NORTH CAROLINA
SS-76	37	N/A	N/A
SS-77	34	N/A	N/A
SS-78	41	N/A	N/A
SS-79	77	N/A	N/A
SS-80	105	N/A	N/A
55-81 55-82	198 46, 49 (Duplicate)	N/A	N/A N/A
SS-82	21	N/A 22.5	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-84	44	N/A	N/A
SS-85	19	N/A	N/A
SS-86	25	N/A	N/A
S-87	26	N/A	N/A
SS-88	22	N/A	N/A
5S-89 5S-90	39 122	N/A N/A	N/A N/A
SS-NG-91			
SS-NG-Dup-1	285	283/286	Primary/Duplicate; Lead confirmation sampling (sample screened above 280 mg/k
SS-NG-92	289, 305 (Duplicate)	365	Lead confirmation sampling (sample screened above 280 mg/kg)
SS-93	56	N/A	N/A
SS-94	28	N/A	N/A
SS-95 SS-96	N/A	N/A	Sample location not accessible
55-96 55-97	17 12	N/A N/A	N/A N/A
SS-98	33	N/A	N/A N/A
SS-99	73	N/A	N/A
SS-NG-100	124	143	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-101	51	N/A	N/A
SS-NG-102	30	25.5	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-103 SS-104	27	N/A	N/A N/A
S-104 S-105	<u>34</u> 17	N/A N/A	N/A N/A
S-106	26	N/A	N/A
S-107	54	N/A	N/A
S-108	16	N/A	N/A
S-NG-109	161	203	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-NG-110	201	212	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
5S-111 5S-112	26 17	N/A N/A	N/A N/A
SS-112 SS-113	17	N/A	N/A N/A
SS-114	29	N/A	N/A
SS-115	60	N/A	N/A
S-NG-116	187, 210 (Duplicate)	244	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-117	17	N/A	N/A
S-118 S-NG-119	30 43	N/A	N/A
S-NG-119 S-120	43 N/A	34.3 N/A	Lead confirmation sampling (10% of samples screened under 280 mg/kg) Sample location not accessible
S-121	35	N/A	N/A
S-122	28	N/A	N/A
S-123	32	N/A	N/A
S-124	37	N/A	N/A
S-125	30	N/A	N/A
S-126 S-127	19 23	N/A N/A	Ν/Α
S-127 S-128	38	N/A N/A	N/A N/A
S-129	32	N/A	N/A
S-130	20	N/A	N/A
S-NG-131	20, 24 (Duplicate)	16.7	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
S-132	20	N/A	N/A
S-133	35	N/A	N/A
S-134 S-135	30 60	N/A	
S-135 S-136	30	N/A N/A	N/A N/A
S-NG-137	35	31.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
S-138	14	N/A	N/A
S-139	33	N/A	N/A
S-140	30	N/A	N/A
S-141	103	N/A	N/A
S-142	18	N/A	
S-143 S-NG-144	28	N/A	N/A Primary/Duplicate; Lead confirmation sampling (10% of samples screened under
S-NG-144 S-NG-Dup-2	28	35.9/32.9	280 mg/kg)
S-145	23	N/A	N/A
S-146	40	N/A	N/A
S-147	34	N/A	N/A
S-NG-148	40	45.5	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
S-149	19 8	N/A N/A	N/A N/A

TABLE 2
SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL
NORTHGATE PARK
300 WEST CLUB BOULEVARD, 404 WEST LAVENDAR AVENUE, 2623 ACADIA STREET
DURHAM, DURHAM COUNTY, NORTH CAROLINA

		DURHAM, DURH	AM COUNTY, NORTH CAROLINA
SS-151	13	N/A	N/A
SS-NG-152	16	8.41	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-NG-153	9.0	12.7	Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs
SS-154	26	N/A	N/A
SS-155	23	N/A	N/A
SS-156	25	N/A	N/A
SS-157	13	N/A	N/A
SS-158	31	N/A	N/A
SS-159	18	N/A	N/A
SS-160	11	N/A	N/A
SS-161	5.9	N/A	N/A
SS-162	18	N/A	N/A
SS-163	33	N/A	N/A
SS-164	11	N/A	N/A
SS-165	11	N/A	N/A
SS-165		-	
SS-167	<u>13</u> 25	N/A	N/A N/A
		N/A	
SS-168	N/A	N/A	Sample location not accessible
SS-169	33	N/A	N/A
SS-170	19	N/A	N/A
SS-171	13	N/A	N/A
SS-NG-172	23	7.31	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-173	24	N/A	N/A
SS-174	17	N/A	N/A
SS-NG-175	31	30.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-176	22	N/A	N/A
SS-177	25	N/A	N/A
SS-178	17	N/A	N/A
SS-179	24	N/A	N/A
SS-180	21	N/A	N/A
SS-181	15	N/A	N/A
SS-182	N/A	N/A	Sample location not accessible
SS-183	65	N/A	N/A
SS-NG-184	269	309	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-185	49	N/A	N/A
SS-185 SS-186	35	N/A	N/A N/A
SS-180 SS-187	37	N/A	N/A N/A
SS-187 SS-188		,	
	41	N/A	N/A
SS-189	N/A	N/A	Sample location not accessible
SS-190	44	N/A	N/A
SS-191	29	N/A	N/A
SS-NG-192	46	48.7	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-193	33, 39 (Duplicate)	N/A	N/A
SS-194	39	N/A	N/A
SS-195	N/A	N/A	Sample location not accessible
SS-196	52	N/A	N/A
SS-197	N/A	N/A	Sample location not accessible
SS-198	N/A	N/A	Sample location not accessible
SS-199	39, 46 (Duplicate)	N/A	N/A
SS-200	35	N/A	N/A
SS-201	N/A	N/A	Sample location not accessible
SS-202	N/A	N/A	Sample location not accessible
SS-203	34	N/A	N/A
SS-204	N/A	N/A	Sample location not accessible
SS-NG-205	87	87.0	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
SS-206	91	N/A	N/A
SS-200	N/A	N/A	Sample location not accessible
SS-207 SS-208	N/A N/A	N/A	Sample location not accessible
SS-209	42	N/A	N/A
SS-210	N/A	N/A N/A	Sample location not accessible
SS-210 SS-211	46	N/A N/A	
SS-211 SS-212	N/A	N/A N/A	Sample location not accessible
SS-212 SS-213		,	· · · · · · · · · · · · · · · · · · ·
	N/A	N/A	Sample location not accessible
SS-214	45	N/A	N/A
SS-215	N/A	N/A	Sample location not accessible
SS-216	29	N/A	N/A
	73	N/A	N/A
SS-217		N/A	Sample location not accessible
SS-217 SS-218	N/A		
SS-217 SS-218 SS-219	N/A N/A	N/A	Sample location not accessible
SS-217 SS-218 SS-219			Sample location not accessible
SS-217 SS-218 SS-219 SS-220	N/A	N/A	
SS-217 SS-218 SS-219 SS-220 SS-221	N/A 33	N/A N/A	N/A
SS-217 SS-218 SS-219 SS-220 SS-221 SS-222	N/A 33 125	N/A N/A N/A N/A	N/A N/A
SS-217 SS-218 SS-219 SS-220 SS-221 SS-222 SS-222 SS-223 SS-224	N/A 33 125 N/A	N/A N/A N/A	N/A N/A Sample location not accessible

TABLE 2 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL NORTHGATE PARK 300 WEST CLUB BOULEVARD, 404 WEST LAVENDAR AVENUE, 2623 ACADIA STREET DURHAM, DURHAM COUNTY, NORTH CAROLINA

			COUNTY, NORTH CAROLINA
SS-NG-226	357, 270 (Duplicate), 260	300	Lead confirmation sampling (sample screened above 280 mg/kg) and analysis of
55-110-220	(Duplicate)	500	hazardous substance list metals and SVOCs
SS-NG-226 (1')	N/A	283	Sample collected 12 inches BLS
SS-227	119	N/A	N/A
SS-228	59	N/A	N/A
S-229	101, 104 (Duplicate)	N/A	N/A
S-230	46	N/A	N/A
S-231	40, 40 (Duplicate)	N/A	N/A
S-232	41	N/A	N/A
S-233	60	N/A	N/A
S-234	28	N/A	N/A
S-235	28	N/A	N/A
S-236	32	N/A	N/A
S-237	40	N/A	N/A
S-238	38	N/A	N/A
iS-238			
	41	N/A	N/A
S-240	31	N/A	N/A
S-241	36	N/A	N/A
S-242	52	N/A	N/A
S-243	25	N/A	N/A
S-244	45	N/A	N/A
S-245	53	N/A	N/A
SS-246	35	N/A	N/A
SS-247	30	N/A	N/A
S-248	21	N/A	N/A
S-249	30	N/A	N/A
S-250	23	N/A	N/A
S-251	66	N/A	N/A
S-252	42	N/A	N/A
S-253	34	N/A	N/A
S-254	20	N/A	N/A
S-255	39	N/A	N/A
S-256	35, 31 (Duplicate)	N/A	N/A
S-257	26	N/A	N/A
S-258	28	N/A	N/A
S-259	17	N/A	N/A
S-260	33	N/A	N/A
S-261	49	N/A	N/A
S-262	27	N/A	N/A
S-263	42	N/A	N/A
S-264	20	N/A	N/A
S-265	32	N/A	N/A
S-265	18	N/A N/A	N/A N/A
S-260 S-267	33	N/A N/A	N/A N/A
S-267	28	N/A N/A	N/A N/A
S-268 S-269	36	N/A N/A	N/A N/A
S-269 S-270			
	28	N/A	N/A N/A
S-271	35	N/A	N/A
S-272	22	N/A	N/A
S-NG-273	23	21.1	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
S-274	26	N/A	N/A
S-275	36	N/A	N/A
S-276	N/A	N/A	Sample location not accessible
S-277	28	N/A	N/A
S-278	25	N/A	N/A
S-NG-279	35	32.5	Lead confirmation sampling (10% of samples screened under 280 mg/kg)
S-280	56	N/A	N/A
S-281	25	N/A	N/A
S-282	32	N/A	N/A
S-283	37	N/A	N/A
S-NG-Playground		1430	Sampling beneath a playground where a fabric liner was not encountered

Notes:

XRF: X-ray fluorescence

BLS: Below land surface

N/A: Not applicable

mg/kg: miligram per kilogram (equivalent to parts per million; ppm)

Bold laboratory reported lead concentration exceeds the 400 mg/kg Residential PSRG

Table 3 Page 1 of 2

TABLE 3 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL LYON PARK 1101 CORNELL STREET AND 1200 WEST LAKEWOOD AVENUE DURHAM, DURHAM COUNTY, NORTH CAROLINA

DURHAM, DURHAM COUNTY, NORTH CAROLINA					
Sample Name	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Lead by EPA 6010D (Laboratory Testing; mg/kg or ppm)	Comments		
S-1	88	N/A	N/A		
S-2	N/A	N/A	Sample location not accessible		
S-3	67	N/A	N/A		
S-LY-4	27	25.2	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-LY-5	281, 289 (Duplicate)	99.2	Lead confirmation sampling (sample screened above 280 mg/kg)		
S-6	101	N/A	N/A		
S-7	N/A	N/A	Sample location not accessible		
S-8	29	N/A	N/A		
S-9	32	N/A	N/A		
S-10	74	N/A	N/A		
S-11	28	N/A	N/A		
S-12	23	N/A	N/A		
S-13	43	N/A	N/A		
5-14	22	N/A	N/A		
S-15	46	N/A	N/A		
S-16	27	N/A	N/A		
S-17	30	N/A	N/A		
S-18	85	N/A	N/A		
S-19	N/A	N/A	Sample location not accessible		
5-20	41	N/A	N/A		
5-21	34	N/A	N/A		
5-22	23	N/A	N/A		
S-23	27	N/A	N/A		
S-24	42	N/A	N/A		
S-25	42 59, 60 (Duplicate)	N/A	N/A N/A		
S-25	32	N/A	N/A N/A		
S-LY-27	15	11.1	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-28	N/A	N/A	Sample location not accessible		
S-LY-29	29	24.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-30	N/A	N/A	Sample location not accessible		
S-31	36	N/A	N/A		
S-32	35	N/A	N/A		
S-33	23	N/A	N/A		
S-34	29	N/A	N/A		
S-35	78	N/A	N/A		
S-36	18	N/A	N/A		
S-37	65	N/A	N/A		
S-38	N/A	N/A	Sample location not accessible		
S-LY-39	28	24.4	Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-40	25	N/A	N/A		
S-41	82	N/A	N/A		
S-42	63	N/A	N/A		
S-LY-43	365, 358 (Duplicate)	259	Lead confirmation sampling (sample screened above 280 mg/kg)		
S-44	N/A	N/A	Sample location not accessible		
S-LY-45(Pb)	-	,			
	394 (Precision Check; see	384/ 553	Primary/Duplicate; Lead confirmation sampling (sample screened above 280		
	Table 7)		mg/kg), and analysis of hazardous substance list metals and SVOCs		
S-LY-45(1')	Table 7) N/A	248	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS		
S-LY-45(1') S-46	Table 7) N/A 45	248 N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A		
S-LY-45(1') S-46 S-47	Table 7) N/A 45 52, 51 (Duplicate)	248 N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A		
S-LY-45(1') S-46 S-47 S-48	Table 7) N/A 45 52, 51 (Duplicate) 149	248 N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A	248 N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A Sample location not accessible		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204	248 N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141	248 N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-51 S-52	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172	248 N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-51 S-52	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141	248 N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172	248 N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-53 S-54	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-53 S-54 S-55	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42	248 N/A N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-53 S-54 S-55 S-55	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60	248 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-53 S-54 S-55 S-55 S-56 S-57	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61	248 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-55 S-56 S-57 S-58	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A N/A N/A Sample location not accessible		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-55 S-56 S-57 S-58 S-59	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A N/A		
S-LY-DUP1 S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-54 S-55 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A N/A N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg), and		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A Sample location not accessible N/A N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61 S-LY-62	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A N/A Sample location not accessible N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs Lead confirmation sampling (10% of samples screened under 280 mg/kg)		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61 S-LY-61 S-LY-62 S-63	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16 70	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A N/A N/A Sample location not accessible N/A Sample location not accessible N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs Lead confirmation sampling (10% of samples screened under 280 mg/kg) N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61 S-LY-61 S-LY-62 S-63 S-64	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16 70 76	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A N/A Sample location not accessible N/A N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs Lead confirmation sampling (10% of samples screened under 280 mg/kg) N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61 S-LY-61 S-LY-62 S-63 S-64 S-65	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16 70 76 222, 246 (Duplicate)	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A Sample location not accessible N/A N/A Sample location not accessible N/A Sample location not accessible N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg) N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60 S-LY-61 S-LY-61 S-LY-62 S-63 S-64 S-65 S-66	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16 70 76 222, 246 (Duplicate) N/A	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A N/A Sample location not accessible N/A N/A N/A N/A Sample location not accessible N/A Sample location not accessible N/A Lead confirmation sampling (10% of samples screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs Lead confirmation sampling (10% of samples screened under 280 mg/kg) N/A N/A N/A N/A N/A N/A		
S-LY-45(1') S-46 S-47 S-48 S-49 S-50 S-50 S-51 S-52 S-53 S-54 S-55 S-56 S-57 S-58 S-59 S-LY-60	Table 7) N/A 45 52, 51 (Duplicate) 149 N/A 204 141 172 94 42 60 61 136 N/A 116 357, 300 (Duplicate) 13 16 70 76 222, 246 (Duplicate)	248 N/A N/A N/A N/A N/A N/A N/A N/A	mg/kg), and analysis of hazardous substance list metals and SVOCs Sample collected from 12 inches BLS N/A N/A Sample location not accessible N/A N/A N/A N/A N/A Sample location not accessible N/A N/A Sample location not accessible N/A Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling (sample screened under 280 mg/kg), and analysis of hazardous substance list metals and SVOCs Lead confirmation sampling (10% of samples screened under 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg) N/A		

	TABLE 3 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL LYON PARK					
	1101		AND 1200 WEST LAKEWOOD AVENUE M COUNTY, NORTH CAROLINA			
SS-LY-70	15	7.53	Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-71	78	N/A	N/A			
SS-72	50	N/A	N/A			
SS-73	60	N/A	N/A			
SS-74	136	N/A	N/A			
SS-75	167	N/A	N/A			
SS-76	212	N/A	N/A			
SS-77	75, 73 (Duplicate)	N/A	N/A			
SS-78	71	N/A	N/A			
SS-79	127	N/A	N/A			
SS-80	25	N/A	N/A			
SS-81	49	N/A	N/A			
SS-82	N/A	N/A	Sample location not accessible			
SS-83	N/A	N/A	Sample location not accessible			
SS-84	31	N/A	N/A			
SS-85	55	N/A	N/A			
SS-86	85	N/A	N/A			
SS-87	52	N/A	N/A			
SS-88	30	N/A	N/A			
SS-89	22	N/A	N/A			
SS-90	49	N/A	N/A			
SS-91	51	N/A	N/A			
SS-92	46	N/A	N/A			
SS-93	46	N/A	N/A			
SS-94	N/A	N/A	Sample location not accessible			

Notes:

XRF: X-ray fluorescence

BLS: Below land surface

N/A: Not applicable

mg/kg: miligram per kilogram (equivalent to parts per million; ppm)

 $\textbf{Bold} \ \text{laboratory reported lead concentration exceeds the 400 mg/kg Residential PSRG}$

Table 4 Page 1 of 2

TABLE 4 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL WALLTOWN PARK 1308 WEST CLUB BOULEVARD DURHAM, DURHAM COUNTY, NORTH CAROLINA							
Sample Name	Duke XRF Screening Value (mg/kg or ppm)*	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Lead by EPA 6010D (Laboratory Testing; mg/kg or ppm)	Comments			
SS-1	117	N/A	N/A	N/A			
SS-2 SS-3	120 77	N/A N/A	N/A N/A	N/A N/A			
SS-4	102	N/A	N/A	N/A			
SS-5	156	N/A	N/A	N/A			
SS-6 SS-7	37 69	N/A N/A	N/A N/A	N/A N/A			
SS-8	166	N/A N/A	N/A N/A	N/A N/A			
SS-9	35	N/A	N/A	N/A			
SS-10	21	N/A	N/A	N/A			
SS-11 SS-12	25 177	N/A	N/A	N/A			
SS-12 SS-13	42	N/A N/A	N/A N/A	N/A N/A			
SS-14	54	N/A	N/A	N/A			
SS-15	89	N/A	N/A	N/A			
SS-16	196	N/A	N/A	N/A			
SS-17	15	N/A	N/A	N/A Lead confirmation sampling (10% of samples screened under 280 mg/kg) and			
SS-WT-18	204	109	86.2	analysis of hazardous substance list metals and SVOCs			
SS-19 SS-20	29 130	N/A N/A	N/A N/A	N/A N/A			
SS-20	56	N/A	N/A	N/A N/A			
SS-22	64	N/A	N/A	N/A			
SS-23	40	N/A	N/A	N/A N/A			
SS-24 SS-25	52 97	N/A N/A	N/A N/A	N/A N/A			
SS-26	179	N/A	N/A N/A	N/A			
SS-27	38	N/A	N/A	N/A			
SS-28	59	N/A	N/A	N/A			
SS-29 SS-30	75 98	N/A N/A	N/A N/A	N/A N/A			
SS-30 SS-31	98	N/A N/A	N/A N/A	N/A N/A			
SS-WT-32	175	123	142	Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-33	120	N/A	N/A	N/A			
SS-34	113	N/A	N/A	N/A			
SS-35 SS-WT-36 SS-	83	N/A 72	N/A 47.1/62.8	N/A Primary/Duplicate Sample; Lead confirmation sampling (10% of samples screened			
WT-DUP1 SS-37	178	N/A	N/A	under 280 mg/kg) N/A			
SS-38	25	N/A	N/A	N/A			
SS-39 SS-40	90 56	N/A N/A	N/A N/A	N/A N/A			
SS-40	72	N/A	N/A N/A	N/A N/A			
SS-42	201	N/A	N/A	N/A			
SS-WT-43	726	955	892	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-WT-43 (1')	N/A	N/A	458	Sample collected 12 inches BLS. Glass fragments encountered during hand augering.			
SS-44 SS-45	185 132	N/A N/A	N/A	N/A N/A			
SS-45 SS-46	97	N/A N/A	N/A N/A	N/A N/A			
SS-47	106	N/A	N/A	N/A			
SS-WT-48	324	214	225	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-WT-49	416	603	566	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-WT-50	1338	1506	1780	Lead confirmation sampling (sample screened above 280 mg/kg) and analysis of hazardous substance list metals and SVOCs			
SS-51 SS-52	133 133	N/A N/A	N/A N/A	N/A N/A			
SS-WT-53	446	482 (Precision Check; see Table 7)	459	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-54 SS-WT-55	207 322	N/A 229, 227 (Duplicate)	N/A 634	N/A Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-56	33	N/A	N/A	N/A			
SS-57	194	N/A	N/A	N/A			
SS-58	121	N/A	N/A	N/A			
SS-59 SS-WT-60	148 302	N/A 741	N/A 760	N/A Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-WT-61	188	11	15.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-62 SS-WT-63	51 222	N/A 201	N/A 202	N/A Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-64	103	N/A	N/A	N/A			
SS-WT-65	356	Not Recorded	314	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-66	114	N/A	N/A	N/A N/A			
SS-67 SS-68	246 57	N/A N/A	N/A N/A	N/A N/A			
SS-69	35	N/A	N/A	N/A			
SS-WT-70	308	54	54.7	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-71	22	N/A	N/A	N/A N/A			
SS-72 SS-73	186 63	N/A N/A	N/A N/A	N/A N/A			
SS-WT-74	316	377	346	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-75	56	N/A	N/A	N/A			
SS-WT-76	185	249	259	Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-WT-77 SS-78	302 64	395 N/A	349 N/A	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-78 SS-WT-79	910	1352, 1268 (Duplicate)	1330	N/A Lead confirmation sampling (sample screened above 280 mg/kg)			

	TABLE 4							
SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL								
WALLTOWN PARK								
1308 WEST CLUB BOULEVARD								
DURHAM, DURHAM COUNTY, NORTH CAROLINA								
SS-80	133	N/A	N/A	N/A				
SS-81	50	N/A	N/A	N/A				
SS-WT-82	29	32, 28 (Duplicate)	9.97	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-83	26	N/A	N/A	N/A				
SS-84	98	N/A	N/A	N/A				
SS-85	13	N/A	N/A	N/A				
SS-86	130	N/A	N/A	N/A				
SS-87	147	N/A	N/A	N/A				
SS-88	81	N/A	N/A	N/A				
SS-WT-89	28	42	26.6	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-90	26	N/A	N/A	N/A				
SS-91	100	N/A	N/A	N/A				
SS-WT-92	255	137	121	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-WT-93	985	802	653	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-WT-93 (1')	N/A	N/A	2200	Sample collected 12 inches BLS. Glass and porcelain fragments encountered during				
55-W1-93 (1)	N/A	N/A	2290	hand augering.				
SS-94	29	N/A	N/A	N/A				
SS-95	36	N/A	N/A	N/A				
SS-96	32	N/A	N/A	N/A				
SS-WT-97	394	54	53.0	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-98	24	N/A	N/A	N/A				
SS-99	40	N/A	N/A	N/A				
Netec								

Notes:

XRF: X-ray fluorescence

BLS: Below land surface

N/A: Not applicable

mg/kg: miligram per kilogram (equivalent to parts per million; ppm)

*: XRF screening values are reported in the Duke Report

Bold laboratory reported lead concentration exceeds the 400 mg/kg Residential PSRG

TABLE 5 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL EAST DURHAM PARK 2601 EAST MAIN STREET AND 300 GARY STREET DURHAM, DURHAM COUNTY, NORTH CAROLINA							
Sample Name	Duke XRF Screening Value (mg/kg or ppm)*	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Lead by EPA 6010D (Laboratory Testing; mg/kg or ppm)	Comments			
SS-1	124	N/A	N/A	N/A			
SS-2	<u> </u>	N/A	N/A	N/A			
SS-3 SS-4	44	N/A N/A	N/A N/A	N/A N/A			
SS-5	96	N/A	N/A	N/A			
SS-6	91	N/A	N/A	N/A			
SS-7 SS-8	42	N/A N/A	N/A N/A	N/A N/A			
SS-9	86	N/A N/A	N/A N/A	N/A N/A			
SS-10	77	N/A	N/A	N/A			
SS-11	70	N/A	N/A	N/A			
SS-12 SS-13	84	N/A N/A	N/A N/A	N/A N/A			
SS-14	112	N/A	N/A	N/A			
SS-15	111	N/A	N/A	N/A			
SS-16 SS-17	50 88	N/A N/A	N/A N/A	N/A N/A			
SS-17 SS-18	99	N/A N/A	N/A N/A	N/A N/A			
SS-19	128	N/A	N/A	Ň/Ă			
SS-20	103	N/A	N/A	N/A			
SS-21 SS-22	63 40	N/A N/A	N/A N/A	N/A N/A			
SS-22 SS-23	40	N/A N/A	N/A N/A	N/A N/A			
SS-24	44	N/A	N/A	N/A			
SS-25	46	N/A	N/A	Sample location not accessible			
SS-26 SS-27	93	N/A	N/A N/A	N/A N/A			
SS-27 SS-28	<u> </u>	N/A N/A	N/A N/A	N/A N/A			
SS-29	104	N/A	N/A	N/A			
SS-30	144	N/A	N/A	N/A			
SS-31 SS-32	1052 117	N/A	N/A	Sample location not accessible			
SS-32 SS-33	468	N/A N/A	N/A N/A	Sample location not accessible			
SS-34	1769	N/A	N/A	Sample location not accessible			
SS-35	1463	N/A	N/A	Sample location not accessible			
SS-36	<u> </u>	N/A	N/A	Sample location not accessible			
SS-37 SS-38	1672	N/A N/A	N/A N/A	Sample location not accessible Sample location not accessible			
SS-ED-39	376	113	184	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-ED-39 (1')	N/A	N/A	12.8	Sample collected 12 inches BLS			
SS-ED-40	620	615	860	Lead confirmation sampling (sample screened above 280 mg/kg) Sample collected 12 inches BLS. Glass and porcelain fragments encountered durin			
SS-ED-40 (1')	N/A	N/A	3180	hand augering.			
SS-ED-41	46	44	53.3	Lead confirmation sampling (sample screened below 280 mg/kg)			
SS-42	72	N/A	N/A	N/A			
SS-43 SS-ED-44	2266 1410	N/A 1230	N/A 1380	Sample location not accessible Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-ED-45**	1103	519	723	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-46	107	N/A	N/A	N/A			
SS-ED-47	235	207	173	Lead confirmation sampling (10% of samples screened under 280 mg/kg) Lead confirmation sampling (10% of samples screened under 280 mg/kg) and			
SS-ED-48	37	22	7.95	analysis of hazardous substance list metals and SVOCs			
SS-49	28	N/A	N/A	N/A			
SS-50	750	N/A	N/A	Sample location not accessible			
SS-ED-51 SS-ED-DUP1	2342	2630 (Precision Check; see Table 7)	1510/2210	Primary/Duplicate Sample; Lead confirmation sampling (sample screened above 280 mg/kg), and analysis of hazardous substance list metals and SVOCs			
SS-ED-51 (1')	N/A	N/A	2530	Sample collected 12 inches BLS. Glass and porcelain fragments encountered durin, hand augering.			
SS-52	103	N/A	N/A	N/A			
SS-53 SS-ED-54	70 694	N/A 888	N/A 886	N/A Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-ED-54 SS-ED-55	2167	1315	1950	Lead confirmation sampling (sample screened above 280 mg/kg) Lead confirmation sampling and lead sampling 1 ft BLS			
SS-ED-55 (1')	N/A	N/A	1740	Sample collected 12 inches BLS. Glass and porcelain fragments encountered durin hand augering.			
SS-56	247	N/A	N/A	N/A			
SS-57 SS-58	103 182	N/A N/A	N/A N/A	N/A N/A			
SS-ED-59	187	147	277	Lead confirmation sampling (10% of samples screened under 280 mg/kg)			
SS-ED-60	1260	936	1260	Lead confirmation sampling (sample screened above 280 mg/kg)			
SS-ED-61	N/A N/A	613 230	872 268	Additional sample location in grassy area Additional sample location in grassy area			
SS-ED-62 Notes:	N/A	230	200				
XRF: BLS: N/A:	X-ray fluorescence Below land surface Not applicable miligram por kilogram (og	uivalant to parts and million	2020)				
BLS: N/A: mg/kg: *: **:	Below land surface Not applicable miligram per kilogram (eq	uivalent to parts per million; eported in the Duke Report ess issues	ppm)				

Bold laboratory reported lead concentration exceeds the 400 mg/kg Residential PSRG

Table 6 Page 1 of 2

TABLE 6 SUMMARY OF XRF FIELD SCREENING RESULTS AND LEAD CONCENTRATIONS DETECTED IN SOIL EAST END PARK 1200 NORTH ALSTON AVENUE DURHAM, DURHAM COUNTY, NORTH CAROLINA								
Sample Name	Duke XRF Screening Value (mg/kg or ppm)*	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Lead by EPA 6010D (Laboratory Testing; mg/kg or ppm)	Comments				
SS-1 SS-2	44 40	N/A N/A	N/A N/A	N/A N/A				
55-2 SS-3	126	N/A N/A	N/A N/A	N/A N/A				
SS-4	146	N/A	N/A	N/A				
SS-5	21	N/A	N/A	N/A				
SS-6 SS-7	190 122	N/A N/A	N/A N/A	N/A N/A				
SS-8	27	N/A	N/A	N/A				
SS-9	22	N/A	N/A	N/A				
SS-10 SS-11	24	N/A	N/A	N/A N/A				
SS-11 SS-EE-12	31 212	N/A N/A	N/A 203	N/A Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-13	93	N/A	N/A	N/A				
SS-14	74	N/A	N/A	N/A				
SS-EE-15 SS-EE-DUP1	205	N/A	222/366	Lead confirmation sampling (10% of samples screened under 280 mg/kg) Primary/Dulicate Sampling				
SS-16	34	N/A	N/A	N/A				
SS-17	61	N/A	N/A	N/A				
SS-18	103	N/A	N/A	N/A				
SS-19 SS-20	141 40	N/A N/A	N/A N/A	N/A N/A				
SS-20	40	N/A N/A	N/A N/A	N/A N/A				
SS-22	48	N/A	N/A	N/A				
SS-23	177	N/A	N/A	N/A				
SS-EE-24 SS-25	253 84	N/A N/A	772 N/A	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-EE-26	179	N/A N/A	35.2	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-27	123	N/A	N/A	N/A				
SS-28	86	N/A	N/A	N/A				
SS-29 SS-30	19	N/A	N/A	N/A				
SS-30 SS-31	43	N/A N/A	N/A N/A	N/A N/A				
SS-EE-32	252	N/A	146	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-33	134	N/A	N/A	N/A				
SS-34	150	N/A	N/A	N/A				
SS-35 SS-36	35 144	N/A N/A	N/A N/A	N/A N/A				
SS-37	40	N/A	N/A	N/A				
SS-38	38	N/A	N/A	N/A				
SS-EE-39**	721	42	30.4	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-40 SS-41	105 54	N/A N/A	N/A N/A	N/A N/A				
SS-42	23	N/A	N/A	N/A				
SS-43	38	N/A	N/A	N/A				
SS-44	54	N/A	N/A	N/A				
SS-45 SS-46	185 37	N/A N/A	N/A N/A	N/A N/A				
SS-47	34	N/A	N/A	N/A				
SS-48	112	N/A	N/A	N/A				
SS-EE-49/SS-50 SS-51	144	97	86.9	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-51	58	N/A N/A	N/A N/A	N/A N/A				
SS-53	47	N/A	N/A	N/A				
SS-EE-54	55	N/A	24.8	Lead confirmation sampling (10% of samples screened under 280 mg/kg) and				
SS-55	9	, N/A	N/A	analysis of hazardous substance list metals and SVOCs N/A				
SS-56	31	N/A	N/A N/A	N/A				
SS-57	15	N/A	N/A	N/A				
SS-58	18	N/A	N/A	N/A				
SS-59 SS-60	26 21	N/A N/A	N/A N/A	N/A N/A				
SS-61	103	N/A	N/A N/A	N/A				
SS-62	8	N/A	N/A	N/A				
SS-63	17	N/A	N/A	N/A				
SS-64 SS-65	31 9	N/A N/A	N/A N/A	N/A N/A				
SS-EE-66	30	N/A	33.1	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-67	172	N/A	N/A	N/A				
SS-68	34	N/A	N/A	N/A				
SS-69 SS-70	44	N/A N/A	N/A N/A	N/A N/A				
SS-71	9	N/A	N/A	N/A				
SS-72	31	N/A	N/A	N/A				
SS-73	69	N/A	N/A	N/A				
SS-74 SS-75	53	N/A N/A	N/A N/A	N/A N/A				
SS-76	103	N/A	N/A N/A	N/A				
SS-77	43	N/A	N/A	N/A				
SS-78	31	N/A	N/A	N/A				
SS-79 SS-80	82 162	N/A N/A	N/A N/A	N/A N/A				
		973 (Precision Check; see						
SS-EE-81**	419	Table 7)	322	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-EE-81 (1')	N/A	N/A	49.0	Sample collected 12 inches BLS				
SS-EE-82	128 N/A	413	183	Lead confirmation sampling (10% of samples screened under 280 mg/kg) Sample collected 12 inches BLS				
SS-EE-82 (1') SS-EE-83**	N/A 449	N/A 415	28.0 328	Lead confirmation sampling (sample screened above 280 mg/kg)				

			TABLE	6				
	SUMMARY	OF XRF FIELD SCREEN	NING RESULTS AND	LEAD CONCENTRATIONS DETECTED IN SOIL				
			EAST END F	PARK				
1200 NORTH ALSTON AVENUE DURHAM, DURHAM COUNTY, NORTH CAROLINA								
SS-85	29	N/A	N/A	N/A				
SS-86	36	N/A	N/A	N/A				
SS-87	62	N/A	N/A	N/A				
SS-EE-88	452	172	296	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-89	66	N/A	N/A	N/A				
SS-EE-90	1022	656	435	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-91	37	N/A	N/A	N/A				
SS-92	54	N/A	N/A	N/A				
SS-93	38	N/A	N/A	N/A				
SS-94	196	N/A	N/A	N/A				
SS-EE-95	440	251	197	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-96	34	N/A	N/A	N/A				
SS-97	86	N/A	N/A	N/A				
SS-98	93	N/A	N/A	N/A				
SS-99	52	N/A	N/A	N/A				
SS-100	88	N/A	N/A	N/A				
SS-EE-101	1364	1774	995	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-102	29	N/A	N/A	N/A				
SS-103	85	N/A	N/A	N/A				
SS-EE-104	804	1577	134	Lead confirmation sampling (samples screened above 280 mg/kg), and analysis of				
55-EE-104	804	15//	134	hazardous substance list metals and SVOCs				
SS-EE-105	330	282	148	Lead confirmation sampling (sample screened above 280 mg/kg)				
SS-EE-106	161	108	76.5	Lead confirmation sampling (10% of samples screened under 280 mg/kg)				
SS-107	56	N/A	N/A	N/A				
SS-108	90	N/A	N/A	N/A				
SS-EE-Playground	N/A	N/A	13.2	Sampling beneath a playground where a fabric liner was not encountered				

Notes:

XRF: X-ray fluorescence

BLS: Below land surface

N/A: Not applicable

mg/kg: miligram per kilogram (equivalent to parts per million; ppm)

*: XRF screening values are reported in the Duke Report

**: Location offset due to access issues

 ${\bf Bold}$ laboratory reported lead concentration exceeds the 400 mg/kg Residential PSRG

		Table 7			
		Quality Control S City of Durham			
		Durham, North			
		PRECISION CH	HECKS		
Northgate Park	Mid-Atlantic XRF Screening Value (mg/kg or ppm)	Standard Deviation (mg/kg or ppm)	Average Concentration (mg/kg or ppm)	Relative Standard Deviation (%)	
	24				
	30 31				
SS-173	29	2.19	29	7.68	
	30				
	27				
	29 103				
	74				
	86				
SS-141	88	8.90	86	10.34	
	85				
	90 76				
	34				
	39				
CC 77	35	2.04	25	0.20	
SS-77	34	2.91	35	8.26	
	40				
	31				
Lyon Park	Mid-Atlantic XRF Screening Value (mg/kg or	Standard Deviation	Average Concentration	Relative Standard Deviation	
	ppm) 394				
	379		363		
	312				
SS-45	355	24.84		6.85	
	350				
	373 376				
Walltown Park	Mid-Atlantic XRF Screening Value (mg/kg or	Standard Deviation	Average Concentration	Relative Standard Deviation	
	ppm) 482				
	482 465				
	489				
SS-53	492	9.90	485	2.04	
	481 499				
	499				
East Durham	Mid-Atlantic XRF				
Park	Screening Value (mg/kg or ppm)	Standard Deviation	Average Concentration	Relative Standard Deviation	
	2630 2535				
	2437				
SS-51	2554	117.96	2486	4.74	
	2571				
	2428 2248				
	Mid-Atlantic XRF				
East End Park	Screening Value (mg/kg or	Standard Deviation	Average Concentration	Relative Standard Deviation	
	ppm) 973				
	854				
	815				
SS-81	849	46.8	875	5.34	
	854				
	889 894				

Table 7 Quality Control Summary City of Durham Parks Durham, North Carolina							
	PERFORMANCE						
Northgate Park	Reading on Blank (180-647)	Reading on RCRApp 180-661 (500 ppm Pb)					
7/19/23 at 1105	5.9	462					
7/19/23 at 1313	7, 5.5 (second shot)	448					
7/19/23 at 1338	Not Detected	505					
7/19/23 at 1738	6.5	523					
7/19/23 at 1809	Not Detected	459					
7/20/23 at 0645	5.6	485					
7/20/23 at 0902	5.0	463					
7/20/23 at 1117	7.4, Not Detected (second shot)	488					
7/20/23 at 1256	Not Detected	507					
7/20/23 at 1410	Not Detected	536					
7/20/23 at 1621	6.0	490					
7/20/23 at 1652	Not Detected	570					
7/21/23 at 0630	Not Detected	503					
7/21/23 at 0817	5.5	511					
7/21/23 at 0929	Not Detected	551					
7/21/23 at 1052	8.1	483					
7/21/23 at 1200	Not Detected	565					
7/21/23 at 1400	Not Detected	489					
Lyon Park	Reading on Blank (180-647)	Reading on RCRApp 180-661 (500 ppm Pb)					
7/24/23 at 0741	Not Detected	513					
7/24/23 at 0902	Not Detected	501					
7/24/23 at 1102	8.8	491					
7/24/23 at 1119	Not Detected	492					
7/24/23 at 1224	8.0	500					
7/24/23 at 1515	8.1	465					
Walltown Park	Reading on Blank (180-647)	Reading on RCRApp 180-661 (500 ppm Pb)					
7/25/23 at 0750	6.9	492					
7/25/23 at 0916	Not Detected	478					
7/25/23 at 0957	Not Detected	519					
7/25/23 at 1142	Not Detected	507					
East Durham Park	Reading on Blank (180-647)	Reading on RCRApp 180-661 (500 ppm Pb)					
7/25/23 at 1406	Not Detected	520					
7/25/23 at 1615	Not Detected	496					
East End Park	Reading on Blank (180-647)	Reading on RCRApp 180-661 (500 ppm Pb)					

7/26/23 at 0752	Not Detected	507
7/26/23 at 0946	Not Detected	518

Notes:

XRF: X-ray fluorescence

BLS: Below land surface

N/A: Not applicable

mg/kg: miligram per kilogram (equivalent to parts per million; ppm)

TABLE 8
SUMMARY OF METALS AND SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL
CITY OF DURHAM PARKS
DURHAM, NORTH CAROLINA
MID-ATLANTIC JOB NO. R4370.00

	SAMPLING LOCATION										PRELIMINARY SOIL REMEDIATION GOALS		
PARAMETER	Northgate		Lyon Park		Walltown Park		East Durham Park		East End Park		(PSRGs; JULY 2023)		
	SS-NG-153 07/21/23	SS-NG-226 07/21/23	SS-LY-45 07/24/23	SS-LY-61 07/24/23	SS-WT-18 07/25/23	SS-WT-50 07/25/23	SS-ED-48 07/25/23	SS-ED-51 07/25/23	SS-EE-54 07/26/23	SS-EE-104 07/26/23	Residential (mg/kg)	Industrial/ Commercial (mg/kg)	Protection of Groundwater (mg/kg)
Metals by Method 6020B/	7471A												
Antimony	<0.300	0.336	<u>1.84</u>	<0.261	<0.275	<u>5.61</u>	<0.293	<u>5.42</u>	<0.266	<0.256	6.3	93.0	0.9
Arsenic	1.11	2.26	5.04	1.12	2.10	<u>16.8</u>	0.315	<u>7.18</u>	4.52	0.377	0.68	3.0	5.8
Barium	60.9	105	153	22.7	71.3	<u>1160</u>	25.6	<u>612</u>	26.1	9.56	3100	47000	580
Beryllium	0.309	0.391	0.531	<0.261	0.446	0.685	<0.293	0.522	<0.266	<0.256	31	470	63
Cadmium	<0.300	0.439	1.15	<0.261	<0.275	<u>3.30</u>	<0.293	2.38	<0.266	<0.256	1.4	20	3.0
Cobalt	<u>7.72</u>	<u>3.19</u>	<u>5.95</u>	<u>2.43</u>	<u>4.70</u>	<u>8.16</u>	<u>1.44</u>	<u>6.40</u>	<u>5.20</u>	<u>2.51</u>	4.7	70	0.9
Chromium (Total)	25.2	14.4	22.3	17.3	12.6	41.6	3.70	34.5	12.5	32.7	23000	350000	360000
Copper	21	55.5	102	6.61	37.0	436	4.57	647	17.1	7.06	630	9300	700
_ead	12.7	300	<u>384/553</u>	5.14	86.2	<u>1780</u>	7.95	<u>1510</u>	24.8	134	400	800	270
Vanganese	<u>726</u>	<u>209</u>	<u>298</u>	<u>72.6</u>	<u>163</u>	<u>749</u>	<u>67.0</u>	<u>482</u>	<u>169</u>	<u>67.7</u>	380	5600	65
Mercury	0.0488	0.174	0.198	0.0230 J	0.0657	0.0618	<0.0351	0.173	<0.0319	<0.0307	4.7	70	NE
Nickel	16.7	7.63	17.8	9.64	6.71	24.4	1.57	16.3	16.9	6.54	310	4700	130
Selenium	<0.300	0.352	0.612	<0.260	0.524	0.74	<0.292	0.531	<0.266	<0.255	78	1200	2.1
Silver	0.768	0.58	<0.477	<0.261	<0.275	2.31	<0.293	1.05	<0.266	<0.256	78	1200	3.4
Thallium	<0.300	<0.301	<0.477	<0.261	<0.275	<0.365	<0.293	<0.341	<0.266	<0.256	0.16	2.3	2.8
/anadium	24.6	28.0	19.3	17.8	36.8	18.0	5.50	6.40	15.2	13.9	78	1200	140
Zinc	75	172	494	23	112	<u>2280</u>	23.4	<u>1550</u>	52.0	18.2	4700	70000	1200
SVOCs by Method 8270E													
Benzo(b)flouranthene	1.14J	<0.176	<0.417	<0.152	<0.643	<0.852	<0.683	<0.795	<0.621	<1.20	1.1	21	1.2
Benzoic Acid	6.29J	<0.697	<1.66	<0.604	<2.56	<3.39	<2.72	<3.16	<2.47	<4.75	5400	66000	120
Chrysene	0.700J	<0.170	<0.406	<0.148	<0.625	<0.829	<0.665	<0.773	<0.604	<1.17	110	2100	36
	1.03J	<0.161	<0.383	<0.139	<0.590	<0.782	<0.627	<0.730	<0.570	<1.10	360	4500	440

All values reported in milligrams per kilogram (mg/kg)

SVOCs = Semi-Volatile Organic Compounds <# = Not Detected at or above laboratory method detection limits

Bold values exceed the Residential PSRG

Shaded values exceed Industrial/Commercial PSRG

Underlined values exceed Protection of Groundwater PSRGs

J = Concentration was detected between the method detection limit and the reporting limit; value is an estimation.

APPENDIX A

SELECTED HISTORICAL BACKGROUND INFORMATION

Legacy Pb contamination in the soils of three Durham city parks: Do secondary forest organic horizons effectively blanket Pb in city park soils contaminated by historic waste incineration?

Enikoe Bihari Master of Environmental Management & Master of Forestry Nicholas School of the Environment

> Advisor: Dr. Daniel Richter 16 December, 2022

Enikoe Bihari Daniel Rulite To Dr. Daniel Richter_

I. Executive Summary

Lead (Pb) has historically been used in many products such as gasoline, paint, batteries, ceramics, pipes and plumbing, solders, and cosmetics, and Pb contamination from these materials and their waste streams is widespread around the world. Pb is a highly insoluble and persistent contaminant that accumulates in the environment, especially in urban soils; to this day, soil Pb concentrations remain high in many cities, posing a significant long-term public health and environmental risk. Some remediation options are available for Pb, with the most effective being removal and replacement of the contaminated soil. However, plants that can tolerate soil Pb may be effective at phytostabilization. In phytostabilization, soil Pb is immobilized both physically and chemically by the roots, while also being sequestered by new layers of organic matter and soil that accumulate on the surface.

Throughout the early 1900s, the city of Durham, NC operated neighborhood municipal incinerators which combusted most of the city's waste, including waste collected from homes, businesses, and public street cleaning. Around 1950, the four of the incinerator sites were closed and converted into public parks, with playgrounds, grass fields, picnic benches, sports facilities, and walking paths. These are now Walltown, East End, East Durham, and Lyon Parks. The parks currently contain streams and large areas of secondary forest cover, which have been largely unmanaged throughout the last century. From local newspaper articles, we have direct evidence for the disposal of incinerator refuse at these sites and other Durham parks. While historic news accounts describe the incinerator sites being covered with topsoil, until this study there has been no monitoring of the status of contaminant metals in the soils throughout the parks. We hypothesized that the surface soils of these parks had elevated Pb concentrations as the result of the parks' history of incineration.

Our primary objectives were to:

 Measure total mineral surface soil Pb concentrations across three of Durham's urban parks which were historically used for waste incineration (Walltown, East End, and East Durham Parks).

2

2. Assess whether secondary hardwood forests have accumulated organic horizons that were effective barriers to Pb-contaminated mineral soil below.

We sampled mineral surface soil and organic horizon according to a stratified random sampling design, and the samples were measured for total Pb with an Olympus Vanta pXRF instrument. Data were analyzed using R and ArcGIS Pro, resulting in statistical models and spatial interpolations.

Our main results were:

- Mineral soil Pb concentrations across Walltown, East End, and East Durham Parks are elevated above both geologic background levels and several EPA hazard thresholds, especially in some highly-trafficked areas.
- Hardwood forest organic horizons provide a blanket for highly Pb-contaminated mineral soil, but a significant amounts of surface soil Pb is mixed up into these O horizons. Thus, exposure risk is not eliminated and can remain quite high.

Our results show that all three parks have total Pb in surface soils (0-2.5 cm) well above the geologic background (0-30 ppm), with many soils exceeding the US EPA's hazard thresholds for gardening (100 ppm), residential play areas (400 ppm), and residential non-play areas (1200 ppm). For all three parks combined, mineral soil Pb ranged from 8 to 2342 ppm, with a mean of 201 ppm and a median of 93 ppm. A notable hotspot with extremely high Pb was mapped throughout the southeastern portion of East Durham Park north of East Main St., spanning a grassy field and part a secondary forest (Figure 12). Mineral soil Pb in this hotspot ranged from 694 to 2342 ppm. This is of particular concern because this field is adjacent to an apartment building, and residents appear to use this area to play, garden, and park their cars.

Additionally, our study demonstrates that while hardwood O horizons provide a physical barrier to exposure for highly contaminated mineral soil, a significant amount of mineral soil Pb is mixed up into the O horizons. This relationship differed significantly between the upper O1/O2 and the lower O3 horizons. Pb concentration in the lower O3 horizon increased by 0.6 ppm for every 1 ppm increase in Pb increase in the mineral soil, with an adjusted R^2 of 0.86.

3

This means that the lower O3 horizon has about 60% of the Pb concentration of the mineral soil below. In contrast, Pb concentration in the upper O1/O2 horizon increased by 0.1 ppm for every 1 ppm increase in Pb increase in the mineral soil, with an adjusted R^2 of 0.49. This means that the upper O1/O2 horizons have about 10% of the Pb concentration of the mineral soil below,

Our results suggest limitations to phytostabilization as tool to reduce Pb exposure, particularly in hardwood forests where there is relatively rapid decomposition and bioturbation in the O horizons compared to many coniferous forests. Overall, the spatial distribution of soil Pb concentrations demonstrates the complicated land use history of these landscapes, pointing towards multiple sources of Pb inputs and outputs throughout the 20th century.

Based on articles in historic newspapers from five cities across the USA, many municipalities may have public parks converted from historic waste incinerator sites; these sites may be contaminated with Pb and other metals that would have accumulated in ash and cinders, posing an exposure risk to residents who visit the parks.

II. Table of Contents

I. Executive Summary	
II. Table of Contents	
III. Abstract	6
IV. Introduction	7
Soil Pb and Phytostabilization:	7
Durham's Waste Incinerators:	9
Project Objectives:	
V. Methods	
Background Research:	
Field Sampling:	
Lab Analysis:	
Data Analysis:	
VI. Results	
Soil Pb:	
O Horizon Pb:	
VII. Discussion	
Soil Pb:	
O Horizon Pb:	
VIII. Conclusion	
Significance:	
Future Recommendations:	
IX. Acknowledgements	
Collaborators:	
Citations:	

III. Abstract

As a result of its historical uses in common materials, lead (Pb) tends to accumulate in urban soils throughout the world. Durham, NC operated at least four waste incinerators in the first half of the 20th century, and around 1950, these sites were converted into public parks containing large areas of secondary urban forest. Our objective was to measure total mineral surface soil Pb in three of these parks and to assess whether secondary hardwood organic horizons (O horizons) effectively blanket Pb-contaminated soil below. Our results show that all the parks have total Pb in surface soils (0-2.5 cm) well above the geologic background (0-30 ppm), with many soils exceeding the US EPA's hazard thresholds for gardening (100 ppm), residential play areas (400 ppm), and residential non-play areas (1200 ppm). Additionally, our study demonstrates that while hardwood O horizons provide a physical barrier to exposure for highly contaminated mineral soil, a significant amount of mineral soil Pb is mixed up into the O horizons. The upper O1 and O2 horizons have about 10% of the Pb concentration of the mineral soil below, and the lower O3 horizon has about 60% of the Pb concentration of the mineral soil below. This highlights the limitations of phytostabilization as tool to reduce Pb exposure, particularly in hardwood forests where there is rapid decomposition and bioturbation in the O horizons. Based on historic newspapers from cities across the USA, we suggest that many municipalities have public parks with contaminant metals from historic waste incineration, posing a similar exposure threat to residents.

IV. Introduction

Soil Pb and Phytostabilization:

Lead (Pb) has historically been used in many products such as gasoline, paint, batteries, ceramics, pipes and plumbing, solders, and cosmetics, and residual Pb contamination from these materials is widespread around the world ^{1–3}. Even at low levels of exposure, Pb can cause dire health issues for both children and adults, ranging from cardiovascular stress to neurological damage ^{4–8}. Cognitive and behavioral impairments in children have been thoroughly demonstrated by large environmental health data sets ^{4–8}.

It is a highly persistent and insoluble contaminant in the environment, and to this day, soil concentrations remain high in many cities, posing a significant long-term public health and environmental risk ^{2,6,9,10}. Soil Pb an is garnering increased attention in the environmental and public health fields, being studied globally as a pathway to exposure ⁹. Many studies demonstrate Pb exposure through soil, through activities such as gardening, building, playing, and tracking dust into home ^{11–14}. Children are especially vulnerable to this kind of exposure sue to their behaviors, especially through ingestion and inhalation, and there is a direct relationship between soil Pb and blood Pb levels in children ^{1,11,13–16}.

The health risks associated with Pb exposure pose a serious environmental justice problem, since marginalized and socioeconomically disadvantaged communities tend to have higher Pb exposures than the rest of the population ^{3,7,17}. This trend is also evident in soil Pb exposure, since many black and other minority communities have been systemically driven to live and work in and around structures that serve as Pb sources (such as older houses, gas stations, factories, and waste incinerators and landfills) ^{3,7,17,18}.

Pb is present naturally at low levels in many soils found around the world, due to the underlying rock that the soil is created from. These geologic background levels range from 10-30 ppm, on average ^{19–21}. The US EPA has set several concentration thresholds for soil Pb to limit human exposure (Table 1). In 1994, it set soil screening levels (SSLs) which state that a

soil Pb hazard is present when soil from a residential play area surpasses 400 ppm Pb, and when soil from a residential non-play area surpasses 1,200 ppm Pb²². Then, in 2014, it published a technical review that recommended keeping soil under 100 ppm Pb for safe gardening activities ²³.

Concentration	Threshold	Source
<30 ppm	Background geologic levels	See above
<100 ppm	Safe for gardening activities	EPA, 2014
<400 ppm	Safe for residential play areas	EPA, 1994
<1200 ppm	Safe for residential non-play areas	EPA, 1994

Table 1: Hazardous soil Pb thresholds set by the US EPA ^{22,23}

Some remediation options are available for Pb, with the most effective being removal and replacement of the contaminated soil, or stabilizing and burying the soil ^{2,10}. Some other methods are also used, such as chemical stabilization/solidification for sequestration or chemical mobilization for extraction by soil washing ^{24–26}. Much literature exists on the possibilities of phytoextraction of soil Pb, with some studies suggesting that plants can relocate Pb from the soil into their tissues, particularly in the presence of soil amendments such as chelates, lime, and cement ^{25,27}. However, most plants have physiological mechanisms that exclude Pb from their tissues, and even if they do take up Pb, it usually stays in the roots and is not transferred to stems and foliage – which is actually considered phytostabilization ^{10,25,27–29}. One recent meta-analysis found that no plants actually meet hyperaccumulator criteria without amendments, meaning that plants are largely unable to extract Pb in the quantities and time frames necessary for remediation projects ^{10,27}. Several studies and review papers also underpin the ineffectively accumulate some other heavy metals in their aerial tissues, such as cadmium, nickel, and zinc ^{10,27,30–32,32}.

However, plants that can tolerate soil Pb may be effective at phytostabilization ^{10,27,31}. In phytostabilization, soil Pb is immobilized both physically and chemically by the roots, while also being sequestered by new layers of organic matter and soil that accumulate on the surface ^{3,10,24,31,33,34}. This reduces exposure from direct contact, soil erosion/migration, air turbation (inhalation of contaminated particulates), or water leaching (ingestion of contaminated water) ^{10,33}. Many studies have enhanced phytostabilization with various amendments such as compost, manure, biochar, acids, phosphorus, mycorrhizal fungi, and chelates, which help by stimulating

plant growth, improving plant Pb tolerance, increasing root Pb uptake, decreasing Pb bioavailability, and improving soil structure (by creating water stable aggregates and irregular porosity) ^{25,32,34–39}. It is important to note, however, that phytostabilization is only effective in the root zone of plants ²⁴.

Durham's Waste Incinerators:

Throughout the early 1900s, the city of Durham, NC operated four municipal incinerators which processed most of the city's waste, including waste collected from homes, businesses, and public street cleaning (Figures 1-4) ^{40–45}. Each incinerator had a capacity of processing 15-20 tons of waste ⁴³. They went out of commission around 1940, when the city constructed a new centralized incinerator in northeast Durham ^{40,41,44,46–48}. Some incinerators were demolished soon after, while others were left abandoned for longer periods of time, such as the facility located at what is now East Durham Park ^{49–52}. There is evidence of lively public debate over the fate of both the old and new incinerators, with many Durham residents reporting, petitioning, and suing over concerns that they are significant nuisances in their neighborhoods ^{44–47,53,54}.

Around 1950, all four of the unused incinerator sites were converted into public parks, with playgrounds, grass fields, picnic benches, sports facilities, and walking paths ^{49,51,55}. These are now Walltown, East End, East Durham, and Lyon Parks. There is evidence that potentially high Pb materials were used as fill in some of these parks during the landscaping process. For example, fill for some of the playgrounds came from dirt and rubble from streets that were being renovated ⁴⁹. Additionally, "500 truckloads" of ash and cinders from refuse piles at the Walltown Park incinerator were used as fill covered by topsoil at another Durham park ⁵⁵. However, "2000 truckloads" of cinders and ash were removed from the Walltown site in total, which could have been used as fill at other similar sites ⁵⁵.

All four parks currently contain streams and large areas of secondary forest cover, which appear to have been unmanaged throughout the last century. Walltown Park has 1.06 ha of forest cover (42% of its total area), East End Park has 1.38 ha of forest cover (44% of its total area), and East Durham Park has 1.10 ha of forest cover (75% of its total area). They are dominated by

9

native hardwood trees and invasive plants, with some native pines present in East Durham and East End Parks. The forest canopies range from being fairly open to entirely closed, depending on the soil characteristics. Based on airplane and satellite imagery from the 1900s, it seems that most of these incinerator sites were barren or covered in low-lying shrubs in the early 20th century, and much of this land has been left to undergo natural succession, which has produced the secondary forests present today (Figure 5). Most of the incinerator buildings can be easily identified in 1940 aerial photography, along with the roads and refuse piles associated with them (Figure 4).

We hypothesized that these parks would have high levels of soil Pb contamination, since the waste processed at these incinerators included many common household products that contained Pb, including batteries, ceramics, pipes, solders, and cosmetics, as well as housepaint and gasoline exhaust that accumulated on the streets. Many studies from around the world have concluded that waste incineration is a source of heavy metal contamination in surrounding soils ^{18,56–60}. We also anticipated the contamination levels and patterns to be different among the sites, considering their different land use histories. Additionally, the presence of nearly 70-year-old secondary hardwood forests with well-developed organic horizons (O horizons) allowed us to study the effectiveness of organic matter as a stabilization and exposure mitigation tool. This part of the study relied on the knowledge that this organic matter from canopy litterfall did not contain appreciable Pb, since plants are unable to accumulate Pb in their stems, branches, and foliage, and that there have been no recent anthropogenic Pb inputs, since these forests appear unmanaged since the 1950's.

Project Objectives:

Our primary objectives were to:

- 3. Measure total mineral soil Pb concentrations across three of Durham's urban parks which used to be waste incinerator sites.
- 4. Assess whether secondary hardwood organic horizons provide an effective barrier to Pbcontaminated mineral soil below.

10

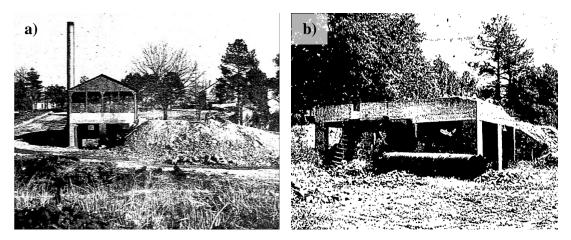


Figure 1: Newspaper photographs of Durham's historical waste incinerators; **a**) A photograph of one of the four incinerators, published in the Durham Morning Herald in 1940⁴⁴; **b**) A photograph of the partially-demolished Walltown incinerator, published in the Durham Morning Herald in 1950⁵¹.

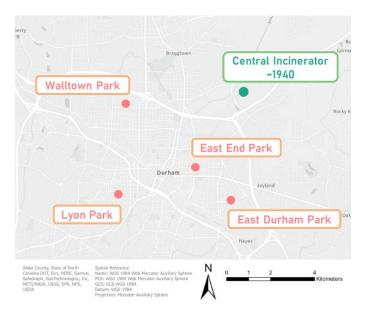
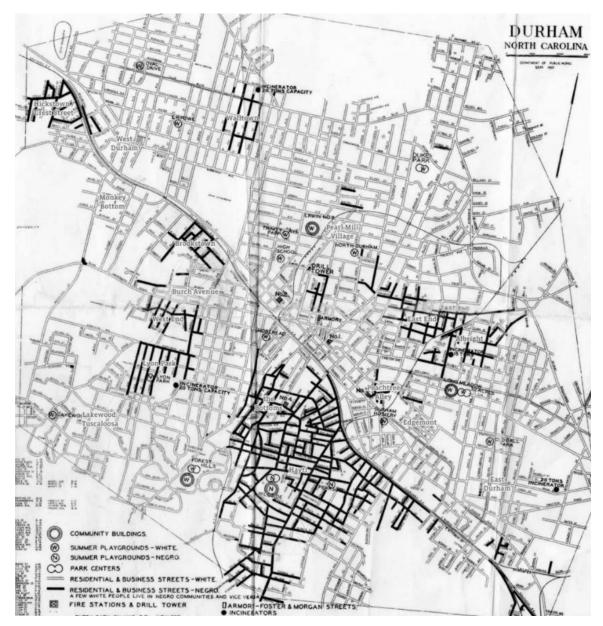
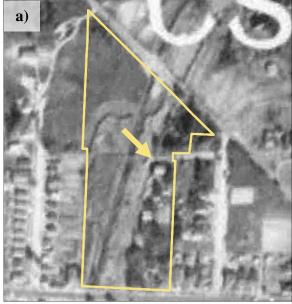
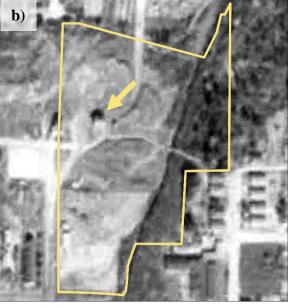





Figure 2: The locations of the four original waste incinerators and the new centralized waste incinerator built around 1940, shown on a current map of Durham, NC.

*Figure 3: A 1937 Map of Durham, published by the Durham Department of Public Works, with the four original waste incinerator sites labelled along with their waste-processing capacity*⁴³.

Walltown Park

 0
 10.20
 40
 60
 80
 100

 Meters
 Meters
 Meters

 Spatie Roference Rome: VRG 1990 Hondrade Auditory Sphere CSX: COX VRG 1990 Hondrade Auditory Sphere Rome: VRG 1990
 Spatie Roference Rome: VRG 1990 Hondrade Auditory Sphere Rome: VRG 1990 Hondrade Auditory Sphere

East End Park

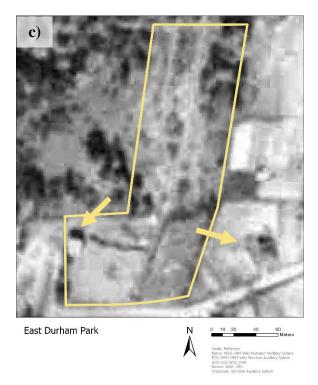


Figure 4: 1940 aerial imagery of three of the parks which used to be waste incinerator sites, with lines showing the current extent of the parks and arrows indicating the possible locations of the incinerator buildings; a) Walltown Park; b) East End Park; c) East Durham Park⁶¹.

Figure 5: Photographs of the current forest cover in the three of the parks which used to be waste incinerator sites; **a**) Walltown Park; **b**) East End Park; **c**) East End Park; **d**) East Durham Park; **e**) East Durham Park.

V. Methods

Background Research:

We conducted preliminary research on the location and history of the incinerator sites at Walltown, East End, and East Durham Parks in order to create an appropriate sample design. Lyon Park was left out of our study due to time constraints and the fact that the old incinerator location is not a heavily-trafficked part of the park. The incinerator sites that would become city parks are explicitly labelled on a 1937 street map of Durham (Figure 3), and I georectified this map along with 1940, 1955, and 1972 North Carolina aerial imagery (Figure 4)^{43,61}. Overlaying these maps and photos, I found the geographic locations of the incinerators on their respective city blocks. Buildings are easy to identify this way, even in low-resolution imagery, since they have distinct shapes, colors, and shadows. However, these locations are only best estimates, since the 1937 map could only be used to identify the city blocks on which the incinerators were located, and the precise locations were based on information pieced together from the imagery and local newspaper articles. At East Durham Park, I identified multiple buildings which could have been the waste incinerator site, piecing together information from newspaper articles, aerial imagery, and Pb contamination patterns. We used these layers both to qualitatively inform our understanding of land cover/land use at the time and to create point features for the incinerators.

After initial visits to each park to collect preliminary soil samples and qualify the land cover, I divided each park into different sampling strata based on current land cover and inferred land use history (Figure 6). I used ArcGIS Online to acquire shapefiles for Durham's parks and ArcGIS Pro to subdivide them into the sampling strata. For these delineations, I used aerial imagery from 1940, 1955, and 1972, and Google Earth satellite imagery from different seasons that date back to the 1980's ⁶¹. I removed buildings and paved surfaces from the sampleable areas. I used ArcGIS Pro to generate random sample points about 15 meters apart in each stratum, with a final sampling density of about 1 point per 250 m². This resulted in a total number of 269 sample points across all three parks. This stratified random sampling was chosen in order to help ensure coverage of all land cover types within the parks while also avoiding any

15

regularly-spaced vegetative, edaphic, geologic, or topographic patterns that might coincide with our sample point density.

Field Sampling:

Throughout September 2021 to May 2021, we conducted mineral surface soil sampling at these sample points in Walltown, East End, and East Durham Parks. At each sample point, we composited four samples from the upper 2.5 cm of mineral soil (A horizon) from a 30x30 cm area, excluding O horizons ³.

In October 2022, we conducted O horizon sampling at East Durham Park, across a gradient of mineral soil Pb concentrations under secondary forests. This park was selected because it had the widest range of mineral soil Pb under a consistent and well-developed O horizon, ranging from 28 to 2266 ppm. This allowed us to test whether mineral soil Pb is bioturbated up into the O horizon. We collected the upper and lower O horizon layers from an area with a 30 cm diameter at each point, along with a sample of the mineral soil directly below. We classified the upper O horizon as O1/O2, which included fresh litter and debris, with individual components such as leaves, twigs, and bark mostly intact and easily recognizable. We classified the lower O horizon as O3, which included organic matter was well decomposed into unrecognizable, amorphous humus that had begun to mix with the mineral soil below. Our O1, O2, and O3 classes correspond directly to Oi, Oe, and Oa designations often used by others.

Lab Analysis:

In the lab, the mineral soil samples were air dried, homogenized and passed through a 2 mm sieve. The O horizon samples were air dried, homogenized, subsampled, and ground with a Wiley Mill using a 0.4 mm screen. These homogenized samples were then measured for total Pb with an Olympus Vanta pXRF instrument that was calibrated for measuring total Pb between 5 and 50,000 mg/kg (ppm) ³.

Data Analysis:

I used R to clean and compile the chemical and spatial data into a single data set that could be used for statistical and geospatial analysis. For the statistical models, I calculated several relevant environmental variables for each sample point in ArcGIS Pro. I calculated each point's elevation, slope, and topographic position index from an NC digital elevation model, and I calculated each point's distance to the incinerators and nearby roads ⁶². Thus, I created one master data set with the location, Pb concentration, and environmental variables for each soil sample.

Using ArcGIS Pro, I interpolated the sample point Pb concentrations in order to create a full Pb map for each park. I tested multiple interpolation methods, including simpler ones like natural neighbor, inverse distance weighted, and spline, as well as more complex ones such as kriging. I decided to use the maps produced by the inverse distance weighted interpolation, as it seemed like the most straightforward and parsimonious way to estimate Pb levels between sample points (Figures 10-12). I used a variable search radius of 10 points and a power of 2 for the exponent of distance. This method allowed interpolation of the entire park areas, not just the extent of the sample points, as is the case with natural neighbor. It also retained some of the true spatial heterogeneity in Pb levels that was smoothed over by kriging. The land use history of these parks is clearly complex – many gradual processes and sporadic events have interacted to create contemporary soil Pb distributions. Thus, it was difficult to find equations that accurately model the underlying spatial autocorrelation of sample points, and the kriging process created maps with strikingly low variation in Pb levels.

I created many generalized linear models in R to relate environmental variables to mineral soil Pb concentrations across the three parks. Due to the strong skew of the data, they were log-transformed to fulfill the assumption of normality. However, after trying many combinations of explanatory variables and random effects, I decided to leave most of these statistical models out of my final results. The relationships between variables were mostly inconsistent between the parks, meaning that the significant explanatory variables also differed greatly between the parks. This is likely related to the complicated and diverse land use history of these incinerator sites, which is not fully captured by current environmental variables and probably explains some of the spatial variation in Pb concentration.

To model the relationship of O horizon Pb concentrations to mineral soil Pb concentrations, I generated simple linear regressions in R, which appeared to capture the relationships well. I regressed the O1/O2 and O3 horizon Pb with mineral soil Pb, and I regressed the O1/O2 horizon Pb with the O3 horizon Pb to explore the patterns occurring within the O horizon.

Figure 6: Sampling strata used for mineral surface soil samples in three of the parks which used to be waste incinerator sites, with Google Earth imagery from May 2017; **a**) Walltown Park; **b**) East End Park; **c**) East Durham Park.

VI. Results

Soil Pb:

Mineral surface soil (0-2.5 cm) Pb levels in all parks reached levels well above geologic background levels of 0-30 ppm ^{19–21}. In all three parks, the historic incinerators were apparently located in what are now highly-trafficked areas such as grass fields, sports facilities, playgrounds, and picnic areas. The parks also had alarmingly high Pb levels in some such areas. For all three parks combined, mineral soil Pb ranged from 8 to 2342 ppm, with its distribution having a strong right skew, a mean of 201 ppm, and a median of 93 ppm (Figure 7).

When data from all three parks is aggregated and parks are accounted for as an explanatory variable, it appears that the current presence of forest cover may have a slightly negative effect on mineral soil Pb concentrations (Figure 9). In areas with forest cover, Pb concentration is predicted to be lower by a factor of 0.25 than areas without forest cover, at a significance level of P = 0.074. However, as mentioned in the methods, these patterns could be attributed to inconsistent Pb inputs and other human activities.

Walltown Park: Mineral soil Pb in Walltown park ranged from 13 to 1338 ppm, with its distribution having a strong right skew, a mean of 162 ppm, and a median of 105 ppm (Figure 8). Many samples were on the lower end of the range (but still well above geologic background levels), with several Pb hotspots spread out along the vegetated riparian zone running north-south through the middle of the park. Additionally, some of the grassy areas near the basketball courts and horseshoe pits had elevated Pb. In contrast, some areas where clean fill was used during landscaping and construction, such as baseball fields and the community center, had relatively low Pb (Figure 10).

East End Park: Mineral soil Pb in East End Park ranged from 8 to 1364 ppm, with its distribution having a strong right skew, a mean of 127 ppm, and a median of 57 ppm (Figure 8). Many samples were on the lower end of the range (but still well above geologic background levels), especially between the tennis courts and throughout the riparian zone in the forested area.

In the southern region of the park, behind a fence with a locked gate, Pb was very high in a number of soil samples. While this area was likely not affected by historic waste incineration, it was historically used by the city for paint and sign production. This is concerning because this area lacks much vegetative cover and contaminated surface soil particles can be easily eroded by wind and water into the neighboring environment. Just north of the paint and sign shop, there is an area of extremely low Pb, which is mostly covered by impermeable concrete and gravel; these surfaces may act as a barrier to the contaminated soil below and likely allow all new Pb inputs to be eroded into adjacent soil (Figure 11).

East Durham Park: Mineral soil Pb in East Durham Park ranged from 28 to 2342 ppm, with its distribution having a strong right skew, a mean of 405 ppm, and a median of 107 ppm (Figure 8). Many samples were on the lower end of the range (but still well above geologic background levels), especially throughout the northern forested area, with a smaller hotspot on the western grassy area just north of the playground. A notable hotspot with extremely high Pb was mapped throughout the southeastern region of the park, spanning a grassy field and part the forested areas (Figure 12). Mineral soil Pb in this hotspot ranged from 694 to 2342 ppm. This is of particular concern because this field is adjacent to an apartment building, and residents appear to use this area to play, garden, and park their cars. This hotspot indicates a large, direct input of Pb into the soil, possibly from a refuse pile, which supports the possibility that the incinerator may have actually been located near the southeastern boundary of the park and not near the 1950s, which detail that playground construction had begun by 1950, but that the incinerator building and its buried debris were still present somewhere on that site in 1952 (experiencing an underground fire in that year)^{49,51,52}.

O Horizon Pb:

Pb concentration in the O horizons in East Durham Park was positively correlated with the Pb concentration in the underlying mineral soil (A horizon) Pb (Figures 13-14). This relationship differed significantly between the upper O1/O2 horizon and the lower O3 horizon. Pb concentration in the lower O3 horizon increased by 0.6 ppm for every 1 ppm increase in Pb

increase in the mineral soil, with an adjusted R^2 of 0.86. This means that 86% of the variability in O1/O2 horizon Pb can be explained by Pb in the mineral soil. In contrast, Pb concentration in the upper O1/O2 horizon increased by 0.1 ppm for every 1 ppm increase in Pb increase in the mineral soil, with an adjusted R^2 of 0.49. This means that 49% of the variability in O1/O2 horizon Pb can be explained by Pb in the mineral soil. When O1/O2 horizon Pb is regressed against O3 horizon Pb, O1/O2 horizon Pb increases by 0.1 ppm for every 1 ppm increase in in the O3 horizon Pb, With an adjusted R^2 of 0.35. These results demonstrate that much lower quantities of soil Pb are mixed up into the upper O horizon than the lower O horizon; the upper O horizon maintains at least an order of magnitude lower Pb levels than the mineral soil below it. The lower O horizon does have lower Pb levels than the mineral soil below it, but clearly a significant amount of soil Pb is mixed up into this layer.

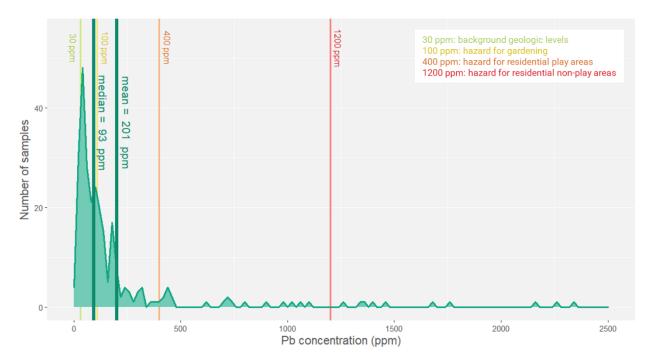


Figure 7: Distribution of Pb concentration in soil samples across all parks, with geologic background levels and US EPA hazard thresholds (Table 1).

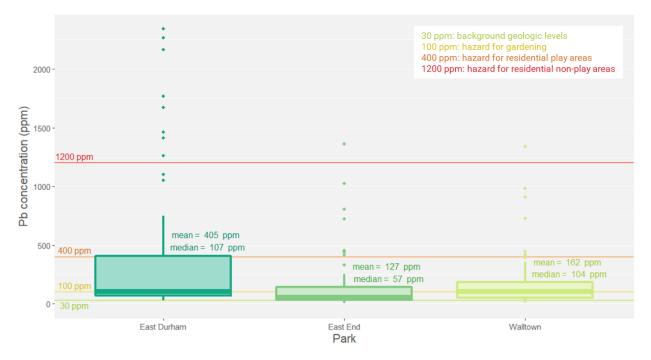
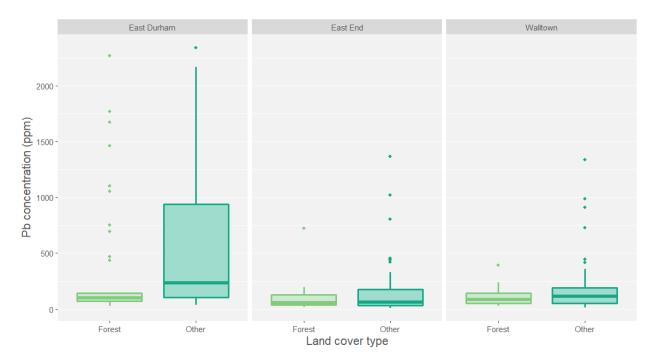



Figure 8: Distribution of Pb concentration in soil samples broken down per park, with geologic background levels and US EPA hazard thresholds (Table 1).

Figure 9: Distribution of Pb concentration in soil samples broken down per park and land cover type.

Figure 10: Map of interpolated mineral soil Pb concentrations in Walltown Park.

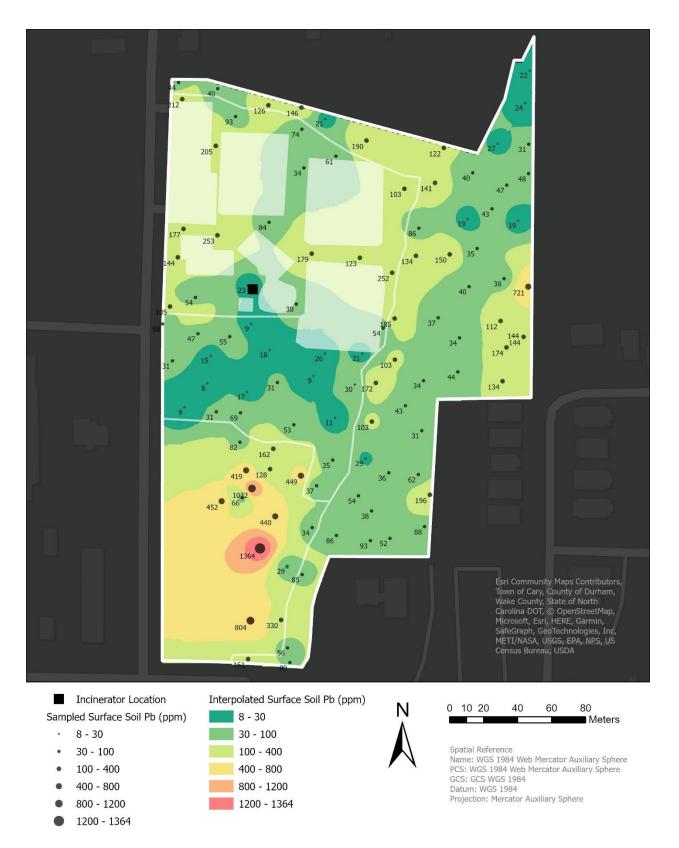


Figure 11: Map of interpolated mineral soil Pb concentrations in East End Park.

Figure 12: Map of interpolated mineral soil Pb concentrations in East Durham Park.

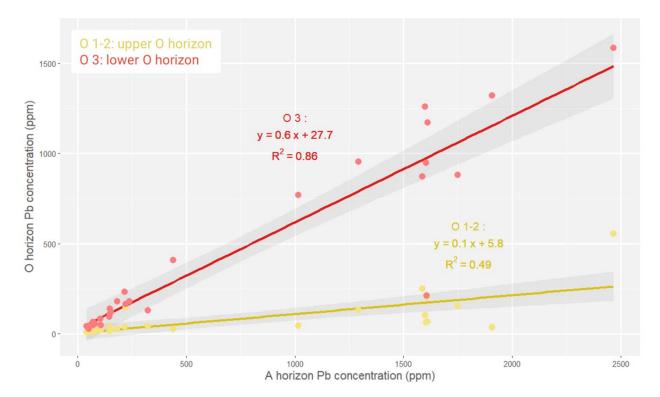


Figure 13: Graph of O horizon (organic matter) Pb concentrations vs. A horizon (mineral soil) Pb concentrations, with respective the linear regressions.

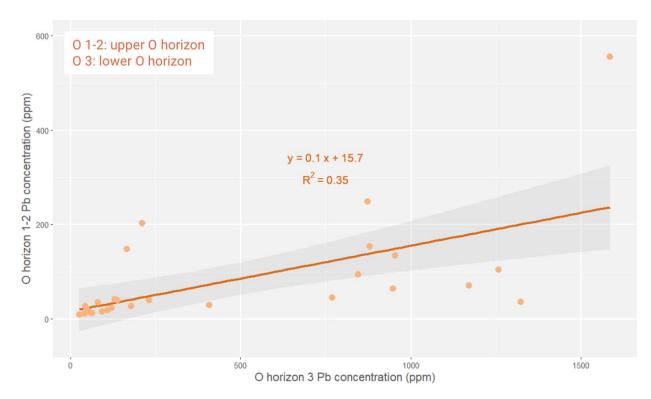


Figure 14: Graph of upper O1/O2 horizon Pb concentrations vs. upper O3 horizon Pb concentrations, with the linear regression.

VII. Discussion

Soil Pb:

Our results show that Walltown, East End, and East Durham Parks all have mineral soil Pb well above the geologic background, with many areas exceeding the US EPA's hazard thresholds for gardening (100 ppm), residential play areas (400 ppm), and residential non-play areas (1200 ppm)^{22,23}. The Pb levels in the soil samples from our hotspots were elevated when compared to soil samples from a 2021 study by Wade et al., which extensively sampled soil from Pb-contaminated sites across the city of Durham³. Our samples had elevated Pb compared samples from street sides and residential yards in Durham, and our samples had similar Pb to samples from residential foundations in Durham³. Additionally, the geospatial distribution of soil Pb concentrations demonstrates the complicated land use history of these land parcels, pointing towards multiple sources of Pb inputs and outputs throughout the 20th century. From local newspaper articles, we have direct evidence for the disposal of incinerator refuse on these sites, along with the removal and addition of soil, gravel, and other landscaping materials. While the contamination patterns in our study are clearly related to the historic waste incinerators at these sites, Pb has many other well-known historical sources which could have also contributed to these patterns. Some studies from around the world demonstrate some difficulty in parsing out the sources of metal contamination and the effects of other environmental variables (such as soil type and wind direction) at incinerator site soils ^{18,57,59,60}.

O Horizon Pb:

Our study also demonstrates that hardwood secondary forest O horizons provide a blanket for highly Pb-contaminated mineral soil. However, a significant amount of mineral soil Pb is mixed up into the O horizons, especially into the lower O3 horizons; this layer experiences more bioturbation as uncontaminated organic materials are decomposed into smaller particles and incorporated into the contaminated mineral soil below. Additionally, this barrier depends strongly on the fact that there is a sustained and substantial input of leaf litter and other plant debris, and that this organic matter then remains in place without disturbance. Organic matter is not necessarily a stationary or robust layer, and it is prone to many disturbances from both humans and the natural environment, which can create a direct pathway of exposure to contaminated soil below. This highlights the limitations of phytostabilization as tool to reduce Pb exposure, particularly in hardwood forests where there is relatively rapid decomposition and bioturbation in the O horizons compared to some coniferous forests.

VIII. Conclusion

Our main conclusions were:

- Mineral soil Pb concentrations across Walltown, East End, and East Durham Parks are elevated above both geologic background levels and several EPA hazard thresholds, especially in some highly-trafficked areas.
- Hardwood forest organic horizons provide a blanket for highly Pb-contaminated mineral soil, but a significant amounts of mineral soil Pb is mixed up into these O horizons. Thus, exposure risk is not eliminated and can remain quite high.

Significance:

The highly-contaminated and high-use areas in our study, such as the southeastern portion of East Durham Park, need to be remediated. Surrounding areas, such as those near the southeastern boundary of East Durham Park along East Main St., should be sampled for soil Pb contamination as well, and exposure monitoring for residents may also be beneficial. Based on historic newspapers from five cities across the USA, many municipalities may have public parks with contaminant metals from historic waste incineration, posing a similar exposure threat to residents.

Additionally, the urban parks in our study provide countless services to the Durham community, and the forests within them have great potential for management activities that would further increase their value as natural areas. They are ideal targets for invasive species management and increasing trail connectivity throughout the city, but these activities should be guided by knowledge each park's history, particularly the contamination and subsequent exposure risks for the people who would manage and use the parks.

Future Recommendations:

Going forward, I suggest exploring the vertical distribution of soil Pb at these sites through soil coring, as this can give greater insight into the exact land use history and how this impacted soil Pb accumulation throughout the last century. I also recommend comparing hardwood and conifer O horizons in terms of their ability to provide a barrier to Pb exposure from contaminated soil. Conifer litter decomposes much more slowly with less bioturbation, allowing thicker, denser layers to accumulate on the forest floor. Thus, it may be expected that Pb is mixed up into the O horizon less in a conifer forests than hardwood forests. This kind of comparison can be carried out with other plant types and ecosystems as well.

I also suggest sampling mineral soil and O horizon Pb at Lyon Park, which was also a historic waste incinerator site but was left out of our study due to time constraints. This park also has a riparian zone and a large area of unmanaged forest in and around the old incinerator site. Additionally, other parks such as Northgate Park received ash and cinders as fill from the historic incinerators during their construction in the 1950s ⁵⁵. These should also be sampled for mineral soil and O horizon Pb contamination.

The areas surrounding the newer centralized incinerator in northeast Durham should be sampled, especially the adjacent, low-lying swamp in which ash and cinders were dumped throughout the lifetime of the facility ⁵³. This incinerator was sited in this location in part because of this potential dumping area just north of the incinerator, which is likely to be very high in many heavy metal contaminants ^{40,53}.

Additionally, a more controlled experiment or study should be done that corrects for the highly variable land use history and Pb inputs present in our study areas. It should use study areas that have had the same type and amount of Pb inputs over the same time frame and have not been affected by different human activities since that time.

IX. Acknowledgements

Collaborators:

I would like to extend my gratitude to the following people and organizations for making this project possible:

- Dr. Daniel Richter, Professor, Nicholas School of the Environment for serving as my faculty advisor and guiding me through the process of developing and implementing this research project
- Paul Heine & Will Cook, Research associates, Soils Laboratory, Nicholas School of the Environment – for providing training in lab safety and XRF analysis
- Adam Skinner & Carson Lambert, MEM graduate students, Nicholas School of the Environment for helping with soil sampling and lab analysis
- Rett Grewal & Julia Kagiliery, Undergraduate students, Duke University for helping with soil sampling and lab analysis
- Durham Parks and Recreation Department for providing access to city-owned land at the parks

Citations:

- 1. Clark, H. F., Brabander, D. J. & Erdil, R. M. Sources, Sinks, and Exposure Pathways of Lead in Urban Garden Soil. *Journal of Environmental Quality* **35**, 2066–2074 (2006).
- 2. Egendorf, S. P. *et al.* Applying a novel systems approach to address systemic environmental injustices. *Elementa: Science of the Anthropocene* **9**, 00174 (2021).
- 3. Wade, A. M. *et al.* Urban-Soil Pedogenesis Drives Contrasting Legacies of Lead from Paint and Gasoline in City Soil. *Environ. Sci. Technol.* **55**, 7981–7989 (2021).
- Cory-Slechta, D. A. Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. (2012).

- Lanphear, B. P. *et al.* Low-Level Environmental Lead Exposure and Children's Intellectual Function: An International Pooled Analysis. *Environmental Health Perspectives* 113, 894– 899 (2005).
- Mielke, H. W. *et al.* The concurrent decline of soil lead and children's blood lead in New Orleans. *Proc Natl Acad Sci USA* 116, 22058–22064 (2019).
- Obeng-Gyasi, E., Ferguson, A. C., Stamatakis, K. A. & Province, M. A. Combined Effect of Lead Exposure and Allostatic Load on Cardiovascular Disease Mortality—A Preliminary Study. *IJERPH* 18, 6879 (2021).
- Rocha, A. & Trujillo, K. A. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. *NeuroToxicology* 73, 58–80 (2019).
- 9. Datko-Williams, L., Wilkie, A. & Richmond-Bryant, J. Analysis of U.S. soil lead (Pb) studies from 1970 to 2012. *Science of The Total Environment* **468–469**, 854–863 (2014).
- Egendorf, S. P., Groffman, P., Moore, G. & Cheng, Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. *International Journal of Phytoremediation* 22, 916–930 (2020).
- 11. Laidlaw, M. A. S. & Taylor, M. P. Potential for childhood lead poisoning in the inner cities of Australia due to exposure to lead in soil dust. *Environmental Pollution* **159**, 1–9 (2011).
- Mielke, H. W. & Reagan, P. L. Soil is an important pathway of human lead exposure. *Environmental Health Perspectives* 106, 217–229 (1998).
- 13. Spliethoff, H. M. *et al.* Estimated lead (Pb) exposures for a population of urban community gardeners. *Environ Geochem Health* **38**, 955–971 (2016).

- Zahran, S., Laidlaw, M. A. S., McElmurry, S. P., Filippelli, G. M. & Taylor, M. Linking Source and Effect: Resuspended Soil Lead, Air Lead, and Children's Blood Lead Levels in Detroit, Michigan. *Environ. Sci. Technol.* 47, 2839–2845 (2013).
- Mielke, H. W. *et al.* Associations between soil lead and childhood blood lead in urban New Orleans and rural Lafourche Parish of Louisiana. *Environmental Health Perspectives* 105, 950–954 (1997).
- Mielke, H. W., Gonzales, C. R., Powell, E., Jartun, M. & Mielke Jr., P. W. Nonlinear association between soil lead and blood lead of children in metropolitan New Orleans, Louisiana: 2000-2005. *Science of the Total Environment* 388, 43–53 (2007).
- Obeng-Gyasi, E., Roostaei, J. & Gibson, J. M. Lead Distribution in Urban Soil in a Medium-Sized City: Household-Scale Analysis. *Environ. Sci. Technol.* 55, 3696–3705 (2021).
- Rimmer, D. *et al.* Metal contamination of urban soils in the vicinity of a municipal waste incinerator: One source among many. *Science of The Total Environment* **356**, 207–216 (2006).
- Gustavsson, N., Bolviken, B., Smith, D. B. & Severson, R. C. Geochemical landscapes of the conterminous United States — New map presentations for 22 elements. Geochemical landscapes of the conterminous United States — New map presentations for 22 elements vol. 1648 http://pubs.er.usgs.gov/publication/pp1648 (2001).
- 20. Shacklette, H. T. & Boerngen, J. G. Element concentrations in soils and other surficial materials of the conterminous United States. (United States Department of the Interior, Geological Survey, 1984).
- Taylor, S. R. Abundance of chemical elements in the continental crust: a new table. *Geochimica et Cosmochimica Acta* 28, 1273–1285 (1964).

- 22. US Environmental Protection Agency. 40 CFR Part 745: Lead-Based Paint Poisoning Prevention in Certain Residential Structures. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-R/part-745 (2001).
- 23. US Environmental Protection Agency. Technical Review Workgroup Recommendations Regarding Gardening and Reducing Exposure to Lead-Contaminated Soils. (2014).
- 24. Kumar, A. *et al.* Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. *International Journal of Environmental Research and Public Health* 17, 2179 (2020).
- 25. Raj, D. & Maiti, S. K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review. *Environ Monit Assess* 192, 108 (2020).
- 26. Wang, L. *et al.* Green remediation of As and Pb contaminated soil using cement-free claybased stabilization/solidification. *Environment International* **126**, 336–345 (2019).
- 27. Pulford, I. Phytoremediation of heavy metal-contaminated land by trees—a review. *Environment International* **29**, 529–540 (2003).
- Gupta, D. K., Huang, H. G. & Corpas, F. J. Lead tolerance in plants: strategies for phytoremediation. *Environ Sci Pollut Res* 20, 2150–2161 (2013).
- Zou, T., Li, T., Zhang, X., Yu, H. & Huang, H. Lead accumulation and phytostabilization potential of dominant plant species growing in a lead–zinc mine tailing. *Environ Earth Sci* 65, 621–630 (2012).
- 30. Clark, H. F., Brabander, D. J. & Erdil, R. M. Sources, Sinks, and Exposure Pathways of Lead in Urban Garden Soil. *Journal of Environmental Quality* **35**, 2066–2074 (2006).

- Pilipović, A. *et al.* Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. *Journal of Environmental Management* 239, 352–365 (2019).
- Salas-Luévano, M. A., Mauricio-Castillo, J. A., González-Rivera, M. L., Vega-Carrillo, H. R. & Salas-Muñoz, S. Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. *Environ Earth Sci* 76, 806 (2017).
- 33. Tangahu, B. V. *et al.* A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. *International Journal of Chemical Engineering* **2011**, e939161 (2011).
- 34. Zhan, J. *et al.* Effects of NTA on Pb phytostabilization efficiency of Athyrium wardii (Hook.) grown in a Pb-contaminated soil. *J Soils Sediments* 19, 3576–3584 (2019).
- 35. Galende, M. A. *et al.* Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. *Journal of Geochemical Exploration* 145, 181–189 (2014).
- Hettiarachchi, G. M. & Pierzynski, G. M. Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. *Environmental Progress* 23, 78–93 (2004).
- Huang, L. *et al.* Funneliformis mosseae Enhances Root Development and Pb Phytostabilization in Robinia pseudoacacia in Pb-Contaminated Soil. *Frontiers in Microbiology* 10, (2019).
- Meeinkuirt, W., Pokethitiyook, P., Kruatrachue, M., Tanhan, P. & Chaiyarat, R.
 Phytostabilization of a Pb-Contaminated Mine Tailing by Various Tree Species in Pot and Field Trial Experiments. *International Journal of Phytoremediation* 14, 925–938 (2012).

- Najeeb, U., Ahmad, W., Zia, M. H., Zaffar, M. & Zhou, W. Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. *Arabian Journal of Chemistry* 10, S3310–S3317 (2017).
- 40. 1.2 Tons Of Garbage Per Person Collected Each Year In Durham. Durham Sun 11 (1951).
- 41. 90,022 Tons Of Garbage Hauled Away During Year. Durham Sun 7 (1953).
- 42. City Council To Press Bid for \$200,000 PWA Loan. Durham Morning Herald 8 (1934).
- 43. Durham, North Carolina. (1937).
- 44. Problem Is One Of Health First, Convenience Second. *Durham Morning Herald (published as The Durham Herald-Sun)* 9 (1940).
- 45. Work-Relief Funds May Be Used For Varied Projects. Durham Morning Herald 3 (1935).
- 46. Another Suit For \$20,000 Is Started Against Durham. Durham Morning Herald 18 (1944).
- 47. Incinerator Problem To Be Studied By Council Monday. *Durham Morning Herald* 24 (1940).
- 48. 'Landfill' Disposal Equipment Shipped. Durham Sun 11 (1950).
- 49. Construction of 3 City Playground To Get Underway. Durham Morning Herald 13 (1950).
- 50. Courting Couples Must Stay Off City Streets. Durham Morning Herald 12 (1945).
- 51. From Incinerator Site To Playground. Durham Morning Herald 9 (1950).
- 52. Underground Fire Battled At Abandoned Incinerator. 3 (1952).
- 53. Dayton Knows How To Solve Incinerator Problem. *Durham Morning Herald (published as The Durham Herald-Sun)* 4 (1941).
- 54. Firemen Battle Trash Fire At Incinerator. Durham Morning Herald 8 (1934).
- 55. City Parks Have Undergone Thorough Face Lifting During Past Few Years. *Durham Sun* 7 (1955).

- 56. Adama, M., Esena, R., Fosu-Mensah, B. & Yirenya-Tawiah, D. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site. *Journal of Environmental and Public Health* **2016**, e8926453 (2016).
- 57. Bretzel, F. C. & Calderisi, M. Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil. *Environ Monit Assess* **182**, 523–533 (2011).
- 58. Li, Y., Zhang, H., Shao, L., Zhou, X. & He, P. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis. *Journal of Environmental Sciences* 82, 47–56 (2019).
- 59. Meneses, M., Llobet, J. M., Granero, S., Schuhmacher, M. & Domingo, J. L. Monitoring metals in the vicinity of a municipal waste incinerator: temporal variation in soils and vegetation. *Science of The Total Environment* 226, 157–164 (1999).
- 60. Wang, J.-J., Zhao, H.-W., Zhong, X.-P., Liu, Y.-S. & Zeng, H. [Concentration levels and spatial distribution of heavy metals in soil surrounding a municipal solid waste incineration plant (Shenzhen)]. *Huan Jing Ke Xue* **32**, 298–304 (2011).
- 61. McDaniel, P. USDA Historical Aerial Photos, Durham County, NC. UNC-Chapel Hill Libraries GIS Services https://web.lib.unc.edu/gis-usda/durham/1940.
- 62. NC OneMap. Digital Elevation Model (20' Grid Cells).

Major Improvements Carried Out-

City Parks Have Undergone Thorough Face Lifting During Past Few Years

By BILL STRAWN

Private citizens and city officials often comment on improvements made to various city parks within the past two or three years. Several have had a threwigh "face lifting."

City Building Inspector E. H. Johnson, who is in charge of park and heavy recreational maintanance, says that the improvaments at accord packs in clude landscaping, construction of permanent picnic facilities and walkways.

Johnson listed major improvements at the various parks, including the following:

Duke Park-construction of a paved walkway system, with the paved walkway system, with the paved walks serving also as a drainage system; removing several hundred diseased and overcrowded trees; closing a large epen ditch which ran north from Knox Street parallel to Acadia Street: construction of a paved road, which also serves for offstreet parking, through the park; construction of a large number of "nermanent true along number

East End Park - landscaped and picnic facilities constructed.

East Durham Community Cenand park-development of Ler entire park in less than three years, including the construction of the center building which Johnson's department SILDETvised: provision of a medern athletic field; numerous undesirable removed: outdoor lire-178425 places built; development of parking lot with 50-car enpacity; concrete constructed. around building.

Durham Sun

o a la arr m

Walltown Park-elimination of eld city incinerator dump; removal of same 2,000 truck loads of cinders; construction of rain shelter and a foot bridge across the creek in the park; the erection of bleacher seats next to the athletic field; and landscaping of entire park.

Northgate Park-removal of several hundred trees; making submarginal land on the east side usuable by dumping thereon 500 truck loads of cinders from Walltown Park and covering them with topsoil; Ellerbee Creek dredged through park; landscaping park; rain shelter built; construction of numerous

outdoor evens and other picnic facilities: parking lot within park constructed.

the old Walltown incinerator site which stretches from Club Boulevard to Guess Road is taking on a new ook. Work of converting the site info a City playground for children of that section of the city bagan this week. The two pictures above illustrate graphically the change which is taking place as the old gives way to the new. Two other incinerator sites in the city also are being converted to playgrounds. These are at syon Park and East Durham. All three playgrounds are expected to be completed in the near future. (Staff Photos)

> Durham Morning Herald 16 September 1950, p. 9

Lyon Park 1101 Cornell St Durham, NC 27707

Inquiry Number: 7374693.2 June 27, 2023

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

06/27/23 Site Name: Client Name: Lyon Park Mid-Atlantic Associates Image: Client Name: Image: Client

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Mid-Atlantic Associates were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanbo	orn Results:	
Certification #	B00C-4874-8536	
PO #	R4370.00	
Project	R4370.00	
Maps Provided 1979 1950 1937 1913	:	Sanborn® Library search results Certification #: B00C-4874-8536 The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched: Library of Congress University Publications of America EDR Private Collection
		The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Mid-Atlantic Associates (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1979 Source Sheets

et 227 Volun 1979

1950 Source Sheets

1979

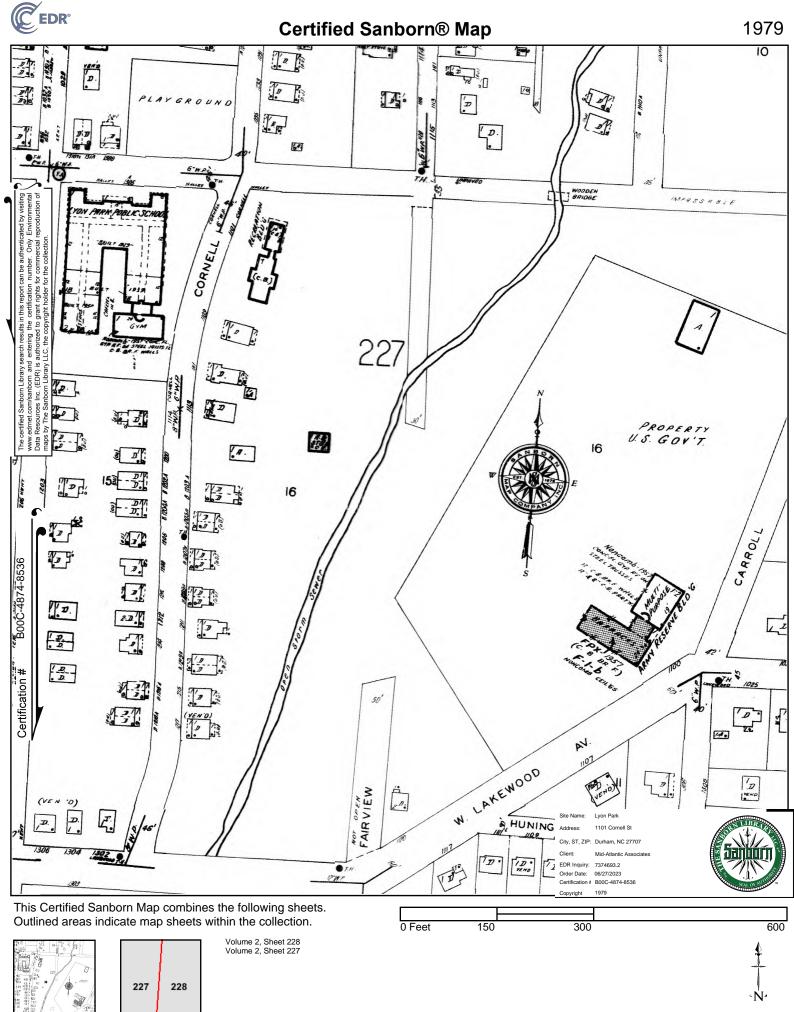
Volume 1, Sheet 227 1950

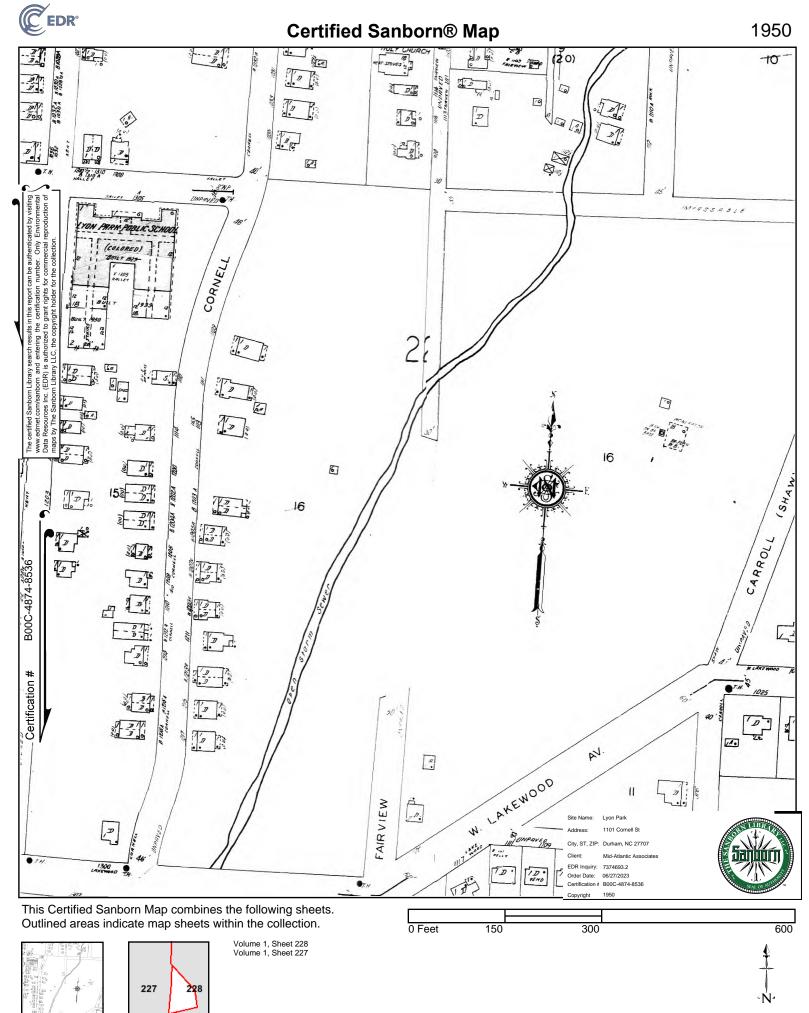
Volume 1, Sheet 228 1950

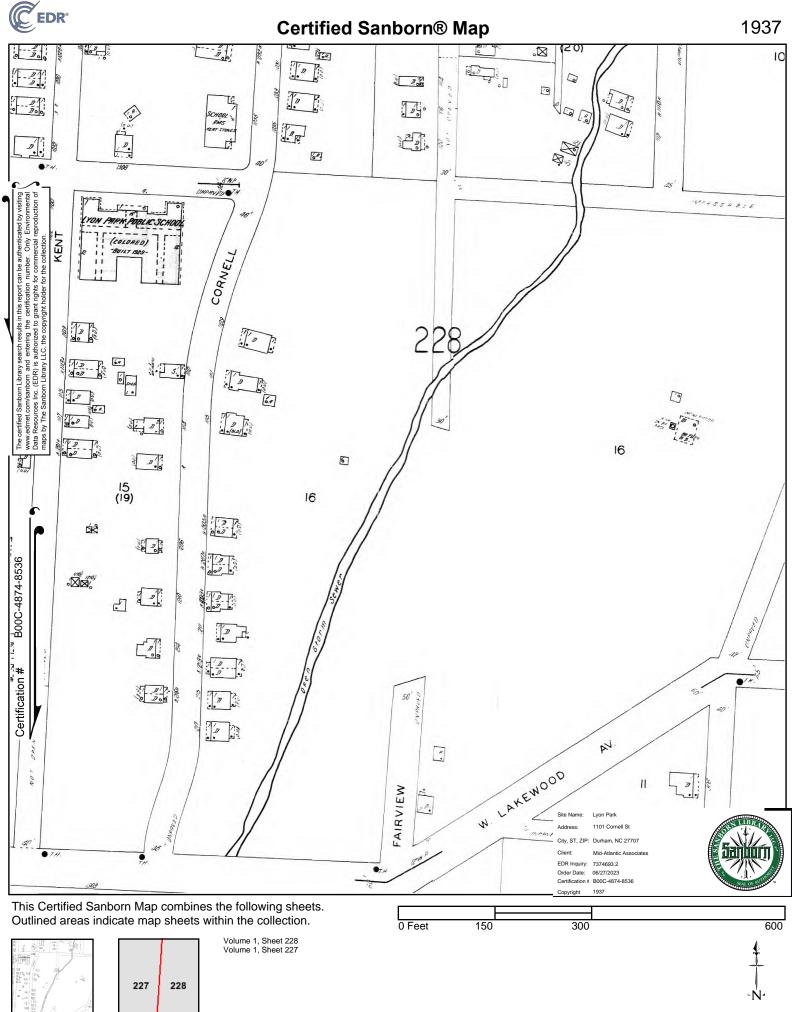
1937 Source Sheets

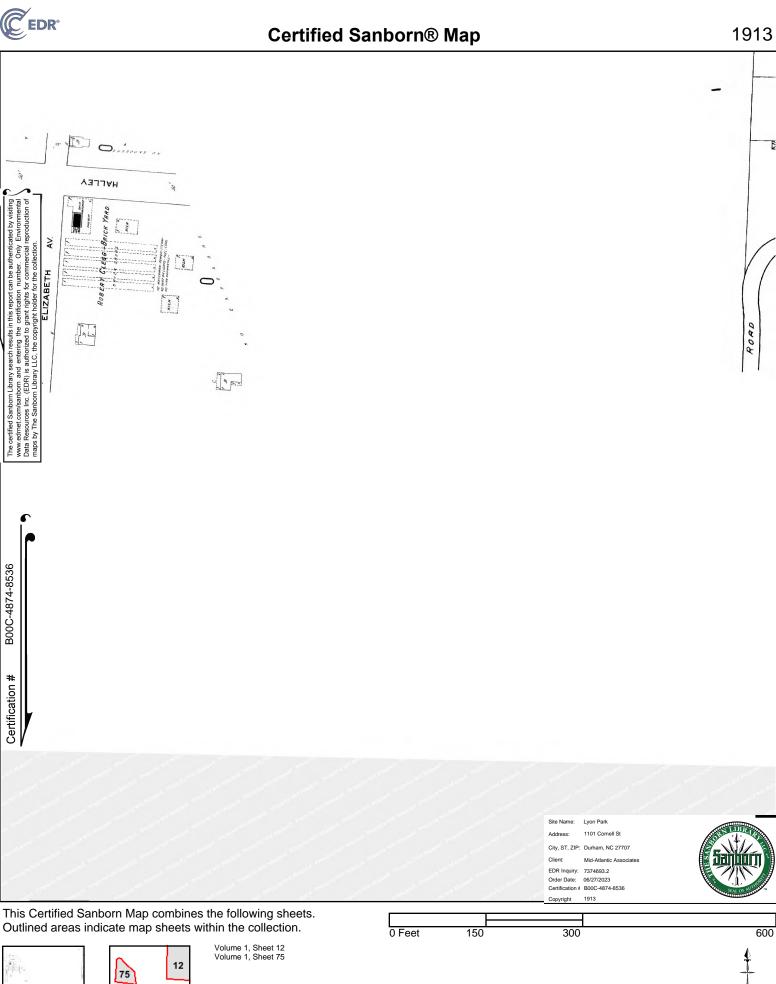
Volume 1, Sheet 227 1937

Volume 1, Sheet 228 1937


1913 Source Sheets




Volume 1, Sheet 75 1913



Volume 1, Sheet 12 1913

7374693 - 2 page 7	8 - 2 page 7
--------------------	--------------

Walltown Park 1700 Guess Rd Durham, NC 27705

Inquiry Number: 7386247.3 July 11, 2023

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

07/11/23 Site Name: Walltown Park Mid-Atlantic Associates 1700 Guess Rd 409 Rogers View Ct Durham, NC 27705 Raleigh, NC 27610 EDR Inquiry # 7386247.3 Contact: Kevin Clay

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Mid-Atlantic Associates were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanbo	rn Results:	
Certification #	BBDB-4C18-9274	
PO #	R4370.00	
Project	R4370.00	
Maps Provided: 1979 1950 1937		Sanborn® Library search results Certification #: BBDB-4C18-9274 The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched: Library of Congress University Publications of America EDR Private Collection
		The Sanborn Library LLC Since 1866™
imited Permission	To Make Conies	

Limited Permission To Make Copies

Mid-Atlantic Associates (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

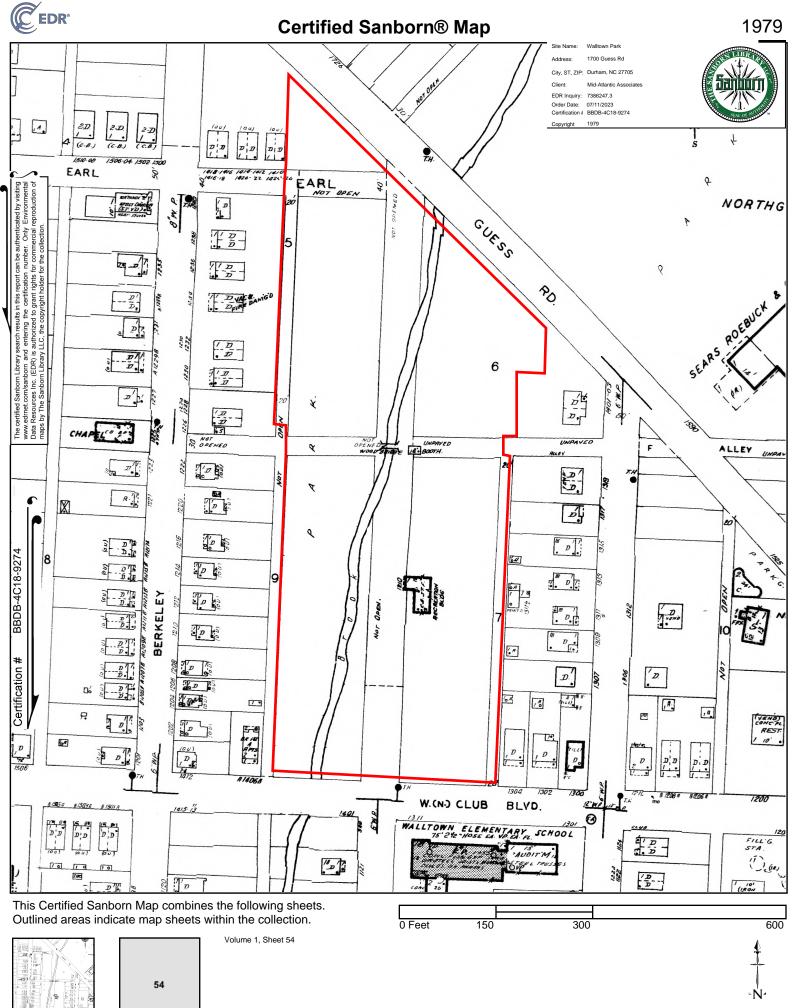
Sanborn Sheet Key

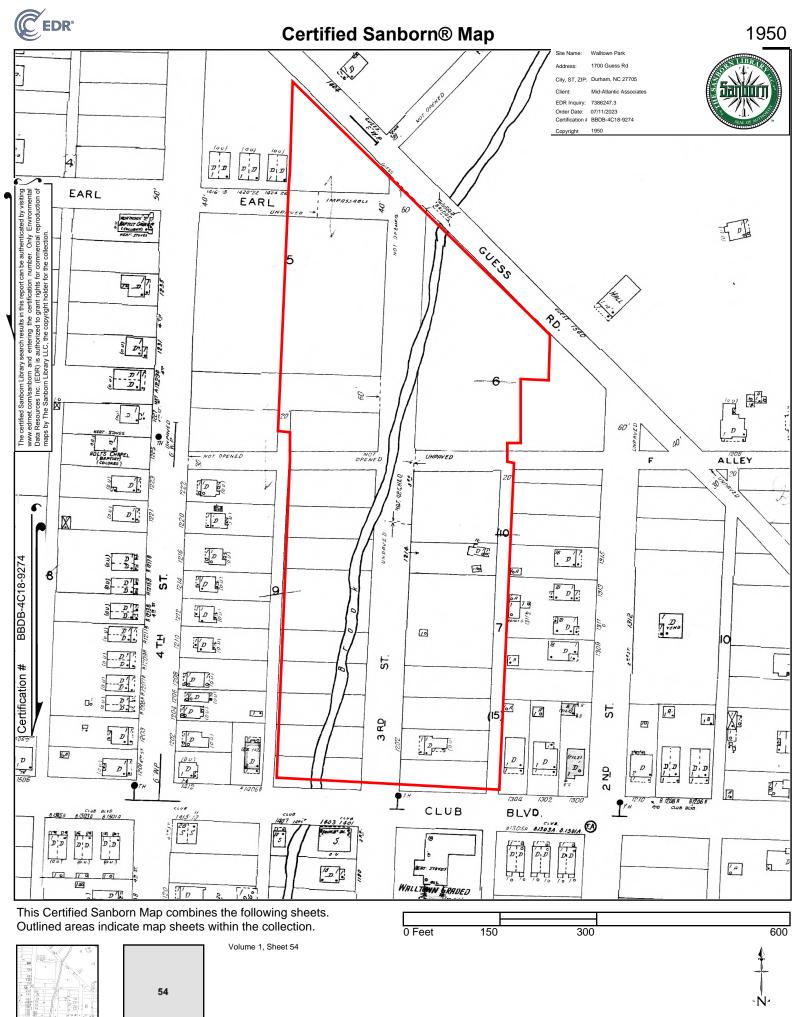
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1979 Source Sheets

Volume 1, Sheet 54 1979

1950 Source Sheets




Volume 1, Sheet 54 1950

1937 Source Sheets

Volume 1, Sheet 54 1937

East Durham Park 2601 East Main Street Durham, NC 27703

Inquiry Number: 7386252.3 July 11, 2023

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

07/11/23 Site Name: Site Name: Client Name: East Durham Park Mid-Atlantic Associates 2601 East Main Street 409 Rogers View Ct Durham, NC 27703 Raleigh, NC 27610 EDR Inquiry # 7386252.3 Contact: Kevin Clay

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Mid-Atlantic Associates were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanbo	orn Results:	
Certified Sanbo Certification # PO # Project Maps Provided 1979 1950 1937	0BC7-4AAF-AB8A R4370.00 R4370.00	Sanborn® Library search results Certification #: 0BC7-4AAF-AB8A The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched: Library of Congress University Publications of America EDR Private Collection
imited Permission	To Make Conice	The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Mid-Atlantic Associates (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

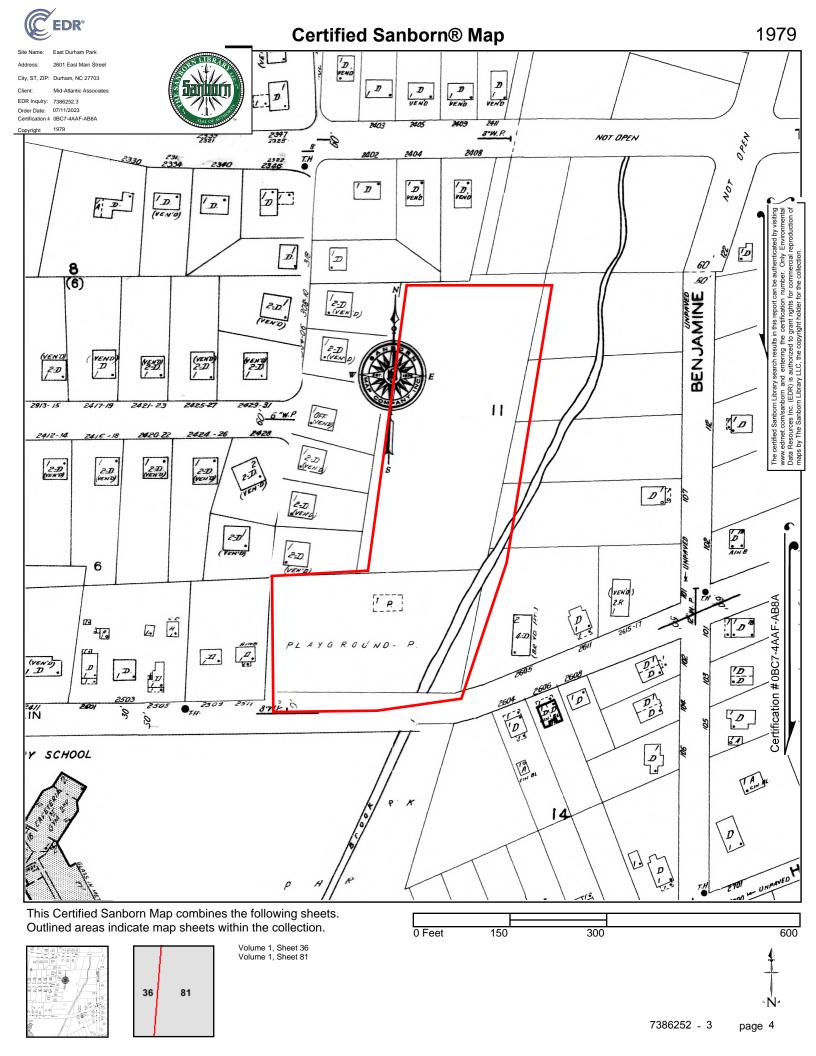
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

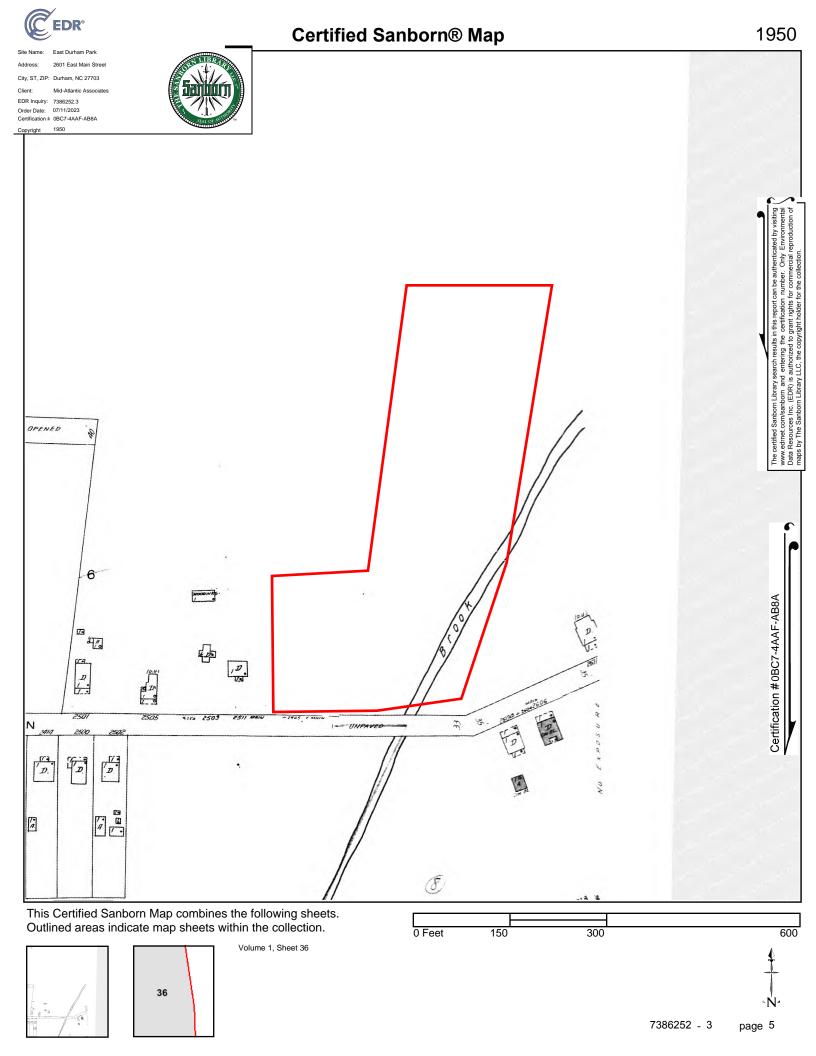
1979

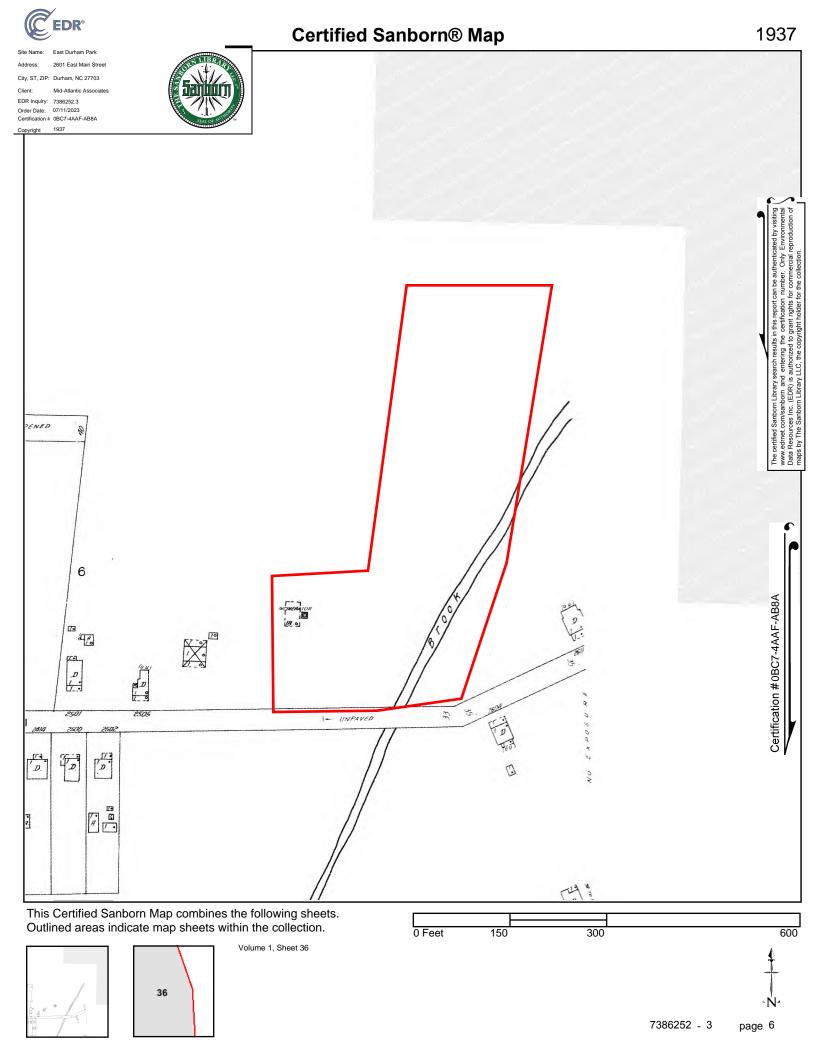
1979 Source Sheets

Volume 1, Sheet 81 1979

1950 Source Sheets




Volume 1, Sheet 36 1950


1937 Source Sheets

Volume 1, Sheet 36 1937

East End Park 1100 N ALSTON AVE Durham, NC 27701

Inquiry Number: 7386249.3 July 11, 2023

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

07/11/23 Client Name: Site Name: Client Name: East End Park Mid-Atlantic Associates 1100 N ALSTON AVE 409 Rogers View Ct Durham, NC 27701 Raleigh, NC 27610 EDR Inquiry # 7386249.3 Contact: Kevin Clay

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Mid-Atlantic Associates were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanbo	rn Results:	
	EAE1-4E36-B475	
PO #	R4370.00	
Project	R4370.00	
Maps Provided 1979 1950 1937		Sanborn® Library search results Certification #: EAE1-4E36-B475 The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched: Library of Congress University Publications of America EDR Private Collection
		The Sanborn Library LLC Since 1866™
imited Permission	To Make Conies	

Limited Permission To Make Copies

Mid-Atlantic Associates (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

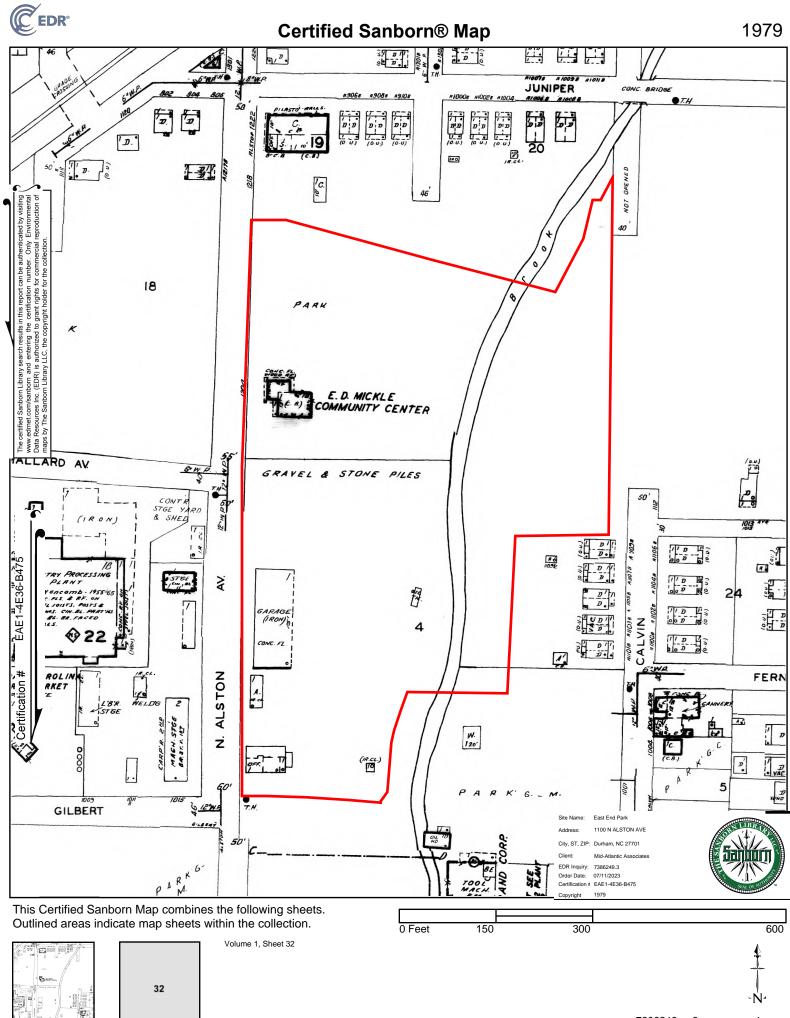
Sanborn Sheet Key

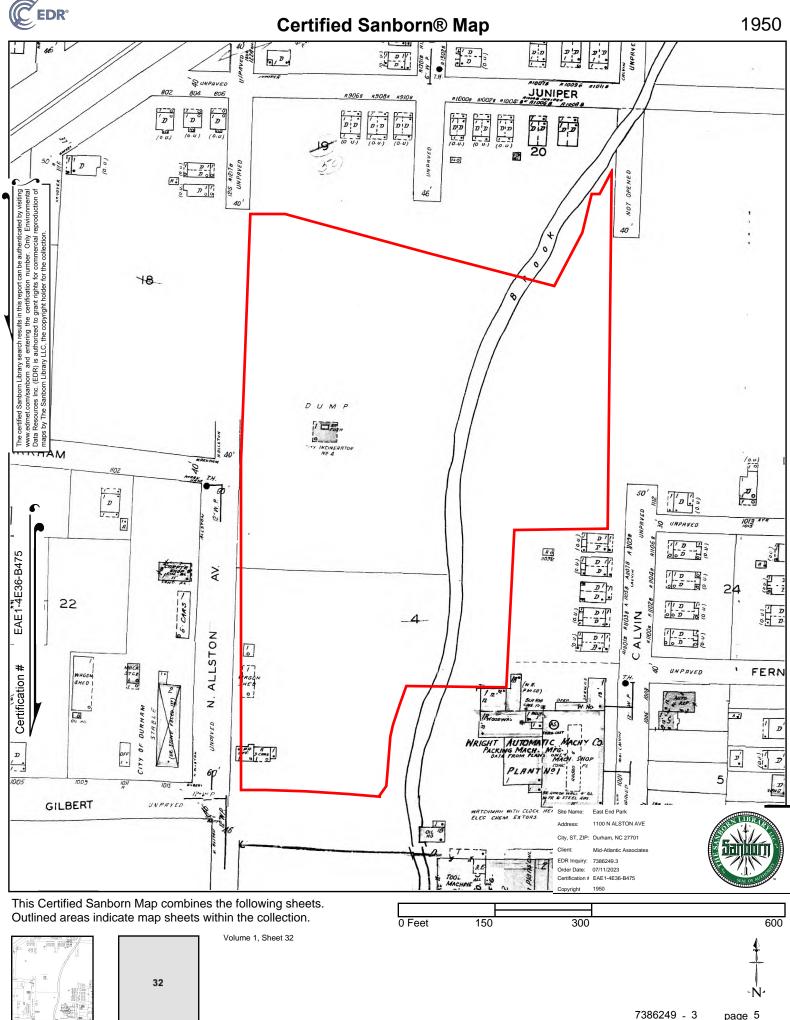
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

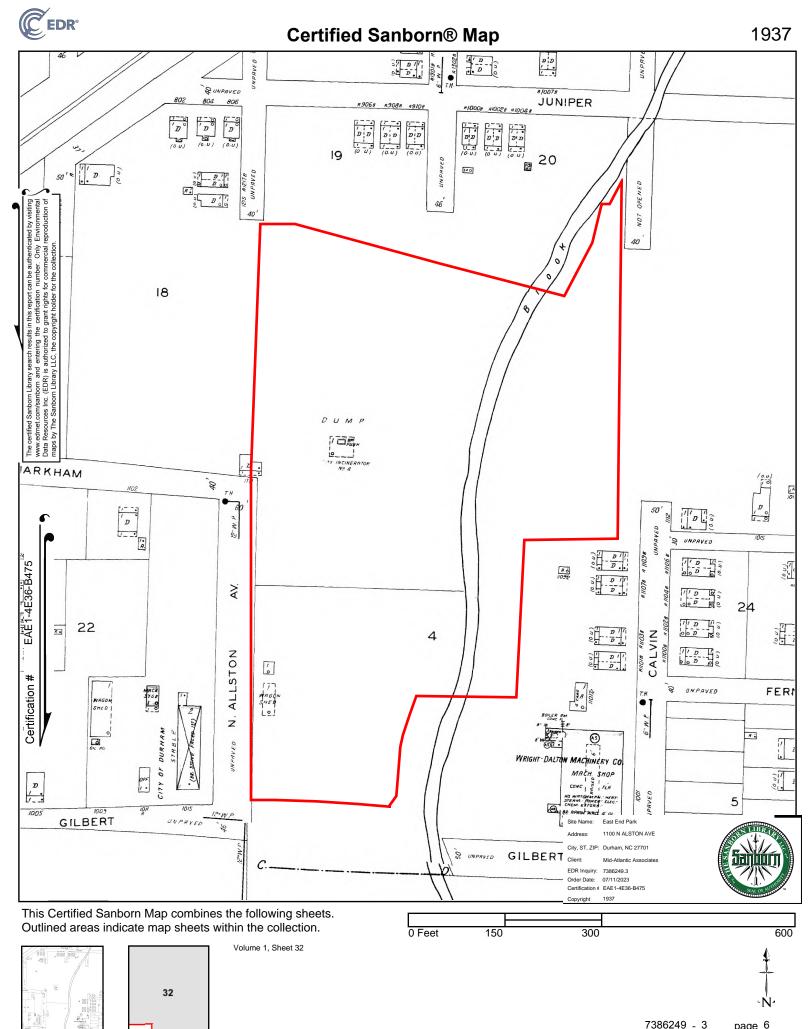
1979 Source Sheets

Volume 1, Sheet 32 1979

1950 Source Sheets




Volume 1, Sheet 32 1950


1937 Source Sheets

Volume 1, Sheet 32 1937

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

8/16/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Revised Lab Report Number: 23-206-0058 Client Project Description: R4370.00

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 7/25/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Laboratory ID: WP MTN: Waypoint Analytical, LLC., Memphis, TN

State	Program	Lab ID	Expiration Date
Alabama	State Program	40750	02/29/2024
Arkansas	State Program	88-0650	02/07/2024
California	State Program	2904	06/30/2024
Florida	State Program - NELAP	E871157	06/30/2024
Georgia	State Program	C044	11/14/2025
Georgia	State Program	04015	06/30/2024
Illinois	State Program - NELAP	200078	10/10/2024
Kentucky	State Program	80215	06/30/2024
Kentucky	State Program	KY90047	12/31/2023
Louisiana	State Program - NELAP	LA037	12/31/2023
Louisiana	State Program - NELAP	04015	06/30/2024
Mississippi	State Program	MS	11/14/2025
North Carolina	State Program	47701	07/31/2024
North Carolina	State Program	415	12/31/2023
Pennsylvania	State Program - NELAP	68-03195	05/31/2024
South Carolina	State Program	84002	06/30/2023
Tennessee	State Program	02027	11/14/2025
Texas	State Program - NELAP	T104704180	09/30/2023
Virginia	State Program	00106	06/30/2024
Virginia	State Program - NELAP	460181	09/14/2023

Sample Summary Table

Report Number:	23-206-0058
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90502	SS-NG-175	Solids	07/21/2023 15:52	07/25/2023 13:00		
90503	SS-NG-56	Solids	07/21/2023 14:58	07/25/2023 13:00		
90504	SS-NG-172	Solids	07/21/2023 15:48	07/25/2023 13:00		
90505	SS-NG-83	Solids	07/21/2023 15:03	07/25/2023 13:00		
90506	SS-NG-192	Solids	07/21/2023 14:25	07/25/2023 13:00		
90507	SS-NG-11	Solids	07/21/2023 14:35	07/25/2023 13:00		
90508	SS-NG-38	Solids	07/21/2023 14:55	07/25/2023 13:00		
90509	SS-NG-110	Solids	07/21/2023 16:15	07/25/2023 13:00		
90510	SS-NG-109	Solids	07/21/2023 16:21	07/25/2023 13:00		
90511	SS-NG-226	Solids	07/21/2023 16:23	07/25/2023 13:00		
90511	SS-NG-226	Solids	07/21/2023 16:23	07/25/2023 13:00	6020B	WP MTN
90512	SS-NG-266 @ 1'	Solids	07/21/2023 16:26	07/25/2023 13:00		
90513	SS-NG-148	Solids	07/21/2023 15:20	07/25/2023 13:00		
90514	SS-NG-70	Solids	07/21/2023 16:35	07/25/2023 13:00		
90515	SS-NG-119	Solids	07/21/2023 16:02	07/25/2023 13:00		
90516	SS-NG-Playground	Solids	07/21/2023 06:20	07/25/2023 13:00		
90517	SS-NG-Dup-2	Solids	07/21/2023 15:11	07/25/2023 13:00		
90518	SS-NG-152	Solids	07/21/2023 15:30	07/25/2023 13:00		
90519	SS-NG-72	Solids	07/21/2023 15:58	07/25/2023 13:00		
90520	SS-NG-279	Solids	07/21/2023 15:38	07/25/2023 13:00		
90521	SS-NG-144	Solids	07/21/2023 15:15	07/25/2023 13:00		
90522	SS-NG-137	Solids	07/21/2023 15:11	07/25/2023 13:00		
90523	SS-NG-131	Solids	07/21/2023 15:08	07/25/2023 13:00		
90524	SS-NG-91	Solids	07/21/2023 14:15	07/25/2023 13:00		
90525	SS-NG-Dup-1	Solids	07/21/2023 14:16	07/25/2023 13:00		
90526	SS-NG-45	Solids	07/21/2023 16:40	07/25/2023 13:00		
90527	SS-NG-1	Solids	07/21/2023 14:30	07/25/2023 13:00		

WP MTN - Memphis, TN: Waypoint Analytical - TN, Memphis, TN

Sample Summary Table

Report Number:	23-206-0058
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90528	SS-NG-184	Solids	07/21/2023 14:28	07/25/2023 13:00		
90529	SS-NG-116	Solids	07/21/2023 16:10	07/25/2023 13:00		
90530	SS-NG-226	Solids	07/21/2023 14:47	07/25/2023 13:00		
90531	SS-NG-205	Solids	07/21/2023 14:48	07/25/2023 13:00		
90532	SS-NG-273	Solids	07/21/2023 15:44	07/25/2023 13:00		
90533	SS-NG-92	Solids	07/21/2023 15:45	07/25/2023 13:00		
90534	SS-NG-100	Solids	07/21/2023 16:20	07/25/2023 13:00		
90536	SS-NG-102	Solids	07/21/2023 15:24	07/25/2023 13:00		
90536	SS-NG-102	Solids	07/21/2023 15:24	07/25/2023 13:00	6020B	WP MTN
90537	SS-NG-153	Solids	07/21/2023 15:24	07/25/2023 13:00		
90537	SS-NG-153	Solids	07/21/2023 15:24	07/25/2023 13:00	6020B	WP MTN

Project: R43 Report Number: 23-

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-NG-175	V 90502					
6010D	Lead	30.8	mg/Kg - dry	0.359	08/03/2023 19:54	
SW-DRYWT	Moisture	16.6	%		07/26/2023 12:30	
SS-NG-56	V 90503					
6010D	Lead	18.8	mg/Kg - dry	0.402	08/03/2023 19:58	
SW-DRYWT	Moisture	25.5	%		07/26/2023 12:30	
SS-NG-172	V 90504					
6010D	Lead	7.31	mg/Kg - dry	0.395	08/03/2023 20:02	
SW-DRYWT	Moisture	24.2	%		07/26/2023 12:30	
SS-NG-83	V 90505					
6010D	Lead	22.5	mg/Kg - dry	0.490	08/07/2023 18:46	
SW-DRYWT	Moisture	38.8	%		07/26/2023 12:30	
SS-NG-192	V 90506					
6010D	Lead	48.7	mg/Kg - dry	0.416	08/07/2023 18:50	
SW-DRYWT	Moisture	27.9	%		07/26/2023 12:30	
SS-NG-11	V 90507					
6010D	Lead	29.8	mg/Kg - dry	0.385	08/07/2023 18:55	
SW-DRYWT	Moisture	22.2	%		07/26/2023 12:30	
SS-NG-38	V 90508					
6010D	Lead	44.4	mg/Kg - dry	0.375	08/07/2023 19:17	
SW-DRYWT	Moisture	20.2	%		07/26/2023 12:30	
SS-NG-110	V 90509					
6010D	Lead	212	mg/Kg - dry	1.66	08/08/2023 16:20	
SW-DRYWT	Moisture	9.48	%		07/26/2023 12:30	
SS-NG-109	V 90510					
6010D	Lead	203	mg/Kg - dry	1.80	08/08/2023 16:29	
SW-DRYWT	Moisture	16.8	%		07/26/2023 12:30	
SS-NG-226	V 90511					
6020B	Antimony	0.336	mg/Kg - dry	0.301	08/01/2023 13:50	
6020B	Arsenic	2.26	mg/Kg - dry	0.301	08/01/2023 13:50	
6020B	Barium	105	mg/Kg - dry	0.300	08/01/2023 13:50	
6020B	Beryllium	0.391	mg/Kg - dry	0.301	08/02/2023 14:34	

Project:

Report Number:

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-NG-226	V 90511					
6020B	Cadmium	0.439	mg/Kg - dry	0.301	08/01/2023 13:50	
6020B	Chromium	14.4	mg/Kg - dry	0.300	08/01/2023 13:50	
6020B	Cobalt	3.19	mg/Kg - dry	0.300	08/01/2023 13:50	
6020B	Copper	55.5	mg/Kg - dry	1.50	08/02/2023 14:30	
6020B	Manganese	209	mg/Kg - dry	0.300	08/01/2023 13:50	
6020B	Nickel	7.63	mg/Kg - dry	0.301	08/01/2023 13:50	
6020B	Selenium	0.352	mg/Kg - dry	0.300	08/01/2023 13:50	
6020B	Silver	0.580	mg/Kg - dry	0.301	08/01/2023 13:50	
6020B	Vanadium	28.0	mg/Kg - dry	1.50	08/01/2023 13:50	
6020B	Zinc	172	mg/Kg - dry	3.01	08/01/2023 13:50	
7471B	Mercury (Total)	0.174	mg/Kg - dry	0.0361	07/28/2023 15:54	
SW-DRYWT	Moisture	16.9	%		07/26/2023 12:30	
SS-NG-266 @ 1'	V 90512					
6010D	Lead	283	mg/Kg - dry	1.97	08/08/2023 16:25	
SW-DRYWT	Moisture	23.8	%		07/26/2023 12:30	
SS-NG-148	V 90513					
6010D	Lead	45.5	mg/Kg - dry	0.453	08/07/2023 19:43	
SW-DRYWT	Moisture	33.9	%		07/26/2023 12:30	
SS-NG-70	V 90514					
6010D	Lead	46.2	mg/Kg - dry	0.408	08/07/2023 19:47	
SW-DRYWT	Moisture	26.6	%		07/26/2023 13:50	
SS-NG-119	V 90515					
6010D	Lead	34.3	mg/Kg - dry	0.528	08/07/2023 19:52	
SW-DRYWT	Moisture	43.2	%		07/26/2023 13:50	
SS-NG-Playground	V 90516					
6010D	Lead	1430	mg/Kg - dry	18.0	08/09/2023 18:48	
SW-DRYWT	Moisture	16.5	%		07/26/2023 13:50	
SS-NG-Dup-2	V 90517					
6010D	Lead	32.9	mg/Kg - dry	0.400	08/07/2023 20:00	
SW-DRYWT	Moisture	25.0	%		07/26/2023 13:50	
SS-NG-152	V 90518					
6010D	Lead	8.41	mg/Kg - dry	0.322	08/07/2023 20:05	
					-	

Project: Report Number:

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-NG-152	V 90518					
SW-DRYWT	Moisture	7.09	%		07/26/2023 13:50	
SS-NG-72	V 90519					
6010D	Lead	397	mg/Kg - dry	4.98	08/09/2023 19:01	
SW-DRYWT	Moisture	39.8	%		07/26/2023 13:50	
SS-NG-279	V 90520					
5010D	Lead	32.5	mg/Kg - dry	0.390	08/07/2023 20:14	
SW-DRYWT	Moisture	23.1	%		07/26/2023 13:50	
SS-NG-144	V 90521					
6010D	Lead	35.9	mg/Kg - dry	0.390	08/07/2023 20:18	
SW-DRYWT	Moisture	23.1	%		07/26/2023 13:50	
SS-NG-137	V 90522					
5010D	Lead	31.8	mg/Kg - dry	0.362	08/01/2023 13:15	
SW-DRYWT	Moisture	17.2	%		07/26/2023 13:50	
SS-NG-131	V 90523					
6010D	Lead	16.7	mg/Kg - dry	0.329	08/01/2023 13:21	
SW-DRYWT	Moisture	8.86	%		07/26/2023 13:50	
SS-NG-91	V 90524					
6010D	Lead	283	mg/Kg - dry	1.79	08/02/2023 16:44	
SW-DRYWT	Moisture	16.4	%		07/26/2023 13:50	
SS-NG-Dup-1	V 90525					
5010D	Lead	286	mg/Kg - dry	3.16	08/02/2023 16:49	
SW-DRYWT	Moisture	52.5	%		07/26/2023 13:50	
SS-NG-45	V 90526					
6010D	Lead	43.3	mg/Kg - dry	0.452	08/01/2023 14:18	
SW-DRYWT	Moisture	33.7	%		07/26/2023 13:50	
SS-NG-1	V 90527					
6010D	Lead	33.8	mg/Kg - dry	0.437	08/01/2023 14:22	
SW-DRYWT	Moisture	31.4	%		07/26/2023 13:50	
SS-NG-184	V 90528					
6010D	Lead	309	mg/Kg - dry	1.72	08/02/2023 16:53	

Project:	
Report Number:	

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-NG-184	V 90528					
SW-DRYWT	Moisture	12.9	%		07/26/2023 13:50	
SS-NG-116	V 90529					
6010D	Lead	244	mg/Kg - dry	1.99	08/02/2023 16:58	
SW-DRYWT	Moisture	24.6	%		07/26/2023 13:50	
SS-NG-226	V 90530					
6010D	Lead	300	mg/Kg - dry	1.91	08/02/2023 17:02	
SW-DRYWT	Moisture	21.4	%		07/26/2023 13:50	
SS-NG-205	V 90531					
6010D	Lead	87.0	mg/Kg - dry	0.335	08/02/2023 17:07	
SW-DRYWT	Moisture	10.6	%		07/26/2023 13:50	
SS-NG-273	V 90532					
6010D	Lead	21.1	mg/Kg - dry	0.337	08/01/2023 15:11	
SW-DRYWT	Moisture	11.1	%		07/26/2023 13:50	
SS-NG-92	V 90533					
6010D	Lead	365	mg/Kg - dry	3.21	08/02/2023 17:11	
SW-DRYWT	Moisture	53.2	%		07/26/2023 13:50	
SS-NG-100	V 90534					
6010D	Lead	143	mg/Kg - dry	1.64	08/02/2023 17:15	
SW-DRYWT	Moisture	8.66	%		07/27/2023 10:36	
SS-NG-102	V 90536					
6020B	Lead	25.5	mg/Kg - dry	0.311	08/01/2023 13:54	
SW-DRYWT	Moisture	19.6	%		07/28/2023 10:38	
SS-NG-153	V 90537					
6020B	Arsenic	1.11	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Barium	60.9	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Beryllium	0.309	mg/Kg - dry	0.300	08/02/2023 14:50	
5020B	Chromium	25.2	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Cobalt	7.72	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Copper	21.0	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Lead	12.7	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Manganese	726	mg/Kg - dry	1.20	08/02/2023 14:46	
6020B	Nickel	16.7	mg/Kg - dry	0.300	08/01/2023 13:58	

Project:

Report Number:

23-206-0058

R4370.00

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-NG-153	V 90537					
6020B	Silver	0.768	mg/Kg - dry	0.300	08/01/2023 13:58	
6020B	Vanadium	24.6	mg/Kg - dry	1.50	08/01/2023 13:58	
6020B	Zinc	75.0	mg/Kg - dry	3.00	08/01/2023 13:58	
7471B	Mercury (Total)	0.0488	mg/Kg - dry	0.0361	07/28/2023 15:59	
8270E	Benzo(b)fluoranthene	1.14	mg/Kg - dry	0.701	07/28/2023 16:30	J
8270E	Benzoic Acid	6.29	mg/Kg - dry	2.79	07/28/2023 16:30	J
8270E	Chrysene	0.700	mg/Kg - dry	0.682	07/28/2023 16:30	J
8270E	Pyrene	1.03	mg/Kg - dry	0.644	07/28/2023 16:30	J
SW-DRYWT	Moisture	16.8	%		07/28/2023 10:38	

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-206-0058 Date: 8/16/2023 CASE NARRATIVE

Report Comments

Revised report: Revision 1 Co and V have been added to be reported.

Metals Analysis Method 6010D

Sample 90534 (SS-NG-100) Analyte: Lead QC Batch No: V36145/V35953 Matrix spike/matrix spike duplicate recoveries are outside of control limits. Acceptable LCS recovery indicates the system was in control, but the reported result could be affected by matrix interference.

Sample 90507 (SS-NG-11) Analyte: Lead QC Batch No: V36316/V36086 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Analyte: Lead QC Batch No: V36421/V36086 LLC failed high. Result 10x concentration. Result not affected.

Metals Analyses Method 6020B

Sample 90647 (SS-LY-45) Analyte: Arsenic QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Barium QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Copper QC Batch No: L696547/L695858 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Manganese QC Batch No: L696237/L695858

The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Nickel QC Batch No: L696237/L695858 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Lead QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Antimony QC Batch No: L696547/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Thallium QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Zinc QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Semivolatile Organic Compounds - GC/MS Method 8270E

Sample 90537 (SS-NG-153) QC Batch No: V35874/V35831 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Analyte: Benzoic Acid QC Batch No: V35874/V35831 Refer to LCS/LCSD.

Sample 90683 Analyte: Hexachlorocyclopentadiene QC Batch No: V35874/V35831 Relative Percent Difference (RPD) for the duplicate analysis was outside of the allowable QC limits.

Lab No : 90502			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01135			

Sample ID : SS-NG-175 Sampled: 7,							7/21/2023 15:52	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	16.6	%		1	07/26/23 12:30	CNC	SW-DRYWT	
Lead	30.8	mg/Kg - dry	0.359	1	08/03/23 19:54	JKC	6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information	:	Received : 07/25/2023
Raleigh , NC 27610			
Report Number : 23-206-0058	RI	EPORT OF ANALYSIS	
Lab No : 90503			Matrix: Solids

Sample ID : SS-NG-56

Sampled: 7/21/2023 14:58

Fest	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
		0/					
Moisture	25.5	%		1	07/26/23 12:30	CNC	SW-DRYWT
ead	18.8	mg/Kg - dry	0.402	1	08/03/23 19:58	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date: 08/10/2023 Revised Report Date: 08/16/2023
01155		

Lab No : 90504 Sample ID : SS-NG-172						Matrix: Solids Sampled: 7/21/2023 1		
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	24.2	%		1	07/26/23 12:30	CNC	SW-DRYWT	
Lead	7.31	mg/Kg - dry	0.395		08/03/23 20:02		6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	DE	PORT OF ANALYSIS	
Raleigh , NC 27610			
Kevin Clay 409 Rogers View Court	Information		Revised Report Date: 08/16/2023 Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
	Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Kevin Clay 409 Rogers View Court Information : Raleigh , NC 27610	Kevin Clay 409 Rogers View Court Information : Raleigh , NC 27610

Sample ID : SS-NG-83					Sampled:		2023 15:03
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	38.8	%		1	07/26/23 12:30	CNC	SW-DRYWT
Lead	22.5	mg/Kg - dry	0.490	1	08/07/23 18:46	JKC	6010D

Qualifiers/ Definitions	В	Analyte detected in blank
	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSI	5
Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Information :	Revised Report Date: 08/16/2023 Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023

Lab No : 90506 Sample ID : SS-NG-192					Matrix: Sampled:		2023 14:25
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	27.9 48.7	% mg/Kg - dry	0.416		07/26/23 12:30 08/07/23 18:50		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023
Report Number : 23-206-0058	REPORT OF ANALYSIS	

Lab No : 90507 Sample ID : SS-NG-11					Matrix: Sampled:		2023 14:35
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	22.2	%		1	07/26/23 12:30	CNC	SW-DRYWT
Lead	29.8	mg/Kg - dry	0.385	1	08/07/23 18:55	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	RE	EPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Lab No : 90508 Sample ID : SS-NG-38					Matrix: Sampled:		2023 14:55
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	20.2	%		1	07/26/23 12:30	CNC	SW-DRYWT
Lead	44.4	mg/Kg - dry	0.375		08/07/23 19:17		6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01155		

Lab No : 90509 Sample ID : SS-NG-110						Matrix: Solids Sampled: 7/21/2023 16:15						
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method					
Moisture Lead	9.48 212	% mg/Kg - dry	1.66		07/26/23 12:30 08/08/23 16:20		SW-DRYWT 6010D					

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90510			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01155			

Sample ID : SS-NG-109						Sampled: 7/21/2023 16:2:				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method			
Moisture	16.8	%		1	07/26/23 12:30	CNC	SW-DRYWT			
Lead	203	mg/Kg - dry	1.80	5	08/08/23 16:29	JKC	6010D			

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/10/2023

 Kevin Clay
 Revised Report Date:
 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/25/2023

 Raleigh , NC 27610
 Received : 07/25/2023

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90511 Sample ID : SS-NG-226						Sampled	l: 7/21 ,	/2023 16:23
Test	Results	Units	MDL	MQL	DF	Date / Time	Ву	Analytical

	nesuns	Units	MDL	MQL	DF	Analyzed	Бу	Method
Moisture	16.9	%			1	07/26/23 12:30	CNC	SW-DRYWT
Antimony	0.336	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Arsenic	2.26	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Barium	105	mg/Kg - dry		0.300	5	08/01/23 13:50	CPW	6020B
Beryllium	0.391	mg/Kg - dry		0.301	5	08/02/23 14:34	CPW	6020B
Cadmium	0.439	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Chromium	14.4	mg/Kg - dry		0.300	5	08/01/23 13:50	CPW	6020B
Cobalt	3.19	mg/Kg - dry		0.300	5	08/01/23 13:50	CPW	6020B
Copper	55.5	mg/Kg - dry		1.50	25	08/02/23 14:30	CPW	6020B
Manganese	209	mg/Kg - dry		0.300	5	08/01/23 13:50	CPW	6020B
Mercury (Total)	0.174	mg/Kg - dry		0.0361	1	07/28/23 15:54	JKC	7471B
Nickel	7.63	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Selenium	0.352	mg/Kg - dry		0.300	5	08/01/23 13:50	CPW	6020B
Silver	0.580	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Thallium	<0.301	mg/Kg - dry		0.301	5	08/01/23 13:50	CPW	6020B
Vanadium	28.0	mg/Kg - dry		1.50	5	08/01/23 13:50	CPW	6020B
Zinc	172	mg/Kg - dry		3.01	5	08/01/23 13:50	CPW	6020B

В

J

01139 Mid-Atlantic Associates, Inc. - Raleigh

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90511 Sample ID : SS-NG-226

Matrix: Solids Sampled: 7/21/2023 16:23

nalytical Method:	8270E	Prep Batch(es):		V35831	07/27/23 11:30				
Prep Method: Test	3546	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
cenaphthene		<0.139	mg/Kg - dry	0.139	0.794	1	07/28/23 15:22	AMP	V35874
cenaphthylene		<0.126	mg/Kg - dry	0.126	0.794	1	07/28/23 15:22	AMP	V35874
niline		<0.182	mg/Kg - dry	0.182	0.794	1	07/28/23 15:22	AMP	V35874
Inthracene		<0.172	mg/Kg - dry	0.172	0.794	1	07/28/23 15:22	AMP	V35874
enzo(a)anthracene		<0.167	mg/Kg - dry	0.167	0.794	1	07/28/23 15:22	AMP	V35874
enzo(a)pyrene		<0.176	mg/Kg - dry	0.176	0.794	1	07/28/23 15:22	AMP	V35874
enzo(b)fluoranthene		<0.175	mg/Kg - dry	0.175	0.794	1	07/28/23 15:22	AMP	V35874
enzo(g,h,i)perylene		<0.163	mg/Kg - dry	0.163	0.794	1	07/28/23 15:22	AMP	V35874
enzo(k)fluoranthene		<0.164	mg/Kg - dry	0.164	0.794	1	07/28/23 15:22	AMP	V35874
enzoic Acid		<0.697	mg/Kg - dry	0.697	2.41	1	07/28/23 15:22	AMP	V35874
enzyl alcohol		<0.126	mg/Kg - dry	0.126	0.794	1	07/28/23 15:22	AMP	V35874
lis(2-Chloroethoxy)me	thane	<0.141	mg/Kg - dry	0.141	0.794	1	07/28/23 15:22	AMP	V35874
Bis(2-Chloroethyl)ethe	r	<0.128	mg/Kg - dry	0.128	0.794	1	07/28/23 15:22	AMP	V35874
Bis(2-Chloroisopropyl)	ether	<0.163	mg/Kg - dry	0.163	0.397	1	07/28/23 15:22	AMP	V35874
is(2-ethylhexyl)phtha	late	<0.144	mg/Kg - dry	0.144	0.794	1	07/28/23 15:22	AMP	V35874
-Bromophenyl phenyl	ether	<0.131	mg/Kg - dry	0.131	0.794	1	07/28/23 15:22	AMP	V35874
Butyl benzyl phthalate		<0.135	mg/Kg - dry	0.135	0.397	1	07/28/23 15:22	AMP	V35874
-Chloro-3-methylpher	ol	<0.111	mg/Kg - dry	0.111	0.794	1	07/28/23 15:22	AMP	V35874
-Chloroaniline		<0.134	mg/Kg - dry	0.134	0.397	1	07/28/23 15:22	AMP	V35874
-Chloronaphthalene		<0.139	mg/Kg - dry	0.139	0.794	1	07/28/23 15:22	AMP	V35874
-Chlorophenol		<0.118	mg/Kg - dry	0.118	0.794	1	07/28/23 15:22	AMP	V35874
-Chlorophenyl phenyl	ether	<0.151	mg/Kg - dry	0.151	1.20	1	07/28/23 15:22	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value

DF **Dilution Factor**

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90511 Sample ID : SS-NG-226

Matrix: Solids Sampled: 7/21/2023 16:23

Analytical Method:	8270E 3546	Ρ	Prep Batch(es):		07/27/23 11:30				
Prep Method: Test	5540	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene		<0.170	mg/Kg - dry	0.170	0.794	1	07/28/23 15:22	AMP	V35874
Dibenz(a,h)anthracene	!	<0.276	mg/Kg - dry	0.276	0.794	1	07/28/23 15:22	AMP	V35874
Dibenzofuran		<0.143	mg/Kg - dry	0.143	0.794	1	07/28/23 15:22	AMP	V35874
,2-Dichlorobenzene		<0.113	mg/Kg - dry	0.113	0.794	1	07/28/23 15:22	AMP	V35874
,3-Dichlorobenzene		<0.117	mg/Kg - dry	0.117	0.794	1	07/28/23 15:22	AMP	V35874
,4-Dichlorobenzene		<0.117	mg/Kg - dry	0.117	0.397	1	07/28/23 15:22	AMP	V35874
3,3'-Dichlorobenzidine		<0.176	mg/Kg - dry	0.176	0.794	1	07/28/23 15:22	AMP	V35874
2,4-Dichlorophenol		<0.115	mg/Kg - dry	0.115	0.794	1	07/28/23 15:22	AMP	V35874
Diethyl phthalate		<0.216	mg/Kg - dry	0.216	0.794	1	07/28/23 15:22	AMP	V35874
Dimethyl phthalate		<0.209	mg/Kg - dry	0.209	0.794	1	07/28/23 15:22	AMP	V35874
2,4-Dimethylphenol		<0.129	mg/Kg - dry	0.129	0.397	1	07/28/23 15:22	AMP	V35874
Di-n-butyl phthalate		<0.128	mg/Kg - dry	0.128	0.794	1	07/28/23 15:22	AMP	V35874
l,6-Dinitro-2-methylph	enol	<0.288	mg/Kg - dry	0.288	1.81	1	07/28/23 15:22	AMP	V35874
2,4-Dinitrophenol		<0.625	mg/Kg - dry	0.625	1.81	1	07/28/23 15:22	AMP	V35874
2,4-Dinitrotoluene		<0.116	mg/Kg - dry	0.116	0.794	1	07/28/23 15:22	AMP	V35874
2,6-Dinitrotoluene		<0.129	mg/Kg - dry	0.129	0.794	1	07/28/23 15:22	AMP	V35874
Di-n-Octyl Phthalate		<0.172	mg/Kg - dry	0.172	0.397	1	07/28/23 15:22	AMP	V35874
luoranthene		<0.148	mg/Kg - dry	0.148	0.794	1	07/28/23 15:22	AMP	V35874
luorene		<0.154	mg/Kg - dry	0.154	0.794	1	07/28/23 15:22	AMP	V35874
lexachlorobenzene		<0.127	mg/Kg - dry	0.127	0.794	1	07/28/23 15:22	AMP	V35874
lexachlorobutadiene		<0.117	mg/Kg - dry	0.117	0.794	1	07/28/23 15:22	AMP	V35874
lexachlorocyclopentac	liene	<0.188	mg/Kg - dry	0.188	0.794	1	07/28/23 15:22	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value

Dilution Factor

DF

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Information:

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : **90511** Sample ID : **SS-NG-226** Matrix: **Solids** Sampled: **7/21/2023 16:23**

Analytical Method: 8270E Prep Method: 3546		Prep Batch(es):	V35831	07/27/2	23 11:3	0		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane	<0.095	mg/Kg - dry	0.095	0.794	1	07/28/23 15:22	AMP	V35874
Indeno(1,2,3-cd)pyrene	<0.215	mg/Kg - dry	0.215	0.794	1	07/28/23 15:22	AMP	V35874
Isophorone	<0.229	mg/Kg - dry	0.229	0.794	1	07/28/23 15:22	AMP	V35874
1-Methylnaphthalene	<0.127	mg/Kg - dry	0.127	0.794	1	07/28/23 15:22	AMP	V35874
2-Methylnaphthalene	<0.120	mg/Kg - dry	0.120	0.794	1	07/28/23 15:22	AMP	V35874
2-Methylphenol	<0.116	mg/Kg - dry	0.116	0.794	1	07/28/23 15:22	AMP	V35874
3&4 Methylphenol	<0.102	mg/Kg - dry	0.102	0.794	1	07/28/23 15:22	AMP	V35874
Naphthalene	<0.173	mg/Kg - dry	0.173	0.794	1	07/28/23 15:22	AMP	V35874
2-Nitroaniline	<0.116	mg/Kg - dry	0.116	0.794	1	07/28/23 15:22	AMP	V35874
3-Nitroaniline	<0.144	mg/Kg - dry	0.144	0.794	1	07/28/23 15:22	AMP	V35874
4-Nitroaniline	<0.112	mg/Kg - dry	0.112	0.397	1	07/28/23 15:22	AMP	V35874
Nitrobenzene	<0.139	mg/Kg - dry	0.139	0.397	1	07/28/23 15:22	AMP	V35874
2-Nitrophenol	<0.106	mg/Kg - dry	0.106	0.794	1	07/28/23 15:22	AMP	V35874
4-Nitrophenol	<0.140	mg/Kg - dry	0.140	0.794	1	07/28/23 15:22	AMP	V35874
N-Nitrosodimethylamine	<0.316	mg/Kg - dry	0.316	0.794	1	07/28/23 15:22	AMP	V35874
N-Nitrosodiphenylamine	<0.217	mg/Kg - dry	0.217	0.794	1	07/28/23 15:22	AMP	V35874
N-Nitroso-di-n-propylamine	<0.141	mg/Kg - dry	0.141	0.794	1	07/28/23 15:22	AMP	V35874
Pentachlorophenol	<0.417	mg/Kg - dry	0.417	1.20	1	07/28/23 15:22	AMP	V35874
Phenanthrene	<0.250	mg/Kg - dry	0.250	0.794	1	07/28/23 15:22	AMP	V35874
Phenol	<0.134	mg/Kg - dry	0.134	0.794	1	07/28/23 15:22	AMP	V35874
Pyrene	<0.161	mg/Kg - dry	0.161	0.794	1	07/28/23 15:22	AMP	V35874
Pyridine	<0.095	mg/Kg - dry	0.095	0.397	1	07/28/23 15:22	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value DF Dilution Factor

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Information:

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : **90511** Sample ID : **SS-NG-226** Matrix: **Solids** Sampled: **7/21/2023 16:23**

Analytical Method:8270EPrePrep Method:3546			Prep Batch(es): V35831 (07/27/2	07/27/23 11:30				
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch	
1,2,4-Trichlorobenzene	2	<0.128	mg/Kg - dry	0.128	0.794	1	07/28/23 15:22	AMP	V35874	
2,4,5-Trichlorophenol		<0.115	mg/Kg - dry	0.115	0.794	1	07/28/23 15:22	AMP	V35874	
2,4,6-Trichlorophenol		<0.116	mg/Kg - dry	0.116	0.794	1	07/28/23 15:22	AMP	V35874	
Surrogate: Phe	nol-d5		67.3	Limits	: 34-121%	1	1 07/28/23 15:2	22 AMP	8270E	
Surrogate: 2-Fl	luorobiphenyl		83.8	Limits	: 44-115%	•	1 07/28/23 15:2	2 AMP	V35874	
Surrogate: 2-Fl	luorophenol		71.5	Limits	: 35-115%	,	1 07/28/23 15:2	2 AMP	V35874	
Surrogate: Nitr	obenzene-d5		79.0	Limits	: 37-122%	,	1 07/28/23 15:2	2 AMP	V35874	
Surrogate: 4-Te	erphenyl-d14		97.0	Limits	: 54-127%	1	1 07/28/23 15:2	22 AMP	V35874	
Surrogate: 2,4,	.6-Tribromophenol		75.1	Limits	: 39-132%	,	1 07/28/23 15:2	2 AMP	V35874	

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023
Report Number : 23-206-0058	REPORT OF ANALYSIS	
Lab No : 90512 Sample ID : SS-NG-266 @ 1'		Matrix: Solids Sampled: 7/21/2023 16:26

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Maidama		0/					
Moisture	23.8	%		1	07/26/23 12:30	CNC	SW-DRYWT
Lead	283	mg/Kg - dry	1.97	5	08/08/23 16:25	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lah No : 90513			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :		Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01155			

Lab No : 90513 Sample ID : SS-NG-148						Matrix: Solids Sampled: 7/21/2023 15:20				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method			
Moisture Lead	33.9 45.5	% mg/Kg - dry	0.453		07/26/23 12:30 08/07/23 19:43		SW-DRYWT 6010D			

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90514			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :		Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01100			

Lab No : 90514 Sample ID : SS-NG-70		Matrix: Solids Sampled: 7/21/2023 16:35					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	26.6 46.2	% mg/Kg - dry	0.408		07/26/23 13:50 08/07/23 19:47	CNC JKC	SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information	:	Received : 07/25/2023
Raleigh , NC 27610			
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
Lab No · 90515			Matrix: Solids

Lab No : 90515 Sample ID : SS-NG-119						Solids 7/21/2023 16:02		
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	43.2	%		1	07/26/23 13:50	CNC	SW-DRYWT	
Lead	34.3	mg/Kg - dry	0.528	1	08/07/23 19:52	JKC	6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information :	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023
01155			

Lab No : 90516 Sample ID : SS-NG-Playground					Matrix: Solids Sampled: 7/21/2023 6:20			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	16.5	%		1	07/26/23 13:50	CNC	SW-DRYWT	
Lead	16.5	mg/Kg - dry	18.0	1 50			6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSIS	
Raleigh , NC 27610		
Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023
01100		

Sample ID : SS-NG-Dup-2

Sampled: 7/21/2023 15:11

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	25.0 32.9	% mg/Kg - dry	0.400		07/26/23 13:50 08/07/23 20:00		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90518			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01100			

Lab No : 90518 Sample ID : SS-NG-152				Matrix: Solids Sampled: 7/21/2023 15:30			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	7.09 8.41	% mg/Kg - dry	0.322		07/26/23 13:50 08/07/23 20:05		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90519			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :		Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Sample ID : SS-NG-72

Sampled: 7/21/2023 15:58

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	39.8	%		1	07/26/23 13:50	CNC	SW-DRYWT
_ead	397	mg/Kg - dry	4.98	10	08/09/23 19:01	JKC	6010D

Qualifiers/	В	Analyte detected in blank	DF
Definitions	J	Estimated value	MQL

Dilution Factor

Method Quantitation Limit

Lab No : 90520		Matrix: Solids
Report Number : 23-206-0058	REPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :	Revised Report Date: 08/16/2023 Received: 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023

Sample ID : SS-NG-279

Sampled: 7/21/2023 15:38

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	23.1	%		1	07/26/23 13:50	CNC	SW-DRYW1
Lead	32.5	mg/Kg - dry	0.390	1	08/07/23 20:14	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/25/2023
Raleigh , NC 27610			
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
Lab No : 90521			Matrix: Solids

Sample ID : SS-NG-144

Sampled: 7/21/2023 15:15

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	23.1	%		1	07/26/23 13:50	CNC	SW-DRYWT
_ead	35.9	mg/Kg - dry	0.390		08/07/23 20:18		6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/25/2023
Raleigh , NC 27610			
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
· · · · · · · · · · · · · · · · · · ·			
Lab No : 90522			Matrix: Solids

Sample ID : SS-NG-137					2023 15:11		
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	17.2	%		1	07/26/23 13:50	CNC	SW-DRYWT
Lead	31.8	mg/Kg - dry	0.362	1	08/01/23 13:15	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/25/2023
Report Number : 23-206-0058	REPORT OF ANALYSIS	
Lab No : 90523		Matrix: Solids

Sample ID : SS-NG-131					Sampled: 7/21/2023				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	8.86	%		1	07/26/23 13:50	CNC	SW-DRYWT		
Lead	16.7	mg/Kg - dry	0.329	1	08/01/23 13:21	JKC	6010D		

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/25/2023
Raleigh, NC 27610			
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
Lab No : 90524			Matrix: Solids

Sample ID : SS-NG-91					Sampled: 7/21/2023 14:15			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	16.4	%		1	07/26/23 13:50	CNC	SW-DRYWT	
Lead	283	mg/Kg - dry	1.79	5	08/02/23 16:44	JKC	6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No :	90525			Matrix: Solids	
Report Num	nber : 23-206-0058	RI	EPORT OF ANALYSIS		
Kevin Clay 409 Rogers Raleigh , N	SView Court IC 27610	Information	:	Revised Report Date: 08/16/2023 Received : 07/25/2023	
Mid-Atlantic	c Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023	
	: Associates, Inc Raleigh	Project	R4370.00		

Sample ID : **SS-NG-Dup-1**

Sampled: 7/21/2023 14:16

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	52.5	%		1	07/26/23 13:50	CNC	SW-DRYWT
_ead	286	mg/Kg - dry	3.16	5	08/02/23 16:49	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :		Revised Report Date: 08/16/2023 Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023

Lab No : 90526 Sample ID : SS-NG-45					Matrix: Solids Sampled: 7/21/2023 16:40				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	33.7 43.3	% mg/Kg - dry	0.452		07/26/23 13:50 08/01/23 14:18		SW-DRYWT 6010D		

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date: 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/25/2023
Raleigh , NC 27610			
Report Number : 23-206-0058	REP	ORT OF ANALYSIS	
Lab No : 90527			Matrix: Solids

Sample ID : SS-NG-1				2023 14:30			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	31.4	%		1	07/26/23 13:50	CNC	SW-DRYWT
Lead	33.8	mg/Kg - dry	0.437	1	08/01/23 14:22	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	R	EPORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date: 08/10/2023 Revised Report Date: 08/16/2023

Lab No : 90528 Sample ID : SS-NG-184					Matrix: Sampled:		2023 14:28
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	12.9 309	% mg/Kg - dry	1.72		07/26/23 13:50 08/02/23 16:53		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSI	5
Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Information :	Revised Report Date: 08/16/2023 Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023

Lab No : 90529 Sample ID : SS-NG-116				Matrix: Sampled:		2023 16:10	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	24.6	%			07/20/22 12.50	CNC	
Lead	24.6 244	mg/Kg - dry	1.99		07/26/23 13:50 08/02/23 16:58		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90530			Matrix: Solids
Report Number : 23-206-0058	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	:	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01155			

Sample ID : SS-NG-226				Sampled:	7/21/	2023 14:47	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	21.4	%		1	07/26/23 13:50	CNC	SW-DRYWT
Lead	300	mg/Kg - dry	1.91	5	08/02/23 17:02	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01105		

Lab No : 90531 Sample ID : SS-NG-205					Matrix: Solids Sampled: 7/21/2023 14:48			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	10.6 87.0	% mg/Kg - dry	0.335		07/26/23 13:50 08/02/23 17:07		SW-DRYWT 6010D	

Lab No : 90532		Matrix: Solids
Report Number : 23-206-0058	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Sample ID : SS-NG-273

Sampled: 7/21/2023 15:44

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	11.1	%		1	07/26/23 13:50	CNC	SW-DRYWT
Lead	21.1	mg/Kg - dry	0.337	1	08/01/23 15:11	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

01100		
Mid-Atlantic Associates, Inc Raleig	igh Project R4370.00	Original Report Date : 08/10/2023
Kevin Clay		Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/25/2023
Raleigh , NC 27610		
Report Number : 23-206-0058	REPORT OF ANALYSIS	
Lab No : 90533		Matrix: Solids

Lab No : 90533 Sample ID : SS-NG-92					Matrix: Solids Sampled: 7/21/2023 15:45				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	53.2	%		1	07/26/23 13:50	CNC	SW-DRYWT		
Lead	365	mg/Kg - dry	3.21	5	08/02/23 17:11	JKC	6010D		

Qualifiers/	В	Analyte detected in blank				
Definitions	J	Estimated value				

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023
Report Number : 23-206-0058	REPORT OF ANALYSIS	

Lab No : 90534 Sample ID : SS-NG-100				Matrix: Solids Sampled: 7/21/2023 16:20			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	8.66	%		1	07/27/23 10:36	CNC	SW-DRYWT
Lead	143	mg/Kg - dry	1.64	5	08/02/23 17:15	JKC	6010D

Qualifiers/ B	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-206-0058	REPORT OF ANALYSI	5
Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Information :	Revised Report Date: 08/16/2023 Received : 07/25/2023
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023

Lab No : 90536 Sample ID : SS-NG-102					Matrix: Solids Sampled: 7/21/2023 15:24			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	19.6 25.5	% mg/Kg - dry	0.311		07/28/23 10:38 08/01/23 13:54		SW-DRYWT 6020B	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc. - RaleighProjectR4370.00Original Report Date : 08/10/2023Kevin ClayRevised Report Date:08/16/2023409 Rogers View CourtInformation :Received : 07/25/2023Raleigh , NC 27610Received : 07/25/2023

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No :	90537
Sample ID :	SS-NG-153

Matrix: **Solids** Sampled: **7/21/2023 15:24**

Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	16.8	%			1	07/28/23 10:38	CNC	SW-DRYWT
Antimony	<0.300	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Arsenic	1.11	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Barium	60.9	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Beryllium	0.309	mg/Kg - dry		0.300	5	08/02/23 14:50	CPW	6020B
Cadmium	<0.300	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Chromium	25.2	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Cobalt	7.72	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Copper	21.0	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Lead	12.7	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Manganese	726	mg/Kg - dry		1.20	20	08/02/23 14:46	CPW	6020B
Mercury (Total)	0.0488	mg/Kg - dry		0.0361	1	07/28/23 15:59	JKC	7471B
Nickel	16.7	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Selenium	<0.300	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Silver	0.768	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Thallium	<0.300	mg/Kg - dry		0.300	5	08/01/23 13:58	CPW	6020B
Vanadium	24.6	mg/Kg - dry		1.50	5	08/01/23 13:58	CPW	6020B
Zinc	75.0	mg/Kg - dry		3.00	5	08/01/23 13:58	CPW	6020B

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90537 Sample ID : SS-NG-153

Matrix: Solids Sampled: 7/21/2023 15:24

Analytical Method: Prep Method:	8270E 3546	P	rep Batch(es):	V35831	07/27/2	23 11:30)		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.557	mg/Kg - dry	0.557	3.17	4	07/28/23 16:30	AMP	V35874
Acenaphthylene		<0.504	mg/Kg - dry	0.504	3.17	4	07/28/23 16:30	AMP	V35874
Aniline		<0.730	mg/Kg - dry	0.730	3.17	4	07/28/23 16:30	AMP	V35874
Anthracene		<0.687	mg/Kg - dry	0.687	3.17	4	07/28/23 16:30	AMP	V35874
Benzo(a)anthracene		<0.668	mg/Kg - dry	0.668	3.17	4	07/28/23 16:30	AMP	V35874
Benzo(a)pyrene		<0.706	mg/Kg - dry	0.706	3.17	4	07/28/23 16:30	AMP	V35874
Benzo(b)fluoranthene		1.14 J	mg/Kg - dry	0.701	3.17	4	07/28/23 16:30	AMP	V35874
Benzo(g,h,i)perylene		<0.653	mg/Kg - dry	0.653	3.17	4	07/28/23 16:30	AMP	V35874
Benzo(k)fluoranthene		<0.658	mg/Kg - dry	0.658	3.17	4	07/28/23 16:30	AMP	V35874
Benzoic Acid		6.29 J	mg/Kg - dry	2.79	9.62	4	07/28/23 16:30	AMP	V35874
Benzyl alcohol		<0.504	mg/Kg - dry	0.504	3.17	4	07/28/23 16:30	AMP	V35874
Bis(2-Chloroethoxy)me	thane	<0.567	mg/Kg - dry	0.567	3.17	4	07/28/23 16:30	AMP	V35874
Bis(2-Chloroethyl)ether	r	<0.514	mg/Kg - dry	0.514	3.17	4	07/28/23 16:30	AMP	V35874
Bis(2-Chloroisopropyl)	ether	<0.653	mg/Kg - dry	0.653	1.59	4	07/28/23 16:30	AMP	V35874
Bis(2-ethylhexyl)phtha	late	<0.576	mg/Kg - dry	0.576	3.17	4	07/28/23 16:30	AMP	V35874
4-Bromophenyl phenyl	ether	<0.524	mg/Kg - dry	0.524	3.17	4	07/28/23 16:30	AMP	V35874
Butyl benzyl phthalate		<0.543	mg/Kg - dry	0.543	1.59	4	07/28/23 16:30	AMP	V35874
4-Chloro-3-methylpher	nol	<0.444	mg/Kg - dry	0.444	3.17	4	07/28/23 16:30	AMP	V35874
4-Chloroaniline		<0.538	mg/Kg - dry	0.538	1.59	4	07/28/23 16:30	AMP	V35874
2-Chloronaphthalene		<0.557	mg/Kg - dry	0.557	3.17	4	07/28/23 16:30	AMP	V35874
2-Chlorophenol		<0.472	mg/Kg - dry	0.472	3.17	4	07/28/23 16:30	AMP	V35874
4-Chlorophenyl phenyl	ether	<0.605	mg/Kg - dry	0.605	4.81	4	07/28/23 16:30	AMP	V35874

Qualifiers/ Definitions В J Estimated value

Analyte detected in blank

DF **Dilution Factor**

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Matrix: Solids

Sampled: 7/21/2023 15:24

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90537 Sample ID : SS-NG-153

2,6-Dinitrotoluene

Fluoranthene

Fluorene

Di-n-Octyl Phthalate

Hexachlorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Analytical Method: Prep Method:	8270E 3546	P	rep Batch(es):	V35831	07/27/2	23 11:30)		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene		0.700 J	mg/Kg - dry	0.682	3.17	4	07/28/23 16:30	AMP	V35874
Dibenz(a,h)anthracene	2	<1.11	mg/Kg - dry	1.11	3.17	4	07/28/23 16:30	AMP	V35874
Dibenzofuran		<0.572	mg/Kg - dry	0.572	3.17	4	07/28/23 16:30	AMP	V35874
1,2-Dichlorobenzene		<0.454	mg/Kg - dry	0.454	3.17	4	07/28/23 16:30	AMP	V35874
1,3-Dichlorobenzene		<0.467	mg/Kg - dry	0.467	3.17	4	07/28/23 16:30	AMP	V35874
1,4-Dichlorobenzene		<0.468	mg/Kg - dry	0.468	1.59	4	07/28/23 16:30	AMP	V35874
3,3'-Dichlorobenzidine		<0.706	mg/Kg - dry	0.706	3.17	4	07/28/23 16:30	AMP	V35874
2,4-Dichlorophenol		<0.460	mg/Kg - dry	0.460	3.17	4	07/28/23 16:30	AMP	V35874
Diethyl phthalate		<0.865	mg/Kg - dry	0.865	3.17	4	07/28/23 16:30	AMP	V35874
Dimethyl phthalate		<0.836	mg/Kg - dry	0.836	3.17	4	07/28/23 16:30	AMP	V35874
2,4-Dimethylphenol		<0.519	mg/Kg - dry	0.519	1.59	4	07/28/23 16:30	AMP	V35874
Di-n-butyl phthalate		<0.514	mg/Kg - dry	0.514	3.17	4	07/28/23 16:30	AMP	V35874
4,6-Dinitro-2-methylph	ienol	<1.15	mg/Kg - dry	1.15	7.21	4	07/28/23 16:30	AMP	V35874
2,4-Dinitrophenol		<2.50	mg/Kg - dry	2.50	7.21	4	07/28/23 16:30	AMP	V35874
2,4-Dinitrotoluene		<0.463	mg/Kg - dry	0.463	3.17	4	07/28/23 16:30	AMP	V35874

0.519

0.687

0.591

0.615

0.509

0.468

0.754

mg/Kg - dry

< 0.519

< 0.687

< 0.591

< 0.615

< 0.509

< 0.468

<0.754

Qualifiers/ В Definitions J

Analyte detected in blank Estimated value

DF **Dilution Factor**

3.17

1.59

3.17

3.17

3.17

3.17

3.17

MQL Method Quantitation Limit

4 07/28/23 16:30 AMP

V35874

V35874

V35874

V35874

V35874

V35874

V35874

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90537 Sample ID : SS-NG-153

Matrix: Solids Sampled: 7/21/2023 15:24

	8270E 3546	Pi	rep Batch(es):	V35831	07/27/2	23 11:3	0		
Fest		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane		<0.381	mg/Kg - dry	0.381	3.17	4	07/28/23 16:30	AMP	V35874
ndeno(1,2,3-cd)pyrene		<0.860	mg/Kg - dry	0.860	3.17	4	07/28/23 16:30	AMP	V35874
sophorone		<0.918	mg/Kg - dry	0.918	3.17	4	07/28/23 16:30	AMP	V35874
L-Methylnaphthalene		<0.509	mg/Kg - dry	0.509	3.17	4	07/28/23 16:30	AMP	V35874
2-Methylnaphthalene		<0.480	mg/Kg - dry	0.480	3.17	4	07/28/23 16:30	AMP	V35874
2-Methylphenol		<0.466	mg/Kg - dry	0.466	3.17	4	07/28/23 16:30	AMP	V35874
3&4 Methylphenol		<0.408	mg/Kg - dry	0.408	3.17	4	07/28/23 16:30	AMP	V35874
Naphthalene		<0.692	mg/Kg - dry	0.692	3.17	4	07/28/23 16:30	AMP	V35874
2-Nitroaniline		<0.465	mg/Kg - dry	0.465	3.17	4	07/28/23 16:30	AMP	V35874
3-Nitroaniline		<0.576	mg/Kg - dry	0.576	3.17	4	07/28/23 16:30	AMP	V35874
I-Nitroaniline		<0.448	mg/Kg - dry	0.448	1.59	4	07/28/23 16:30	AMP	V35874
Nitrobenzene		<0.557	mg/Kg - dry	0.557	1.59	4	07/28/23 16:30	AMP	V35874
2-Nitrophenol		<0.426	mg/Kg - dry	0.426	3.17	4	07/28/23 16:30	AMP	V35874
I-Nitrophenol		<0.562	mg/Kg - dry	0.562	3.17	4	07/28/23 16:30	AMP	V35874
N-Nitrosodimethylamine		<1.26	mg/Kg - dry	1.26	3.17	4	07/28/23 16:30	AMP	V35874
N-Nitrosodiphenylamine		<0.870	mg/Kg - dry	0.870	3.17	4	07/28/23 16:30	AMP	V35874
N-Nitroso-di-n-propylami	ne	<0.567	mg/Kg - dry	0.567	3.17	4	07/28/23 16:30	AMP	V35874
Pentachlorophenol		<1.67	mg/Kg - dry	1.67	4.81	4	07/28/23 16:30	AMP	V35874
Phenanthrene		<1.00	mg/Kg - dry	1.00	3.17	4	07/28/23 16:30	AMP	V35874
Phenol		<0.538	mg/Kg - dry	0.538	3.17	4	07/28/23 16:30	AMP	V35874
Pyrene		1.03 J	mg/Kg - dry	0.644	3.17	4	07/28/23 16:30	AMP	V35874
Pyridine		<0.381	mg/Kg - dry	0.381	1.59	4	07/28/23 16:30	AMP	V35874

Qualifiers/ Definitions В Analyte detected in blank Estimated value

J

DF **Dilution Factor**

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/25/2023

Information :

Report Number : 23-206-0058

REPORT OF ANALYSIS

Lab No : 90537 Sample ID : SS-NG-153

Matrix: Solids Sampled: 7/21/2023 15:24

Analytical Method: Prep Method:	8270E 3546	P	Prep Batch(es):	V35831	07/27/2	3 11:3	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene	:	<0.514	mg/Kg - dry	0.514	3.17	4	07/28/23 16:30	AMP	V35874
2,4,5-Trichlorophenol		<0.462	mg/Kg - dry	0.462	3.17	4	07/28/23 16:30	AMP	V35874
2,4,6-Trichlorophenol		<0.463	mg/Kg - dry	0.463	3.17	4	07/28/23 16:30	AMP	V35874
Surrogate: Phe	nol-d5		61.3	Limits	: 34-121%		4 07/28/23 16:3	30 AMP	8270E
Surrogate: 2-Fl	uorobiphenyl		76.6	Limits	: 44-115%		4 07/28/23 16:3	30 AMP	V35874
Surrogate: 2-Fl	uorophenol		61.0	Limits	: 35-115%		4 07/28/23 16:3	30 AMP	V35874
Surrogate: Nitro	obenzene-d5		71.3	Limits	: 37-122%		4 07/28/23 16:3	BO AMP	V35874
Surrogate: 4-Te	erphenyl-d14		85.0	Limits	: 54-127%		4 07/28/23 16:3	BO AMP	V35874
Surrogate: 2,4,	6-Tribromophenol		68.5	Limits	: 39-132%		4 07/28/23 16:3	30 AMP	V35874

Client ID:	Mid-Atlantic Asso	ciates, Ir	nc Rale	igh								
Project Description:	R4370.00											
Report No:	23-206-0058											
QC Prep:	V35953			QC Anal	ytical Batc	h(es):	V3610	1,V3614	5			
QC Prep Batch Method:	3050B			Analysis	Method:		6010D					
				Analysis	Descriptio	on:	Metals	Analysis				
Lab Reagent Blank		LRB-V35	5953		Matrix: So	OL						
Associated Lab Samples:	90522, 90523, 905	24, 90525	5, 90526,	90527, 9052	28, 90529,	90530,	90531,	90532,	90533, 9053	4		
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/0	1/23 13:	:07				
Laboratory Control Sam	ple	LCS-V35	5953									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec	:	% Rec Limits			
Lead	mg/Kg	5.00		5.83			117		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90534	I-MS-V359	53 V 90534	4-MSD-V359	53						
Parameter	Units	Result	MS Spik Conc.	e MSD Spike Conc.	MS Result	: MS Res		MS %Rec	MSD %Rec	%Rec Limits		Max RPD
Lead	mg/Kg	131	5.00	5.00	123	1	28	0.0*	0.0*	75-125	3.9	20
Post Digestion Spike		V 90534	I-PDS-V35	953								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Kg	72.7		284*		08/02	2/23 17:	:20				

Client ID:	Mid-A	tlantic A	ssoci	ates, In	c Rale	igh										
Project Description:	R4370	0.00														
Report No:	23-20	6-0058														
QC Prep:	V3608	86				QC	Analy	tical Bato	ch(es):	V3621	3,V36316	5				
QC Prep Batch Method	: 3050	В				Ana	alysis I	Method:		6010D						
						An	alysis I	Descriptio	on:	Metals	Analysis					
Lab Reagent Blank				LRB-V36	086			Matrix: S	OL							
Associated Lab Samples:		90503, 90519, 9	90520,	, 90521	, 90506,			, 90509,			90513,	90514,	90515,	90516	, 90517,	
Parameter		Unit		Blank Result		M	δr		An	alyzed						
Lead		mg/	Kg	<0.300		0.	300		08/0	3/23 19:	45					
Laboratory Control San	nple			LCS-V36	086											
Parameter		Unit		Spike Conc.		LC Res	-		LCS	5 %Rec	:	% R Limi				
Lead		mg/	Kg	5.00		5	.67			113		80-1	20			
Matrix Spike & Matrix S	Spike D	uplicate		V 90507-	-MS-V360)86 V	90507-	MSD-V360)86							
Parameter		Unit	s I	Result	MS Spik Conc.	ke MS Spi Cor	ike	MS Result	t MS Res		MS %Rec	MS %R		%Rec Limits	RPD	Max RPD
Lead		mg/	Kg	23.2	5.00	5	.00	30.0	3	0.0	136*	136	*	75-125	0.0	20
Post Digestion Spike				V 90507-	-PDS-V36	086										
Parameter		Unit	s I	PDS Result		% Reco			An	alyzed						
Lead		mg/	Kg	25.6		1	07		08/0	7/23 18:	59					

Client ID:	Mid-Atlantic Asso	ciates, Inc Rale	igh		
Project Description:	R4370.00				
Report No:	23-206-0058				
QC Prep: QC Prep Batch Method:	L695858 3050B		QC Analytica Analysis Met Analysis Des	hod:	L696237,L696547,L698986 6020B Metals Analyses
Lab Reagent Blank Associated Lab Samples:	90511, 90536, 905	LRB-L695858 37	M	atrix: SOL	
Parameter	Units	Blank Result	MQL	An	alyzed
Antimony	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Arsenic	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Barium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Beryllium	mg/Kg	<0.250	0.250	08/02	2/23 14:22
Cadmium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Chromium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Cobalt	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Copper	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Lead	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Manganese	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Nickel	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Selenium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Silver	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Thallium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Vanadium	mg/Kg	<1.25	1.25	08/0	1/23 13:34
Zinc	mg/Kg	<2.50	2.50	08/0	1/23 13:34

Laboratory Control Sample

LCS-L695858

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Antimony	mg/Kg	5.00	4.69	94.0	80-120	
Arsenic	mg/Kg	2.50	2.38	95.0	80-120	
Barium	mg/Kg	5.00	4.59	92.0	80-120	
Beryllium	mg/Kg	2.50	2.38	95.0	80-120	
Cadmium	mg/Kg	0.500	0.480	96.0	80-120	
Chromium	mg/Kg	5.00	4.77	95.0	80-120	
Cobalt	mg/Kg	5.00	4.70	94.0	80-120	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	n	
Project Description:	R4370.00		
Report No:	23-206-0058		
QC Prep:	L695858	QC Analytical Batch(es):	L696237,L696547,L698986
QC Prep Batch Method:	3050B	Analysis Method:	6020B
		Analysis Description:	Metals Analyses

Laboratory Control Sample

LCS-L695858

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Copper	mg/Kg	2.50	2.52	101	80-120	
Lead	mg/Kg	2.50	2.34	94.0	80-120	
Manganese	mg/Kg	5.00	5.10	102	80-120	
Nickel	mg/Kg	2.50	2.44	98.0	80-120	
Selenium	mg/Kg	5.00	4.84	97.0	80-120	
Silver	mg/Kg	0.500	0.470	94.0	80-120	
Thallium	mg/Kg	0.500	0.464	93.0	80-120	
Vanadium	mg/Kg	25.0	23.0	92.0	80-120	
Zinc	mg/Kg	25.0	24.0	96.0	80-120	

Matrix Spike & Matrix Spike Duplicate

V 90647-MS-L695858 V 90647-MSD-L695858

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Antimony	mg/Kg	0.964	4.98	4.82	3.09	2.49	43.0*	32.0*	75-125	21.5	80
Arsenic	mg/Kg	2.64	2.49	2.41	8.13	4.82	221*	91.0	75-125	51.1	80
Barium	mg/Kg	80.1	4.98	4.82	86.5	95.6	129*	322*	75-125	9.9	80
Beryllium	mg/Kg	0.278	2.49	2.41	2.56	2.82	92.0	106	75-125	9.6	80
Cadmium	mg/Kg	0.600	0.498	0.482	1.14	1.05	109	93.0	75-125	8.2	80
Chromium	mg/Kg	11.7	4.98	4.82	16.6	15.9	98.0	87.0	75-125	4.3	80
Cobalt	mg/Kg	3.12	4.98	4.82	8.15	7.50	101	91.0	75-125	8.3	80
Copper	mg/Kg	53.2	2.49	2.41	60.8	54.6	306*	58.0*	75-125	10.7	80
Lead	mg/Kg	188	2.49	2.41	203	186	603*	0.0*	75-125	8.7	80
Manganese	mg/Kg	156	4.98	4.82	180	174	482*	374*	75-125	3.3	80
Nickel	mg/Kg	9.31	2.49	2.41	13.6	11.3	172*	83.0	75-125	18.4	80
Selenium	mg/Kg	0.321	4.98	4.82	4.43	4.43	83.0	85.0	75-125	0.0	80
Silver	mg/Kg	<0.250	0.498	0.482	0.689	0.686	91.0	94.0	75-125	0.4	80

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-206-0058		
QC Prep:	L695858	QC Analytical Batch(es):	L696237,L696547,L698986
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses

Matrix Spike & Matrix Spike Duplicate

V 90647-MS-L695858 V 90647-MSD-L695858

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Thallium	mg/Kg	<0.250	0.498	0.482	0.492	0.489	74.0*	76.0	75-125	0.6	80
Vanadium	mg/Kg	10.1	24.9	24.1	31.8	31.3	87.0	88.0	75-125	1.5	80
Zinc	mg/Kg	259	24.9	24.1	334	281	302*	91.0	75-125	17.2	80

Post Digestion Spike

V 90647-PDS-L695858

Parameter	Units	PDS Result	% Recovery	Analyzed
Antimony	mg/Kg	2.26	92.0	08/02/23 16:09
Arsenic	mg/Kg	1.36	95.0	08/01/23 14:36
Barium	mg/Kg	10.2	99.0	08/01/23 14:36
Beryllium	mg/Kg	1.13	94.0	08/02/23 16:09
Cadmium	mg/Kg	0.288	98.0	08/01/23 14:36
Chromium	mg/Kg	3.42	97.0	08/01/23 14:36
Cobalt	mg/Kg	2.58	97.0	08/01/23 14:36
Copper	mg/Kg	2.50	112	08/02/23 15:41
Lead	mg/Kg	19.8	99.0	08/01/23 14:36
Manganese	mg/Kg	17.4	97.0	08/01/23 14:36
Nickel	mg/Kg	2.08	99.0	08/01/23 14:36
Selenium	mg/Kg	2.32	97.0	08/01/23 14:36
Silver	mg/Kg	<0.250	94.0	08/01/23 14:36
Thallium	mg/Kg	<0.250	94.0	08/01/23 14:36
Vanadium	mg/Kg	12.2	96.0	08/01/23 14:36
Zinc	mg/Kg	36.6	97.0	08/01/23 14:36

Client ID:	Mid-Atlantic Asso	ciates, In	nc Raleig	h								
Project Description:	R4370.00											
Report No:	23-206-0058											
QC Prep:	V35873			QC Ana	lytical Batch	(es):	V35952					
QC Prep Batch Method:	7471B (Prep)			-	s Method:		7471B					
				Analysis	s Descriptior	ı :	Solids T	otal Merci	ury Analysis	- CVAA		
Lab Reagent Blank		LRB-V35	5873		Matrix: SO	L						
Associated Lab Samples:	90511, 90537											
Parameter	Units	Blank Result		MQL		Ana	lyzed					
Mercury (Total)	mg/Kg	<0.0300		0.0300		07/28,	/23 15:4	3				
Laboratory Control Sam	ple	LCS-V35	5873									
Parameter	Units	Spike Conc.		LCS Result		LCS	%Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.417		0.451			108		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90819)-MS-V35873	3 V 9081	9-MSD-V3587	3						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Resu		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	<0.0300	0.410	0.397	0.400	0.3	62	98.0	91.0	80-120	9.9	20
Post Digestion Spike		V 90819)-PDS-V3587	'3								
Parameter	Units	PDS Result		% Recovery		Ana	lyzed					
Mercury (Total)	mg/Kg	0.200		101		07/28,	/23 16:1	.5				

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, Ind	c Raleigh					
QC Prep: QC Prep Batch Method:	V35831 3546			QC Analytica Analysis Met Analysis Dese	nod:	V35874 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples: 9	90511, 90537	LRB-V358	331	Ма	trix: SOL			
Parameter	Units	Blank Result	MDL	MQL	Ana	lyzed	% Recovery	% Rec Limits
Acenaphthene	mg/Kg	<0.116	0.116	0.660	07/27/	/23 16:49		
Acenaphthylene	mg/Kg	<0.105	0.105	0.660	07/27/	/23 16:49		
Aniline	mg/Kg	<0.152	0.152	0.660	07/27/	/23 16:49		
Anthracene	mg/Kg	<0.143	0.143	0.660	07/27/	/23 16:49		
Benzo(a)anthracene	mg/Kg	<0.139	0.139	0.660	07/27/	/23 16:49		
Benzo(a)pyrene	mg/Kg	<0.147	0.147	0.660	07/27/	/23 16:49		
Benzo(b)fluoranthene	mg/Kg	<0.146	0.146	0.660	07/27/	/23 16:49		
Benzo(g,h,i)perylene	mg/Kg	<0.136	0.136	0.660	07/27/	/23 16:49		
Benzo(k)fluoranthene	mg/Kg	<0.137	0.137	0.660	07/27/	/23 16:49		
Benzoic Acid	mg/Kg	<0.580	0.580	2.00	07/27/	/23 16:49		
Benzyl alcohol	mg/Kg	<0.105	0.105	0.660	07/27/	/23 16:49		
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	0.118	0.660	07/27/	/23 16:49		
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	0.107	0.660	07/27/	/23 16:49		
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	0.136	0.330	07/27/	/23 16:49		
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	0.120	0.660	07/27/	/23 16:49		
1-Bromophenyl phenyl ether	mg/Kg	<0.109	0.109	0.660	07/27/	/23 16:49		
Butyl benzyl phthalate	mg/Kg	<0.113	0.113	0.330	07/27/	/23 16:49		
1-Chloro-3-methylphenol	mg/Kg	<0.092	0.092	0.660	07/27/	/23 16:49		
1-Chloroaniline	mg/Kg	<0.112	0.112	0.330	07/27/	/23 16:49		
2-Chloronaphthalene	mg/Kg	<0.116	0.116	0.660	07/27/	/23 16:49		
2-Chlorophenol	mg/Kg	<0.098	0.098	0.660	07/27/	/23 16:49		
1-Chlorophenyl phenyl ether	mg/Kg	<0.126	0.126	1.00	07/27/	/23 16:49		
Chrysene	mg/Kg	<0.142	0.142	0.660	07/27/	/23 16:49		
Dibenz(a,h)anthracene	mg/Kg	<0.230	0.230	0.660	07/27/	/23 16:49		
Dibenzofuran	mg/Kg	<0.119	0.119	0.660	07/27/	/23 16:49		
1,2-Dichlorobenzene	mg/Kg	<0.094	0.094	0.660	07/27/	/23 16:49		
1,3-Dichlorobenzene	mg/Kg	<0.097	0.097	0.660	07/27/	/23 16:49		

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, Ind	c Raleigi	ı				
QC Prep: QC Prep Batch Method:	V35831 3546			QC Analytical Analysis Metl Analysis Desc	nod:	V35874 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples:	90511, 90537	LRB-V358	331	Mai	rix: SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	mg/Kg	<0.097	0.097	0.330	07/2	7/23 16:49		
3,3'-Dichlorobenzidine	mg/Kg	<0.147	0.147	0.660	07/2	7/23 16:49		
2,4-Dichlorophenol	mg/Kg	<0.095	0.095	0.660	07/2	7/23 16:49		
Diethyl phthalate	mg/Kg	<0.180	0.180	0.660	07/2	7/23 16:49		
Dimethyl phthalate	mg/Kg	<0.174	0.174	0.660	07/2	7/23 16:49		
2,4-Dimethylphenol	mg/Kg	<0.108	0.108	0.330	07/2	7/23 16:49		
Di-n-butyl phthalate	mg/Kg	<0.107	0.107	0.660	07/2	7/23 16:49		
1,6-Dinitro-2-methylphenol	mg/Kg	<0.240	0.240	1.50	07/2	7/23 16:49		
2,4-Dinitrophenol	mg/Kg	<0.520	0.520	1.50	07/2	7/23 16:49		
2,4-Dinitrotoluene	mg/Kg	<0.096	0.096	0.660	07/2	7/23 16:49		
2,6-Dinitrotoluene	mg/Kg	<0.108	0.108	0.660	07/2	7/23 16:49		
Di-n-Octyl Phthalate	mg/Kg	<0.143	0.143	0.330	07/2	7/23 16:49		
Fluoranthene	mg/Kg	<0.123	0.123	0.660	07/2	7/23 16:49		
Fluorene	mg/Kg	<0.128	0.128	0.660	07/2	7/23 16:49		
Hexachlorobenzene	mg/Kg	<0.106	0.106	0.660	07/2	7/23 16:49		
Hexachlorobutadiene	mg/Kg	<0.097	0.097	0.660	07/2	7/23 16:49		
Hexachlorocyclopentadiene	mg/Kg	<0.157	0.157	0.660	07/2	7/23 16:49		
Hexachloroethane	mg/Kg	<0.079	0.079	0.660	07/2	7/23 16:49		
Indeno(1,2,3-cd)pyrene	mg/Kg	<0.179	0.179	0.660	07/2	7/23 16:49		
Isophorone	mg/Kg	<0.191	0.191	0.660	07/2	7/23 16:49		
1-Methylnaphthalene	mg/Kg	<0.106	0.106	0.660	07/2	7/23 16:49		
2-Methylnaphthalene	mg/Kg	<0.100	0.100	0.660	07/2	7/23 16:49		
2-Methylphenol	mg/Kg	<0.097	0.097	0.660	07/2	7/23 16:49		
3&4 Methylphenol	mg/Kg	<0.084	0.084	0.660	07/2	7/23 16:49		
Naphthalene	mg/Kg	<0.144	0.144	0.660	07/2	7/23 16:49		
2-Nitroaniline	mg/Kg	<0.096	0.096	0.660	07/2	7/23 16:49		
3-Nitroaniline	mg/Kg	<0.120	0.120	0.660	07/2	7/23 16:49		

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, Ind	c Raleigh	1				
QC Prep: QC Prep Batch Method:	V35831 3546		Analysis Met	QC Analytical Batch(es):V35874Analysis Method:8270EAnalysis Description:Semivolatile Or			GC/MS	
Lab Reagent Blank Associated Lab Samples:	90511, 90537	LRB-V35	831	Matrix: SOL				
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
4-Nitroaniline	mg/Kg	<0.093	0.093	0.330	07/22	7/23 16:49		
Nitrobenzene	mg/Kg	<0.116	0.116	0.330	07/22	7/23 16:49		
2-Nitrophenol	mg/Kg	<0.088	0.088	0.660	07/22	7/23 16:49		
4-Nitrophenol	mg/Kg	<0.117	0.117	0.660	07/22	7/23 16:49		
N-Nitrosodimethylamine	mg/Kg	<0.263	0.263	0.660	07/22	7/23 16:49		
N-Nitrosodiphenylamine	mg/Kg	<0.181	0.181	0.660	07/22	7/23 16:49		
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	0.118	0.660	07/22	7/23 16:49		
Pentachlorophenol	mg/Kg	<0.347	0.347	1.00	07/22	7/23 16:49		
Phenanthrene	mg/Kg	<0.208	0.208	0.660	07/22	7/23 16:49		
Phenol	mg/Kg	<0.112	0.112	0.660	07/22	7/23 16:49		
Pyrene	mg/Kg	<0.134	0.134	0.660	07/22	7/23 16:49		
Pyridine	mg/Kg	<0.079	0.079	0.330	07/22	7/23 16:49		
1,2,4-Trichlorobenzene	mg/Kg	<0.107	0.107	0.660	07/22	7/23 16:49		
2,4,5-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	07/22	7/23 16:49		
2,4,6-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	07/22	7/23 16:49		
2-Fluorobiphenyl (S)					07/22	7/23 16:49	90.4	44-115
2-Fluorophenol (S)					07/22	7/23 16:49	83.1	35-115
Nitrobenzene-d5 (S)					07/22	7/23 16:49	86.8	37-122
4-Terphenyl-d14 (S)					07/22	7/23 16:49	102	54-127
2,4,6-Tribromophenol (S)					07/22	7/23 16:49	69.9	39-132
Phenol-d5 (S)					07/2	7/23 16:49	75.6	34-121

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Acenaphthene	mg/Kg	1.67	1.55	92.8	40-123	
Acenaphthylene	mg/Kg	1.67	1.57	94.0	32-132	

Client ID:	Mid-Atlantic Associates, Inc Raleigh									
Project Description:	R4370.00									
Report No:	23-206-0058									
QC Prep:	V35831	QC Analytical Batch(es):	V35874							
QC Prep Batch Method:	3546	Analysis Method:	8270E							
		Analysis Description:	Semivolatile Organic Compounds - GC/MS							

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Aniline	mg/Kg	1.67	2.61	156	12-197	
Anthracene	mg/Kg	1.67	1.75	105	47-123	
Benzo(a)anthracene	mg/Kg	1.67	1.70	102	49-126	
Benzo(a)pyrene	mg/Kg	1.67	1.89	113	45-129	
Benzo(b)fluoranthene	mg/Kg	1.67	1.85	111	45-132	
Benzo(g,h,i)perylene	mg/Kg	1.67	1.69	101	43-134	
Benzo(k)fluoranthene	mg/Kg	1.67	1.70	102	47-132	
Benzoic Acid	mg/Kg	1.67	0.641	38.3	10-83	
Benzyl alcohol	mg/Kg	1.67	1.58	94.6	29-122	
Bis(2-Chloroethoxy)methane	mg/Kg	1.67	1.41	84.4	36-121	
Bis(2-Chloroethyl)ether	mg/Kg	1.67	1.49	89.2	31-120	
Bis(2-Chloroisopropyl)ether	mg/Kg	1.67	1.62	97.0	33-131	
Bis(2-ethylhexyl)phthalate	mg/Kg	1.67	1.87	112	51-133	
4-Bromophenyl phenyl ether	mg/Kg	1.67	1.67	100	46-124	
Butyl benzyl phthalate	mg/Kg	1.67	1.86	111	48-132	
4-Chloro-3-methylphenol	mg/Kg	1.67	1.37	82.0	45-122	
4-Chloroaniline	mg/Kg	1.67	1.50	89.8	17-106	
2-Chloronaphthalene	mg/Kg	1.67	1.54	92.2	41-114	
2-Chlorophenol	mg/Kg	1.67	1.50	89.8	34-121	
4-Chlorophenyl phenyl ether	mg/Kg	1.67	1.54	92.2	45-121	
Chrysene	mg/Kg	1.67	1.65	98.8	50-124	
Dibenz(a,h)anthracene	mg/Kg	1.67	1.74	104	45-134	
Dibenzofuran	mg/Kg	1.67	1.53	91.6	44-120	
1,2-Dichlorobenzene	mg/Kg	1.67	1.35	80.8	33-117	
1,3-Dichlorobenzene	mg/Kg	1.67	1.32	79.0	30-115	
1,4-Dichlorobenzene	mg/Kg	1.67	1.32	79.0	31-115	
3,3'-Dichlorobenzidine	mg/Kg	1.67	1.59	95.2	22-121	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-206-0058		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
2,4-Dichlorophenol	mg/Kg	1.67	1.33	79.6	40-122	
Diethyl phthalate	mg/Kg	1.67	1.69	101	50-124	
Dimethyl phthalate	mg/Kg	1.67	1.67	100	48-124	
2,4-Dimethylphenol	mg/Kg	1.67	1.82	109	30-127	
Di-n-butyl phthalate	mg/Kg	1.67	1.94	116	51-128	
4,6-Dinitro-2-methylphenol	mg/Kg	1.67	1.59	95.2	29-132	
2,4-Dinitrophenol	mg/Kg	1.67	1.36	81.4	27-129	
2,4-Dinitrotoluene	mg/Kg	1.67	1.71	102	48-126	
2,6-Dinitrotoluene	mg/Kg	1.67	1.67	100	46-124	
Di-n-Octyl Phthalate	mg/Kg	1.67	2.05	123	45-140	
Fluoranthene	mg/Kg	1.67	1.70	102	50-127	
Fluorene	mg/Kg	1.67	1.57	94.0	43-125	
Hexachlorobenzene	mg/Kg	1.67	1.58	94.6	45-122	
Hexachlorobutadiene	mg/Kg	1.67	1.23	73.6	32-123	
Hexachlorocyclopentadiene	mg/Kg	1.67	1.41	84.4	32-117	
Hexachloroethane	mg/Kg	1.67	1.31	78.4	28-117	
Indeno(1,2,3-cd)pyrene	mg/Kg	1.67	1.72	103	45-133	
Isophorone	mg/Kg	1.67	1.25	74.8	30-122	
1-Methylnaphthalene	mg/Kg	1.67	1.29	77.2	40-119	
2-Methylnaphthalene	mg/Kg	1.67	1.26	75.4	38-122	
2-Methylphenol	mg/Kg	1.67	1.58	94.6	32-122	
3&4 Methylphenol	mg/Kg	1.67	1.42	85.0	34-119	
Naphthalene	mg/Kg	1.67	1.27	76.0	35-123	
2-Nitroaniline	mg/Kg	1.67	1.77	106	44-127	
3-Nitroaniline	mg/Kg	1.67	1.77	106	33-119	
4-Nitroaniline	mg/Kg	1.67	1.80	108	63-147	
Nitrobenzene	mg/Kg	1.67	1.29	77.2	34-122	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	ı	
Project Description:	R4370.00		
Report No:	23-206-0058		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method: Analysis Description:	8270E Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
2-Nitrophenol	mg/Kg	1.67	1.31	78.4	36-123	
4-Nitrophenol	mg/Kg	1.67	1.81	108	30-132	
N-Nitrosodimethylamine	mg/Kg	1.67	1.35	80.8	10-146	
N-Nitrosodiphenylamine	mg/Kg	1.67	2.02	121	38-127	
N-Nitroso-di-n-propylamine	mg/Kg	1.67	1.57	94.0	36-120	
Pentachlorophenol	mg/Kg	1.67	1.63	97.6	25-133	
Phenanthrene	mg/Kg	1.67	1.67	100	50-121	
Phenol	mg/Kg	1.67	1.50	89.8	34-121	
Pyrene	mg/Kg	1.67	1.56	93.4	47-127	
Pyridine	mg/Kg	1.67	1.08	64.6	10-80	
1,2,4-Trichlorobenzene	mg/Kg	1.67	1.18	70.6	34-118	
2,4,5-Trichlorophenol	mg/Kg	1.67	1.59	95.2	41-124	
2,4,6-Trichlorophenol	mg/Kg	1.67	1.54	92.2	39-126	
2-Fluorobiphenyl (S)				92.2	44-115	
2-Fluorophenol (S)				88.8	35-115	
Nitrobenzene-d5 (S)				77.8	37-122	
4-Terphenyl-d14 (S)				97.6	54-127	
2,4,6-Tribromophenol (S)				79.5	39-132	
Phenol-d5 (S)				78.3	34-121	

Matrix Spike & Matrix Spike Duplicate

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Acenaphthene	mg/Kg	<0.116	1.67	1.67	1.48	1.39	88.6	83.2	40-123	6.2	20
Acenaphthylene	mg/Kg	<0.105	1.67	1.67	1.48	1.39	88.6	83.2	32-132	6.2	20
Aniline	mg/Kg	<0.152	1.67	1.67	2.55	2.32	153	139	12-197	9.4	20

Client ID:	lid-Atlantic Associates, Inc Raleigh									
Project Description:	R4370.00									
Report No:	23-206-0058									
QC Prep:	V35831	QC Analytical Batch(es):	V35874							
QC Prep Batch Method:	3546	Analysis Method:	8270E							
		Analysis Description:	Semivolatile Organic Compounds - GC/MS							

Matrix Spike & Matrix Spike Duplicate

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Anthracene	mg/Kg	<0.143	1.67	1.67	1.65	1.60	98.8	95.8	47-123	3.0	20
Benzo(a)anthracene	mg/Kg	<0.139	1.67	1.67	1.63	1.55	97.6	92.8	49-126	5.0	20
Benzo(a)pyrene	mg/Kg	<0.147	1.67	1.67	1.84	1.77	110	106	45-129	3.8	20
Benzo(b)fluoranthene	mg/Kg	<0.146	1.67	1.67	1.74	1.64	104	98.2	45-132	5.9	20
Benzo(g,h,i)perylene	mg/Kg	<0.136	1.67	1.67	1.61	1.52	96.4	91.0	43-134	5.7	20
Benzo(k)fluoranthene	mg/Kg	<0.137	1.67	1.67	1.67	1.58	100	94.6	47-132	5.5	20
Benzoic Acid	mg/Kg	<0.580	1.67	1.67	<0.580	<0.580	0.0*	0.0*	10-83	0.0	20
Benzyl alcohol	mg/Kg	<0.105	1.67	1.67	1.48	1.41	88.6	84.4	29-122	4.8	20
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	1.67	1.67	1.33	1.24	79.6	74.2	36-121	7.0	20
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	1.67	1.67	1.46	1.31	87.4	78.4	31-120	10.8	20
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	1.67	1.67	1.51	1.37	90.4	82.0	33-131	9.7	20
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	1.67	1.67	1.85	1.80	111	108	51-133	2.7	20
4-Bromophenyl phenyl ether	mg/Kg	<0.109	1.67	1.67	1.59	1.53	95.2	91.6	46-124	3.8	20
Butyl benzyl phthalate	mg/Kg	<0.113	1.67	1.67	1.94	1.83	116	110	48-132	5.8	20
4-Chloro-3-methylphenol	mg/Kg	<0.092	1.67	1.67	1.33	1.33	79.6	79.6	45-122	0.0	20
4-Chloroaniline	mg/Kg	<0.112	1.67	1.67	1.43	1.37	85.6	82.0	17-106	4.2	20
2-Chloronaphthalene	mg/Kg	<0.116	1.67	1.67	1.48	1.37	88.6	82.0	41-114	7.7	20
2-Chlorophenol	mg/Kg	<0.098	1.67	1.67	1.46	1.31	87.4	78.4	34-121	10.8	20
4-Chlorophenyl phenyl ether	mg/Kg	<0.126	1.67	1.67	1.46	1.41	87.4	84.4	45-121	3.4	20
Chrysene	mg/Kg	<0.142	1.67	1.67	1.57	1.50	94.0	89.8	50-124	4.5	20
Dibenz(a,h)anthracene	mg/Kg	<0.230	1.67	1.67	1.61	1.46	96.4	87.4	45-134	9.7	20
Dibenzofuran	mg/Kg	<0.119	1.67	1.67	1.47	1.40	88.0	83.8	44-120	4.8	20
1,2-Dichlorobenzene	mg/Kg	<0.094	1.67	1.67	1.27	1.12	76.0	67.0	33-117	12.5	20
1,3-Dichlorobenzene	mg/Kg	<0.097	1.67	1.67	1.27	1.10	76.0	65.8	30-115	14.3	20
1,4-Dichlorobenzene	mg/Kg	<0.097	1.67	1.67	1.24	1.09	74.2	65.2	31-115	12.8	20
3,3'-Dichlorobenzidine	mg/Kg	<0.147	1.67	1.67	1.56	1.51	93.4	90.4	22-121	3.2	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh									
Project Description:	R4370.00									
Report No:	23-206-0058									
QC Prep:	V35831	QC Analytical Batch(es):	V35874							
QC Prep Batch Method:	3546	Analysis Method:	8270E							
		Analysis Description:	Semivolatile Organic Compounds - GC/MS							

Matrix Spike & Matrix Spike Duplicate

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
2,4-Dichlorophenol	mg/Kg	<0.095	1.67	1.67	1.32	1.19	79.0	71.2	40-122	10.3	20
Diethyl phthalate	mg/Kg	<0.180	1.67	1.67	1.61	1.54	96.4	92.2	50-124	4.4	20
Dimethyl phthalate	mg/Kg	<0.174	1.67	1.67	1.54	1.51	92.2	90.4	48-124	1.9	30
2,4-Dimethylphenol	mg/Kg	<0.108	1.67	1.67	1.80	1.68	108	101	30-127	6.8	20
Di-n-butyl phthalate	mg/Kg	<0.107	1.67	1.67	1.78	1.73	107	104	51-128	2.8	20
4,6-Dinitro-2-methylphenol	mg/Kg	<0.240	1.67	1.67	1.46	1.37	87.4	82.0	29-132	6.3	20
2,4-Dinitrophenol	mg/Kg	<0.520	1.67	1.67	1.26	1.15	75.4	68.8	27-129	9.1	20
2,4-Dinitrotoluene	mg/Kg	<0.096	1.67	1.67	1.60	1.50	95.8	89.8	48-126	6.4	20
2,6-Dinitrotoluene	mg/Kg	<0.108	1.67	1.67	1.55	1.46	92.8	87.4	46-124	5.9	20
Di-n-Octyl Phthalate	mg/Kg	<0.143	1.67	1.67	2.13	2.03	128	122	45-140	4.8	20
Fluoranthene	mg/Kg	<0.123	1.67	1.67	1.46	1.42	87.4	85.0	50-127	2.7	20
Fluorene	mg/Kg	<0.128	1.67	1.67	1.49	1.42	89.2	85.0	43-125	4.8	20
Hexachlorobenzene	mg/Kg	<0.106	1.67	1.67	1.47	1.43	88.0	85.6	45-122	2.7	20
Hexachlorobutadiene	mg/Kg	<0.097	1.67	1.67	1.18	1.11	70.6	66.4	32-123	6.1	20
Hexachlorocyclopentadiene	mg/Kg	<0.157	1.67	1.67	1.22	0.607	73.0	36.3	32-117	67.1*	20
Hexachloroethane	mg/Kg	<0.079	1.67	1.67	1.22	1.10	73.0	65.8	28-117	10.3	20
Indeno(1,2,3-cd)pyrene	mg/Kg	<0.179	1.67	1.67	1.68	1.56	101	93.4	45-133	7.4	20
Isophorone	mg/Kg	<0.191	1.67	1.67	1.19	1.08	71.2	64.6	30-122	9.6	20
1-Methylnaphthalene	mg/Kg	<0.106	1.67	1.67	1.22	1.18	73.0	70.6	40-119	3.3	20
2-Methylnaphthalene	mg/Kg	<0.100	1.67	1.67	1.23	1.16	73.6	69.4	38-122	5.8	20
2-Methylphenol	mg/Kg	<0.097	1.67	1.67	1.52	1.39	91.0	83.2	32-122	8.9	20
3&4 Methylphenol	mg/Kg	<0.084	1.67	1.67	1.34	1.28	80.2	76.6	34-119	4.5	20
Naphthalene	mg/Kg	<0.144	1.67	1.67	1.22	1.11	73.0	66.4	35-123	9.4	20
2-Nitroaniline	mg/Kg	<0.096	1.67	1.67	1.61	1.58	96.4	94.6	44-127	1.8	20
3-Nitroaniline	mg/Kg	<0.120	1.67	1.67	1.65	1.59	98.8	95.2	33-119	3.7	20
4-Nitroaniline	mg/Kg	<0.093	1.67	1.67	1.65	1.62	98.8	97.0	63-147	1.8	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh									
Project Description:	R4370.00									
Report No:	23-206-0058									
QC Prep:	V35831	QC Analytical Batch(es):	V35874							
QC Prep Batch Method:	3546	Analysis Method: Analysis Description:	8270E Semivolatile Organic Compounds - GC/MS							

Matrix Spike & Matrix Spike Duplicate

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Nitrobenzene	mg/Kg	<0.116	1.67	1.67	1.21	1.10	72.4	65.8	34-122	9.5	20
2-Nitrophenol	mg/Kg	<0.088	1.67	1.67	1.25	1.16	74.8	69.4	32-123	7.4	20
4-Nitrophenol	mg/Kg	<0.117	1.67	1.67	1.70	1.60	102	95.8	30-132	6.0	20
N-Nitrosodimethylamine	mg/Kg	<0.263	1.67	1.67	1.22	1.06	73.0	63.4	10-146	14.0	30
N-Nitrosodiphenylamine	mg/Kg	<0.181	1.67	1.67	1.91	1.84	114	110	38-127	3.7	20
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	1.67	1.67	1.48	1.37	88.6	82.0	36-120	7.7	20
Pentachlorophenol	mg/Kg	<0.347	1.67	1.67	1.27	1.23	76.0	73.6	25-133	3.2	20
Phenanthrene	mg/Kg	<0.208	1.67	1.67	1.56	1.51	93.4	90.4	50-121	3.2	20
Phenol	mg/Kg	<0.112	1.67	1.67	1.41	1.32	84.4	79.0	34-121	6.5	20
Pyrene	mg/Kg	<0.134	1.67	1.67	1.58	1.54	94.6	92.2	47-127	2.5	20
Pyridine	mg/Kg	<0.079	1.67	1.67	1.04	0.903	62.2	54.0	10-80	14.1	20
1,2,4-Trichlorobenzene	mg/Kg	<0.107	1.67	1.67	1.14	1.07	68.2	64.0	34-118	6.3	20
2,4,5-Trichlorophenol	mg/Kg	<0.096	1.67	1.67	1.42	1.39	85.0	83.2	41-124	2.1	20
2,4,6-Trichlorophenol	mg/Kg	<0.096	1.67	1.67	1.39	1.29	83.2	77.2	39-126	7.4	20
2-Fluorobiphenyl (S)							85.0	76.6	44-115		
2-Fluorophenol (S)							79.5	69.1	35-115		
Nitrobenzene-d5 (S)							74.2	64.6	37-122		
4-Terphenyl-d14 (S)							95.8	89.2	54-127		
2,4,6-Tribromophenol (S)							69.3	59.5	39-132		
Phenol-d5 (S)							74.1	67.0	34-121		

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, In	nc Raleig	h		
QC Analytical Batch:	V35776					
Analysis Method:	SW-DRYWT					
Analysis Description:	Dry Weight Deter	mination				
Duplicate		V 90505	5-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	38.8	39.9	2.7	20.0	07/26/23 12:30
Duplicate		V 90574	I-DUP			
		_ .				

Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed	
Moisture	%	25.2	25.7	1.9	20.0	07/26/23 12:30	

Moisture

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, Ir	nc Raleigl	h		
QC Analytical Batch: Analysis Method: Analysis Description:	V35779 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90516	5-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	16.5	16.5	0.0	20.0	07/26/23 13:50
Duplicate		V 90519)-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed

%	39.8	39.6	0.5	20.0	07/26/23 13:50

Moisture

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, Ir	nc Raleigl	h		
QC Analytical Batch: Analysis Method: Analysis Description:	V35809 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90635	5-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	20.1	19.9	1.0	20.0	07/27/23 10:36
Duplicate		V 90691	L-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed

%	21.3	21.8	2.3	20.0	07/27/23 10:36
/0	21.5	21.0	2.5	20.0	07/27/25 10.50

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-206-0058	ociates, In	ıc Raleigl	n		
QC Analytical Batch: Analysis Method: Analysis Description:	V35859 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90537	'-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	16.8	16.5	1.8	20.0	07/28/23 10:38
Duplicate		V 90733	B-DUP			

Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	27.9	29.9	6.9	20.0	07/28/23 10:38

Shipment Receipt Form

Customer Number	er: 01139				
Customer Name		ciates, Inc.	- Raleigh		
Report Number:	23-206-0058	Shinnin	g Method		
		Silippili	g metrioù		
⊖ Fed Ex	US Postal	⊖ Lab		Other :	
	Client	Courie	er	Thermometer ID:	IRT-15 1.9C
Shipping containe	r/cooler uncompromis	ed?	• Yes	◯ No	
Number of cooler	s/boxes received		1		
Custody seals inta	act on shipping contain	er/cooler?	⊖ Yes	◯ No	Not Present
Custody seals inta	act on sample bottles?		⊖ Yes	◯ No	Not Present
Chain of Custody	(COC) present?		Yes	◯ No	
COC agrees with	sample label(s)?		• Yes	◯ No	
COC properly cor	npleted		Yes	🔿 No	
Samples in prope	r containers?		Yes	🔵 No	
Sample container	s intact?		Yes	◯ No	
Sufficient sample	volume for indicated te	est(s)?	Yes	🔵 No	
All samples receiv	ved within holding time	?	Yes	🔵 No	
Cooler temperatu	re in compliance?		Yes	🔵 No	
	nrived at the laboratory nsidered acceptable as in.		• Yes	◯ No	
Water - Sample c	ontainers properly pres	served) Yes	◯ No	• N/A
Water - VOA vials	free of headspace		⊖ Yes	◯ No	• N/A
Trip Blanks receiv	ed with VOAs		⊖ Yes	◯ No	• N/A
Soil VOA method	5035 – compliance cri	teria met	• Yes	◯ No	◯ N/A
High concentra	ation container (48 hr)		Low	concentration EnC	Core samplers (48 hr)
High concentra	ation pre-weighed (met	hanol -14 d) 🗌 Low	v conc pre-weighed	vials (Sod Bis -14 d)
Special precaution	ns or instructions inclue	ded?	⊖ Yes	No	
Comments:					

Signature: Caitlyn Cummins

Date & Time: 07/25/2023 14:13:27

		00C Gloup No. 1500	NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.	E LABORATORY	JSTODY SEALS FOI	APED SHUT WITH C	E COOLERS SHOULD BE TAPED	L SAMPLE COOLEI	Method of Shipment NOTE: ALL SAMI SAMPLES ARE N J Fed Ex J UPS J Hand-delivered
Mileage:			1	allBy	Received For Waypoint Analytical By	Received		C	Hellinquished By: (Signature)
Field Tech Fee:	15:29		C	252/1	Received By (Signature)	Received	7	Rei	Reimpdished By (Signature)
Site Departure Time:	Additional Comments:	7-24-23 Militar	X	2 L C	By (Signature)	Received By		Tarlos	1
Site Arrival Time:	nges must be	ain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be Waypoin Analytical Project Manager. There will be charges for any changes after analyses have been initialized.	Wain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as rec Waypoint Analytical Project Manager. There will be charges for any changes after analyses have	for any change	will be charges	Manager. There	ly is your auth lytical Project		ed n writin
LAB USE ONLY		Affiliation MAA	75 cler Att	Jay thy	Print Name)	Sampled By (Print Name)	Tribes	Coul-t	Sampler's Signature
			P	2 COPIES	PRESS DOWN FIRMLY - 2 COPIES	PRESS DO			
_	-					1	1621	ł	55-N6-109
14,04,09	0	R4370.00		22/14			1615		55-N6-110
01139 07-25-2023	Mid-Atlantic Associates. Inc Raleigh	Mid-Atla					1455		55-N6-38
23-206-0058							1435	-	55-N6-11
					- 3	-	1425	-	55-N6-192
						-	1503		55-N6-83
							1548		55-N6-172
							1458		55-N6-56
						Soil	1552	7/2/23	55-NG-175
JRKS ID NO.		Long /	TIVES	NO. SIZE	TYPE N	WATER, OR SLUDGE) S	HOURS	COLLECTED	SAMPLE DESCRIPTION
	/	ANALYSIS REQUESTED		ONTAINER	SAMPLE CONTAINER	MATRIX		DATE	
MPLING PERSONN	TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNEL Certification: NC SC Other N/A Water Chlorinated: YES NO Samples Iced Upon Collection: YES NO	G I	Purchase Order No./Billing Reference <u>L4376.00</u> Requested Due Date J 1 Day J 2 Days J 3 Days J 4 Days J 5 Days "Working Days" J 6-9 Days D Standard 10 days J Rush Work Must Be Samples received after 15:00 will be processed next business day. Turnaround time is based on business days, excluding weekends and holidays. (SEE REVERSE FOR TERMS & CONDITIONS RECARDING SERVICES RENDERED BY WAYPOINT ANALYTICAL, LLC TO CLIENT)	to./Billing Refe	Purchase Order No./Billing Reference	 	No):	Fax (Yes)(No): Excel Other :al Address:	Phone: Fax () Email Address: EDD Type: PDF Excel Ot Site Location Name: Site Location Physical Address:
2 1.4 °C /Corr. 1.9	VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used? TEMP: Therm ID: \LT-\S Observed		Ē	Support	Address:		05 1/1cm	N. Loges	Report To/Contact Name: K Reporting Address: 40 Kalever, N
	Samples INTACT upon arrival? Received IN ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT?	3	PAGE OF COUTE # TOENSUME PROPER BILLING: Project Name: July Law Larks Short Hold Analysis (Yes) (No) UST Project: (Yes) (No "Please ATTACH any project specific reporting (QC LEVEL I II III IV)	OUTE # TOENSUN W / LOW / sis (Yes) (No) any project specific	Project Name: With Kew VA Short Hold Analysis (Yes) (No) "Please ATTACH any project specific monisions and/or OC Benuirements		1041525-0409 1041525-0409 1041525-0409 1041525-0409	ANALYTICAL ANALYTICAL Phone 704/538-6364 Charlotte, NC 28247 Phone 704/538-6364 Fax: 704/525-0409 Anny Name III - HCOVIG HS	ANALYTICA ANALYTICA 449 Springbrook Road - Charl Phone 704:539-6364 - Fast Client Company Name
	LAB USE ONLY		OF COSTODE N	OF CO			E		

	CHAIN OF CUSTODY RECORD	LAB USE ONLY
ANALYTICAL ANALYTICAL 449 Springbrook Road - Charlotte. NC 28217 Phone 704:522-5369 - Fax 1704:525-0409	Project Name: Short Hold Analysis (Yes) (NO) Please ATTACH any project specific reporting (QC LEVEL 1 II III IV)	Samples INTACT upon arrival? YES NO N/A Received IN ICE? XX PROPER PRESERVATIVES indicated? XX Received WITHIN HOLDING TIMES? XX
Report To/Contact Name: Kevin Ucy Ucy Reporting Address: UC 9 Refew Fier of,	Address: SAME	VOLATILES recid W/OUT HEADSPACE?
Phone 9(9) 250-99/8 Fax (Yes)(No):919 250-9952	Purchase Order No./Billing Reference RU370,00	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL
Email-Address: EDD Type: PDF Excel Other Site Location Name:	U	PER N
Site Location Physical Address:	Turnaround time is based on business days, excluding weekends and holidays. (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY WAYPOINT ANALYTICAL, LLC TO CLIENT)	Samples Iced Upon Collection: YES NO
	SAMPLE CONTAINER	REQUESTED
RIPTION CO	SEE BELOW NO. SIZE TIVES	REMARKS ID NO.
SS-N6-226 7/21/23 1626 Soil		
55-N6-148 / 1520		78
55-N6-70 1635		of
55-N6-119 160Z		e 76
55-No- Auground 0620		Pag
55-N6-Dup. 7 1511		23-206-0058
55-N6-152 L 1530	Mid-	Mid-Atlantic Associates, Inc Raleigh
55-N6-72 A26/23 1558	R43	R4370.00
55-N6-279 7/2/23 1838		-
	RESS DOWN FIRMLY - 2 COPIES	
Sampler's Signature Man bot Mile Samp	Sampled By (Print Name) Corry 4 Lisch Affiliation MA	A LAB USE ONLY
relinquishing this	Chain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be the Waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized.	Site
nguner By	Received By Isignature. A Joint 7.24.23 13	Miliary/Hours Additional Comments: Site Departure Time: /?:00 /?:00 /?:00 /?:00
Beingvishodiay isignature		Field Tech Fee:
2	1/2 /27	(300) Mileage:
Dents of shipment NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SH SAMPLES ARE NOT ACCEPTED AND VERIFIED APOLA Dents of the second of	IL RECEIVED AT THE LABORATORY.	SEE REVERSE FOR TERMS & CONDITIONS
i c	J NC JSC JNC JSC JNC JSC JNC JSC	DTHER:

	ō P		Plan icha Bu iCiana in J Tog	Belinguished By (Signature)	Reinquited By (Signature Alecher	Upon religioushing this Chain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be submitted in writing to the waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized.	Sampler's Signature Hary thinks so	// / / P	55-Nb-116 4 1610	82-NG-184 1428	55-N6-1 1430	55-N6-45 7/21/23 1640	55-N6-Dup-1 1 1416	55-N6-91 7/20/23 1415	55-N6-131 1508	55-N6-137 / 1511	55-Nb-144 7/21/23 1515	TED MILITARY HOURS	DATE COLLECTED	Phone 919 250-998 Fax (Yes)(No) 919 250-99 50 Email Address: EDD Type: PDF Excel Other Site Location Name: Site Location Physical Address:	Report To/Contact Name: Kevin Cary	ANALYTICAL ANALYTICAL AMALYTICAL AMALYTICAL Phone 704/529-6364 - Fax; 704/529-0409 Phone 704/529-6364 - Fax; 704/529-0409 Client Company NamedIlud - 114 (and 1 - 11550)	
NG WATER	D SHUT WITH C	Received	00	Redeiver	Receiver	zation for W mager. Then	ampled By (RESS DO	~								Soll	WATER, OR SLUDGE)	ISOIL		A II	P P P	
	USTODY SEALS	Received For Waypoint Analytical By:	owner	Redeived By (Signature)	Received By Signature	aypoint Anal e will be char	Sampled By (Print Name)	PRESS DOWN FIRMLY - 2 COPIES								4		TYPE	SAMPL	Purchase Order No./Billing Reference Requested Due Date _1 Day _1 2 Days _1 "Working Days" _16-9 Days _1 Standard Samples received after 15:00 will be processe Turnaround time is based on business days, e (SEE REVERSE FOR TERMS & CONDITIONS REVERSE FOR TERMS & CONDITIONS	Invoice To: Address:	Project Name: WYWM Short Hold Analysis (Yes) (No) "Please ATTACH any project specific provisions and/or QC Requirements	CHAIN
SOLID WASTE:	AT THE LABOR	чакулсан ву:	express	4	Y.	ytical to proc	6m :	Y - 2 COP										NO.	SAMPLE CONTAINER	er No./Billin Date _1 1 Day 		August (Malaysis	
RCRA:	ORTATION TO T ATORY.	10	N	4	X	changes after	A fisc	IES				_	-				_	SIZE		g Reference ⊥ 2 Days ⊥ ys ⊥ Standar ill be processe tsiness days, ∈ & conditions & conditions	SAM	E # TOENSURE	CUST
	HE LABORATOR	A		C	¥.	analyses as r analyses ha	che											TIVES	PRESERVA-	3 Days 3 Days 4 10 day d next b culuding REGARI	th	PAGE 3 OF (DUPTE # TOENSURE PAOPER BILLING: Project Name: WYWM WIN UTKS Short Hold Analysis (Yes) (No) UST Project: (Yes) (No) 'Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements	OF CUSTODY R
0		Date 1/	1 7.2	Date	Date	requested a ave been init	Affiliation	`	-									lead		L4 Days _15 Days _14 Days _15 Days _7s _ Rush Work Must Be _rs _ Rush work Must Be _rs _ Pre Approved usiness day usiness day to client		a: oject: (Ye: C LEVEL I I	
C	obc Group No.	25/23 1	24-23	- 0.0	Date N	above. Any c tialized.	MA			R4370.00	Mid-A								ANALYSI	st Be		s) (No) II III IV)	ECORD
OTHER:		1/12	15:29	1.00	Military/Hours	changes mus	1		-	0.00	Mid-Atlantic Associates, Inc Raleigh		-						ANALYSIS REQUESTED	TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNEL Certification: NCSC OtherN/A Water Chlorinated: YESNO Samples Iced Upon Collection: YESNO	VOLATILE PROPER (TEMP: Th	Samples INTACT Received IN ICE? PROPER PRESE Received WITHIN CUSTODY SEALS	14 T
					Additional (st be			_		ates, Inc Rai								, o	O BE FILLEDIN BY CLIENT/SAMPL Certification: NC SC C Other N/A Water Chlorinated: YES NO Samples Iced Upon Collection: YES	VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used? TEMP: Therm ID:	Samples INTACT upon arrival? Received IN ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT?	
					Additional Comments:						leigh							RE	\ 	CLIENT/S	IT HEADSPACE? S used?	arrival? VES indicated DING TIMES?	LAB USE ONLY
C	SEE	Mileage:		Field Tech Fee:	Site Depa	Site Arrival Time:	5				01139 07-25-2023 14:04:59	23-206-0058						REMARKS		SAMPLING	-inx	N X X X X YES	
ORIGINAL	EE REVERSE FOR			h Fee:	Site Departure Time:	ral Time:	LAB USE ONLY		_8		9023	0058						ē	j	NO	°C /Corr. 1.	z	
ORS	ž						×			I	1		l Pag	ie 77	of	78		ID NO.	5	Ē	1.9 ×	X	

Waypoint ANALYTICAL ANALYTICAL 449 Springbrook Road - Charlotte, NC 28217 Phone 764.529-6354 - Fax: 704/523-04/99 Client Company Name: MU - Helowhe H Report To/Contact Name: Key A Cley Report To/Contact Name: Key A Cley Report To/Contact Name: Key A Cley	ANALYTICAL ANALYTICAL	AL AC 28217 Potis25-0409 Cley Cley	V 10 Assoc,	Project Name: Short Hold Analysis "Please ATTACH any provisions and/or QO Invoice To: Address:	Project Name: Short Hold Analysis (Yes) (No) Previsions and/or QC Requirements Invoice To: Address:	GE HAIN OF CUSTODY R GE Hor Audre # TOENSURE PROPER BILLING: roject Name: hort Hold Analysis (Yes) (No) lease ATTACH any project specific reporting (QC LI voice To: ddress:	PAGE H or H OUME # TOENSURE PROPER BILLING: Project Name: UMC/C/N JirlCS Short Hold Analysis (Yes) (No) UST Project: (Yes) (No) "Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements Invoice To:	LAS USE ONL Samples INTACT upon arrival? Received IN ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd WIOUT HEADSPACE? PROPER CONTAINERS used? TEMP: Therm ID: WLT-LC Observed	$\frac{1900000}{100000000000000000000000000000$	NO NA
Phone 919 250 -411 Fax (Email Address: EDD Type: PDF Excel Of Site Location Name: Site Location Physical Address	cel Ad	Fax (Yes)(No)((1/1/25)-4650 Other dress:	55 450	Purchase Orde Requested Due D "Working Days" "Working Days" Samples received Turnaround time to (SEE REVERS RENDERI	Purchase Order No./Billing Reference Requested Due Date l 1 Day l 2 Days l "Working Days" l 6-9 Days l Standard Samples received after 15:00 will be processe Turnaround time is based on business days, e (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY WAYPOINT ANALYTICAN	Purchase Order No./Billing Reference	Purchase Order No./Billing Reference 243-70,00 Requested Due Date _1 1 Day _2 Days _1 3 Days _1 4 Days _1 5 Days "Working Days" _16-9 Days _1 Standard 10 days _1 Rush Work Must Be Samples received after 15:00 will be processed next business day. Turnaround time is based on business days, excluding weekends and holidays. (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY WAYDOWN AMALYTICAL LLC TO CLEMPT	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NC SC Other N/A Water Chlorinated: YES NO Samples Iced Upon Collection: YES NO	CLIENT/SAMPLING P SC YESNO Collection: YESN	PERSONNEL
CLIENT	DATE	TIME			SAMPLE CONTAINER	PRESERVA-	12/2	ANALYSIS REQUESTED	DEMADING	5
SAMPLE DESCRIPTION	COLLECTED	HOURS	WATER, OR SLUDGE)	TYPE SEE BELOW	NO. SIZE		egg notes is	1/1/	REMARKS	ID NO.
55-N6-226	7/20/23	1447	5016							
55-N6-205	7/21/23	8441								78
872-911-5S	-	1544								of
55-N6-92	#2/23	1545							23-206-0058	e 78
55-N6-100	7/21/23	1620						Mid-Atlantic Associates, Inc Raleigh	Raleiqh 14:04:59	
55-Nb-153		1524				-		74570.00		
55-N6-102		1505								
55-16-153	. ۲	1524	-				*			
Samplers Signature	land	Licks	PRESS D Sampled By	Sampled By (Print Name)	Sampled By (Print Name)	s. A Asula	Affiliation Mt	A.		LAB USE ONLY
Upon relinguishing this submittee in writing to the	Chain of Custo	ody is your auti alytical Projec	horization for t Manager. Th	Waypoint Anal ere will be char	ytical to procee ges for any cha	d with the analysinges after analysing	Upon relinquishing this Chain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be submitted in writing to the Waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized.	changes must be	Site Arrival Time:	Time:
	Leelis		Rece	Received By (Signapule)	r R	t'	Date 7.24-23	Military/Hours Additional Comments:	comments: Site Departure Time:	ure Time:
Balmountary (Signature)	R	×	Rece	Received By (Signature)	express			15:29	Field Tech Fee:	Fee:
Method of Shipment NOTE: AI	LL SAMPLE COOLE	TERS SHOULD BE T	TAPED SHUT WIT	Received For Waypoint Analytical By TWITH CUSTODY SEALS POR TRA COC UNTIL RECEIVED AT THE LA	alytićal By: 7 3 FOR TRANSPORT AT THE LABORATO	NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY BEATS FOR TRANSPORTATION TO THE LABORATORY.	MIDRY COC Group No.	1300	Mileage:	
NPDES: UST: G	SC L NC L SC	GROUNDWATER: DRINKING WATER: JNC JSC JNC JSC	NKING WATE	L NC		SC	JSC JNC JSC	OTHER:	TERMS	ORIGINAL
1		L		ī	-					Ç

8/16/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Revised Lab Report Number: 23-207-0017 Client Project Description: R4370.00

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 7/26/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Laboratory ID: WP MTN: Waypoint Analytical, LLC., Memphis, TN

State	Program	Lab ID	Expiration Date
Alabama	State Program	40750	02/29/2024
Arkansas	State Program	88-0650	02/07/2024
California	State Program	2904	06/30/2024
Florida	State Program - NELAP	E871157	06/30/2024
Georgia	State Program	C044	11/14/2025
Georgia	State Program	04015	06/30/2024
Illinois	State Program - NELAP	200078	10/10/2024
Kentucky	State Program	80215	06/30/2024
Kentucky	State Program	KY90047	12/31/2023
Louisiana	State Program - NELAP	LA037	12/31/2023
Louisiana	State Program - NELAP	04015	06/30/2024
Mississippi	State Program	MS	11/14/2025
North Carolina	State Program	47701	07/31/2024
North Carolina	State Program	415	12/31/2023
Pennsylvania	State Program - NELAP	68-03195	05/31/2024
South Carolina	State Program	84002	06/30/2023
Tennessee	State Program	02027	11/14/2025
Texas	State Program - NELAP	T104704180	09/30/2023
Virginia	State Program	00106	06/30/2024
Virginia	State Program - NELAP	460181	09/14/2023

Sample Summary Table

Report Number:	23-207-0017
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90635	SS-LY-5	Solids	07/24/2023 08:00	07/26/2023 13:30		
90636	SS-LY-43	Solids	07/24/2023 10:53	07/26/2023 13:30		
90637	SS-LY-60	Solids	07/24/2023 12:53	07/26/2023 13:30		
90638	SS-LY-68	Solids	07/24/2023 15:48	07/26/2023 13:30		
90639	SS-LY-61	Solids	07/24/2023 15:55	07/26/2023 13:30		
90639	SS-LY-61	Solids	07/24/2023 15:55	07/26/2023 13:30	7471A	WP MTN
90639	SS-LY-61	Solids	07/24/2023 15:55	07/26/2023 13:30	6020B	WP MTN
90640	SS-LY-69	Solids	07/24/2023 16:00	07/26/2023 13:30		
90641	SS-LY-70	Solids	07/24/2023 16:02	07/26/2023 13:30		
90642	SS-LY-62	Solids	07/24/2023 16:04	07/26/2023 13:30		
90643	SS-LY-39	Solids	07/24/2023 16:10	07/26/2023 13:30		
90644	SS-LY-29	Solids	07/24/2023 16:28	07/26/2023 13:30		
90645	SS-LY-27	Solids	07/24/2023 16:32	07/26/2023 13:30		
90646	SS-LY-4	Solids	07/24/2023 16:38	07/26/2023 13:30		
90647	SS-LY-45	Solids	07/24/2023 16:18	07/26/2023 13:30		
90647	SS-LY-45	Solids	07/24/2023 16:18	07/26/2023 13:30	6020B	WP MTN
90648	SS-LY-45(1')	Solids	07/24/2023 16:20	07/26/2023 13:30		
90649	SS-LY-45(Pb)	Solids	07/24/2023 10:15	07/26/2023 13:30		
90650	SS-LY-DUP1	Solids	07/24/2023 10:20	07/26/2023 13:30		

Summary of Detected Analytes

Project: Report Number: R4370.00 23-207-0017

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-LY-5	V 90635					
6010D	Lead	99.2	mg/Kg - dry	0.375	08/02/2023 17:56	
SW-DRYWT	Moisture	20.1	%		07/27/2023 10:36	
SS-LY-43	V 90636					
5010D	Lead	259	mg/Kg - dry	1.78	08/07/2023 17:09	
SW-DRYWT	Moisture	15.5	%		07/27/2023 10:36	
SS-LY-60	V 90637					
5010D	Lead	221	mg/Kg - dry	1.88	08/07/2023 17:14	
SW-DRYWT	Moisture	20.0	%		07/27/2023 10:36	
SS-LY-68	V 90638					
6010D	Lead	152	mg/Kg - dry	1.63	08/07/2023 17:36	
SW-DRYWT	Moisture	8.02	%		07/27/2023 10:36	
SS-LY-61	V 90639					
5020B	Arsenic	1.12	mg/Kg - dry	0.261	08/01/2023 14:02	
5020B	Barium	22.7	mg/Kg - dry	0.260	08/01/2023 14:02	
5020B	Chromium	17.3	mg/Kg - dry	0.260	08/01/2023 14:02	
5020B	Cobalt	2.43	mg/Kg - dry	0.260	08/01/2023 14:02	
6020B	Copper	6.61	mg/Kg - dry	0.261	08/01/2023 14:02	
6020B	Lead	5.14	mg/Kg - dry	0.261	08/01/2023 14:02	
6020B	Manganese	72.6	mg/Kg - dry	0.260	08/01/2023 14:02	
5020B	Nickel	9.64	mg/Kg - dry	0.261	08/01/2023 14:02	
5020B	Vanadium	17.8	mg/Kg - dry	1.30	08/01/2023 14:02	
5020B	Zinc	23.0	mg/Kg - dry	2.61	08/01/2023 14:02	
7471A	Mercury (Total)	0.0230	mg/Kg - dry	0.0205	08/04/2023 10:38	J
SW-DRYWT	Moisture	4.10	%		07/27/2023 10:36	
SS-LY-69	V 90640					
5010D	Lead	7.30	mg/Kg - dry	0.332	08/02/2023 18:40	
SW-DRYWT	Moisture	9.74	%		07/27/2023 10:36	
SS-LY-70	V 90641					
5010D	Lead	7.53	mg/Kg - dry	0.305	08/02/2023 18:45	
SW-DRYWT	Moisture	1.94	%		07/27/2023 10:36	
SS-LY-62	V 90642					
6010D	Lead	6.93	mg/Kg - dry	0.312	08/02/2023 18:49	

Summary of Detected Analytes

Project:	
Report Number:	

R4370.00 23-207-0017

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-LY-62	V 90642					
SW-DRYWT	Moisture	4.12	%		07/27/2023 10:36	
SS-LY-39	V 90643					
6010D	Lead	24.4	mg/Kg - dry	0.359	08/02/2023 18:54	
SW-DRYWT	Moisture	16.5	%		07/27/2023 10:36	
SS-LY-29	V 90644					
6010D	Lead	24.8	mg/Kg - dry	0.361	08/02/2023 18:58	
SW-DRYWT	Moisture	17.1	%		07/28/2023 10:30	
SS-LY-27	V 90645					
6010D	Lead	11.1	mg/Kg - dry	0.398	08/02/2023 19:02	
SW-DRYWT	Moisture	24.7	%		07/28/2023 10:30	
SS-LY-4	V 90646					
6010D	Lead	25.2	mg/Kg - dry	0.336	08/02/2023 19:07	
SW-DRYWT	Moisture	10.8	%		07/28/2023 10:30	
SS-LY-45	V 90647					
6020B	Antimony	1.84	mg/Kg - dry	0.477	08/02/2023 15:57	
6020B	Arsenic	5.04	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Barium	153	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Beryllium	0.531	mg/Kg - dry	0.477	08/02/2023 15:57	
6020B	Cadmium	1.15	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Chromium	22.3	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Cobalt	5.95	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Copper	102	mg/Kg - dry	2.39	08/02/2023 15:29	
6020B	Manganese	298	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Nickel	17.8	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Selenium	0.612	mg/Kg - dry	0.477	08/01/2023 14:24	
6020B	Vanadium	19.3	mg/Kg - dry	2.39	08/01/2023 14:24	
5020B	Zinc	494	mg/Kg - dry	4.77	08/01/2023 14:24	
7471B	Mercury (Total)	0.198	mg/Kg - dry	0.0573	07/28/2023 16:02	
SW-DRYWT	Moisture	47.6	%		07/31/2023 11:05	
SS-LY-45(1')	V 90648					
C010D	Lead	248	mg/Kg - dry	1.78	08/07/2023 17:40	
6010D	Ecda	E 10				

Summary of Detected Analytes

Project:	R4370.00
Report Number:	23-207-0017

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-LY-45(Pb)	V 90649					
6010D	Lead	384	mg/Kg - dry	2.37	08/07/2023 17:53	
SW-DRYWT	Moisture	36.7	%		07/28/2023 10:30	
SS-LY-DUP1	V 90650					
6010D	Lead	553	mg/Kg - dry	4.46	08/07/2023 17:58	
SW-DRYWT	Moisture	32.7	%		07/28/2023 10:30	

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-207-0017 Date: 8/16/2023 CASE NARRATIVE

Report Comments

Revised report: Revision 1 Co and V have been added to be reported.

Metals Analysis Method 6010D

Sample 90637 (SS-LY-60) Analyte: Lead QC Batch No: V36316/V36022 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Metals Analyses Method 6020B

Sample 90647 (SS-LY-45) Analyte: Arsenic QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Barium QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Copper QC Batch No: L696547/L695858 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Manganese QC Batch No: L696237/L695858 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Nickel QC Batch No: L696237/L695858 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Lead

QC Batch No: L696237/L695858

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Antimony QC Batch No: L696547/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Thallium QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90647 (SS-LY-45) Analyte: Zinc QC Batch No: L696237/L695858 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Semivolatile Organic Compounds - GC/MS Method 8270E

Analyte: Benzoic Acid QC Batch No: V35874/V35831 Refer to LCS/LCSD.

Sample 90683 Analyte: Hexachlorocyclopentadiene QC Batch No: V35874/V35831 Relative Percent Difference (RPD) for the duplicate analysis was outside of the allowable QC limits.

Report Number : 23-207-0017 REPORT OF ANALYSIS	
,	Received : 07/26/2023
	ort Date : 08/08/2023 ort Date: 08/16/2023

Lab No : 90635 Sample ID : SS-LY-5					Matrix: Sampled:		2023 8:00
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	20.1 99.2	% mg/Kg - dry	0.375		07/27/23 10:36 08/02/23 17:56		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Raleigh , NC 27610 Report Number : 23-207-0017		EPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Information		Revised Report Date: 08/16/2023 Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/08/2023

Lab No : 90636 Sample ID : SS-LY-43					2023 10:53		
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	15.5 259	% mg/Kg - dry	1.78		07/27/23 10:36 08/07/23 17:09		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-207-0017	REPORT OF A	NALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/26/2023	
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023	
01155			

Lab No : 90637 Sample ID : SS-LY-60					Matrix: Solids Sampled: 7/24/2023 12:53			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	20.0 221	% mg/Kg - dry	1.88		07/27/23 10:36 08/07/23 17:14		SW-DRYWT 6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-207-0017	R	EPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information	1:	Revised Report Date: 08/16/2023 Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/08/2023

Lab No : 90638 Sample ID : SS-LY-68						Matrix: Solids Sampled: 7/24/ 2					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method				
Moisture Lead	8.02 152	% mg/Kg - dry	1.63		07/27/23 10:36 08/07/23 17:36		SW-DRYWT 6010D				

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/08/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/26/2023

 Raleigh , NC 27610
 Received : 07/26/2023

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : 90639							: Solid	s
Sample ID : SS-LY-61							1: 7/24	/2023 15:55
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	4.10	%			1 07/27/23 10:36 CNC SW-DRYWT
Antimony	<0.261	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Arsenic	1.12	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Barium	22.7	mg/Kg - dry		0.260	5 08/01/23 14:02 CPW 6020B
Beryllium	<0.261	mg/Kg - dry		0.261	5 08/02/23 14:58 CPW 6020B
Cadmium	<0.261	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Chromium	17.3	mg/Kg - dry		0.260	5 08/01/23 14:02 CPW 6020B
Cobalt	2.43	mg/Kg - dry		0.260	5 08/01/23 14:02 CPW 6020B
Copper	6.61	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Lead	5.14	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Manganese	72.6	mg/Kg - dry		0.260	5 08/01/23 14:02 CPW 6020B
Mercury (Total)	0.0230 J	mg/Kg - dry	0.0205	0.170	1 08/04/23 10:38 FDS 7471A
Nickel	9.64	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Selenium	<0.260	mg/Kg - dry		0.260	5 08/01/23 14:02 CPW 6020B
Silver	<0.261	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Thallium	<0.261	mg/Kg - dry		0.261	5 08/01/23 14:02 CPW 6020B
Vanadium	17.8	mg/Kg - dry		1.30	5 08/01/23 14:02 CPW 6020B
Zinc	23.0	mg/Kg - dry		2.61	5 08/01/23 14:02 CPW 6020B

Qualifiers/BAnalyteDefinitionsJEstima

Analyte detected in blank Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Matrix: Solids

Sampled: 7/24/2023 15:55

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90639** Sample ID : **SS-LY-61**

•	270E	P	rep Batch(es):	V35831	07/27/2	3 11:3	0		
Prep Method: 3: Test	546	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.120	mg/Kg - dry	0.120	0.688	1	07/28/23 13:52	AMP	V35874
Acenaphthylene		<0.109	mg/Kg - dry	0.109	0.688	1	07/28/23 13:52	AMP	V35874
Aniline		<0.158	mg/Kg - dry	0.158	0.688	1	07/28/23 13:52	AMP	V35874
Anthracene		<0.149	mg/Kg - dry	0.149	0.688	1	07/28/23 13:52	AMP	V35874
Benzo(a)anthracene		<0.144	mg/Kg - dry	0.144	0.688	1	07/28/23 13:52	AMP	V35874
Benzo(a)pyrene		<0.153	mg/Kg - dry	0.153	0.688	1	07/28/23 13:52	AMP	V35874
Benzo(b)fluoranthene		<0.152	mg/Kg - dry	0.152	0.688	1	07/28/23 13:52	AMP	V35874
Benzo(g,h,i)perylene		<0.141	mg/Kg - dry	0.141	0.688	1	07/28/23 13:52	AMP	V35874
Benzo(k)fluoranthene		<0.142	mg/Kg - dry	0.142	0.688	1	07/28/23 13:52	AMP	V35874
Benzoic Acid		<0.604	mg/Kg - dry	0.604	2.09	1	07/28/23 13:52	AMP	V35874
Benzyl alcohol		<0.109	mg/Kg - dry	0.109	0.688	1	07/28/23 13:52	AMP	V35874
Bis(2-Chloroethoxy)metha	ane	<0.123	mg/Kg - dry	0.123	0.688	1	07/28/23 13:52	AMP	V35874
Bis(2-Chloroethyl)ether		<0.111	mg/Kg - dry	0.111	0.688	1	07/28/23 13:52	AMP	V35874
Bis(2-Chloroisopropyl)ethe	er	<0.141	mg/Kg - dry	0.141	0.344	1	07/28/23 13:52	AMP	V35874
Bis(2-ethylhexyl)phthalate	9	<0.125	mg/Kg - dry	0.125	0.688	1	07/28/23 13:52	AMP	V35874
4-Bromophenyl phenyl eth	her	<0.113	mg/Kg - dry	0.113	0.688	1	07/28/23 13:52	AMP	V35874
Butyl benzyl phthalate		<0.117	mg/Kg - dry	0.117	0.344	1	07/28/23 13:52	AMP	V35874
4-Chloro-3-methylphenol		<0.096	mg/Kg - dry	0.096	0.688	1	07/28/23 13:52	AMP	V35874
4-Chloroaniline		<0.116	mg/Kg - dry	0.116	0.344	1	07/28/23 13:52	AMP	V35874
2-Chloronaphthalene		<0.120	mg/Kg - dry	0.120	0.688	1	07/28/23 13:52	AMP	V35874
2-Chlorophenol		<0.102	mg/Kg - dry	0.102	0.688	1	07/28/23 13:52	AMP	V35874
4-Chlorophenyl phenyl eth	ner	<0.131	mg/Kg - dry	0.131	1.04	1	07/28/23 13:52	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value DF Dilution Factor

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Matrix: Solids

Sampled: 7/24/2023 15:55

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90639** Sample ID : **SS-LY-61**

Analytical Method:	8270E	P	rep Batch(es):	V35831	07/27/2	3 11:3	0		
•	3546	•		133031	0772772	.5 11.5	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene		<0.148	mg/Kg - dry	0.148	0.688	1	07/28/23 13:52	AMP	V35874
Dibenz(a,h)anthracene		<0.239	mg/Kg - dry	0.239	0.688	1	07/28/23 13:52	AMP	V35874
Dibenzofuran		<0.124	mg/Kg - dry	0.124	0.688	1	07/28/23 13:52	AMP	V35874
1,2-Dichlorobenzene		<0.098	mg/Kg - dry	0.098	0.688	1	07/28/23 13:52	AMP	V35874
1,3-Dichlorobenzene		<0.101	mg/Kg - dry	0.101	0.688	1	07/28/23 13:52	AMP	V35874
1,4-Dichlorobenzene		<0.101	mg/Kg - dry	0.101	0.344	1	07/28/23 13:52	AMP	V35874
3,3'-Dichlorobenzidine		<0.153	mg/Kg - dry	0.153	0.688	1	07/28/23 13:52	AMP	V35874
2,4-Dichlorophenol		<0.099	mg/Kg - dry	0.099	0.688	1	07/28/23 13:52	AMP	V35874
Diethyl phthalate		<0.187	mg/Kg - dry	0.187	0.688	1	07/28/23 13:52	AMP	V35874
Dimethyl phthalate		<0.181	mg/Kg - dry	0.181	0.688	1	07/28/23 13:52	AMP	V35874
2,4-Dimethylphenol		<0.112	mg/Kg - dry	0.112	0.344	1	07/28/23 13:52	AMP	V35874
Di-n-butyl phthalate		<0.111	mg/Kg - dry	0.111	0.688	1	07/28/23 13:52	AMP	V35874
4,6-Dinitro-2-methylphe	nol	<0.250	mg/Kg - dry	0.250	1.56	1	07/28/23 13:52	AMP	V35874
2,4-Dinitrophenol		<0.542	mg/Kg - dry	0.542	1.56	1	07/28/23 13:52	AMP	V35874
2,4-Dinitrotoluene		<0.100	mg/Kg - dry	0.100	0.688	1	07/28/23 13:52	AMP	V35874
2,6-Dinitrotoluene		<0.112	mg/Kg - dry	0.112	0.688	1	07/28/23 13:52	AMP	V35874
Di-n-Octyl Phthalate		<0.149	mg/Kg - dry	0.149	0.344	1	07/28/23 13:52	AMP	V35874
Fluoranthene		<0.128	mg/Kg - dry	0.128	0.688	1	07/28/23 13:52	AMP	V35874
Fluorene		<0.133	mg/Kg - dry	0.133	0.688	1	07/28/23 13:52	AMP	V35874
Hexachlorobenzene		<0.110	mg/Kg - dry	0.110	0.688	1	07/28/23 13:52	AMP	V35874
Hexachlorobutadiene		<0.101	mg/Kg - dry	0.101	0.688	1	07/28/23 13:52	AMP	V35874
Hexachlorocyclopentadie	ene	<0.163	mg/Kg - dry	0.163	0.688	1	07/28/23 13:52	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value DF Dilution Factor

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : 90639 Sample ID : SS-LY-61

Matrix: Solids Sampled: 7/24/2023 15:55

Analytical Method: 8270E Prep Method: 3546	Р	Prep Batch(es):			23 11:3			
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane	<0.082	mg/Kg - dry	0.082	0.688	1	07/28/23 13:52	AMP	V35874
Indeno(1,2,3-cd)pyrene	<0.186	mg/Kg - dry	0.186	0.688	1	07/28/23 13:52	AMP	V35874
Isophorone	<0.199	mg/Kg - dry	0.199	0.688	1	07/28/23 13:52	AMP	V35874
1-Methylnaphthalene	<0.110	mg/Kg - dry	0.110	0.688	1	07/28/23 13:52	AMP	V35874
2-Methylnaphthalene	<0.104	mg/Kg - dry	0.104	0.688	1	07/28/23 13:52	AMP	V35874
2-Methylphenol	<0.101	mg/Kg - dry	0.101	0.688	1	07/28/23 13:52	AMP	V35874
3&4 Methylphenol	<0.088	mg/Kg - dry	0.088	0.688	1	07/28/23 13:52	AMP	V35874
Naphthalene	<0.150	mg/Kg - dry	0.150	0.688	1	07/28/23 13:52	AMP	V35874
2-Nitroaniline	<0.100	mg/Kg - dry	0.100	0.688	1	07/28/23 13:52	AMP	V35874
8-Nitroaniline	<0.125	mg/Kg - dry	0.125	0.688	1	07/28/23 13:52	AMP	V35874
Nitroaniline	<0.097	mg/Kg - dry	0.097	0.344	1	07/28/23 13:52	AMP	V35874
litrobenzene	<0.120	mg/Kg - dry	0.120	0.344	1	07/28/23 13:52	AMP	V35874
2-Nitrophenol	<0.092	mg/Kg - dry	0.092	0.688	1	07/28/23 13:52	AMP	V35874
l-Nitrophenol	<0.122	mg/Kg - dry	0.122	0.688	1	07/28/23 13:52	AMP	V35874
N-Nitrosodimethylamine	<0.274	mg/Kg - dry	0.274	0.688	1	07/28/23 13:52	AMP	V35874
N-Nitrosodiphenylamine	<0.188	mg/Kg - dry	0.188	0.688	1	07/28/23 13:52	AMP	V35874
N-Nitroso-di-n-propylamine	<0.123	mg/Kg - dry	0.123	0.688	1	07/28/23 13:52	AMP	V35874
Pentachlorophenol	<0.361	mg/Kg - dry	0.361	1.04	1	07/28/23 13:52	AMP	V35874
Phenanthrene	<0.216	mg/Kg - dry	0.216	0.688	1	07/28/23 13:52	AMP	V35874
Phenol	<0.116	mg/Kg - dry	0.116	0.688	1	07/28/23 13:52	AMP	V35874
yrene	<0.139	mg/Kg - dry	0.139	0.688	1	07/28/23 13:52	AMP	V35874
Pyridine	<0.082	mg/Kg - dry	0.082	0.344	1	07/28/23 13:52	AMP	V35874

Qualifiers/ Definitions В J Estimated value

Analyte detected in blank

DF **Dilution Factor**

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Information:

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90639** Sample ID : **SS-LY-61** Matrix: **Solids** Sampled: **7/24/2023 15:55**

Analytical Method: Prep Method:	8270E 3546	Prep Batch(es):		V35831	07/27/2	07/27/23 11:30					
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch		
1,2,4-Trichlorobenzene	2	<0.111	mg/Kg - dry	0.111	0.688	1	07/28/23 13:52	AMP	V35874		
2,4,5-Trichlorophenol		<0.100	mg/Kg - dry	0.100	0.688	1	07/28/23 13:52	AMP	V35874		
2,4,6-Trichlorophenol		<0.100	mg/Kg - dry	0.100	0.688	1	07/28/23 13:52	AMP	V35874		
Surrogate: Phe	nol-d5		75.1	Limits	: 34-121%		1 07/28/23 13:5	52 AMP	8270E		
Surrogate: 2-Fl	uorobiphenyl		88.0	Limits	: 44-115%		1 07/28/23 13:5	52 AMP	V35874		
Surrogate: 2-Fl	uorophenol		79.0	Limits	: 35-115%		1 07/28/23 13:5	52 AMP	V35874		
Surrogate: Nitro	obenzene-d5		82.0	Limits	: 37-122%		1 07/28/23 13:5	52 AMP	V35874		
Surrogate: 4-Te	erphenyl-d14		103	Limits	: 54-127%		1 07/28/23 13:5	52 AMP	V35874		
Surrogate: 2,4,	6-Tribromophenol		81.1	Limits	: 39-132%		1 07/28/23 13:5	52 AMP	V35874		

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023
Report Number : 23-207-0017	REPORT OF ANALYSIS	

Lab No : 90640 Sample ID : SS-LY-69						Solids 7/24/	2023 16:00
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	9.74	%		1	07/27/23 10:36	CNC	SW-DRYWT
Lead	7.30	mg/Kg - dry	0.332		08/02/23 18:40		6010D

Qualifiers/ B	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-207-0017 REPORT OF ANALYSIS	
Kevin ClayRevised409 Rogers View CourtInformation :Raleigh , NC 27610	Report Date: 08/16/2023 Received : 07/26/2023
	Report Date : 08/08/2023

Lab No : 90641 Sample ID : SS-LY-70					Matrix: Sampled:		2023 16:02
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	1.94 7.53	% mg/Kg - dry	0.305		07/27/23 10:36 08/02/23 18:45		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information :	R4370.00	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023
Report Number : 23-207-0017	REF	PORT OF ANALYSIS	

Lab No : 90642 Sample ID : SS-LY-62					Matrix: Sampled:		2023 16:04
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	4.12 6.93	% mg/Kg - dry	0.312		07/27/23 10:36 08/02/23 18:49		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank			
Definitions	J	Estimated value			

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023
Report Number : 23-207-0017	REPORT OF ANALYSIS	

Lab No : 90643 Sample ID : SS-LY-39						Solids 7/24/	olids /24/2023 16:10	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	16.5 24.4	% mg/Kg - dry	0.359		07/27/23 10:36 08/02/23 18:54		SW-DRYWT 6010D	

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information	R4370.00	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023
Report Number : 23-207-0017	R	EPORT OF ANALYSIS	

Lab No : 90644 Sample ID : SS-LY-29					Matrix: Solids Sampled: 7/24/2023 16:28			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	17.1	%		1	07/28/23 10:30	CNC	SW-DRYWT	
Lead	24.8	mg/Kg - dry	0.361	1	08/02/23 18:58	JKC	6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-207-0017	RI	EPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information	:	Revised Report Date: 08/16/2023 Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/08/2023

Lab No : 90645 Sample ID : SS-LY-27					Matrix: Sampled:		2023 16:32
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	24.7	%		1	07/28/23 10:30	CNC	SW-DRYWT
Lead	11.1	mg/Kg - dry	0.398	1	08/02/23 19:02	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Report Number : 23-207-0017	R	EPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information	:	Revised Report Date: 08/16/2023 Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/08/2023

Lab No : 90646 Sample ID : SS-LY-4					Matrix: Sampled:		2023 16:38
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	10.8 25.2	% mg/Kg - dry	0.336		07/28/23 10:30 08/02/23 19:07		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Original Report Date : 08/08/2023 Mid-Atlantic Associates, Inc. - Raleigh Project R4370.00 Revised Report Date: 08/16/2023 Kevin Clay 409 Rogers View Court Information : Received : 07/26/2023 Raleigh , NC 27610

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : 90647 Sample ID : SS-LY-45							:: Solid: 1: 7/24	s /2023 16:18
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	47.6	%		1	07/31/23 11:05	CNC	SW-DRYWT
Antimony	1.84	mg/Kg - dry	0.477	5	08/02/23 15:57	CPW	6020B
Arsenic	5.04	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Barium	153	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Beryllium	0.531	mg/Kg - dry	0.477	5	08/02/23 15:57	CPW	6020B
Cadmium	1.15	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Chromium	22.3	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Cobalt	5.95	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Copper	102	mg/Kg - dry	2.39	25	08/02/23 15:29	CPW	6020B
Manganese	298	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Mercury (Total)	0.198	mg/Kg - dry	0.0573	1	07/28/23 16:02	JKC	7471B
Nickel	17.8	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Selenium	0.612	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Silver	<0.477	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Thallium	<0.477	mg/Kg - dry	0.477	5	08/01/23 14:24	CPW	6020B
Vanadium	19.3	mg/Kg - dry	2.39	5	08/01/23 14:24	CPW	6020B
Zinc	494	mg/Kg - dry	4.77	5	08/01/23 14:24	CPW	6020B

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Matrix: Solids

Sampled: 7/24/2023 16:18

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90647** Sample ID : **SS-LY-45**

•	270E	Pi	rep Batch(es):	V35831	07/27/2	23 11:30)		
Prep Method: 3546 Test	540	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.332	mg/Kg - dry	0.332	1.89	1	07/28/23 14:14	AMP	V35874
Acenaphthylene		<0.301	mg/Kg - dry	0.301	1.89	1	07/28/23 14:14	AMP	V35874
Aniline		<0.435	mg/Kg - dry	0.435	1.89	1	07/28/23 14:14	AMP	V35874
Anthracene		<0.410	mg/Kg - dry	0.410	1.89	1	07/28/23 14:14	AMP	V35874
Benzo(a)anthracene		<0.398	mg/Kg - dry	0.398	1.89	1	07/28/23 14:14	AMP	V35874
Benzo(a)pyrene		<0.421	mg/Kg - dry	0.421	1.89	1	07/28/23 14:14	AMP	V35874
Benzo(b)fluoranthene		<0.417	mg/Kg - dry	0.417	1.89	1	07/28/23 14:14	AMP	V35874
Benzo(g,h,i)perylene		<0.389	mg/Kg - dry	0.389	1.89	1	07/28/23 14:14	AMP	V35874
Benzo(k)fluoranthene		<0.393	mg/Kg - dry	0.393	1.89	1	07/28/23 14:14	AMP	V35874
Benzoic Acid		<1.66	mg/Kg - dry	1.66	5.73	1	07/28/23 14:14	AMP	V35874
Benzyl alcohol		<0.301	mg/Kg - dry	0.301	1.89	1	07/28/23 14:14	AMP	V35874
Bis(2-Chloroethoxy)metha	ne	<0.337	mg/Kg - dry	0.337	1.89	1	07/28/23 14:14	AMP	V35874
Bis(2-Chloroethyl)ether		<0.307	mg/Kg - dry	0.307	1.89	1	07/28/23 14:14	AMP	V35874
Bis(2-Chloroisopropyl)ethe	er	<0.389	mg/Kg - dry	0.389	0.944	1	07/28/23 14:14	AMP	V35874
Bis(2-ethylhexyl)phthalate	2	<0.343	mg/Kg - dry	0.343	1.89	1	07/28/23 14:14	AMP	V35874
4-Bromophenyl phenyl eth	ner	<0.312	mg/Kg - dry	0.312	1.89	1	07/28/23 14:14	AMP	V35874
Butyl benzyl phthalate		<0.324	mg/Kg - dry	0.324	0.944	1	07/28/23 14:14	AMP	V35874
4-Chloro-3-methylphenol		<0.265	mg/Kg - dry	0.265	1.89	1	07/28/23 14:14	AMP	V35874
4-Chloroaniline		<0.320	mg/Kg - dry	0.320	0.944	1	07/28/23 14:14	AMP	V35874
2-Chloronaphthalene		<0.332	mg/Kg - dry	0.332	1.89	1	07/28/23 14:14	AMP	V35874
2-Chlorophenol		<0.280	mg/Kg - dry	0.280	1.89	1	07/28/23 14:14	AMP	V35874
4-Chlorophenyl phenyl eth	ner	<0.360	mg/Kg - dry	0.360	2.86	1	07/28/23 14:14	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value Dilution Factor

DF

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Prep Batch(es):

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Report Number : 23-207-0017

Analytical Method: 8270E

REPORT OF ANALYSIS

Lab No : **90647** Sample ID : **SS-LY-45** Matrix: Solids Sampled: 7/24/2023 16:18 V35831 07/27/23 11:30

Prep Method: 3546								
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene	<0.406	mg/Kg - dry	0.406	1.89	1	07/28/23 14:14	AMP	V35874
Dibenz(a,h)anthracene	<0.658	mg/Kg - dry	0.658	1.89	1	07/28/23 14:14	AMP	V35874
Dibenzofuran	<0.341	mg/Kg - dry	0.341	1.89	1	07/28/23 14:14	AMP	V35874
1,2-Dichlorobenzene	<0.270	mg/Kg - dry	0.270	1.89	1	07/28/23 14:14	AMP	V35874
1,3-Dichlorobenzene	<0.278	mg/Kg - dry	0.278	1.89	1	07/28/23 14:14	AMP	V35874
I,4-Dichlorobenzene	<0.278	mg/Kg - dry	0.278	0.944	1	07/28/23 14:14	AMP	V35874
3,3'-Dichlorobenzidine	<0.421	mg/Kg - dry	0.421	1.89	1	07/28/23 14:14	AMP	V35874
2,4-Dichlorophenol	<0.274	mg/Kg - dry	0.274	1.89	1	07/28/23 14:14	AMP	V35874
Diethyl phthalate	<0.515	mg/Kg - dry	0.515	1.89	1	07/28/23 14:14	AMP	V35874
Dimethyl phthalate	<0.498	mg/Kg - dry	0.498	1.89	1	07/28/23 14:14	AMP	V35874
,4-Dimethylphenol	<0.309	mg/Kg - dry	0.309	0.944	1	07/28/23 14:14	AMP	V35874
Di-n-butyl phthalate	<0.307	mg/Kg - dry	0.307	1.89	1	07/28/23 14:14	AMP	V35874
l,6-Dinitro-2-methylphenol	<0.687	mg/Kg - dry	0.687	4.29	1	07/28/23 14:14	AMP	V35874
2,4-Dinitrophenol	<1.49	mg/Kg - dry	1.49	4.29	1	07/28/23 14:14	AMP	V35874
2,4-Dinitrotoluene	<0.276	mg/Kg - dry	0.276	1.89	1	07/28/23 14:14	AMP	V35874
2,6-Dinitrotoluene	<0.309	mg/Kg - dry	0.309	1.89	1	07/28/23 14:14	AMP	V35874
Di-n-Octyl Phthalate	<0.410	mg/Kg - dry	0.410	0.944	1	07/28/23 14:14	AMP	V35874
luoranthene	<0.353	mg/Kg - dry	0.353	1.89	1	07/28/23 14:14	AMP	V35874
luorene	<0.366	mg/Kg - dry	0.366	1.89	1	07/28/23 14:14	AMP	V35874
lexachlorobenzene	<0.303	mg/Kg - dry	0.303	1.89	1	07/28/23 14:14	AMP	V35874
lexachlorobutadiene	<0.278	mg/Kg - dry	0.278	1.89	1	07/28/23 14:14	AMP	V35874
lexachlorocyclopentadiene	<0.450	mg/Kg - dry	0.450	1.89	1	07/28/23 14:14	AMP	V35874

Qualifiers/ Definitions В

J

Analyte detected in blank Estimated value DF Dilution Factor

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90647** Sample ID : **SS-LY-45** Matrix: Solids Sampled: 7/24/2023 16:18

Analytical Method: 8270E Prep Method: 3546	Р	rep Batch(es):	V35831	07/27/2	23 11:3			
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane	<0.227	mg/Kg - dry	0.227	1.89	1	07/28/23 14:14	AMP	V35874
Indeno(1,2,3-cd)pyrene	<0.513	mg/Kg - dry	0.513	1.89	1	07/28/23 14:14	AMP	V35874
Isophorone	<0.547	mg/Kg - dry	0.547	1.89	1	07/28/23 14:14	AMP	V35874
1-Methylnaphthalene	<0.303	mg/Kg - dry	0.303	1.89	1	07/28/23 14:14	AMP	V35874
2-Methylnaphthalene	<0.286	mg/Kg - dry	0.286	1.89	1	07/28/23 14:14	AMP	V35874
2-Methylphenol	<0.278	mg/Kg - dry	0.278	1.89	1	07/28/23 14:14	AMP	V35874
3&4 Methylphenol	<0.242	mg/Kg - dry	0.242	1.89	1	07/28/23 14:14	AMP	V35874
Naphthalene	<0.412	mg/Kg - dry	0.412	1.89	1	07/28/23 14:14	AMP	V35874
2-Nitroaniline	<0.276	mg/Kg - dry	0.276	1.89	1	07/28/23 14:14	AMP	V35874
3-Nitroaniline	<0.343	mg/Kg - dry	0.343	1.89	1	07/28/23 14:14	AMP	V35874
1-Nitroaniline	<0.267	mg/Kg - dry	0.267	0.944	1	07/28/23 14:14	AMP	V35874
Nitrobenzene	<0.332	mg/Kg - dry	0.332	0.944	1	07/28/23 14:14	AMP	V35874
2-Nitrophenol	<0.253	mg/Kg - dry	0.253	1.89	1	07/28/23 14:14	AMP	V35874
1-Nitrophenol	<0.335	mg/Kg - dry	0.335	1.89	1	07/28/23 14:14	AMP	V35874
N-Nitrosodimethylamine	<0.753	mg/Kg - dry	0.753	1.89	1	07/28/23 14:14	AMP	V35874
N-Nitrosodiphenylamine	<0.519	mg/Kg - dry	0.519	1.89	1	07/28/23 14:14	AMP	V35874
N-Nitroso-di-n-propylamine	<0.337	mg/Kg - dry	0.337	1.89	1	07/28/23 14:14	AMP	V35874
Pentachlorophenol	<0.994	mg/Kg - dry	0.994	2.86	1	07/28/23 14:14	AMP	V35874
Phenanthrene	<0.595	mg/Kg - dry	0.595	1.89	1	07/28/23 14:14	AMP	V35874
Phenol	<0.320	mg/Kg - dry	0.320	1.89	1	07/28/23 14:14	AMP	V35874
Pyrene	<0.383	mg/Kg - dry	0.383	1.89	1	07/28/23 14:14	AMP	V35874
Pyridine	<0.227	mg/Kg - dry	0.227	0.944	1	07/28/23 14:14	AMP	V35874

Qualifiers/ Definitions B Analyte detected in blankJ Estimated value

DF Dilution Factor

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023

Report Number : 23-207-0017

REPORT OF ANALYSIS

Lab No : **90647** Sample ID : **SS-LY-45** Matrix: **Solids** Sampled: **7/24/2023 16:18**

Analytical Method: 8270E Prep Method: 3546		Prep Batch(es):		V35831	07/27/2	3 11:3			
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene		<0.307	mg/Kg - dry	0.307	1.89	1	07/28/23 14:14	AMP	V35874
2,4,5-Trichlorophenol		<0.274	mg/Kg - dry	0.274	1.89	1	07/28/23 14:14	AMP	V35874
2,4,6-Trichlorophenol		<0.276	mg/Kg - dry	0.276	1.89	1	07/28/23 14:14	AMP	V35874
Surrogate: Pheno	ol-d5		72.4	Limit	s: 34-121%		1 07/28/23 14:1	l4 Amp	8270E
Surrogate: 2-Flue	orobiphenyl		81.2	Limit	s: 44-115%		1 07/28/23 14:1	l4 AMP	V35874
Surrogate: 2-Flue	orophenol		76.2	Limit	s: 35-115%		1 07/28/23 14:1	l4 AMP	V35874
Surrogate: Nitrol	penzene-d5		76.4	Limit	s: 37-122%		1 07/28/23 14:1	l4 AMP	V35874
Surrogate: 4-Ter	phenyl-d14		99.6	Limit	s: 54-127%		1 07/28/23 14:1	l4 AMP	V35874
Surrogate: 2,4,6-	-Tribromophenol		80.4	Limit	s: 39-132%		1 07/28/23 14:1	l4 AMP	V35874

Lab No : 90648		Matrix: Solids
Report Number : 23-207-0017	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023

Sample ID : SS-LY-45(1')

Sampled: 7/24/2023 16:20

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	15.6 248	% mg/Kg - dry	1.78		07/28/23 10:30 08/07/23 17:40		SW-DRYWT 6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Lab No : 90649			Matrix: Solids
Report Number : 23-207-0017	REI	PORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :		Received : 07/26/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023
Mid Atlantic Accociator Inc. Dalaish	Droject	R4270.00	Original Report Data : 08/09

Sample ID : SS-LY-45(Pb)

Sampled: 7/24/2023 10:15

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	36.7	%		1	07/28/23 10:30	CNC	SW-DRYW1	
_ead	384	mg/Kg - dry	2.37	5	08/07/23 17:53	JKC	6010D	

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/08/2023 Revised Report Date: 08/16/2023 Received : 07/26/2023
Report Number : 23-207-0017	REPORT OF ANALYSIS	
Lab No : 90650 Sample ID : SS-LY-DUP1		Matrix: Solids Sampled: 7/24/2023 10:20

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	32.7	%		1	07/28/23 10:30	CNC	SW-DRYWT
Lead	553	mg/Kg - dry	4.46	10	08/07/23 17:58	JKC	6010D

Qualifiers/	В	Analyte detected in blank
Definitions	J	Estimated value

Client ID: Project Description: Report No:	Mid-Atlantic As R4370.00 23-207-0017	sociates, In	ıc Ralei	gh								
QC Prep: QC Prep Batch Method:	V36022 3050B			Analysis	lytical Batc s Method: s Descriptio		6010D	5,V36316 Analysis				
Lab Reagent Blank Associated Lab Samples:	90635, 90636, 9	LRB-V36 0637, 90638		90641, 9064	Matrix: S 42, 90643,		90645,	90646,	90648, 90649	90650)	
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Ke	g <0.300		0.300		08/02	2/23 17	:42				
Laboratory Control Sam	ıple	LCS-V36	6022									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec	:	% Rec Limits			
Lead	mg/K	g 5.00		5.98			120		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90637	'-MS-V360	22 V 9063	7-MSD-V360)22						
Parameter	Units	Result	MS Spik Conc.	e MSD Spike Conc.	MS Result	t MS Res		MS %Rec	MSD %Rec	%Rec Limits		Max RPD
Lead	mg/Ke	g 177	5.00	5.00	195	1	71	360*	0.0*	75-125	13.1	20
Post Digestion Spike		V 90637	'-PDS-V36	022								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Ke	g 152		101		08/0	7/23 17	:18				

Client ID:	Mid-Atlantic Asso	ciates, Inc Rale	igh		
Project Description:	R4370.00				
Report No:	23-207-0017				
QC Prep: QC Prep Batch Method:	L695858 3050B		QC Analytica Analysis Met Analysis Des	hod:	L696237,L696547,L698986 6020B Metals Analyses
Lab Reagent Blank Associated Lab Samples:	90639, 90647	LRB-L695858	M	atrix: SOL	
Parameter	Units	Blank Result	MQL	An	alyzed
Antimony	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Arsenic	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Barium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Beryllium	mg/Kg	<0.250	0.250	08/0	2/23 14:22
Cadmium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Chromium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Cobalt	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Copper	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Lead	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Manganese	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Nickel	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Selenium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Silver	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Thallium	mg/Kg	<0.250	0.250	08/0	1/23 13:34
Vanadium	mg/Kg	<1.25	1.25	08/0	1/23 13:34
Zinc	mg/Kg	<2.50	2.50	08/0	1/23 13:34

Laboratory Control Sample

LCS-L695858

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Antimony	mg/Kg	5.00	4.69	94.0	80-120	
Arsenic	mg/Kg	2.50	2.38	95.0	80-120	
Barium	mg/Kg	5.00	4.59	92.0	80-120	
Beryllium	mg/Kg	2.50	2.38	95.0	80-120	
Cadmium	mg/Kg	0.500	0.480	96.0	80-120	
Chromium	mg/Kg	5.00	4.77	95.0	80-120	
Cobalt	mg/Kg	5.00	4.70	94.0	80-120	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	L695858	QC Analytical Batch(es):	L696237,L696547,L698986
QC Prep Batch Method:	3050B	Analysis Method:	6020B
		Analysis Description:	Metals Analyses

Laboratory Control Sample

LCS-L695858

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Copper	mg/Kg	2.50	2.52	101	80-120	
Lead	mg/Kg	2.50	2.34	94.0	80-120	
Manganese	mg/Kg	5.00	5.10	102	80-120	
Nickel	mg/Kg	2.50	2.44	98.0	80-120	
Selenium	mg/Kg	5.00	4.84	97.0	80-120	
Silver	mg/Kg	0.500	0.470	94.0	80-120	
Thallium	mg/Kg	0.500	0.464	93.0	80-120	
Vanadium	mg/Kg	25.0	23.0	92.0	80-120	
Zinc	mg/Kg	25.0	24.0	96.0	80-120	

Matrix Spike & Matrix Spike Duplicate

V 90647-MS-L695858 V 90647-MSD-L695858

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Antimony	mg/Kg	0.964	4.98	4.82	3.09	2.49	43.0*	32.0*	75-125	21.5	80
Arsenic	mg/Kg	2.64	2.49	2.41	8.13	4.82	221*	91.0	75-125	51.1	80
Barium	mg/Kg	80.1	4.98	4.82	86.5	95.6	129*	322*	75-125	9.9	80
Beryllium	mg/Kg	0.278	2.49	2.41	2.56	2.82	92.0	106	75-125	9.6	80
Cadmium	mg/Kg	0.600	0.498	0.482	1.14	1.05	109	93.0	75-125	8.2	80
Chromium	mg/Kg	11.7	4.98	4.82	16.6	15.9	98.0	87.0	75-125	4.3	80
Cobalt	mg/Kg	3.12	4.98	4.82	8.15	7.50	101	91.0	75-125	8.3	80
Copper	mg/Kg	53.2	2.49	2.41	60.8	54.6	306*	58.0*	75-125	10.7	80
Lead	mg/Kg	188	2.49	2.41	203	186	603*	0.0*	75-125	8.7	80
Manganese	mg/Kg	156	4.98	4.82	180	174	482*	374*	75-125	3.3	80
Nickel	mg/Kg	9.31	2.49	2.41	13.6	11.3	172*	83.0	75-125	18.4	80
Selenium	mg/Kg	0.321	4.98	4.82	4.43	4.43	83.0	85.0	75-125	0.0	80
Silver	mg/Kg	<0.250	0.498	0.482	0.689	0.686	91.0	94.0	75-125	0.4	80

Client ID:	Mid-Atlantic Associates, Inc Raleigh	I	
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	L695858	QC Analytical Batch(es):	L696237,L696547,L698986
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses

Matrix Spike & Matrix Spike Duplicate

V 90647-MS-L695858 V 90647-MSD-L695858

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Thallium	mg/Kg	<0.250	0.498	0.482	0.492	0.489	74.0*	76.0	75-125	0.6	80
Vanadium	mg/Kg	10.1	24.9	24.1	31.8	31.3	87.0	88.0	75-125	1.5	80
Zinc	mg/Kg	259	24.9	24.1	334	281	302*	91.0	75-125	17.2	80

Post Digestion Spike

V 90647-PDS-L695858

Parameter	Units	PDS Result	% Recovery	Analyzed
Antimony	mg/Kg	2.26	92.0	08/02/23 16:09
Arsenic	mg/Kg	1.36	95.0	08/01/23 14:36
Barium	mg/Kg	10.2	99.0	08/01/23 14:36
Beryllium	mg/Kg	1.13	94.0	08/02/23 16:09
Cadmium	mg/Kg	0.288	98.0	08/01/23 14:36
Chromium	mg/Kg	3.42	97.0	08/01/23 14:36
Cobalt	mg/Kg	2.58	97.0	08/01/23 14:36
Copper	mg/Kg	2.50	112	08/02/23 15:41
Lead	mg/Kg	19.8	99.0	08/01/23 14:36
Manganese	mg/Kg	17.4	97.0	08/01/23 14:36
Nickel	mg/Kg	2.08	99.0	08/01/23 14:36
Selenium	mg/Kg	2.32	97.0	08/01/23 14:36
Silver	mg/Kg	<0.250	94.0	08/01/23 14:36
Thallium	mg/Kg	<0.250	94.0	08/01/23 14:36
Vanadium	mg/Kg	12.2	96.0	08/01/23 14:36
Zinc	mg/Kg	36.6	97.0	08/01/23 14:36

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, Iı	nc Raleigl	h								
QC Prep:	L696684			QC Ana	lytical Batch(es): L	.696885					
QC Prep Batch Method:	7471A			-	s Method:		'471A					
				Analysi	s Description:	ç	Solids To	tal Mercu	iry Analysis	- CVAA		
Lab Reagent Blank Associated Lab Samples:	90639	LRB-L69	96684		Matrix: SOL	-						
Parameter	Units	Blank Result	MDL	MQL		Anal	yzed					
Mercury (Total)	mg/Kg	<0.0232	0.0232	0.192		08/04/	23 10:3	2				
Laboratory Control Sam	ple	LCS-L69	96684									
Parameter	Units	Spike Conc.		LCS Result		LCS	⁄₀Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.400		0.428		1	07		80-120			
Matrix Spike & Matrix S	pike Duplicate	L 89326	5-MS-L69668	4 L 893	26-MSD-L69668	4						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Resul	t	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	0.0547	0.368	0.364	0.404	0.39	6	95.0	94.0	80-120	2.0	20
Post Digestion Spike		L 89326	5-PDS-L6966	84								
Parameter	Units	PDS Result		% Recovery	,	Anal	yzed					
Mercury (Total)	mg/Kg	0.814		97.0		08/04/	23 11:0	5				

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, In	nc Raleig	h								
QC Prep: QC Prep Batch Method:	V35873 7471B (Prep)			Analysi	lytical Batch(s Method: s Description		V35952 7471B Solids T		ury Analysis	- CVAA		
Lab Reagent Blank Associated Lab Samples:	90647	LRB-V35	5873		Matrix: SOL	-						
Parameter	Units	Blank Result		MQL		Ana	lyzed					
Mercury (Total)	mg/Kg	<0.0300		0.0300		07/28	/23 15:4	13				
Laboratory Control Sam	ple	LCS-V35	5873									
Parameter	Units	Spike Conc.		LCS Result		LCS	%Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.417		0.451			108		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90819)-MS-V35873	3 V 9081	19-MSD-V35873	3						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSE Resu		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	<0.0300	0.410	0.397	0.400	0.3	62	98.0	91.0	80-120	9.9	20
Post Digestion Spike		V 90819)-PDS-V3587	'3								
Parameter	Units	PDS Result		% Recovery	,	Ana	lyzed					
Mercury (Total)	mg/Kg	0.200		101		07/28	/23 16:1	15				

Client ID: Project Description:	Mid-Atlantic Associates, Inc Raleigh R4370.00										
Report No:	23-207-0017										
QC Prep: QC Prep Batch Method:	V35831 3546			Analysis Method	QC Analytical Batch(es):V35874Analysis Method:8270EAnalysis Description:Semivolatile C			- GC/MS			
Lab Reagent Blank Associated Lab Samples:	90639, 90647	LRB-V35831 7		Matrix: SOL							
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits			
Acenaphthene	mg/Kg	<0.116	0.116	0.660	07/2	7/23 16:49					
Acenaphthylene	mg/Kg	<0.105	0.105	0.660	07/2	7/23 16:49					
Aniline	mg/Kg	<0.152	0.152	0.660	07/2	7/23 16:49					
Anthracene	mg/Kg	<0.143	0.143	0.660	07/2	7/23 16:49					
Benzo(a)anthracene	mg/Kg	<0.139	0.139	0.660	07/2	7/23 16:49					
Benzo(a)pyrene	mg/Kg	<0.147	0.147	0.660	07/2	7/23 16:49					
Benzo(b)fluoranthene	mg/Kg	<0.146	0.146	0.660	07/2	7/23 16:49					
Benzo(g,h,i)perylene	mg/Kg	<0.136	0.136	0.660	07/2	7/23 16:49					
Benzo(k)fluoranthene	mg/Kg	<0.137	0.137	0.660	07/2	7/23 16:49					
Benzoic Acid	mg/Kg	<0.580	0.580	2.00	07/2	7/23 16:49					
enzyl alcohol	mg/Kg	<0.105	0.105	0.660	07/2	7/23 16:49					
Bis(2-Chloroethoxy)methane	e mg/Kg	<0.118	0.118	0.660	07/2	7/23 16:49					
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	0.107	0.660	07/2	7/23 16:49					
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	0.136	0.330	07/2	7/23 16:49					
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	0.120	0.660	07/2	7/23 16:49					
-Bromophenyl phenyl ether	mg/Kg	<0.109	0.109	0.660	07/2	7/23 16:49					
Butyl benzyl phthalate	mg/Kg	<0.113	0.113	0.330	07/2	7/23 16:49					
-Chloro-3-methylphenol	mg/Kg	<0.092	0.092	0.660	07/2	7/23 16:49					
l-Chloroaniline	mg/Kg	<0.112	0.112	0.330	07/2	7/23 16:49					
2-Chloronaphthalene	mg/Kg	<0.116	0.116	0.660	07/2	7/23 16:49					
2-Chlorophenol	mg/Kg	<0.098	0.098	0.660	07/2	7/23 16:49					
-Chlorophenyl phenyl ether	mg/Kg	<0.126	0.126	1.00	07/2	7/23 16:49					
Chrysene	mg/Kg	<0.142	0.142	0.660	07/2	7/23 16:49					
Dibenz(a,h)anthracene	mg/Kg	<0.230	0.230	0.660	07/2	7/23 16:49					
Dibenzofuran	mg/Kg	<0.119	0.119	0.660	07/2	7/23 16:49					
1,2-Dichlorobenzene	mg/Kg	<0.094	0.094	0.660	07/2	7/23 16:49					
1,3-Dichlorobenzene	mg/Kg	<0.097	0.097	0.660		7/23 16:49					
	3. 3					-					

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, Ind	c Raleigi	h				
QC Prep: QC Prep Batch Method:	V35831 3546			QC Analytical Analysis Meth Analysis Desci	od:	rganic Compounds -	GC/MS	
Lab Reagent Blank Associated Lab Samples:	90639, 90647	LRB-V35831 539, 90647		Matı	rix: SOL			
Parameter	Units	Blank Result	MDL	MQL	Ana	alyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	mg/Kg	<0.097	0.097	0.330	07/27	7/23 16:49		
3,3'-Dichlorobenzidine	mg/Kg	<0.147	0.147	0.660	07/27	7/23 16:49		
2,4-Dichlorophenol	mg/Kg	<0.095	0.095	0.660	07/27	7/23 16:49		
Diethyl phthalate	mg/Kg	<0.180	0.180	0.660	07/27	7/23 16:49		
Dimethyl phthalate	mg/Kg	<0.174	0.174	0.660	07/27	7/23 16:49		
2,4-Dimethylphenol	mg/Kg	<0.108	0.108	0.330	07/27	7/23 16:49		
Di-n-butyl phthalate	mg/Kg	<0.107	0.107	0.660	07/27	7/23 16:49		
4,6-Dinitro-2-methylphenol	mg/Kg	<0.240	0.240	1.50	07/27	7/23 16:49		
2,4-Dinitrophenol	mg/Kg	<0.520	0.520	1.50	07/27	7/23 16:49		
2,4-Dinitrotoluene	mg/Kg	<0.096	0.096	0.660	07/27	7/23 16:49		
2,6-Dinitrotoluene	mg/Kg	<0.108	0.108	0.660	07/27	7/23 16:49		
Di-n-Octyl Phthalate	mg/Kg	<0.143	0.143	0.330	07/27	7/23 16:49		
Fluoranthene	mg/Kg	<0.123	0.123	0.660	07/27	7/23 16:49		
Fluorene	mg/Kg	<0.128	0.128	0.660	07/27	7/23 16:49		
Hexachlorobenzene	mg/Kg	<0.106	0.106	0.660	07/27	7/23 16:49		
Hexachlorobutadiene	mg/Kg	<0.097	0.097	0.660	07/27	7/23 16:49		
Hexachlorocyclopentadiene	mg/Kg	<0.157	0.157	0.660	07/27	7/23 16:49		
Hexachloroethane	mg/Kg	<0.079	0.079	0.660	07/27	7/23 16:49		
Indeno(1,2,3-cd)pyrene	mg/Kg	<0.179	0.179	0.660	07/27	7/23 16:49		
Isophorone	mg/Kg	<0.191	0.191	0.660	07/27	7/23 16:49		
1-Methylnaphthalene	mg/Kg	<0.106	0.106	0.660	07/27	7/23 16:49		
2-Methylnaphthalene	mg/Kg	<0.100	0.100	0.660	07/27	7/23 16:49		
2-Methylphenol	mg/Kg	<0.097	0.097	0.660	07/27	7/23 16:49		
3&4 Methylphenol	mg/Kg	<0.084	0.084	0.660	07/27	7/23 16:49		
Naphthalene	mg/Kg	<0.144	0.144	0.660	07/27	7/23 16:49		
2-Nitroaniline	mg/Kg	<0.096	0.096	0.660	07/27	7/23 16:49		
3-Nitroaniline	mg/Kg	<0.120	0.120	0.660	07/27	7/23 16:49		

Date: 08/16/2023 03:21 PM

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, In	c Raleigh	1				
QC Prep: QC Prep Batch Method:	V35831 3546			QC Analytica Analysis Met Analysis Des	:hod:	V35874 8270E Semivolatile C	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples:	90639, 90647	LRB-V35	831	Ma	atrix: SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
4-Nitroaniline	mg/Kg	<0.093	0.093	0.330	07/2	7/23 16:49		
Nitrobenzene	mg/Kg	<0.116	0.116	0.330	07/2	7/23 16:49		
2-Nitrophenol	mg/Kg	<0.088	0.088	0.660	07/2	7/23 16:49		
4-Nitrophenol	mg/Kg	<0.117	0.117	0.660	07/2	7/23 16:49		
N-Nitrosodimethylamine	mg/Kg	<0.263	0.263	0.660	07/2	7/23 16:49		
N-Nitrosodiphenylamine	mg/Kg	<0.181	0.181	0.660	07/2	7/23 16:49		
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	0.118	0.660	07/2	7/23 16:49		
Pentachlorophenol	mg/Kg	<0.347	0.347	1.00	07/2	7/23 16:49		
Phenanthrene	mg/Kg	<0.208	0.208	0.660	07/2	7/23 16:49		
Phenol	mg/Kg	<0.112	0.112	0.660	07/2	7/23 16:49		
Pyrene	mg/Kg	<0.134	0.134	0.660	07/2	7/23 16:49		
Pyridine	mg/Kg	<0.079	0.079	0.330	07/2	7/23 16:49		
1,2,4-Trichlorobenzene	mg/Kg	<0.107	0.107	0.660	07/2	7/23 16:49		
2,4,5-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	07/2	7/23 16:49		
2,4,6-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	07/2	7/23 16:49		
2-Fluorobiphenyl (S)					07/2	7/23 16:49	90.4	44-115
2-Fluorophenol (S)					07/2	7/23 16:49	83.1	35-115
Nitrobenzene-d5 (S)					07/2	7/23 16:49	86.8	37-122
4-Terphenyl-d14 (S)					07/2	7/23 16:49	102	54-127
2,4,6-Tribromophenol (S)					07/2	7/23 16:49	69.9	39-132
Phenol-d5 (S)					07/2	7/23 16:49	75.6	34-121

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Acenaphthene	mg/Kg	1.67	1.55	92.8	40-123	
Acenaphthylene	mg/Kg	1.67	1.57	94.0	32-132	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Aniline	mg/Kg	1.67	2.61	156	12-197	
Anthracene	mg/Kg	1.67	1.75	105	47-123	
Benzo(a)anthracene	mg/Kg	1.67	1.70	102	49-126	
Benzo(a)pyrene	mg/Kg	1.67	1.89	113	45-129	
Benzo(b)fluoranthene	mg/Kg	1.67	1.85	111	45-132	
Benzo(g,h,i)perylene	mg/Kg	1.67	1.69	101	43-134	
Benzo(k)fluoranthene	mg/Kg	1.67	1.70	102	47-132	
Benzoic Acid	mg/Kg	1.67	0.641	38.3	10-83	
Benzyl alcohol	mg/Kg	1.67	1.58	94.6	29-122	
Bis(2-Chloroethoxy)methane	mg/Kg	1.67	1.41	84.4	36-121	
Bis(2-Chloroethyl)ether	mg/Kg	1.67	1.49	89.2	31-120	
Bis(2-Chloroisopropyl)ether	mg/Kg	1.67	1.62	97.0	33-131	
Bis(2-ethylhexyl)phthalate	mg/Kg	1.67	1.87	112	51-133	
4-Bromophenyl phenyl ether	mg/Kg	1.67	1.67	100	46-124	
Butyl benzyl phthalate	mg/Kg	1.67	1.86	111	48-132	
4-Chloro-3-methylphenol	mg/Kg	1.67	1.37	82.0	45-122	
4-Chloroaniline	mg/Kg	1.67	1.50	89.8	17-106	
2-Chloronaphthalene	mg/Kg	1.67	1.54	92.2	41-114	
2-Chlorophenol	mg/Kg	1.67	1.50	89.8	34-121	
4-Chlorophenyl phenyl ether	mg/Kg	1.67	1.54	92.2	45-121	
Chrysene	mg/Kg	1.67	1.65	98.8	50-124	
Dibenz(a,h)anthracene	mg/Kg	1.67	1.74	104	45-134	
Dibenzofuran	mg/Kg	1.67	1.53	91.6	44-120	
1,2-Dichlorobenzene	mg/Kg	1.67	1.35	80.8	33-117	
1,3-Dichlorobenzene	mg/Kg	1.67	1.32	79.0	30-115	
1,4-Dichlorobenzene	mg/Kg	1.67	1.32	79.0	31-115	
3,3'-Dichlorobenzidine	mg/Kg	1.67	1.59	95.2	22-121	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
2,4-Dichlorophenol	mg/Kg	1.67	1.33	79.6	40-122	
Diethyl phthalate	mg/Kg	1.67	1.69	101	50-124	
Dimethyl phthalate	mg/Kg	1.67	1.67	100	48-124	
2,4-Dimethylphenol	mg/Kg	1.67	1.82	109	30-127	
Di-n-butyl phthalate	mg/Kg	1.67	1.94	116	51-128	
4,6-Dinitro-2-methylphenol	mg/Kg	1.67	1.59	95.2	29-132	
2,4-Dinitrophenol	mg/Kg	1.67	1.36	81.4	27-129	
2,4-Dinitrotoluene	mg/Kg	1.67	1.71	102	48-126	
2,6-Dinitrotoluene	mg/Kg	1.67	1.67	100	46-124	
Di-n-Octyl Phthalate	mg/Kg	1.67	2.05	123	45-140	
Fluoranthene	mg/Kg	1.67	1.70	102	50-127	
Fluorene	mg/Kg	1.67	1.57	94.0	43-125	
Hexachlorobenzene	mg/Kg	1.67	1.58	94.6	45-122	
Hexachlorobutadiene	mg/Kg	1.67	1.23	73.6	32-123	
Hexachlorocyclopentadiene	mg/Kg	1.67	1.41	84.4	32-117	
Hexachloroethane	mg/Kg	1.67	1.31	78.4	28-117	
Indeno(1,2,3-cd)pyrene	mg/Kg	1.67	1.72	103	45-133	
Isophorone	mg/Kg	1.67	1.25	74.8	30-122	
1-Methylnaphthalene	mg/Kg	1.67	1.29	77.2	40-119	
2-Methylnaphthalene	mg/Kg	1.67	1.26	75.4	38-122	
2-Methylphenol	mg/Kg	1.67	1.58	94.6	32-122	
3&4 Methylphenol	mg/Kg	1.67	1.42	85.0	34-119	
Naphthalene	mg/Kg	1.67	1.27	76.0	35-123	
2-Nitroaniline	mg/Kg	1.67	1.77	106	44-127	
3-Nitroaniline	mg/Kg	1.67	1.77	106	33-119	
4-Nitroaniline	mg/Kg	1.67	1.80	108	63-147	
Nitrobenzene	mg/Kg	1.67	1.29	77.2	34-122	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	ı	
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample

LCS-V35831

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
2-Nitrophenol	mg/Kg	1.67	1.31	78.4	36-123	
4-Nitrophenol	mg/Kg	1.67	1.81	108	30-132	
N-Nitrosodimethylamine	mg/Kg	1.67	1.35	80.8	10-146	
N-Nitrosodiphenylamine	mg/Kg	1.67	2.02	121	38-127	
N-Nitroso-di-n-propylamine	mg/Kg	1.67	1.57	94.0	36-120	
Pentachlorophenol	mg/Kg	1.67	1.63	97.6	25-133	
Phenanthrene	mg/Kg	1.67	1.67	100	50-121	
Phenol	mg/Kg	1.67	1.50	89.8	34-121	
Pyrene	mg/Kg	1.67	1.56	93.4	47-127	
Pyridine	mg/Kg	1.67	1.08	64.6	10-80	
1,2,4-Trichlorobenzene	mg/Kg	1.67	1.18	70.6	34-118	
2,4,5-Trichlorophenol	mg/Kg	1.67	1.59	95.2	41-124	
2,4,6-Trichlorophenol	mg/Kg	1.67	1.54	92.2	39-126	
2-Fluorobiphenyl (S)				92.2	44-115	
2-Fluorophenol (S)				88.8	35-115	
Nitrobenzene-d5 (S)				77.8	37-122	
4-Terphenyl-d14 (S)				97.6	54-127	
2,4,6-Tribromophenol (S)				79.5	39-132	
Phenol-d5 (S)				78.3	34-121	

Matrix Spike & Matrix Spike Duplicate

V 90683-MS-V35831 V 90683-MSD-V35831

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Acenaphthene	mg/Kg	<0.116	1.67	1.67	1.48	1.39	88.6	83.2	40-123	6.2	20
Acenaphthylene	mg/Kg	<0.105	1.67	1.67	1.48	1.39	88.6	83.2	32-132	6.2	20
Aniline	mg/Kg	<0.152	1.67	1.67	2.55	2.32	153	139	12-197	9.4	20

Date: 08/16/2023 03:21 PM

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method: Analysis Description:	8270E Semivolatile Organic Compounds - GC/MS

Matrix Spike & Matrix Spike Duplicate

V 90683-MS-V35831 V 90683-MSD-V35831

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Anthracene	mg/Kg	<0.143	1.67	1.67	1.65	1.60	98.8	95.8	47-123	3.0	20
Benzo(a)anthracene	mg/Kg	<0.139	1.67	1.67	1.63	1.55	97.6	92.8	49-126	5.0	20
Benzo(a)pyrene	mg/Kg	<0.147	1.67	1.67	1.84	1.77	110	106	45-129	3.8	20
Benzo(b)fluoranthene	mg/Kg	<0.146	1.67	1.67	1.74	1.64	104	98.2	45-132	5.9	20
Benzo(g,h,i)perylene	mg/Kg	<0.136	1.67	1.67	1.61	1.52	96.4	91.0	43-134	5.7	20
Benzo(k)fluoranthene	mg/Kg	<0.137	1.67	1.67	1.67	1.58	100	94.6	47-132	5.5	20
Benzoic Acid	mg/Kg	<0.580	1.67	1.67	<0.580	<0.580	0.0*	0.0*	10-83	0.0	20
Benzyl alcohol	mg/Kg	<0.105	1.67	1.67	1.48	1.41	88.6	84.4	29-122	4.8	20
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	1.67	1.67	1.33	1.24	79.6	74.2	36-121	7.0	20
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	1.67	1.67	1.46	1.31	87.4	78.4	31-120	10.8	20
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	1.67	1.67	1.51	1.37	90.4	82.0	33-131	9.7	20
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	1.67	1.67	1.85	1.80	111	108	51-133	2.7	20
4-Bromophenyl phenyl ether	mg/Kg	<0.109	1.67	1.67	1.59	1.53	95.2	91.6	46-124	3.8	20
Butyl benzyl phthalate	mg/Kg	<0.113	1.67	1.67	1.94	1.83	116	110	48-132	5.8	20
4-Chloro-3-methylphenol	mg/Kg	<0.092	1.67	1.67	1.33	1.33	79.6	79.6	45-122	0.0	20
4-Chloroaniline	mg/Kg	<0.112	1.67	1.67	1.43	1.37	85.6	82.0	17-106	4.2	20
2-Chloronaphthalene	mg/Kg	<0.116	1.67	1.67	1.48	1.37	88.6	82.0	41-114	7.7	20
2-Chlorophenol	mg/Kg	<0.098	1.67	1.67	1.46	1.31	87.4	78.4	34-121	10.8	20
4-Chlorophenyl phenyl ether	mg/Kg	<0.126	1.67	1.67	1.46	1.41	87.4	84.4	45-121	3.4	20
Chrysene	mg/Kg	<0.142	1.67	1.67	1.57	1.50	94.0	89.8	50-124	4.5	20
Dibenz(a,h)anthracene	mg/Kg	<0.230	1.67	1.67	1.61	1.46	96.4	87.4	45-134	9.7	20
Dibenzofuran	mg/Kg	<0.119	1.67	1.67	1.47	1.40	88.0	83.8	44-120	4.8	20
1,2-Dichlorobenzene	mg/Kg	<0.094	1.67	1.67	1.27	1.12	76.0	67.0	33-117	12.5	20
1,3-Dichlorobenzene	mg/Kg	<0.097	1.67	1.67	1.27	1.10	76.0	65.8	30-115	14.3	20
1,4-Dichlorobenzene	mg/Kg	<0.097	1.67	1.67	1.24	1.09	74.2	65.2	31-115	12.8	20
3,3'-Dichlorobenzidine	mg/Kg	<0.147	1.67	1.67	1.56	1.51	93.4	90.4	22-121	3.2	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method: Analysis Description:	8270E Semivolatile Organic Compounds - GC/MS

Matrix Spike & Matrix Spike Duplicate

V 90683-MS-V35831 V 90683-MSD-V35831

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
2,4-Dichlorophenol	mg/Kg	<0.095	1.67	1.67	1.32	1.19	79.0	71.2	40-122	10.3	20
Diethyl phthalate	mg/Kg	<0.180	1.67	1.67	1.61	1.54	96.4	92.2	50-124	4.4	20
Dimethyl phthalate	mg/Kg	<0.174	1.67	1.67	1.54	1.51	92.2	90.4	48-124	1.9	30
2,4-Dimethylphenol	mg/Kg	<0.108	1.67	1.67	1.80	1.68	108	101	30-127	6.8	20
Di-n-butyl phthalate	mg/Kg	<0.107	1.67	1.67	1.78	1.73	107	104	51-128	2.8	20
4,6-Dinitro-2-methylphenol	mg/Kg	<0.240	1.67	1.67	1.46	1.37	87.4	82.0	29-132	6.3	20
2,4-Dinitrophenol	mg/Kg	<0.520	1.67	1.67	1.26	1.15	75.4	68.8	27-129	9.1	20
2,4-Dinitrotoluene	mg/Kg	<0.096	1.67	1.67	1.60	1.50	95.8	89.8	48-126	6.4	20
2,6-Dinitrotoluene	mg/Kg	<0.108	1.67	1.67	1.55	1.46	92.8	87.4	46-124	5.9	20
Di-n-Octyl Phthalate	mg/Kg	<0.143	1.67	1.67	2.13	2.03	128	122	45-140	4.8	20
Fluoranthene	mg/Kg	<0.123	1.67	1.67	1.46	1.42	87.4	85.0	50-127	2.7	20
Fluorene	mg/Kg	<0.128	1.67	1.67	1.49	1.42	89.2	85.0	43-125	4.8	20
Hexachlorobenzene	mg/Kg	<0.106	1.67	1.67	1.47	1.43	88.0	85.6	45-122	2.7	20
Hexachlorobutadiene	mg/Kg	<0.097	1.67	1.67	1.18	1.11	70.6	66.4	32-123	6.1	20
Hexachlorocyclopentadiene	mg/Kg	<0.157	1.67	1.67	1.22	0.607	73.0	36.3	32-117	67.1*	20
Hexachloroethane	mg/Kg	<0.079	1.67	1.67	1.22	1.10	73.0	65.8	28-117	10.3	20
Indeno(1,2,3-cd)pyrene	mg/Kg	<0.179	1.67	1.67	1.68	1.56	101	93.4	45-133	7.4	20
Isophorone	mg/Kg	<0.191	1.67	1.67	1.19	1.08	71.2	64.6	30-122	9.6	20
1-Methylnaphthalene	mg/Kg	<0.106	1.67	1.67	1.22	1.18	73.0	70.6	40-119	3.3	20
2-Methylnaphthalene	mg/Kg	<0.100	1.67	1.67	1.23	1.16	73.6	69.4	38-122	5.8	20
2-Methylphenol	mg/Kg	<0.097	1.67	1.67	1.52	1.39	91.0	83.2	32-122	8.9	20
3&4 Methylphenol	mg/Kg	<0.084	1.67	1.67	1.34	1.28	80.2	76.6	34-119	4.5	20
Naphthalene	mg/Kg	<0.144	1.67	1.67	1.22	1.11	73.0	66.4	35-123	9.4	20
2-Nitroaniline	mg/Kg	<0.096	1.67	1.67	1.61	1.58	96.4	94.6	44-127	1.8	20
3-Nitroaniline	mg/Kg	<0.120	1.67	1.67	1.65	1.59	98.8	95.2	33-119	3.7	20
4-Nitroaniline	mg/Kg	<0.093	1.67	1.67	1.65	1.62	98.8	97.0	63-147	1.8	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-207-0017		
QC Prep:	V35831	QC Analytical Batch(es):	V35874
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Matrix Spike & Matrix Spike Duplicate

V 90683-MS-V35831 V 90683-MSD-V35831

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Nitrobenzene	mg/Kg	<0.116	1.67	1.67	1.21	1.10	72.4	65.8	34-122	9.5	20
2-Nitrophenol	mg/Kg	<0.088	1.67	1.67	1.25	1.16	74.8	69.4	32-123	7.4	20
4-Nitrophenol	mg/Kg	<0.117	1.67	1.67	1.70	1.60	102	95.8	30-132	6.0	20
N-Nitrosodimethylamine	mg/Kg	<0.263	1.67	1.67	1.22	1.06	73.0	63.4	10-146	14.0	30
N-Nitrosodiphenylamine	mg/Kg	<0.181	1.67	1.67	1.91	1.84	114	110	38-127	3.7	20
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	1.67	1.67	1.48	1.37	88.6	82.0	36-120	7.7	20
Pentachlorophenol	mg/Kg	<0.347	1.67	1.67	1.27	1.23	76.0	73.6	25-133	3.2	20
Phenanthrene	mg/Kg	<0.208	1.67	1.67	1.56	1.51	93.4	90.4	50-121	3.2	20
Phenol	mg/Kg	<0.112	1.67	1.67	1.41	1.32	84.4	79.0	34-121	6.5	20
Pyrene	mg/Kg	<0.134	1.67	1.67	1.58	1.54	94.6	92.2	47-127	2.5	20
Pyridine	mg/Kg	<0.079	1.67	1.67	1.04	0.903	62.2	54.0	10-80	14.1	20
1,2,4-Trichlorobenzene	mg/Kg	<0.107	1.67	1.67	1.14	1.07	68.2	64.0	34-118	6.3	20
2,4,5-Trichlorophenol	mg/Kg	<0.096	1.67	1.67	1.42	1.39	85.0	83.2	41-124	2.1	20
2,4,6-Trichlorophenol	mg/Kg	<0.096	1.67	1.67	1.39	1.29	83.2	77.2	39-126	7.4	20
2-Fluorobiphenyl (S)							85.0	76.6	44-115		
2-Fluorophenol (S)							79.5	69.1	35-115		
Nitrobenzene-d5 (S)							74.2	64.6	37-122		
4-Terphenyl-d14 (S)							95.8	89.2	54-127		
2,4,6-Tribromophenol (S)							69.3	59.5	39-132		
Phenol-d5 (S)							74.1	67.0	34-121		

%

Moisture

21.3

21.8

Quality Control Data

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, Ir	nc Raleigl	h		
QC Analytical Batch: Analysis Method: Analysis Description:	V35809 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90635	5-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	20.1	19.9	1.0	20.0	07/27/23 10:36
Duplicate		V 90691	L-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed

2.3

20.0

07/27/23 10:36

Client ID: Project Description	Mid-Atlantic Asso	ociates, In	ıc Raleigi	h		
Project Description: Report No:	R4370.00 23-207-0017					
QC Analytical Batch:	V35860					
Analysis Method:	SW-DRYWT					
Analysis Description:	Dry Weight Deter	mination				
Duplicate		V 90644	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	17.1	18.5	7.8	20.0	07/28/23 10:30
Duplicate		V 90677	'-DUP			
D	11-14-	Result	DUP	RPD	Max RPD	Analyzed

Parameter	Units	Result	Result	RPD	мах кро	Analyzed
Moisture	%	24.2	23.4	3.3	20.0	07/28/23 10:30

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-207-0017	ociates, In	ıc Raleigl	h		
QC Analytical Batch: Analysis Method: Analysis Description:	V35954 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90999)-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	21.0	20.3	3.3	20.0	07/31/23 11:05
Duplicate		V 91015	5-DUP			

Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	16.6	16.5	0.6	20.0	07/31/23 11:05

		Shipment	Rece	eipt Fo	orm		
Customer Number Customer Name: Report Number:		ciates, Inc.	- Ral	eigh			
		Shippin	g Me	thod			
◯ Fed Ex	◯ US Postal	CLab			Other :		
	Client	Couri	er		Thermometer ID:	IRT15 1.8C	
Shipping containe	er/cooler uncompromis	ed?		Yes	◯ No		
Number of coolers	s/boxes received			1			
Custody seals inta	act on shipping contai	ner/cooler?		Yes	◯ No	O Not P	resent
Custody seals inta	act on sample bottles?)	\bigcirc	Yes	◯ No	Not P	resent
Chain of Custody	(COC) present?			Yes	◯ No		
COC agrees with	sample label(s)?			Yes	◯ No		
COC properly con	npleted			Yes	◯ No		
Samples in prope	r containers?			Yes	🔵 No		
Sample container	s intact?			Yes	◯ No		
Sufficient sample	volume for indicated t	est(s)?		Yes	◯ No		
All samples receiv	ved within holding time	?		Yes	◯ No		
Cooler temperatu	re in compliance?			Yes	🔿 No		
	nrived at the laborator nsidered acceptable a in.			Yes	◯ No		
Water - Sample c	ontainers properly pre	served	\bigcirc	Yes	◯ No	• N/A	
Water - VOA vials	free of headspace		\bigcirc	Yes	◯ No	• N/A	
Trip Blanks receiv	ved with VOAs		\bigcirc	Yes	◯ No	• N/A	
Soil VOA method	5035 – compliance cr	iteria met	\bigcirc	Yes	◯ No	• N/A	
High concentra	ation container (48 hr)		Γ	Lov	v concentration EnC	ore samplers (48 hr)
High concentra	ation pre-weighed (me	thanol -14 c	I) [Lov	v conc pre-weighed	vials (Sod Bis ·	14 d)
Special precaution	ns or instructions inclu	ided?	\bigcirc	Yes	No		
Comments:							

Signature: Angelo Norvell

Date & Time: 07/26/2023 14:37:42

Additioner commune Mitanyi-hours Additioner commune Mid-Attantic As R4370.00 Field Tech Fee: Miteage:	t	O THE LABORATORY.	MUTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.	UNTIL RECEIVED AT	APED SHUT WITH	RS SHOULD BE T	ARE NOT ACCEP	
Mid-Atlantic As R4370.00	63	A	Alical By	Received For Waypoint Analytical B	Receiv		SAUDIECTONIE	Method of Shipment NOTE AI
Mid-Atlantic As R4370.00	Date 725-23 16.	10	Gepters	COUNCI	Recen	X	De	ULL'Y
Mid-Atlantic As R4370.00	7-25-23 11:40	Sto.	L J	Amonthic harmon	K	1	6	
id-Atlantic As 4370.00	Upon relinquishing this Chain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be submitted in writing to the Waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized. Relinquished by Sparative Sector 2. Sparative Sec	the analyses as requ after analyses have b	es for any changes	Waypoint Analyti are will be charge	Manager. The	dy is your auth alytical Project	e Waypoint An	Reinquishing this (
ntic As	Affiliation	Affili		Sampled By (Print Name)	Sampled By			Sampler's Signature
			- 2 COPIES	PRESS DOWN FIRMLY - 2 COPIES	PRESS D			
Sociates		2			ę	1610	Ę	55-67-39
s. inc		4				1604		55-67-62
Raleig		7				1602		S-LY-70
h		7				600		5-64-69
	77	K				5551		5-64-61
23-2 0113 07-2 14:3		7				8451		89-17-55
07-001 19 6-2023 4:02		5				2221	-	5-17-60
7			an' dis		_	1053		5-67-43
		Ther			S051	0800	7/24/23	SS-17-5
REMARKS	Con the service of the	5	NO. SIZE	TYPE SEE BELOW	WATER, OR SLUDGE)	HOURS	COLLECTED	SAMPLE DESCRIPTION
/ /	2	PRESERVA.	SAMPLE CONTAINER	SAMPLE	MATRIX (SOIL	TIME	DATE	CLIENT
TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNEL Certification: NC SC Other N/A Water Chlorinated: YES NO Samples Iced Upon Collection: YES NO	□ 5 Days Vork Must Be proved and holidays. ES	LI 4 D S L R weeke vweeke SiNG SE	Purchase Order No./Billing Reference Requested Due Date _ 1 Day _ 2 Days _ 3 Days _ 4 Day "Working Days" _ 16-9 Days _ 5 Glandard 10 days _ Pre Samples received after 15:00 will be processed next business to Turnaround time is based on business days, excluding weekenn (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SER RENDERED BY WAYPOINT ANALYTICAL, LLC TO CLIENT)	Purchase Orde Requested Due Days" "Working Days" "Working Days" "Samples received Turnaround time is (SEE REVERSI RENDERE	2	KX	Address:	
IEMP: Inerm ID AVED Observed 1. D. C ICon 1. S C					n	1610	in re	12 GOOD
dicated? IMES? DSPACE?		Project Name: Short Hold Analysis (Yes) (No) UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements Invoice To: Address:	Project Name: Short Hold Analysis (Yes) (No) "Please ATTACH any project specific provisions and/or QC Requirements Invoice To: Address:	Project Name: Short Hold Ana Please ATTACI provisions and Invoice To: Address:	W N	L otte, NC 2821 704/525-0409 7104/525-0409	ANALYTICAL 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409 any Name: Mid-Htua Z. As ontact Name: Key n Contact Name: Key n Contact ddress: Contact Name: Key n Contact Name: Key n Contact ddress: Contact Name: Key n Contact Name: Key	Al 449 Springbrook Phone 704/529 Client Company Name: Report To/Contact Name: Reporting Address:
Samples INTACT upon arrival?	-	QUOTE # TOENSURE PROPER BILLING:	QUOTE :	PAGE OF	1	E	ooin	Waypoint

Waypoi	point	6		CHAIN		CU	OF CUSTODY F		ORD	LA: U Samples INTACT upon arrival?	LAB USE ONLY	YES NO	NIA
449 Springbri Phone 704/2 Client Company Name:	ANALYTICAL 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409 any Name:	L iotte, NC 2821 704/525-0409	7	Project Name: Short Hold Analysis (Yes) (No) *Please ATTACH any project specific provisions and/or OC Requirements	e: Analysis ACH any pro	(Yes) (No) oject specif	repo	UST Project: (Yes rting (QC LEVEL II	(Yes) (No) L I III III IV)	Received IN ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT?	VTIVES indicated; LDING TIMES?	204	8
Report To/Contact Name: Reporting Address:	ne			Invoice To:		eduleune	nts			VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used?	OUT HEADSPAC	۳ ۲ ۱	
										TEMP: Therm ID: 7	ZATS Observed L	ved L. X °C /Corr.	n. 1.X °C
Phone: Email Address:	Fax (Yes)(No):	(No):		Purchase Order No./Billing Reference	der No./Bill	ing Refer	2			-	IY CLIENT/SA	AMPLING PERS	SONNEL
EDD Type: PDF Ex	Excel Other			"Working Days" 16-9 Days 13 Days	Date 11 Da s" 16-9	ay ⊔2 Da Days ⊔ St		J A Days J 5 Days Rush Work Must Be		Certification: NC	S		
Site Location Name: Site Location Physical Address:	Address:			Samples receiv Turnaround time (SEE REVE RENDE	ed after 15:00 e is based on RSE FOR TERI ERED BY WAYF) will be pro business d MS & CONDI	Samples received after 15:00 will be processed next business day. Turnaround time is based on business days, excluding weekends and holidays (SEE REVERSE FOR TERMS & CONDITIONS REGADING SERVICES RENDERED BY WAYPOINT ANALYTICA LLC TO CLENT)	and ho ES		d	I: YES NO	O YES NO	
2	1	TIME			SAMPLE CONTAINER	FR		2	ANALYSIS	REQUESTED			_
SAMPLE DESCRIPTION	COLLECTED	MILITARY	(SOIL, WATER, OR SLUDGE)	TYPE SEE BELOW	NO.	SIZE	TIVES	Las and	San take sarano		REM	REMARKS	ID NO.
SS-LY-29	7/24/23	1628	Sarl				The	5	_				
22-17-72		1632	_					7	2				52
N-47-55		8631						V a	112416				of
55-67-415		1618	_					R	7				E2
(() st- 47-55	-8	1620	<					<					Page
(4)5H-1-7-55	-t	1015	Seil				25	1		-			
125-17-2rl	K	10201	565 (r	5				23-207-0017	
									Mid-Atlantic As R4370.00	ic A	ssociates. Inc Raleidh 14:34:02	07-26-2023 14:34:02	
			PRESS D	PRESS DOWN FIRMLY - 2 COPIES	LY - 2 CO	PIES							L
Sampler's Signature			Sampled By	Sampled By (Print Name)				Affiliation	-			TAR USE ONLY	ONLY
Upon relinquishing this Chain of Custody is your authorization for Waypoint Analytical to proceed with the analyses as requested above. Any changes must be submitted in writing to the Waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized. Reinquished By (Signature)	Chain of Custoc he Waypoint Ana	ly is your aut	horization for t Manager. Th	r. There will be cha	lytical to pro	oceed with y changes	after analyses	have been initi	bove. Any cha ialized.	nges must be		Site Arrival Time:	
	5		1	The	X	10	J.	7-2	-25-23 //:	Military/Hours Additiona	Additional Comments:	Site Departure Time:	ime:
Reinatuisbed By Signature	22 i	ž	Rece	Received By (Signature)	80	resc	1	Date		16:00		Field Tech Fee:	
Method of Shipment NOTE: A	Aufe Received For Waypoint Analytical By Received For Waypoint Analytical By Received For Waypoint Analytical By NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.	ED AND VERIFIE	TAPED SHUT WIT	Received For Waypoint Analytical By WITH CUSTODY SEALS FOR TRA COC UNTIL RECEIVED AT THE LA	AT THE LABO	PORMATION	TO THE LABORAT		150	236		Mileage:	
US	GROUNDWATER:	UNDWATER: DRINKIN	DRINKING WATER:	ER: SOLID	SOLID WASTE:	RCRA:	BRWNFLD		ILL OTHER:	R.		SEE REVERSE FOR TERMS & CONDITIONS	IDITIONS
JNC JSC JNC JSC	SC LNC LSC		C JSC			LNCL	LISC LINC	LUNC	C			ORIGINAL	VAL

8/16/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Revised Lab Report Number: 23-208-0055 Client Project Description: R4370.00

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 7/27/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Laboratory ID: WP MTN: Waypoint Analytical, LLC., Memphis, TN

State	Program	Lab ID	Expiration Date
Alabama	State Program	40750	02/29/2024
Arkansas	State Program	88-0650	02/07/2024
California	State Program	2904	06/30/2024
Florida	State Program - NELAP	E871157	06/30/2024
Georgia	State Program	C044	11/14/2025
Georgia	State Program	04015	06/30/2024
Illinois	State Program - NELAP	200078	10/10/2024
Kentucky	State Program	80215	06/30/2024
Kentucky	State Program	KY90047	12/31/2023
Louisiana	State Program - NELAP	LA037	12/31/2023
Louisiana	State Program - NELAP	04015	06/30/2024
Mississippi	State Program	MS	11/14/2025
North Carolina	State Program	47701	07/31/2024
North Carolina	State Program	415	12/31/2023
Pennsylvania	State Program - NELAP	68-03195	05/31/2024
South Carolina	State Program	84002	06/30/2023
Tennessee	State Program	02027	11/14/2025
Texas	State Program - NELAP	T104704180	09/30/2023
Virginia	State Program	00106	06/30/2024
Virginia	State Program - NELAP	460181	09/14/2023

Sample Summary Table

Report Number:	23-208-0055
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90826	SS-WT-36	Solids	07/25/2023 08:20	07/27/2023 13:00		
90827	SS-WT-43	Solids	07/25/2023 08:35	07/27/2023 13:00		
90828	SS-WT-50	Solids	07/25/2023 08:45	07/27/2023 13:00		
90828	SS-WT-50	Solids	07/25/2023 08:45	07/27/2023 13:00	6020B	WP MTN
90829	SS-WT-49	Solids	07/25/2023 08:55	07/27/2023 13:00		
90830	SS-WT-55	Solids	07/25/2023 09:10	07/27/2023 13:00		
90831	SS-WT-48	Solids	07/25/2023 09:20	07/27/2023 13:00		
90832	SS-WT-32	Solids	07/25/2023 09:30	07/27/2023 13:00		
90833	SS-WT-18	Solids	07/25/2023 09:40	07/27/2023 13:00		
90833	SS-WT-18	Solids	07/25/2023 09:40	07/27/2023 13:00	6020B	WP MTN
90834	SS-WT-53	Solids	07/25/2023 09:58	07/27/2023 13:00		
90835	SS-WT-76	Solids	07/25/2023 10:03	07/27/2023 13:00		
90836	SS-WT-74	Solids	07/25/2023 10:08	07/27/2023 13:00		
90837	SS-WT-79	Solids	07/25/2023 10:15	07/27/2023 13:00		
90838	SS-WT-92	Solids	07/25/2023 10:28	07/27/2023 13:00		
90839	SS-WT-93	Solids	07/25/2023 10:35	07/27/2023 13:00		
90840	SS-WT-77	Solids	07/25/2023 10:45	07/27/2023 13:00		
90841	SS-WT-70	Solids	07/25/2023 10:50	07/27/2023 13:00		
90842	SS-WT-60	Solids	07/25/2023 10:58	07/27/2023 13:00		
90843	SS-WT-61	Solids	07/25/2023 11:02	07/27/2023 13:00		
90844	SS-WT-63	Solids	07/25/2023 11:15	07/27/2023 13:00		
90845	SS-WT-89	Solids	07/25/2023 11:25	07/27/2023 13:00		
90846	SS-WT-97	Solids	07/25/2023 11:33	07/27/2023 13:00		
90847	SS-WT-82	Solids	07/25/2023 11:40	07/27/2023 13:00		
90848	SS-WT-Dup 1	Solids	07/25/2023 08:25	07/27/2023 13:00		
90849	SS-WT-43 (1')	Solids	07/25/2023 12:00	07/27/2023 13:00		
90850	SS-WT-79 (1')	Solids	07/25/2023 12:05	07/27/2023 13:00		

WP MTN - Memphis, TN: Waypoint Analytical - TN, Memphis, TN

Sample Summary Table

Report Number: Client Project Description:		23-208-0055 R4370.00				
Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90851	SS-WT-93 (1')	Solids	07/25/2023 12:15	07/27/2023 13:00		

Summary of Detected Analytes

Project: Report Number: R4370.00 23-208-0055

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-WT-36	V 90826					
6010D	Lead	47.1	mg/Kg - dry	0.318	08/08/2023 23:17	
SW-DRYWT	Moisture	5.94	%		08/01/2023 11:05	
SS-WT-43	V 90827					
6010D	Lead	892	mg/Kg - dry	6.86	08/08/2023 23:21	
SW-DRYWT	Moisture	12.6	%		08/01/2023 11:05	
SS-WT-50	V 90828					
5020B	Antimony	5.61	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Arsenic	16.8	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Barium	1160	mg/Kg - dry	0.364	08/03/2023 19:32	
6020B	Beryllium	0.685	mg/Kg - dry	0.365	08/03/2023 19:32	
6020B	Cadmium	3.30	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Chromium	41.6	mg/Kg - dry	0.364	08/03/2023 19:32	
5020B	Cobalt	8.16	mg/Kg - dry	0.364	08/03/2023 19:32	
5020B	Copper	436	mg/Kg - dry	7.30	08/04/2023 12:24	
5020B	Lead	1780	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Manganese	749	mg/Kg - dry	0.729	08/04/2023 12:28	
5020B	Nickel	24.4	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Selenium	0.740	mg/Kg - dry	0.364	08/03/2023 19:32	
5020B	Silver	2.31	mg/Kg - dry	0.365	08/03/2023 19:32	
5020B	Vanadium	18.0	mg/Kg - dry	1.82	08/03/2023 19:32	
6020B	Zinc	2280	mg/Kg - dry	7.30	08/04/2023 12:28	
7471B	Mercury (Total)	0.0618	mg/Kg - dry	0.0438	07/28/2023 16:27	
SW-DRYWT	Moisture	31.5	%		08/01/2023 11:05	
SS-WT-49	V 90829					
5010D	Lead	566	mg/Kg - dry	3.56	08/08/2023 23:26	
SW-DRYWT	Moisture	15.7	%		08/01/2023 11:05	
SS-WT-55	V 90830					
5010D	Lead	634	mg/Kg - dry	3.47	08/09/2023 19:14	
SW-DRYWT	Moisture	13.5	%		08/01/2023 17:10	
SS-WT-48	V 90831					
6010D	Lead	225	mg/Kg - dry	3.21	08/08/2023 23:35	
SW-DRYWT	Moisture	53.3	%		08/01/2023 17:10	

Summary of Detected Analytes

Project:

Report Number:

R4370.00 23-208-0055

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-WT-32	V 90832					
6010D	Lead	142	mg/Kg - dry	3.79	08/08/2023 23:39	
SW-DRYWT	Moisture	20.9	%		08/01/2023 17:10	
SS-WT-18	V 90833					
6020B	Arsenic	2.10	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Barium	71.3	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Beryllium	0.446	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Chromium	12.6	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Cobalt	4.70	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Copper	37.0	mg/Kg - dry	1.10	08/04/2023 12:32	
6020B	Lead	86.2	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Manganese	163	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Nickel	6.71	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Selenium	0.524	mg/Kg - dry	0.275	08/03/2023 19:36	
6020B	Vanadium	36.8	mg/Kg - dry	1.38	08/03/2023 19:36	
6020B	Zinc	112	mg/Kg - dry	2.75	08/03/2023 19:36	
7471B	Mercury (Total)	0.0657	mg/Kg - dry	0.0330	07/28/2023 16:29	
SW-DRYWT	Moisture	9.20	%		08/01/2023 17:10	
SS-WT-53	V 90834					
6010D	Lead	459	mg/Kg - dry	3.46	08/08/2023 23:52	
SW-DRYWT	Moisture	13.3	%		08/01/2023 17:10	
SS-WT-76	V 90835					
6010D	Lead	259	mg/Kg - dry	1.87	08/08/2023 23:57	
SW-DRYWT	Moisture	19.8	%		08/01/2023 17:10	
SS-WT-74	V 90836					
6010D	Lead	346	mg/Kg - dry	3.46	08/09/2023 00:01	
SW-DRYWT	Moisture	13.4	%		08/01/2023 17:10	
SS-WT-79	V 90837					
6010D	Lead	1330	mg/Kg - dry	7.15	08/10/2023 15:54	
SW-DRYWT	Moisture	16.1	%		08/01/2023 17:10	
SS-WT-92	V 90838					
6010D	Lead	121	mg/Kg - dry	1.76	08/09/2023 00:28	
SW-DRYWT	Moisture	14.7	%		08/01/2023 17:10	

Summary of Detected Analytes

Project: R4370.00 **Report Number:**

23-208-0055

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-WT-93	V 90839					
6010D	Lead	653	mg/Kg - dry	3.80	08/09/2023 00:32	
SW-DRYWT	Moisture	21.1	%		08/01/2023 17:10	
SS-WT-77	V 90840					
6010D	Lead	349	mg/Kg - dry	3.46	08/09/2023 00:46	
SW-DRYWT	Moisture	13.3	%		08/01/2023 11:05	
SS-WT-70	V 90841					
6010D	Lead	54.7	mg/Kg - dry	0.398	08/02/2023 23:34	
SW-DRYWT	Moisture	24.8	%		08/01/2023 11:05	
SS-WT-60	V 90842					
6010D	Lead	760	mg/Kg - dry	7.24	08/09/2023 00:50	
SW-DRYWT	Moisture	17.1	%		08/01/2023 11:05	
SS-WT-61	V 90843					
6010D	Lead	15.8	mg/Kg - dry	0.311	08/02/2023 23:52	
SW-DRYWT	Moisture	3.61	%		08/01/2023 11:05	
SS-WT-63	V 90844					
6010D	Lead	202	mg/Kg - dry	1.79	08/08/2023 05:23	
SW-DRYWT	Moisture	16.4	%		08/01/2023 11:05	
SS-WT-89	V 90845					
6010D	Lead	26.6	mg/Kg - dry	0.322	08/03/2023 00:01	
SW-DRYWT	Moisture	7.12	%		08/01/2023 11:05	
SS-WT-97	V 90846					
6010D	Lead	53.0	mg/Kg - dry	0.359	08/03/2023 00:06	
SW-DRYWT	Moisture	16.6	%		08/01/2023 11:05	
SS-WT-82	V 90847					
6010D	Lead	9.97	mg/Kg - dry	0.336	08/03/2023 00:10	
SW-DRYWT	Moisture	10.9	%		08/01/2023 11:05	
SS-WT-Dup 1	V 90848					
6010D	Lead	62.8	mg/Kg - dry	0.322	08/03/2023 00:15	
SW-DRYWT	Moisture	7.01	%		08/01/2023 11:05	

R4370.00

Summary of Detected Analytes

Project:	R4370.00
Report Number:	23-208-0055

Client Sample ID Lab Sample ID Method Parameters Result Units **Report Limit** Analyzed Qualifiers SS-WT-43 (1') V 90849 6010D Lead 458 mg/Kg - dry 1.87 08/08/2023 05:27 SW-DRYWT Moisture 19.9 % 08/01/2023 11:05 SS-WT-79 (1') V 90850 6010D Lead 3480 mg/Kg - dry 18.0 08/08/2023 05:32 SW-DRYWT Moisture 16.6 % 08/01/2023 11:05 SS-WT-93 (1') V 90851 6010D Lead 2290 mg/Kg - dry 11.4 08/08/2023 05:36 % SW-DRYWT Moisture 34.0 08/01/2023 11:05

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-208-0055 Date: 8/16/2023 CASE NARRATIVE

Report Comments

Revised report: Revision 1 Co and V have been added to be reported.

Metals Analysis Method 6010D

Sample 90807 (SS-EE-95) Analyte: Lead QC Batch No: V36366/V36025 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Analyte: Lead QC Batch No: V36421/V36025 LLC failed high. Result 10x concentration. Result not affected.

Sample 90837 (SS-WT-79) Analyte: Lead QC Batch No: V36366/V36026 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Metals Analyses Method 6020B

Sample 90860 (SS-ED-51) Analyte: Silver QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Arsenic QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Barium QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cadmium QC Batch No: L696918/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cobalt QC Batch No: L698988/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Chromium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Manganese QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Nickel QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Lead QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Antimony QC Batch No: L696918/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Selenium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Vanadium QC Batch No: L698988/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Zinc QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Semivolatile Organic Compounds - GC/MS Method 8270E

Sample 90828 (SS-WT-50) QC Batch No: V36073/V36047 Surrogate(s) flagged for recovery outside QC limits in this project sample due to a required dilution. The dilution factor resulted in surrogate concentration(s) below the minimum detectable level. Batch QC samples (method blank and laboratory control samples) all showed surrogates within QC limits.

Sample 90828 (SS-WT-50) QC Batch No: V36073/V36047 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Sample 90833 (SS-WT-18) QC Batch No: V36073/V36047 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Lab No : 90826			Matrix: Solids
Report Number : 23-208-0055	RE	PORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information	:	Revised Report Date: 08/16/2023 Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
01155			

Sample ID : SS-WT-36				Sampled: 7/25/2023 8:20			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	5.94	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	47.1	mg/Kg - dry	0.318	1	08/08/23 23:17	JKC	6010D

Report Number : 23-208-0055	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01109		

Sample ID : **SS-WT-43**

Sampled: 7/25/2023 8:35

lest .	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
loisture	12.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	892	mg/Kg - dry	6.86	20	08/08/23 23:21	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/10/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/27/2023

 Raleigh , NC 27610
 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : 90828 Sample ID : SS-WT-50							:: Solids :: 7/25/2023 8:45		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Michael		07							

Moisture	31.5	%		1	08/01/23 11:05	CNC	SW-DRYWT
Antimony	5.61	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Arsenic	16.8	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Barium	1160	mg/Kg - dry	0.364	5	08/03/23 19:32	CPW	6020B
Beryllium	0.685	mg/Kg - dry	0.365	5	08/03/23 19:32	BKN	6020B
Cadmium	3.30	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Chromium	41.6	mg/Kg - dry	0.364	5	08/03/23 19:32	CPW	6020B
Cobalt	8.16	mg/Kg - dry	0.364	5	08/03/23 19:32	CPW	6020B
Copper	436	mg/Kg - dry	7.30	100	08/04/23 12:24	CPW	6020B
Lead	1780	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Manganese	749	mg/Kg - dry	0.729	10	08/04/23 12:28	CPW	6020B
Mercury (Total)	0.0618	mg/Kg - dry	0.0438	1	07/28/23 16:27	JKC	7471B
Nickel	24.4	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Selenium	0.740	mg/Kg - dry	0.364	5	08/03/23 19:32	CPW	6020B
Silver	2.31	mg/Kg - dry	0.365	5	08/03/23 19:32	CPW	6020B
Thallium	<0.365	mg/Kg - dry	0.365	5	08/03/23 19:32	BKN	6020B
Vanadium	18.0	mg/Kg - dry	1.82	5	08/03/23 19:32	CPW	6020B
Zinc	2280	mg/Kg - dry	7.30	10	08/04/23 12:28	CPW	6020B

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90828** Sample ID : **SS-WT-50**

Sample ID : SS-WT-50							Sampled:	7/25/	2023 8:45
Analytical Method:8270EPrep Method:3546		Ρ	rep Batch(es):	V36047	08/01/2	23 09:50			
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.677	mg/Kg - dry	0.677	3.85	4	08/02/23 13:54	AMP	V36073
Acenaphthylene		<0.613	mg/Kg - dry	0.613	3.85	4	08/02/23 13:54	AMP	V36073
Aniline		<0.887	mg/Kg - dry	0.887	3.85	4	08/02/23 13:54	AMP	V36073
Anthracene		<0.835	mg/Kg - dry	0.835	3.85	4	08/02/23 13:54	AMP	V36073
Benzo(a)anthracene		<0.811	mg/Kg - dry	0.811	3.85	4	08/02/23 13:54	AMP	V36073
Benzo(a)pyrene		<0.858	mg/Kg - dry	0.858	3.85	4	08/02/23 13:54	AMP	V36073
Benzo(b)fluoranthene		<0.852	mg/Kg - dry	0.852	3.85	4	08/02/23 13:54	AMP	V36073
Benzo(g,h,i)perylene		<0.794	mg/Kg - dry	0.794	3.85	4	08/02/23 13:54	AMP	V36073
Benzo(k)fluoranthene		<0.800	mg/Kg - dry	0.800	3.85	4	08/02/23 13:54	AMP	V36073
Benzoic Acid		<3.39	mg/Kg - dry	3.39	11.7	4	08/02/23 13:54	AMP	V36073
Benzyl alcohol		<0.613	mg/Kg - dry	0.613	3.85	4	08/02/23 13:54	AMP	V36073
Bis(2-Chloroethoxy)me	thane	<0.689	mg/Kg - dry	0.689	3.85	4	08/02/23 13:54	AMP	V36073
Bis(2-Chloroethyl)ether		<0.624	mg/Kg - dry	0.624	3.85	4	08/02/23 13:54	AMP	V36073
Bis(2-Chloroisopropyl)e	ther	<0.794	mg/Kg - dry	0.794	1.93	4	08/02/23 13:54	AMP	V36073
Bis(2-ethylhexyl)phthal	ate	<0.700	mg/Kg - dry	0.700	3.85	4	08/02/23 13:54	AMP	V36073
-Bromophenyl phenyl	ether	<0.636	mg/Kg - dry	0.636	3.85	4	08/02/23 13:54	AMP	V36073
Butyl benzyl phthalate		<0.659	mg/Kg - dry	0.659	1.93	4	08/02/23 13:54	AMP	V36073
l-Chloro-3-methylphen	ol	<0.540	mg/Kg - dry	0.540	3.85	4	08/02/23 13:54	AMP	V36073
-Chloroaniline		<0.654	mg/Kg - dry	0.654	1.93	4	08/02/23 13:54	AMP	V36073
-Chloronaphthalene		<0.677	mg/Kg - dry	0.677	3.85	4	08/02/23 13:54	AMP	V36073
2-Chlorophenol		<0.573	mg/Kg - dry	0.573	3.85	4	08/02/23 13:54	AMP	V36073
-Chlorophenyl phenyl	ether	<0.735	mg/Kg - dry	0.735	5.84	4	08/02/23 13:54	AMP	V36073

Qualifiers/ Definitions *

J

Outside QC Limit Estimated value Dilution Factor

DF

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Raleigh , NC 27610

Information :

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : 90828 Sample ID : SS-WT-50

Matrix: Solids Sampled: 7/25/2023 8:45

Analytical Method: Prep Method:	8270E 3546	Ρ	rep Batch(es):	V36047	08/01/2	23 09:5	0		
est		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene		<0.829	mg/Kg - dry	0.829	3.85	4	08/02/23 13:54	AMP	V36073
Dibenz(a,h)anthracene	2	<1.34	mg/Kg - dry	1.34	3.85	4	08/02/23 13:54	AMP	V36073
Dibenzofuran		<0.694	mg/Kg - dry	0.694	3.85	4	08/02/23 13:54	AMP	V36073
,2-Dichlorobenzene		<0.551	mg/Kg - dry	0.551	3.85	4	08/02/23 13:54	AMP	V36073
,3-Dichlorobenzene		<0.567	mg/Kg - dry	0.567	3.85	4	08/02/23 13:54	AMP	V36073
,4-Dichlorobenzene		<0.569	mg/Kg - dry	0.569	1.93	4	08/02/23 13:54	AMP	V36073
3,3'-Dichlorobenzidine		<0.858	mg/Kg - dry	0.858	3.85	4	08/02/23 13:54	AMP	V36073
,4-Dichlorophenol		<0.559	mg/Kg - dry	0.559	3.85	4	08/02/23 13:54	AMP	V36073
Diethyl phthalate		<1.05	mg/Kg - dry	1.05	3.85	4	08/02/23 13:54	AMP	V36073
Dimethyl phthalate		<1.02	mg/Kg - dry	1.02	3.85	4	08/02/23 13:54	AMP	V36073
,4-Dimethylphenol		<0.630	mg/Kg - dry	0.630	1.93	4	08/02/23 13:54	AMP	V36073
Di-n-butyl phthalate		<0.624	mg/Kg - dry	0.624	3.85	4	08/02/23 13:54	AMP	V36073
,6-Dinitro-2-methylph	enol	<1.40	mg/Kg - dry	1.40	8.76	4	08/02/23 13:54	AMP	V36073
,4-Dinitrophenol		<3.04	mg/Kg - dry	3.04	8.76	4	08/02/23 13:54	AMP	V36073
,4-Dinitrotoluene		<0.563	mg/Kg - dry	0.563	3.85	4	08/02/23 13:54	AMP	V36073
,6-Dinitrotoluene		<0.630	mg/Kg - dry	0.630	3.85	4	08/02/23 13:54	AMP	V36073
Di-n-Octyl Phthalate		<0.835	mg/Kg - dry	0.835	1.93	4	08/02/23 13:54	AMP	V36073
luoranthene		<0.718	mg/Kg - dry	0.718	3.85	4	08/02/23 13:54	AMP	V36073
luorene		<0.747	mg/Kg - dry	0.747	3.85	4	08/02/23 13:54	AMP	V36073
lexachlorobenzene		<0.618	mg/Kg - dry	0.618	3.85	4	08/02/23 13:54	AMP	V36073
lexachlorobutadiene		<0.569	mg/Kg - dry	0.569	3.85	4	08/02/23 13:54	AMP	V36073
lexachlorocyclopentad	liene	<0.916	mg/Kg - dry	0.916	3.85	4	08/02/23 13:54	AMP	V36073

Qualifiers/ Definitions * J

Outside QC Limit Estimated value

DF **Dilution Factor**

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : 90828 Sample ID : SS-WT-50

Matrix: Solids Sampled: 7/25/2023 8:45

Analytical Method: 8270E Prep Method: 3546	Р	rep Batch(es):	V36047	08/01/2	23 09:5	0		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane	<0.462	mg/Kg - dry	0.462	3.85	4	08/02/23 13:54	AMP	V36073
Indeno(1,2,3-cd)pyrene	<1.05	mg/Kg - dry	1.05	3.85	4	08/02/23 13:54	AMP	V36073
Isophorone	<1.12	mg/Kg - dry	1.12	3.85	4	08/02/23 13:54	AMP	V36073
1-Methylnaphthalene	<0.618	mg/Kg - dry	0.618	3.85	4	08/02/23 13:54	AMP	V36073
2-Methylnaphthalene	<0.583	mg/Kg - dry	0.583	3.85	4	08/02/23 13:54	AMP	V36073
2-Methylphenol	<0.566	mg/Kg - dry	0.566	3.85	4	08/02/23 13:54	AMP	V36073
3&4 Methylphenol	<0.496	mg/Kg - dry	0.496	3.85	4	08/02/23 13:54	AMP	V36073
laphthalene	<0.840	mg/Kg - dry	0.840	3.85	4	08/02/23 13:54	AMP	V36073
2-Nitroaniline	<0.564	mg/Kg - dry	0.564	3.85	4	08/02/23 13:54	AMP	V36073
3-Nitroaniline	<0.700	mg/Kg - dry	0.700	3.85	4	08/02/23 13:54	AMP	V36073
I-Nitroaniline	<0.544	mg/Kg - dry	0.544	1.93	4	08/02/23 13:54	AMP	V36073
litrobenzene	<0.677	mg/Kg - dry	0.677	1.93	4	08/02/23 13:54	AMP	V36073
2-Nitrophenol	<0.518	mg/Kg - dry	0.518	3.85	4	08/02/23 13:54	AMP	V36073
1-Nitrophenol	<0.683	mg/Kg - dry	0.683	3.85	4	08/02/23 13:54	AMP	V36073
N-Nitrosodimethylamine	<1.53	mg/Kg - dry	1.53	3.85	4	08/02/23 13:54	AMP	V36073
N-Nitrosodiphenylamine	<1.06	mg/Kg - dry	1.06	3.85	4	08/02/23 13:54	AMP	V36073
N-Nitroso-di-n-propylamine	<0.689	mg/Kg - dry	0.689	3.85	4	08/02/23 13:54	AMP	V36073
Pentachlorophenol	<2.03	mg/Kg - dry	2.03	5.84	4	08/02/23 13:54	AMP	V36073
Phenanthrene	<1.21	mg/Kg - dry	1.21	3.85	4	08/02/23 13:54	AMP	V36073
Phenol	<0.654	mg/Kg - dry	0.654	3.85	4	08/02/23 13:54	AMP	V36073
yrene	<0.782	mg/Kg - dry	0.782	3.85	4	08/02/23 13:54	AMP	V36073
Pyridine	<0.462	mg/Kg - dry	0.462	1.93	4	08/02/23 13:54	AMP	V36073

Qualifiers/ Definitions * J

Outside QC Limit Estimated value

Dilution Factor

DF

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90828** Sample ID : **SS-WT-50** Matrix: Solids Sampled: 7/25/2023 8:45

Analytical Method: Prep Method:	8270E 3546	F	Prep Batch(es):	V36047	08/01/2	3 09:5	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene	:	<0.624	mg/Kg - dry	0.624	3.85	4	08/02/23 13:54	AMP	V36073
2,4,5-Trichlorophenol		<0.562	mg/Kg - dry	0.562	3.85	4	08/02/23 13:54	AMP	V36073
2,4,6-Trichlorophenol		<0.563	mg/Kg - dry	0.563	3.85	4	08/02/23 13:54	AMP	V36073
Surrogate: Phe	nol-d5		45.3	Limits	: 34-121%		4 08/02/23 13:5	54 AMP	8270E
Surrogate: 2-Fl	uorobiphenyl		56.9	Limits	: 44-115%		4 08/02/23 13:5	54 AMP	V36073
Surrogate: 2-Fl	uorophenol		50.5	Limits	: 35-115%		4 08/02/23 13:5	54 AMP	V36073
Surrogate: Nitro	obenzene-d5		47.8	Limits	: 37-122%		4 08/02/23 13:5	54 AMP	V36073
Surrogate: 4-Te	erphenyl-d14		63.9	Limits	: 54-127%		4 08/02/23 13:5	54 AMP	V36073
Surrogate: 2,4,	6-Tribromophenol		36.9 *	Limits	: 39-132%		4 08/02/23 13:5	54 AMP	V36073

Report Number : 23-208-0055	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01109		

Sample ID : SS-WT-49

Sampled: 7/25/2023 8:55

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	15.7	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	566	mg/Kg - dry	3.56	10	08/08/23 23:26	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Revised Report Date: 08/16/2023 Received : 07/27/2023	
Report Number : 23-208-0055 Lab No : 90830	REPORT OF ANALYSIS	Matrix: Solids
Sample ID : SS-WT-55		Sampled: 7/25/2023 9:10

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	13.5	%		1	08/01/23 17:10	CNC	SW-DRYWT
_ead	634	mg/Kg - dry	3.47	10	08/09/23 19:14	JKC	6010D

409 Rogers View Court Raleigh , NC 27610	Information :		Received : 07/27/2023
Report Number : 23-208-0055	REPOR	RT OF ANALYSIS	

Lab No : 90831 Sample ID : SS-WT-48						Matrix: Solids Sampled: 7/25/2023 9:2					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method				
Moisture	53.3	%		1	08/01/23 17:10	CNC	SW-DRYWT				
Lead	225	mg/Kg - dry	3.21	5	08/08/23 23:35	JKC	6010D				

Lab No : 90832		Matrix: Solids
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :	Revised Report Date: 08/16/2023 Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023

Sample ID : SS-WT-32

Sampled: 7/25/2023 9:30

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
		<i></i>					
Moisture	20.9	%		1	08/01/23 17:10	CNC	SW-DRYWT
_ead	142	mg/Kg - dry	3.79	10	08/08/23 23:39	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/10/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/27/2023

 Raleigh , NC 27610
 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

							:: Solids :: 7/25/	s /2023 9:40
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	9.20	%		1	08/01/23 17:10	CNC	SW-DRYWT
Antimony	<0.275	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Arsenic	2.10	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Barium	71.3	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Beryllium	0.446	mg/Kg - dry	0.275	5	08/03/23 19:36	BKN	6020B
Cadmium	<0.275	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Chromium	12.6	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Cobalt	4.70	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Copper	37.0	mg/Kg - dry	1.10	20	08/04/23 12:32	CPW	6020B
Lead	86.2	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Manganese	163	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Mercury (Total)	0.0657	mg/Kg - dry	0.0330	1	07/28/23 16:29	JKC	7471B
Nickel	6.71	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Selenium	0.524	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Silver	<0.275	mg/Kg - dry	0.275	5	08/03/23 19:36	CPW	6020B
Thallium	<0.275	mg/Kg - dry	0.275	5	08/03/23 19:36	BKN	6020B
Vanadium	36.8	mg/Kg - dry	1.38	5	08/03/23 19:36	CPW	6020B
Zinc							

Qualifiers/ Definitions *

J

Outside QC Limit Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90833** Sample ID : **SS-WT-18** Matrix: Solids Sampled: 7/25/2023 9:40

Analytical Method: 8270E Prep Method: 3546			Prep Batch(es): V36047			23 09:50)		
Test	3540	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.511	mg/Kg - dry	0.511	2.91	4	08/02/23 14:17	AMP	V36073
Acenaphthylene		<0.462	mg/Kg - dry	0.462	2.91	4	08/02/23 14:17	AMP	V36073
Aniline		<0.669	mg/Kg - dry	0.669	2.91	4	08/02/23 14:17	AMP	V36073
Anthracene		<0.629	mg/Kg - dry	0.629	2.91	4	08/02/23 14:17	AMP	V36073
Benzo(a)anthracene		<0.612	mg/Kg - dry	0.612	2.91	4	08/02/23 14:17	AMP	V36073
Benzo(a)pyrene		<0.647	mg/Kg - dry	0.647	2.91	4	08/02/23 14:17	AMP	V36073
Benzo(b)fluoranthene		<0.643	mg/Kg - dry	0.643	2.91	4	08/02/23 14:17	AMP	V36073
Benzo(g,h,i)perylene		<0.599	mg/Kg - dry	0.599	2.91	4	08/02/23 14:17	AMP	V36073
Benzo(k)fluoranthene		<0.603	mg/Kg - dry	0.603	2.91	4	08/02/23 14:17	AMP	V36073
Benzoic Acid		<2.56	mg/Kg - dry	2.56	8.82	4	08/02/23 14:17	AMP	V36073
Benzyl alcohol		<0.462	mg/Kg - dry	0.462	2.91	4	08/02/23 14:17	AMP	V36073
Bis(2-Chloroethoxy)me	thane	<0.519	mg/Kg - dry	0.519	2.91	4	08/02/23 14:17	AMP	V36073
Bis(2-Chloroethyl)ether	r	<0.471	mg/Kg - dry	0.471	2.91	4	08/02/23 14:17	AMP	V36073
Bis(2-Chloroisopropyl)	ether	<0.599	mg/Kg - dry	0.599	1.45	4	08/02/23 14:17	AMP	V36073
Bis(2-ethylhexyl)phtha	late	<0.528	mg/Kg - dry	0.528	2.91	4	08/02/23 14:17	AMP	V36073
4-Bromophenyl phenyl	ether	<0.480	mg/Kg - dry	0.480	2.91	4	08/02/23 14:17	AMP	V36073
Butyl benzyl phthalate		<0.497	mg/Kg - dry	0.497	1.45	4	08/02/23 14:17	AMP	V36073
4-Chloro-3-methylpher	ol	<0.407	mg/Kg - dry	0.407	2.91	4	08/02/23 14:17	AMP	V36073
4-Chloroaniline		<0.493	mg/Kg - dry	0.493	1.45	4	08/02/23 14:17	AMP	V36073
2-Chloronaphthalene		<0.511	mg/Kg - dry	0.511	2.91	4	08/02/23 14:17	AMP	V36073
2-Chlorophenol		<0.432	mg/Kg - dry	0.432	2.91	4	08/02/23 14:17	AMP	V36073
4-Chlorophenyl phenyl	ether	<0.556	mg/Kg - dry	0.556	4.42	4	08/02/23 14:17	AMP	V36073

Qualifiers/ Definitions Outside QC Limit Estimated value

*

J

DF Dilution Factor

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90833** Sample ID : **SS-WT-18** Matrix: **Solids** Sampled: **7/25/2023 9:40**

Analytical Method: 827 Prep Method: 354		Prep Batch(es):	V36047	08/01/23 09:50				
Test	Res	ults Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene	<0.62	5 mg/Kg - dry	0.625	2.91	4	08/02/23 14:17	AMP	V36073
Dibenz(a,h)anthracene	<1.0	1 mg/Kg - dry	1.01	2.91	4	08/02/23 14:17	AMP	V36073
Dibenzofuran	<0.52	4 mg/Kg - dry	0.524	2.91	4	08/02/23 14:17	AMP	V36073
1,2-Dichlorobenzene	<0.43	.6 mg/Kg - dry	0.416	2.91	4	08/02/23 14:17	AMP	V36073
1,3-Dichlorobenzene	<0.42	mg/Kg - dry	0.428	2.91	4	08/02/23 14:17	AMP	V36073
1,4-Dichlorobenzene	<0.42	9 mg/Kg - dry	0.429	1.45	4	08/02/23 14:17	AMP	V36073
3,3'-Dichlorobenzidine	<0.64	7 mg/Kg - dry	0.647	2.91	4	08/02/23 14:17	AMP	V36073
2,4-Dichlorophenol	<0.42	mg/Kg - dry	0.421	2.91	4	08/02/23 14:17	AMP	V36073
Diethyl phthalate	<0.79	2 mg/Kg - dry	0.792	2.91	4	08/02/23 14:17	AMP	V36073
Dimethyl phthalate	<0.76	6 mg/Kg - dry	0.766	2.91	4	08/02/23 14:17	AMP	V36073
2,4-Dimethylphenol	<0.42	75 mg/Kg - dry	0.475	1.45	4	08/02/23 14:17	AMP	V36073
Di-n-butyl phthalate	<0.42	'1 mg/Kg - dry	0.471	2.91	4	08/02/23 14:17	AMP	V36073
1,6-Dinitro-2-methylphenol	<1.0	6 mg/Kg - dry	1.06	6.62	4	08/02/23 14:17	AMP	V36073
2,4-Dinitrophenol	<2.2	9 mg/Kg - dry	2.29	6.62	4	08/02/23 14:17	AMP	V36073
2,4-Dinitrotoluene	<0.42	5 mg/Kg - dry	0.425	2.91	4	08/02/23 14:17	AMP	V36073
2,6-Dinitrotoluene	<0.42	75 mg/Kg - dry	0.475	2.91	4	08/02/23 14:17	AMP	V36073
Di-n-Octyl Phthalate	<0.62	9 mg/Kg - dry	0.629	1.45	4	08/02/23 14:17	AMP	V36073
luoranthene	<0.54	1 mg/Kg - dry	0.541	2.91	4	08/02/23 14:17	AMP	V36073
luorene	<0.56	3 mg/Kg - dry	0.563	2.91	4	08/02/23 14:17	AMP	V36073
lexachlorobenzene	<0.46	6 mg/Kg - dry	0.466	2.91	4	08/02/23 14:17	AMP	V36073
lexachlorobutadiene	<0.42	9 mg/Kg - dry	0.429	2.91	4	08/02/23 14:17	AMP	V36073
Hexachlorocyclopentadiene	<0.69	91 mg/Kg - dry	0.691	2.91	4	08/02/23 14:17	AMP	V36073

Qualifiers/ Definitions * Outside J Estima

Outside QC Limit Estimated value DF Dilution Factor

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90833** Sample ID : **SS-WT-18** Matrix: Solids Sampled: 7/25/2023 9:40

Analytical Method: Prep Method:	8270E 3546	Pr	ep Batch(es):	V36047	08/01/2	23 09:50	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane		<0.349	mg/Kg - dry	0.349	2.91	4	08/02/23 14:17	AMP	V36073
Indeno(1,2,3-cd)pyrene	e	<0.788	mg/Kg - dry	0.788	2.91	4	08/02/23 14:17	AMP	V36073
Isophorone		<0.841	mg/Kg - dry	0.841	2.91	4	08/02/23 14:17	AMP	V36073
1-Methylnaphthalene		<0.466	mg/Kg - dry	0.466	2.91	4	08/02/23 14:17	AMP	V36073
2-Methylnaphthalene		<0.440	mg/Kg - dry	0.440	2.91	4	08/02/23 14:17	AMP	V36073
2-Methylphenol		<0.427	mg/Kg - dry	0.427	2.91	4	08/02/23 14:17	AMP	V36073
3&4 Methylphenol		<0.374	mg/Kg - dry	0.374	2.91	4	08/02/23 14:17	AMP	V36073
Naphthalene		<0.634	mg/Kg - dry	0.634	2.91	4	08/02/23 14:17	AMP	V36073
2-Nitroaniline		<0.426	mg/Kg - dry	0.426	2.91	4	08/02/23 14:17	AMP	V36073
3-Nitroaniline		<0.528	mg/Kg - dry	0.528	2.91	4	08/02/23 14:17	AMP	V36073
4-Nitroaniline		<0.410	mg/Kg - dry	0.410	1.45	4	08/02/23 14:17	AMP	V36073
Nitrobenzene		<0.511	mg/Kg - dry	0.511	1.45	4	08/02/23 14:17	AMP	V36073
2-Nitrophenol		<0.390	mg/Kg - dry	0.390	2.91	4	08/02/23 14:17	AMP	V36073
4-Nitrophenol		<0.515	mg/Kg - dry	0.515	2.91	4	08/02/23 14:17	AMP	V36073
N-Nitrosodimethylamine	е	<1.16	mg/Kg - dry	1.16	2.91	4	08/02/23 14:17	AMP	V36073
N-Nitrosodiphenylamine	e	<0.797	mg/Kg - dry	0.797	2.91	4	08/02/23 14:17	AMP	V36073
N-Nitroso-di-n-propylan	nine	<0.519	mg/Kg - dry	0.519	2.91	4	08/02/23 14:17	AMP	V36073
Pentachlorophenol		<1.53	mg/Kg - dry	1.53	4.42	4	08/02/23 14:17	AMP	V36073
Phenanthrene		<0.916	mg/Kg - dry	0.916	2.91	4	08/02/23 14:17	AMP	V36073
Phenol		<0.493	mg/Kg - dry	0.493	2.91	4	08/02/23 14:17	AMP	V36073
Pyrene		<0.590	mg/Kg - dry	0.590	2.91	4	08/02/23 14:17	AMP	V36073
Pyridine		<0.349	mg/Kg - dry	0.349	1.45	4	08/02/23 14:17	AMP	V36073

Qualifiers/ Definitions Outside QC Limit Estimated value

*

J

DF Dilution Factor

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0055

REPORT OF ANALYSIS

Lab No : **90833** Sample ID : **SS-WT-18** Matrix: **Solids** Sampled: **7/25/2023 9:40**

Analytical Method: Prep Method:	8270E 3546	I	Prep Batch(es):		08/01/2	08/01/23 09:50					
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch		
1,2,4-Trichlorobenzene	2	<0.471	mg/Kg - dry	0.471	2.91	4	08/02/23 14:17	AMP	V36073		
2,4,5-Trichlorophenol		<0.424	mg/Kg - dry	0.424	2.91	4	08/02/23 14:17	AMP	V36073		
2,4,6-Trichlorophenol		<0.425	mg/Kg - dry	0.425	2.91	4	08/02/23 14:17	AMP	V36073		
Surrogate: Phe	nol-d5		58.7	Limits	: 34-121%		4 08/02/23 14:1	.7 AMP	8270E		
Surrogate: 2-F	luorobiphenyl		71.9	Limits	: 44-115%		4 08/02/23 14:1	.7 AMP	V36073		
Surrogate: 2-F	luorophenol		60.2	Limits	: 35-115%		4 08/02/23 14:1	.7 AMP	V36073		
Surrogate: Nitr	obenzene-d5		66.5	Limits	: 37-122%		4 08/02/23 14:1	7 AMP	V36073		
Surrogate: 4-T	erphenyl-d14		83.8	Limits	: 54-127%		4 08/02/23 14:1	.7 AMP	V36073		
Surrogate: 2,4,	,6-Tribromophenol		58.7	Limits	: 39-132%		4 08/02/23 14:1	7 AMP	V36073		

Report Number : 23-208-0055	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date: 08/10/2023 Revised Report Date: 08/16/2023

Sample ID : SS-WT-53

Sampled: 7/25/2023 9:58

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	13.3	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	459	mg/Kg - dry	3.46	10	08/08/23 23:52	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0055	RE	PORT OF ANALYSIS	
•			
Lab No : 90835			Matrix: Solids

Lab No : 90835 Sample ID : SS-WT-76				2023 10:03			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	19.8 259	% mg/Kg - dry	1.87		08/01/23 17:10 08/08/23 23:57		SW-DRYWT 6010D

 Qualifiers/
 *
 Outside QC Limit

 Definitions
 J
 Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90836		Matrix: Solids
Sample ID : SS-WT-74		Sampled: 7/25/2023 10:08

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	13.4	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	346	mg/Kg - dry	3.46	10	08/09/23 00:01	JKC	6010D

Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023
Kevin Clay		Revised Report Date: 08/16/2023
,	Information	
409 Rogers View Court	Information :	Received : 07/27/2023
Raleigh , NC 27610		
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90837		Matrix: Solids

Sample ID : SS-WT-79			Sampled: 7/25/2023 10:1				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	16.1	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	1330	mg/Kg - dry	7.15	20	08/10/23 15:54	JKC	6010D

01200			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0055	RE	PORT OF ANALYSIS	
Lab No : 90838			Matrix: Solids

Sample ID : SS-WT-92					Marrix: Solids Sampled: 7/25/2023 10:28			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	14.7	%		1	08/01/23 17:10	CNC	SW-DRYWT	
Lead	121	mg/Kg - dry	1.76	5	08/09/23 00:28	JKC	6010D	

 Qualifiers/
 *
 Outside QC Limit

 Definitions
 J
 Estimated value

Lab No : 90839	Matrix: Solids
Report Number : 23-208-0055 REPORT O	F ANALYSIS
409 Rogers View Court Information : Raleigh , NC 27610	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Project R4370. Kevin Clay	00 Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Sample ID : SS-WT-93

Sampled: 7/25/2023 10:35

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture Lead	21.1 653	% mg/Kg - dry	3.80		08/01/23 17:10 08/09/23 00:32		SW-DRYWT 6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90840 Sample ID : SS-WT-77		Matrix: Solids Sampled: 7/25/2023 10:45

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	13.3	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	349	mg/Kg - dry	3.46	10	08/09/23 00:46	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

Kevin Clay Revised Report Date: 08/16/2023 409 Rogers View Court Information : Received : 07/27/2023	Kevin Clay Revised Report Date: 409 Rogers View Court Information : Received :

Lab No : 90841 Sample ID : SS-WT-70				Matrix: Solids Sampled: 7/25/2023 10:50				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	24.8 54.7	% mg/Kg - dry	0.398		08/01/23 11:05 08/02/23 23:34		SW-DRYWT 6010D	

Report Number : 23-208-0055 REPORT OF ANALYSIS	
409 Rogers View Court Information : Raleigh , NC 27610	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Project R4370.00 Kevin Clay	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Sample ID : SS-WT-60				Sampled: 7/25/2023 10:58				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	17.1	%		1	08/01/23 11:05	CNC	SW-DRYWT	
Lead	760	mg/Kg - dry	7.24	20	08/09/23 00:50	JKC	6010D	

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0055	R	EPORT OF ANALYSIS	

Lab No : 90843 Sample ID : SS-WT-61					Matrix: Sampled:		s /2023 11:02	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	3.61	%		1	08/01/23 11:05	CNC	SW-DRYWT	
Lead	15.8	mg/Kg - dry	0.311	1	08/02/23 23:52	JKC	6010D	

01100		
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date: 08/10/2023
Kevin Clay		Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/27/2023
Raleigh , NC 27610		
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90844		Matrix: Solids

Sample ID : SS-WT-63					Sampled: 7/25/2023 11:15			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	16.4	%		1	08/01/23 11:05	CNC	SW-DRYWT	
Lead	202	mg/Kg - dry	1.79	5	08/08/23 05:23	JKC	6010D	

01200			
Mid-Atlantic Associates, Inc Raleigh	Project F	R4370.00	Original Report Date: 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0055	REPO	ORT OF ANALYSIS	
Lab No : 90845			Matrix: Solids

Sample ID : SS-WT-89						7/25/	25/2023 11:25	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	7.12	%		1	08/01/23 11:05	CNC	SW-DRYWT	
Lead	26.6	mg/Kg - dry	0.322	1	08/03/23 00:01	JKC	6010D	

 Qualifiers/
 *
 Outside QC Limit

 Definitions
 J
 Estimated value

Report Number : 23-208-0055	RE	FPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information	:	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Lab No : 90846 Sample ID : SS-WT-97					Matrix: Solids Sampled: 7/25/2023 11:33				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	16.6 53.0	% mg/Kg - dry	0.359		08/01/23 11:05 08/03/23 00:06		SW-DRYWT 6010D		

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Project Information	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0055	RI	EPORT OF ANALYSIS	

Lab No : 90847 Sample ID : SS-WT-82					Matrix: Sampled:		olids /25/2023 11:40		
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	10.9	%		1	08/01/23 11:05	CNC	SW-DRYWT		
Lead	9.97	mg/Kg - dry	0.336	1	08/03/23 00:10	JKC	6010D		

Report Number : 23-208-0055 Lab No : 90848 Sample ID : SS-WT-Dup 1	REPORT	OF ANALYSIS	Matrix: Solids
409 Rogers View Court Raleigh , NC 27610	Information :		Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R437	0.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	7.01	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	62.8	mg/Kg - dry	0.322	1	08/03/23 00:15	JKC	6010D

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90849 Sample ID : SS-WT-43 (1')		Matrix: Solids Sampled: 7/25/2023 12:00

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	19.9	%		1	08/01/23 11:05	CNC	SW-DRYWT
_ead	458	mg/Kg - dry	1.87	5	08/08/23 05:27	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

Lab No : 90850 Sample ID : SS-WT-79 (1')		Matrix: Solids Sampled: 7/25/2023 12:05
Report Number : 23-208-0055	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Maichura		0/		_	00/01/22 11 05	CNC	
Moisture	16.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	3480	mg/Kg - dry	18.0	50	08/08/23 05:32	JKC	6010D

Qualifiers/	*	Outside QC Limit
Definitions	J	Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Report Number : 23-208-0055	REPORT OF ANALYSIS	
Lab No : 90851		Matrix: Solids
Sample ID : SS-WT-93 (1')		Sampled: 7/25/2023 12:15

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	34.0	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	2290	mg/Kg - dry	11.4	25	08/08/23 05:36	JKC	6010D

Client ID:	Mid-Atlantic Asso	ciates, Iı	nc Raleigł	n								
Project Description:	R4370.00											
Report No:	23-208-0055											
QC Prep:	V36025			QC Ana	lytical Batch(es):	V36316	,V36366				
QC Prep Batch Method:	: 3050B			-	s Method:		6010D					
				Analysis	s Description	:	Metals	Analysis				
Lab Reagent Blank		LRB-V3	6025		Matrix: SOL							
Associated Lab Samples:	90826, 90827, 908	29, 90830	D									
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/08	3/23 01:3	32				
Laboratory Control San	nple	LCS-V3	6025									
Parameter	Units	Spike Conc.		LCS Result		LCS	%Rec		% Rec Limits			
Lead	mg/Kg	5.00		5.30			106		80-120			
Matrix Spike & Matrix S	Spike Duplicate	V 90807	7-MS-V36025	V 9080	7-MSD-V36025	5						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Resi		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Lead	mg/Kg	195	5.00	5.00	190	19	90	0.0*	0.0*	75-125	0.0	20
Post Digestion Spike		V 90807	7-PDS-V3602	5								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Kg	156		98.0		08/08	3/23 21::	35				

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0055	ociates, In	c Rale	igh								
QC Prep:	V36026			-	lytical Bato	ch(es):	V3614	5,V36366	5			
QC Prep Batch Method:	3050B			-	s Method:		6010D					
				Analysi	s Descriptio	on:	Metals	Analysis				
Lab Reagent Blank		LRB-V36			Matrix: S							
	90831, 90832, 908 90847, 90848, 908			90837, 908	38, 90839,	90840,	90841,	90842,	90843, 908	44, 90845	5, 90846,	
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/0	2/23 22	:19				
Laboratory Control San	nple	LCS-V36	026									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec	2	% Rec Limits			
Lead	mg/Kg	5.00		5.99			120		80-120			
Matrix Spike & Matrix S	Spike Duplicate	V 90837	-MS-V360	26 V 9083	7-MSD-V360)26						
Parameter	Units	Result	MS Spik Conc.	e MSD Spike Conc.	MS Resul	t MS Res	-	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Lead	mg/Kg	1080	5.00	4.95	1060	10	070	0.0*	0.0*	75-125	0.9	20
Post Digestion Spike		V 90837	-PDS-V36	026								
Parameter	Units	PDS Result		% Recovery	,	An	alyzed					
Lead	mg/Kg	750		95.0		08/0	9/23 00	:10				

Client ID:	Mid-Atlantic Asso	ciates, Inc Rale	igh		
Project Description:	R4370.00				
Report No:	23-208-0055				
QC Prep:	L696239		QC Analytica	Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B		Analysis Met	hod:	6020B
			Analysis Des	cription:	Metals Analyses
Lab Reagent Blank Associated Lab Samples:	90828, 90833	LRB-L696239	Μ	atrix: SOL	
Parameter	Units	Blank Result	MQL	An	alyzed
Antimony	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Arsenic	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Barium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Beryllium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Cadmium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Chromium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Cobalt	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Copper	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Lead	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Manganese	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Nickel	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Selenium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Silver	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Thallium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Vanadium	mg/Kg	<1.25	1.25	08/0	3/23 19:16
Zinc	mg/Kg	<2.50	2.50	08/0	3/23 19:16

Laboratory Control Sample

LCS-L696239

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Antimony	mg/Kg	5.00	4.57	91.0	80-120	
Arsenic	mg/Kg	2.50	2.41	96.0	80-120	
Barium	mg/Kg	5.00	4.56	91.0	80-120	
Beryllium	mg/Kg	2.50	2.50	100	80-120	
Cadmium	mg/Kg	0.500	0.478	96.0	80-120	
Chromium	mg/Kg	5.00	4.84	97.0	80-120	
Cobalt	mg/Kg	5.00	4.78	96.0	80-120	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-208-0055		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method:	6020B
		Analysis Description:	Metals Analyses

Laboratory Control Sample

LCS-L696239

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Copper	mg/Kg	2.50	2.44	98.0	80-120	
Lead	mg/Kg	2.50	2.30	92.0	80-120	
Manganese	mg/Kg	5.00	4.92	98.0	80-120	
Nickel	mg/Kg	2.50	2.47	99.0	80-120	
Selenium	mg/Kg	5.00	4.57	91.0	80-120	
Silver	mg/Kg	0.500	0.456	91.0	80-120	
Thallium	mg/Kg	0.500	0.473	95.0	80-120	
Vanadium	mg/Kg	25.0	23.5	94.0	80-120	
Zinc	mg/Kg	25.0	25.7	103	80-120	

Matrix Spike & Matrix Spike Duplicate

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Antimony	mg/Kg	4.48	4.93	4.65	3.94	5.63	0.0*	25.0*	75-125	35.3	80
Arsenic	mg/Kg	5.61	2.47	2.33	6.58	8.46	39.0*	123	75-125	25.0	80
Barium	mg/Kg	459	4.93	4.65	421	450	0.0*	0.0*	75-125	6.6	80
Beryllium	mg/Kg	0.383	2.47	2.33	2.54	2.43	87.0	88.0	75-125	4.4	80
Cadmium	mg/Kg	1.83	0.493	0.465	1.92	2.14	18.0*	67.0*	75-125	10.8	80
Chromium	mg/Kg	27.7	4.93	4.65	29.0	25.3	26.0*	0.0*	75-125	13.6	80
Cobalt	mg/Kg	4.90	4.93	4.65	8.54	9.26	74.0*	94.0	75-125	8.0	80
Copper	mg/Kg	475	2.47	2.33	422	515	0.0*	1720*	75-125	19.8	80
Lead	mg/Kg	1200	2.47	2.33	813	786	0.0*	0.0*	75-125	3.3	80
Manganese	mg/Kg	384	4.93	4.65	314	407	0.0*	495*	75-125	25.7	80
Nickel	mg/Kg	13.3	2.47	2.33	16.1	16.9	114	155*	75-125	4.8	80
Selenium	mg/Kg	0.466	4.93	4.65	4.08	3.93	73.0*	74.0*	75-125	3.7	80
Silver	mg/Kg	0.830	0.493	0.465	1.08	0.927	51.0*	21.0*	75-125	15.2	80

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-208-0055		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses

Matrix Spike & Matrix Spike Duplicate V

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Thallium	mg/Kg	<0.250	0.493	0.465	0.451	0.435	84.0	86.0	75-125	3.6	80
Vanadium	mg/Kg	9.95	24.7	23.3	29.2	27.4	78.0	75.0	75-125	6.3	80
Zinc	mg/Kg	1140	24.7	23.3	1000	991	0.0*	0.0*	75-125	0.9	80

Post Digestion Spike

V 90860-PDS-L696239

Parameter	Units	PDS Result	% Recovery	Analyzed
Antimony	mg/Kg	2.63	94.0	08/04/23 11:59
Arsenic	mg/Kg	1.65	96.0	08/04/23 11:59
Cadmium	mg/Kg	0.395	95.0	08/04/23 11:59
Cobalt	mg/Kg	2.68	93.0	08/04/23 11:59
Copper	mg/Kg	2.44	102	08/04/23 11:26
Silver	mg/Kg	0.299	94.0	08/04/23 11:59
Vanadium	mg/Kg	11.9	92.0	08/04/23 11:59
Zinc	mg/Kg	116	92.0	08/04/23 11:59

Client ID: Project Description:	Mid-Atlantic Asso R4370.00	ociates, Ir	nc Raleigi	n								
Report No: QC Prep:	23-208-0055 V35873			-	lytical Batch	(es):	V35952	2				
QC Prep Batch Method:	7471B (Prep)			-	s Method: s Descriptior	1:	7471B Solids T	Fotal Mercu	ıry Analysis	- CVAA		
Lab Reagent Blank Associated Lab Samples:	90828, 90833	LRB-V35	5873		Matrix: SO	L						
Parameter	Units	Blank Result		MQL		An	alyzed					
Mercury (Total)	mg/Kg	<0.0300		0.0300		07/28	8/23 15:	43				
Laboratory Control Sam	nple	LCS-V35	5873									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.417		0.451			108		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90819)-MS-V35873	V 9081	9-MSD-V3587	3						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Res		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	<0.0300	0.410	0.397	0.400	0.3	362	98.0	91.0	80-120	9.9	20
Post Digestion Spike		V 90819)-PDS-V3587	3								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Mercury (Total)	mg/Kg	0.200		101		07/28	8/23 16:	15				

Client ID: Project Description:	Mid-Atlantic Asso R4370.00	ociates, Ind	c Raleigi	h				
Report No:	23-208-0055							
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytical Bat Analysis Method: Analysis Descripti		V36073 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples: 9	90828, 90833	LRB-V360)47	Matrix: S	SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
Acenaphthene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51		
cenaphthylene	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51		
niline	mg/Kg	<0.152	0.152	0.660	08/0	1/23 15:51		
nthracene	mg/Kg	<0.143	0.143	0.660	08/0	1/23 15:51		
Benzo(a)anthracene	mg/Kg	<0.139	0.139	0.660	08/0	1/23 15:51		
enzo(a)pyrene	mg/Kg	<0.147	0.147	0.660	08/0	1/23 15:51		
enzo(b)fluoranthene	mg/Kg	<0.146	0.146	0.660	08/0	1/23 15:51		
enzo(g,h,i)perylene	mg/Kg	<0.136	0.136	0.660	08/0	1/23 15:51		
enzo(k)fluoranthene	mg/Kg	<0.137	0.137	0.660	08/0	1/23 15:51		
Benzoic Acid	mg/Kg	<0.580	0.580	2.00	08/0	1/23 15:51		
enzyl alcohol	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51		
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51		
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51		
is(2-Chloroisopropyl)ether	mg/Kg	<0.136	0.136	0.330	08/0	1/23 15:51		
is(2-ethylhexyl)phthalate	mg/Kg	<0.120	0.120	0.660	08/0	1/23 15:51		
-Bromophenyl phenyl ether	mg/Kg	<0.109	0.109	0.660	08/0	1/23 15:51		
Butyl benzyl phthalate	mg/Kg	<0.113	0.113	0.330	08/0	1/23 15:51		
-Chloro-3-methylphenol	mg/Kg	<0.092	0.092	0.660	08/0	1/23 15:51		
-Chloroaniline	mg/Kg	<0.112	0.112	0.330	08/0	1/23 15:51		
2-Chloronaphthalene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51		
2-Chlorophenol	mg/Kg	<0.098	0.098	0.660	08/0	1/23 15:51		
-Chlorophenyl phenyl ether	mg/Kg	<0.126	0.126	1.00	08/0	1/23 15:51		
hrysene	mg/Kg	<0.142	0.142	0.660	08/0	1/23 15:51		
Dibenz(a,h)anthracene	mg/Kg	<0.230	0.230	0.660	08/0	1/23 15:51		
Dibenzofuran	mg/Kg	<0.119	0.119	0.660	08/0	1/23 15:51		
,2-Dichlorobenzene	mg/Kg	<0.094	0.094	0.660	08/0	1/23 15:51		
,3-Dichlorobenzene	mg/Kg	<0.097	0.097	0.660	08/0	1/23 15:51		

Date: 08/16/2023 03:41 PM

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0055	ociates, Ind	c Raleigi	h			
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytical Analysis Meth Analysis Desc	iod: 8270E		- GC/MS
Lab Reagent Blank Associated Lab Samples:	90828, 90833	LRB-V360)47	Mat	rix: SOL		
Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	mg/Kg	<0.097	0.097	0.330	08/01/23 15	:51	
3'-Dichlorobenzidine	mg/Kg	<0.147	0.147	0.660	08/01/23 15	:51	
2,4-Dichlorophenol	mg/Kg	<0.095	0.095	0.660	08/01/23 15	:51	
Diethyl phthalate	mg/Kg	<0.180	0.180	0.660	08/01/23 15	:51	
Dimethyl phthalate	mg/Kg	<0.174	0.174	0.660	08/01/23 15	:51	
2,4-Dimethylphenol	mg/Kg	<0.108	0.108	0.330	08/01/23 15	:51	
Di-n-butyl phthalate	mg/Kg	<0.107	0.107	0.660	08/01/23 15	:51	
i,6-Dinitro-2-methylphenol	mg/Kg	<0.240	0.240	1.50	08/01/23 15	:51	
2,4-Dinitrophenol	mg/Kg	<0.520	0.520	1.50	08/01/23 15	:51	
2,4-Dinitrotoluene	mg/Kg	<0.096	0.096	0.660	08/01/23 15	:51	
2,6-Dinitrotoluene	mg/Kg	<0.108	0.108	0.660	08/01/23 15	:51	
Di-n-Octyl Phthalate	mg/Kg	<0.143	0.143	0.330	08/01/23 15	:51	
Fluoranthene	mg/Kg	<0.123	0.123	0.660	08/01/23 15	:51	
Fluorene	mg/Kg	<0.128	0.128	0.660	08/01/23 15	:51	
lexachlorobenzene	mg/Kg	<0.106	0.106	0.660	08/01/23 15	:51	
Hexachlorobutadiene	mg/Kg	<0.097	0.097	0.660	08/01/23 15	:51	
Hexachlorocyclopentadiene	mg/Kg	<0.157	0.157	0.660	08/01/23 15	:51	
Hexachloroethane	mg/Kg	<0.079	0.079	0.660	08/01/23 15	:51	
ndeno(1,2,3-cd)pyrene	mg/Kg	<0.179	0.179	0.660	08/01/23 15	:51	
sophorone	mg/Kg	<0.191	0.191	0.660	08/01/23 15	:51	
I-Methylnaphthalene	mg/Kg	<0.106	0.106	0.660	08/01/23 15	:51	
2-Methylnaphthalene	mg/Kg	<0.100	0.100	0.660	08/01/23 15	:51	
2-Methylphenol	mg/Kg	<0.097	0.097	0.660	08/01/23 15	:51	
3&4 Methylphenol	mg/Kg	<0.084	0.084	0.660	08/01/23 15	:51	
Naphthalene	mg/Kg	<0.144	0.144	0.660	08/01/23 15	:51	
2-Nitroaniline	mg/Kg	<0.096	0.096	0.660	08/01/23 15	:51	
3-Nitroaniline	mg/Kg	<0.120	0.120	0.660	08/01/23 15	:51	

Client ID:	Mid-Atlantic Asso	ciates, In	c Raleigi	ı				
Project Description: Report No:	R4370.00 23-208-0055							
QC Prep: QC Prep Batch Method:	V36047			QC Analytica Analysis Met Analysis Des	thod:	V36073 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples:	90828, 90833	LRB-V36	047	Ma	atrix: SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
4-Nitroaniline	mg/Kg	<0.093	0.093	0.330	08/0	1/23 15:51		
Nitrobenzene	mg/Kg	<0.116	0.116	0.330	08/0	1/23 15:51		
2-Nitrophenol	mg/Kg	<0.088	0.088	0.660	08/0	1/23 15:51		
4-Nitrophenol	mg/Kg	<0.117	0.117	0.660	08/0	1/23 15:51		
N-Nitrosodimethylamine	mg/Kg	<0.263	0.263	0.660	08/0	1/23 15:51		
N-Nitrosodiphenylamine	mg/Kg	<0.181	0.181	0.660	08/0	1/23 15:51		
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51		
Pentachlorophenol	mg/Kg	<0.347	0.347	1.00	08/0	1/23 15:51		
Phenanthrene	mg/Kg	<0.208	0.208	0.660	08/0	1/23 15:51		
Phenol	mg/Kg	<0.112	0.112	0.660	08/0	1/23 15:51		
Pyrene	mg/Kg	<0.134	0.134	0.660	08/0	1/23 15:51		
Pyridine	mg/Kg	<0.079	0.079	0.330	08/0	1/23 15:51		
1,2,4-Trichlorobenzene	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51		
2,4,5-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2,4,6-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2-Fluorobiphenyl (S)					08/0	1/23 15:51	94.0	44-115
2-Fluorophenol (S)					08/0	1/23 15:51	82.5	35-115
Nitrobenzene-d5 (S)					08/0	1/23 15:51	86.2	37-122
4-Terphenyl-d14 (S)					08/0	1/23 15:51	112	54-127
2,4,6-Tribromophenol (S)					08/0	1/23 15:51	78.6	39-132
Phenol-d5 (S)					08/0	1/23 15:51	78.0	34-121

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthene	mg/Kg	1.67	1.46	1.52	87.4	91.0	40-123	4.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	I	
Project Description:	R4370.00		
Report No:	23-208-0055		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthylene	mg/Kg	1.67	1.47	1.53	88.0	91.6	32-132	4.0	20
Aniline	mg/Kg	1.67	2.71	2.82	162	169	12-197	3.9	20
Anthracene	mg/Kg	1.67	1.62	1.68	97.0	101	47-123	3.6	20
Benzo(a)anthracene	mg/Kg	1.67	1.66	1.70	99.4	102	49-126	2.3	20
Benzo(a)pyrene	mg/Kg	1.67	1.80	1.86	108	111	45-129	3.2	20
Benzo(b)fluoranthene	mg/Kg	1.67	1.70	1.85	102	111	45-132	8.4	20
Benzo(g,h,i)perylene	mg/Kg	1.67	1.66	1.74	99.4	104	43-134	4.7	20
Benzo(k)fluoranthene	mg/Kg	1.67	1.64	1.64	98.2	98.2	47-132	0.0	20
Benzoic Acid	mg/Kg	1.67	1.25	1.24	74.8	74.2	10-83	0.8	20
Benzyl alcohol	mg/Kg	1.67	1.48	1.59	88.6	95.2	29-122	7.1	20
Bis(2-Chloroethoxy)methane	mg/Kg	1.67	1.33	1.36	79.6	81.4	36-121	2.2	20
Bis(2-Chloroethyl)ether	mg/Kg	1.67	1.33	1.40	79.6	83.8	31-120	5.1	20
Bis(2-Chloroisopropyl)ether	mg/Kg	1.67	1.48	1.52	88.6	91.0	33-131	2.6	20
Bis(2-ethylhexyl)phthalate	mg/Kg	1.67	1.88	1.95	113	117	51-133	3.6	20
4-Bromophenyl phenyl ether	mg/Kg	1.67	1.64	1.71	98.2	102	46-124	4.1	20
Butyl benzyl phthalate	mg/Kg	1.67	1.85	1.95	111	117	48-132	5.2	20
4-Chloro-3-methylphenol	mg/Kg	1.67	1.35	1.41	80.8	84.4	45-122	4.3	20
4-Chloroaniline	mg/Kg	1.67	1.42	1.47	85.0	88.0	17-106	3.4	20
2-Chloronaphthalene	mg/Kg	1.67	1.48	1.52	88.6	91.0	41-114	2.6	20
2-Chlorophenol	mg/Kg	1.67	1.46	1.53	87.4	91.6	34-121	4.6	20
4-Chlorophenyl phenyl ether	mg/Kg	1.67	1.53	1.59	91.6	95.2	45-121	3.8	20
Chrysene	mg/Kg	1.67	1.57	1.64	94.0	98.2	50-124	4.3	20
Dibenz(a,h)anthracene	mg/Kg	1.67	1.52	1.56	91.0	93.4	45-134	2.5	20
Dibenzofuran	mg/Kg	1.67	1.47	1.53	88.0	91.6	44-120	4.0	20
1,2-Dichlorobenzene	mg/Kg	1.67	1.30	1.37	77.8	82.0	33-117	5.2	20
1,3-Dichlorobenzene	mg/Kg	1.67	1.31	1.35	78.4	80.8	30-115	3.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0055		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
1,4-Dichlorobenzene	mg/Kg	1.67	1.29	1.35	77.2	80.8	31-115	4.5	20
3,3'-Dichlorobenzidine	mg/Kg	1.67	1.68	1.77	101	106	22-121	5.2	20
2,4-Dichlorophenol	mg/Kg	1.67	1.31	1.39	78.4	83.2	40-122	5.9	20
Diethyl phthalate	mg/Kg	1.67	1.56	1.68	93.4	101	50-124	7.4	20
Dimethyl phthalate	mg/Kg	1.67	1.60	1.67	95.8	100	48-124	4.2	20
2,4-Dimethylphenol	mg/Kg	1.67	1.74	1.82	104	109	30-127	4.4	20
Di-n-butyl phthalate	mg/Kg	1.67	1.78	1.84	107	110	51-128	3.3	20
4,6-Dinitro-2-methylphenol	mg/Kg	1.67	1.42	1.43	85.0	85.6	29-132	0.7	20
2,4-Dinitrophenol	mg/Kg	1.67	1.24	1.30	74.2	77.8	27-129	4.7	20
2,4-Dinitrotoluene	mg/Kg	1.67	1.60	1.66	95.8	99.4	48-126	3.6	20
2,6-Dinitrotoluene	mg/Kg	1.67	1.53	1.67	91.6	100	46-124	8.7	20
Di-n-Octyl Phthalate	mg/Kg	1.67	2.08	2.17	125	130	45-140	4.2	20
Fluoranthene	mg/Kg	1.67	1.48	1.53	88.6	91.6	50-127	3.3	20
Fluorene	mg/Kg	1.67	1.47	1.55	88.0	92.8	43-125	5.2	20
Hexachlorobenzene	mg/Kg	1.67	1.58	1.61	94.6	96.4	45-122	1.8	20
Hexachlorobutadiene	mg/Kg	1.67	1.22	1.30	73.0	77.8	32-123	6.3	20
Hexachlorocyclopentadiene	mg/Kg	1.67	1.10	1.22	65.8	73.0	32-117	10.3	20
Hexachloroethane	mg/Kg	1.67	1.23	1.28	73.6	76.6	28-117	3.9	20
Indeno(1,2,3-cd)pyrene	mg/Kg	1.67	1.73	1.82	104	109	45-133	5.0	20
Isophorone	mg/Kg	1.67	1.16	1.19	69.4	71.2	30-122	2.5	20
1-Methylnaphthalene	mg/Kg	1.67	1.21	1.26	72.4	75.4	40-119	4.0	20
2-Methylnaphthalene	mg/Kg	1.67	1.22	1.27	73.0	76.0	38-122	4.0	20
2-Methylphenol	mg/Kg	1.67	1.50	1.55	89.8	92.8	32-122	3.2	20
3&4 Methylphenol	mg/Kg	1.67	1.34	1.39	80.2	83.2	34-119	3.6	20
Naphthalene	mg/Kg	1.67	1.20	1.24	71.8	74.2	35-123	3.2	20
2-Nitroaniline	mg/Kg	1.67	1.61	1.75	96.4	105	44-127	8.3	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-208-0055		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
3-Nitroaniline	mg/Kg	1.67	1.67	1.75	100	105	33-119	4.6	20
4-Nitroaniline	mg/Kg	1.67	1.56	1.67	93.4	100	63-147	6.8	20
Nitrobenzene	mg/Kg	1.67	1.19	1.22	71.2	73.0	34-122	2.4	20
2-Nitrophenol	mg/Kg	1.67	1.28	1.36	76.6	81.4	36-123	6.0	20
4-Nitrophenol	mg/Kg	1.67	1.67	1.72	100	103	30-132	2.9	20
N-Nitrosodimethylamine	mg/Kg	1.67	1.17	1.21	70.0	72.4	10-146	3.3	20
N-Nitrosodiphenylamine	mg/Kg	1.67	1.94	1.96	116	117	38-127	1.0	20
N-Nitroso-di-n-propylamine	mg/Kg	1.67	1.47	1.51	88.0	90.4	36-120	2.6	20
Pentachlorophenol	mg/Kg	1.67	1.77	1.85	106	111	25-133	4.4	20
Phenanthrene	mg/Kg	1.67	1.54	1.61	92.2	96.4	50-121	4.4	20
Phenol	mg/Kg	1.67	1.41	1.43	84.4	85.6	34-121	1.4	20
Pyrene	mg/Kg	1.67	1.63	1.70	97.6	102	47-127	4.2	20
Pyridine	mg/Kg	1.67	0.951	0.973	56.9	58.2	10-80	2.2	20
1,2,4-Trichlorobenzene	mg/Kg	1.67	1.18	1.22	70.6	73.0	34-118	3.3	20
2,4,5-Trichlorophenol	mg/Kg	1.67	1.57	1.63	94.0	97.6	41-124	3.7	20
2,4,6-Trichlorophenol	mg/Kg	1.67	1.48	1.55	88.6	92.8	39-126	4.6	20
2-Fluorobiphenyl (S)					91.6	92.2	44-115		
2-Fluorophenol (S)					81.9	81.3	35-115		
Nitrobenzene-d5 (S)					75.4	74.8	37-122		
4-Terphenyl-d14 (S)					106	107	54-127		
2,4,6-Tribromophenol (S)					83.4	86.7	39-132		
Phenol-d5 (S)					77.7	77.1	34-121		

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0055	ociates, In	ıc Raleigl	h		
QC Analytical Batch: Analysis Method:	V36016 SW-DRYWT					
Analysis Description: Duplicate	Dry Weight Deter	V 90841	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	24.8	24.4	1.6	20.0	08/01/23 11:05
Duplicate		V 90858	B-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	32.6	32.0	1.8	20.0	08/01/23 11:05

Client ID:	Mid-Atlantic Associates, Inc Raleigh
Project Description:	R4370.00
Report No:	23-208-0055
QC Analytical Batch:	V36018
Analysis Method:	SW-DRYWT
Analysis Description:	Dry Weight Determination
Duplicate	V 90820-DUP
Parameter	Result DUP RPD Max RPD Analyzed Units Result

	•		Result				 	
Moisture	%	5.08	4.98	1.9	20.0	08/01/23 11:05		

%

26.6

27.7

4.0

20.0

08/01/23 17:10

Moisture

Client ID: Project Description:	Mid-Atlantic Asso R4370.00	ociates, In	ic Raleigl	n		
Report No:	23-208-0055					
QC Analytical Batch: Analysis Method: Analysis Description:	V36036 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90833	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	9.20	9.35	1.6	20.0	08/01/23 17:10
Duplicate		V 90860	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed

Shipment Receipt Form

Customer Numbe Customer Name:	r: 01139 Mid-Atlantic Associ	iatas Inc	- Palaiah							
Report Number:	23-208-0055	ates, mc.	- naleigii							
		Shippin	g Method							
◯ Fed Ex	◯ US Postal	🔵 Lab		Other :						
	Client	Courie	er	Thermometer ID:	IRT-15 2.6C					
Shipping container	c/cooler uncompromise	d?	• Yes	◯ No						
Number of coolers	boxes received		1							
Custody seals inta	ct on shipping containe	er/cooler?	⊖ Yes	◯ No	Not Presen	t				
Custody seals inta	ct on sample bottles?		⊖ Yes	◯ No	Not Presen	t				
Chain of Custody ((COC) present?		Yes	◯ No						
COC agrees with s	sample label(s)?		• Yes	◯ No						
COC properly com	pleted		Yes	🔵 No						
Samples in proper	containers?		Yes	◯ No						
Sample containers	s intact?		Yes	◯ No						
Number of coolers/boxes received 1 Custody seals intact on shipping container/cooler? Yes No Not Present Custody seals intact on sample bottles? Yes No Not Present Chain of Custody (COC) present? Yes No COC agrees with sample label(s)? Yes No COC properly completed Yes No Samples in proper containers? Yes No Sample containers intact? Yes No Sufficient sample volume for indicated test(s)? Yes No All samples received within holding time? Yes No Cooler temperature in compliance? Yes No Cooler/Samples arrived at the laboratory on ice. Yes No Sample containers properly preserved Yes No Water - Sample containers properly preserved Yes No Water - VOA vials free of headspace Yes No N/A Water - VOA vials free of headspace Yes No N/A Trip Blanks received with VOAs Yes No N/A Goil VOA method 5035 – compliance criteria met Yes No										
Number of coolers/boxes received 1 Custody seals intact on shipping container/cooler? Yes No Not Presen Custody seals intact on sample bottles? Yes No Not Presen Custody seals intact on sample bottles? Yes No Not Presen Custody seals intact on sample bottles? Yes No Not Presen Chain of Custody (COC) present? Yes No Not Presen COC agrees with sample label(s)? Yes No COC properly completed Yes No Samples in proper containers? Yes No Sample containers intact? Yes No Sufficient sample volume for indicated test(s)? Yes No All samples received within holding time? Yes No Cooler temperature in compliance? Yes No Cooler/Samples arrived at the laboratory on ice. Yes No Sample containers properly preserved Yes No Water - Sample containers properly preserved Yes No Water - VOA vials free of headspace Yes No N/A Soil VOA method 5035 – compliance criter										
Cooler temperatur										
Samples were con	sidered acceptable as		• Yes	◯ No						
Water - Sample co	ontainers properly pres	erved	⊖ Yes	◯ No	• N/A	_				
Water - VOA vials	free of headspace		⊖ Yes	◯ No	• N/A					
Trip Blanks receive	ed with VOAs		⊖ Yes	◯ No	• N/A					
Soil VOA method §	5035 – compliance crite	eria met	Yes	◯ No	○ N/A					
High concentra	tion container (48 hr)		Low	concentration EnC	ore samplers (48 hr))				
UPS Client Courier Thermometer ID: IRT-15 2.6C Shipping container/cooler uncompromised? Yes No Number of coolers/boxes received 1 Custody seals intact on shipping container/cooler? Yes No Not Present Custody seals intact on sample bottles? Yes No Not Present Chain of Custody (COC) present? Yes No Not Present Chain of Custody (COC) present? Yes No No COC agrees with sample label(s)? Yes No COC properly completed Yes No Samples in proper containers? Yes No Samples received within holding time? Yes No Sufficient sample volume for indicated test(s)? Yes No Cooler temperature in compliance? Yes No Cooler/Samples arrived at the laboratory on ice. Sample volume for indicated as cooling process had begun. Water - Sample containers properly preserved Yes No N/A Water - VOA vials free of headspace Yes No N/A Soil VOA method 5035 – compliance criteria met Yes No										
Shipping container/cooler uncompromised? Yes No Number of coolers/boxes received 1 Custody seals intact on shipping container/cooler? Yes No Not Present Custody seals intact on sample bottles? Yes No Not Present Chain of Custody (COC) present? Yes No Not Present Chain of Custody (COC) present? Yes No COC agrees with sample label(s)? Yes No COC properly completed Yes No Samples in proper containers? Yes No Sample containers intact? Yes No Sufficient sample volume for indicated test(s)? Yes No Sufficient sample volume for indicated test(s)? Yes No Coler temperature in compliance? Yes No Cooler/Samples arrived at the laboratory on ice. Samples were considered acceptable as cooling process had begun. Water - Sample containers properly preserved Yes No N/A Water - VOA vials free of headspace Yes No N/A Soil VOA method 5035 – compliance criteria met Yes No N/A										
Comments:										

Signature: Caitlyn Cummins

Date & Time: 07/27/2023 14:16:32

Way	Soin					E # TOENS	URE PROPER BILL	ING:			s INTACT up	on arrival?	YES NO	N/A
449 Springbr Phone 704/ lient Company Name: eport To/Contact Nam eporting Address:	Mid-At ne: Kerin Mag Ru	10tte. NC 28217 704/525-0409	a lits	Project Name Short Hold A *Please ATTA provisions an Invoice To: Address:	nalysis CH any p	roject spe	cific reporting	PROPE Receive CUSTO VOLATI PROPE	PROPER PRESERVATIVES indicated? X Received WITHIN HOLDING TIMES? X CUSTODY SEALS INTACT? X VOLATILES rec'd W/OUT HEADSPACE? X PROPER CONTAINERS used? X TEMP: Therm ID: CC-C Observed 2.4 °C /Corr. 2.4 °					
hone: 704 609 02 mail Address: KCC DD Type: PDF / Ex ite Location Name: ite Location Physical	Fax (Yes) ay O Me cet Other Wallton	(No): aovie.		"Working Days Samples receive Turnaround time (SEE REVER	Date 11 " 16-9 ed after 15:0 is based o RSE FOR TE	Day 12 Days Days 12 S Do will be pro- n business RMS & COND	rence ays 3 Days 1 tandard 10 days - ocessed next busin days, excluding we bittions regarding LYTICAL, LLC TO CL	Certific Water C	TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNE Certification: NCSC OtherN/A Water Chlorinated: YESNO Samples Iced Upon Collection: YESNO					
CLIENT	MATRIX (SOIL,	SAMPL	E CONTAI	NER	PRESERVA-	V	10 /2 21	LYSIS REQUES	TED /		ARKS	ID NO		
SAMPLE DESCRIPTION	COLLECTED	HOURS	WATER, OF SLUDGE)	SEE BELOW	TYPE NO SIZE TIVES AND				STR.			ARKS		
35-36-WT-36	7125123	820	Soil				Ice	~	Y I					
5-WT-43	1	835						1						
S-wT-SO		845							VV					
5-WT-49		855						~						
S-WT-55		910						1					23-208-0055 01139 07-27-2023	
S-WT-48		920						/		id-Atlantic Asso 4370.00	ciates, Inc	Raleigh	14:11:26	
S-WT-32		930						/						
S-WT-18		940							~~					
5-NT-S3	1	958	V				V	1	-					1
			PRESS	DOWN FIRM	Y - 2 C	OPIES	1			- <u>I</u>				
ampler's Signature	222		Sampled B	By (Print Name)	You	inCo	les	Affiliat	ion Min	Atta	42		-	
pon relinquishing this ubmitted in writing to the	Chain of Custo	dy is your auth	orization for	Waypoint Anal	vtical to p	roceed wi	th the analyses	as reques	sted above A				Site Arrival Time	
elinguished By (Signature				ered By Signature)		Xe	Te	nave bee	Date 7-26-23	Military/Hours	Addition	al Comments:	Site Departure Ti	
inquested By Signature	a Xa	Tio		eived By (Signature)	the	press	0		Date 7-26-23	1			Field Tech Fee:	
ninquished By (Signature)	1-0-	0	Rec	eived For Waypoint Ar	nalytical By	a			Date		-		Mileage:	
ethod of Shipment NOTE AL SAMPLE: Fed Ex JUPS J Hand-d	SARE NUT ACCEP	TED AND VERIFIED	AGAINST CO	UNTIL RECEIVED	S FOR TRAN	SPORTATIO	N TO THE LABORAT	ORY.	7127123 COC Group No.	(3:00			SEE REVER	
	GROUND	WATER: DRIN	KING WAT	ER: SOLID	WASTE:	RCRA:	101072-02000		ANDFILL	OTHER:]		TERMS & CON	DITION

		. (1)			CHAI	NO	FCU	STOD	YF	RE	CORD				LAB USE OF	NLY				
Way	poin	t.		,	PAGE 2 OF 3	QUO	TE # TOENS	URE PROPER E	ILLING:			Sar	mples I	NTACT U	pon arrival?	YES N	O N/A			
	ANALYTICA	AL			Project Name						See State	Re	ceived	IN ICE?		X				
449 Springt Phone 704	orook Road · Cha 4/529-6364 · Fax	rlotte, NC 28217 : 704/525-0409		5	Short Hold Ar	alysis					(Yes) (No)				VATIVES indicated HOLDING TIMES?	? <u>×</u> –				
Client Company Name	e:				Please ATTA				ng (QC	LEVI		CUSTODY SEALS INTACT?								
Report To/Contact Na	me:	1			nvoice To:										NOUT HEADSPAC	E?	X			
Reporting Address:	FEP.	1			Address:		/			- TE	TEMP: Therm ID: 14-5 Observed 2.4 °C /Corr. 2.6 °C									
Phone:	Fax (Yes)(No):	2	E	Purchase Order No (Billing Reference									TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL						
Email Address:		<u> </u>			Purchase Order No./Billing Reference Requested Due Date 1 Day 2 Days 3 Days 4 Days 5 Days										NCSC		SONNE			
EDD Type: PDF E	xcel Other				"Working Days"			tandard 10 day				Cert	uncai		Other N/A					
Site Location Name:					Samples receive	d after 15:	:00 will be pri	ocessed next b	Isiness	Wat	or Ch		ed: YESN							
Site Location Physica	Address:					SE FOR TE	ERMS & COND	ITIONS REGARD	ING SER	VICES		1.00			pon Collection:	Contraction of the second				
	1	TIME	MA	TRIX				YTICAL, LLC TO	CLIENT)	-	ANAL	YSIS REQ	-				<u> </u>			
CLIENT	DATE	COLLECTED	(50	OIL,		E CONTA		PRESERV	A-	X	MANI	NO/	/	' /		ARKS	ID NO			
SAMPLE DESCRIPTION	HOURS SLU				*TYPE SEE BELOW	NO.	SIZE	TIVES		De al a stal		60/	/	/	/					
SS-WT-76	7125123	1003	Soi	1				Ice	-	/										
SS-WT-76 SS-WT-74		1008	1						1											
SS-WT-79		1015																		
SS-NT-92		1028																		
SS-WT-93		1035																		
55-WT-77		1045									"					23-208-0055				
SS-wT-70		1050										id-Atlantic	Accord	ates Inc.	- Raleigh	01139 07-27-2023				
55-JJT-60		1058		~								4370.00	A33001	ales, inc.	- Raiciqii	14:11:26				
SS-WT-61	\checkmark	1102	V					V	N											
			PRE	88 D	OWN FIRM	Y - 2 C	OPIES													
Sampler's Signature	Yes		Samp	oled By	(Print Name)	Le	in a	les	A	ffiliati	on Mid	-AJ	kent	42		LAB US				
Upon relinquishing the submitted in writing to	s Chain of Custo the Waypoint Ar	ody is your auth nalytical Project	orizati	on for W	Navpoint Anal	vtical to	proceed wi	th the analys	es as re	eques	ted above. An	y change	es mus	st be	1	Site Arrival Tim				
Relinquished By (Signature					ed By) (Signature)	I-A	X-	Ere		T	Date 7.28.23	Military/H	ours	Additic	Dinal Comments:	Site Departure	Time:			
Relinquisted By Signature	3 78	in			ed By (Signature)	ex	pres T	-0	72		Date 7-26-23	16:00				Field Tech Fee:				
Relinquished By (Signature		U		Receiv	ed For Waypoint Ar	alvical Br	-				Date		100			Mileage:				
Method of Shipment NOTE: A	ALL SAMPLE COOL	ERS SHOULD BE T	APED SH		CUSTODY SEALS	FOR TRA	SPORTATIO	N TO THE LABO	RATORY.		7127123 COC Group No.	13:				and the second				
J Fed Ex J UPS J Hand	-delivered L Wayp	uni Analytical Field 5	ANT VILL	JOther						1						SEE REVE TERMS & CO				
NPDES: UST:		SC IN	C J S		R: SOLID		RCRA:		NFLD		And the second states of the second states of the	OTHER								
<u></u>] <u></u>			-				Lu I	3 of 64	1.00			L NC L	130			ORIG	INAL			

Waypoint ANALYTICAL 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409 Client Company Name: Report To/Contact Name: Report To/Contact Name:									CORD		S INTACT U	LAB USE OF) N/A
				Project Name:				PROPE Receive CUSTO VOLATII PROPE	Received IN ICE? X PROPER PRESERVATIVES indicated? X Received WITHIN HOLDING TIMES? X CUSTODY SEALS INTACT? X VOLATILES rec'd W/OUT HEADSPACE? X PROPER CONTAINERS used? X TEMP: Therm ID::::::::::::::::::::::::::::::::::::					
Phone: Email Address: EDD Type: PDF E Site Location Name: Site Location Physica	xcel Ot			"Working Days Samples receive Turnaround time (SEE REVER	Date 1 1 6- ed after 15: a is based of RSE FOR TE	Day 2 Days 2 S 9 Days 2 S 00 will be pro on business of RMS & COND	rence ays J 3 Days J fandard 10 days ocessed next busi days, excluding we uritows REGARDIM. YTICAL, LLC TO CI	Rush W Pre App ness day. eekends a g service	Vork Must Be proved and holidays.	Certific Water C	ation: I C Chlorinat	I BY CLIENT/S/ NC SC Other N/A ed: YES N pon Collection:	— o	SONNEL
CLIENT	DATE	TIME	MATRIX (SOIL,	SAMPL	E CONTA	INER	PRESERVA-		ANAL	YSIS REQUES	TED	/ / ==		
SAMPLE DESCRIPTION	COLLECT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATER, OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	TIVES	ev	NO TO LOUT S			REN	ARKS	ID NO.
SS-WT-63	7/25/2	3 1115	Soil				Tre	1		ſſ		ſ		
55-VT-89	1	1125	1				1	1						
SS-wT-97		1133												
SS-wT-82		1140												
SS-WT-PUP/		825												
SS-WT-43(1)		1200								5 5.	·			
SS-wT-79(1)		1205											23-208-0055 01139 07-27-2023	
SS-UJT-93(1)		1215	Y							Mid-Atlantic Ass R4370.00	sociates, inc	c Raleigh	14:11:26	
							V	V			- i			
			PRESS D	DOWN FIRM	LY - 2 C	OPIES				1		-		
Sampler's Signature	In		1	y (Print Name)		in Cl	1	Affilia		L-Asla			LAB USE	ONLY
Upon relinquishing this submitted in writing to	s Chain of Ci the Waypoin	ustody is your aut Analytical Projec	t Manager. Th	nere will be cha	rges for a	proceed wi any change	th the analyses safter analyses	as requis have be	ested above. A een initialized.	ny changes m	ust be		Site Arrival Time	
Relinquished By (Signature	2		Rece	erved By (Signature)	ip	X	Zip		Date 7-26-23	Military/Hours	Additic	onal Comments:	Site Departure T	îme:
Relinquished By (Signature)	· T	ine		eived By (Signature)	Esp	vess	0		Date 7.26-23	16:00			Field Tech Fee:	
Relinquished By (Signature	0			For Waypoint A		10			7/27/23	13:00			Mileage:	
SAMPL	-delivered JV	OOLERS SHOULD BE T CEPTED AND VERIFIE	D AGAINST COC	UNTIL RECEIVED	S FOR TRA	NSPORTATIO BORATORY.	N TO THE LABORA	TORY.	COC Group No.	11			SEE REVER	ISE FOR
NPDES: UST:	GROU	NDWATER: DRI	NKING WAT		WASTE:	RCRA:					I			
010		L	and the second			14	4 of 64		7	7			ORIGI	NAL

8/11/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Lab Report Number: 23-222-0015 Client Project Description: R4370.00 Wall Town Park

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 8/10/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

91932

SS-65

08/10/2023 14:00

Sample Summary Table

Report Number:		23-222-0015			
Client Pi	roject Description:	R4370.00 Wall Town Park			
Lab No	Client Sample ID	Matrix	Date Collected	Date Received	

08/04/2023 13:13

Solids

Summary of Detected Analytes							
Project:	R4370.00						
Report Number:	23-222-0015						
Client Sample ID	Lab Sample ID						
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers	
SS-65	V 91932						
6010D	Lead	314	mg/Kg - dry	3.23	08/11/2023 15:01		

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-222-0015 Date: 8/11/2023 **CASE NARRATIVE**

Metals Analysis Method 6010D

Sample 91932 (SS-65) Analyte: Lead QC Batch No: V36519/V36474 LLC failed high. Result 10x concentration. Result not affected.

01100		
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	
Kevin Clay		Report Date : 08/11/2023
409 Rogers View Court Raleigh , NC 27610	Information: Wall Town Park	Received : 08/10/2023

Report Number : 23-222-0015	REPORT OF ANALYSIS							
Lab No : 91932 Sample ID : SS-65					Matrix: Solids Sampled: 8/4/2023 13:13			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture Lead	7.03 314	% mg/Kg - dry	3.23		08/10/23 17:13 08/11/23 15:01		SW-DRYWT 6010D	

Client ID:	Mid-Atlantic Associates, Inc Raleigh								
Project Description:	R4370.0	D							
Report No:	23-222-0	0015							
QC Prep:	V36474			QC Analytic	al Batch(es):	V36519			
QC Prep Batch Method:	3050B			Analysis Me	thod:	6010D			
				Analysis De	scription:	Metals Analysis	5		
Lab Reagent Blank			LRB-V36474	М	atrix: SOL				
Associated Lab Samples:	91932								
Parameter		Units	Blank Result	MQL	An	alyzed			
Lead		mg/Kg	< 0.300	0.300	08/1	1/23 14:30			
Laboratory Control Sam	ıple		LCS-V36474						
Parameter		Units	Spike Conc.	LCS Result	LCS	5 %Rec	% Rec Limits		
Lead		mg/Kg	5.00	5.61		112	80-120		

Client ID: Project Description: Report No:	Mid-Atlantic Associates, Inc Raleigh R4370.00 23-222-0015
QC Analytical Batch:	V36479
Analysis Method:	SW-DRYWT
Analysis Description:	Dry Weight Determination
Duplicate	V 91808-DUP
	Result DUP RPD Max RPD Analyzed

Parameter	Units		Result			
Moisture	%	21.3	21.0	1.4	20.0	08/10/23 17:13

Shipment Receipt Form

Customer Num Customer Nam Report Number	e: Mid-Atlantic Assoc	ciates, Inc.	- Raleigh			
		Shippin	g Method			
◯ Fed Ex	◯ US Postal	🔵 Lab		Other :		
	Client	Couri	er	Thermometer ID:	IRT15 4.0C	
Shipping contair	ner/cooler uncompromise	ed?	• Yes	◯ No		
Number of coole	ers/boxes received		1			
Custody seals in	ntact on shipping contain	er/cooler?	⊖ Yes	◯ No	Not Pres	sent
Custody seals in	ntact on sample bottles?		⊖ Yes	◯ No	Not Pres	sent
Chain of Custoc	dy (COC) present?		Yes	◯ No		
COC agrees wit	h sample label(s)?		Yes	🔿 No		
COC properly co	ompleted		• Yes	🔿 No		
Samples in prop	per containers?		Yes	◯ No		
Sample contain	ers intact?		Yes	◯ No		
Sufficient sampl	le volume for indicated te	est(s)?	Yes	◯ No		
All samples rece	eived within holding time	?	Yes	◯ No		
Cooler temperat	ture in compliance?		Yes	◯ No		
	arrived at the laboratory considered acceptable as gun.		Yes	◯ No		
Water - Sample	containers properly pres	served) Yes	◯ No	• N/A	
Water - VOA via	als free of headspace		◯ Yes	◯ No	• N/A	
Trip Blanks rece	eived with VOAs		⊖ Yes	◯ No	• N/A	
Soil VOA metho	d 5035 – compliance cri	teria met	⊖ Yes	◯ No	• N/A	
High concen	tration container (48 hr)		Lov	v concentration EnC	ore samplers (48	hr)
High concen	tration pre-weighed (met	hanol -14 d	l) 🗌 Lov	v conc pre-weighed	vials (Sod Bis -14	ld)
Special precauti	ions or instructions inclue	ded?	◯ Yes	No		
Comments:						

Signature: Angelo Norvell

Date & Time: 08/10/2023 15:30:52

rges for any changes after analyses as reque	Sampler's Signature Mr. T. M. Sampled By (Print Name) EVTL TUIL Affiliation Affiliation	SAMPLE DESCRIPTION COLLECTED MILITARY MATRIX SAMPLE CONTAINER PRESERVA- MILITARY WATER, OR TYPE NO. SIZE TIVES	CHAIN OF CUSTODY RE PAGE OF AG00 Project Name: Short Hold Analysis (Yes) Project Name: Project Name: Short Hold Analysis (Yes) Provisions and/or QC Requirements Invoice To: S CALLS Law Purchase Order No./Billing Reference Working Days C B Call S Law Working Days C B Call S Law Samples received after 15:00 will be processed next business day. Processed after 15:00 will be processed next business day. N C REVERSE FOR TERMS & CONDITIONS REGADING SERVICES
Ing to the Waypoint Analytical Project Manager. There will be charges for any changes after analyses have been initialized. aure) aure) aure) aure) Received By: (Signature) Aure) Received For Waypoint Analytical By: (Signature) Received For Waypoint Analytical By: (Signature) Control Control	IRMLX - 2 COPIES IRMLX - 2 COPIES	LE CONTAINER NO. SIZE PRESERVA- TIVES	
Millinger Ste Arrival Time: /5:30 Additional Comments: Ste Departure Time: /5:57 Field Tech Fee: Hileage:	MAA MAA MAA MAA MAA	ANALYSIS REQUESTED REMARKS ID NO.	LAB USE ONLY YES NO NA Samples INTACT upon arrival? PROPER PRESERVATIVES indicated? PROPER PRESERVATIVES indicated? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? PROPER CONTAINERS used? PROPER CONTAINERS used? VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used? PROPER CONTAINERS used? PROPER CONTAINERS used? TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NC Sc Certification: NC Sc NA Water Chlorinated: YES NO Samples loed Upon Collection: YES NO

.....

8/16/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Revised Lab Report Number: 23-208-0056 Client Project Description: R4370.00

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 7/27/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Laboratory ID: WP MTN: Waypoint Analytical, LLC., Memphis, TN

State	Program	Lab ID	Expiration Date
Alabama	State Program	40750	02/29/2024
Arkansas	State Program	88-0650	02/07/2024
California	State Program	2904	06/30/2024
Florida	State Program - NELAP	E871157	06/30/2024
Georgia	State Program	C044	11/14/2025
Georgia	State Program	04015	06/30/2024
Illinois	State Program - NELAP	200078	10/10/2024
Kentucky	State Program	80215	06/30/2024
Kentucky	State Program	KY90047	12/31/2023
Louisiana	State Program - NELAP	LA037	12/31/2023
Louisiana	State Program - NELAP	04015	06/30/2024
Mississippi	State Program	MS	11/14/2025
North Carolina	State Program	47701	07/31/2024
North Carolina	State Program	415	12/31/2023
Pennsylvania	State Program - NELAP	68-03195	05/31/2024
South Carolina	State Program	84002	06/30/2023
Tennessee	State Program	02027	11/14/2025
Texas	State Program - NELAP	T104704180	09/30/2023
Virginia	State Program	00106	06/30/2024
Virginia	State Program - NELAP	460181	09/14/2023

Sample Summary Table

Report Number:	23-208-0056
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90852	SS-ED-39	Solids	07/25/2023 14:23	07/27/2023 13:00		
90853	SS-ED-40	Solids	07/25/2023 14:33	07/27/2023 13:00		
90854	SS-ED-41	Solids	07/25/2023 14:40	07/27/2023 13:00		
90855	SS-ED-48	Solids	07/25/2023 14:50	07/27/2023 13:00		
90855	SS-ED-48	Solids	07/25/2023 14:50	07/27/2023 13:00	6020B	WP MTN
90856	SS-ED-47	Solids	07/25/2023 14:58	07/27/2023 13:00		
90857	SS-ED-59	Solids	07/25/2023 15:10	07/27/2023 13:00		
90858	SS-ED-60	Solids	07/25/2023 15:16	07/27/2023 13:00		
90859	SS-ED-55	Solids	07/25/2023 15:25	07/27/2023 13:00		
90860	SS-ED-51	Solids	07/25/2023 15:38	07/27/2023 13:00		
90860	SS-ED-51	Solids	07/25/2023 15:38	07/27/2023 13:00	6020B	WP MTN
90861	SS-ED-54	Solids	07/25/2023 15:48	07/27/2023 13:00		
90862	SS-ED-44	Solids	07/25/2023 15:55	07/27/2023 13:00		
90863	SS-ED-45	Solids	07/25/2023 16:00	07/27/2023 13:00		
90864	SS-ED-61	Solids	07/25/2023 16:08	07/27/2023 13:00		
90865	SS-ED-62	Solids	07/25/2023 16:18	07/27/2023 13:00		
90866	SS-ED-Dup 1	Solids	07/25/2023 17:05	07/27/2023 13:00		
90867	SS-ED-39 (1')	Solids	07/25/2023 16:33	07/27/2023 13:00		
90868	SS-ED-40 (1')	Solids	07/25/2023 16:36	07/27/2023 13:00		
90869	SS-ED-51 (1')	Solids	07/25/2023 17:05	07/27/2023 13:00		
90870	SS-ED-55 (1')	Solids	07/25/2023 16:50	07/27/2023 13:00		

Summary of Detected Analytes

Project: Report Number: R4370.00 23-208-0056

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-ED-39	V 90852					
6010D	Lead	184	mg/Kg - dry	2.03	08/08/2023 05:40	
SW-DRYWT	Moisture	26.2	%		08/01/2023 11:05	
SS-ED-40	V 90853					
6010D	Lead	860	mg/Kg - dry	4.28	08/08/2023 05:45	
SW-DRYWT	Moisture	29.9	%		08/01/2023 11:05	
SS-ED-41	V 90854					
6010D	Lead	53.3	mg/Kg - dry	0.391	08/08/2023 06:56	
SW-DRYWT	Moisture	23.3	%		08/01/2023 11:05	
SS-ED-48	V 90855					
6020B	Arsenic	0.315	mg/Kg - dry	0.293	08/03/2023 19:40	
6020B	Barium	25.6	mg/Kg - dry	0.292	08/03/2023 19:40	
6020B	Chromium	3.70	mg/Kg - dry	0.292	08/03/2023 19:40	
6020B	Cobalt	1.44	mg/Kg - dry	0.292	08/03/2023 19:40	
6020B	Copper	4.57	mg/Kg - dry	0.293	08/03/2023 19:40	
6020B	Lead	7.95	mg/Kg - dry	0.293	08/03/2023 19:40	
6020B	Manganese	67.0	mg/Kg - dry	0.292	08/03/2023 19:40	
6020B	Nickel	1.57	mg/Kg - dry	0.293	08/03/2023 19:40	
6020B	Vanadium	5.50	mg/Kg - dry	1.46	08/03/2023 19:40	
6020B	Zinc	23.4	mg/Kg - dry	2.93	08/03/2023 19:40	
SW-DRYWT	Moisture	14.6	%		08/01/2023 11:05	
SS-ED-47	V 90856					
6010D	Lead	173	mg/Kg - dry	1.79	08/08/2023 05:54	
SW-DRYWT	Moisture	16.4	%		08/01/2023 11:05	
SS-ED-59	V 90857					
6010D	Lead	277	mg/Kg - dry	1.87	08/08/2023 05:58	
SW-DRYWT	Moisture	19.6	%		08/01/2023 11:05	
SS-ED-60	V 90858					
6010D	Lead	1260	mg/Kg - dry	8.90	08/08/2023 06:03	
SW-DRYWT	Moisture	32.6	%		08/01/2023 11:05	
SS-ED-55	V 90859					
6010D	Lead	1950	mg/Kg - dry	10.5	08/08/2023 06:16	
SW-DRYWT	Moisture	28.3	%		08/01/2023 11:05	

Summary of Detected Analytes

Project:

Report Number:

R4370.00 23-208-0056

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-ED-51	V 90860					
6020B	Antimony	5.42	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Arsenic	7.18	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Barium	612	mg/Kg - dry	0.340	08/04/2023 11:46	
6020B	Beryllium	0.522	mg/Kg - dry	0.341	08/03/2023 19:52	
6020B	Cadmium	2.38	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Chromium	34.5	mg/Kg - dry	0.340	08/04/2023 11:46	
6020B	Cobalt	6.40	mg/Kg - dry	1.70	08/03/2023 19:40	
6020B	Copper	647	mg/Kg - dry	13.6	08/04/2023 11:07	
6020B	Lead	1510	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Manganese	482	mg/Kg - dry	0.340	08/04/2023 11:46	
6020B	Nickel	16.3	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Selenium	0.531	mg/Kg - dry	0.340	08/04/2023 11:46	
6020B	Silver	1.05	mg/Kg - dry	0.341	08/04/2023 11:46	
6020B	Vanadium	6.40	mg/Kg - dry	1.70	08/03/2023 19:40	
6020B	Zinc	1550	mg/Kg - dry	3.41	08/04/2023 11:46	
7471B	Mercury (Total)	0.173	mg/Kg - dry	0.0409	07/28/2023 16:34	
SW-DRYWT	Moisture	26.6	%		08/01/2023 17:10	
SS-ED-54	V 90861					
6010D	Lead	886	mg/Kg - dry	7.68	08/08/2023 06:21	
SW-DRYWT	Moisture	21.9	%		08/01/2023 17:10	
SS-ED-44	V 90862					
6010D	Lead	1380	mg/Kg - dry	7.08	08/08/2023 06:25	
SW-DRYWT	Moisture	57.6	%		08/01/2023 17:10	
SS-ED-45	V 90863					
6010D	Lead	723	mg/Kg - dry	4.55	08/09/2023 01:04	
SW-DRYWT	Moisture	34.0	%		08/01/2023 17:10	
SS-ED-61	V 90864					
6010D	Lead	872	mg/Kg - dry	8.25	08/09/2023 01:08	
SW-DRYWT	Moisture	27.3	%		08/01/2023 17:10	
SS-ED-62	V 90865					
00 10 01						
6010D	Lead	268	mg/Kg - dry	1.99	08/09/2023 01:13	

Summary of Detected Analytes

Project: R4370 Report Number: 23-20

R4370.00 23-208-0056

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-ED-Dup 1	V 90866					
6010D	Lead	2210	mg/Kg - dry	20.7	08/09/2023 01:17	
SW-DRYWT	Moisture	27.7	%		08/01/2023 17:10	
SS-ED-39 (1')	V 90867					
6010D	Lead	12.8	mg/Kg - dry	0.322	08/09/2023 01:22	
SW-DRYWT	Moisture	7.09	%		08/01/2023 17:10	
SS-ED-40 (1')	V 90868					
6010D	Lead	3180	mg/Kg - dry	19.5	08/09/2023 01:48	
SW-DRYWT	Moisture	23.2	%		08/01/2023 17:10	
SS-ED-51 (1')	V 90869					
6010D	Lead	2530	mg/Kg - dry	19.0	08/09/2023 01:53	
SW-DRYWT	Moisture	20.9	%		08/01/2023 17:10	
SS-ED-55 (1')	V 90870					
6010D	Lead	1740	mg/Kg - dry	17.4	08/09/2023 01:57	
SW-DRYWT	Moisture	13.9	%		08/01/2023 17:10	

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-208-0056 Date: 8/16/2023 CASE NARRATIVE

Report Comments

Revised report: Revision 1 Co and V have been added to be reported.

Metals Analysis Method 6010D

Analyte: Lead QC Batch No: V36421/V36074 LLC failed high. Result 10x concentration. Result not affected.

Metals Analyses Method 6020B

Sample 90860 (SS-ED-51) Analyte: Silver QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Arsenic QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Barium QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cadmium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cobalt QC Batch No: L698988/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51)

Analyte: Chromium QC Batch No: L696918/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Manganese QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Nickel QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Lead QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Antimony QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Selenium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Vanadium QC Batch No: L698988/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Zinc QC Batch No: L696918/L696239

The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Semivolatile Organic Compounds - GC/MS Method 8270E

Sample 90855 (SS-ED-48) QC Batch No: V36073/V36047

The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Sample 90860 (SS-ED-51) QC Batch No: V36073/V36047 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Report Number : 23-208-0056	R	EPORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information	1:	Revised Report Date: 08/16/2023 Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/09/2023

Lab No : 90852 Sample ID : SS-ED-39					Matrix: Sampled:		2023 14:23
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Maintura	26.2	%			00/01/02 11 05		
Moisture Lead	26.2 184	% mg/Kg - dry	2.03		08/01/23 11:05 08/08/23 05:40		SW-DRYWT 6010D

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90853 Sample ID : SS-ED-40		Matrix: Solids Sampled: 7/25/2023 14:33

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	29.9	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	860	mg/Kg - dry	4.28	10	08/08/23 05:45	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/09/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	:	Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0056	RE	PORT OF ANALYSIS	
Lab No : 90854			Matrix: Solids

Sample ID : SS-ED-41

Sampled: 7/25/2023 14:40

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	23.3	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	53.3	mg/Kg - dry	0.391	1	08/08/23 06:56	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/09/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/27/2023

 Raleigh , NC 27610
 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90855 Sample ID : SS-ED-48					: Solids 1: 7/25,	s /2023 14:50		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	14.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
Antimony	<0.293	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Arsenic	0.315	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Barium	25.6	mg/Kg - dry	0.292	5	08/03/23 19:40	CPW	6020B
Beryllium	<0.293	mg/Kg - dry	0.293	5	08/03/23 19:40	BKN	6020B
Cadmium	<0.293	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Chromium	3.70	mg/Kg - dry	0.292	5	08/03/23 19:40	CPW	6020B
Cobalt	1.44	mg/Kg - dry	0.292	5	08/03/23 19:40	CPW	6020B
Copper	4.57	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Lead	7.95	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Manganese	67.0	mg/Kg - dry	0.292	5	08/03/23 19:40	CPW	6020B
Mercury (Total)	<0.0351	mg/Kg - dry	0.0351	1	07/28/23 16:32	JKC	7471B
Nickel	1.57	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Selenium	<0.292	mg/Kg - dry	0.292	5	08/03/23 19:40	CPW	6020B
Silver	<0.293	mg/Kg - dry	0.293	5	08/03/23 19:40	CPW	6020B
Thallium	<0.293	mg/Kg - dry	0.293	5	08/03/23 19:40	BKN	6020B
Vanadium	5.50	mg/Kg - dry	1.46	5	08/03/23 19:40	CPW	6020B
Zinc	23.4	mg/Kg - dry	2.93	5	08/03/23 19:40	CPW	6020B

Qualifiers/ Definitions DF Dilution Factor MQL Method Quantitation Limit J Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90855 Sample ID : SS-ED-48

Matrix: Solids Sampled: 7/25/2023 14:50

Analytical Method: Prep Method:	8270E 3546	P	rep Batch(es):	V36047	08/01/2	23 09:50	D		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.543	mg/Kg - dry	0.543	3.09	4	08/02/23 14:39	AMP	V36073
Acenaphthylene		<0.491	mg/Kg - dry	0.491	3.09	4	08/02/23 14:39	AMP	V36073
Aniline		<0.711	mg/Kg - dry	0.711	3.09	4	08/02/23 14:39	AMP	V36073
Anthracene		<0.669	mg/Kg - dry	0.669	3.09	4	08/02/23 14:39	AMP	V36073
Benzo(a)anthracene		<0.651	mg/Kg - dry	0.651	3.09	4	08/02/23 14:39	AMP	V36073
Benzo(a)pyrene		<0.688	mg/Kg - dry	0.688	3.09	4	08/02/23 14:39	AMP	V36073
Benzo(b)fluoranthene		<0.683	mg/Kg - dry	0.683	3.09	4	08/02/23 14:39	AMP	V36073
Benzo(g,h,i)perylene		<0.637	mg/Kg - dry	0.637	3.09	4	08/02/23 14:39	AMP	V36073
Benzo(k)fluoranthene		<0.641	mg/Kg - dry	0.641	3.09	4	08/02/23 14:39	AMP	V36073
Benzoic Acid		<2.72	mg/Kg - dry	2.72	9.38	4	08/02/23 14:39	AMP	V36073
Benzyl alcohol		<0.491	mg/Kg - dry	0.491	3.09	4	08/02/23 14:39	AMP	V36073
Bis(2-Chloroethoxy)me	thane	<0.552	mg/Kg - dry	0.552	3.09	4	08/02/23 14:39	AMP	V36073
Bis(2-Chloroethyl)ethe		<0.501	mg/Kg - dry	0.501	3.09	4	08/02/23 14:39	AMP	V36073
Bis(2-Chloroisopropyl)	ether	<0.637	mg/Kg - dry	0.637	1.55	4	08/02/23 14:39	AMP	V36073
Bis(2-ethylhexyl)phtha	ate	<0.562	mg/Kg - dry	0.562	3.09	4	08/02/23 14:39	AMP	V36073
-Bromophenyl phenyl	ether	<0.510	mg/Kg - dry	0.510	3.09	4	08/02/23 14:39	AMP	V36073
Butyl benzyl phthalate		<0.529	mg/Kg - dry	0.529	1.55	4	08/02/23 14:39	AMP	V36073
I-Chloro-3-methylpher	ol	<0.433	mg/Kg - dry	0.433	3.09	4	08/02/23 14:39	AMP	V36073
l-Chloroaniline		<0.524	mg/Kg - dry	0.524	1.55	4	08/02/23 14:39	AMP	V36073
2-Chloronaphthalene		<0.543	mg/Kg - dry	0.543	3.09	4	08/02/23 14:39	AMP	V36073
2-Chlorophenol		<0.460	mg/Kg - dry	0.460	3.09	4	08/02/23 14:39	AMP	V36073
-Chlorophenyl phenyl	ether	<0.591	mg/Kg - dry	0.591	4.70	4	08/02/23 14:39	AMP	V36073

Qualifiers/ Definitions **Dilution Factor**

DF

Estimated value

J

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90855 Sample ID : SS-ED-48

Matrix: Solids Sampled: 7/25/2023 14:50

Analytical Method:8270EPrep Method:3546	Ρ	rep Batch(es):	V36047	08/01/2	23 09:5	0		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene	<0.665	mg/Kg - dry	0.665	3.09	4	08/02/23 14:39	AMP	V36073
Dibenz(a,h)anthracene	<1.08	mg/Kg - dry	1.08	3.09	4	08/02/23 14:39	AMP	V36073
Dibenzofuran	<0.557	mg/Kg - dry	0.557	3.09	4	08/02/23 14:39	AMP	V36073
1,2-Dichlorobenzene	<0.442	mg/Kg - dry	0.442	3.09	4	08/02/23 14:39	AMP	V36073
1,3-Dichlorobenzene	<0.455	mg/Kg - dry	0.455	3.09	4	08/02/23 14:39	AMP	V36073
1,4-Dichlorobenzene	<0.456	mg/Kg - dry	0.456	1.55	4	08/02/23 14:39	AMP	V36073
3,3'-Dichlorobenzidine	<0.688	mg/Kg - dry	0.688	3.09	4	08/02/23 14:39	AMP	V36073
2,4-Dichlorophenol	<0.448	mg/Kg - dry	0.448	3.09	4	08/02/23 14:39	AMP	V36073
Diethyl phthalate	<0.843	mg/Kg - dry	0.843	3.09	4	08/02/23 14:39	AMP	V36073
Dimethyl phthalate	<0.814	mg/Kg - dry	0.814	3.09	4	08/02/23 14:39	AMP	V36073
2,4-Dimethylphenol	<0.505	mg/Kg - dry	0.505	1.55	4	08/02/23 14:39	AMP	V36073
Di-n-butyl phthalate	<0.501	mg/Kg - dry	0.501	3.09	4	08/02/23 14:39	AMP	V36073
4,6-Dinitro-2-methylphenol	<1.13	mg/Kg - dry	1.13	7.04	4	08/02/23 14:39	AMP	V36073
2,4-Dinitrophenol	<2.44	mg/Kg - dry	2.44	7.04	4	08/02/23 14:39	AMP	V36073
2,4-Dinitrotoluene	<0.451	mg/Kg - dry	0.451	3.09	4	08/02/23 14:39	AMP	V36073
2,6-Dinitrotoluene	<0.505	mg/Kg - dry	0.505	3.09	4	08/02/23 14:39	AMP	V36073
Di-n-Octyl Phthalate	<0.669	mg/Kg - dry	0.669	1.55	4	08/02/23 14:39	AMP	V36073
Fluoranthene	<0.576	mg/Kg - dry	0.576	3.09	4	08/02/23 14:39	AMP	V36073
Fluorene	<0.599	mg/Kg - dry	0.599	3.09	4	08/02/23 14:39	AMP	V36073
Hexachlorobenzene	<0.496	mg/Kg - dry	0.496	3.09	4	08/02/23 14:39	AMP	V36073
Hexachlorobutadiene	<0.456	mg/Kg - dry	0.456	3.09	4	08/02/23 14:39	AMP	V36073
Hexachlorocyclopentadiene	<0.735	mg/Kg - dry	0.735	3.09	4	08/02/23 14:39	AMP	V36073

Qualifiers/

DF **Dilution Factor**

Estimated value

J

Definitions

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : **90855** Sample ID : **SS-ED-48** Matrix: **Solids** Sampled: **7/25/2023 14:50**

Analytical Method: 8270E Prep Method: 3546	Ρ	rep Batch(es):	V36047	08/01/23 09:50				
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Hexachloroethane	<0.371	mg/Kg - dry	0.371	3.09	4	08/02/23 14:39	AMP	V36073
Indeno(1,2,3-cd)pyrene	<0.838	mg/Kg - dry	0.838	3.09	4	08/02/23 14:39	AMP	V36073
Isophorone	<0.894	mg/Kg - dry	0.894	3.09	4	08/02/23 14:39	AMP	V36073
1-Methylnaphthalene	<0.496	mg/Kg - dry	0.496	3.09	4	08/02/23 14:39	AMP	V36073
2-Methylnaphthalene	<0.468	mg/Kg - dry	0.468	3.09	4	08/02/23 14:39	AMP	V36073
2-Methylphenol	<0.454	mg/Kg - dry	0.454	3.09	4	08/02/23 14:39	AMP	V36073
3&4 Methylphenol	<0.398	mg/Kg - dry	0.398	3.09	4	08/02/23 14:39	AMP	V36073
Naphthalene	<0.674	mg/Kg - dry	0.674	3.09	4	08/02/23 14:39	AMP	V36073
2-Nitroaniline	<0.453	mg/Kg - dry	0.453	3.09	4	08/02/23 14:39	AMP	V36073
3-Nitroaniline	<0.562	mg/Kg - dry	0.562	3.09	4	08/02/23 14:39	AMP	V36073
1-Nitroaniline	<0.436	mg/Kg - dry	0.436	1.55	4	08/02/23 14:39	AMP	V36073
Nitrobenzene	<0.543	mg/Kg - dry	0.543	1.55	4	08/02/23 14:39	AMP	V36073
2-Nitrophenol	<0.415	mg/Kg - dry	0.415	3.09	4	08/02/23 14:39	AMP	V36073
1-Nitrophenol	<0.548	mg/Kg - dry	0.548	3.09	4	08/02/23 14:39	AMP	V36073
N-Nitrosodimethylamine	<1.23	mg/Kg - dry	1.23	3.09	4	08/02/23 14:39	AMP	V36073
N-Nitrosodiphenylamine	<0.847	mg/Kg - dry	0.847	3.09	4	08/02/23 14:39	AMP	V36073
N-Nitroso-di-n-propylamine	<0.552	mg/Kg - dry	0.552	3.09	4	08/02/23 14:39	AMP	V36073
Pentachlorophenol	<1.63	mg/Kg - dry	1.63	4.70	4	08/02/23 14:39	AMP	V36073
Phenanthrene	<0.974	mg/Kg - dry	0.974	3.09	4	08/02/23 14:39	AMP	V36073
Phenol	<0.524	mg/Kg - dry	0.524	3.09	4	08/02/23 14:39	AMP	V36073
Pyrene	<0.627	mg/Kg - dry	0.627	3.09	4	08/02/23 14:39	AMP	V36073
Pyridine	<0.371	mg/Kg - dry	0.371	1.55	4	08/02/23 14:39	AMP	V36073

Qualifiers/ Definitions DF Dilution Factor

MQL Method Quantitation Limit

Estimated value

J

Page 16 of 55

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay

Project R4370.00

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

409 Rogers View Court Raleigh , NC 27610

Information :

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90855 Sample ID : SS-ED-48

Matrix: Solids Sampled: 7/25/2023 14:50

Analytical Method: Prep Method:	8270E 3546	F	Prep Batch(es):	V36047	08/01/2	3 09:5	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene	2	<0.501	mg/Kg - dry	0.501	3.09	4	08/02/23 14:39	AMP	V36073
2,4,5-Trichlorophenol		<0.450	mg/Kg - dry	0.450	3.09	4	08/02/23 14:39	AMP	V36073
2,4,6-Trichlorophenol		<0.451	mg/Kg - dry	0.451	3.09	4	08/02/23 14:39	AMP	V36073
Surrogate: Phe	nol-d5		64.4	Limits	: 34-121%		4 08/02/23 14:3	39 AMP	8270E
Surrogate: 2-F	luorobiphenyl		73.7	Limits	: 44-115%		4 08/02/23 14:3	39 AMP	V36073
Surrogate: 2-F	luorophenol		64.4	Limits	: 35-115%		4 08/02/23 14:3	39 AMP	V36073
Surrogate: Nitr	obenzene-d5		68.3	Limits	: 37-122%		4 08/02/23 14:3	39 AMP	V36073
Surrogate: 4-T	erphenyl-d14		80.8	Limits	: 54-127%		4 08/02/23 14:3	39 AMP	V36073
Surrogate: 2,4,	,6-Tribromophenol		63.2	Limits	: 39-132%		4 08/02/23 14:3	9 AMP	V36073

Qualifiers/ DF **Dilution Factor** Definitions MQL Method Quantitation Limit J Estimated value

Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/09/2023
Kevin Clay 409 Rogers View Court	Information :		Revised Report Date: 08/16/2023 Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0056	REI	PORT OF ANALYSIS	
Lab No : 90856			Matrix: Solids

Sample ID : SS-ED-47

Sampled: 7/25/2023 14:58

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	16.4	%		1	08/01/23 11:05	CNC	SW-DRYW1
Lead	173	mg/Kg - dry	1.79	5	08/08/23 05:54	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/09/2023
Kevin Clay		Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/27/2023
Raleigh , NC 27610		
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90857		Matrix: Solids

Sample ID : SS-ED-59

Sampled: 7/25/2023 15:10

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
loisture	19.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	277	mg/Kg - dry	1.87	5	08/08/23 05:58	JKC	6010D

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90858		Matrix: Solids

Sample ID : SS-ED-60

Sampled: 7/25/2023 15:16

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	32.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	1260	mg/Kg - dry	8.90	20	08/08/23 06:03	JKC	6010D

Qualifiers/	DF	Dilution Factor
Definitions	MQL	Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90859 Sample ID : SS-ED-55		Matrix: Solids Sampled: 7/25/2023 15:25

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	28.3	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	1950	mg/Kg - dry	10.5	25	08/08/23 06:16	JKC	6010D

Mid-Atlantic Associates, Inc. - Raleigh Original Report Date : 08/09/2023 Project R4370.00 Revised Report Date: 08/16/2023 Kevin Clay 409 Rogers View Court Information : Received : 07/27/2023 Raleigh , NC 27610

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90860						Matrix: Solids		
Sample ID : SS-ED-51						Sampled: 7/25/2023 15:38		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	26.6	%		1	08/01/23 17:10	CNC	SW-DRYWT
Antimony	5.42	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Arsenic	7.18	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Barium	612	mg/Kg - dry	0.340	5	08/04/23 11:46	CPW	6020B
Beryllium	0.522	mg/Kg - dry	0.341	5	08/03/23 19:52	BKN	6020B
Cadmium	2.38	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Chromium	34.5	mg/Kg - dry	0.340	5	08/04/23 11:46	CPW	6020B
Cobalt	6.40	mg/Kg - dry	1.70	5	08/03/23 19:40	CPW	6020B
Copper	647	mg/Kg - dry	13.6	200	08/04/23 11:07	CPW	6020B
Lead	1510	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Manganese	482	mg/Kg - dry	0.340	5	08/04/23 11:46	CPW	6020B
Mercury (Total)	0.173	mg/Kg - dry	0.0409	1	07/28/23 16:34	JKC	7471B
Nickel	16.3	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Selenium	0.531	mg/Kg - dry	0.340	5	08/04/23 11:46	CPW	6020B
Silver	1.05	mg/Kg - dry	0.341	5	08/04/23 11:46	CPW	6020B
Thallium	<0.341	mg/Kg - dry	0.341	5	08/03/23 19:52	BKN	6020B
Vanadium	6.40	mg/Kg - dry	1.70	5	08/03/23 19:40	CPW	6020B
Zinc	1550	mg/Kg - dry	3.41	5	08/04/23 11:46	CPW	6020B

Qualifiers/ Definitions

Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : **90860** Sample ID : **SS-ED-51** Matrix: Solids Sampled: 7/25/2023 15:38

Analytical Method: Prep Method:	8270E 3546	P	rep Batch(es):	V36047	17 08/01/23 09:50				
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<0.632	mg/Kg - dry	0.632	3.60	4	08/02/23 15:02	AMP	V36073
Acenaphthylene		<0.572	mg/Kg - dry	0.572	3.60	4	08/02/23 15:02	AMP	V36073
Aniline		<0.828	mg/Kg - dry	0.828	3.60	4	08/02/23 15:02	AMP	V36073
Anthracene		<0.779	mg/Kg - dry	0.779	3.60	4	08/02/23 15:02	AMP	V36073
Benzo(a)anthracene		<0.757	mg/Kg - dry	0.757	3.60	4	08/02/23 15:02	AMP	V36073
Benzo(a)pyrene		<0.801	mg/Kg - dry	0.801	3.60	4	08/02/23 15:02	AMP	V36073
Benzo(b)fluoranthene		<0.795	mg/Kg - dry	0.795	3.60	4	08/02/23 15:02	AMP	V36073
Benzo(g,h,i)perylene		<0.741	mg/Kg - dry	0.741	3.60	4	08/02/23 15:02	AMP	V36073
Benzo(k)fluoranthene		<0.746	mg/Kg - dry	0.746	3.60	4	08/02/23 15:02	AMP	V36073
Benzoic Acid		<3.16	mg/Kg - dry	3.16	10.9	4	08/02/23 15:02	AMP	V36073
Benzyl alcohol		<0.572	mg/Kg - dry	0.572	3.60	4	08/02/23 15:02	AMP	V36073
Bis(2-Chloroethoxy)me	thane	<0.643	mg/Kg - dry	0.643	3.60	4	08/02/23 15:02	AMP	V36073
Bis(2-Chloroethyl)ether	r	<0.583	mg/Kg - dry	0.583	3.60	4	08/02/23 15:02	AMP	V36073
Bis(2-Chloroisopropyl)	ether	<0.741	mg/Kg - dry	0.741	1.80	4	08/02/23 15:02	AMP	V36073
Bis(2-ethylhexyl)phtha	late	<0.653	mg/Kg - dry	0.653	3.60	4	08/02/23 15:02	AMP	V36073
4-Bromophenyl phenyl	ether	<0.594	mg/Kg - dry	0.594	3.60	4	08/02/23 15:02	AMP	V36073
Butyl benzyl phthalate		<0.615	mg/Kg - dry	0.615	1.80	4	08/02/23 15:02	AMP	V36073
4-Chloro-3-methylpher	ol	<0.504	mg/Kg - dry	0.504	3.60	4	08/02/23 15:02	AMP	V36073
4-Chloroaniline		<0.610	mg/Kg - dry	0.610	1.80	4	08/02/23 15:02	AMP	V36073
2-Chloronaphthalene		<0.632	mg/Kg - dry	0.632	3.60	4	08/02/23 15:02	AMP	V36073
2-Chlorophenol		<0.535	mg/Kg - dry	0.535	3.60	4	08/02/23 15:02	AMP	V36073
4-Chlorophenyl phenyl	ether	<0.686	mg/Kg - dry	0.686	5.45	4	08/02/23 15:02	AMP	V36073

Qualifiers/ Definitions

Dilution Factor

DF

MQL

Method Quantitation Limit

Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90860 Sample ID : SS-ED-51

Matrix: Solids Sampled: 7/25/2023 15:38

Analytical Method:8270EPrep Method:3546	Ρ	Prep Batch(es): V			08/01/23 09:50			
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene	<0.773	mg/Kg - dry	0.773	3.60	4	08/02/23 15:02	AMP	V36073
Dibenz(a,h)anthracene	<1.25	mg/Kg - dry	1.25	3.60	4	08/02/23 15:02	AMP	V36073
Dibenzofuran	<0.648	mg/Kg - dry	0.648	3.60	4	08/02/23 15:02	AMP	V36073
1,2-Dichlorobenzene	<0.514	mg/Kg - dry	0.514	3.60	4	08/02/23 15:02	AMP	V36073
1,3-Dichlorobenzene	<0.529	mg/Kg - dry	0.529	3.60	4	08/02/23 15:02	AMP	V36073
1,4-Dichlorobenzene	<0.531	mg/Kg - dry	0.531	1.80	4	08/02/23 15:02	AMP	V36073
3,3'-Dichlorobenzidine	<0.801	mg/Kg - dry	0.801	3.60	4	08/02/23 15:02	AMP	V36073
2,4-Dichlorophenol	<0.521	mg/Kg - dry	0.521	3.60	4	08/02/23 15:02	AMP	V36073
Diethyl phthalate	<0.980	mg/Kg - dry	0.980	3.60	4	08/02/23 15:02	AMP	V36073
Dimethyl phthalate	<0.948	mg/Kg - dry	0.948	3.60	4	08/02/23 15:02	AMP	V36073
2,4-Dimethylphenol	<0.588	mg/Kg - dry	0.588	1.80	4	08/02/23 15:02	AMP	V36073
Di-n-butyl phthalate	<0.583	mg/Kg - dry	0.583	3.60	4	08/02/23 15:02	AMP	V36073
4,6-Dinitro-2-methylphenol	<1.31	mg/Kg - dry	1.31	8.17	4	08/02/23 15:02	AMP	V36073
2,4-Dinitrophenol	<2.83	mg/Kg - dry	2.83	8.17	4	08/02/23 15:02	AMP	V36073
2,4-Dinitrotoluene	<0.525	mg/Kg - dry	0.525	3.60	4	08/02/23 15:02	AMP	V36073
2,6-Dinitrotoluene	<0.588	mg/Kg - dry	0.588	3.60	4	08/02/23 15:02	AMP	V36073
Di-n-Octyl Phthalate	<0.779	mg/Kg - dry	0.779	1.80	4	08/02/23 15:02	AMP	V36073
Fluoranthene	<0.670	mg/Kg - dry	0.670	3.60	4	08/02/23 15:02	AMP	V36073
Fluorene	<0.697	mg/Kg - dry	0.697	3.60	4	08/02/23 15:02	AMP	V36073
Hexachlorobenzene	<0.577	mg/Kg - dry	0.577	3.60	4	08/02/23 15:02	AMP	V36073
Hexachlorobutadiene	<0.531	mg/Kg - dry	0.531	3.60	4	08/02/23 15:02	AMP	V36073
Hexachlorocyclopentadiene	<0.855	mg/Kg - dry	0.855	3.60	4	08/02/23 15:02	AMP	V36073

Qualifiers/ Definitions DF **Dilution Factor**

Estimated value

J

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : 90860 Sample ID : SS-ED-51

Sample ID : SS-ED-51 Sampled: 7/25/2023 15:38									
nalytical Method: Prep Method:	od: 8270E 3546	I	Prep Batch(es):	V36047	08/01/2	23 09:50)		
est		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
lexachloroethane		<0.431	mg/Kg - dry	0.431	3.60	4	08/02/23 15:02	AMP	V36073
ndeno(1,2,3-cd)pyren	e	<0.975	mg/Kg - dry	0.975	3.60	4	08/02/23 15:02	AMP	V36073
sophorone		<1.04	mg/Kg - dry	1.04	3.60	4	08/02/23 15:02	AMP	V36073
-Methylnaphthalene		<0.577	mg/Kg - dry	0.577	3.60	4	08/02/23 15:02	AMP	V36073
-Methylnaphthalene		<0.544	mg/Kg - dry	0.544	3.60	4	08/02/23 15:02	AMP	V36073
-Methylphenol		<0.528	mg/Kg - dry	0.528	3.60	4	08/02/23 15:02	AMP	V36073
&4 Methylphenol		<0.463	mg/Kg - dry	0.463	3.60	4	08/02/23 15:02	AMP	V36073
aphthalene		<0.784	mg/Kg - dry	0.784	3.60	4	08/02/23 15:02	AMP	V36073
-Nitroaniline		<0.527	mg/Kg - dry	0.527	3.60	4	08/02/23 15:02	AMP	V36073
-Nitroaniline		<0.653	mg/Kg - dry	0.653	3.60	4	08/02/23 15:02	AMP	V36073
-Nitroaniline		<0.508	mg/Kg - dry	0.508	1.80	4	08/02/23 15:02	AMP	V36073
itrobenzene		<0.632	mg/Kg - dry	0.632	1.80	4	08/02/23 15:02	AMP	V36073
-Nitrophenol		<0.483	mg/Kg - dry	0.483	3.60	4	08/02/23 15:02	AMP	V36073
-Nitrophenol		<0.637	mg/Kg - dry	0.637	3.60	4	08/02/23 15:02	AMP	V36073
-Nitrosodimethylamin	e	<1.43	mg/Kg - dry	1.43	3.60	4	08/02/23 15:02	AMP	V36073
-Nitrosodiphenylamin	e	<0.986	mg/Kg - dry	0.986	3.60	4	08/02/23 15:02	AMP	V36073
-Nitroso-di-n-propylar	mine	<0.643	mg/Kg - dry	0.643	3.60	4	08/02/23 15:02	AMP	V36073
entachlorophenol		<1.89	mg/Kg - dry	1.89	5.45	4	08/02/23 15:02	AMP	V36073
henanthrene		<1.13	mg/Kg - dry	1.13	3.60	4	08/02/23 15:02	AMP	V36073
henol		<0.610	mg/Kg - dry	0.610	3.60	4	08/02/23 15:02	AMP	V36073
yrene		<0.730	mg/Kg - dry	0.730	3.60	4	08/02/23 15:02	AMP	V36073
yridine		<0.431	mg/Kg - dry	0.431	1.80	4	08/02/23 15:02	AMP	V36073

Qualifiers/ Definitions DF **Dilution Factor**

MQL Method Quantitation Limit Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Information :

Report Number : 23-208-0056

REPORT OF ANALYSIS

Lab No : **90860** Sample ID : **SS-ED-51** Matrix: **Solids** Sampled: **7/25/2023 15:38**

Analytical Method: Prep Method:	8270E 3546	Prep Batch(es):		V36047	08/01/2	08/01/23 09:50					
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch		
1,2,4-Trichlorobenzene	2	<0.583	mg/Kg - dry	0.583	3.60	4	08/02/23 15:02	AMP	V36073		
2,4,5-Trichlorophenol		<0.524	mg/Kg - dry	0.524	3.60	4	08/02/23 15:02	AMP	V36073		
2,4,6-Trichlorophenol		<0.525	mg/Kg - dry	0.525	3.60	4	08/02/23 15:02	AMP	V36073		
Surrogate: Phe	nol-d5		60.5	Limits	: 34-121%		4 08/02/23 15:0)2 AMP	8270E		
Surrogate: 2-F	luorobiphenyl		67.1	Limits	: 44-115%		4 08/02/23 15:0	2 AMP	V36073		
Surrogate: 2-F	luorophenol		63.5	Limits	: 35-115%		4 08/02/23 15:0	2 AMP	V36073		
Surrogate: Nitr	obenzene-d5		70.7	Limits	: 37-122%		4 08/02/23 15:0	2 AMP	V36073		
Surrogate: 4-T	erphenyl-d14		76.0	Limits	: 54-127%		4 08/02/23 15:0	2 AMP	V36073		
Surrogate: 2,4,	.6-Tribromophenol		52.7	Limits	: 39-132%		4 08/02/23 15:0	2 AMP	V36073		

Lab No : 90861		Matrix: Solids
Report Number : 23-208-0056	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date: 08/09/2023 Revised Report Date: 08/16/2023

Sample ID : SS-ED-54

Sampled: 7/25/2023 15:48

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	21.9	%		1	08/01/23 17:10	CNC	SW-DRYWT
lead	886	mg/Kg - dry	7.68	20	08/08/23 06:21	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90862 Sample ID : SS-ED-44		Matrix: Solids Sampled: 7/25/2023 15:55

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	57.6	%		1	08/01/23 17:10	CNC	SW-DRYWT
ead	1380	mg/Kg - dry	7.08	10	08/08/23 06:25	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Lab No : 90863			Matrix: Solids
Report Number : 23-208-0056	RE	PORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :	:	Revised Report Date: 08/16/2023 Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/09/2023
01100			

Sample ID : SS-ED-45

Sampled: 7/25/2023 16:00

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	34.0	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	723	mg/Kg - dry	4.55		08/09/23 01:04		6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Lab No : 90864			Matrix: Solids
Report Number : 23-208-0056	REPOR	T OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information :		Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R43	370.00	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023
01155			

Sample ID : SS-ED-61						Sampled: 7/25/2023 16:08			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	27.3	%		1	08/01/23 17:10	CNC	SW-DRYWT		
Lead	872	mg/Kg - dry	8.25	20	08/09/23 01:08	JKC	6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J Estimated value

Lab No : 90865			Matrix: Solids
Report Number : 23-208-0056	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information	:	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023
01155			

Sample ID : SS-ED-62						Sampled: 7/25/2023			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	24.6 268	% mg/Kg - dry	1.99		08/01/23 17:10 08/09/23 01:13		SW-DRYWT 6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date: 08/09/2023 Revised Report Date: 08/16/2023
409 Rogers View Court Raleigh, NC 27610	Information :	Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90866		Matrix: Solids
Sample ID : SS-ED-Dup 1		Sampled: 7/25/2023 17:05

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	27.7	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	2210	mg/Kg - dry	20.7	50	08/09/23 01:17	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC 27610	Project R4370.00 Information :	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90867 Sample ID : SS-ED-39 (1')		Matrix: Solids Sampled: 7/25/2023 16:33

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	7.09	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	12.8	mg/Kg - dry	0.322	1	08/09/23 01:22	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J Estimated value

Raleigh , NC 27610		
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90868		Matrix: Solids
Sample ID : SS-ED-40 (1')		Sampled: 7/25/2023 16:36

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	23.2	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	3180	mg/Kg - dry	19.5	50	08/09/23 01:48	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/09/2023 Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/27/202
Raleigh , NC 27610		
Report Number : 23-208-0056	REPORT OF ANALYSIS	
Lab No : 90869		Matrix: Solids
Sample ID : SS-ED-51 (1')		Sampled: 7/25/2023 17:05

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	20.9	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead		mg/Kg - dry	19.0				
Leau	2550	ilig/itg = ul y	19.0	50	08/09/23 01:53	JVC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J

Lab No : 90870 Sample ID : SS-ED-55 (1')		Matrix: Solids Sampled: 7/25/2023 16:50
Report Number : 23-208-0056	REPORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :	Received : 07/27/202
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project R4370.00	Original Report Date : 08/09/202 Revised Report Date: 08/16/202

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	13.9	%		1	08/01/23 17:10	CNC	SW-DRYWT
Lead	1740	mg/Kg - dry	17.4		08/09/23 01:57		6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

J

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0056	ciates, Iı	nc Raleig	h								
QC Prep: QC Prep Batch Method:	V36074 3050B			Analysis	lytical Batch s Method: s Description		V36316 6010D Metals	5 Analysis				
Lab Reagent Blank Associated Lab Samples:	90852, 90853, 908	LRB-V3 54, 90856		0858, 908	Matrix: SO 59, 90861, 9							
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/0	7/23 17:	01				
Laboratory Control Sam	ple	LCS-V3	6074									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec		% Rec Limits			
Lead	mg/Kg	5.00		5.85			117		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 91220	0-MS-V36074	4 V 9122	0-MSD-V3607	74						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Res		MS %Rec	MSD %Rec	%Rec Limits		Max RPD
Lead	mg/Kg	6.23	5.00	5.00	11.4	1	1.5	103	105	75-125	0.8	20
Post Digestion Spike		V 91220	0-PDS-V3607	/4								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Kg	16.5		106		08/0	7/23 18:	20				

Client ID:	Mid-Atlantic Asso	ciates, Ir	nc Raleigi	h								
Project Description:	R4370.00											
Report No:	23-208-0056											
QC Prep:	V36075			QC Ana	lytical Batch	(es):	V36316	5,V36366				
QC Prep Batch Method:	3050B			Analysi	s Method:		6010D					
				Analysis	s Descriptior	n:	Metals	Analysis				
Lab Reagent Blank		LRB-V3	6075		Matrix: SO	L						
Associated Lab Samples:	90863, 90864, 908	65, 90866	6, 90867, 9	0868, 908	69, 90870							
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/09	9/23 00:	55				
Laboratory Control San	ıple	LCS-V36	6075									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec		% Rec Limits			
Lead	mg/Kg	5.00		5.40			108		80-120			
Matrix Spike & Matrix S	Spike Duplicate	V 90867	7-MS-V36075	5 V 9086	7-MSD-V3607	'5						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Res		MS %Rec	MSD %Rec	%Rec Limits		Max RPD
Lead	mg/Kg	13.4	5.00	4.95	19.9	2	1.6	130*	166*	75-125	8.1	20
Post Digestion Spike		V 90867	7-PDS-V3607	5								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Kg	17.8		97.0		08/0	9/23 01:	26				

Client ID:	Mid-Atlantic Asso	ciates, Inc Rale	igh		
Project Description:	R4370.00				
Report No:	23-208-0056				
QC Prep: QC Prep Batch Method:			3050B Analysis Method:		L696766,L696918,L698988,L698996 6020B Metals Analyses
Lab Reagent Blank Associated Lab Samples:	90855, 90860	LRB-L696239	Ma	atrix: SOL	
Parameter	Units	Blank Result	MQL	An	alyzed
Antimony	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Arsenic	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Barium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Beryllium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Cadmium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Chromium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Cobalt	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Copper	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Lead	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Manganese	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Nickel	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Selenium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Silver	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Thallium	mg/Kg	<0.250	0.250	08/03	3/23 19:16
Vanadium	mg/Kg	<1.25	1.25	08/03	3/23 19:16
Zinc	mg/Kg	<2.50	2.50	08/03	3/23 19:16

Laboratory Control Sample

LCS-L696239

Rec nits
120
120
120
120
120
120
120

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-208-0056		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses
		Analysis Description:	Melais Analyses

Laboratory Control Sample

LCS-L696239

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Copper	mg/Kg	2.50	2.44	98.0	80-120	
Lead	mg/Kg	2.50	2.30	92.0	80-120	
Manganese	mg/Kg	5.00	4.92	98.0	80-120	
Nickel	mg/Kg	2.50	2.47	99.0	80-120	
Selenium	mg/Kg	5.00	4.57	91.0	80-120	
Silver	mg/Kg	0.500	0.456	91.0	80-120	
Thallium	mg/Kg	0.500	0.473	95.0	80-120	
Vanadium	mg/Kg	25.0	23.5	94.0	80-120	
Zinc	mg/Kg	25.0	25.7	103	80-120	

Matrix Spike & Matrix Spike Duplicate

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Antimony	mg/Kg	4.48	4.93	4.65	3.94	5.63	0.0*	25.0*	75-125	35.3	80
Arsenic	mg/Kg	5.61	2.47	2.33	6.58	8.46	39.0*	123	75-125	25.0	80
Barium	mg/Kg	459	4.93	4.65	421	450	0.0*	0.0*	75-125	6.6	80
Beryllium	mg/Kg	0.383	2.47	2.33	2.54	2.43	87.0	88.0	75-125	4.4	80
Cadmium	mg/Kg	1.83	0.493	0.465	1.92	2.14	18.0*	67.0*	75-125	10.8	80
Chromium	mg/Kg	27.7	4.93	4.65	29.0	25.3	26.0*	0.0*	75-125	13.6	80
Cobalt	mg/Kg	4.90	4.93	4.65	8.54	9.26	74.0*	94.0	75-125	8.0	80
Copper	mg/Kg	475	2.47	2.33	422	515	0.0*	1720*	75-125	19.8	80
Lead	mg/Kg	1200	2.47	2.33	813	786	0.0*	0.0*	75-125	3.3	80
Manganese	mg/Kg	384	4.93	4.65	314	407	0.0*	495*	75-125	25.7	80
Nickel	mg/Kg	13.3	2.47	2.33	16.1	16.9	114	155*	75-125	4.8	80
Selenium	mg/Kg	0.466	4.93	4.65	4.08	3.93	73.0*	74.0*	75-125	3.7	80
Silver	mg/Kg	0.830	0.493	0.465	1.08	0.927	51.0*	21.0*	75-125	15.2	80

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-208-0056		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses
		,, ,,, ,, ,,, ,,	

Matrix Spike & Matrix Spike Duplicate V 9

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Thallium	mg/Kg	<0.250	0.493	0.465	0.451	0.435	84.0	86.0	75-125	3.6	80
Vanadium	mg/Kg	9.95	24.7	23.3	29.2	27.4	78.0	75.0	75-125	6.3	80
Zinc	mg/Kg	1140	24.7	23.3	1000	991	0.0*	0.0*	75-125	0.9	80

Post Digestion Spike

V 90860-PDS-L696239

Parameter	Units	PDS Result	% Recovery	Analyzed
Antimony	mg/Kg	2.63	94.0	08/04/23 11:59
Arsenic	mg/Kg	1.65	96.0	08/04/23 11:59
Cadmium	mg/Kg	0.395	95.0	08/04/23 11:59
Cobalt	mg/Kg	2.68	93.0	08/04/23 11:59
Copper	mg/Kg	2.44	102	08/04/23 11:26
Silver	mg/Kg	0.299	94.0	08/04/23 11:59
Vanadium	mg/Kg	11.9	92.0	08/04/23 11:59
Zinc	mg/Kg	116	92.0	08/04/23 11:59

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0056	ociates, Ir	nc Raleigl	ı								
QC Prep: QC Prep Batch Method:	V35873			Analysis	lytical Batch s Method: s Descriptior		V35952 7471B Solids		ury Analysis	- CVAA		
Lab Reagent Blank Associated Lab Samples:	90855, 90860	LRB-V35	5873		Matrix: SO	L						
Parameter	Units	Blank Result		MQL		An	alyzed					
Mercury (Total)	mg/Kg	<0.0300		0.0300		07/28	8/23 15:	43				
Laboratory Control Sam	ıple	LCS-V35	5873									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.417		0.451			108		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90819	9-MS-V35873	V 9081	9-MSD-V3587	3						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Res		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	<0.0300	0.410	0.397	0.400	0.3	362	98.0	91.0	80-120	9.9	20
Post Digestion Spike		V 90819)-PDS-V3587	3								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Mercury (Total)	mg/Kg	0.200		101		07/28	8/23 16:	15				

	Mid-Atlantic Asso R4370.00	ciates, Ind	Raleig	h					
	23-208-0056								
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytical Batch(es):V36073Analysis Method:8270EAnalysis Description:Semivolatile			e Organic Compounds - GC/MS		
Lab Reagent Blank Associated Lab Samples: 9	0855, 90860	LRB-V360)47	Matrix	:: SOL				
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits	
Acenaphthene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51			
Acenaphthylene	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51			
Aniline	mg/Kg	<0.152	0.152	0.660	08/0	1/23 15:51			
Anthracene	mg/Kg	<0.143	0.143	0.660	08/0	1/23 15:51			
Benzo(a)anthracene	mg/Kg	<0.139	0.139	0.660	08/0	1/23 15:51			
Benzo(a)pyrene	mg/Kg	<0.147	0.147	0.660	08/0	1/23 15:51			
Benzo(b)fluoranthene	mg/Kg	<0.146	0.146	0.660	08/0	1/23 15:51			
Benzo(g,h,i)perylene	mg/Kg	<0.136	0.136	0.660	08/0	1/23 15:51			
Benzo(k)fluoranthene	mg/Kg	<0.137	0.137	0.660	08/0	1/23 15:51			
Benzoic Acid	mg/Kg	<0.580	0.580	2.00	08/0	1/23 15:51			
Benzyl alcohol	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51			
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51			
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51			
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	0.136	0.330	08/0	1/23 15:51			
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	0.120	0.660	08/0	1/23 15:51			
1-Bromophenyl phenyl ether	mg/Kg	<0.109	0.109	0.660	08/0	1/23 15:51			
Butyl benzyl phthalate	mg/Kg	<0.113	0.113	0.330	08/0	1/23 15:51			
1-Chloro-3-methylphenol	mg/Kg	<0.092	0.092	0.660	08/0	1/23 15:51			
1-Chloroaniline	mg/Kg	<0.112	0.112	0.330	08/0	1/23 15:51			
2-Chloronaphthalene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51			
2-Chlorophenol	mg/Kg	<0.098	0.098	0.660	08/0	1/23 15:51			
1-Chlorophenyl phenyl ether	mg/Kg	<0.126	0.126	1.00	08/0	1/23 15:51			
Chrysene	mg/Kg	<0.142	0.142	0.660	08/0	1/23 15:51			
Dibenz(a,h)anthracene	mg/Kg	<0.230	0.230	0.660	08/0	1/23 15:51			
Dibenzofuran	mg/Kg	<0.119	0.119	0.660	08/0	1/23 15:51			
1,2-Dichlorobenzene	mg/Kg	<0.094	0.094	0.660	08/0	1/23 15:51			
1,3-Dichlorobenzene	mg/Kg	<0.097	0.097	0.660	08/0	1/23 15:51			

Date: 08/16/2023 03:41 PM

Client ID: Project Description: Bonort No.	Mid-Atlantic Asso R4370.00	ociates, Ind	c Raleigi	h				
Report No: QC Prep: QC Prep Batch Method:	23-208-0056 V36047 3546			QC Analytical Analysis Meth Analysis Desc	od:	V36073 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples:	90855, 90860	LRB-V360)47	Mati	ix: SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	mg/Kg	<0.097	0.097	0.330	08/0	1/23 15:51		
3,3'-Dichlorobenzidine	mg/Kg	<0.147	0.147	0.660	08/0	1/23 15:51		
2,4-Dichlorophenol	mg/Kg	<0.095	0.095	0.660	08/0	1/23 15:51		
Diethyl phthalate	mg/Kg	<0.180	0.180	0.660	08/0	1/23 15:51		
Dimethyl phthalate	mg/Kg	<0.174	0.174	0.660	08/0	1/23 15:51		
2,4-Dimethylphenol	mg/Kg	<0.108	0.108	0.330	08/0	1/23 15:51		
Di-n-butyl phthalate	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51		
4,6-Dinitro-2-methylphenol	mg/Kg	<0.240	0.240	1.50	08/0	1/23 15:51		
2,4-Dinitrophenol	mg/Kg	<0.520	0.520	1.50	08/0	1/23 15:51		
2,4-Dinitrotoluene	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2,6-Dinitrotoluene	mg/Kg	<0.108	0.108	0.660	08/0	1/23 15:51		
Di-n-Octyl Phthalate	mg/Kg	<0.143	0.143	0.330	08/0	1/23 15:51		
Fluoranthene	mg/Kg	<0.123	0.123	0.660	08/0	1/23 15:51		
Fluorene	mg/Kg	<0.128	0.128	0.660	08/0	1/23 15:51		
Hexachlorobenzene	mg/Kg	<0.106	0.106	0.660	08/0	1/23 15:51		
Hexachlorobutadiene	mg/Kg	<0.097	0.097	0.660	08/0	1/23 15:51		
Hexachlorocyclopentadiene	mg/Kg	<0.157	0.157	0.660	08/0	1/23 15:51		
Hexachloroethane	mg/Kg	<0.079	0.079	0.660	08/0	1/23 15:51		
Indeno(1,2,3-cd)pyrene	mg/Kg	<0.179	0.179	0.660	08/0	1/23 15:51		
Isophorone	mg/Kg	<0.191	0.191	0.660	08/0	1/23 15:51		
1-Methylnaphthalene	mg/Kg	<0.106	0.106	0.660	08/0	1/23 15:51		
2-Methylnaphthalene	mg/Kg	<0.100	0.100	0.660	08/0	1/23 15:51		
2-Methylphenol	mg/Kg	<0.097	0.097	0.660	08/0	1/23 15:51		
3&4 Methylphenol	mg/Kg	<0.084	0.084	0.660	08/0	1/23 15:51		
Naphthalene	mg/Kg	<0.144	0.144	0.660	08/0	1/23 15:51		
2-Nitroaniline	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
3-Nitroaniline	mg/Kg	<0.120	0.120	0.660	08/0	1/23 15:51		

Client ID:	Mid-Atlantic Asso	ciates, Ind	Raleigl	ı				
Project Description:	R4370.00							
Report No:	23-208-0056							
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytical Analysis Meth Analysis Desc	nod:	V36073 8270E Semivolatile O	rganic Compounds -	GC/MS
Lab Reagent Blank Associated Lab Samples:	90855, 90860	LRB-V360)47	Mat	rix: SOL			
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits
4-Nitroaniline	mg/Kg	<0.093	0.093	0.330	08/0	1/23 15:51		
Nitrobenzene	mg/Kg	<0.116	0.116	0.330	08/0	1/23 15:51		
2-Nitrophenol	mg/Kg	<0.088	0.088	0.660	08/0	1/23 15:51		
4-Nitrophenol	mg/Kg	<0.117	0.117	0.660	08/0	1/23 15:51		
N-Nitrosodimethylamine	mg/Kg	<0.263	0.263	0.660	08/0	1/23 15:51		
N-Nitrosodiphenylamine	mg/Kg	<0.181	0.181	0.660	08/0	1/23 15:51		
N-Nitroso-di-n-propylamine	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51		
Pentachlorophenol	mg/Kg	<0.347	0.347	1.00	08/0	1/23 15:51		
Phenanthrene	mg/Kg	<0.208	0.208	0.660	08/0	1/23 15:51		
Phenol	mg/Kg	<0.112	0.112	0.660	08/0	1/23 15:51		
Pyrene	mg/Kg	<0.134	0.134	0.660	08/0	1/23 15:51		
Pyridine	mg/Kg	<0.079	0.079	0.330	08/0	1/23 15:51		
1,2,4-Trichlorobenzene	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51		
2,4,5-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2,4,6-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2-Fluorobiphenyl (S)					08/0	1/23 15:51	94.0	44-115
2-Fluorophenol (S)					08/0	1/23 15:51	82.5	35-115
Nitrobenzene-d5 (S)					08/0	1/23 15:51	86.2	37-122
4-Terphenyl-d14 (S)					08/0	1/23 15:51	112	54-127
2,4,6-Tribromophenol (S)					08/0	1/23 15:51	78.6	39-132
Phenol-d5 (S)					08/0	1/23 15:51	78.0	34-121

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthene	mg/Kg	1.67	1.46	1.52	87.4	91.0	40-123	4.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0056		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthylene	mg/Kg	1.67	1.47	1.53	88.0	91.6	32-132	4.0	20
Aniline	mg/Kg	1.67	2.71	2.82	162	169	12-197	3.9	20
Anthracene	mg/Kg	1.67	1.62	1.68	97.0	101	47-123	3.6	20
Benzo(a)anthracene	mg/Kg	1.67	1.66	1.70	99.4	102	49-126	2.3	20
Benzo(a)pyrene	mg/Kg	1.67	1.80	1.86	108	111	45-129	3.2	20
Benzo(b)fluoranthene	mg/Kg	1.67	1.70	1.85	102	111	45-132	8.4	20
Benzo(g,h,i)perylene	mg/Kg	1.67	1.66	1.74	99.4	104	43-134	4.7	20
Benzo(k)fluoranthene	mg/Kg	1.67	1.64	1.64	98.2	98.2	47-132	0.0	20
Benzoic Acid	mg/Kg	1.67	1.25	1.24	74.8	74.2	10-83	0.8	20
Benzyl alcohol	mg/Kg	1.67	1.48	1.59	88.6	95.2	29-122	7.1	20
Bis(2-Chloroethoxy)methane	mg/Kg	1.67	1.33	1.36	79.6	81.4	36-121	2.2	20
Bis(2-Chloroethyl)ether	mg/Kg	1.67	1.33	1.40	79.6	83.8	31-120	5.1	20
Bis(2-Chloroisopropyl)ether	mg/Kg	1.67	1.48	1.52	88.6	91.0	33-131	2.6	20
Bis(2-ethylhexyl)phthalate	mg/Kg	1.67	1.88	1.95	113	117	51-133	3.6	20
4-Bromophenyl phenyl ether	mg/Kg	1.67	1.64	1.71	98.2	102	46-124	4.1	20
Butyl benzyl phthalate	mg/Kg	1.67	1.85	1.95	111	117	48-132	5.2	20
4-Chloro-3-methylphenol	mg/Kg	1.67	1.35	1.41	80.8	84.4	45-122	4.3	20
4-Chloroaniline	mg/Kg	1.67	1.42	1.47	85.0	88.0	17-106	3.4	20
2-Chloronaphthalene	mg/Kg	1.67	1.48	1.52	88.6	91.0	41-114	2.6	20
2-Chlorophenol	mg/Kg	1.67	1.46	1.53	87.4	91.6	34-121	4.6	20
4-Chlorophenyl phenyl ether	mg/Kg	1.67	1.53	1.59	91.6	95.2	45-121	3.8	20
Chrysene	mg/Kg	1.67	1.57	1.64	94.0	98.2	50-124	4.3	20
Dibenz(a,h)anthracene	mg/Kg	1.67	1.52	1.56	91.0	93.4	45-134	2.5	20
Dibenzofuran	mg/Kg	1.67	1.47	1.53	88.0	91.6	44-120	4.0	20
1,2-Dichlorobenzene	mg/Kg	1.67	1.30	1.37	77.8	82.0	33-117	5.2	20
1,3-Dichlorobenzene	mg/Kg	1.67	1.31	1.35	78.4	80.8	30-115	3.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0056		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
1,4-Dichlorobenzene	mg/Kg	1.67	1.29	1.35	77.2	80.8	31-115	4.5	20
3,3'-Dichlorobenzidine	mg/Kg	1.67	1.68	1.77	101	106	22-121	5.2	20
2,4-Dichlorophenol	mg/Kg	1.67	1.31	1.39	78.4	83.2	40-122	5.9	20
Diethyl phthalate	mg/Kg	1.67	1.56	1.68	93.4	101	50-124	7.4	20
Dimethyl phthalate	mg/Kg	1.67	1.60	1.67	95.8	100	48-124	4.2	20
2,4-Dimethylphenol	mg/Kg	1.67	1.74	1.82	104	109	30-127	4.4	20
Di-n-butyl phthalate	mg/Kg	1.67	1.78	1.84	107	110	51-128	3.3	20
4,6-Dinitro-2-methylphenol	mg/Kg	1.67	1.42	1.43	85.0	85.6	29-132	0.7	20
2,4-Dinitrophenol	mg/Kg	1.67	1.24	1.30	74.2	77.8	27-129	4.7	20
2,4-Dinitrotoluene	mg/Kg	1.67	1.60	1.66	95.8	99.4	48-126	3.6	20
2,6-Dinitrotoluene	mg/Kg	1.67	1.53	1.67	91.6	100	46-124	8.7	20
Di-n-Octyl Phthalate	mg/Kg	1.67	2.08	2.17	125	130	45-140	4.2	20
Fluoranthene	mg/Kg	1.67	1.48	1.53	88.6	91.6	50-127	3.3	20
Fluorene	mg/Kg	1.67	1.47	1.55	88.0	92.8	43-125	5.2	20
Hexachlorobenzene	mg/Kg	1.67	1.58	1.61	94.6	96.4	45-122	1.8	20
Hexachlorobutadiene	mg/Kg	1.67	1.22	1.30	73.0	77.8	32-123	6.3	20
Hexachlorocyclopentadiene	mg/Kg	1.67	1.10	1.22	65.8	73.0	32-117	10.3	20
Hexachloroethane	mg/Kg	1.67	1.23	1.28	73.6	76.6	28-117	3.9	20
Indeno(1,2,3-cd)pyrene	mg/Kg	1.67	1.73	1.82	104	109	45-133	5.0	20
Isophorone	mg/Kg	1.67	1.16	1.19	69.4	71.2	30-122	2.5	20
1-Methylnaphthalene	mg/Kg	1.67	1.21	1.26	72.4	75.4	40-119	4.0	20
2-Methylnaphthalene	mg/Kg	1.67	1.22	1.27	73.0	76.0	38-122	4.0	20
2-Methylphenol	mg/Kg	1.67	1.50	1.55	89.8	92.8	32-122	3.2	20
3&4 Methylphenol	mg/Kg	1.67	1.34	1.39	80.2	83.2	34-119	3.6	20
Naphthalene	mg/Kg	1.67	1.20	1.24	71.8	74.2	35-123	3.2	20
2-Nitroaniline	mg/Kg	1.67	1.61	1.75	96.4	105	44-127	8.3	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	I	
Project Description:	R4370.00		
Report No:	23-208-0056		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
3-Nitroaniline	mg/Kg	1.67	1.67	1.75	100	105	33-119	4.6	20
4-Nitroaniline	mg/Kg	1.67	1.56	1.67	93.4	100	63-147	6.8	20
Nitrobenzene	mg/Kg	1.67	1.19	1.22	71.2	73.0	34-122	2.4	20
2-Nitrophenol	mg/Kg	1.67	1.28	1.36	76.6	81.4	36-123	6.0	20
4-Nitrophenol	mg/Kg	1.67	1.67	1.72	100	103	30-132	2.9	20
N-Nitrosodimethylamine	mg/Kg	1.67	1.17	1.21	70.0	72.4	10-146	3.3	20
N-Nitrosodiphenylamine	mg/Kg	1.67	1.94	1.96	116	117	38-127	1.0	20
N-Nitroso-di-n-propylamine	mg/Kg	1.67	1.47	1.51	88.0	90.4	36-120	2.6	20
Pentachlorophenol	mg/Kg	1.67	1.77	1.85	106	111	25-133	4.4	20
Phenanthrene	mg/Kg	1.67	1.54	1.61	92.2	96.4	50-121	4.4	20
Phenol	mg/Kg	1.67	1.41	1.43	84.4	85.6	34-121	1.4	20
Pyrene	mg/Kg	1.67	1.63	1.70	97.6	102	47-127	4.2	20
Pyridine	mg/Kg	1.67	0.951	0.973	56.9	58.2	10-80	2.2	20
1,2,4-Trichlorobenzene	mg/Kg	1.67	1.18	1.22	70.6	73.0	34-118	3.3	20
2,4,5-Trichlorophenol	mg/Kg	1.67	1.57	1.63	94.0	97.6	41-124	3.7	20
2,4,6-Trichlorophenol	mg/Kg	1.67	1.48	1.55	88.6	92.8	39-126	4.6	20
2-Fluorobiphenyl (S)					91.6	92.2	44-115		
2-Fluorophenol (S)					81.9	81.3	35-115		
Nitrobenzene-d5 (S)					75.4	74.8	37-122		
4-Terphenyl-d14 (S)					106	107	54-127		
2,4,6-Tribromophenol (S)					83.4	86.7	39-132		
Phenol-d5 (S)					77.7	77.1	34-121		

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0056	ociates, In	ıc Raleigl	h		
QC Analytical Batch: Analysis Method: Analysis Description:	V36016 SW-DRYWT	mination				
Duplicate	Dry Weight Deten	V 90841	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	24.8	24.4	1.6	20.0	08/01/23 11:05
Duplicate		V 90858	B-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	32.6	32.0	1.8	20.0	08/01/23 11:05

%

26.6

27.7

4.0

20.0

08/01/23 17:10

Moisture

Client ID:	Mid-Atlantic Asso	ociates, In	nc Raleigl	n		
Project Description:	R4370.00		-			
Report No:	23-208-0056					
QC Analytical Batch:	V36036					
Analysis Method:	SW-DRYWT					
Analysis Description:	Dry Weight Deter	mination				
Duplicate		V 90833	B-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	9.20	9.35	1.6	20.0	08/01/23 17:10
Duplicate		V 90860)-DUP			
		Result	DUP	RPD	Max RPD	Analyzed

Client ID:	Mid-Atlantic Asso	ciates, In	ic Raleigi	h		
Project Description:	R4370.00					
Report No:	23-208-0056					
QC Analytical Batch:	V36038					
Analysis Method:	SW-DRYWT					
Analysis Description:	Dry Weight Deter	mination				
Duplicate		V 91132	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	17.8	17.6	1.1	20.0	08/01/23 17:10
Duplicate		V 91138	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	8.17	8.99	9.5	20.0	08/01/23 17:10

Shipment Receipt Form

Customer Number	:: 01139					
Customer Name:	Mid-Atlantic Assoc	iates, Inc.	- Raleigh			
Report Number:	23-208-0056	Shinnin	g Method			
			g wethou			
⊖ Fed Ex	US Postal			Other :		
	Client	Courie	ər	Thermometer ID:	IRT-15 2.6C	
Shipping container/	cooler uncompromise	ed?	• Yes	◯ No		
Number of coolers/	boxes received		1			
Custody seals intac	ct on shipping contain	er/cooler?	⊖ Yes	🔿 No	Not Pres	sent
Custody seals intac	ct on sample bottles?		⊖ Yes	◯ No	Not Pre	sent
Chain of Custody (COC) present?		Yes	◯ No		
COC agrees with s	ample label(s)?		• Yes	◯ No		
COC properly comp	oleted		• Yes	◯ No		
Samples in proper	containers?		Yes	◯ No		
Sample containers	intact?		Yes	◯ No		
Sufficient sample v	olume for indicated te	st(s)?	Yes	◯ No		
All samples receive	ed within holding time	?	Yes	◯ No		
Cooler temperature	e in compliance?		Yes	◯ No		
	rived at the laboratory sidered acceptable as 		• Yes	◯ No		
Water - Sample cor	ntainers properly pres	erved	◯ Yes	◯ No	• N/A	
Water - VOA vials f	ree of headspace		⊖ Yes	◯ No	• N/A	
Trip Blanks receive	d with VOAs		⊖ Yes	◯ No	• N/A	
Soil VOA method 5	035 – compliance crit	eria met	• Yes	◯ No	○ N/A	
High concentrat	ion container (48 hr)		Low	v concentration EnC	ore samplers (48	3 hr)
High concentrat	ion pre-weighed (met	hanol -14 d) 🗌 Low	v conc pre-weighed	vials (Sod Bis -14	4 d)
Special precautions	s or instructions includ	led?	⊖ Yes	No		
Comments:						

Signature: Caitlyn Cummins

Date & Time: 07/27/2023 14:38:02

Way	noin	t W		CHAI	50					co	RD			LAB USE ON	YES	NO N/A
vvay	ANALYTIC	Δ1		PAGE OF Project Name	1000 712	FE # TOENSI	JRE PROPER	BILLING	G:	17.4			ed IN ICE?	upon arrival?	X	
Phone 70 Client Company Nam Report To/Contact Na	brook Road • Cha 4/529-6364 • Fai e: Mid - A	arlotte, NC 28217 x: 704/525-0409 Hartic A M Cly		Short Hold Analysis (Yes) (No) UST Project: (Yes) (No)								PROPER PRESERVATIVES indicated? X				
Reporting Address:	409 Cer	ses Vice	- GF	Address:	1									INERS used?	ed 2.6 °C	/Corr. 2.6
Phone: 704 609 0	TUSFax (Yes	s)(No):	E	Durt		······································				-				N BY CLIENT/SA		
Email Address: Ke			an	Purchase Orc Requested Due	Date 🖵 1	Day J2Da	iys 🗀 3 Day					1.		NCSC		LIGOINI
EDD Type: PDF E Site Location Name:	E Duch	anpor		"Working Days Samples receive	" _ 6-	9 Days	andard 10 da	ays JR	lush Wo re Appr	rk Must I oved	Be			Other N/A_		
Site Location Physica				Turnaround time (SEE REVER	is based on the second se	RMS & COND		ng weeke RDING SE	ends an ERVICES		/S.			ted: YESNC		0
CLIENT	DATE	TIME	MATRIX (SOIL,	T	E CONTA				~	CA /A	ANALY	SIS REQUE				
SAMPLE DESCRIPTION	COLLECTED	HOURS	WATER, OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	PRESER		, elle	No.	at sa	30/	/ /	Viid-Atla		ID N
S-ED-39	7/25/23	1428	Soil				Ice	Í	V					00		
5-ED-40		1433					1		~					sociate		
55-ED-41		143540						1	V					es, Inc		
55-ED-48		147750	5/75							~	~			- Ra		
SS-ED-47		1458							/					eigh		
SS-ED-59		15000	ans						~							
SS-ED-60		151246	ec 712s						~						2	
SS-ED-SS		ISZB								V	V			07-27-2023 14:33:24	3-208-	
SS-ED-SI	V	1 558	V			1	-		V					4 4 23	0056	
			PRESS D	OWN FIRM	LY - 2 C	OPIES						II				
Sampler's Signature	×22		Sampled B	y (Print Name)	Ker.	n de	4		Affiliat	ion N	rid-	Atlant	ic			USE ONLY
Upon relinguishing this submitted in writing to	s Chain of Cust the Waypoint A	ody is your auth nalytical Project	orization for	Waypoint Anal	vtical to p	proceed wit	the analy	ses as	reques	ted abo				-	Site Arrival	14
Relinquished By (Signature			Rece	ed B (Signature),	R	NE	R			Date 7-26		Military/Hours	Addit	Lional Comments:	Site Depart	ure Time:
Relinquished By Bignature	6 X	Dise	Rece	ived By (Signature)	Jer	press	/				:23	16:00			Field Tech I	Fee:
Relinquished By (Signature)	1-0-	- 0	Rece	wed For Waypoint A	6	0				Date	-		-		Mileage:	
Method of Shipment NOTE: SAMPL	ALL SAMPLE COOL	LERS SHOULD BE T	APED SHUT WIT	H CUSTODY SEAL	S FOR TRA	NSPORTATION BORATORY.	TO THE LAB	ORATOR	Y.	H27 COC Gr		13:00	-			
	delivered J Way	DWATER: DRI	Jervice J Other			-		AAIFLE	_							CONDITION
UNC JSC JNC J		ISC JN	C J SC		WASTE:			WNFLE				OTHER:	;		1227.047	
][]		\		L		Page 5	3 of 55		13		1.	L			OF	RIGINAL

449 Springt Phone 704 Client Company Name Report To/Contact Na Reporting Address: Phone: Email Address:	eport To/Contact Name: eporting Address: SEE P. 1 hone: Fax (Yes)(No): E mail Address: DD Type: PDF Excel Other				CHAIN OF CUSTODY RECORD PAGE © oF 3 QUOTE # TOENSURE PROPER BILLING: Project Name: Short Hold Analysis (Yes) (No) UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements Invoice To: Address: Purchase Order No./Billing Reference Requested Due Date _ 1 Day _ 2 Days _ 3 Days _ 4 Days _ 5 Days "Working Days" _ 6-9 Days _ Standard 10 days _ Pre Approved Samples received after 15:00 will be processed next business day.							LAB USE ONLY YES NO N/A Samples INTACT upon arrival? X X Received IN ICE? X PROPER PRESERVATIVES indicated? X Received WITHIN HOLDING TIMES? X CUSTODY SEALS INTACT? X VOLATILES rec'd W/OUT HEADSPACE? Y PROPER CONTAINERS used? X TEMP: Therm ID: INTACT X TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNE Certification: NCSC OtherN/A				
Site Location Name: Site Location Physica	al Address:			Turnaround time (SEE REVE	ed after 15 is based RSE FOR TI	:00 will be pr on business ERMS & CONI	ocessed next busin days, excluding we DITIONS REGARDING	ekends servic	and holidays.		hlorinate	d: YESN	0	D		
OUENT	DATE	TIME	MATRIX	T	E CONTA		LYTICAL, LLC TO CL	IENT)		YSIS REQUEST						
CLIENT SAMPLE DESCRIPTION	DATE	MILITARY	(SOIL, WATER, OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	PRESERVA- TIVES	00	2 2 2 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	570/		,		ID NO		
SS-ED-SY	7/25/23	1548	Soil				Tre	V			[[208-0056 39 33:24				
55-ED-44	1	1555	1				1	1				23-208- 01139 07-27-2				
SS-ED - 45		1600										- 000+				
SS-ED-61		1608														
SS-ED-62		1618										ia ia				
SS-ED-DPI		1705						11				- Rale	-			
SS-ED-39(1)		1633										es, Inc	A test of the			
SS-EP-40(1)		1636	./									sociat				
SS-ED-51(1')	V	1705	V				V	V				ntic As				
			PRESS D	OWN FIRM	LY - 2 (OPIES						Mid-Atla	43/0.0	I		
Sampler's Signature	102		Sampled B	y (Print Name)	Veri	, cle	4	Affili	iation Mid-	Atlantic	_	<u> </u>		ISE ONLY		
Upon relinquishing the submitted in writing to	s Chain of Custo	dy is your auth alytical Project	orization for	Waypoint Ana	lytical to	proceed w	th the analyses	as requ	ested above. An	y changes mu	ust be		Site Arrival			
Relinquished By (Signature	2			wed By (Signature)		Te	The		Date 7-26-23	Military/Hours	Addition	al Comments:	Site Departu	ure Time:		
Relinguished By (Signature)	if V-	Zite		ived By (Signature)	0	rees	0		Date 7-26-23	16:00			Field Tech F	ee:		
Refinquished By: (Signature)	0-1	0	Rece	wed For Waypoint A	nalytical By:				Date 707123	13:00			Mileage:			
Method of Shipment NOTE: SAMPL	ALL SAMPLE COOLI	ERS SHOULD BE T	APED SHUT WIT	H CUSTODY SEAL	S FOR TRA	NSPORTATIO	N TO THE LABORAT	ORY.	COC Group No.	15.00						
CONTRACTOR DAVIDANCE TO A	-delivered L Waype	unt Analytical Fields S	HING JOHN											VERSE FOR		
	SC JNC J	WATER: DRIN SC JN	NKING WATI	ER: SOLID	WASTE: J SC		JSC UNC			OTHER: JNCJSC			OR	IGINAL		

Way							STODY		CORI	Sam	ples INTACT L	LAB USE ON		NO N/A
449 Springb Phone 704 Client Company Name Report To/Contact Nar Reporting Address:		rlotte, NC 28217		Project Name: Short Hold Analysis (Yes) (No) UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements Invoice To: Address:							Received IN ICE? X PROPER PRESERVATIVES indicated? X Received WITHIN HOLDING TIMES? X CUSTODY SEALS INTACT? X VOLATILES rec'd W/OUT HEADSPACE? X PROPER CONTAINERS used? X TEMP: Therm ID: ICT-IS Observed 2-60°C /Corr. 2-6°C			
Phone: Email Address: EDD Type: PDF En Site Location Name: Site Location Physica	Fax (Yes) xcel Other I Address:		6	"Working Days Samples receive Turnaround time (SEE REVER	Date 1 D. 6-9 d after 15:00 is based on SE FOR TER	ay 2 Days	andard 10 days andard 10 days bocessed next busin bays, excluding weather itions REGARDING YTICAL, LLC TO CLI	Rush Wo Pre Appri less day. ekends and SERVICES	rk Must Be oved	Certi Wate	fication: (r Chlorinat	NBY CLIENT/SA NCSC OtherN/A_ ed: YESNC pon Collection:	-)	
CLIENT SAMPLE DESCRIPTION	DATE COLLECTED	TIME COLLECTED MILITARY	MATRIX (SOIL, WATER, OR	TYPE		ER	PRESERVA- TIVES	75	US ANA	ALYSIS REQU		R		
SS-ED-55(1)	7/25/23	HOURS 1650	SLUDGE)	SEE BELOW			Ece	1		$\left(\right)$		I-Atlantic Asso 370.00		
										++		ociates, Inc		
			1	4	2	_						Raleigh		
			7	25/	23							14:	23-	
			PRESS D	OWN FIRM	Y - 2 CO	PIES						01139 07-27-2023 14:33:24	208-0056	
Sampler's Signature	m			y (Print Name)	12 '	1	ly	Affiliati	on Mid-	-AHan	Situ	1		
Upon relinquishing this submitted in writing to t	Chain of Custo he Waypoint Ar	ody is your auth nalytical Project	Manager. Th	Waypoint Anal ere will be cha	ytical to pr ges for an	oceed wit	th the analyses a s after analyses	as reques	ted above. A	Any changes		-	Site Arrival 1	SE ONLY
Relinguished By (Signature)	e v	2	Rece	ived By (Signature)	ip	Y	ig		Date 7-26-23 Date		Addition	onal Comments:	Site Departu Field Tech Fe	
Refinquished By (Signature)	7_5	Te		Ved For Waypoint Ar		sters			7.26.23				Mileage:	
JFed Ex JUPS JHand-	delivered L Wayp	unt Analytical Lieio S	NUMBER JOHNER			SPORTATION DRATORY	N TO THE LABORATO	ORY.	COC Group No	and the second se	,			VERSE FOR
		WATER: DRII SC JN	NKING WATI C JSC	ER: SOLID NC		RCRA:	S of 55	Contract of the			SC		OR	IGINAL

8/16/2023

Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC, 27610

Ref: Analytical Testing Revised Lab Report Number: 23-208-0054 Client Project Description: R4370.00

Dear Kevin Clay:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 7/27/2023 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2024
North Carolina	State Program	402	12/31/2023
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Laboratory ID: WP MTN: Waypoint Analytical, LLC., Memphis, TN

State	Program	Lab ID	Expiration Date
Alabama	State Program	40750	02/29/2024
Arkansas	State Program	88-0650	02/07/2024
California	State Program	2904	06/30/2024
Florida	State Program - NELAP	E871157	06/30/2024
Georgia	State Program	C044	11/14/2025
Georgia	State Program	04015	06/30/2024
Illinois	State Program - NELAP	200078	10/10/2024
Kentucky	State Program	80215	06/30/2024
Kentucky	State Program	KY90047	12/31/2023
Louisiana	State Program - NELAP	LA037	12/31/2023
Louisiana	State Program - NELAP	04015	06/30/2024
Mississippi	State Program	MS	11/14/2025
North Carolina	State Program	47701	07/31/2024
North Carolina	State Program	415	12/31/2023
Pennsylvania	State Program - NELAP	68-03195	05/31/2024
South Carolina	State Program	84002	06/30/2023
Tennessee	State Program	02027	11/14/2025
Texas	State Program - NELAP	T104704180	09/30/2023
Virginia	State Program	00106	06/30/2024
Virginia	State Program - NELAP	460181	09/14/2023

Sample Summary Table

Report Number:	23-208-0054
Client Project Description:	R4370.00

Lab No	Client Sample ID	Matrix	Date Collected	Date Received	Method	Lab ID
90801	SS-EE-49	Solids	07/26/2023 08:15	07/27/2023		
90802	SS-EE-39	Solids	07/26/2023 08:13	07/27/2023		
90803	SS-EE-104	Solids	07/26/2023 08:40	07/27/2023		
90803	SS-EE-104	Solids	07/26/2023 08:40	07/27/2023	6020B	WP MTN
90804	SS-EE-105	Solids	07/26/2023 08:50	07/27/2023		
90805	SS-EE-106	Solids	07/26/2023 09:00	07/27/2023		
90806	SS-EE-101	Solids	07/26/2023 09:10	07/27/2023		
90807	SS-EE-95	Solids	07/26/2023 09:25	07/27/2023		
90808	SS-EE-90	Solids	07/26/2023 09:35	07/27/2023		
90809	SS-EE-88	Solids	07/26/2023 09:43	07/27/2023		
90810	SS-EE-81	Solids	07/26/2023 10:05	07/27/2023		
90811	SS-EE-82	Solids	07/26/2023 10:13	07/27/2023		
90812	SS-EE-83	Solids	07/26/2023 10:20	07/27/2023		
90813	SS-EE-Playground	Solids	07/26/2023 11:24	07/27/2023		
90814	SS-EE-24	Solids	07/26/2023 12:15	07/27/2023		
90815	SS-EE-15	Solids	07/26/2023 12:23	07/27/2023		
90816	SS-EE-12	Solids	07/26/2023 12:30	07/27/2023		
90817	SS-EE-26	Solids	07/26/2023 12:35	07/27/2023		
90818	SS-EE-32	Solids	07/26/2023 12:40	07/27/2023		
90819	SS-EE-54	Solids	07/26/2023 13:00	07/27/2023		
90819	SS-EE-54	Solids	07/26/2023 13:00	07/27/2023	6020B	WP MTN
90820	SS-EE-66	Solids	07/26/2023 13:05	07/27/2023		
90821	SS-EE-Dup 1	Solids	07/26/2023 12:28	07/27/2023		
90822	SS-EE-81 (1')	Solids	07/26/2023 10:50	07/27/2023		
90823	SS-EE-82 (1')	Solids	07/26/2023 10:45	07/27/2023		

Summary of Detected Analytes

Project: Report Number: R4370.00 23-208-0054

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-EE-49	V 90801					
6010D	Lead	86.9	mg/Kg - dry	0.366	08/02/2023 19:34	
SW-DRYWT	Moisture	18.2	%		07/28/2023 10:30	
SS-EE-39	V 90802					
6010D	Lead	30.4	mg/Kg - dry	0.394	08/02/2023 19:38	
SW-DRYWT	Moisture	24.0	%		07/28/2023 10:30	
SS-EE-104	V 90803					
6020B	Arsenic	0.377	mg/Kg - dry	0.256	08/03/2023 19:24	
6020B	Barium	9.56	mg/Kg - dry	0.255	08/03/2023 19:24	
6020B	Chromium	32.7	mg/Kg - dry	0.255	08/03/2023 19:24	
6020B	Cobalt	2.21	mg/Kg - dry	0.255	08/03/2023 19:24	
6020B	Copper	7.06	mg/Kg - dry	0.256	08/03/2023 19:24	
6020B	Lead	134	mg/Kg - dry	0.256	08/03/2023 19:24	
5020B	Manganese	67.7	mg/Kg - dry	0.255	08/03/2023 19:24	
5020B	Nickel	6.54	mg/Kg - dry	0.256	08/03/2023 19:24	
5020B	Vanadium	13.9	mg/Kg - dry	1.28	08/03/2023 19:24	
5020B	Zinc	18.2	mg/Kg - dry	2.56	08/03/2023 19:24	
SW-DRYWT	Moisture	2.32	%		07/28/2023 10:30	
SS-EE-105	V 90804					
6010D	Lead	148	mg/Kg - dry	1.62	08/08/2023 14:57	
SW-DRYWT	Moisture	7.20	%		07/28/2023 10:30	
SS-EE-106	V 90805					
5010D	Lead	76.5	mg/Kg - dry	0.378	08/02/2023 19:47	
SW-DRYWT	Moisture	20.8	%		07/28/2023 10:30	
SS-EE-101	V 90806					
6010D	Lead	995	mg/Kg - dry	6.03	08/08/2023 15:01	
SW-DRYWT	Moisture	0.574	%		07/31/2023 11:45	
SS-EE-95	V 90807					
6010D	Lead	197	mg/Kg - dry	1.51	08/08/2023 21:30	
SW-DRYWT	Moisture	0.764	%		07/31/2023 11:45	
SS-EE-90	V 90808					
6010D	Lead	435	mg/Kg - dry	3.08	08/08/2023 21:52	
SW-DRYWT	Moisture	2.64	%		07/31/2023 11:45	

Summary of Detected Analytes

Project: Report Number: R4370.00 23-208-0054

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
SS-EE-88	V 90809					
6010D	Lead	296	mg/Kg - dry	3.28	08/09/2023 19:06	
SW-DRYWT	Moisture	8.55	%		07/31/2023 11:45	
SS-EE-81	V 90810					
6010D	Lead	322	mg/Kg - dry	3.16	08/09/2023 19:10	
SW-DRYWT	Moisture	5.14	%		07/31/2023 11:45	
SS-EE-82	V 90811					
6010D	Lead	183	mg/Kg - dry	1.55	08/08/2023 22:14	
SW-DRYWT	Moisture	3.49	%		07/31/2023 11:45	
SS-EE-83	V 90812					
6010D	Lead	328	mg/Kg - dry	3.04	08/08/2023 22:19	
SW-DRYWT	Moisture	1.45	%		07/31/2023 11:45	
SS-EE-Playground	V 90813					
6010D	Lead	13.2	mg/Kg - dry	0.357	08/08/2023 22:23	
SW-DRYWT	Moisture	16.1	%		07/31/2023 11:45	
SS-EE-24	V 90814					
6010D	Lead	772	mg/Kg - dry	7.33	08/08/2023 22:28	
SW-DRYWT	Moisture	18.1	%		07/31/2023 11:45	
SS-EE-15	V 90815					
6010D	Lead	222	mg/Kg - dry	1.61	08/08/2023 22:32	
SW-DRYWT	Moisture	6.84	%		07/31/2023 11:45	
SS-EE-12	V 90816					
6010D	Lead	203	mg/Kg - dry	1.67	08/08/2023 22:37	
SW-DRYWT	Moisture	10.3	%		07/31/2023 11:45	
SS-EE-26	V 90817					
6010D	Lead	35.2	mg/Kg - dry	0.361	08/08/2023 22:41	
SW-DRYWT	Moisture	17.0	%		07/31/2023 11:45	
SS-EE-32	V 90818					
6010D	Lead	146	mg/Kg - dry	1.78	08/08/2023 22:46	
SW-DRYWT	Moisture	15.6	%		08/01/2023 11:05	

Summary of Detected Analytes

Project:

Report Number:

R4370.00 23-208-0054

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
SS-EE-54	V 90819					
6020B	Arsenic	4.52	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Barium	26.1	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Chromium	12.5	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Cobalt	5.20	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Copper	17.1	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Lead	24.8	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Manganese	169	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Nickel	16.9	mg/Kg - dry	0.266	08/03/2023 19:28	
6020B	Vanadium	15.2	mg/Kg - dry	1.33	08/03/2023 19:28	
6020B	Zinc	52.0	mg/Kg - dry	2.66	08/03/2023 19:28	
SW-DRYWT	Moisture	6.07	%		08/01/2023 11:05	
SS-EE-66	V 90820					
6010D	Lead	33.1	mg/Kg - dry	0.316	08/08/2023 22:59	
SW-DRYWT	Moisture	5.08	%		08/01/2023 11:05	
SS-EE-Dup 1	V 90821					
6010D	Lead	366	mg/Kg - dry	3.16	08/08/2023 23:03	
SW-DRYWT	Moisture	5.19	%		08/01/2023 11:05	
SS-EE-81 (1')	V 90822					
6010D	Lead	49.0	mg/Kg - dry	0.318	08/08/2023 23:08	
SW-DRYWT	Moisture	5.80	%		08/01/2023 11:05	
SS-EE-82 (1')	V 90823					
6010D	Lead	28.0	mg/Kg - dry	0.337	08/08/2023 23:12	
SW-DRYWT	Moisture	11.2	%		08/01/2023 11:05	

Client: Mid-Atlantic Associates, Inc. - Raleigh Project: R4370.00 Lab Report Number: 23-208-0054 Date: 8/16/2023 CASE NARRATIVE

Report Comments

Revised report: Revision 1 Co and V have been added to be reported.

Metals Analysis Method 6010D

Sample 90637 (SS-LY-60) Analyte: Lead QC Batch No: V36316/V36022 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Analyte: Lead QC Batch No: V36421/V36022 LLC failed high. Result 10x concentration. Result not affected.

Sample 90807 (SS-EE-95) Analyte: Lead QC Batch No: V36366/V36025 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Metals Analyses Method 6020B

Sample 90860 (SS-ED-51) Analyte: Silver QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Arsenic QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Barium QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cadmium QC Batch No: L696918/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Cobalt QC Batch No: L698988/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Chromium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Manganese QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Nickel QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Lead QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A dilution test was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Antimony QC Batch No: L696918/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Selenium QC Batch No: L696918/L696239 The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Vanadium QC Batch No: L698988/L696239

The matrix spike and/or the matrix spike duplicate was outside quality control acceptance ranges. A post digestion spike was performed and passed quality control acceptance ranges. No matrix interference is suspected.

Sample 90860 (SS-ED-51) Analyte: Zinc QC Batch No: L696918/L696239 The matrix spike, matrix spike duplicate and the dilution test were all outside of the quality control acceptance ranges. Matrix interference is suspected.

Semivolatile Organic Compounds - GC/MS Method 8270E

Sample 90803 (SS-EE-104) QC Batch No: V36073/V36047 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Sample 90819 (SS-EE-54) QC Batch No: V36073/V36047 The sample was diluted due to the nature of the sample matrix. Reporting limits have been adjusted accordingly.

Report Number : 23-208-0054	R	EPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Information	1:	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023

Lab No : 90801 Sample ID : SS-EE-49					Matrix: Solids Sampled: 7/26/2023 8:15					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method			
Moisture Lead	18.2 86.9	% mg/Kg - dry	0.366		07/28/23 10:30 08/02/23 19:34		SW-DRYWT 6010D			

01100		
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023
Kevin Clay		Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/27/2023
Raleigh , NC 27610		
Report Number : 23-208-0054	REPORT OF ANALYSIS	
Lab No : 90802		Matrix: Solids

Sample ID : SS-EE-39		Sampled: 7/26/2023					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	24.0	%		1	07/28/23 10:30	CNC	SW-DRYWT
Lead	30.4	mg/Kg - dry	0.394	1	08/02/23 19:38	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J Estimated value

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/10/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/27/2023

 Raleigh , NC 27610
 Received : 07/27/2023

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : 90803 Sample ID : SS-EE-104						:: Solids 1: 7/26	s / 2023 8:40	
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	2.32	%		1	07/28/23 10:30	CNC	SW-DRYWT
Antimony	<0.256	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Arsenic	0.377	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Barium	9.56	mg/Kg - dry	0.255	5	08/03/23 19:24	CPW	6020B
Beryllium	<0.256	mg/Kg - dry	0.256	5	08/03/23 19:24	BKN	6020B
Cadmium	<0.256	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Chromium	32.7	mg/Kg - dry	0.255	5	08/03/23 19:24	CPW	6020B
Cobalt	2.21	mg/Kg - dry	0.255	5	08/03/23 19:24	CPW	6020B
Copper	7.06	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Lead	134	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Manganese	67.7	mg/Kg - dry	0.255	5	08/03/23 19:24	CPW	6020B
Mercury (Total)	<0.0307	mg/Kg - dry	0.0307	1	07/28/23 16:04	JKC	7471B
Nickel	6.54	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Selenium	<0.255	mg/Kg - dry	0.255	5	08/03/23 19:24	CPW	6020B
Silver	<0.256	mg/Kg - dry	0.256	5	08/03/23 19:24	CPW	6020B
Thallium	<0.256	mg/Kg - dry	0.256	5	08/03/23 19:24	BKN	6020B
Vanadium	13.9	mg/Kg - dry	1.28	5	08/03/23 19:24	CPW	6020B
Zinc	18.2	mg/Kg - dry	2.56	5	08/03/23 19:24	CPW	6020B

Qualifiers/ Definitions DF Dilution Factor MQL Method Quantitation Limit J Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : 90803 Sample ID : SS-EE-104

Sample ID : SS-EE-104 Sampled: 7/2								7/26/	26/2023 8:40	
Analytical Method:8270EPrep Method:3546		F	Prep Batch(es):	V36047	08/01/2	23 09:5	0			
Test	Resu		Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch	
Acenaphthene		<0.950	mg/Kg - dry	0.950	5.41	4	08/02/23 15:24	AMP	V36073	
Acenaphthylene		<0.859	mg/Kg - dry	0.859	5.41	4	08/02/23 15:24	AMP	V36073	
Aniline		<1.25	mg/Kg - dry	1.25	5.41	4	08/02/23 15:24	AMP	V36073	
Anthracene		<1.17	mg/Kg - dry	1.17	5.41	4	08/02/23 15:24	AMP	V36073	
Benzo(a)anthracene		<1.14	mg/Kg - dry	1.14	5.41	4	08/02/23 15:24	AMP	V36073	
Benzo(a)pyrene		<1.21	mg/Kg - dry	1.21	5.41	4	08/02/23 15:24	AMP	V36073	
Benzo(b)fluoranthene		<1.20	mg/Kg - dry	1.20	5.41	4	08/02/23 15:24	AMP	V36073	
Benzo(g,h,i)perylene		<1.12	mg/Kg - dry	1.12	5.41	4	08/02/23 15:24	AMP	V36073	
Benzo(k)fluoranthene		<1.13	mg/Kg - dry	1.13	5.41	4	08/02/23 15:24	AMP	V36073	
Benzoic Acid		<4.75	mg/Kg - dry	4.75	16.4	4	08/02/23 15:24	AMP	V36073	
Benzyl alcohol		<0.859	mg/Kg - dry	0.859	5.41	4	08/02/23 15:24	AMP	V36073	
Bis(2-Chloroethoxy)me	ethane	<0.966	mg/Kg - dry	0.966	5.41	4	08/02/23 15:24	AMP	V36073	
Bis(2-Chloroethyl)ethe	r	<0.876	mg/Kg - dry	0.876	5.41	4	08/02/23 15:24	AMP	V36073	
Bis(2-Chloroisopropyl)	ether	<1.12	mg/Kg - dry	1.12	2.70	4	08/02/23 15:24	AMP	V36073	
Bis(2-ethylhexyl)phtha	late	<0.982	mg/Kg - dry	0.982	5.41	4	08/02/23 15:24	AMP	V36073	

mg/Kg - dry

0.892

0.925

0.756

0.917

0.950

0.804

1.03

5.41

2.70

5.41

2.70

5.41

5.41

8.19

J

< 0.892

< 0.925

<0.756

< 0.917

< 0.950

< 0.804

<1.03

Qualifiers/ Definitions

4-Bromophenyl phenyl ether

4-Chlorophenyl phenyl ether

DF

Butyl benzyl phthalate

2-Chloronaphthalene

4-Chloroaniline

2-Chlorophenol

4-Chloro-3-methylphenol

Dilution Factor

Estimated value

4 08/02/23 15:24 AMP

V36073

V36073

V36073

V36073

V36073

V36073

V36073

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : **90803** Sample ID : **SS-EE-104** Matrix: **Solids** Sampled: **7/26/2023 8:40**

Analytical Method: 8270E Prep Method: 3546	Ρ	rep Batch(es):	V36047	08/01/23 09:50				
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene	<1.17	mg/Kg - dry	1.17	5.41	4	08/02/23 15:24	AMP	V36073
Dibenz(a,h)anthracene	<1.88	mg/Kg - dry	1.88	5.41	4	08/02/23 15:24	AMP	V36073
Dibenzofuran	<0.974	mg/Kg - dry	0.974	5.41	4	08/02/23 15:24	AMP	V36073
1,2-Dichlorobenzene	<0.772	mg/Kg - dry	0.772	5.41	4	08/02/23 15:24	AMP	V36073
1,3-Dichlorobenzene	<0.796	mg/Kg - dry	0.796	5.41	4	08/02/23 15:24	AMP	V36073
1,4-Dichlorobenzene	<0.798	mg/Kg - dry	0.798	2.70	4	08/02/23 15:24	AMP	V36073
3,3'-Dichlorobenzidine	<1.21	mg/Kg - dry	1.21	5.41	4	08/02/23 15:24	AMP	V36073
2,4-Dichlorophenol	<0.784	mg/Kg - dry	0.784	5.41	4	08/02/23 15:24	AMP	V36073
Diethyl phthalate	<1.47	mg/Kg - dry	1.47	5.41	4	08/02/23 15:24	AMP	V36073
Dimethyl phthalate	<1.42	mg/Kg - dry	1.42	5.41	4	08/02/23 15:24	AMP	V36073
2,4-Dimethylphenol	<0.884	mg/Kg - dry	0.884	2.70	4	08/02/23 15:24	AMP	V36073
Di-n-butyl phthalate	<0.876	mg/Kg - dry	0.876	5.41	4	08/02/23 15:24	AMP	V36073
4,6-Dinitro-2-methylphenol	<1.97	mg/Kg - dry	1.97	12.3	4	08/02/23 15:24	AMP	V36073
2,4-Dinitrophenol	<4.26	mg/Kg - dry	4.26	12.3	4	08/02/23 15:24	AMP	V36073
2,4-Dinitrotoluene	<0.791	mg/Kg - dry	0.791	5.41	4	08/02/23 15:24	AMP	V36073
2,6-Dinitrotoluene	<0.884	mg/Kg - dry	0.884	5.41	4	08/02/23 15:24	AMP	V36073
Di-n-Octyl Phthalate	<1.17	mg/Kg - dry	1.17	2.70	4	08/02/23 15:24	AMP	V36073
Fluoranthene	<1.01	mg/Kg - dry	1.01	5.41	4	08/02/23 15:24	AMP	V36073
Fluorene	<1.04	mg/Kg - dry	1.04	5.41	4	08/02/23 15:24	AMP	V36073
Hexachlorobenzene	<0.868	mg/Kg - dry	0.868	5.41	4	08/02/23 15:24	AMP	V36073
Hexachlorobutadiene	<0.799	mg/Kg - dry	0.799	5.41	4	08/02/23 15:24	AMP	V36073
Hexachlorocyclopentadiene	<1.29	mg/Kg - dry	1.29	5.41	4	08/02/23 15:24	AMP	V36073

Qualifiers/ Definitions DF Dilution Factor

MQL

Method Quantitation Limit

Estimated value

J

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh, NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : 90803 Sample ID : S

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodimethylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Pyridine

N-Nitroso-di-n-propylamine

Sample ID : SS-EE-104 Sampled: 7/26/2023 8:40									
Analytical Method: Prep Method:	8270E 3546	Ρ	Prep Batch(es):	V36047 MDL	08/01/23 09:50				
lest		Results	Units		MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
lexachloroethane		<0.649	mg/Kg - dry	0.649	5.41	4	08/02/23 15:24	AMP	V36073
ndeno(1,2,3-cd)pyren	e	<1.46	mg/Kg - dry	1.46	5.41	4	08/02/23 15:24	AMP	V36073
sophorone		<1.57	mg/Kg - dry	1.57	5.41	4	08/02/23 15:24	AMP	V36073
-Methylnaphthalene		<0.868	mg/Kg - dry	0.868	5.41	4	08/02/23 15:24	AMP	V36073
-Methylnaphthalene		<0.819	mg/Kg - dry	0.819	5.41	4	08/02/23 15:24	AMP	V36073
-Methylphenol		<0.794	mg/Kg - dry	0.794	5.41	4	08/02/23 15:24	AMP	V36073
&4 Methylphenol		<0.695	mg/Kg - dry	0.695	5.41	4	08/02/23 15:24	AMP	V36073
aphthalene		<1.18	mg/Kg - dry	1.18	5.41	4	08/02/23 15:24	AMP	V36073
-Nitroaniline		<0.792	mg/Kg - dry	0.792	5.41	4	08/02/23 15:24	AMP	V36073
-Nitroaniline		<0.982	mg/Kg - dry	0.982	5.41	4	08/02/23 15:24	AMP	V36073
-Nitroaniline		<0.763	mg/Kg - dry	0.763	2.70	4	08/02/23 15:24	AMP	V36073

0.950

0.726

0.958

2.15

1.48

0.966

2.85

1.70

0.917

1.10

0.649

2.70

5.41

5.41

5.41

5.41

5.41

8.19

5.41

5.41

5.41

2.70

J

4 08/02/23 15:24 AMP

V36073

Qualifiers/

DF **Dilution Factor**

< 0.950

< 0.726

< 0.958

<2.15

<1.48

< 0.966

<2.85

<1.70

< 0.917

<1.10

< 0.649

mg/Kg - dry

Estimated value

Definitions

MQL Method Quantitation Limit

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : **90803** Sample ID : **SS-EE-104** Matrix: **Solids** Sampled: **7/26/2023 8:40**

Analytical Method: 8270E Prep Method: 3546		F	Prep Batch(es): V360		08/01/2	0			
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene	2	<0.876	mg/Kg - dry	0.876	5.41	4	08/02/23 15:24	AMP	V36073
2,4,5-Trichlorophenol		<0.788	mg/Kg - dry	0.788	5.41	4	08/02/23 15:24	AMP	V36073
2,4,6-Trichlorophenol		<0.791	mg/Kg - dry	0.791	5.41	4	08/02/23 15:24	AMP	V36073
Surrogate: Phe	nol-d5		56.8	Limits	: 34-121%		4 08/02/23 15:2	4 AMP	8270E
Surrogate: 2-Fl	uorobiphenyl		68.3	Limits	: 44-115%		4 08/02/23 15:2	4 AMP	V36073
Surrogate: 2-Fl	uorophenol		61.6	Limits	: 35-115%		4 08/02/23 15:2	4 AMP	V36073
Surrogate: Nitr	obenzene-d5		71.9	Limits	: 37-122%		4 08/02/23 15:2	4 AMP	V36073
Surrogate: 4-Te	erphenyl-d14		71.9	Limits	: 54-127%		4 08/02/23 15:2	4 AMP	V36073
Surrogate: 2,4,	6-Tribromophenol		52.6	Limits	: 39-132%		4 08/02/23 15:2	4 AMP	V36073

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	

Lab No : 90804 Sample ID : SS-EE-105					Matrix: Solids Sampled: 7/26/2023 8:50				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	7.20 148	% mg/Kg - dry	1.62		07/28/23 10:30 08/08/23 14:57		SW-DRYWT 6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALYSIS	

Lab No : 90805 Sample ID : SS-EE-106					Matrix: Solids Sampled: 7/26/2023 9:00				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	20.8 76.5	% mg/Kg - dry	0.378		07/28/23 10:30 08/02/23 19:47		SW-DRYWT 6010D		

Report Number : 23-208-0054	R	EPORT OF ANALYSIS	
409 Rogers View Court Raleigh , NC 27610	Informatior	ı:	Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date: 08/10/2023 Revised Report Date: 08/16/2023

Lab No : 90806 Sample ID : SS-EE-101						Matrix: Solids Sampled: 7/26/2023 9:10			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	0.574 995	% mg/Kg - dry	6.0		07/31/23 11:45 08/08/23 15:01		SW-DRYWT 6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project Information :	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	

Lab No : 90807 Sample ID : SS-EE-95						Matrix: Solids Sampled: 7/26/2023 9:25				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method			
Moisture Lead	0.764 197	% mg/Kg - dry	1		07/31/23 11:45 08/08/23 21:30		SW-DRYWT 6010D			

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/27/2023
Raleigh, NC 27610			
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Lab No : 90808			Matrix: Solids

Sample ID : SS-EE-90

Sampled: 7/26/2023 9:35

est	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
loisture	2.64	%		1	07/31/23 11:45	CNC	SW-DRYW1
ead	435	mg/Kg - dry	3.08	10	08/08/23 21:52	JKC	6010D

Lab No : 90809			Matrix: Solids
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
409 Rogers View Court Raleigh, NC 27610	Information :		Received : 07/27/2023
Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
01100			

Sample ID : SS-EE-88 Sampled: 7/2							26/2023 9:43	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	8.55	%		1	07/31/23 11:45	CNC	SW-DRYWT	
Lead	296	mg/Kg - dry	3.28	10	08/09/23 19:06	JKC	6010D	

	D :	
Mid-Atlantic Associates, Inc Raleigh	Project R4370.00	Original Report Date : 08/10/2023
Kevin Clay		Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	Received : 07/27/2023
Raleigh, NC 27610		
Report Number : 23-208-0054	REPORT OF ANALYSIS	
Lab No : 90810		Matrix: Solids

Sample ID : SS-EE-81

Sampled: 7/26/2023 10:05

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	5.14	%		1	07/31/23 11:45	CNC	SW-DRYW1
.ead	322	mg/Kg - dry	3.16	10	08/09/23 19:10	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	:	Received : 07/27/2023
Raleigh, NC 27610			
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Lab No : 90811			Matrix: Solids

Sample ID : **SS-EE-82**

Sampled: 7/26/2023 10:13

Fest	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
loisture	3.49	%		1	07/31/23 11:45	CNC	SW-DRYWT
ead	183	mg/Kg - dry	1.55	5	08/08/23 22:14	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court	Project R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Raleigh , NC 27610		
Report Number : 23-208-0054	REPORT OF ANALYSIS	
Lab No : 90812		Matrix: Solids
Sample ID : SS-EE-83		Sampled: 7/26/2023 10:20

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	1.45	%		1	07/31/23 11:45	CNC	SW-DRYWT
Lead	328	mg/Kg - dry	3.04	10	08/08/23 22:19	JKC	6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALYSIS	

Lab No : 90813 Sample ID : SS-EE-Playground					Matrix: Solids Sampled: 7/26/2023 1					
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method			
Moisture	16.1	%		1	07/31/23 11:45	CNC	SW-DRYWT			
Lead	13.2	mg/Kg - dry	0.357	1	08/08/23 22:23	JKC	6010D			

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J Estimated value

01100			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :		Received : 07/27/2023
Raleigh , NC 27610			
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Lab No : 90814			Matrix: Solids

Sample ID : SS-EE-24						Sampled: 7/26/2023 12:15			
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	18.1	%		1	07/31/23 11:45	CNC	SW-DRYWT		
Lead	772	mg/Kg - dry	7.33	20	08/08/23 22:28	JKC	6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Estimated value

Raleigh , NC 27610			
Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Balaich - NG 27610	Project Information	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Lab No : 90815 Sample ID : SS-EE-15					Matrix: Solids Sampled: 7/26/2023 12:23				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture	6.84	%		1	07/31/23 11:45	CNC	SW-DRYWT		
Lead	222	mg/Kg - dry	1.61		08/08/23 22:32		6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

J Estimated value

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALY	<i>SIS</i>

Lab No : 90816 Sample ID : SS-EE-12					Matrix: Sampled:	2023 12:30	
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	10.3	%		1	07/31/23 11:45	CNC	SW-DRYWT
Lead	203	mg/Kg - dry	1.67		08/08/23 22:37		6010D

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALYSIS	

Lab No : 90817 Sample ID : SS-EE-26					Matrix: Solids Sampled: 7/26/2023 12:35				
Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method		
Moisture Lead	17.0 35.2	% mg/Kg - dry	0.361		07/31/23 11:45 08/08/23 22:41		SW-DRYWT 6010D		

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay	Project	R4370.00	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023
409 Rogers View Court Raleigh , NC 27610	Information	:	Received : 07/27/2023
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Lab No : 90818			Matrix: Solids

Sample ID : SS-EE-32

Sampled: 7/26/2023 12:40

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	15.6	%		1	08/01/23 11:05	CNC	SW-DRYWT
ead	146	mg/Kg - dry	1.78	5	08/08/23 22:46	JKC	6010D

 Mid-Atlantic Associates, Inc. - Raleigh
 Project
 R4370.00
 Original Report Date : 08/10/2023

 Kevin Clay
 Revised Report Date : 08/16/2023
 Revised Report Date : 08/16/2023

 409 Rogers View Court
 Information :
 Received : 07/27/2023

 Raleigh , NC 27610
 Received : 07/27/2023

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : 90819 Sample ID : SS-EE-54						Matrix: Solids Sampled: 7/26/2023 13:00		
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Method

Moisture	6.07	%		1 08/01/23 11:05 CNC SW-DRYWT	
Antimony	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Arsenic	4.52	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Barium	26.1	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Beryllium	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 BKN 6020B	
Cadmium	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Chromium	12.5	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Cobalt	5.20	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Copper	17.1	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Lead	24.8	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Manganese	169	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Mercury (Total)	<0.0319	mg/Kg - dry	0.0319	1 07/28/23 16:07 JKC 7471B	
Nickel	16.9	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Selenium	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Silver	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 CPW 6020B	
Thallium	<0.266	mg/Kg - dry	0.266	5 08/03/23 19:28 BKN 6020B	
Vanadium	15.2	mg/Kg - dry	1.33	5 08/03/23 19:28 CPW 6020B	
Zinc	52.0	mg/Kg - dry	2.66	5 08/03/23 19:28 CPW 6020B	

Qualifiers/ Definitions DF Dilution Factor MQL Method Quantitation Limit J Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Sampled: 7/26/2023 13:00

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : **90819** Sample ID : **SS-EE-54**

									ampled: 772072023 13:00			
Analytical Method: Prep Method:	8270E 3546	Ρ	Prep Batch(es): V36047		08/01/2	08/01/23 09:50						
lest .		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch			
Acenaphthene		<0.493	mg/Kg - dry	0.493	2.81	4	08/02/23 13:32	AMP	V36073			
Acenaphthylene		<0.447	mg/Kg - dry	0.447	2.81	4	08/02/23 13:32	AMP	V36073			
Aniline		<0.647	mg/Kg - dry	0.647	2.81	4	08/02/23 13:32	AMP	V36073			
Anthracene		<0.608	mg/Kg - dry	0.608	2.81	4	08/02/23 13:32	AMP	V36073			
Benzo(a)anthracene		<0.591	mg/Kg - dry	0.591	2.81	4	08/02/23 13:32	AMP	V36073			
Benzo(a)pyrene		<0.625	mg/Kg - dry	0.625	2.81	4	08/02/23 13:32	AMP	V36073			
Benzo(b)fluoranthene		<0.621	mg/Kg - dry	0.621	2.81	4	08/02/23 13:32	AMP	V36073			
Benzo(g,h,i)perylene		<0.579	mg/Kg - dry	0.579	2.81	4	08/02/23 13:32	AMP	V36073			
Benzo(k)fluoranthene		<0.583	mg/Kg - dry	0.583	2.81	4	08/02/23 13:32	AMP	V36073			
Benzoic Acid		<2.47	mg/Kg - dry	2.47	8.53	4	08/02/23 13:32	AMP	V36073			
Benzyl alcohol		<0.447	mg/Kg - dry	0.447	2.81	4	08/02/23 13:32	AMP	V36073			
Bis(2-Chloroethoxy)me	thane	<0.502	mg/Kg - dry	0.502	2.81	4	08/02/23 13:32	AMP	V36073			
Bis(2-Chloroethyl)ethe	r	<0.455	mg/Kg - dry	0.455	2.81	4	08/02/23 13:32	AMP	V36073			
Bis(2-Chloroisopropyl)	ether	<0.579	mg/Kg - dry	0.579	1.41	4	08/02/23 13:32	AMP	V36073			
Bis(2-ethylhexyl)phtha	late	<0.511	mg/Kg - dry	0.511	2.81	4	08/02/23 13:32	AMP	V36073			
1-Bromophenyl phenyl	ether	<0.464	mg/Kg - dry	0.464	2.81	4	08/02/23 13:32	AMP	V36073			
Butyl benzyl phthalate		<0.481	mg/Kg - dry	0.481	1.41	4	08/02/23 13:32	AMP	V36073			
I-Chloro-3-methylpher	ol	<0.393	mg/Kg - dry	0.393	2.81	4	08/02/23 13:32	AMP	V36073			
1-Chloroaniline		<0.476	mg/Kg - dry	0.476	1.41	4	08/02/23 13:32	AMP	V36073			
2-Chloronaphthalene		<0.493	mg/Kg - dry	0.493	2.81	4	08/02/23 13:32	AMP	V36073			

Qualifiers/ Definitions

2-Chlorophenol

4-Chlorophenyl phenyl ether

DF

MQL

Dilution Factor

Method Quantitation Limit

< 0.418

<0.536

Estimated value

4 08/02/23 13:32 AMP

4 08/02/23 13:32 AMP

V36073

V36073

mg/Kg - dry

mg/Kg - dry

0.418

0.536

2.81

4.26

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Raleigh , NC 27610

Information :

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : 90819 Sample ID : SS-EE-54

Matrix: Solids Sampled: 7/26/2023 13:00

Analytical Method: Prep Method:	8270E 3546	Pr	ep Batch(es):	V36047	08/01/2	23 09:5	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Chrysene		<0.604	mg/Kg - dry	0.604	2.81	4	08/02/23 13:32	AMP	V36073
Dibenz(a,h)anthracene	2	<0.979	mg/Kg - dry	0.979	2.81	4	08/02/23 13:32	AMP	V36073
Dibenzofuran		<0.506	mg/Kg - dry	0.506	2.81	4	08/02/23 13:32	AMP	V36073
1,2-Dichlorobenzene		<0.402	mg/Kg - dry	0.402	2.81	4	08/02/23 13:32	AMP	V36073
1,3-Dichlorobenzene		<0.414	mg/Kg - dry	0.414	2.81	4	08/02/23 13:32	AMP	V36073
1,4-Dichlorobenzene		<0.415	mg/Kg - dry	0.415	1.41	4	08/02/23 13:32	AMP	V36073
3,3'-Dichlorobenzidine		<0.625	mg/Kg - dry	0.625	2.81	4	08/02/23 13:32	AMP	V36073
2,4-Dichlorophenol		<0.407	mg/Kg - dry	0.407	2.81	4	08/02/23 13:32	AMP	V36073
Diethyl phthalate		<0.766	mg/Kg - dry	0.766	2.81	4	08/02/23 13:32	AMP	V36073
Dimethyl phthalate		<0.740	mg/Kg - dry	0.740	2.81	4	08/02/23 13:32	AMP	V36073
2,4-Dimethylphenol		<0.459	mg/Kg - dry	0.459	1.41	4	08/02/23 13:32	AMP	V36073
Di-n-butyl phthalate		<0.455	mg/Kg - dry	0.455	2.81	4	08/02/23 13:32	AMP	V36073
4,6-Dinitro-2-methylph	nenol	<1.02	mg/Kg - dry	1.02	6.39	4	08/02/23 13:32	AMP	V36073
2,4-Dinitrophenol		<2.21	mg/Kg - dry	2.21	6.39	4	08/02/23 13:32	AMP	V36073
2,4-Dinitrotoluene		<0.410	mg/Kg - dry	0.410	2.81	4	08/02/23 13:32	AMP	V36073
2,6-Dinitrotoluene		<0.459	mg/Kg - dry	0.459	2.81	4	08/02/23 13:32	AMP	V36073
Di-n-Octyl Phthalate		<0.608	mg/Kg - dry	0.608	1.41	4	08/02/23 13:32	AMP	V36073
Fluoranthene		<0.523	mg/Kg - dry	0.523	2.81	4	08/02/23 13:32	AMP	V36073
Fluorene		<0.545	mg/Kg - dry	0.545	2.81	4	08/02/23 13:32	AMP	V36073
Hexachlorobenzene		<0.451	mg/Kg - dry	0.451	2.81	4	08/02/23 13:32	AMP	V36073
Hexachlorobutadiene		<0.415	mg/Kg - dry	0.415	2.81	4	08/02/23 13:32	AMP	V36073
Hexachlorocyclopentad	liene	<0.668	mg/Kg - dry	0.668	2.81	4	08/02/23 13:32	AMP	V36073

Qualifiers/ Definitions DF **Dilution Factor**

MQL

Method Quantitation Limit

Estimated value

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Matrix: Solids

Information :

Report Number : 23-208-0054

8270E

3546

REPORT OF ANALYSIS

Lab No : **90819** Sample ID : **SS-EE-54**

Analytical Method:

Prep Method:

Hexachloroethane

Test

					Sampled:	7/26/	2023 13:00	
Pr	Prep Batch(es):		V36047 08/01/23 09:50			0		
Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch	
<0.337	mg/Kg - dry	0.337	2.81	4	08/02/23 13:32	AMP	V36073	
<0.762	mg/Kg - dry	0.762	2.81	4	08/02/23 13:32	AMP	V36073	
<0.813	mg/Kg - dry	0.813	2.81	4	08/02/23 13:32	AMP	V36073	
<0.451	mg/Kg - dry	0.451	2.81	4	08/02/23 13:32	AMP	V36073	
<0.425	ma/Ka - drv	0.425	2 01	1	00/02/22 12:22		1/26072	

Indeno(1,2,3-cd)pyrene	<0.762	mg/Kg - dry	0.762	2.81	4	08/02/23 13:32	AMP	V36073
Isophorone	<0.813	mg/Kg - dry	0.813	2.81	4	08/02/23 13:32	AMP	V36073
1-Methylnaphthalene	<0.451	mg/Kg - dry	0.451	2.81	4	08/02/23 13:32	AMP	V36073
2-Methylnaphthalene	<0.425	mg/Kg - dry	0.425	2.81	4	08/02/23 13:32	AMP	V36073
2-Methylphenol	<0.413	mg/Kg - dry	0.413	2.81	4	08/02/23 13:32	AMP	V36073
3&4 Methylphenol	<0.361	mg/Kg - dry	0.361	2.81	4	08/02/23 13:32	AMP	V36073
Naphthalene	<0.613	mg/Kg - dry	0.613	2.81	4	08/02/23 13:32	AMP	V36073
2-Nitroaniline	<0.412	mg/Kg - dry	0.412	2.81	4	08/02/23 13:32	AMP	V36073
3-Nitroaniline	<0.511	mg/Kg - dry	0.511	2.81	4	08/02/23 13:32	AMP	V36073
4-Nitroaniline	<0.397	mg/Kg - dry	0.397	1.41	4	08/02/23 13:32	AMP	V36073
Nitrobenzene	<0.493	mg/Kg - dry	0.493	1.41	4	08/02/23 13:32	AMP	V36073
2-Nitrophenol	<0.377	mg/Kg - dry	0.377	2.81	4	08/02/23 13:32	AMP	V36073
4-Nitrophenol	<0.498	mg/Kg - dry	0.498	2.81	4	08/02/23 13:32	AMP	V36073
N-Nitrosodimethylamine	<1.12	mg/Kg - dry	1.12	2.81	4	08/02/23 13:32	AMP	V36073
N-Nitrosodiphenylamine	<0.770	mg/Kg - dry	0.770	2.81	4	08/02/23 13:32	AMP	V36073
N-Nitroso-di-n-propylamine	<0.502	mg/Kg - dry	0.502	2.81	4	08/02/23 13:32	AMP	V36073
Pentachlorophenol	<1.48	mg/Kg - dry	1.48	4.26	4	08/02/23 13:32	AMP	V36073
Phenanthrene	<0.885	mg/Kg - dry	0.885	2.81	4	08/02/23 13:32	AMP	V36073
Phenol	<0.476	mg/Kg - dry	0.476	2.81	4	08/02/23 13:32	AMP	V36073
Pyrene	<0.570	mg/Kg - dry	0.570	2.81	4	08/02/23 13:32	AMP	V36073
Pyridine	<0.337	mg/Kg - dry	0.337	1.41	4	08/02/23 13:32	AMP	V36073

Qualifiers/ Definitions DF Dilution Factor

Method Quantitation Limit

Estimated value

J

MQL Me

01139 Mid-Atlantic Associates, Inc. - Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610

Project R4370.00

Information :

Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023

Report Number : 23-208-0054

REPORT OF ANALYSIS

Lab No : **90819** Sample ID : **SS-EE-54** Matrix: **Solids** Sampled: **7/26/2023 13:00**

Analytical Method: Prep Method:	8270E 3546	I	Prep Batch(es):	V36047	08/01/2	3 09:5	0		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2,4-Trichlorobenzene		<0.455	mg/Kg - dry	0.455	2.81	4	08/02/23 13:32	AMP	V36073
2,4,5-Trichlorophenol		<0.409	mg/Kg - dry	0.409	2.81	4	08/02/23 13:32	AMP	V36073
2,4,6-Trichlorophenol		<0.410	mg/Kg - dry	0.410	2.81	4	08/02/23 13:32	AMP	V36073
Surrogate: Pher	nol-d5		61.4	Limits	: 34-121%		4 08/02/23 13:3	32 AMP	8270E
Surrogate: 2-Fl	uorobiphenyl		71.3	Limits	: 44-115%		4 08/02/23 13:3	32 AMP	V36073
Surrogate: 2-Fl	uorophenol		62.6	Limits	: 35-115%		4 08/02/23 13:3	32 AMP	V36073
Surrogate: Nitro	obenzene-d5		67.7	Limits	: 37-122%		4 08/02/23 13:3	32 AMP	V36073
Surrogate: 4-Te	erphenyl-d14		83.2	Limits	: 54-127%		4 08/02/23 13:3	32 AMP	V36073
Surrogate: 2,4,0	6-Tribromophenol		64.4	Limits	: 39-132%		4 08/02/23 13:3	32 AMP	V36073

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

01107			
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023
Kevin Clay			Revised Report Date: 08/16/2023
409 Rogers View Court	Information :	1	Received : 07/27/2023
Raleigh, NC 27610			
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Lab No : 90820			Matrix: Solids

Sample ID : SS-EE-66

Sampled: 7/26/2023 13:05

Test Re		Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	5.08	%		1	08/01/23 11:05	CNC	SW-DRYWT	
ead	33.1	mg/Kg - dry	0.316	1	08/08/23 22:59	JKC	6010D	

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Lab No : 90821			Matrix: Solids
Report Number : 23-208-0054	RE	PORT OF ANALYSIS	
Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Information :	:	Revised Report Date: 08/16/2023 Received: 07/27/2023
Mid-Atlantic Associates, Inc Raleigh	Project	R4370.00	Original Report Date : 08/10/2023

Sample ID : SS-EE-Dup 1

Sampled: 7/26/2023 12:28

Test R		Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	F 10	%		1	00/01/22 11:05	CNC		
Lead	5.19 366	mg/Kg - dry	3.16		08/01/23 11:05 08/08/23 23:03		SW-DRYWT 6010D	

Qualifiers/	DF	Dilution Factor
Definitions	MQL	Method Quantitation Limit

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALYSIS	
Lab No : 90822 Sample ID : SS-EE-81 (1')		Matrix: Solids Sampled: 7/26/2023 10:50

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method
Moisture	5.80	%		1	08/01/23 11:05	CNC	SW-DRYWT
Lead	49.0	mg/Kg - dry	0.318	1	08/08/23 23:08	JKC	6010D

Mid-Atlantic Associates, Inc Raleigh Kevin Clay 409 Rogers View Court Raleigh , NC 27610	Project R4370.00 Information :	Original Report Date : 08/10/2023 Revised Report Date: 08/16/2023 Received : 07/27/2023
Report Number : 23-208-0054	REPORT OF ANALYSIS	
Lab No : 90823 Sample ID : SS-EE-82 (1')		Matrix: Solids Sampled: 7/26/2023 10:45

Test	Results	Units	MQL	DF	Date / Time Analyzed	Ву	Analytical Method	
Moisture	11.2	%		1	08/01/23 11:05	CNC	SW-DRYWT	
Lead	28.0	mg/Kg - dry	0.337	1	08/08/23 23:12	JKC	6010D	

 Qualifiers/
 DF
 Dilution Factor

 Definitions
 MQL
 Method Quantitation Limit

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0054	ciates, Ir	nc Raleigh	ı								
QC Prep: QC Prep Batch Method:	V36022 3050B			Analysi	lytical Batch s Method: s Description		6010D	5,V36316 Analysis				
Lab Reagent Blank Associated Lab Samples:	90801, 90802, 908	LRB-V30 04, 90805			Matrix: SOI	L						
Parameter	Units	Blank Result		MQL		An	alyzed					
Lead	mg/Kg	<0.300		0.300		08/0	2/23 17:	42				
Laboratory Control San	nple	LCS-V36	6022									
Parameter	Units	Spike Conc.		LCS Result		LCS	5 %Rec		% Rec Limits			
Lead	mg/Kg	5.00		5.98			120		80-120			
Matrix Spike & Matrix S	Spike Duplicate	V 90637	7-MS-V36022	V 9063	7-MSD-V3602	2						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MS Res		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Lead	mg/Kg	177	5.00	5.00	195	1	71	360*	0.0*	75-125	13.1	20
Post Digestion Spike		V 90637	7-PDS-V3602	2								
Parameter	Units	PDS Result		% Recovery		An	alyzed					
Lead	mg/Kg	152		101		08/0	7/23 17:	18				

Client ID:	Mid-Atlan	tic Asso	ociates, In	c Rale	eigh								
Project Description:	R4370.00												
Report No:	23-208-0	054											
QC Prep:	V36025				QC Ana	lytical Bato	ch(es):	V3631	6,V36366	5			
QC Prep Batch Method:	3050B				Analysis	s Method:		6010D					
					Analysis	s Descriptio	on:	Metals	Analysis				
Lab Reagent Blank			LRB-V36	025		Matrix: S	OL						
Associated Lab Samples:	90807, 908 90823	08, 908	309, 90810	, 90811,	90812, 908	13, 90814,	90815,	90816,	90817,	90818, 9082	0, 90821	, 90822,	
Parameter		Units	Blank Result		MQL		An	alyzed					
Lead		mg/Kg	<0.300		0.300		08/08	8/23 01:	32				
Laboratory Control San	nple		LCS-V36	025									
Parameter		Units	Spike Conc.		LCS Result		LCS	5 %Rec	:	% Rec Limits			
Lead		mg/Kg	5.00		5.30			106		80-120			
Matrix Spike & Matrix S	Spike Dupli	cate	V 90807	-MS-V360)25 V 9080	7-MSD-V360)25						
Parameter		Units	Result	MS Spik Conc.		MS Resul	t MS Res		MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Lead		mg/Kg	195	5.00	5.00	190	1	90	0.0*	0.0*	75-125	0.0	20
Post Digestion Spike			V 90807	-PDS-V36	6025								
Parameter		Units	PDS Result		% Recovery		An	alyzed					
Lead		mg/Kg	156		98.0		08/08	8/23 21:	:35				

Client ID:	Mid-Atlantic Asso	ciates, Inc Rale	igh		
Project Description:	R4370.00				
Report No:	23-208-0054				
QC Prep: QC Prep Batch Method:	L696239 3050B		QC Analytica Analysis Met Analysis Des	hod:	L696766,L696918,L698988,L698996 6020B Metals Analyses
Lab Reagent Blank Associated Lab Samples:	90803, 90819	LRB-L696239	М	atrix: SOL	
Parameter	Units	Blank Result	MQL	An	alyzed
Antimony	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Arsenic	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Barium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Beryllium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Cadmium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Chromium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Cobalt	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Copper	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Lead	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Manganese	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Nickel	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Selenium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Silver	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Thallium	mg/Kg	<0.250	0.250	08/0	3/23 19:16
Vanadium	mg/Kg	<1.25	1.25	08/0	3/23 19:16
Zinc	mg/Kg	<2.50	2.50	08/0	3/23 19:16

Laboratory Control Sample

LCS-L696239

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Antimony	mg/Kg	5.00	4.57	91.0	80-120	
Arsenic	mg/Kg	2.50	2.41	96.0	80-120	
Barium	mg/Kg	5.00	4.56	91.0	80-120	
Beryllium	mg/Kg	2.50	2.50	100	80-120	
Cadmium	mg/Kg	0.500	0.478	96.0	80-120	
Chromium	mg/Kg	5.00	4.84	97.0	80-120	
Cobalt	mg/Kg	5.00	4.78	96.0	80-120	

Client ID:	Mid-Atlantic Associates, Inc Raleigh	l	
Project Description:	R4370.00		
Report No:	23-208-0054		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method:	6020B
		Analysis Description:	Metals Analyses

Laboratory Control Sample

LCS-L696239

Parameter	Units	Spike Conc.	LCS Result	LCS %Rec	% Rec Limits	
Copper	mg/Kg	2.50	2.44	98.0	80-120	
Lead	mg/Kg	2.50	2.30	92.0	80-120	
Manganese	mg/Kg	5.00	4.92	98.0	80-120	
Nickel	mg/Kg	2.50	2.47	99.0	80-120	
Selenium	mg/Kg	5.00	4.57	91.0	80-120	
Silver	mg/Kg	0.500	0.456	91.0	80-120	
Thallium	mg/Kg	0.500	0.473	95.0	80-120	
Vanadium	mg/Kg	25.0	23.5	94.0	80-120	
Zinc	mg/Kg	25.0	25.7	103	80-120	

Matrix Spike & Matrix Spike Duplicate

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Antimony	mg/Kg	4.48	4.93	4.65	3.94	5.63	0.0*	25.0*	75-125	35.3	80
Arsenic	mg/Kg	5.61	2.47	2.33	6.58	8.46	39.0*	123	75-125	25.0	80
Barium	mg/Kg	459	4.93	4.65	421	450	0.0*	0.0*	75-125	6.6	80
Beryllium	mg/Kg	0.383	2.47	2.33	2.54	2.43	87.0	88.0	75-125	4.4	80
Cadmium	mg/Kg	1.83	0.493	0.465	1.92	2.14	18.0*	67.0*	75-125	10.8	80
Chromium	mg/Kg	27.7	4.93	4.65	29.0	25.3	26.0*	0.0*	75-125	13.6	80
Cobalt	mg/Kg	4.90	4.93	4.65	8.54	9.26	74.0*	94.0	75-125	8.0	80
Copper	mg/Kg	475	2.47	2.33	422	515	0.0*	1720*	75-125	19.8	80
Lead	mg/Kg	1200	2.47	2.33	813	786	0.0*	0.0*	75-125	3.3	80
Manganese	mg/Kg	384	4.93	4.65	314	407	0.0*	495*	75-125	25.7	80
Nickel	mg/Kg	13.3	2.47	2.33	16.1	16.9	114	155*	75-125	4.8	80
Selenium	mg/Kg	0.466	4.93	4.65	4.08	3.93	73.0*	74.0*	75-125	3.7	80
Silver	mg/Kg	0.830	0.493	0.465	1.08	0.927	51.0*	21.0*	75-125	15.2	80

Client ID:	Mid-Atlantic Associates, Inc Raleigh		
Project Description:	R4370.00		
Report No:	23-208-0054		
QC Prep:	L696239	QC Analytical Batch(es):	L696766,L696918,L698988,L698996
QC Prep Batch Method:	3050B	Analysis Method: Analysis Description:	6020B Metals Analyses
		Analysis Description.	rietais Analyses

Matrix Spike & Matrix Spike Duplicate

V 90860-MS-L696239 V 90860-MSD-L696239

Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	Max RPD
Thallium	mg/Kg	<0.250	0.493	0.465	0.451	0.435	84.0	86.0	75-125	3.6	80
Vanadium	mg/Kg	9.95	24.7	23.3	29.2	27.4	78.0	75.0	75-125	6.3	80
Zinc	mg/Kg	1140	24.7	23.3	1000	991	0.0*	0.0*	75-125	0.9	80

Post Digestion Spike

V 90860-PDS-L696239

Parameter	Units	PDS Result	% Recovery	Analyzed	
Antimony	mg/Kg	2.63	94.0	08/04/23 11:59	
Arsenic	mg/Kg	1.65	96.0	08/04/23 11:59	
Cadmium	mg/Kg	0.395	95.0	08/04/23 11:59	
Cobalt	mg/Kg	2.68	93.0	08/04/23 11:59	
Copper	mg/Kg	2.44	102	08/04/23 11:26	
Silver	mg/Kg	0.299	94.0	08/04/23 11:59	
Vanadium	mg/Kg	11.9	92.0	08/04/23 11:59	
Zinc	mg/Kg	116	92.0	08/04/23 11:59	

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0054	ociates, Ir	nc Raleig	h								
QC Prep:	V35873			-	lytical Batch(-	/35952					
QC Prep Batch Method:	7471B (Prep)			-	s Method: s Description:		'471B Solids Tot	al Mercu	ry Analysis	- CVAA		
Lab Reagent Blank Associated Lab Samples:	90803, 90819	LRB-V35	5873		Matrix: SOL							
Parameter	Units	Blank Result		MQL		Anal	yzed					
Mercury (Total)	mg/Kg	<0.0300		0.0300		07/28/	23 15:43					
Laboratory Control Sam	ıple	LCS-V35	5873									
Parameter	Units	Spike Conc.		LCS Result		LCS	⁄₀Rec		% Rec Limits			
Mercury (Total)	mg/Kg	0.417		0.451		1	08		80-120			
Matrix Spike & Matrix S	pike Duplicate	V 90819	9-MS-V35873	8 V 9081	9-MSD-V35873	}						
Parameter	Units	Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Resul	t 9	MS ⁄oRec	MSD %Rec	%Rec Limits	RPD	Max RPD
Mercury (Total)	mg/Kg	<0.0300	0.410	0.397	0.400	0.36	2	98.0	91.0	80-120	9.9	20
Post Digestion Spike		V 90819)-PDS-V3587	'3								
Parameter	Units	PDS Result		% Recovery		Anal	yzed					
Mercury (Total)	mg/Kg	0.200		101		07/28/	23 16:15					

Client ID: Project Description:	Mid-Atlantic Associates, Inc Raleigh R4370.00											
Report No:	23-208-0054											
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytical Batch(es):V36073Analysis Method:8270EAnalysis Description:Semivolatile C			Organic Compounds - GC/MS					
Lab Reagent Blank Associated Lab Samples:	90803, 90819	LRB-V360)47	Matrix: S	50L							
Parameter	Units	Blank Result	MDL	MQL	An	alyzed	% Recovery	% Rec Limits				
Acenaphthene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51						
Acenaphthylene	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51						
Aniline	mg/Kg	<0.152	0.152	0.660	08/0	1/23 15:51						
Anthracene	mg/Kg	<0.143	0.143	0.660	08/0	1/23 15:51						
Benzo(a)anthracene	mg/Kg	<0.139	0.139	0.660	08/0	1/23 15:51						
Benzo(a)pyrene	mg/Kg	<0.147	0.147	0.660	08/0	1/23 15:51						
Benzo(b)fluoranthene	mg/Kg	<0.146	0.146	0.660	08/0	1/23 15:51						
Benzo(g,h,i)perylene	mg/Kg	<0.136	0.136	0.660	08/0	1/23 15:51						
Benzo(k)fluoranthene	mg/Kg	<0.137	0.137	0.660	08/0	1/23 15:51						
Benzoic Acid	mg/Kg	<0.580	0.580	2.00	08/0	1/23 15:51						
Benzyl alcohol	mg/Kg	<0.105	0.105	0.660	08/0	1/23 15:51						
Bis(2-Chloroethoxy)methane	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51						
Bis(2-Chloroethyl)ether	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51						
Bis(2-Chloroisopropyl)ether	mg/Kg	<0.136	0.136	0.330	08/0	1/23 15:51						
Bis(2-ethylhexyl)phthalate	mg/Kg	<0.120	0.120	0.660	08/0	1/23 15:51						
-Bromophenyl phenyl ether	mg/Kg	<0.109	0.109	0.660	08/0	1/23 15:51						
Butyl benzyl phthalate	mg/Kg	<0.113	0.113	0.330	08/0	1/23 15:51						
l-Chloro-3-methylphenol	mg/Kg	<0.092	0.092	0.660	08/0	1/23 15:51						
-Chloroaniline	mg/Kg	<0.112	0.112	0.330	08/0	1/23 15:51						
2-Chloronaphthalene	mg/Kg	<0.116	0.116	0.660	08/0	1/23 15:51						
2-Chlorophenol	mg/Kg	<0.098	0.098	0.660	08/0	1/23 15:51						
I-Chlorophenyl phenyl ether	mg/Kg	<0.126	0.126	1.00	08/0	1/23 15:51						
Chrysene	mg/Kg	<0.142	0.142	0.660	08/0	1/23 15:51						
Dibenz(a,h)anthracene	mg/Kg	<0.230	0.230	0.660	08/0	1/23 15:51						
Dibenzofuran	mg/Kg	<0.119	0.119	0.660	08/0	1/23 15:51						
1,2-Dichlorobenzene	mg/Kg	<0.094	0.094	0.660	08/0	1/23 15:51						
1,3-Dichlorobenzene	mg/Kg	<0.097	0.097	0.660		1/23 15:51						

Date: 08/16/2023 03:41 PM

Client ID: Project Description: Report No:	Mid-Atlantic Asso R4370.00 23-208-0054	ociates, Ind	c Raleigi	h				
QC Prep: QC Prep Batch Method:	V36047 3546			QC Analytica Analysis Met Analysis Dese	rganic Compounds -	GC/MS		
Lab Reagent Blank Associated Lab Samples:	90803, 90819	LRB-V360)47	Ма	trix: SOL			
Parameter	Units	Blank Result	MDL	MQL	Ana	lyzed	% Recovery	% Rec Limits
L,4-Dichlorobenzene	mg/Kg	<0.097	0.097	0.330	08/01/	23 15:51		
3,3'-Dichlorobenzidine	mg/Kg	<0.147	0.147	0.660	08/01/	23 15:51		
2,4-Dichlorophenol	mg/Kg	<0.095	0.095	0.660	08/01/	23 15:51		
Diethyl phthalate	mg/Kg	<0.180	0.180	0.660	08/01/	23 15:51		
Dimethyl phthalate	mg/Kg	<0.174	0.174	0.660	08/01/	23 15:51		
2,4-Dimethylphenol	mg/Kg	<0.108	0.108	0.330	08/01/	23 15:51		
Di-n-butyl phthalate	mg/Kg	<0.107	0.107	0.660	08/01/	23 15:51		
1,6-Dinitro-2-methylphenol	mg/Kg	<0.240	0.240	1.50	08/01/	23 15:51		
2,4-Dinitrophenol	mg/Kg	<0.520	0.520	1.50	08/01/	23 15:51		
2,4-Dinitrotoluene	mg/Kg	<0.096	0.096	0.660	08/01/	23 15:51		
2,6-Dinitrotoluene	mg/Kg	<0.108	0.108	0.660	08/01/	23 15:51		
Di-n-Octyl Phthalate	mg/Kg	<0.143	0.143	0.330	08/01/	23 15:51		
Fluoranthene	mg/Kg	<0.123	0.123	0.660	08/01/	23 15:51		
Fluorene	mg/Kg	<0.128	0.128	0.660	08/01/	23 15:51		
Hexachlorobenzene	mg/Kg	<0.106	0.106	0.660	08/01/	23 15:51		
Hexachlorobutadiene	mg/Kg	<0.097	0.097	0.660	08/01/	23 15:51		
Hexachlorocyclopentadiene	mg/Kg	<0.157	0.157	0.660	08/01/	23 15:51		
Hexachloroethane	mg/Kg	<0.079	0.079	0.660	08/01/	23 15:51		
ndeno(1,2,3-cd)pyrene	mg/Kg	<0.179	0.179	0.660	08/01/	23 15:51		
sophorone	mg/Kg	<0.191	0.191	0.660	08/01/	23 15:51		
I-Methylnaphthalene	mg/Kg	<0.106	0.106	0.660	08/01/	23 15:51		
2-Methylnaphthalene	mg/Kg	<0.100	0.100	0.660	08/01/	23 15:51		
2-Methylphenol	mg/Kg	<0.097	0.097	0.660	08/01/	23 15:51		
3&4 Methylphenol	mg/Kg	<0.084	0.084	0.660	08/01/	23 15:51		
Naphthalene	mg/Kg	<0.144	0.144	0.660	08/01/	23 15:51		
2-Nitroaniline	mg/Kg	<0.096	0.096	0.660	08/01/	23 15:51		
3-Nitroaniline	mg/Kg	<0.120	0.120	0.660	08/01/	23 15:51		

Project Description: R4370.00 Report No: 23-208-0054 QC Prep: V36047 QC Analytical Batch(es): V36073 Analysis Method: S270E Semivolatile Organic Compounds - GC/MS Lab Reagent Blank Associated Lab Samples: Units LRB-V36047 Matrix: SOL Semivolatile Organic Compounds - GC/MS Parameter Units Blank Result MDL MQL Analyzed % % % 4/Niroaniline mg/Kg 0.093 0.093 0.330 08/01/23 15:51 Nirobenzene mg/Kg 0.018 0.116 0.16 0.330 08/01/23 15:51 Nirobenzene mg/Kg 0.018 0.181 0.660 08/01/23 15:51 Nirobenzene mg/Kg 0.117 0.117 0.118 0.660 08/01/23 15:51 Nirobenzene mg/Kg 0.018 0.181 0.660 08/01/23 15:51 Nirobenzene mg/Kg 0.0180 0.660 08/01/23	Client ID:	Mid-Atlantic Asso	ciates, Ind	c Raleigi	n				
QC Prep: QC Prep: Batch Method: Y36047 3546 V36047 Analysis Method: Analysis Method: Analysis Method: Malysis Method:									
QC Prep Batch Method: 3546 Analysis Method: Analysis Description: 8270E Semivolabile Organic Compounds - GC/MS Lab Reagent Blank Associated Lab Samples: VMIt Re-V36047 Matrix: SOL Semivolabile Organic Compounds - GC/MS Parameter Units Result MDL MQL Analyzed %6 Kec 4-Nitroaniline mg/Kg <0.093 0.330 08/01/23 15:51 4-Nitroaniline mg/Kg <0.088 0.660 08/01/23 15:51 4-Nitrosodimethylamine mg/Kg <0.117 0.117 0.660 08/01/23 15:51 N-Nitrosodimethylamine mg/Kg <0.181 0.181 0.660 08/01/23 15:51 N-Nitrosodiphenylamine mg/Kg <0.181 0.181 0.660 08/01/23 15:51 N-Nitrosodiphenylamine mg/Kg <0.181 0.181 0.660 08/01/23 15:51 Pertachiorophenol mg/Kg <0.12	•				OC Analyti	cal Batch(es):	V36073		
Lab Reagent Blank Associated Lab Samples: 90803, 90819 LRB-V36047 Matrix: SOL Parameter Units Blank Result MDL MQL Analyzed % Recovery % 6 % 6 4-Nitroaniline mg/Kg <0.093 0.330 08/01/23 15:51 4-Nitroaniline mg/Kg <0.016 0.116 0.330 08/01/23 15:51 2-Nitrophenol mg/Kg <0.088 0.660 08/01/23 15:51 4-Nitrophenol mg/Kg <0.033 0.660 08/01/23 15:51 N-Nitrosodimethylamine mg/Kg <0.117 0.117 0.660 08/01/23 15:51 N-Nitrosodiphenylamine mg/Kg <0.263 0.263 0.660 08/01/23 15:51 N-Nitrosodiphenylamine mg/Kg <0.118 0.118 0.660 08/01/23 15:51 Phenathtorephenol mg/Kg <0.128 0.347 1.00 08/01/23 15:51 Phenathtorephenol mg/Kg <0.028 0.660 08/01/23 15:51 Pyrene mg/Kg	• •								
Associated Lab Samples: 90803, 90819 Parameter Units Blank Result MDL MQL Analyzed %% %% % 4.Ntroaniline mg/Kg <0.093 0.330 08/01/23 15:51 <t< th=""><th></th><th></th><th></th><th></th><th>Analysis D</th><th>escription:</th><th>Semivolatile C</th><th>Organic Compounds -</th><th>GC/MS</th></t<>					Analysis D	escription:	Semivolatile C	Organic Compounds -	GC/MS
ParameterNunkResultMDLMQLAnalyzedAgeovertype4-Nitroanilinemg/Kg<0.0930.0930.33008/01/23 15:51Nitrobenzenemg/Kg<0.1160.1160.33008/01/23 15:512-Nitrophenolmg/Kg<0.0880.66008/01/23 15:514-Nitrosodimethylaminemg/Kg<0.2630.2630.66008/01/23 15:51N-Nitrosodimethylaminemg/Kg<0.1810.16008/01/23 15:51N-Nitrosodimethylaminemg/Kg<0.1810.66008/01/23 15:51Pentachlorophenolmg/Kg<0.1810.16008/01/23 15:51Pentachlorophenolmg/Kg<0.2080.66008/01/23 15:51Pentachlorophenolmg/Kg<0.1210.1010.80008/01/23 15:51Pyrenemg/Kg<0.1210.1120.66008/01/23 15:51Pyrenemg/Kg<0.1210.1120.66008/01/23 15:51Pyrenemg/Kg<0.1210.1120.66008/01/23 15:51Pyrenemg/Kg<0.0170.66008/01/23 15:5112,4-Trichlorobenzenemg/Kg<0.0170.66008/01/23 15:512,4-Trichlorophenolmg/Kg<0.0160.66008/01/23 15:512,4-Trichlorophenolmg/Kg<0.0160.66008/01/23 15:512,4-Trichlorophenolmg/Kg<0.0160.66008/01/23 15:512,4-Trichlorophenolmg/Kg<0.0160.66008/01/23 15:512,4-Trich	-	90803 90819	LRB-V36	047	I	Matrix: SOL			
Parameter Units Result Recovery Limits 4-Nitroaniline mg/Kg <0.093 0.330 08/01/23 15:51		50005, 50015	Diamir	MDI	MOL	A	- humand	0/	0/ Dec
Nitrobenzene mg/kg <0.116	Parameter	Units		MDL	MQL	An	alyzed		
2-Nitrophenol ng/kg <0.088	4-Nitroaniline	mg/Kg	<0.093	0.093	0.330	08/0	1/23 15:51		
4-Nitrophenolmg/Kg<0.1170.66008/01/23 15:51N-Nitrosodimethylaminemg/Kg<0.263	Nitrobenzene	mg/Kg	<0.116	0.116	0.330	08/0	1/23 15:51		
N-Nitrosodimethylamine mg/Kg <0.263 0.263 0.660 08/01/23 15:51 N-Nitrosodiphenylamine mg/Kg <0.181	2-Nitrophenol	mg/Kg	<0.088	0.088	0.660	08/0	1/23 15:51		
N-Nitrosodiphenylaminemg/Kg<0.1810.66008/01/23 15:51N-Nitroso-di-n-propylaminemg/Kg<0.118	4-Nitrophenol	mg/Kg	<0.117	0.117	0.660	08/0	1/23 15:51		
N-Nitroso-di-n-propylamine mg/Kg <0.118	N-Nitrosodimethylamine	mg/Kg	<0.263	0.263	0.660	08/0	1/23 15:51		
Pentachlorophenol mg/Kg <0.347	N-Nitrosodiphenylamine	mg/Kg	<0.181	0.181	0.660	08/0	1/23 15:51		
Phenanthrenemg/Kg<0.2080.2080.66008/01/23 15:51Phenolmg/Kg<0.112	N-Nitroso-di-n-propylamine	mg/Kg	<0.118	0.118	0.660	08/0	1/23 15:51		
Phenol mg/Kg <0.112	Pentachlorophenol	mg/Kg	<0.347	0.347	1.00	08/0	1/23 15:51		
Pyrenemg/Kg<0.1340.16008/01/23 15:51Pyridinemg/Kg<0.079	Phenanthrene	mg/Kg	<0.208	0.208	0.660	08/0	1/23 15:51		
Pyridine mg/Kg <0.079 0.330 08/01/23 15:51 1,2,4-Trichlorobenzene mg/Kg <0.107	Phenol	mg/Kg	<0.112	0.112	0.660	08/0	1/23 15:51		
1,2,4-Trichlorobenzenemg/Kg<0.1070.1070.66008/01/23 15:512,4,5-Trichlorophenolmg/Kg<0.096	Pyrene	mg/Kg	<0.134	0.134	0.660	08/0	1/23 15:51		
2,4,5-Trichlorophenol mg/Kg <0.096	Pyridine	mg/Kg	<0.079	0.079	0.330	08/0	1/23 15:51		
2,4,6-Trichlorophenol mg/Kg <0.096	1,2,4-Trichlorobenzene	mg/Kg	<0.107	0.107	0.660	08/0	1/23 15:51		
2-Fluorobiphenyl (S)08/01/23 15:5194.044-1152-Fluorophenol (S)08/01/23 15:5182.535-115Nitrobenzene-d5 (S)08/01/23 15:5186.237-1224-Terphenyl-d14 (S)08/01/23 15:5111254-127	2,4,5-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
2-Fluorophenol (S)08/01/23 15:5182.535-115Nitrobenzene-d5 (S)08/01/23 15:5186.237-1224-Terphenyl-d14 (S)08/01/23 15:5111254-127	2,4,6-Trichlorophenol	mg/Kg	<0.096	0.096	0.660	08/0	1/23 15:51		
Nitrobenzene-d5 (S)08/01/23 15:5186.237-1224-Terphenyl-d14 (S)08/01/23 15:5111254-127	2-Fluorobiphenyl (S)					08/0	1/23 15:51	94.0	44-115
4-Terphenyl-d14 (S) 08/01/23 15:51 112 54-127	2-Fluorophenol (S)					08/0	1/23 15:51	82.5	35-115
	Nitrobenzene-d5 (S)					08/0	1/23 15:51	86.2	37-122
2.4.6.Tribromonbanol (S) 08/01/23 15:51 79.6 20.122	4-Terphenyl-d14 (S)					08/0	1/23 15:51	112	54-127
۲-۲-۲-۵ (۵) ۲۶-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-۲3-	2,4,6-Tribromophenol (S)					08/0	1/23 15:51	78.6	39-132
Phenol-d5 (S) 08/01/23 15:51 78.0 34-121	Phenol-d5 (S)					08/0	1/23 15:51	78.0	34-121

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthene	mg/Kg	1.67	1.46	1.52	87.4	91.0	40-123	4.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0054		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthylene	mg/Kg	1.67	1.47	1.53	88.0	91.6	32-132	4.0	20
Aniline	mg/Kg	1.67	2.71	2.82	162	169	12-197	3.9	20
Anthracene	mg/Kg	1.67	1.62	1.68	97.0	101	47-123	3.6	20
Benzo(a)anthracene	mg/Kg	1.67	1.66	1.70	99.4	102	49-126	2.3	20
Benzo(a)pyrene	mg/Kg	1.67	1.80	1.86	108	111	45-129	3.2	20
Benzo(b)fluoranthene	mg/Kg	1.67	1.70	1.85	102	111	45-132	8.4	20
Benzo(g,h,i)perylene	mg/Kg	1.67	1.66	1.74	99.4	104	43-134	4.7	20
Benzo(k)fluoranthene	mg/Kg	1.67	1.64	1.64	98.2	98.2	47-132	0.0	20
Benzoic Acid	mg/Kg	1.67	1.25	1.24	74.8	74.2	10-83	0.8	20
Benzyl alcohol	mg/Kg	1.67	1.48	1.59	88.6	95.2	29-122	7.1	20
Bis(2-Chloroethoxy)methane	mg/Kg	1.67	1.33	1.36	79.6	81.4	36-121	2.2	20
Bis(2-Chloroethyl)ether	mg/Kg	1.67	1.33	1.40	79.6	83.8	31-120	5.1	20
Bis(2-Chloroisopropyl)ether	mg/Kg	1.67	1.48	1.52	88.6	91.0	33-131	2.6	20
Bis(2-ethylhexyl)phthalate	mg/Kg	1.67	1.88	1.95	113	117	51-133	3.6	20
4-Bromophenyl phenyl ether	mg/Kg	1.67	1.64	1.71	98.2	102	46-124	4.1	20
Butyl benzyl phthalate	mg/Kg	1.67	1.85	1.95	111	117	48-132	5.2	20
4-Chloro-3-methylphenol	mg/Kg	1.67	1.35	1.41	80.8	84.4	45-122	4.3	20
4-Chloroaniline	mg/Kg	1.67	1.42	1.47	85.0	88.0	17-106	3.4	20
2-Chloronaphthalene	mg/Kg	1.67	1.48	1.52	88.6	91.0	41-114	2.6	20
2-Chlorophenol	mg/Kg	1.67	1.46	1.53	87.4	91.6	34-121	4.6	20
4-Chlorophenyl phenyl ether	mg/Kg	1.67	1.53	1.59	91.6	95.2	45-121	3.8	20
Chrysene	mg/Kg	1.67	1.57	1.64	94.0	98.2	50-124	4.3	20
Dibenz(a,h)anthracene	mg/Kg	1.67	1.52	1.56	91.0	93.4	45-134	2.5	20
Dibenzofuran	mg/Kg	1.67	1.47	1.53	88.0	91.6	44-120	4.0	20
1,2-Dichlorobenzene	mg/Kg	1.67	1.30	1.37	77.8	82.0	33-117	5.2	20
1,3-Dichlorobenzene	mg/Kg	1.67	1.31	1.35	78.4	80.8	30-115	3.0	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0054		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
1,4-Dichlorobenzene	mg/Kg	1.67	1.29	1.35	77.2	80.8	31-115	4.5	20
3,3'-Dichlorobenzidine	mg/Kg	1.67	1.68	1.77	101	106	22-121	5.2	20
2,4-Dichlorophenol	mg/Kg	1.67	1.31	1.39	78.4	83.2	40-122	5.9	20
Diethyl phthalate	mg/Kg	1.67	1.56	1.68	93.4	101	50-124	7.4	20
Dimethyl phthalate	mg/Kg	1.67	1.60	1.67	95.8	100	48-124	4.2	20
2,4-Dimethylphenol	mg/Kg	1.67	1.74	1.82	104	109	30-127	4.4	20
Di-n-butyl phthalate	mg/Kg	1.67	1.78	1.84	107	110	51-128	3.3	20
4,6-Dinitro-2-methylphenol	mg/Kg	1.67	1.42	1.43	85.0	85.6	29-132	0.7	20
2,4-Dinitrophenol	mg/Kg	1.67	1.24	1.30	74.2	77.8	27-129	4.7	20
2,4-Dinitrotoluene	mg/Kg	1.67	1.60	1.66	95.8	99.4	48-126	3.6	20
2,6-Dinitrotoluene	mg/Kg	1.67	1.53	1.67	91.6	100	46-124	8.7	20
Di-n-Octyl Phthalate	mg/Kg	1.67	2.08	2.17	125	130	45-140	4.2	20
Fluoranthene	mg/Kg	1.67	1.48	1.53	88.6	91.6	50-127	3.3	20
Fluorene	mg/Kg	1.67	1.47	1.55	88.0	92.8	43-125	5.2	20
Hexachlorobenzene	mg/Kg	1.67	1.58	1.61	94.6	96.4	45-122	1.8	20
Hexachlorobutadiene	mg/Kg	1.67	1.22	1.30	73.0	77.8	32-123	6.3	20
Hexachlorocyclopentadiene	mg/Kg	1.67	1.10	1.22	65.8	73.0	32-117	10.3	20
Hexachloroethane	mg/Kg	1.67	1.23	1.28	73.6	76.6	28-117	3.9	20
Indeno(1,2,3-cd)pyrene	mg/Kg	1.67	1.73	1.82	104	109	45-133	5.0	20
Isophorone	mg/Kg	1.67	1.16	1.19	69.4	71.2	30-122	2.5	20
1-Methylnaphthalene	mg/Kg	1.67	1.21	1.26	72.4	75.4	40-119	4.0	20
2-Methylnaphthalene	mg/Kg	1.67	1.22	1.27	73.0	76.0	38-122	4.0	20
2-Methylphenol	mg/Kg	1.67	1.50	1.55	89.8	92.8	32-122	3.2	20
3&4 Methylphenol	mg/Kg	1.67	1.34	1.39	80.2	83.2	34-119	3.6	20
Naphthalene	mg/Kg	1.67	1.20	1.24	71.8	74.2	35-123	3.2	20
2-Nitroaniline	mg/Kg	1.67	1.61	1.75	96.4	105	44-127	8.3	20

Client ID:	Mid-Atlantic Associates, Inc Raleigh	1	
Project Description:	R4370.00		
Report No:	23-208-0054		
QC Prep:	V36047	QC Analytical Batch(es):	V36073
QC Prep Batch Method:	3546	Analysis Method:	8270E
		Analysis Description:	Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
3-Nitroaniline	mg/Kg	1.67	1.67	1.75	100	105	33-119	4.6	20
4-Nitroaniline	mg/Kg	1.67	1.56	1.67	93.4	100	63-147	6.8	20
Nitrobenzene	mg/Kg	1.67	1.19	1.22	71.2	73.0	34-122	2.4	20
2-Nitrophenol	mg/Kg	1.67	1.28	1.36	76.6	81.4	36-123	6.0	20
4-Nitrophenol	mg/Kg	1.67	1.67	1.72	100	103	30-132	2.9	20
N-Nitrosodimethylamine	mg/Kg	1.67	1.17	1.21	70.0	72.4	10-146	3.3	20
N-Nitrosodiphenylamine	mg/Kg	1.67	1.94	1.96	116	117	38-127	1.0	20
N-Nitroso-di-n-propylamine	mg/Kg	1.67	1.47	1.51	88.0	90.4	36-120	2.6	20
Pentachlorophenol	mg/Kg	1.67	1.77	1.85	106	111	25-133	4.4	20
Phenanthrene	mg/Kg	1.67	1.54	1.61	92.2	96.4	50-121	4.4	20
Phenol	mg/Kg	1.67	1.41	1.43	84.4	85.6	34-121	1.4	20
Pyrene	mg/Kg	1.67	1.63	1.70	97.6	102	47-127	4.2	20
Pyridine	mg/Kg	1.67	0.951	0.973	56.9	58.2	10-80	2.2	20
1,2,4-Trichlorobenzene	mg/Kg	1.67	1.18	1.22	70.6	73.0	34-118	3.3	20
2,4,5-Trichlorophenol	mg/Kg	1.67	1.57	1.63	94.0	97.6	41-124	3.7	20
2,4,6-Trichlorophenol	mg/Kg	1.67	1.48	1.55	88.6	92.8	39-126	4.6	20
2-Fluorobiphenyl (S)					91.6	92.2	44-115		
2-Fluorophenol (S)					81.9	81.3	35-115		
Nitrobenzene-d5 (S)					75.4	74.8	37-122		
4-Terphenyl-d14 (S)					106	107	54-127		
2,4,6-Tribromophenol (S)					83.4	86.7	39-132		
Phenol-d5 (S)					77.7	77.1	34-121		

%

Moisture

24.2 23.4 3.3

Quality Control Data

Client ID: Project Description:	Mid-Atlantic Asso R4370.00	ociates, Ir	ıc Raleigl	ı		
Report No:	23-208-0054					
QC Analytical Batch: Analysis Method: Analysis Description:	V35860 SW-DRYWT Dry Weight Deter	mination				
Duplicate		V 90644	I-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	17.1	18.5	7.8	20.0	07/28/23 10:30
Duplicate		V 90677	'-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed

20.0

07/28/23 10:30

Client ID:	Mid-Atlantic Asso	ciates, In	ic Raleigl	h		
Project Description:	R4370.00					
Report No:	23-208-0054					
QC Analytical Batch:	V35955					
Analysis Method:	SW-DRYWT					
Analysis Description:	Dry Weight Deter	mination				
Duplicate		V 90806	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	0.574	0.621	7.8	20.0	07/31/23 11:45
Duplicate		V 91019	-DUP			
Parameter	Units	Result	DUP Result	RPD	Max RPD	Analyzed
Moisture	%	16.2	13.4	18.9	20.0	07/31/23 11:45

Client ID:	Mid-Atlantic Associates, Inc Raleigh
Project Description:	R4370.00
Report No:	23-208-0054
QC Analytical Batch:	V36018
Analysis Method:	SW-DRYWT
Analysis Description:	Dry Weight Determination
Duplicate	V 90820-DUP
Parameter	Result DUP RPD Max RPD Analyzed Units Result

Moisture % 5.08 4.98 1.9 20.0 08/01/23 11:05
--

Shipment Receipt Form

Customer Number	: 01139					
Customer Name: Report Number:	Mid-Atlantic Associat 23-208-0054	es, Inc	Raleigh			
		Shipping	Method			
◯ Fed Ex	US Postal (Lab		Other :		
UPS	Client (Courie	r	Thermometer ID:	IRT-15 2.6C	
Shipping container/	cooler uncompromised?	2	• Yes	◯ No		
Number of coolers/	boxes received		1			
Custody seals intac	t on shipping container/	cooler?	O Yes	◯ No	Not Pre	sent
Custody seals intac	t on sample bottles?		◯ Yes	◯ No	Not Pre	sent
Chain of Custody (COC) present?		• Yes	◯ No		
COC agrees with sa	ample label(s)?		• Yes	🔿 No		
COC properly comp	bleted		• Yes	◯ No		
Samples in proper	containers?		• Yes	◯ No		
Sample containers	intact?		Yes	◯ No		
Sufficient sample v	olume for indicated test(s)?	• Yes	◯ No		
All samples receive	d within holding time?		• Yes	◯ No		
Cooler temperature	in compliance?		• Yes	◯ No		
	ived at the laboratory or sidered acceptable as co		Yes	◯ No		
Water - Sample cor	ntainers properly preserv	ved) Yes	◯ No	• N/A	
Water - VOA vials f	ree of headspace		◯ Yes	◯ No	• N/A	
Trip Blanks receive	d with VOAs		◯ Yes	◯ No	• N/A	
Soil VOA method 5	035 – compliance criteri	a met	Yes	◯ No	○ N/A	
High concentrat	ion container (48 hr)		Low	concentration EnC	ore samplers (4	8 hr)
High concentrat	ion pre-weighed (metha	nol -14 d)	Low	v conc pre-weighed	vials (Sod Bis -1	4 d)
Special precautions	or instructions included	?	◯ Yes	No		
Comments:						

Signature: Caitlyn Cummins

Date & Time: 07/27/2023 13:57:00

449 Springb Phone 704 Client Company Name Report To/Contact Nar Reporting Address: Fale of the Email Address: EDD Type: PDF (En- Site Location Name: Site Location Physical	the		(Yes) (N project spe Requirement illing Refe Day 2 D 9 Days 35 9 Days 15 9 Days 15	IO) ccific re- ents rence ays3 tandard occessed days, exc itions R	DPER BILL UST F porting Days J 10 days _ next busin leggaroing we	A Days - I Rush Wo Pre App ness day. ekends ar s services	LAB USE ONLY YES NO N/A Samples INTACT upon arrival? Received IN ICE? X PROPER PRESERVATIVES indicated? X Received WITHIN HOLDING TIMES? X CUSTODY SEALS INTACT? X VOLATILES rec'd W/OUT HEADSPACE? X PROPER CONTAINERS used? X TEMP: Therm ID: MIT-(5) Observed Z.C. °C /Corr. 7.0 ° TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NC SC Other N/A Water Chlorinated: YES NO Samples Iced Upon Collection: YES NO											
CLIENT DATE COLLECTED					SAMPLE CONTAINER		INER	PRESERVA-		X	30	ANALY	SIS REQU		D /	/ /		
SAMPLE DESCRIPTION	COLLECTED	MILITARY	WATE	R, OR DGE)	*TYPE SEE BELOW	NO.	SIZE		IVES	No of a star		6/02	310		/	REM	ARKS	ID NO.
SS-EE49	7/26/23	815	Si	1				t	te	1			ſ					
SS-EE _39	1	813	1				7			V								
SS-EE - 104		RLIO									V	/						
SS-EE-105		850							1	1								
55-EE-106		900								1								
55-EE-101		910										Ĩ						054
SS-EE- 95		925															23-208-0 01139 07-27-20	
55-EE- 90		935		1									4370.00	C Assoc	iates, Ini	c Raleigh	13:52:01	
SS-EE-88	V	a43	V	/			6	0	V	V		ĺ.						
			PRE	88 D	OWN FIRM	Y - 2 C	OPIES	1		1	II				I			
Sampler's Signature	m		Samo	oled By	(Print Name)	re	mill	ing		Affiliat	tion M	AA				1		
Upon relinguishing this submitted in writing to t	Chain of Cust	ody is your auth	orizati	on for I	Waypoint Anal	vtical to	proceed wi	th the a	nalvses	as reque	sted abov			s mus	t be		Site Arrival	JSE ONLY
Reinquished By (Signature	ester	-	manag		By (Jignature)		X-	2	-	nave be	Date	T	Military/Ho	ours	Additio	Dinal Comments:	Site Depart	100
Relinquished by (Signature	X	je			ved By (Signature)	rade	- 0_	-6	-		7-26-2 Date		16:0	_			Field Tech F	ee:
Rolinquished By (Signature)	000	7			ved For Waypoint Ar						7-26-2 Date	-		_			Mileage:	
J Fed Ex JUPS J Hand-	delivered J Way	PTED AND VERIFIEL	D AGAIN	J Other	UNTIL RECEIVED	FOR TRA	NSPORTATIO BORATORY	N TO THE	LABORAT	ORY.	COC Grou		13:0	0				VERSE FOR CONDITIONS
	GROUND	DWATER: DRIN	KING	WATE	R: SOLID NC			JSC	BRWNF	JSC		SC _	DTHER:				1	IGINAL

Way 449 Springb	CHAI PAGE 2 OF Project Name	ς ουοτ	TE # TOENSU	URE PROPE	ER BILLI	ING:		Received	IN ICE?	LAB USE OI	YES M	NO N/A						
Phone 704 Client Company Name Report To/Contact Nar	Short Hold An *Please ATTA provisions an Invoice To:	CH any p	roject spe	cific repo		Project: QC LE	V)	PROPER PRESERVATIVES indicated?										
Reporting Address:	~	Address:		/						TEMP: Therm ID: WT-IS Observed T.V. C /Corr. T.G.								
Phone: 50	Purchase Ord	ler No./Bi	illing Refe	rence					TO BE FILLEDIN BY CLIENT/SAMPLING PERSONNEL									
Email Address: EDD Type: PDF Ex		Requested Due "Working Days			1				c	Certification: NCSC								
Site Location Name: Site Location Physical	Address:			Samples receive Turnaround time (SEE REVER	d after 15:0 is based o RSE FOR TE	00 will be pro	bcessed ne days, exclud ITIONS REG	ext busine ding wee GARDING	ess day. ekends a SERVICE		w		lorinat	Other N/A ed: YES N pon Collection:	o			
CLIENT	DATE		MATRIX	SAMPLE CONTAINER						MXA	NALYSIS R	EQUEST						
CLIENT SAMPLE DESCRIPTION	DATE	COLLECTED MILITARY HOURS	(SOIL, WATER, OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	SIZE PRESERVA- TIVES		P 2 2	220	/ /	/	REN	IARKS	ID NO.			
SS-EE -81	7/26/23	1005	SEI				Ic	e	2	F Y	1	1	1	[
SS-EE-8C		1013							1									
SS-EE-83		1020												-				
SS-EE-Playgram		1124																
SS-EE-24		1215									1							
SS-EE-15		1223													23-208-0054			
SSEEIZ		+228123									Mid-Atlanti	c Associa	tes. Inc	Raleigh	01139 07-27-2023			
SS-EE-26	1/3	1230123						/			R4370.00				13:52:01			
SS-EE32		TORENT	° V				V	/	V		i.	7						
		Ŧ	PRESS D	OWN FIRM	Y - 2 C	OPIES	1			1 1								
Sampler's Signature	In		Sampled B	y (Print Name)	Ke	inc	ly		Affilia	ition	14A							
Upon relinquishing this submitted in writing to t	Chain of Custo	ody is your auth	orization for	Waypoint Anal	ytical to p	proceed wit	th the ana	lyses a		evode hete	Any cha	nges mu	st be	1	Site Arrival Tir	TE ONLY		
Relinguisted By Signature	1			By Signature		X		o	nave be	Date 7-26-2	Militar	y/Hours	Additio	Dinal Comments:	Site Departure			
Relinquished By Signature:	TP	àc		ived By. (Signature)	home	00	-7			Date					Field Tech Fee	c.		
Relinquished By (Signature)		<u></u>	Rece	ived For Waypoint A	alytical By:		0			7-26-2		00			Mileage:			
Method of Shipment NOTE: A	LL SAMPLE COOL	ERS SHOULD BE TA		H CUSTODY SEALS	FOR TRAN	SPORTATION	N TO THE LA	BORATO	ORY.	Date H1H1 COC Group		00			<u></u>			
Fed Ex JUPS J Hand-	delivered L Wayp	uni Analytical Field S	WINCE JUINE	UN HE RECEIVED	AT THE LAB	ORATORY.									SEE REVE TERMS & C	ERSE FOR		
NPDES: UST:	GROUND	WATER: DRIN	KING WATE	ER: SOLID	WASTE:	RCRA:						R: J SC						
]]]						Page 5	1.00								ORIC	SINAL		

Way 449 Springbi Phone 704 Client Company Name Report To/Contact Nam Reporting Address: Phone: Email Address: EDD Type: PDFEx Site Location Name: Site Location Physical	Æ	PAGE OF Project Name Short Hold At *Please ATTA provisions an Invoice To:	(Yes) (N oroject spe Requirement illing Refet Day 2 Da 9 Days 2 Da 100 will be pro- on business of RMS & COND	cific reporting ents	4 Days Rush Pre A Rush Pre A ess da ekends SERVI	Sam Rec PRC Rec CUS VOL PRC TEM TO BI Certi Wate Sam	LAB USE ONLY YES NO N/A Samples INTACT upon arrival? Received IN ICE? X									
CLIENT DATE SAMPLE DESCRIPTION COLLECTED		TIME COLLECTED MILITARY	MATRIX (SOIL, WATER, OR	SAMPL *TYPE			PRESERVA- TIVES		To A N		YSIS REQU		/		IARKS	ID NO.
	-17/12-	HOURS	SLUDGE)	SEE BELOW	NO.	SIZE	integ	13	a sol	Yy	4		<u> </u>	/ .		
SS-EE- 54	7612	12-10150	21				Ice		V	2						
SS-EE-66		13001305						V	-							
SSEE-DUP!		8251						-								
SS-EE-81(1)		1050	0					C								
SS-EE-82(1')	V	1045	e					0	-							
											d-Atlantic A 1370.00	ssociate	es. Inc	Raleigh	23-208-0054 01139 07-27-2023 13:52:01	8
			PRESS D	OWN FIRM	Y - 2 C	OPIES					L	1				
Sampler's Signature	h				COLUMN STREET		lay					2			LAB US	EONLY
Upon relinquishing this submitted in writing to the	Chain of Custo he Waypoint An	dy is your auth alytical Project	Manager. The	ere will be chai	ges for a	proceed wit	h the analyses a s after analyses	have	uested at	ove. An alized.	ly change	s must	be		Site Arrival Tir	ne:
Reinquished By (Shature	Rece								Military/Hours		Additional Comments:		Site Departure	Time:		
				eived By (Signature) Date COLLING EXPICESS 7-26-23											Field Tech Fee	:
Refinquished By (Signature) Method of Shipment NOTE: A			Recei	ved For Waypoint Ar	alytical By:	-	TO THE LABORATO	0.001	Date H2-	7123	16-20	_			Mileage:	
		WATER: DRIN	BIVICE JOILING	UNTIL RECEIVED	NASTE:		BRWNF	LD				sc			TERMS & C	ERSE FOR ONDITIONS