RAMBOLL

Mr. William Willets, PE Chief, Permitting Section, Division of Air Quality NC Department of Environmental Quality 1641 Mail Service Center Raleigh, NC 27699-1641

Re: Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Faison, North Carolina Sampson County Permit No.: 10386R04 Facility ID: 8200152

Dear Mr. Willets:

Enclosed please find a North Carolina Department of Environmental Quality (NC DEQ) permit application package for an air quality permit modification for Enviva Pellets Sampson, LLC (Enviva) (NC DEQ Facility ID #8200152) in Sampson County. This permit application is being submitted in accordance with Condition 2.1.A.4.a of Air Quality Permit No. 10386R04 to request authorization to install a regenerative thermal oxidizer (RTO) / regenerative catalytic oxidizer (RCO) to control emissions from the Pellet Mills and Pellet Coolers and for authorization to route exhaust from the Dry Hammermills to either the existing Dryer furnace followed by the wet electrostatic precipitator (WESP) or directly to the WESP (or a combination of the two) followed by the RTO for emissions control.

As part of this application, Enviva is also requesting authorization for the following proposed changes:

- Remove the current throughput limitation on the Dry Hammermills (Condition 2.2.A.1.j);
- Add two (2) natural gas/propane-fired burners, each with a heat input capacity of 2.5 million British thermal units per hour (MMBtu/hr) to heat the dryer system ducts;
- Modifications to optimize operation of the Dryer line RTO (CD-RTO) and increase the permitted heat input of the RTO to allow for injection of natural gas;
- Revise the potential emissions for Dried Wood Handling (ES-DWH) and the Dryer and Green Hammermills (both controlled by CD-RTO) to reflect results from December 2019 compliance testing;
- Increase the heat input of furnace idle mode from 5 MMBtu/hr to 10 MMBtu/hr (ES-FBYPASS);

ENVIRONMENT & HEALTH

Received APR 0 7 2020 Air Permits Section

Date April 2, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810 USA

T +1 225-408-2691 www.ramboll.com

1/2

- Remove dryer bypass from the permit (ES-DBYPASS), and;
- Increase the fraction of PM that is PM2.5 for the Finished Product Handling baghouse (CD-FPH-BH).

A significant reduction in facility-wide emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) (718 tpy and 128 tpy, respectively) will result from these proposed changes. The Sampson plant as currently permitted is a major source with respect to the Title V Operating Permit Program and New Source Review (NSR) permitting programs because facility-wide potential emissions of one or more criteria pollutants exceed the major source thresholds of 100 tons per year (tpy) and 250 tpy, respectively. Additionally, the plant is currently considered a major source of HAP due to total HAP emissions and maximum individual HAP emissions exceeding the major source thresholds of 25 tpy, and 10 tpy, respectively. Upon implementation of the proposed changes the plant will no longer be a major source with respect to NSR or a major source of HAP.

As required, three (3) copies of the complete permit application package are enclosed. The application processing fee of \$988 will be paid electronically through the ePayments System.

Thank you for your prompt attention to this matter. If you have any questions regarding this request, please contact me at (225) 408-2691 or Kai Simonsen, Air Permit Engineer at Enviva, at (984) 789-3628.

Yours sincerely,

MAK

Michael Carbon Managing Principal

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Yana Kravtsova (Enviva) Kai Simonsen (Enviva) Stephen Stroud (Enviva)

Enclosures: Permit Application

Prepared for Enviva Pellets Sampson, LLC Sampson County, North Carolina

Prepared By Ramboll US Corporation Baton Rouge, Louisiana

Date April 2020

APPLICATION FOR AIR QUALITY PERMIT MODIFICATION ENVIVA PELLETS SAMPSON, LLC

CONTENTS

1.	INTRODUCTION	1
2.	REQUESTED PERMIT REVISIONS	3
3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7	PROCESS DESCRIPTION Green Hammermills (ES-GHM-1 through 3) and Dryer (ES-DRYER) Dried Wood Handling (ES-DWH) Dry Hammermills (ES-HM-1 through 8) Pellet Mills and Pellet Coolers (ES-CLR-1 through 6) Furnace Bypass – Idle Mode (ES-FBYPASS) Dryer Double Duct Burners (IES-DDB-1 and 2) Finished Product Handling and Loadout (ES-PB1 through 4 and ES-PL-1 and 2)	5 5 5 6 7 7
4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7	POTENTIAL EMISSIONS QUANTIFICATION Dryer (ES-DRYER) and Green Wood Hammermills (ES-GHM-1 through ES-GHM-3) Dry Hammermills (ES-HM-1 through ES-HM-8) Pellet Mills and Pellet Coolers (ES-CLR-1 through ES-CLR-6) Dried Wood Handling Operations (ES-DWH) Furnace Bypass - Idle Mode (ES-FBYPASS) Double Duct Burners (IES-DDB-1 and IES-DDB-2) Pellet Loadout Bins (ES-PB1 through 4), Finished Product Handling (ES-FPH), and Pellet Mill Loadouts (ES-PL-1 and 2)	8 8 9 10 10 10
5. 5.1 5.2	STATE AND FEDERAL PERMITTING APPLICABILITY Federal Permitting Programs North Carolina Permitting Program	11 11 12
6. 6.1 6.2 6.3 6.4	REGULATORY APPLICABILITY New Source Performance Standards National Emission Standards for Hazardous Air Pollutants Compliance Assurance Monitoring North Carolina Administrative Code	13 13 13 15 15

APPENDIX

- Appendix A Permit Application Forms
- Appendix B Process Flow Diagram
- Appendix C Area Map
- Appendix D Potential Emissions Calculations

Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Sampson County, North Carolina

ACRONYMS AND ABBREVIATIONS

AER	Air Emissions Reporting
AP-42	Compilation of Air Pollutant Emission Factors
bhp	brake horsepower
BMP	Best Management Practice
CAA	Clean Air Act
САМ	Compliance Assurance Monitoring
CFR	Code of Federal Regulations
CI	Compression Ignition
CISWI	Commercial and Industrial Solid Waste Incineration
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
DAQ	Division of Air Quality
FSC	Forest Stewardship Council
GHG	Greenhouse Gases
gr	Grains
НАР	Hazardous Air Pollutant
hr	Hour
lb	Pound
MACT	Maximum Achievable Control Technology
MMBtu	Million British thermal units
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NCDEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NNSR	Nonattainment New Source Review
NOx	Nitrogen Oxides (NO + NO ₂)
NSPS	New Source Performance Standards
NSR	New Source Review
ODT	Oven Dried short Tons
PEFC	Programme for the Endorsement of Forest Certifications
PM	Particulate Matter

Acronyms

PM _{2.5}	Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM10	Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter
PSD	Prevention of Significant Deterioration
PSEU	Pollutant Specific Emission Unit
RCO	Regenerative Catalytic Oxidizer
RTO	Regenerative Thermal Oxidizer
SCAMQD	South Coast Air Quality Management District
scf	Standard Cubic Feet
SIP	State Implementation Plan
SO ₂	Sulfur Dioxide
SFI	Sustainable Forestry Initiative
ТАР	Toxic Air Pollutant
tph	tons per hour
tpy	tons per year
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compounds
WESP	Wet Electrostatic Precipitator
yr	year

1. INTRODUCTION

Enviva Pellets Sampson, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Sampson plant", "the plant", or "the facility") in Sampson County, North Carolina. The plant currently operates under Air Quality Permit No. 10386R04 issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on October 2, 2019. The plant consists of the following processes: Log Chipper, Bark Hog, Green Hammermills, Rotary Dryer, Dry Hammermills, Pellet Mills and Coolers, Product Loadout operations and other ancillary activities.

Air Quality Permit No. 10386R04 authorized changes to the Sampson plant in order to meet new customer softwood percentage and production rate demands and to incorporate significant emission reduction efforts to minimize emissions impacts associated with the project. Enviva is submitting this application in accordance with Condition 2.1.A.4.a of Air Quality Permit No. 10386R04 to request authorization to install a regenerative thermal oxidizer (RTO) / regenerative catalytic oxidizer (RCO) to control emissions from the Pellet Mills and Pellet Coolers as well as authorization to route the exhaust from the Dry Hammermills to the existing Dryer line wet electrostatic precipitator (WESP) and RTO. A significant reduction in emissions of VOC (718 tpy) and HAP (128 tpy) will occur as a result of controlling emissions from the Dry Hammermills, Pellet Mills, and Pellet Coolers. As discussed below, after installation of these controls, the Sampson plant will be classified as a synthetic minor source for PSD requirements and for HAP emissions.

As part of this submittal, Enviva is also proposing the following changes:

- Remove the current throughput limitation on the Dry Hammermills (Condition 2.2.A.1.j);
- Add two (2) natural gas/propane-fired burners, each with a heat input capacity of 2.5 million British thermal units per hour (MMBtu/hr) to heat the dryer system ducts;
- Modifications to optimize operation of the Dryer line RTO (CD-RTO) and increase the permitted heat input of the RTO to allow for injection of natural gas;
- Revise the potential emissions for Dried Wood Handling (ES-DWH) and the Dryer and Green Hammermills (both controlled by CD-RTO) to reflect results from December 2019 compliance testing;
- Increase the heat input of furnace idle mode from 5 MMBtu/hr to 10 MMBtu/hr (ES-FBYPASS);
- Remove dryer bypass (ES-DBYPASS) from the permit; and
- Increase the fraction of PM that is PM_{2.5} for the Finished Product Handling baghouse (CD-FPH-BH).

The Sampson plant as currently permitted is a major source with respect to the Title V Operating Permit Program and New Source Review (NSR) permitting programs because facility-wide potential emissions of one or more criteria pollutants exceed the major source thresholds of 100 tons per year (tpy) and 250 tpy, respectively. Additionally, the plant is currently considered a major source of hazardous air pollutants (HAP) due to total HAP emissions and maximum individual HAP emissions exceeding the major source thresholds of 25 tpy and 10 tpy respectively. Upon implementation of the proposed changes the plant will no longer be a major source with respect to NSR or a major source of HAP.

Section 2 outlines the proposed permit revisions, and a process description for sources impacted by the proposed changes is provided in Section 3. Methodologies used to quantify potential emissions are summarized in Section 4. Section 5 describes the applicability of federal and state permitting programs. Section 6 includes a detailed applicability analysis of both federal and state regulations. The completed air permit application forms are included in Appendix A. An area map and process flow diagram are included in Appendices B and C, respectively. Detailed potential emissions calculations are provided in Appendix D. Note that forms and calculations are only included for sources impacted by the proposed changes.

2. **REQUESTED PERMIT REVISIONS**

Enviva requests that the procedures of 15A North Carolina Administrative Code (NCAC) 2Q .0504 be utilized for this modification, allowing issuance of a construction and operating permit under 15A NCAC 2Q .0300. This application is being submitted to request authorization to implement emission controls for the Dry Hammermills and the Pellet Mills and Pellet Coolers in accordance with Condition 2.1.A.4.a of Air Quality Permit No. 10386R04, and for authorization to implement several other proposed changes for existing sources/equipment.

The following summarizes the proposed permit revisions:

 Control of volatile organic compound (VOC), HAP, and particulate matter emissions from the Dry Hammermills.

Enviva proposes to implement an air flow recirculation process to route a portion of the exhaust from each Dry Hammermill back to the front end of the respective Dry Hammermill. All exhaust gases ultimately exiting the Dry Hammermill baghouses will be routed to a quench duct and then to either the Dryer (ES-DRYER-1) furnace followed by the WESP (CD-WESP-1) or directly to the WESP (or a combination of the two) followed by the RTO (CD-RTO-1) for emissions control. The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Operation of the Dry Hammermills will be interlocked with operation of the quench duct (i.e., the quench duct must operate in order for the Dry Hammermills to operate). If flow in the quench duct drops below the safe level, the Dry Hammermills will shut down.

Total emissions from the Dry Hammermills will still be routed through the existing baghouses. The purpose of the recirculation is to reduce the volume of air that is routed to the downstream control devices (i.e., CD-WESP and CD-RTO).

Control of VOC and HAP emissions from the Pellet Mills and Pellet Coolers.

Enviva proposes to install a dedicated RTO/RCO (CD-RCO) to control VOC and HAP emissions from the Pellet Mills and Pellet Coolers. The exhaust from the six (6) existing Pellet Cooler cyclones will be routed to a quench duct and then to an RTO/RCO that will primarily operate in catalytic mode with thermal as a back-up during catalyst cleaning. The purpose of the quench duct is to protect the RTO/RCO by reducing the risk of fire.

- Enviva proposes to remove the current Dry Hammermill throughput limitation of 558,450 oven dried tons (ODT), which represents 85% of the plant's maximum production rate of 657,000 ODT per consecutive 12-month period. With this application, Enviva is proposing to increase the Dry Hammermill throughput to 657,000 ODT per consecutive 12-month period. Emissions increases associated the Dry Hammermill throughput increase are minimal and are completely offset by the significant facility-wide emission reductions resulting from changes proposed in this application.
- Enviva proposes to add two (2) natural gas/propane-fired burners, each with a maximum heat input of 2.5 MMBtu/hr, to heat the dryer system ducts (IES-DDB-1 through IES-DDB-2). As flue gas exits the dryer and begins to cool, wood tar can condense and coat the inner walls of the dryer ducts creating a fire risk. In order to prevent condensation from occurring, and thus reduce the fire risk, the two (2) ducts (herein referred to as double ducts) on the dryer system will be heated. Potential emissions from the duct burners are

below the thresholds in 15A NCAC 02Q .0503(8) and they are thus considered insignificant activities.

- Enviva is proposing several modifications to optimize operation of the existing Dryer line RTO (CD-RTO) including changing the media to decrease the differential pressure, enlarging the ductwork and poppet valves to allow for more air flow, addition of two (2) canisters with combustion zone and additional burners. Enviva is also requesting authorization for injection of natural gas into the RTO which will reduce the amount of combustion air added to the RTO, thereby increasing fuel efficiency and reducing generation of nitrogen oxides (NO_x). The heat input of the RTO will be increased from 32 MMBtu/hr to 45.2 MMBtu/hr as a result of the additional burners and natural gas injection.
- Enviva proposes to revise the potential emissions for Dried Wood Handling (ES-DWH) and the Dryer and Green Hammermills (both controlled by CD-RTO) to reflect results from December 2019 compliance testing.
- Enviva proposes to increase the heat input of furnace idle mode from 5 MMBtu/hr to 10 MMBtu/hr (ES-FBYPASS). Enviva has determined that 5 MMBtu/hr is insufficient for maintaining a flame in the furnace.
- Enviva proposes to remove dryer bypass (ES-DBYPASS) from the permit because venting
 of emissions through the dryer bypass stack only occurs in the event of a malfunction.
 Malfunctions are infrequent and unpredictable and cannot be permitted because they are,
 by definition, unplanned events, and;
- Enviva proposes to increase the fraction of PM that is PM_{2.5} for the Finished Product Handling baghouse (CD-FPH-BH). The permit application submitted in August of 2014 incorrectly calculated PM_{2.5} emissions as 0.35% of PM emissions. This results in an exit grain loading rate that is cleaner than ambient air and would require a sampling run of over 100 hours to quantify [0.000014 grains per standard cubic feet (gr/scf)]. Enviva has not been able to find any documentation to support a value of 0.35% and, given that this results in a concentration that is cleaner than ambient air, Enviva believes this value was used in error. Based on a review of National Council for Air and Stream Improvement, Inc. (NCASI) particle size distribution data for similar baghouses used in the wood products industry, Enviva has determined that the correct fraction of PM that is PM_{2.5} is 40%. As such, Enviva is revising the potential emissions for the Finished Production Handling baghouse to reflect an exit grain loading rate of 0.0016 gr/scf (filterable only).

3. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle carbon dioxide (CO2)/greenhouse gases (GHGs), mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at: https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcingpolicy/

The following sections provide a description of the sources that will be impacted by this application. An area map and process flow diagram are provided in Appendices B and C, respectively.

3.1 Green Hammermills (ES-GHM-1 through 3) and Dryer (ES-DRYER)

Green wood that has passed through the chipper is further processed in the Green Hammermills (ES-GHM-1, 2, and 3) to reduce material to the proper size. Exhaust from the Green Hammermills is routed to the dryer WESP/RTO control system (CD-WESP/CD-RTO) to control PM, VOC, and HAP emissions. Processed wood is then conveyed to a single rotary Dryer system (ES-DRYER). Direct contact heat is provided to the system via a 250.4 MMBtu/hr furnace burner system which combusts bark and wood chips as fuel. Green wood is fed into the Dryer where the moisture content is reduced to the desired level and routed to four (4) identical material recovery cyclones operating in parallel, which capture dried wood for further processing. Exhaust from the Dryer cyclones is combined into a common duct which includes the vent from the Green Hammermills (ES-GHM-1 through 3) and is routed to the WESP (CD-WESP) and RTO (CD-RTO) for control of particulates, VOC, and HAP. Potential emissions from the RTO stack have been revised to reflect results from December 2019 compliance testing. Additional detail is provided in Section 4.1.

3.2 Dried Wood Handling (ES-DWH)

There are several conveyor transfer points comprising emission source ES-DWH that are located between the Dryer and Dry Hammermills. These sources are completely enclosed with only two (2) emission points that are controlled by individual baghouses (CD-DWH-BH-1 and 2). Potential emissions from the baghouses have been revised to reflect results from December 2019 compliance testing. Additional detail is provided in Section 4.4.

3.3 Dry Hammermills (ES-HM-1 through 8)

Dried wood chips from the Dryer product recovery cyclones are conveyed to screening operations that remove smaller wood particles. Smaller particles passing through the screens

are diverted to the Dry Hammermill Discharge Conveyor, while oversized wood is diverted to the Dry Hammermills (ES-HM-1 through 8) for further size reduction prior to pelletization. Note, upon removal of the Dry Hammermill throughput limitation, the screeners may or may not be used during normal process operations. Each Dry Hammermill includes a material recovery cyclone to capture milled fiber for further processing. Particulate emissions from the eight (8) Dry Hammermills are controlled using eight (8) baghouses (CD-HM-BH-1 through 8). Dust generated from transfer operations around the screening operation is diverted to the Dry Hammermill Area filtration system (ES-HMA).

Enviva proposes to implement an air flow recirculation process to route a portion of the exhaust from each Dry Hammermill back into the front end of the respective Dry Hammermill. All exhaust gases ultimately exiting the Dry Hammermill baghouses will be routed to a quench duct and then to either the Dryer (ES-DRYER-1) furnace followed by the WESP (CD-WESP-1), directly to the WESP, or a combination of the two, followed by the RTO (CD-RTO-1) for emissions control. The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Operation of the Dry Hammermills will be interlocked with operation of the quench duct (i.e., the quench duct must operate in order for the Dry Hammermills to operate). If flow in the quench duct drops below the safe level, the Dry Hammermills will shut down.

3.4 Pellet Mills and Pellet Coolers (ES-CLR-1 through 6)

Sized wood from the Dry Hammermills is mechanically compressed through Pellet Mills. Exhaust from the twelve (12) Pellet Mills and Pellet Mill conveyors are currently vented through the cooler aspiration cyclones and then to the atmosphere. No resin or other chemical binding agents are needed for pelletization.

Formed pellets are discharged into one of six (6) Pellet Coolers (ES-CLR-1 through ES-CLR-6). Cooling air is passed through the pellets. At this point, the pellets contain a small amount of wood fines which are swept out with the cooling air and are controlled utilizing six (6) cyclones operating in parallel prior to discharge to the atmosphere (CD-CLR-1 to 6).

As described in Section 2, Enviva is proposing to install a dedicated RTO/RCO (CD-RCO) to control VOC and HAP emissions from the Pellet Mills and Pellet Coolers. The exhaust from the six (6) existing Pellet Cooler cyclones will be routed to a quench duct and then to an RTO/RCO that will primarily operate in catalytic mode with thermal as a back-up during catalyst cleaning. The purpose of the quench duct is to protect the RTO/RCO by reducing the risk of fire. Operation of the Pellet Mills and Cooler will be interlocked with operation of the quench duct (i.e., the quench duct must be ready for operation for the Pellet Mills and Cooler to operate).

3.5 Furnace Bypass – Idle Mode (ES-FBYPASS)

Direct heat is provided to the dryer via a 250.4 MMBtu/hr wood-fired furnace. During normal operations, emissions from wood combustion in the furnace are controlled by the WESP (CD-WESP) and RTO (CD-RTO). The furnace may also operate up to 500 hours per year in "idle mode" with emissions routed to the furnace bypass stack. "Idle mode" was previously defined as operation up to a maximum heat input rate of 5 MMBtu/hr. With this application, Enviva is proposing to increase the maximum heat input for furnace idle mode to 10 MMBtu/hr after determining that 5 MMBtu/hr is insufficient to maintain a flame in the furnace. The purpose of operation in idle mode is to maintain the temperature of the fire

brick lining in the furnace which may be damaged if it cools too rapidly. Operation in idle mode also significantly reduces the amount of time required to restart the furnace.

3.6 Dryer Double Duct Burners (IES-DDB-1 and 2)

As flue gas exits the dryer and begins to cool, wood tar can condense and coat the inner walls of the dryer ducts creating a fire risk. In order to prevent condensation from occurring and thus reduce the fire risk, the two (2) ducts (herein referred to as double ducts) will be heated. The duct from the cyclone outlet to the ID fan will be heated by one (1) low-NO_X burner with a maximum heat input rating of 2.5 MMBtu/hr and a second 2.5 MMBtu/hr low-NO_X burner will be used to heat the duct used for exhaust gas recirculation and the WESP. The burners will combust natural gas, with propane as back-up, and will exhaust directly to the atmosphere. Potential emissions from the duct burners are below the thresholds in 15A NCAC 02Q .0503(8) and they are thus considered insignificant activities.

3.7 Finished Product Handling and Loadout (ES-PB1 through 4 and ES-PL-1 and 2)

Final product is conveyed to four (4) Pellet Loadout Bins (ES-PB-1 through ES-PB-4) that feed the truck loadout station which includes two loadout spouts (ES-PL-1 and ES-PL-2). At the truck loadout station, pellets are gravity fed into trucks through two (2) covered chutes that automatically telescope upward during the loadout process to maintain constant contact with the product as it is loaded to prevent emissions. A slight negative pressure is maintained in this area of the loadout building using an induced draft fan which exhausts to the Finished Product Handling baghouse (CD-FPH-BH). Negative pressure is maintained as a fire prevention measure to prevent any build-up of dust on surfaces within the building. The Finished Production Handling baghouse controls emissions from Finished Product Handling (ES-FPH), the four (4) Pellet Loadout Bins (ES-PB-1 through ES-PB-4), and Truck Loadout Operations (ES-PL-1 and ES-PL-2). Trucks are covered immediately after loading.

4. POTENTIAL EMISSIONS QUANTIFICATION

This section discusses quantification of potential emissions for those sources that will be impacted by this application. The revised facility-wide potential emissions and updated calculations for sources with proposed changes are included in Appendix D.

4.1 Dryer (ES-DRYER) and Green Wood Hammermills (ES-GHM-1 through ES-GHM-3)

Exhaust from the Dryer and Green Wood Hammermills is routed to a WESP/RTO (CD-WESP/CD-RTO) control system for control of particulate matter, VOC, and hazardous air pollutants (HAPs). PM, PM less than 10 microns in diameter (PM₁₀), PM less than 2.5 microns in diameter (PM_{2.5}), carbon monoxide (CO), and oxides of nitrogen (NO_x) emissions were updated to reflect results of the Sampson December 2019 compliance test plus an appropriate contingency based on engineering judgement. Potential emissions of sulfur dioxide (SO₂) from green wood combustion were calculated based on the heat input of the furnace and an emission factor for wood combustion from AP-42, Section 1.6, *Wood Residue Combustion in Boilers*¹. VOC emissions were calculated using an emission factor derived from process information and an appropriate contingency based on engineering judgement. HAP and toxics air pollutant (TAP) emissions from green wood combustion were calculated based on emission factors from several data sources including site-specific stack testing data and process information with an appropriate contingency based on engineering judgement and emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.

HAP and TAP emissions from natural gas and propane combustion by the RTO as burner fuel and injection gas² were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*³, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*⁴, NC DAQ's Wood Waste Combustion Spreadsheet⁵, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. After direct natural gas injection and proposed RTO optimization efforts, the maximum heat input of the RTO will be 45.2 MMBtu/hr based on both the heat input of the RTO burners and direct natural gas injection. Detailed emission calculations are included in Appendix D.

4.2 Dry Hammermills (ES-HM-1 through ES-HM-8)

Dry Hammermill operations generate particulate matter, HAP, and VOC emissions during sizing of dried wood. Emissions from the eight (8) Dry Hammermills are routed to baghouses for control of PM emissions (CD-HM-BH-1 through 8). Particulate emissions from each baghouse were calculated using an exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Exhaust from the baghouses will be routed through a quench system and then to either the Dryer (ES-DRYER) furnace, the Dryer WESP (CD-WESP), or a combination of the two, followed by the Dryer line RTO (CD-RTO). A 92.75% control efficiency was applied to the Dry Hammermill particulate emissions for the WESP.

¹ USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

² Natural Gas Injection in an RTO is a way of reducing the amount of combustion air added to an RTO thereby increasing fuel efficiency and reducing NOx generation.

³ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

⁴ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

⁵ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

Uncontrolled VOC, HAP, and TAP emissions at the outlet of the Dry Hammermill baghouses (CD-HM-BH1 through BH8) were quantified based on results of the Sampson December 2019 compliance testing, process information, and appropriate contingencies based on engineering judgement. Controlled VOC, HAP, and TAP emissions were estimated based on a 95% destruction efficiency for the RTO (CD-RTO). NO_x and CO emissions resulting from thermal oxidation of VOC in the Dry Hammermill exhaust were calculated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion*⁶, and the maximum high heating value of the anticipated VOC constituents.

Emissions of criteria pollutants, HAP, and TAP from natural gas and propane combustion by the RTO, both as burner fuel and direct gas injection⁷, were estimated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion*, and AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*⁸. GHG emissions were calculated using emission factors for natural gas and propane combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1.

4.3 Pellet Mills and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Pellet Mills and Pellet Cooler operations generate particulate matter, VOC, HAP, and TAP emissions during the forming and cooling of wood pellets. The twelve (12) Pellet Mills and six (6) Coolers are equipped with six (6) simple cyclones (CD-CLR-1 through CD-CLR-6) which will exhaust through the proposed quench duct and RTO/RCO (CD-RCO) for VOC and HAP control. PM, PM₁₀, and PM_{2.5} emissions from the Pellet Mills and Pellet Coolers were calculated based on results of the Sampson December 2019 compliance testing, process information, and an appropriate contingency based on engineering judgement.

Uncontrolled VOC, HAP, and TAP emissions at the outlet of the Pellet Cooler Cyclones were quantified based on results of the Sampson December 2019 compliance testing, process information, and an appropriate contingency based on engineering judgement. This includes emissions from both the Pellet Mills and the Pellet Coolers. Controlled VOC, HAP and TAP emissions were conservatively based on a 95% control efficiency for the RCO/RTO. NO_x and CO emissions resulting from thermal oxidation of VOC in the cyclone exhaust were calculated using AP-42 Section 1.4, *Natural Gas Combustion*⁹, and the maximum high heating value of the anticipated VOC constituents.

Emissions of criteria pollutants, HAP, and TAP from natural gas and propane combustion by the RTO/RCO burners and direct gas injection were estimated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion*, and AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion.*^{10,11} GHG emissions were calculated using emission factors for natural gas and propane combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. Detailed potential emission calculations are provided in Appendix D.

⁶ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

⁷ As previously described in Section 3, natural gas injection in an RTO is a way of reducing the amount of combustion air added to an RTO, thereby increasing fuel efficiency and reducing NOx generation.

⁸ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

⁹ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁰ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

¹¹ Natural gas injection in an RTO is a way of reducing the amount of combustion air added to an RTO, thereby increasing fuel efficiency and reducing NOx generation.

4.4 Dried Wood Handling Operations (ES-DWH)

Dried Wood Handling Operations (ES-DWH) include conveyor transfer points located between the Dryer and Dry Hammermills. Emissions from these transfers are routed through one of two (2) baghouses (CD-DWH-BH-1 and BH-2). PM, PM₁₀ and PM_{2.5} emissions from each baghouse were calculated based on the exhaust flow rate and exit grain loading. VOC, HAP, and TAP emissions were estimated based on emission factors derived from the Sampson December 2019 compliance test and include an appropriate contingency based on engineering judgement. Detailed potential emission calculations are provided in Appendix D.

4.5 Furnace Bypass - Idle Mode (ES-FBYPASS)

The furnace may operate up to 500 hours per year in "idle mode" during which emissions will exhaust out of the furnace bypass stack (ES-FURNACEBYP). Potential emissions of CO, NO_X, SO₂, PM, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*¹² and a heat input of 10 MMBtu/hr for the furnace. GHG emissions were calculated based on emission factors for biomass combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. Detailed potential emission calculations are included in Appendix D.

4.6 Double Duct Burners (IES-DDB-1 and IES-DDB-2)

CO, NO_x, SO₂, PM, VOC, and HAP Emissions from natural gas and propane combustion by the double duct burners (IES-DDB-1 through IES-DDB-4) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹³, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*¹⁴, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool.¹⁵ Detailed emission calculations are included in Appendix D.

Per 15A NCAC 02Q.0503, the double duct burners (IES-DDB-1 through IES-DDB-4) are considered insignificant activities because potential uncontrolled criteria pollutant and HAP emissions are less than 5 tpy and 1,000 pounds per year (lb/yr), respectively.

4.7 Pellet Loadout Bins (ES-PB1 through 4), Finished Product Handling (ES-FPH), and Pellet Mill Loadouts (ES-PL-1 and 2)

PM emissions occur during transfer of finished product to the Pellet Loadout Bins and during transfer of pellets from the bins to trucks. PM emissions from Finished Product Handling, the four (4) Pellet Loadout Bins, and the two (2) truck loadout spouts are all controlled by a single baghouse (CD-FPH-BH). Potential PM emissions from the baghouse were calculated based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. As discussed in Section 2, the fraction of PM that is PM_{2.5} has been updated from 0.35% to 40% based on a review of NCASI particle size distribution data for similar baghouses used in the wood products industry. Detailed potential emissions calculations are provided in Appendix D.

¹² USEPA AP-42 Section 1.6, Wood Residue Combustion in Boilers (09/03).

¹³ USEPA AP-42 Section 1.4, Natural Gas Combustion (07/98).

¹⁴ USEPA AP-42 Section 1.5, Liquefied Petroleum Gas Combustion (07/08).

¹⁵ South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

5. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Sampson plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements to the proposed permit modifications.

5.1 Federal Permitting Programs

The federal New Source Review (NSR) permitting program includes requirements for construction of new sources and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Sampson plant.

5.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment New Source Review (NNSR) (15A NCAC 2D .0531) and Prevention of Significant Deterioration (PSD) (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant"¹⁶ exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or attainment with respect to relevant NAAQS. PSD permitting requirements also apply to certain stationary sources regardless of location for each regulated NSR pollutant that is not a criteria pollutant (e.g., fluorides, hydrogen sulfide, and sulfuric acid mist).

The Sampson plant is located in Sampson County which is classified as attainment or unclassifiable for all criteria pollutants.¹⁷ The Sampson plant is an existing major PSD source; however, upon implementation of the proposed controls for the Dry Hammermills, Pellet Mills, and Pellet Coolers presented in this application the plant will no longer be a major PSD source.

5.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR Part 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Sampson plant is a major source with respect to the Title V Operating Permit Program because facility-wide potential emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. Additionally, the plant is currently considered a major source of HAP due to total HAP

¹⁶ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NOx), and lead.

^{17 40} CFR 81.334

emissions and maximum individual HAP emissions exceeding the major source thresholds of 25 tpy, and 10 tpy, respectively. Upon implementation of the proposed controls for the Dry Hammermills, Pellet Mills, and Pellet Coolers presented in this application the plant will no longer be a major source of HAPs, but will still be a major source for Title V purposes because the potential emissions will still exceed 100 tpy of criterial pollutants.

5.2 North Carolina Permitting Program

In addition to the Title V permitting requirements in 15 NCAC 02Q .0500, specific requirements for permitting of construction and operation of new and modified sources are included in 15A NCAC 02Q .0300, in accordance with North Carolina's State Implementation Plan (SIP). The proposed changes are subject to the permitting procedures under 15A NCAC 02Q .0300 and the required application forms are included as Appendix B.

6. **REGULATORY APPLICABILITY**

The Sampson plant is subject to federal and state air quality regulations. The following addresses all regulations potentially applicable to the proposed permit modifications.

6.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D .0524.

6.1.1 40 CFR 60 Subpart A – General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is not applicable to any of the sources impacted by this application because they are not subject to any source-specific subparts under 40 CFR 60.

6.1.2 40 CFR Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The double duct burners will each have a maximum heat input of 2.5 MMBtu/hr and are not steam generating units; therefore, NSPS Subpart Dc does not apply.

6.1.3 40 CFR 60 Subpart CCCC – Standards of Performance for Commercial and Industrial Solid Waste Incineration Units

NSPS Subpart CCCC regulates emissions from commercial and industrial solid waste incineration (CISWI) units. A CISWI unit is one that combusts a solid waste meeting the definition under §241.2. The Sampson plant's Dryer is heated by a furnace which combusts bark and wood chip as fuels. In accordance with §241.2, traditional fuels that are produced as fuels and are unused products that have not been discarded, including cellulosic biomass (virgin wood), are not solid waste. As such, the furnace is not considered a CISWI unit, and Subpart CCCC does not apply.

6.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and apply to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. Currently the Sampson plant is a major source of HAP; however, following implementation of the changes proposed in this application the plant will be an area source of HAP.

6.2.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is not applicable to any of the sources impacted by this application because they will not be subject to a source-specific subpart under 40 CFR 63. Subpart A is applicable to the existing Emergency Generator and Fire Water Pump because they are subject to Subpart ZZZZ. Although the Emergency Generator and Fire Water Pump will not be modified as part of this

application the applicable requirements under Subpart ZZZZ will change as a result of the plant being reclassified as an area source of HAP. Additional detail is provided below.

6.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). Because Wood Pellet Manufacturing Plants are not a regulated source category under 40 CFR 63, the Sampson plant previously underwent a case-by-case MACT analysis pursuant to Subpart B. However, the plant will no longer be a major source for HAP emissions following implementation of controls for the Dry Hammermills, Pellet Mills, and Pellet Coolers proposed in this application. Per the January 1, 2018 EPA policy memo, Reclassification of Major Source as Area Sources Under Section 112 of the Clean Air Act, if a source that was previously classified as major limits its potential to emit of HAP below the major source thresholds, the source will no longer be subject to a major source MACT or other major source requirements that were applicable to it as a major source under CAA section 112.18 A proposed rule was published in the Federal Register on July 26, 2019 that would amend the General Provisions to the NESHAP to provide that a major source can be reclassified as an area source at any time by limiting its potential to emit HAP below the major source thresholds.¹⁹ The HAP limits must be legally and practically enforceable.

Requirements to install, maintain, and operate the controls proposed as part of this application will be incorporated into the Sampson plant's permit and will ensure that the facility becomes and remains a minor source of HAP. These requirements will be both legally and practically enforceable. Per the EPA policy memo, the Sampson plant will no longer be subject to the requirements of Subpart B upon implementation of the proposed controls for the Dry Hammermills, Pellet Mills, and Pellet Coolers.

6.2.3 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at a major or area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or when engines are used to pump water in the case of fire or flood. The Sampson plant's existing Emergency Generator and emergency Fire Water Pump Engine are both classified as emergency stationary RICE under Subpart ZZZZ. Further, the engines are both classified as new sources, as they were constructed after June 12, 2006 [§63.6590(a)(2)(iii)].

Enviva must meet the requirements of Subpart ZZZZ by meeting the requirements of NSPS Subpart IIII for the Emergency Generator and Fire Water Pump [§63.6590(c)(1)]. No further requirements apply under Subpart ZZZZ. The applicability of these requirements does not

¹⁸ U.S. EPA. Memorandum from William L. Wehrum (Assistant Administrator) to Regional Air Directors.

Reclassification of Major Sources as Area Sources Under Section 112 of the Clean Air Act. January 1, 2018. ¹⁹ Federal Register. Vol. 84, No. 144. July 26, 2019.

change as a result of the reclassification of the Sampson plant from a major source to an area source.

6.2.4 40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers at Area Sources

Subpart JJJJJJ includes emission standards for boilers located at area sources of HAP emissions. The rule defines a boiler in §63.11237 as an "*enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water [...].*" The duct burners do not meet the Subpart JJJJJJ definition of a boiler; therefore, Subpart JJJJJJ is not applicable.

6.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).²⁰ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.²¹

CAM will potentially be applicable to sources at the Sampson plant; however, no emission units have post-controlled emissions above major source thresholds. As such, any CAM plans that may be required are not due until submittal of the initial Title V renewal. Applicability of 40 CFR 64 requirements will be fully assessed at that time.

6.4 North Carolina Administrative Code

The Sampson plant sources are subject to regulations contained within 15A NCAC 02D and 02Q. Regulations that are potentially applicable to the sources impacted by this application are addressed in the following sections.

6.4.1 15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 includes PM emission limits for indirect heat exchangers combusting wood. An indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are not mixed. The Dryer (ES-DRYER) is heated by a wood-fired furnace; however, the furnace provides direct heating of the wood chips, not indirect. As such, this regulation does not apply.

6.4.2 15A NCAC 02D .0512 Particulates from Wood Products Finishing Plants

This regulation provides control requirements designed to reduce PM emissions from the working, sanding, or finishing of wood. The Sampson plant does not perform the subject wood finishing operations and thus, 15A NCAC 02D .0512 does not apply.

6.4.3 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all industrial processes subject to permitting and for which no other emission control standards are applicable are regulated under 15A NCAC 02D .0515. This

²⁰ §64.5(a) ²¹ §64.5(b) regulation limits particulate emissions based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than or equal to 30 tons per hour (tph) and E=55 x $P^{0.11}$ -40 for process rates greater than 30 tph.

This requirement applies to all processes at the Sampson plant before and after implementation of the proposed changes.

6.4.4 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources cannot exceed 2.3 pounds of SO₂ per MMBtu input. The existing RTO (CD-RTO) and proposed RTO/RCO are natural gas-fired and the proposed double duct burners will fire natural gas with propane as a back-up. These fuels both contain low amounts of sulfur and will result in SO₂ emissions well below the limit of 2.3 lb/MMBtu.

6.4.5 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and
- No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes at the facility that may have visible emissions.

6.4.6 15A NCAC 02D .1100 Control of Toxic Air Pollutants

A TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed under 15A NCAC 02Q .0702(a)(18). This regulation (15A NCAC 02D .1100) outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section.

A significant reduction in TAP emissions will occur as a result of controlling emissions from the Dry Hammermills, Pellet Mills, and Pellet Coolers (42.2 tpy). As such, Enviva does not believe an updated TAP modeling analysis is required for the proposed changes. Previous TAP modeling showed concentrations well below the Acceptable Ambient Levels (AALs).²²

²² Acrolein had the highest modeled concentration at 83.7% of the AAL.

Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX A PERMIT APPLICATION FORMS

FORM A GENERAL FACILITY INFORMATION

REVISED 09/22/16			ation for Air Permit to Con	struct/Operate		A
			CESSED WITHOUT TI			
Local Zoning Consistend	v Determination			T	Fac (alassa akash	and and a last of the state of the
(new or modification only		Appropriate Number of	Copies of Application		Fee (please check	
Responsible Official/Aut	horized Contact Signature 🗹	P.E. Seal (if required)		Not Required	ePayment	Check Enclosed
		GENERAL INF	FORMATION			
Legal Corporate/Owner Name:	Enviva Pellets Sampson, LLC					
Site Name: Enviva Pellets Sampsor	i, LLC					
Site Address (911 Address) Line 1:	5 Connector Road, US 117					
Site Address Line 2:						
City: Faison			State: North	Carolina		
Zip Code: 28341			County: Samps	on		
		CONTACT INF	FORMATION		Dist in the second	
Responsible Official/Authorized Conta	ct:		Invoice Contact:			
Name/Title: Matt Cutshall, Director	Manufacturing		Name/Title: Willia	m Simon, EHS Manager	r	
Mailing Address Line 1: 5 Connector Ro	oad, US 117		Mailing Address Line 1	5 Connector Road, U	S 117	
Mailing Address Line 2:			Mailing Address Line 2			
City: Faison State:	NC Zip Code:	28341	City: Faison	State: NC	Zip Code:	28341
Primary Phone No.: 864-554-	3560 Fax No.:		Primary Phone No.:	910-375-6365	Fax No.:	
Secondary Phone No.:			Secondary Phone No.:			
Email Address: Matt.Cutshall@envivab	iomass.com		Email Address: William	m.Simon@envivabiom	ass.com	
Facility/Inspection Contact:			Permit/Technical Con	tact:		
Name/Title: William Simon, EHS Ma	nager		Name/Title: Kai Sir	Name/Title: Kai Simonsen, Air Permit Engineer		
Mailing Address Line 1: 5 Connector Ro	ad, US 117		Mailing Address Line 1	4242 Six Forks Road	, Suite 1050	
Mailing Address Line 2:			Mailing Address Line 2			
City: Faison State:	NC Zip Code:	28341	City: Raleigh	State: NC	Zip Code:	27609
Primary Phone No.: 910-375-	6365 Fax No.:		Primary Phone No.:	984-789-3628	Fax No.:	
Secondary Phone No.:			Secondary Phone No.:			
Email Address: William.Simon@enviva	biomass.com		Email Address: Kai.Sir	nonsen@envivabioma	iss.com	
		APPLICATION IS B	EING MADE FOR			
New Non-permitted Facility/Green	nfield 🗹 Modification	of Facility (permitted)	Renewal Title V	Rene	wal Non-Title V	
Name Change 🔲 Ownerst		ve Amendment	Renewal with M	odification		
			APPLICATION (Check	k Only One)		
LGeneral	Small		Prohibitory Small	Synthetic Minor	Т	itle V
	Version Constants	FACILITY (Plant Sit	te) INFORMATION			
be nature of (plant site) operation(s ,,,	;):					
			Facility ID No. 8200152			
Primary SIC/NAICS Code: 2499 (Wood F			Current/Previous Air Permit No. 10386R04 Expiration Date: 9/30/2027			
Facility Coordinates:	Latitude: 35 degrees, 7 min		Longitude: 78 degrees			
Does this application contain confidential data?	YES 🗹		res, please contact the DAC cation.*** (See Inst		r to submitting thi	s
	PERS	ON OR FIRM THAT P	REPARED APPLICATI	ON		
Person Name: Michael Carbon			Firm Name: Ramboll L	IS Corporation		
Mailing Address Line 1: 8235 YMCA Plan	za Drive, Suite 300		Mailing Address Line 2:			
City: Baton Rouge	State: LA		Zip Code: 70810		County:	
Phone No.: (225) 408-2691	Fax No.:		Email Address: mcarb			
	SIGNATURE C	OF RESPONSIBLE OF	FICIAL/AUTHORIZED	CONTACT		The second
Name (typed): Matt Culenal	1		Title: Director Manufa			
X Signature (Blue Ink)	· · · · · · · · · · · · · · · · · · ·		Date:			
May	~~~		2511	20		
	Attas	h Additional Sheeta	An Managara			D

Attach Additional Sheets As Necessary

Page 1 of 2

Received APR 07 2020 All Permits Section

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

REVISED 09/22/16	REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A				
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL					
	(Company Name) hereby formally requests renewal of Air Permit No.				
	difications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.				
	40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Clean Air Act? YES NO Submitted a Risk Manage Plan (RMP) to EPA? YES YES NO Date Submitted;				
Did you attach a current					
	inventory via AERO or by mail? U Via AERO Mailed Date Mailed:				
	SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL	THE NUMBER			
	rovisions of Title 15A 2Q .0513, the responsible official of(Company Name)				
	renewal of Air Permit No. (Air Permit No.) and further certifies that:				
	rent air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the arolina Title V regulations at 15A NCAC 2Q.0500;	0			
	rent air quality permit cites all applicable requirements and provides the method or methods for determing compliance with the applicable				
requirer	nents;				
	lilty is currently in compliance, and shall continue to comply, with all applicable requirements. (Note: As provided under 15A NCAC 2Q .0512				
	nce with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit); ilicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis;				
	like shall full applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64.				
	signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief				
formed after reasonable	inquiry, are true, accurate, and complete.				
	SECTION AA3- APPLICATION FOR NAME CHANGE				
New Facility Name:					
Former Facility Name:					
	hange is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been				
	nally permitted facility that would require an air quality permit since the last permit was issued and if there has been an ownership change				
associated with this nam					
De this an effective state	SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE				
	reby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. sponsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the				
	en of this form has been or will be transferred on (date). The regard with the originally date) the originally				
permitted facility that wo	uld require an air quality permit since the last permit was issued.				
Signature of New Buyer	Responsible Official/Authorized Contact (as typed on page 1):				
X Signature (Blue Ink);					
Date:					
New Facility Name:					
Former Facility Name:					
Signature of Former (Sel	ler Responsible Official/Authorized Contact:				
Name (typed or print):					
Title:					
X Signature (Blue Ink):					
Date:					
Former Legal Corporate/Owner Name:					
In lieu of the seller's signature on this form, a letter may be submitted with the seller's signature indicating the ownership change					
SECTION AA5- APPLICATION FOR ADMINISTRATIVE AMENDMENT					
Describe the requested administrative amendment here (attach additional documents as necessary):					
	Attach Additional Sheets As Necessary	Page 2 of 2			

Page 2 of 2

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate					
	EMISSION SOURCE LISTING: New, Modified	I, Previously Unp	permitted, Replaced, Deleted		
EMISSION SOURCE					
	ID NO. DESCRIPTION ID NO.		DESCRIPTION		
Equ	upment To Be ADDED By This Application	(New, Previously	Unpermitted, or Replacement)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	
IES-DDB-1 and 2	Double Duct Burners	N/A			
		ILODIEUED -			
	Existing Permitted Equipment To E				
ES-Dryer	250.4 MMBtu/hr wood-fired direct heat drying system	CD-WESP	Wet Electrostatic Precipitator		
	, , , , , , , , , , , , , , , , , , , ,	CD-RTO	Regenerative Thermal Oxidation		
ES- GHM-1 through 3	Three (3) Green Hammermills	CD-WESP	Wet Electrostatic Precipitator		
		CD-RTO	Regenerative Thermal Oxidation		
ES-HM-1 through 8	Eight (8) Dry Hammermills	CD-HM-BH-1 to 8	Baghouses		
ES-HM-1 LIFOUGH 8		CD-WESP CD-RTO	Wet Electrostatic Precipitator		
		CD-CLR-1	Regenerative Thermal Oxidation Simple cyclone		
		CD-CLR-1 CD-CLR-2	Simple cyclone		
		CD-CLR-2	Simple cyclone		
		CD-CLR-3	Simple cyclone		
ES-CLR-1 through 6	Twelve (12) Pellet Mills and Six (6) Pellet Coolers	CD-CLR-5	Simple cyclone		
		CD-CLR-6	Simple cyclone		
			Regenerative Thermal Oxidation / Regenerative Catalytic Oxidation		
		CD-RCO (new)			
ES-FBYPASS	Furnace Bypass	N/A			
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH-1 and 2	Baghouses		
ES-FPH	Finished Product Handling				
ES-PB-1 through 4	Four (4) Pellet Loadout Bins	CD-FPH-BH	Baghouse		
ES-PL-1 and 2	Two (2) Pellet Loadouts				
V STIESANW TENA	Equipment To Be DELE	TED By This Ap	plication		
		A			

APPLICABILI	TY INFORMATION		A 3			
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Federal Clean Air Act?						
ability:	The Sampson plant does not store any regulate	d substances in e	xcess of their			
ving:						
(RMP) to EPA Pursua	ant to 40 CFR Part 68.10 or Part 68.150?					
submittal date:	If submitted, RMP submittal date:					
acility to a lesser 112(r) program standard?					
PROCESS LEVEL		MAXIMUM I	NTENDED			
(1, 2, or 3)	HAZARDOUS CHEMICAL	INVENTO	RY (LBS)			
	dental Releases" - Sec ability: 115. (RMP) to EPA Pursua submittal date: acility to a lesser 112(PROCESS LEVEL	ability: The Sampson plant does not store any regulate A115. ving: (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150? submittal date: If submitted, RMP submittal date: acility to a lesser 112(r) program standard? PROCESS LEVEL	Idental Releases" - Section 112(r) of the Federal Clean Air Act? Yes ability: The Sampson plant does not store any regulated substances in example. xing: (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150? submittal date: If submitted, RMP submittal date: acility to a lesser 112(r) program standard? MAXIMUM I			

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/D	ivision of Air Qu	ality - Application for Air Permit	to Construct/Operate	D1			
CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE							
		EXPECTED ACTUAL					
		EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS			
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /			
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)			
AIR POLLUTANT EMITTED		tons/yr	tons/yr	tons/yr			
PARTICULATE MATTER (PM)							
PARTICULATE MATTER < 10 MICRONS (PM10]					
PARTICULATE MATTER < 2.5 MICRONS (PM ₂		1					
SULFUR DIOXIDE (SO2)		1					
NITROGEN OXIDES (NOx)				11 D			
CARBON MONOXIDE (CO)		See Emiss	ion Calculations in Appen				
VOLATILE ORGANIC COMPOUNDS (VOC)		1					
LEAD		1					
GREENHOUSE GASES (GHG) (SHORT TONS)	1					
OTHER	/	1					
	AIR POLLUT	ANT EMISSIONS INFORMATI	ON - FACILITY-WIDE				
		EXPECTED ACTUAL					
		EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS			
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /			
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)			
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr			
		4					
		4					
		4					
		4					
		Coo Emission	ion Colevlations in Annon	d: D			
		See Emission Calculations in Appendix D					
		EMISSIONS INFORMATION					
INDICATE REQUESTED ACTUAL EMISSIONS				T EMISSION RATE			
(TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE	AIR DISPERSIO	ON MODELING. USE NETTING F					
		1		Required ?			
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr lb/day	lb/year Yes	No			
		4					
		1					
]					
		Soo Emico	ion Calculations in Appen	div D			
		J See Linisa	ion calculations in Appen				
]					
		1					
]					
COMMENTS:	JOMMENTS:						
	Attach Add	ditional Sheets As Nece	ssary				

FORM D4
EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

		r Permit to Construct/Operate D4			
ACTIVITIES EXEMPTED PER 2Q .0102 OR INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES					
DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY			
1. Green Wood Handling Operations IES-GWH	Varies	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
2. Bark Hog IES-BARKHOG	25 ODT/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
3. Emergency Generator Diesel Fuel Storage Tank IES-TK1	1,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
4. Firewater Pump Engine Diesel Fuel Storage Tank IES-TK2	185 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
5. Mobile Sources Diesel Fuel Storage Tank IES-TK3	3,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
6. Green Wood Storage Piles IES-GWSP-1 through 4	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
7. Bark Fuel Storage Piles IES-BFSP-1 and 2	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
8. Dry Shavings Material Handling IES-DRYSHAVE	25 tons/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
9. Debarker IES-DEBARK-1	275 tons/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
10. Bark Fuel Bin IES-BFB	N/A	15A NCAC 02Q .0503(8)-negligible emissions, see Appendix D			
11. Diesel Fired Emergency Generator IES-EG	689 HP	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
12. Diesel Fired Fire Water Pump IES-FWP	131 HP	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
13. Log Chipping IES-CHIP-1	138 ODT/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
14. Double Duct Burners IES-DDB-1 and 2	2.5 MMMBtu/hr each	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			
15. Paved Roads IES-PAVEDROADS	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D			

Attach Additional Sheets As Necessary

FORM D5 TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

	TECHNICAL ANALTSIS TO SUPPOR	
REV	/ISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Pe	
	PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPOR DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A C NECESSARY TO SUPPORT AND CLARIFY CALCULATIO FOLLOWING SPECIFIC ISSUES OF	COMPREHENSIVE PROCESS FLOW DIAGRAM AS DNS AND ASSUMPTIONS. ADDRESS THE
		POLICIA CALCULATIONS LICED, INCLUDING EMISSION FACTORS
A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EN	B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS,
	CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROL	S CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY
	REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.	
в	SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ON	IN DROVIDE AN ANALYSIS OF ANY RECULATIONS ADDUCARIE TO
"	INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OU	
	REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULAR	LY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS
	RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AV	DIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF
	SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (I	
	POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WIT	
	ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPO	DRT THESE CALCULATIONS.
с		
5	CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) -PROVIDE A TECHNICAL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RAT	EVALUATION WITH SUPPORTING REPERENCES FOR ANT CONTROL
	OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECO	MMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS
	APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL	DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL
	FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETA	
	CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE P	ERFORMED.
-		
D	PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY	SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING
	PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFI	
	IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT COMPLIANCE WITH THE APPLICABLE REGULATIONS.	CAN BE MONITORED AND REPORTED TO DEMONSTRATE
ε	PROFESSIONAL ENGINEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112 "	APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL,"
-	A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIR	
	NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTION	S FOR FURTHER APPLICABILITY).
	I, Russell Kemp attest that this application for	pr Enviva Pellets Sampson, LLC
	has been reviewed by me and is accura	te, complete and consistent with the information supplied
	in the engineering plans, calculations, and all other supporting documentation to the best of	my knowledge. I further attest that to the best of my knowledge the proposed
	design has been prepared in accordance with the applicable regulations. Although certain p	ortions of this submittal package may have been developed by other
	professionals, inclusion of these materials under my seal signifies that I have reviewed this in In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who know	naterial and have judged it to be consistent with the proposed design. Note.
	application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed	
	(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING)	PLACE NORTH CAROLINA SEAL HERE
	NAME: Russell Kemp, MS, PE	anality.
	DATE: 23 MARCH 2020	CAPAN.
	COMPANY: REUS Engineers, P.C.	A second second
	ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339	S COPECCION A
	TELEPHONE: 678-388-1654	1 1 2 2 1
	SIGNATURE:	SEAL 19628
	PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4	19528
	Potential emission calculations (Appendix D)	121 151
	Application Report	A ON WOINEER LE
		NSI " and the second seco
	(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	STEPHY
	THAT IS BEING CERTIFIED BY THIS SEAL)	
	Attach Additional Sheets	As necessary

Received APR 0 7 2020 Air Permite Section

FORM E	E1
--------	----

TITLE V	GENERAL	INFORMATIC	N

REVISED 06/01/16	NCDEQ/Division of Air Qualit	erate E1	
		FIED AS "MAJOR" FOR TITLE V Y EQUIRED "E" FORMS (E2 THROU	
indicate here if your facility is subject t	o Title V by:		
If subject to Title V by "OTHER", spec	ify why: NS	SPS NESHAP (MACT)	
		THER (speci	
If you are or will be subject to any max 112(d) of the Clean Air Act, specify be EMISSION SOURCE ID	imum achievable control technology standard: low: EMISSION SOURCE DESCRIPTION Emergency Generator and Fire Wat		МАСТ
IES-EG, IES-FWP	Pump Engine	40 CFR 63 Subpart ZZZZ	
List any additional regulation which are the shield should be granted:	e requested to be included in the shield and pro	ovide a detailed explanation as to why	
REGULATION	EMISSION SOURCE (Include ID)	1	EXPLANATION
40 CFR 63 Subpart DDDD as	All sources at site	Wood pellet manufacturing	does not meet the definition of a plywood and
incorporated in 15A NCAC 2D			PCWP) manufacturing facility as defined in §63.2292.
0.1111			entation of the proposed controls for the Dry
			and Pellet Coolers the plant will no longer be a major
		source of HAP. Thus, this re	egulation is not applicable to the Sampson plant.
Comments:			
	Attach	Additional Sheets As Necessary	

Attach Additional Sheets As Necessary

FORM E2 EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
EMISSION SOURCE ID NO.	EMISSION SOURCE DESCRIPTION	OPERATING SCENARIO INDICATE PRIMARY (P) OR ALTERNATIVE (A)	POLLUTANT	APPLICABLE REGULATION						
See attached table following Form E3 for a summary of regulatory requirements and associated compliance requirements for the Dry										
Hammermills, Pellet Mills, and Pellet Coolers.										

Attach Additional Sheets As Necessary

FORM E3 EMISSION SOURCE COMPLIANCE METHOD

REVISED 09/22/16 NCDEQ/	Division Of Air Quality	- Application for	Air Permit to Co	nstruc	t/Operate	E3
Emission Source ID NO. See attached table for		Regulated Pollu	tant			
for a summary of regulatory requirements						
compliance requirements for the Dry Ham Pellet Mills and Coolers.	mermills and					
Alternative Operating Scenario (AOS) NO:		Applicable Regu	lation	_		
	ARATE PAGE TO EX			W CO	MENTO	
ATTACH A SEPA		NG REQUIREME		W COI	MMEN 15	
	MONTORI	NG REQUIREME	13		Note - CAM plans are not re	quired to
Is Compliance Assurance Monitoring (CAN If yes, is CAM Plan Attached (if applicable, Describe Monitoring Device Type: Describe Monitoring Location:				NO	be submitted until the first permit renewal.	
Other Monitoring Methods (Describe In Det	ail):					_
						_
Describe the frequency and duration of mo readings taken to produce an hourly avera		ata will be recorded	(i.e., every 15 mi	inutes,	1 minute instantaneous	
+)						-
						_
2						
	RECORDKEE	PING REQUIRE	AENTO	-		
	THE OUTPHLE					
Data (Parameter) being recording:	-					
Frequency of recordkeeping (How often is a	data recorded?):					
						-
						_
						-
	REPORTIN	IG REQUIREMEN	VIS			
Generally describe what is being reported:	-					
	24					_
						-
<u>1</u>						-
						_
Frequency: MONTHLY OTHER (DE	SCRIBE):	QUARTERLY] E'	VERY 6 MONTHS	
		TESTING				222
Specify proposed reference test method:	-					_
Specify reference test method rule and citation:	-					_
Specify testing frequency:	-			_		-
NOTE - Proposed test metho	d subject to approv	al and possible	change during	g the t	est protocol process	
	Attach Addition	al Sheets As	Necessary			

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Wood-fired Dryer, Green Hammermills, and Dry Hammermills		PM	15A NCAC 02D .0515		Daily monitoring of WESP secondary voltage and current. Inspections and maintenance as recommended by the control device manufacturers, as well as monthly visual inspection of the ductwork and material collection units. Annual inspections of WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution equipment, and replacement of broken equipment as required. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenances, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		VOC, CO, NO _K , PM/PM ₃₀ /PM _{2.5} 15A NCAC 02Q.0317	NO	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour average firebox temperature for each of the two fireboxes comprising the RTO at or above the minimum average temperatures established in the most recent performance test. Daily monitoring of minimum secondary voltage and secondary current for the WESP. Limit throughput to 657,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, hardwood/softwood mix, actual emissions (facility- wide 12-month rolling basis), 3-hour rolling average firebox temperatures for each firebox comprising the RTO, daily WESP secondary voltage and current, date/time/result of inspections and maintenances, results of each inspections, results of maintenance on control devices, any variance from manufacturers ¹ recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.	
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content of wood fuel ensures compliance		
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Pellet Mill Feed Silo	PM/PM10/PM2.5 15A NCAC 02D .0515 ES-PMFS	Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each Inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Any maintenance performed on the cyclones/baghouses within 30 days of a written request by DAQ. Semi-annual progress report and annual compliance certification.		
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Semi-annual progress report and annual compliance certification.
		PM/PM ₁₀ /PM _{2.5}	15A NCAC 02D .0515		Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/bagfilter integrity.	-	Any maintenance performed on the cyclones/baghouses within 30 days of a written request by DAQ. Semi-annual progress report and annual compliance certification.
Pellet Fines Bin & Hammermill Area	ES-PFB & ES- HMA	HAPs	Section 112(g) Case-by- Case MACT		Use of PM control technologies and maintenance of equipment in accordance with manufacturer's specifications and/or standard industry practices.	N/A	N/A
		Opacity 15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Semi-annual progress report and annual compliance certification.	

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
		PM	15A NCAC 02D .0515		inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Finished Product Handling	ES-FPH, ES-PB-1 to -4, ES-PL-1 to 2	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility- wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		PM 15A NCAC 02D .05	15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	inspections and maintenances, results of each	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Pellet Milis and Coolers	ES-CLR-1 to -6	VOC, CO, NO _x , PM/PM ₁₀ /PM ₂₅	15A NCAC 02Q .0317	RTO/RCO	Initial and periodic stack testing for VOC and PM/PM ₁₀ /PM ₂₅ (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 657,000 ODT per consecutive 12-month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst activity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated inlet/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput, hardwood/softwood mix, and actual emissions (facility-wide 12-month rolling basis). Written or electronic log of date/time/result of inspections and	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the cyclones and RTO/RCO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Poliutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Pellet Cooler ES-PCR	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02D .0515	.0515 Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Any maintenance performed on the cyclones/baghouses within 30 days of a written request by DAQ. Semi-annual progress report and annual compliance certification.	
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Semi-annual progress report and annual compliance certification.
Pellet Sampling	ES-PSTB	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02D .0515	Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Any maintenance performed on the cyclones/baghouses within 30 days of a written request by DAQ. Semi-annual progress report and annual compliance certification.
Transfer Bin	201010	Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Semi-annual progress report and annual compliance certification.
Hammermili Conveyor	ES-HMC-1	PM/PM ₁₀ /PM _{2.5}	15A NCAC 02D .0515		Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date and time of each inspection, results of inspection and maintenance, and variance from manufacturer's recommendation.	Any maintenance performed on the cyclones/baghouses within 30 days of a written request by DAQ. Semi-annual progress report and annual compliance certification.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Semi-annual progress report and annual compliance certification.
		PM	15A NCAC 02D .0515		Initial stack testing. Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
Dried Wood Handling	ES-DWH	VOC 15A NCAC 02Q .0317 Bagho	Baghouses	Initial stack testing (completed).	Written or electronic log of actual criteria pollutant emissions (facility-wide 12-month rolling basis).	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Make log of facility-wide 12-month rolling actual emissions for criteria pollutants available to DAQ upon request.	
			НАР	15A NCAC 02Q .0308(a)		Initial stack testing.	N/A
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting	
Emergency IES-ES Generator IES-ES	IES-ES	PM, CO, NO _v , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirement are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operate of each engine.	Annual Compliance Certification	
		SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of fuel a	chieves compliance	h	
		Opacity	15A NCAC 02D .0521	N/A	N/A	N/A	N/A	
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements above and no other requirements apply.	Comply with the NSPS requirements above and no other requirements apply.	Annual Compliance Certification	
Fire Water Pump	IES-FWP	PM, CO, NO _x , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirement are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operate of each engine.	Annual Compliance Certification	
		SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of fuel achieves compliance			
		Opacity	15A NCAC 02D .0521	N/A	N/A	N/A	N/A	
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements above and no other requirements apply.	Comply with the NSPS requirements above and no other requirements apply.	Annual Compliance Certification	
		PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A	
Furnace Bypass	ES-FBYPASS	VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317		Limit hours of furnace bypass to 50 per year for cold start- ups. Limit heat input during cold start-up to no more than 37.6 MMBtu/hr. Limit duration of cold start-up to 8 hours or less. Limit hours of operation in idle mode to 500 hours per year. Limit heat input during idle to 10 MMBtu/hr.		Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.	
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	

			OCOLUCE V	COMPLIANCE SCHEDULE	
VISED 09/22	2/16	NCDEQ/Division of	Air Quality - Ap	plication for Air Permit to Construct/Operate	E
	COMPLIA	NCE STATUS	NITH RESPE	CT TO ALL APPLICABLE REQUIREMENTS	
		our facility be in com		applicable requirements at the time of permit issuance and continue to)
1,7	YES	✓ NO		plete A through F below for each requirement for which is not achieved.	
Will your fac timely basis?		nce with all applicable	e requirements ta	aking effect during the term of the permit and meet such requirements	on
-	YES	NO NO		plete A through F below for each requirement for which is not achieved.	
If this applica requirements		fication of existing er	missions source(s), is each emission source currently in compliance with all applicable	
	YES	NO NO		plete A through F below for each requirement for which is not achieved.	
	A. Emission Sou	rce Description (Incl	ude ID NO.)	ES-HM-1 through ES-HM-8	
				cause this limit was based on erroneous data supplied to DAQ.	
	To be determ	ined based on disc the Sampson plant	cussions with D	nieved with this applicable requirements: AQ. Upon implementation of the changes proposed in this e a major source with respect to the PSD permitting program and	l th
	To be determ application, f	ined based on disc the Sampson plant	cussions with D	nieved with this applicable requirements: AQ. Upon implementation of the changes proposed in this	l th
	To be determ application, t limit will no l D. Detailed Sche <u>Step(s)</u>	ined based on disc the Sampson plant	cussions with D will no longer b	nieved with this applicable requirements: AQ. Upon implementation of the changes proposed in this e a major source with respect to the PSD permitting program and Date Expected	l thi
	To be determ application, (limit will no l D. Detailed Sche <u>Step(s)</u> To be determ	ined based on disc the Sampson plant onger apply.	cussions with D will no longer b cussions with D	AQ.	i th
	To be determ application, (limit will no l D. Detailed Sche <u>Step(s)</u> To be determ	nined based on disc the Sampson plant onger apply. edule of Compliance: nined based on disc	cussions with D will no longer b cussions with D	AQ.	<u>1 thi</u>

FORM E4

		EMISSION	SOURCE COMPLIAN	CE SCHEDULE
VISED 09/22/1	6	NCDEQ/Division of	Air Quality - Application for Air	Permit to Construct/Operate
	COMPLIA	NCE STATUS	WITH RESPECT TO ALL A	PPLICABLE REQUIREMENTS
Will each emir				ments at the time of permit issuance and continue to
	iese requiremen	•		
	YES	V NO	If NO, complete A through F compliance is not achieved.	below for each requirement for which
Will your facili timely basis?	ty be in compliar	nce with all applicabl	e requirements taking effect during	g the term of the permit and meet such requirements or
	YES	NO NO	If NO, complete A through F compliance is not achieved.	below for each requirement for which
If this applicati requirements?		fication of existing er	nissions source(s), is each emissi	on source currently in compliance with all applicable
Ę	YES	V NO	If NO, complete A through F compliance is not achieved.	below for each requirement for which
1	A. Emission Sou	Irce Description (Incl	ude ID NO.) ES-CLR-1	through ES-CLR-6
C	To be determ application, t	nined based on disc the Sampson plant		oplicable requirements: mentation of the changes proposed in this e with respect to the PSD permitting program and t
		longer apply.		
I				
	<u>Step(s)</u> To be detern	edule of Compliance	cussions with DAQ.	Date Expected TBD
1	To be determ	nined based on disc		

FORM E4

FORM E5

	TITLE V COMPLIANCE CERTIFICATION (Required)
REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate
In accordance with the p	provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company official of:
SITE NAME:	Enviva Pellets Sampson, LLC
SITE ADDRESS:	5 Connector Road, US 117
CITY, NC :	Faison, NC
COUNTY:	Sampson
PERMIT NUMBER :	<u>N/A</u>
	eck the appropriate statement(s):
In accordance wit	th the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed In meets the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to
The facility is not a If this box is check	currently in compliance with all applicable requirements ked, you must also complete Form E4 "Emission Source Compliance Schedule"
The undersigned certifies u based on information and b	inder the penalty of law, that all information and statements provided in the application, belief formed after reasonable inquiry, are true, accurate, and complete.
Signature of respon	Date: 3/31/20
Matt Cutshall, Director Name, Title of respo	Manufacturing onsible company official (Type or print)

Attach Additional Sheets As Necessary

Received APR 0.7 ZUZU Air Permits Section

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	f Air Quality - /	Application fo	or Air Permit to	Construct/Op	erate	1	В
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-GHM-1, 2, 3						
Green Wood Hammermills			CONTROL DEVICE ID NO(S): CD-WESP and CD-RTO					
OPERATING SCENARIO1OF1				EMISSION PO	DINT (STACK)	D NO(S): EP-	-1	
DESCRIBE IN DETAIL THE EMISSION SOURCE PROCES Green wood chips are processed in the green wood han		LOW DIAGRA	M):					
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE A	PPROPRIATE	FORM B1-B9	ON THE FOLL	OWING PAGE	S):	
Coal,wood,oil, gas, other burner (Form B1)			ing (Form B4)				atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)			ishing/printing			on (Form B8)	5 (,
Liquid storage tanks (Form B3)	Storage sil	os/bins (Form	B6)	J Other (Fr	orm B9)			
START CONSTRUCTION DATE: 2016			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO .: West Salem Machinery	#4888SP		EXPECTED (OP. SCHEDULE	: _24 HR/DA	Y _7 DA'	Y/WK52_ W	K/YR
	SUBPARTS?):		NESH/	AP (SUBPARTS	?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25% MA	R-MAY 25%	JUN-AUG 25	% SEP-NO	√ 25%			
CRITERIA AIR P	OLLUTAN	TEMISSION	IS INFORM	ATION FOR	R THIS SOU	RCE		
		SOURCE OF	EXPECTE	ED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER <10 MICRONS (PM _{1D}) PARTICULATE MATTER<2.5 MICRONS (PM _{2S}) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER				Calculations)		
HAZARDOUS AIR	POLLUTA	NT EMISSIONS INFORMATION FOR THIS SOURCE						
		SOURCE OF				1		
		EMISSION	<u> </u>	ROLS / LIMITS)	(BEFORE CONT		(AFTER CONTR	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				a Calculations i		5		
TOXIC AIR PO	LLUTANT		INFORMA	TION FOR	THIS SOUR	CE	N/N/200121	
		EMISSION					ROLS / LIMITAT	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		o/hr	lb/c	ау	lb/	yı
Attachments: (1) emissions calculations and supporting documentati	nn: (2) indicate		a and fadoral on		Calculations			storike kow

these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-GHM-1, 2, 3					
Green Wood Hammermills		CONTROL DEVICE ID NO(S): CD-WESP and CD-RTO					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-1					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA]			
Green wood chips are processed in the green wood hammerm	nills.						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED (
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(U	NII/HR)			
Green Wood	ODT	120					
	-						
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED (CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	IT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):					
FUEL USED: N/A	TOTAL MAX	KIMUM FIRING RATE (MILLION	I BTU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL U	JSE: N/A				
COMMENTS:							

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NC	DEQ/Division	of Air Quality - /	Application fo	r Air Permit to	Construct/Opera	te		В
EMISSION SOURCE DESCRI	PTION:		EMISSION SOURCE ID NO: ES-DRYER						
Green Wood Direct-Fired Ro	tary Dryer System				·				
			CONTROL DEVICE ID NO(S): CD-WESP, CD-RTO						
OPERATING SCENARIO	1OF1		2		EMISSION PC	INT (STACK) ID I	NO(S): EP-1		
DESCRIBE IN DETAILTHE E									
Green wood is conveyed to a									
cyclones. Particulate matter			l utilizing a wet	electrostatic	precipitator (W	ESP). A regeneration	ative therma	oxidizer (RTC) will be
added following the WESP to	provide further VOC and I	HAP removal.							
	PE OF EMISSION SOURCE				FORM B1-B9				
Coal,wood,oil, gas, other b		님		ing (Form B4)	-			tings/inks (Forr	m B7)
Int.combustion engine/gen				ishing/printing			(Form B8)		
Liquid storage tanks (Form			Storage sile	os/bins (Form		Other (Forn	n B9)		
START CONSTRUCTION DA				DATE MANU					() ()
MANUFACTURER / MODEL N				EXPECTED		:24HR/DAY		WK _52_ WI	K/YR
IS THIS SOURCE SUBJECT		(SUBPARTS?)				P (SUBPARTS?)			
PERCENTAGE ANNUAL THE	CRITERIA AIR						NE .		
and the second second second second	CRITERIA AIR	FULLUTAN						FILLOOIONO	
			SOURCE OF		ED ACTUAL			EMISSIONS	
			EMISSION		ROLS / LIMITS)	(BEFORE CONTRO			ROLS / LIMITS)
AIR POLLUTANT EMITTED	<u>\</u>		FACTOR	lb/hr	tons/yr	lo/nr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM	<i>.</i>		4						
PARTICULATE MATTER<10	1								
PARTICULATE MATTER<2.5 SULFUR DIOXIDE (SO2)			4						
			-			n Calculations in			
NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)			-		See Emission	r calculations in	Appendix D		
VOLATILE ORGANIC COMPO			-						
LEAD			-						
OTHER			4						
OTTIER	HAZARDOUS A	P POLITITA	NT EMISSI	ONS INFOR	MATION FO	OR THIS SOLL	RCF	Can the Lot of the	
	TALANDOOS A	TOLLOIP	SOURCE OF		D ACTUAL	1		EMISSIONS	
			EMISSION		TROLS / LIMITS)	(BEFORE CONTRO			ROLS / LIMITS)
HAZARDOUS AIR POLLUTA	NT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				120110	1 tonor ji		- control y i		
			1						
			1						
		-	1		See Emission	n Calculations in	Appendix D		
		1	1						
			1						
	TOXIC AIR P	OLLUTANT	EMISSIONS	S INFORMA	TION FOR	THIS SOURCE		S. S. M	JEUN VERS
	Terre fait		SOURCE OF	1		L EMISSIONS AF			TIONS
			EMISSION	EXP	ECTED ACTUA	L EMISSIONS AF	TER CONTR	KOLS / LIMITA	TUNS
TOYIC AIR BOLLUTANT		CAS NO.			o/hr	lb/da		Ib)/yr
TOXIC AIR POLLUTANT		CAS NU.	FACTOR	1 1	3/11	L ib/da	y		<i></i>
		·	-						
			1		See Emission	n Calculations in	Annendiy D		
	-		966 Lilliaalui	- valvulativii3 III	Appendix D				
			1						
Attachments: (1) emissions calcula	ations and supporting documenta	tion: (2) indicate a	I requested state :	and federal enfor	ceable permit limi	ts (e.a. hours of one	ration emission	rates) and desc	ribe how these

are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACK APPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

FORM B1

......

REVISED 09/22/16	ION 5	•						D BURNER)	B1
EMISSION SOURCE DESCRI	PTION: 0	Freen Wood Dir	ect-Fired Rotan	y Dryer	ion for Air Permit to Construct/Operate B1 EMISSION SOURCE ID NO: ES-DRYER				
System				,, ,	EMISSION SOC		. ES-DRTI		
					CONTROL DEVICE ID NO(S): CD-WESP and CD-RTO				
OPERATING SCENARIO:	1 OF 1				EMISSION POI	NT (STACK) ID NO(S):	EP-1	
DESCRIBE USE: 🛛 🖓 PRO	CESS HE	AT	SPACE HEAT	r		ELECTRIC	AL GENER	ATION	
	TINUOUS	S USE	STAND BY/E	MERGENCY	(OTHER (D	ESCRIBE):		
HEATING MECHANISM:		INDIRECT	1	DIRECT					
MAX. FIRING RATE (MMBTU	HOUR):	250.4	1110						
			····· ,		BURNER				
WOOD TYPE: BAI		WOOD/BARK		JOD			_	OTHER (DESCRIB	(E):
PERCENT MOISTURE OF FU		to 50%							
	ED	CONTROL	LED WITH FLY	ASH REINJE			_	ROLLED W/O REIN	JECTION
FUEL FEED METHOD: N/A			EAT TRANSI			STEAM	AIR	OTHER (DESCRIBE)	
		15 154.00	COA	L-FIRED	BURNER	13 640 970	15-82-02		
TYPE OF BOILER		IF OTHER DES	CRIBE:	r					
PULVERIZED OVERFEED S			ED STOKER		SPREADER STO	OKER		LUIDIZED BED	
					ONTROLLED			CIRCULATING	
	LLED		LED		ASH REINJECTIO			RECIRCULATING	
					LYASH REINJE	CTION			
	-				D BURNER		and the second	and the second	
TYPE OF BOILER:			DUSTRIAL						
TYPE OF FIRING:	NORM					>	NOL	OW NOX BURNER	
		100 M 10 10 10 10 10	UTHER	FUEL-FI	RED BURNER				
TYPE(S) OF FUEL:						1			
TYPE OF BOILER:		_			VIERCIAL	I		TUTIONAL	
TYPE OF FIRING:	121 E 8 7 8		F CONTROL(S)		ARTUP/BACI		181		
	-	IULL			MUM DESIGN			REQUESTED C/	APACITY
FUEL TYPE		UNITS			CITY (UNIT/HR)			LIMITATION (U	
Bark/Wet Wood	-	tons			30		_	· · · · · · · · · · · · · · · · · · ·	
			6				_		
	FU	EL CHARAC	TERISTICS (COMPLE	TE ALL THA	T ARE AF	PLICAB	LE)	
			Y	SPECIFIC			CONTENT	ASH CO	NTENT
FUEL T	TYPE			BTU CONTE	ENT	(% BY V	VEIGHT)	(% BY W	(EIGHT)
Bark/We	t Wood		Nor	minal 4,200	BTU/lb	0.0	011		
SAMPLING PORTS, COMPLI	ANT WITH	HEPA METHOD	1 WILL BE INS	TALLED ON	THE STACKS		YES] 🗌 NO	1
COMMENTS:									

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	Application fo	or Air Permit t	o Construct/Operate	(i)	B	
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO: ES-HM-1 th	rough 8		
Eight (8) Dry Hammermills			CONTROL DEVICE ID NO(S): CD-HM-BH-1 through 8, CD				, CD-WESP,	
				CD-RTO	()			
OPERATING SCENARIO1OF	1				OINT (STACK) ID NO(S); E	P-1		
DESCRIBE IN DETAIL THE EMISSION SOURCE PROC	ESS (ATTAC	H FLOW DIAG	RAM):					
Dried materials are reduced to the appropriate size n				mermills.				
TYPE OF EMISSION SOURCE (HECK AND	COMPLETE A	PPROPRIATE	FORM B1-B	9 ON THE FOLLOWING PA	GES):		
Coal,wood,oil, gas, other burner (Form B1)		Woodwork	Woodworking (Form B4) Manuf. of chemicals/coatings/inks (Form B					
Int.combustion engine/generator (Form B2)		Coating/fir	nishing/printing	g (Form B5)	Incineration (Form B8))		
Liquid storage tanks (Form B3)			los/bins (Form		Other (Form B9)			
START CONSTRUCTION DATE: 2016			DATE MANU	FACTURED:				
MANUFACTURER / MODEL NO .: West Salem Machin			EXPECTED (OP. SCHEDUL	E: _24 HR/DAY _7 D	AY/WK _52_	WK/YR	
	(SUBPARTS'				AP (SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE								
CRITERIA AIR PO	DLLUTAN	EMISSION	IS INFORM	MATION FC	R THIS SOURCE	Statistics (V		
		SOURCE OF	EXPECTE	D ACTUAL	POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)								
PARTICULATE MATTER<10 MICRONS (PM10)								
PARTICULATE MATTER<2.5 MICRONS (PM2.5)]						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)		1	See Emission Calculations in Attachment D					
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VOC)		1						
LEAD								
OTHER	DOLLUTA							
HAZARDOUS AIR	POLLUTA	NT EMISSIONS INFORMATION FOR THIS SOURCE						
		SOURCE OF				EMISSIONS		
	646 NO	EMISSION		ROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)	(AFTER CONT		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr	
		4						
		-						
		-						
		1	S	ee Emission	Calculations in Attachment	D		
		1						
		{						
		1						
TOXIC AIR POL	LIITANT	MISSIONS	INFORM	TION FOR	THIS SOURCE			
TOXIC AINTON	LUTANT	SOURCE	IN ONIN	THOM FOR	THIS SOURCE	C. Brocksell		
		OF	EXPEC	TED ACTUAL	EMISSIONS AFTER CONT	ROLS / LIMIT/	ATIONS	
		EMISSION						
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/day	Ib	/yr	
	GAG NO.	TACTOR	10	7111	lb/uay		/yı	
		1						
		1						
		1	5	ee Emission (Calculations in Attachment	D		
	1	-			-			
		1						
Attachments: (1) emissions calculations and supporting documer	tation; (2) indica	ate all requested	state and federa	al enforceable pe	mit limits (e.g. hours of operatio	n, emission rates	s) and describe	

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/O	perate	B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-HM-1 thru 8					
Eight (8) Dry Hammermills		CONTROL DEVICE ID NO(S): CD-HM-BH-1 through 8, CD- WESP, CD-RTO					
OPERATING SCENARIO: _1OF1		EMISSION POINT (STACK) ID NO(S): EP-1					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA							
Dried materials are reduced to the appropriate size needed fo							
MATERIALS ENTERING PROCESS - CONTINUOUS PR		MAX. DESIGN		CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)			
Dried Wood	ODT	120					
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTE	O CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L				
			`				
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):					
FUEL USED: N/A	TOTAL MAX	(IMUM FIRING RATE (MILLION	I BTU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL U	JSE: N/A				
COMMENTS:							

	FORM	I C1	
NTROL	DEVICE (FABRIC	FILTER)

	ROL DEVICE (F				-			
	Air Quality - Applicati							C1
	OLS EMISSIONS FRO			N SOUR				
	ON IN SERIES OF CO	NTRO	LS		NO	1 OF	3	UNITS
OPERATING SCENARIO:	19 24 21							
1OF1 DESCRIBE CONTROL SYSTEM:	P.E. SEAI	REQ	JIRED (PER 20	ר (0112. p	v	YES		NO NO
Eight (8) baghouses are utilized for emission control on the	eight (8) dry hamme	rmill cy	yclones.					
POLLUTANTS COLLECTED:	РМ	_	PM ₁₀	<u>F</u>	PM _{2.5}			
BEFORE CONTROL EMISSION RATE (LB/HR):		_						
CAPTURE EFFICIENCY:		_%		%		%		%
CONTROL DEVICE EFFICIENCY:	99	_%	99	%	99	%		%
CORRESPONDING OVERALL EFFICIENCY:		%		%		_%		%
EFFICIENCY DETERMINATION CODE:		_						
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):	See calc	lation	s in Attachme	nt D				
	UGE? 🔽 YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05			ATURE (°F):		120			
POLLUTANT LOADING RATE: 0.1 gr/cf in LB/HR 🗸 GR/F			ERATURE (°F)		100)		
INLET AIR FLOW RATE (ACFM): 15,000		PERA	TING TEMP (°	-				
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER CO						G (IN.): 120		
NO. OF CARTRIDGES: FILTER SURFACE AR				DIAME	TER OF I	BAG (IN.): 8	5.75	
	CLOTH RATIO: 6.90	_				15/01/21		
	ED/POSITIVE		FILTER MA	ERIAL:	DAD	WOVEN		FELTED
						-	_	
AIR PULSE SONIC					IZE	WEIGH		CUMULATIVE %
	E BAG COLLAPSE				RONS)	OF TC		
	BAG COLLAPSE				0-1	See cal	culation	s in Appendix D.
					-10			
DESCRIBE INCOMING AIR STREAM: The air stream contains wood dust particles. Larger particl	les are removed by th	a une	tream cyclone	<u> </u>	0-25			· · · · · · · · · · · · · · · · · · ·
for product recovery.	oo are removed by ti	a aha	a sum sysione		5-50			
···· ·································					-100			
				<u> </u>	100		TOTA	1 = 100
				<u> </u>			TOTA	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING TH					ITS EMI	SION SOL	RCE(S)	
IONA OLI ADATE FAGE, ATTAOLIA DIAGDANI SHOWING TH	L RELATIONOTHE OF	1116-1	SS. THOLDE					

FORM C2 CONTROL DEVICE (Electrostatic Precipitator)

REVISED 09/22/16	NCDEQ/Divis	ion of Air Quality - App	lication for Air Permit to Construct/C	Operate				C2	
	00 4/500		CONTROLS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-DRYER, ES-GHM-						
CONTROL DEVICE ID NO:			through -3, and ES-DHM-1 through		4	05			
EMISSION POINT (STACK)	ID NO(5): EP-1		POSITION IN SERIES OF CONTROL			OF	2	UNITS (ES-DRYER-1)	
			POSITION IN SERIES OF CONTRO POSITION IN SERIES OF CONTRO		1 2	OF OF	2	UNITS (ES-GHM-1 through UNITS (ES-DHM-1 through	
MANUFACTURER: Te	al Sales, Inc.			L NO.		UF	2	UNITS (ES-DHM-) mough	
	PERATING SCENARIO:	States Minessee	MODEL NO.						
OPERATING SCENA	the second se	OF1	P.E. SEAL REQUIRED (PER 2Q .01	12\2	1	YES		NO	
DESCRIBE CONTROL SYST			IT.E. OEKE REGOMED (I ER 2@.01	127:	Ľ	120		NO	
		d Dry Hammermills are	controlled by the WESP. The WESP	reduce	s emi	ssions	of PM,	metal HAP, and HCI	
EQUIPMENT SPECIFICATIO	DNS	Street and	GAS DISTRIBUTION GRIDS:		V	YES	Г	NO	
TYPE:	WET	DRY	SINGLE-STAGE			TWO	-STAG	E	
TOTAL COLLECTION PLATE	E AREA (FT ²): 29,904		NO. FIELDS 2 NO. COLLE	CTOR F	LATE	S PER	FIELD	567 tubes	
COLLECTOR PLATE SIZE (T): LENGTH:	WIDTH:	SPACING BETWEEN COLLECTOR	PLATES	(INCI	HES): 1	2" he	ctube	
TOTAL DISCHARGE ELECT	RODE LENGTH (FT): 19	9"-0"	GAS VISCOSITY (POISE): 2.054E-0)4 Poise					
NUMBER OF DISCHARGE E	LECTRODES: 567		NUMBER OF COLLECTING ELECTI	RODE R/	APPE	RS: no	one		
MAXIMUM INLET AIR FLOW	/ RATE (ACFM): 117,0	00	PARTICLE MIGRATION VELOCITY	(FT/SEC): 0.2	234			
MINIMUM GAS TREATMEN	T TIME (SEC): 2.3		BULK PARTICLE DENSITY (LB/FT ³)	: 45 lb/	cr. Ft.				
FIELD STRENGTH (VOLTS)	CHARGING: 83kVA	OLLECTING: N/A	CORONA POWER (WATTS/1000 CF	-M): 400	0				
ELECTRICAL USAGE (KW/H	IOUR): 141.5						_		
CLEANING PROCEDURES:	RAPPING	PLATE VIB	RATING WASHING	OTHER					
OPERATING PARAME	I THEODOTHE	DROP (IN. H20): MIN				YES		NO	
RESISTIVITY OF POLLUTAI	NT (OHM-CM): N/A		GAS CONDITIONIN YES NO) TYPE	OF A	GENT (IF YES)	
INLET GAS TEMPERATURE	(°F): 240 °F nominal		OUTLET GAS TEMPERATURE (°F): 180 °F Nominal						
VOLUME OF GAS HANDLED	D (ACFM): 117,000		INLET MOISTURE PERCENT:	MIN 40)%	MAX	50%		
POWER REQUIREME	IS AN ENER	RGY MANAGEMENT SY	STEM USED? YES	NO					
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER (kVA)	E	ACH	RECTIF	IER K	/ Ave/Peak Ma Dc	
1	1		118				83 / 12	265	
2	1		118	<u> </u>			83 / 12	265	
						_	_		
POLLUTANT(S) COLLECTE		PM / PM ₁₀ / PM _{2.5}		-					
BEFORE CONTROL EMISS	ON RATE (LB/HR):			-					
CAPTURE EFFICIENCY:		%	%	- %				%	
CONTROL DEVICE EFFICIE		95 %	%	-%				%	
CORRESPONDING OVERAI		%	%	%				%	
EFFICIENCY DETERMINATI				-					
TOTAL AFTER CONTROL E	MISSION RATE (LB/HR)	See calculations in Ap	pendix D						
PART	ICLE SIZE DISTRIBUTIO	N	DESCRIBE STARTUP PROCEDURE	S:					
SIZE	WEIGHT %	CUMULATIVE	Refer to previous submittal.						
(MICRONS)	OF TOTAL	%							
0-1			DESCRIBE MAINTENANCE PROCE	DURES:					
1-10			Refer to previous submittal.						
10-25									
25-50			DESCRIBE ANY AUXILIARY MATER	RIALS IN	TROE	DUCED	INTO 1	THE CONTROL	
50-100			SYSTEM						
>100									
		L = 100							
DESCRIBE ANY MONITORI	NG DEVICES, GAUGES,	OR TEST PORTS AS A	ATTACHMENTS: PLC						
COMMENTS:									
			TH DIMENSIONS (include at a minimur SHIP OF THE CONTROL DEVICE TO	•		-			
			al Sheets As Necessary						

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Divisi	on of Air Quali	ty - Applic	ation for Air Permit to Constru	ict/Operate		C3			
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FO	RM MUST BE S	SEALED E	Y A PROFESSIONAL ENGINE	ER (P.E.) LICENSE	D IN NORTH	CAROLINA.			
CONTROL DEVICE ID NO: CD-RTO	CONTROLS E		S FROM WHICH EMISSION SOL	JRCE ID NO(S): ES	-DRYER, ES-	GHM-1 through -3, ES-			
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN S		F CONTROLS	NO. 2	OF 2	UNITS (ES-DRYER-1)			
	POSITION IN S			NO. 2	OF 2	UNITS (ES-GHM-1 through 1			
	POSITION IN S	SERIES O	F CONTROLS	NO. 3	OF 3	UNITS (ES-DHM-1 through B			
MANUFACTURER: TSI, Inc.	МО	DEL NO:							
OPERATING SCENARIO:									
1OF1									
TYPE 🔄 AFTERBURNER 🔽 REGENERATIVE THE			RECUPERATIVE THERMA		CATALY	TIC OXIDATION			
			IG WHEN CATALYST NEEDS F						
				ROUS COMPOUND		HEAVY METAL			
TYPE OF CATALYST: CATALYST VOL			VELOCITY THROUGH CATAL	YST (FPS)		NONE			
SCFM THROUGH CATALYST:	= () +).								
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO O Emissions leaving the WESP enter the RTO prior to being em				ACH DIAGRAM OF \$	SYSTEM:				
POLLUTANT(S) COLLECTED:	VOC		HAP						
BEFORE CONTROL EMISSION RATE (LB/HR):									
CAPTURE EFFICIENCY:	7	%	%	%		%			
CONTROL DEVICE EFFICIENCY:	95	%	95 %	%		%			
CORRESPONDING OVERALL EFFICIENCY:		%	%	%		%			
EFFICIENCY DETERMINATION CODE:									
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See calculation	ins in App	endix D						
PRESSURE DROP (IN. H ₂ O): MIN MAX		OUTLE	T TEMPERATURE (°F):	MIN		MAX			
INLET TEMPERATURE (°F): MIN MAX		RESID	ENCE TIME (SECONDS):						
INLET AIR FLOW RATE (ACFM): (SCFM):		COMBUSTION TEMPERATURE (°F):							
COMBUSTION CHAMBER VOLUME (FT ³):		INLET	MQISTURE CONTENT (%):						
% EXCESS AIR:		CONC	DUTLET						
AUXILIARY FUEL USED: Natural Gas and/or Propane		TOTAL	. MAXIMUM FIRING RATE (MILL	ION BTU/HR): 45.2					
DESCRIBE MAINTENANCE PROCEDURES: TBD									
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO N/A	THE CONTRO	LSYSTEN	n:						
COMMENTS:									

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCD	EQ/Division o	f Air Quality - /	Application for	r Air Permit to	Construct/Op	erate	,	В
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES-CLR1 through 6						4	
Pellet Presses and Pellet Coolers		CONTROL DEVICE ID NO(S): CD-CLR-1 through 6						
OPERATING SCENARIO 1 OF	1	EMISSION POINT (STACK) ID NO(S): EP-29 (new)						
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCE				LINIGOIOINT		о но(о). Ц	20 (11047)	
Six (6) Pellet Coolers follow the twelve (12) Pellet Mills	to cool the n	ewly formed pe	ellets down to	-				
TYPE OF EMISSION SOURCE	(CHECK AND			FORM B1-B9				
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4)				atings/inks (Fo	vrm B7)
Int.combustion engine/generator (Form B2)		-	hishing/printing			ion (Form B8)		
Liquid storage tanks (Form B3)		Storage si	los/bins (Form		✓ Other (Feedback)	orm B9)		
START CONSTRUCTION DATE: 2016			DATE MANUF					
MANUFACTURER / MODEL NO .: Bliss 14-393-6A Cool			EXPECTED O	P. SCHEDUL	E: _24 HR/D/	AY _7_ DA	Y/WK _52 \	WK/YR
IS THIS SOURCE SUBJECT TO? NSPS	(SUBPARTS?):		NESH/	AP (SUBPARTS	\$?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25% MAR-	MAY 25% JI	JN-AUG 25%	SEP-NOV	25%			
CRITERIA AIR F	OLLUTAN	T EMISSION	IS INFORM	ATION FO	R THIS SOU	RCE	N DERGI	1.
		SOURCE OF		D ACTUAL	1		EMISSIONS	
		EMISSION	(AFTER CONT		(BEFORE CONT			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	Ib/hr	tons/yr
PARTICULATE MATTER (PM)		- THOTOIL	10/11	torioryi	10/11	torioryi	1.5/11	toriory
PARTICULATE MATTER<10 MICRONS (PM10)		1						
PARTICULATE MATTER<2.5 MICRONS (PM25)		-						
SULFUR DIOXIDE (SO2)		-						
NITROGEN OXIDES (NOx)					Coloriations in		-	
		See Emission Calculations in Attachment D						
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VOC)		4						
LEAD								
OTHER		L						
HAZARDOUS AIR	POLLUTA				OR THIS SC	URCE	SV PERIOD	2 2 PO-16
		SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS						
		EMISSION	(AFTER CONTR	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
			S	ee Emission	Calculations ir	Attachment	D	
							-	
TOXIC AIR PC	LLUIANI		INFORMA	TION FOR	THIS SOUR	CE	- 00- 04- 14	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		EMISSION	EXPEC	CTED ACTUA	EMISSIONS A	AFTER CONT	ROLS / LIMITA	TIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb/	/hr	lb/c	lav	ib	/yr
			10.		1			
			S	iee Emission	Calculations ir	a Attachment	D	
Attachments: (1) emissions calculations and supporting document	ation; (2) indicate	e all requested sta	ate and federal e	nforceable perm	it limits (e.g. hour	s of operation, e	mission rates) ar	nd describe how

these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	Application	for Air Permit to Construct/Op	erate B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-CLR-1 through 6				
Pellet Presses and Pellet Coolers]	CONTROL DEVICE ID NO(S): CD-CLR-1 through 6, CD-RCO				
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID	NO(S): EP-29 (new)			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA	\M):					
Six (6) Pellet Coolers follow the twelve (12) Pellet Mills to cool	the newly fo	rmed pellets down to an accep	otable storage temperature.			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	DCESS	MAX. DESIGN	REQUESTED CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Dried Wood	ODT	120				
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTED CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX					
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				
REQUESTED LIMITATION (BATCHES / HOUR): FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	TOTAL MAX	MUM FIRING RATE (MILLION				

REVISED 09/22/16		ision of Air Qu							
ONTROL DEVICE ID NO: CD MISSION POINT (STACK) ID NO(S		-		F CONTROLS	1 EIVIISS	NO. 1		O(5): E	S-CLR-1 through 6 UNITS
	IG SCENARIO:	POSITION IN	SERIES U	F CONTROLS		NO. 1			UNIT 5
1	OF 1		P.E. SEAL	REQUIRED (F	ER 2Q	.0112)?	I ک	ES	
ESCRIBE CONTROL SYSTEM									
chaust from the Pellet Mills a rclone. The cyclones operate fimarily in catalytic mode wit n emissions during thermal n	e under negative pre h thermal (RTO) mod	ssure. A new	RTO/RCO	will be installe	d down	stream of t	he exist	ing cyc	lones that will operate
OLLUTANT(S) COLLECTED:			PM	PM ₁₀		PM _{2.5}			
FORE CONTROL EMISSION	RATE (LB/HR):								
APTURE EFFICIENCY:				%	%		%		%
ONTROL DEVICE EFFICIENC	Y:		90+	% 90+	%	90+	_%		%
ORRESPONDING OVERALL	DNDING OVERALL EFFICIENCY:			%	%		%		%
FICIENCY DETERMINATION	CODE:							_	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR): See Emissions Calculations in Appendix D.									
RESSURE DROP (IN. H ₂ 0):	MIN	6.0"_ MAX							
LET TEMPERATURE (°F):	MIN	MAX /	Ambient	OUTLET TEM	PERATI	JRE (°F):		MIN	MAX Ambient
LET AIR FLOW RATE (ACFM): 16,746 each			BULK PARTIC	LE DEN	SITY (LB/F	T ³): 2.8	6E-05	
OLLUTANT LOADING RATE (GR/FT ³): 0.2								
SETTLING CHAMBER			CYCLONE	1				_	MULTICYCLONE
ENGTH (INCHES):	INLET VELOCITY (NO. T		
IDTH (INCHES):	DIMENSIONS (IN		ructions	IF WET SF		TILIZED			F TUBES:
EIGHT (INCHES):	H: 38	Dd: 22		LIQUID USED:			1		IRATION SYSTEM?
ELOCITY (FT/SEC.):	W: 25	Lb: 74.25		FLOW RATE	100		U Y		□ NO
D. TRAYS:	De: 32	Lc: 84.5		MAKE UP RAT	MAKE UP RATE (GPM): LOL				_
D. BAFFLES:	D: 54	S: 44.38						YES	
	TYPE OF CYCLON	E 🗌 CONVEN	TIONAL	🖸 нісн в	FFICIEN	NCY		OTHER	
ESCRIBE MAINTENANCE PR						TB. Vale	PARTIC	LE SIZE	DISTRIBUTION
eriodic inspection of mechar anufacturer.	lical integrity during	plant outages	as specifi	ed by	(M	SIZE IICRONS)		GHT % FOTAL	CUMULATIVE %
ESCRIBE INCOMING AIR STR						0-1			Unknown
e cyclones are used to capt		n the pellet pre	sses and	coolers. Each		1-10			
clone is ducted to a dischar	ge stack.					10-25			
					-	25-50			
						50-100	1		
					-	>100			
						- 100			TOTAL = 100
	DEVICES, GAUGES,	TEST PORTS,	ETC:						
DESCRIBE ANY MONITORING									

FORM C4

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

		my repende	don for An Terrine a	o Construct/Operate		C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FO	RM MUST BE	SEALED BY	A PROFESSIONAL	ENGINEER (P.E.) LICENS	ED IN NORTH	CAROLINA.
CONTROL DEVICE ID NO: CD-RCO		EMIRCIONE				- h 8
EMISSION POINT (STACK) ID NO(S): EP-29 (new)	POSITION IN			SION SOURCE ID NO(S): E NO. 2	OF 2	UNITS
				NU. <u>2</u>		
MANUFACTURER: TBD OPERATING SCENARIO:		ODEL NO: TE				
1 OF 1						
TYPE AFTERBURNER V REGENERATIVE THE				THERMAL OXIDATION	CATALY	TIC OXIDATION
				NEEDS REPLACMENT:	U CATALI	TIC OXIDATION
CATALYST MASKING AGENT IN AIR STREAM	GEN	SILICO	NE 🔄 PH	HOSPHOROUS COMPOUN		HEAVY METAL
	COMPOUND		OTHER (SPECIFY			NONE
TYPE OF CATALYST: CATALYST VOL	. (FT°):		VELOCITY THROUG	H CATALYST (FPS):		
SCFM THROUGH CATALYST: DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO O					OVETEM	
Emissions leaving the Pellet Cooler cyclones will enter the R the RTO/RCO to protect the RTO/RCO.		ro newd ew	itted to the autosph	ere. A quench system win	be instaned b	eween the cyclones and
POLLUTANT(S) COLLECTED:	voc		HAP			
BEFORE CONTROL EMISSION RATE (LB/HR):					-	
CAPTURE EFFICIENCY:		~ ~	%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	%
CONTROL DEVICE EFFICIENCY:	95	%	95 %		-	%
		~ ~	<u> </u>	-		%
EFFICIENCY DETERMINATION CODE:					3	
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See calculat	ions in Appe	ndix D		-	
PRESSURE DROP (IN. H ₂ O): MIN MAX		OUTLET	TEMPERATURE (°F	F):MIN		MAX
INLET TEMPERATURE (°F): MIN MAX		RESIDE	NCE TIME (SECOND	S):		
INLET AIR FLOW RATE (ACFM): (SCFM):		COMBU	STION TEMPERATU	RE (°F):		
COMBUSTION CHAMBER VOLUME (FT ³):		INLET M	OISTURE CONTENT	r (%):		
% EXCESS AIR:		CONCE	NTRATION (ppmv)	INLET		OUTLET
AUXILIARY FUEL USED: Natural Gas and/or Propane		TOTAL	MAXIMUM FIRING RA	TE (MILLION BTU/HR): 19	.8	
DESCRIBE MAINTENANCE PROCEDURES: TBD						
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO N/A	THE CONTRO	DL SYSTEM:				
COMMENTS:	ttach Add	itional St	eets As Neces	69.64		

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES-FBYPASS Furnace Bypass	
Furnace Bypass	
CONTROL DEVICE ID NO(S): N/A	
OPERATING SCENARIO1 EMISSION POINT (STACK) ID NO(S): EP-28	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH FLOW DIAGRAM):	
A bypass stack following the furnace (ES-FBYPASS) is used to exhaust hot gases during startup, shutdown, and malfunctions and during periods of furnace "idle mode"	
(defined as furnace heat input up to 10 MMBtu/hr). Furnace bypass during a cold start-up begins with the establishment of a flame in the fuel bed in the furnace and en	
the point the furnace temperature reaches 600°F and emissions are routed to the dryer for control by the WESP and RTO, with total start-up time not to exceed 12 hours	
each cold start-up. The purpose of operation in "idle mode" is to maintain the temperature of the fire brick lining the furnace which may be damaged if it cools too rapi	
Operation in "idle mode" also significantly reduces the amount of time required to restart the dryer. The furnace may operate up to 500 hr/yr in "idle mode" and may up to 500	remain
in an idle state for up to 24 contiguous hours.	
TYPE OF EMISSION SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES):	
Image: Coal,wood,oil, gas, other burner (Form B1) Image: Woodworking (Form B4) Image: Manuf. of chemicals/coatings/inks (Form B7)	
Lint.combustion engine/generator (Form B2)	
Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9)	
START CONSTRUCTION DATE: 2016 DATE MANUFACTURED:	
MANUFACTURER / MODEL NO.: Teal Sales Inc. 24' x 80' Single Pass Drum Dryer EXPECTED OP. SCHEDULE: 24_ HR/DAY 7_ DAY/WK 52_ WK/YR (n	ormaic
IS THIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): NESHAP (SUBPARTS?): NESHAP (SUBPARTS?): NESHAP (SUBPARTS?):	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% MAR-MAY 25% JUN-AUG 25% SEP-NOV 25% CRITERIA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE	1000 C 100
SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS	_
EMISSION (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) (AFTER CONTROLS / LI	MITS
	ns/yr
PARTICULATE MATTER (PM)	
NITROGEN OXIDES (NOx) See Emission Calculations in Appendix D	
VOLATILE ORGANIC COMPOUNDS (VOC)	
LEAD	
OTHER	
HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE	
SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSIONS	
EMISSION (AFTER CONTROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / L	
HAZARDOUS AIR POLLUTANT CAS NO. FACTOR lb/hr tons/yr lb/hr	ns/yr
See Emission Calculations in Appendix D	
TOXIC AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOURCE	
	_
SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS	
EMISSION	
TOXIC AIR POLLUTANT CAS NO. FACTOR lb/hr lb/day lb/yr	
See Emission Calculations in Appendix D	
Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how	these
are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.	

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B1

EMISSION SOURCE DESCRIPTION: Furnace Bypass EMISSION SOURCE ID NO. ES-F8YPASS CONTROL DEVICE ID NO(S): NA DERSTING SCENARIO I OF 1 EMISSION POINT (STACK) DO (S): EP-28 CONTROL DEVICE ID NO(S): NA DESCRIBE USE CONTROL DEVICE ID NO(S): EP-28 DESCRIBE USE CONTINUOUS USE STAND BYEMERGENCY OTHER (DESCRIBE): HEATING MECHANISM: NOINERT VOOD-FIRED BURNER WOOD-FIRED BURNER WOOD-FIRED BURNER WOOD-FIRED BURNER WOOD I DRY WOOD OTHER (DESCRIBE) PRECENT MOISTURE OF FUEL: 20 to 50% COAL-FIRED BURNER TYPE OF BOILER IF OTHER DESCRIBE: UNDERFEED STOKER OIL/GAS-FIRED BURNER OIL/GAS-FIRED BURNER TYPE OF BOILER TYPE OF BOILER UTULTY INDUSTRIAL COM MALL DUW NOX BURNERS OIL/GAS-FIRED BURNER TYPE OF BOILER: UTULTY INDUSTRIAL COMMERCIAL UN NOX BURNERR OIL/GAS-FIRED BURNER TYPE OF BOILER: UTULTY INDUSTRIAL COMMERCIAL UN NOX BURNERR OIL/GAS-FIRED BURNER TYPE OF BOILER: UTULTY INDUSTRIAL COMMERCIAL UN NOX BURNERR OIL/GAS-FIRED BURNER TYPE OF FIRING: TYPE OF FIRING: TYPE OF FIRING: OTHER FUEL-FIRED BURNER TYPE OF FIRING: OTHER FUEL-FIRED BURNER SPECIFIC OTHER FUEL-FIRED BURNER TYPE OF FIRING: OTHER FUEL-FIRED BURNER TYPE OF FIRING: OTHER FUEL-FIRED BURNER SPECIFIC SAMPLING PORTS, COMPLENT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z VES SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z VES SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z VES SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z VES SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Z VES SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WI	EMISSIC	ON SOURCE (WO	DOD, CO	AL, OIL,	GAS, OTH	IER FUEL	FIRE	D BURNER)	
	REVISED 09/22/16		of Air Quality	- Applicatio	on for Air Perm	it to Construc	t/Operate	B1	
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-28 DESCRIBE USE: PROCESS HEAT SPACE HEAT ELECTRICAL GENERATION DECONTINUOUS USE STAND BY/EMERGENCY OTHER (DESCRIBE): HEATING MECHANISM: INDIRECT ØIRECT WAX. FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBTU/Hr (die mode) WAX. FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBTU/Hr (die mode) WOOD TYPE: BARK WOOD/BARK WET WOOD PERCENT MOISTURE OF FUEL: 20 to 50% CONTROLLED WOOD FUEL OTHER (DESCRIBE) PERCENT MOISTURE OF FUEL: 20 to 50% COAL-FIRED BURNER TOTHER (DESCRIBE) PUE OF BOILER IF OTHER DESCRIBE: COAL-FIRED BURNER FLUIDIZED BED PUVENCIZE[OVERFEED STOKER SPREADER STOKER FLUIDIZED BED INF OF BOILER INDERTEED STOKER SPREADER STOKER FLUIDIZED BED INPE OF BOILER IUNCONTROLLED SPREADER STOKER FLUIDIZED BED INPE OF BOILER IUNCONTROLLED INSTITUTIONAL COAL-FIRED BURNER TYPE OF BOILER IUTITY INDUSTRIAL COMERCIAL INSTITUTIONAL TYPE OF BOILE	EMISSION SOURCE DESCRIPT	ION: Furnace Bypass			EMISSION SO	URCE ID NO:	ES-FBYP	ASS	
OPERATING SCENARIO 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-28 DESCRIBE USE: PROCESS HEAT SPACE HEAT ELECTRICAL GENERATION DECONTINUOUS USE STAND BY/EMERGENCY OTHER (DESCRIBE): HEATING MECHANISM: INDIRECT ØIRECT WAX. FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBTU/Hr (die mode) WAX. FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBTU/Hr (die mode) WOOD TYPE: BARK WOOD/BARK WET WOOD PERCENT MOISTURE OF FUEL: 20 to 50% CONTROLLED WOOD FUEL OTHER (DESCRIBE) PERCENT MOISTURE OF FUEL: 20 to 50% COAL-FIRED BURNER TOTHER (DESCRIBE) PUE OF BOILER IF OTHER DESCRIBE: COAL-FIRED BURNER FLUIDIZED BED PUVENCIZE[OVERFEED STOKER SPREADER STOKER FLUIDIZED BED INF OF BOILER INDERTEED STOKER SPREADER STOKER FLUIDIZED BED INPE OF BOILER IUNCONTROLLED SPREADER STOKER FLUIDIZED BED INPE OF BOILER IUNCONTROLLED INSTITUTIONAL COAL-FIRED BURNER TYPE OF BOILER IUTITY INDUSTRIAL COMERCIAL INSTITUTIONAL TYPE OF BOILE									
Describe use: PROCESS HEAT SPACE HEAT ELECTRICAL GENERATION CONTINUOUS USE STAND BY/EMERGENCY OTHER (DESCRIBE): HEATING MECHANISM. INDIRECT DIRECT MAX. FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBtu/hr (idle mode) WOOD TYPE: BARK WOOD/BARK WET WOOD OTHER (DESCRIBE): PERCENT MOISTURE OF FUEL: 20 to 50% CONTROLLED WITH FLYASH REINJECTION CONTROLLED WO REINJECTION FUEL FEED METHOD: NA (eAT TRANSFER MEDIA: STEAME STEAME TYPE OF BOILER IF OTHER DESCRIBE: UNCONTROLLED UNCONTROLLED UNCONTROLLED ICOLAT-FIRED BURNER TYPE OF BOILER IF OTHER DESCRIBE: UNCONTROLLED UNCONTROLLED ICOLATING WHET BED UNCONTROLLED UNCONTROLLED ICONTROLLED ICOLATING INPE OF BOILER INTUTIONAL RECIRCULATING RECIRCULATING INPE OF BOILER UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL	OPERATING SCENARIO:	1 OF 1						EP-28	
HEATING MECHANISM: INDIRECT IDIRECT ANALY (dif a mode) MAX FIRING RATE (MMBTU/HOUR): 37.6 (cold star-up), 10 MMBtu/hr (dif a mode) WOOD_FIRED_BURNER WOOD_TYPE: BARK WOODBARK WET WOOD DRY WOOD OTHER (DESCRIBE) PERCENT MOISTURE OF FUEL: 20 to 50% I UNCONTROLLED CONTROLLED WITH FLYASH REINJECTION CONTROLLED W/O REINJECTION FUEL FEED METHOD: N/A REAL TRANSFER MEDIA: STEAM AR OTHER (DESCRIBE) TYPE OF BOILER IF OTHER DESCRIBE: PULVERIZED OVERFEED STOKER UNDERFEED STOKER UNDENTROLLED CONTROLLED CONTROL		ESS HEAT	SPACE HEAT			ELECTRICAL	GENER	ATION	
MAX_FIRING RATE (MMBTU/HOUR): 37.6 (cold start-up), 10 MMBtu/hr (idle mode) WOOD TYPE: BARK 2 WOOD/BARK WET WOOD OTHER (DESCRIBE) PERCENT MOISTURE OF FUEL: 20 to 50% UNCONTROLLED CONTROLLED CONTROLLED WITH FLYASH REINJECTION CONTROLLED WIO REINJECTION FUEL FEED METHOD. N/A FAT TRANSFER MEDIA: STEAM AIR OTHER (DESCRIBE) TYPE OF BOILER IF OTHER DESCRIBE: PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER FLUIDIZED BED OVERFEED STOKER UNDENFEED STOKER UNCONTROLLED CONTROLLED CONTROL CONTENT CONTROL CONTENT CONTENT CONTENT CONTENT CONTENT CONTENT CONTENT CONTENT CONTENT CONT			STAND BY/EI	MERGENCY		OTHER (DES	CRIBE):		
WOOD-FIRED BURNER WOOD TYPE: BARK WOOD/BARK WET WOOD DRY WOOD OTHER (DESCRIBE) PERCENT MOISTURE OF FUEL: 20 to 50% CONTROLLED CONTROLLED CONTROLLED DICONTROLLED CONTROLLED DICONTROLLED CONTROLLED DURNER FUEL FEED METHOD: N/A reat transfer MeDia: STEAM AIR OTHER (DESCRIBE) PULVERIZED OVERFEED STOKER IF OTHER DESCRIBE: UNCONTROLLED COAL-FIRED BURNER PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER FLUIDIZED BED INPE OF BOILER UNCONTROLLED INDESTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: OTHER FUEL-FIRED BURNER NO LOW NOX BURNER TYPE OF FIRING: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL	HEATING MECHANISM:	INDIRECT	v	DIRECT					
WOOD TYPE: BARK WOOD/BARK WET WOOD DRY WOOD OTHER (DESCRIBE): PERCENT MOISTURE OF FUEL: 20 to 50% CONTROLLED CONTROLLED WITH FLYASH REINJECTION CONTROLLED W/O REINJECTION FUEL FEED METHOD: N/A FEAT TRANSFER MEDIA: STEAM AR OTHER (DESCRIBE) COAL-FIRED BURNER TYPE OF BOILER IF OTHER DESCRIBE: PULVERRED STOKER SPREADER STOKER WET BED UNCONTROLLED UNCONTROLLED CIRCULATING WET BED UNCONTROLLED UNCONTROLLED CIRCULATING WET BED CONTROLLED UNCONTROLLED CIRCULATING WET BED CONTROLLED UNCONTROLLED CIRCULATING DRY BED CONTROLLED UNCONTROLLED CIRCULATING DRY BED CONTROLLED UNCONTROLLED CIRCULATING TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE(S) OF FUEL: TYPE(S) OF CONTROL(S) (IF ANY): TYPE(S) OF CONTROLS) (IF ANY): TYPE(S) OF CONTROLE	MAX. FIRING RATE (MMBTU/H	OUR): 37.6 (cold start-up							
PERCENT MOISTURE OF FUEL: 20 to 50% Image: Constraint of the constraint of t			_		BURNER				
✓ UNCONTROLLED CONTROLLED WITH FLYASH REINJECTION CONTROLLED W/O REINJECTION FUEL FEED METHOD: N/A IEAT TRANSFER MEDIA: STEAM AIR OTHER (DESCRIBE) COAL-FIRED BURNER VPE OF BOILER UVERFEED STOKER UNCONTROLLED UNCONTROLLED CONTROLLED CIRCULATING UNCONTROLLED UNCONTROLLED UNCONTROLLED CIRCULATING DRY BED CONTROLLED UNCONTROLLED CONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED CIRCULATING CIRCULATING DRY BED CONTROLLED INCONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED INCONTROLLED INCONTROLLED DRY BED CONTROLLED INCONTROLLED INCONTROLLED ICRULATING DRY ASH REINJECTION RECIRCULATING INSTITUTIONAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL				DOD				OTHER (DESCRIBE)	
FUEL FEED METHOD: N/A IEAT TRANSFER MEDIA: STEAM AIR OTHER (DESCRIBE) COAL-FIRED BURNER TYPE OF BOILER IF OTHER DESCRIBE: PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER CILUIDIZED BED WET BED UNCONTROLLED UNCONTROLLED CIRCULATING CIRCULATING DRY BED CONTROLLED ONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED CONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED CONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED INCONTROLLED CIRCULATING DRY BED CONTROLLED INCONTROLLED INSTITUTIONAL RECIRCULATING TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: TYPE(S) OF CONTROLS) (IF ANY): INSTITUTIONAL TYPE(S) OF CONTROLS) (IF ANY): FUEL TYPE UNITS CAPACITY (UNIT/HR) IIMITATION (UNIT/HR) <td colstart<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
COAL-FIRED BURNER TYPE OF BOILER IFF OTHER DESCRIBE: PULVERIZED OVERFEED STOKER INCONTROLLED UNCONTROLLED IDRY BED CONTROLLED IDRY BED OTHER FLICE ITYPE OF FIRING: UTILITY ITYPE OF FIRING: IDRUSTRIAL ITYPE OF FIRING: TYPE(S) OF CONTROLLS) (IF ANY): FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL TYPE MAXIMUM DESIGN REQUESTED CAPACITY (UNIT/HR) LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons Sold 4.00 Fu						<u>L</u>			
TYPE OF BOILER IF OTHER DESCRIBE: PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER FLUIDIZED BED DRY BED UNCONTROLLED INCONTROLLED CRCULATING RECIRCULATING DRY BED CONTROLLED FLYASH REINJECTION RECIRCULATING DRY BED CONTROLLED FLYASH REINJECTION RECIRCULATING TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FUEL:					DHONED	STEAM /		DTHER (DESCRIBE)	
PULVERIZED OVERFEED STOKER UNDERFEED STOKER SPREADER STOKER FLUIDIZED BED DRY BED ONCONTROLLED INCONTROLLED CONTROLLED CIRCULATING DRY BED CONTROLLED FLYASH REINJECTION RECIRCULATING TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: NORMAL TANGENTIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF BOILER: UTITY REQUESTED CAPACITY INSTITUTIONAL TYPE OF BOILER: UNITS CAPACITY (UNIT/HR) ILIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons				L-FIRED	DURNER		- SA 6		
Image: Start-up: Bark/Wet Wood Image: Uniconstruction									
□ DRY BED □ CONTROLLED □ FLYASH REINJECTION □ RECIRCULATING □ DRY BED □ CONTROLLED □ FLYASH REINJECTION □ RECIRCULATING □ TYPE OF BOILER: □ UTILITY □ INDUSTRIAL □ COMMERCIAL □ INSTITUTIONAL TYPE OF FIRING: □ NORMAL □ TANGENTIAL □ COMMERCIAL □ INSTITUTIONAL TYPE OF FIRING: □ OTHER FUEL-FIRED BURNER NO LOW NOX BURNER NO LOW NOX BURNER TYPE OF BOILER: □ UTILITY □ INDUSTRIAL □ COMMERCIAL □ INSTITUTIONAL TYPE OF BOILER: □ UTILITY □ INDUSTRIAL □ COMMERCIAL □ INSTITUTIONAL TYPE OF BOILER: □ UTILITY □ INDUSTRIAL □ COMMERCIAL □ INSTITUTIONAL TYPE OF FIRING:		F				UKER			
Image: State of the state					ASH REINJECTION				
TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: NORMAL TANGENTIAL LOW NOX BURNERS NO LOW NOX BURNER OTHER FUEL-FIRED BURNER TYPE(S) OF FUEL:									
TYPE OF FIRING: NORMAL TANGENTIAL LOW NOX BURNERS NO LOW NOX BURNER OTHER FUEL-FIRED BURNER TYPE(S) OF FUEL:			OIL/G	AS-FIRE	BURNER			Real Provide Line	
OTHER FUEL-FIRED BURNER TYPE(S) OF FUEL:	TYPE OF BOILER:		STRIAL		IERCIAL	Ľ	INSTI	TUTIONAL	
TYPE(S) OF FUEL: TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: TYPE(S) OF CONTROL(S) (IF ANY): FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL TYPE UNITS CAPACITY (UNIT/HR) LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) FUEL TYPE BTU CONTENT (% BY WEIGHT) FUEL TYPE BTU CONTENT (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS VESSION YES NO	TYPE OF FIRING:					the second se	NO LO	W NOX BURNER	
TYPE OF BOILER: UTILITY INDUSTRIAL COMMERCIAL INSTITUTIONAL TYPE OF FIRING: TYPE(S) OF CONTROL(S) (IF ANY): FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL TYPE UNITS CAPACITY (UNIT/HR) LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) 1.00 1.00 FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 1 SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS YES NO			OTHER	FUEL-FIR	RED BURNE	R	10.000		
TYPE OF FIRING: TYPE(S) OF CONTROL(S) (IF ANY): FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) MAXIMUM DESIGN REQUESTED CAPACITY FUEL TYPE UNITS CAPACITY (UNIT/HR) LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 4.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) TOW ASH CONTENT FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) FUEL TYPE Sulfur Content Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 Content SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS Y ES NO	TYPE(S) OF FUEL:					_			
FUEL USAGE (INCLUDE STARTUP/BACKUP FUELS) FUEL TYPE MAXIMUM DESIGN REQUESTED CAPACITY FUEL TYPE UNITS CAPACITY (UNIT/HR) LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) TOUEL 1.00 FUEL TYPE BTU CONTENT ASH CONTENT ASH CONTENT FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 1.00 SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS YES NO								TUTIONAL	
FUEL TYPE UNITS MAXIMUM DESIGN CAPACITY (UNIT/HR) REQUESTED CAPACITY LIMITATION (UNIT/HR) Cold Start-up: Bark/Wet Wood tons 30 4.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 Furnace Idle: Bark/Wet Wood tons 30 1.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) 1.00 1.00 FUEL TYPE SPECIFIC SULFUR CONTENT ASH CONTENT FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 1.00 SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS YES NO					RTUP/BAC		3)		
FUEL TYPEUNITSCAPACITY (UNIT/HR)LIMITATION (UNIT/HR)Cold Start-up: Bark/Wet Woodtons 30 -4.00Furnace Idle: Bark/Wet Woodtons 30 -1.00KCOLD 30 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICATION (UNIT/HR)FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICATION (UNIT/HR)SPECIFICSULFUR CONTENTFUEL CHARACTERISTICS (COMPLETE ALL THAT (NO (UNIT/HR))FUEL TYPESPECIFICSULFUR CONTENT(% BY WEIGHT)(% BY WEIGHT)(% BY WEIGHT)(% BY WEIGHT)Colspan="3">Colspan="3"SAMPLING PORTS, COMPLIATION THE EPA METHOD THUL BE INSTALLED ON THE STACKSY ESNO		I OLL OU					1	REQUESTED CAPACITY	
Furnace Idle: Bark/Wet Wood tons 30 1.00 FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) SPECIFIC BTU CONTENT (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 SAMPLING PORTS, COMPLIANT WITH EPA METHOD I WILL BE INSTALLED ON THE STACKS YES NO	FUEL TYPE	UNITS		CAPAC	ITY (UNIT/HR)				
FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) FUEL CHARACTERISTICS (COMPLETE ALL THAT ARE APPLICABLE) SPECIFIC SULFUR CONTENT ASH CONTENT FUEL TYPE BTU CONTENT (% BY WEIGHT) O(% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 Output SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS YES NO	Cold Start-up: Bark/Wet Wood	tons			30			4.00	
SPECIFIC SULFUR CONTENT ASH CONTENT FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011	Furnace Idle: Bark/Wet Wood	tons			30			1.00	
SPECIFIC SULFUR CONTENT ASH CONTENT FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011									
FUEL TYPE BTU CONTENT (% BY WEIGHT) (% BY WEIGHT) Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 Bark/Wet Wood Image: Complex of the state of the		FUEL CHARACTI	ERISTICS (
Bark/Wet Wood Nominal 4,200 BTU/Ib 0.011 SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS ✓ YES NO		DC							
SAMPLING PORTS, COMPLIANT WITH EPA METHOD 1 WILL BE INSTALLED ON THE STACKS VES NO								(% BY WEIGHT)	
	Bark/Wet V	vood	Non	ninal 4,200 l	BTU/Ib	0.01	1		
	SAMPLING PORTS COMPLIAN	T WITH FPA METHOD 1	WILL BE INS		THE STACKS	V YI	-s 🗆	NO	
	COMMENTS:					1 June			

FORM B
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDE	Q/Division of	Air Quality - /	Application fo	r Air Permit te	o Construct/C	perate		В
EMISSION SOURCE DESCRIPTION:					EMISSION S	OURCE ID NO	: ES-FPH, ES	-PB1 thru 4	
Finished Product Handling/Pellet Loadout E	Bins/Pellet	Loadout					ES-PL1 and 2		
							S): CD-FPH-B		
OPERATING SCENARIO1	OF	1			EMISSION P	OINT (STACK) ID NO(S): EP	P-16	
DESCRIBE IN DETAILTHE EMISSION SOURC		•		,					
Finished pellets are conveyed to four (4) pel									
accomplished by gravity feed of the pellets									
maintain constant contact with product as in									
loadout building as a fire prevention measu Finished Product Handling, transfer of pelle									
baghouse (CD-FPH-BH).	is to the P	ener Loadou	t bins, and th	e truck loado	ut operations	are all contro	blied by the Fil	msned Produ	ICt Handling
bagnouse (CD-FFH-BH).									
TYPE OF EMISSION S							LOWING BAC	YER \.	
Coal,wood,oil, gas, other burner (Form B1)	•	HEGK AND C		king (Form B4)		_	of chemicals/co	,	orm B7)
Int.combustion engine/generator (Form B2)				hishing/printing			tion (Form B8)		
Liquid storage tanks (Form B3)	,			los/bins (Form			Form B9)		
START CONSTRUCTION DATE: 2016			Otorago a	DATE MANUI		- Outor (i	dini Boj		
MANUFACTURER / MODEL NO .: Agra Indust	tries Inc.					E: _24 HR/	DAY 7 D	AY/WK _52	WK/YR
IS THIS SOURCE SUBJECT TO?		SUBPARTS?):			AP (SUBPAR		_	
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB	25% MAR	-MAY 25%	JUN-AUG 2	5% SEP-NO	V 25%			
CRITERI	A AIR PO	OLLUTANT	EMISSION	VS INFORM	ATION FO	R THIS SO	URCE		
			SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS	
			EMISSION	(AFTER CONTI			TROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED			FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM10)									
PARTICULATE MATTER<2.5 MICRONS (PM2.5)									
SULFUR DIOXIDE (SO2)								_	
NITROGEN OXIDES (NOx)			See Emission Calculations in Appendix D						
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD OTHER									
	IS AIR	POLITA	VT EMISSI	ONS INFOR	MATION	OR THIS S	OURCE		
TALANDO	UU AIN	OLLOIA	SOURCE OF		DACTUAL	UN THIS S		EMISSIONS	
			EMISSION	(AFTER CONTI		(BEFORE CON	TROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
N/A						1			1
					Pag Emission	Coloulations	in Appendix (_	
			(•	see chiission	Calculations	in Appendix i		
	()								
TOXIC	AIR POL	LUIANI	MISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
			SOURCE OF EMISSION	EXPEC	TED ACTUA	L EMISSIONS	AFTER CONT	ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT		CAS NO.	FACTOR	lb	/hr	I. Ib	day	L IF	o/yr
N/A				LID					
				:	See Emission	Calculations	in Appendix I	D	
Attachments: (1) emissions calculations and supportin	na document	ation: (2) indicat	e all requested s	tate and federal	enforceable per	mit limits (e.a. ha	ours of operation	emission rates)	and describe

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe one where are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Ope	rate	B9			
EMISSION SOURCE DESCRIPTION: Finished Product Handlin	g	EMISSION SOURCE ID NO: ES-FPH					
		CONTROL DEVICE ID NO(S): CD-FPH-BH					
OPERATING SCENARIO: OF1		EMISSION POINT (STACK) ID NO(S): EP-16					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA							
Collection of transfer points, pellet screening operations, and	pellet conveyi	ng.					
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN		CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)			
Dried Wood	ODT	120					
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN					
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	INIT/BATCH)			
	-						
				_			
MAXIMUM DESIGN (BATCHES / HOUR)	(DATOLICO)	20 S					
REQUESTED LIMITATION (BATCHES / HOUR)	(BATCHES/						
FUEL USED: N/A		MUM FIRING RATE (MILLION					
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTE	D CAPACITY ANNUAL FUEL US	SE: N/A				
COMMENTS:							

Attach Additional Sheets as Necessary

4

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Division	of Air Quality - App	olicatio	n for Air Permit to C	onstruct/Operate	B6
EMISSION SOURCE DESCR	RIPTION: Four (4) P	ellet Loadout Bins		EMISSION SO	OURCE ID NO: ES-PB1 through 4	
				CONTROL DE	EVICE ID NO(S): CD-FPH-BF	
OPERATING SCENARIO:	1	OF1		EMISSION PO	DINT(STACK) ID NO(S): EP-16	
DESCRIBE IN DETAIL THE I	PROCESS (ATTACH	FLOW DIAGRAM):				
	d to store pellets for	shipping. Pellets a	re then	loaded from the bin	is into trucks through either of the t	wo (2)
truck loadout chutes.						
MATERIAL STORED: Pellet	Product			DENSITY OF MATE	RIAL (LB/FT3): 40	
CAPACITY	CUBIC FEET:			TONS: 1,200 (total f	for all four bins)	
DIMENSIONS (FEET)	HEIGHT:	DIAMETER: 12	(OR)	LENGTH:	WIDTH: HEIGHT:	
ANNUAL PRODUCT THR	DUGHPUT (TONS)	ACTUAL:		MAXIMUM D	ESIGN CAPACITY: 120 ODT/hr	
PNEUMATICALLY F	ILLED	MECHANIC	ALLY F	ILLED	FILLED FROM	
BLOWER		SCREW CONVEYO	R		RAILCAR	
COMPRESSOR		BELT CONVEYOR			TRUCK	
OTHER:		BUCKET ELEVATO	R		STORAGE PILE	
		OTHER:			OTHER: Conveyor	
NO. FILL TUBES:						
MAXIMUM ACFM: 750 each	ו I					
MATERIAL IS UNLOADED T	·O:					
BY WHAT METHOD IS MAT	ERIAL UNLOADED F	ROM SILO?				
MAXIMUM DESIGN FILLING	RATE OF MATERIA	L (TONS/HR):				
MAXIMUM DESIGN UNLOA	DING RATE OF MAT	ERIAL (TONS/HR):				
COMMENTS:						
COMMENTO.						

FORM B9 EMISSION SOURCE (OTHER)

EMISSION SOURCE DESCRIPTION: Pellet Loadout 1 and 2	- Application	for Air Permit to Construct/Ope	erate B9			
EMISSION SOURCE DESCRIPTION. Penel LUAUUUL TAILU Z	EMISSION SOURCE ID NO: ES-PL-1 and PL-2					
		CONTROL DEVICE ID NO(S): CD-FPH-BH				
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-16				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAI						
Final product is loaded into trucks using two (2) pellet loadout	chutes.					
	,					
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)			
Dried Wood	ODT	120				
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)			
	-					
MAXIMUM DESIGN (BATCHES / HOUR):	-					
REQUESTED LIMITATION (BATCHES / HOUR)	(BATCHES/	YR):				
FUEL USED: N/A	TOTAL MAX					
		ED CAPACITY ANNUAL FUEL US				

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divi	sion of Air Quality -	Application	for A	ir Permit t	o Cons	struct/Ope	rate		C1
CONTROL DEVICE ID NO: CD-FPH-BH	CONTROLS EMIS	SIONS FRO	M WH	ICH EMIS	SION S	SOURCE IE	NO(S)):	
									n 12, ES-PL1 and
EMISSION POINT (STACK) ID NO(S): EP-16	POSITION IN SEF	RIES OF COM	NTRO	LS		NO	. 1	OF 1	UNITS
OPERATING SCENARIO:									
OF		P.E. SEAL	REQL	JIRED (PE	R 2q .0)112)?	YES		/ NO
DESCRIBE CONTROL SYSTEM: This baghouse controls emissions from Finished I	Product Handling /F	6 6041 the	four		oodou	t Pine /ES	DR 1+	brough ES I	PR 4) and Truck
Loadout Operations (ES-PL-1 and ES-PL-2).	Froduct rianding (c	.o-renį, ule	Iour	(4) Fellet L	.04000	it bills (Eð		IIIOugii E3-i	-D-4) allo Truck
POLLUTANTS COLLECTED:		PM		PM-10		PM-2.5			
					_		-		•
BEFORE CONTROL EMISSION RATE (LB/HR):					_	<u> </u>	_		
			0/		0/		07		04
CAPTURE EFFICIENCY:		99	%	99	_%	99	_%		%
CONTROL DEVICE EFFICIENCY:							%		%
					-		_		
CORRESPONDING OVERALL EFFICIENCY:			%		_%		%		%
EFFICIENCY DETERMINATION CODE:						<u> </u>	-		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):	See calcul	ation	in Append	ix D				
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6"	GAUGE? 🗸				-	Warning	Alarm	✓ Yes	No
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05	GAUGE? L	INLET TEN). 120	warning	Mann	105	
	GR/FT	OUTLET T				0			
INLET AIR FLOW RATE (ACFM): 8,500		FILTER OF			<u>, ,</u>				
	S PER COMPARTM	-				GTH OF BA	G (IN.)	: 144	
NO. OF CARTRIDGES: FILTER SUR	FACE AREA PER C	ARTRIDGE ((FT ²):			ETER OF			
TOTAL FILTER SURFACE AREA (FT ²): 4,842	AIR TO CLOTH R	ATIO: 7.30							
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITI	VE		FILTER N	ATER		WOV		FELTED
DESCRIBE CLEANING PROCEDURES					10-	PAR	TICLE	SIZE DISTRI	BUTION
	SONIC					SIZE		EIGHT %	CUMULATIVE
	SIMPLE BAG CO	LLAPSE			(M	ICRONS)		F TOTAL	%
	RING BAG COLL	APSE				0-1	Se	e calculation	ns in Appendix D
					_	1-10	-		
DESCRIBE INCOMING AIR STREAM: The air stream contains wood dust particules.						10-25	-		
The all stream contains wood dust particules.						25-50	-		
					-	50-100 >100	+		
					-	>100	_	TOTA	L = 100
					-			1017	L - 100
ON A SERVICE DAGE ATTACH & PLACEAN OF				CONTROL			EMICO		(D).
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHO COMMENTS	JWING THE RELAT	IONSHIP OF	THE	CONTROL		GETOTIS	EIVIISS	IUN SOURC	(0):
Source of the second se									

FORM B

REVISED 09/22/16 NCD	EQ/Division of	Air Quality - A	Application fo	or Air Permit t	o Construct/O	perate		В		
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: ES-DWH							
Dried Wood Handling			CONTROL DEVICE ID NO(S): CD-DWH-BH-1 and -2							
OPERATING SCENARIO 1 OF	1				OINT (STACK)			26		
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO	CESS (ATTA	H FLOW DIAG	SRAM):	Linicolon	ontri (onnon)	10 110 (0). 21				
There are several transfer points comprising emiss				oon the drow	and dry ham	normille The	50 50UPC05 0	re completely		
enclosed with only two (2) emission points that are						nermia, me	se aoureca u	ine completely		
TYPE OF EMISSION SOURCE	(CHECK AND	COMPLETE A	PPROPRIATE	E FORM B1-B	ON THE FOL	LOWING PAG	GES):			
Coal,wood,oil, gas, other burner (Form B1)	` E		king (Form B4			of chemicals/co		Form B7)		
Int.combustion engine/generator (Form B2)	Γ		nishing/printin	·	=	tion (Form B8)	v .	- í		
Liquid storage tanks (Form B3)			los/bins (Forn		Other (F					
START CONSTRUCTION DATE: 2016	k	1 010-040	DATE MANU							
MANUFACTURER / MODEL NO.:					E: 24_ HR/0	DAY 7 D	AY/WK 52	WK/YR		
	S (SUBPARTS	2)	0110100		AP (SUBPART					
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-F			JUN-AUG		OV 25%	0:).				
CRITERIA AIR I	POLLUTAN	TEMISSION				URCE		2000		
OT UT ET UT THICK	OLLOW/	SOURCE OF		DACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	<u> </u>	ROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)		-								
PARTICULATE MATTER<10 MICRONS (PM10)		1								
PARTICULATE MATTER<2.5 MICRONS (PM25)										
SULFUR DIOXIDE (SO2)		1								
NITROGEN OXIDES (NOx)		See Emission Calculations in Appendix D								
CARBON MONOXIDE (CO)]								
VOLATILE ORGANIC COMPOUNDS (VOC)										
LEAD		1								
OTHER		1								
HAZARDOUS AIF	R POLLUTA	NT EMISSIO	ONS INFO	RMATION F	OR THIS S	OURCE				
	1	ISOURCE OF		DACTUAL	I	POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
See Emission Calculations in Appendix C				1				1		
	-	-								
	-	-								
		-								
	-	4		See Emission	Calculations	in Appendix I	0			
		-								
		4								
		4								
TOVIC AID D	NUTANT	ENIODIONI	MICODIE	TION FOR	TUICCOU	DOF				
TOXIC AIR PO	JLLUIANI		INFORM/	ATION FOR	THIS SOU	RUE	IIIIC .			
		SOURCE	EXPEC	CTED ACTUAL	EMISSIONS /	AFTER CONT	ROLS / LIMIT	ATIONS		
		OF								
TOXIC AIR POLLUTANT	CAS NO.	EMISSION	l lt	/hr	l lb/c	day		b/yr		
N/A		_								
				See Emission	Calculations	in Appendix I	2			
		1								
	1	-								
								1		
Attachments: (1) emissions calculations and supporting docum	entation: (2) indic	ate all requested	state and feder	al enforceable pe	mit limits (e.e. h	ours of operation	n emission rate	es) and describe		

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

_

FORM B9 EMISSION SOURCE (OTHER)

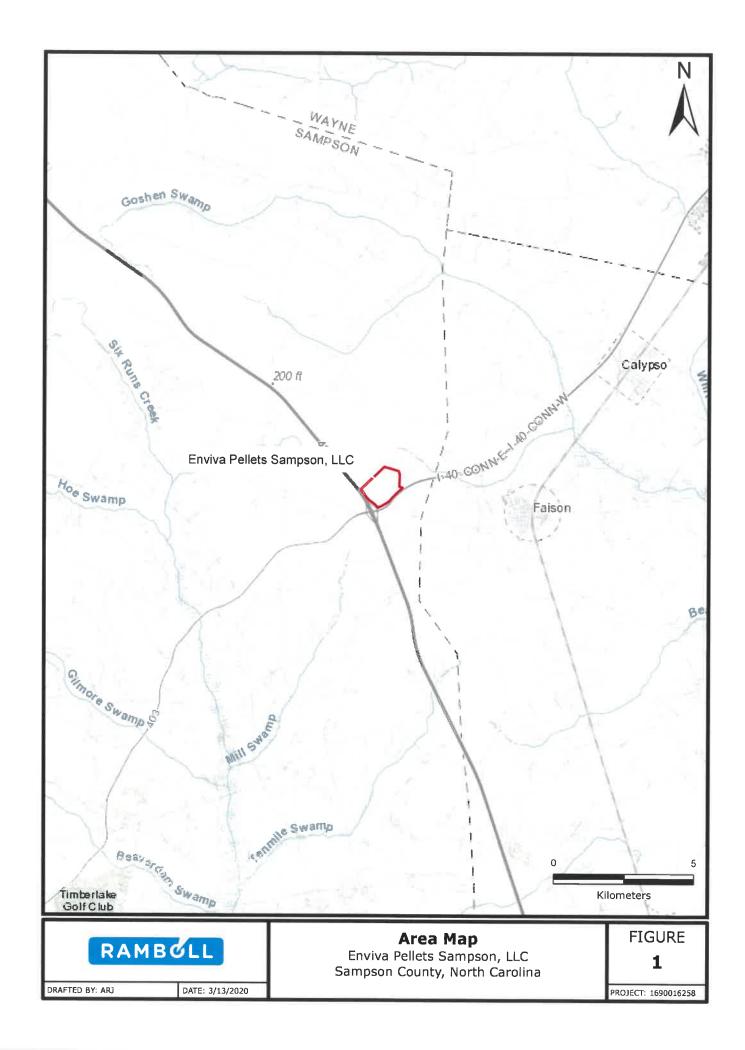
REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/O	perate B9						
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-DWH							
Dried Wood Handling		CONTROL DEVICE ID NO(S): CD-DWH-BH-1 and -2							
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-25 and EP-26							
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA	M): There are	e several transfer points com	prising emission source ES-DWH						
that are located between the dryer and dry hammermills. These	e sources ar	e completely enclosed with o	only two (2) emission points that are						
controlled by individual baghouses (CD-DWH-BH-1 and 2).									
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED CAPACITY						
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)						
Dried Wood	ODT	120							
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED CAPACITY						
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)						
MAXIMUM DESIGN (BATCHES / HOUR):									
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):							
FUEL USED: N/A	TOTAL MAX	MUM FIRING RATE (MILLIO	N BTU/HR): N/A						
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL	USE: N/A						
COMMENTS:									

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Div	vision of Air Quality -	Applicati	on for	Air Permit te	o Cons	truct/Ope	rate		C1
CONTROL DEVICE ID NO: CD-DWH-BH-1	CONTROLS EMIS	SIONS FR	ROM V	VHICH EMIS	SION S	OURCE IE	NO(S): ES	-DWH	
EMISSION POINT (STACK) ID NO(S): EP-25	POSITION IN SEF	RIES OF C	ONTR	OLS		NO	. 1 OF	2 U	NITS
OPERATING SCENARIO:							_		
1OF1		P.E. SEA	AL REC	QUIRED (PEI	R 2q .01	112)?	YES	1	NO
DESCRIBE CONTROL SYSTEM: One of two (2) baghouses used to create a slight present in the dried wood handling.	negative pressure o	n the drie	d wood	d handling. 1	Гhe bag	houses c	ollects dust	from the	air volume
POLLUTANTS COLLECTED:		PM	_	PM-10	_	PM-2.5			
BEFORE CONTROL EMISSION RATE (LB/HR):			_		_				
CAPTURE EFFICIENCY:			%		%		_%	%	I.
CONTROL DEVICE EFFICIENCY:		99	%	99	%	99	_%	%	
CORRESPONDING OVERALL EFFICIENCY:			_%		%			%	I.
EFFICIENCY DETERMINATION CODE:			_	- <u></u>					
TOTAL AFTER CONTROL EMISSION RATE (LB/H	,		ulatio	ns in Appen	dix D				
PRESSURE DROP (IN H20): MIN: MAX: BULK PARTICLE DENSITY (LB/FT ³): 12-17	GAUGE? 🗸			NO RATURE (°F)	. A mala	lant			
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT ³			PERATURE (lent			
INLET AIR FLOW RATE (ACFM): 1,000				ATING TEMP					
	GS PER COMPARTM						G (IN.): 55	2	
	RFACE AREA PER C		E (ET ²).	<u> </u>	ETER OF			
TOTAL FILTER SURFACE AREA (FT ²): 377	AIR TO CLOTH R		-	J.	LO IA IAI				
DRAFT TYPE: VINDUCED/NEGATIVE	FORCED/POSITIN			FILTER M		AI · 14	WOVEN	V F	ELTED
DESCRIBE CLEANING PROCEDURES					o TTELTO	- Local	ICLE SIZE	to and	
	SONIC					SIZE	WEIGH		CUMULATIVE
	SIMPLE BAG COL	LAPSE				CRONS)	OF TO		%
	RING BAG COLLA				-	0-1	1 0. 10	Unkno	
					-	1-10			
DESCRIBE INCOMING AIR STREAM:			_		+	10-25			
Fans pull air from the conveyor leading from the drye	er to the DHM island, tr	ansporting	dried	wood.		25-50			
					<u> </u>	0-100			
						>100			
								TOTAL =	= 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SH	OWING THE RELAT	IONSHIP (OF TH	E CONTROL	DEVIC	E TO ITS	EMISSION S	OURCE	S):
COMMENTS:									

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Divi	sion of Air Quality -	Applicatio	on for	Air Permit t	o Cons	struct/Ope	ate		C1
CONTROL DEVICE ID NO: 0	D-DWH-BH-2	CONTROLS EMIS	SIONS FR	N MOS	HICH EMIS	SION S		NO(S): E	S-DWH	
EMISSION POINT (STACK) II	D NO(S): EP-26	POSITION IN SER	IES OF C	ONTR	OLS		NO	. 2 OF	2	UNITS
OPER	RATING SCENARIO:									
	OF1		P.E. SEA	L REC	QUIRED (PE	R 2q .0	112)?	YES	4	/ NO
DESCRIBE CONTROL SYST			-							
One of two (2) baghouses us present in the dried wood ha	sed to create a slight r andling.	legative pressure or	the dried	wood	i handling.⊺	The ba	ghouses c	ollects dus	t from th	ie air volume
POLLUTANTS COLLECTED:			PM	_	PM-10	_	PM-2.5			
BEFORE CONTROL EMISSIO	ON RATE (LB/HR):			_		_				
CAPTURE EFFICIENCY:				_%		%		_%		%
CONTROL DEVICE EFFICIE	NCY:		99	%	99	_%	99	%		%
CORRESPONDING OVERAL	L EFFICIENCY:			%		_%		%		%
EFFICIENCY DETERMINATIO	ON CODE:			_		_				
TOTAL AFTER CONTROL E				ulatio	ns in Appen	dix D				
PRESSURE DROP (IN H ₂ 0):		GAUGE? 🗸		1	NO					
BULK PARTICLE DENSITY (I					RATURE (°F		pient			
POLLUTANT LOADING RATE		GR/FT			ERATURE (
INLET AIR FLOW RATE (ACF)PER/	ATING TEMP	· · ·				
NO. OF COMPARTMENTS:		S PER COMPARTM						G (IN.): 55	52	
NO. OF CARTRIDGES:		FACE AREA PER C		. ,):	DIAM	ETER OF	BAG (IN.):		
TOTAL FILTER SURFACE AF	The second se	AIR TO CLOTH R		5:1						
	CED/NEGATIVE	FORCED/POSITIN	/E		FILTER N	ATER	- Annual	WOVEN	termine and the	FELTED
DESCRIBE CLEANING PROC	CEDURES					10	PART	ICLE SIZE	DISTRI	BUTION
AIR PULSE	님	SONIC					SIZE	WEIGH		CUMULATIVE
	브	SIMPLE BAG COL				(M	CRONS)	OF TO		%
	AKER 🗌	RING BAG COLLA	PSE				0-1		Unkr	nwor
	TOFAN					-	1-10			
DESCRIBE INCOMING AIR S Fans pull air from the conveyo		to the DHM island to	anenotica	dried	wood	_	10-25			
ana pun an norn the conveyo	rieaung nom the dryer	to the Drivinsianu, to	ansponing	uneu	wood.	<u> </u>	25-50			
							50-100			
							>100			
									TOTAL	_ = 100
ON A SEPARATE PAGE, AT	FACH A DIAGRAM SHO	WING THE RELATI	ONSHIP	E THE		DEVIC		MISSION	SOURCE	=(S):
COMMENTS:			CHOIN C				2 10 113		SUDINUE	-(0).


Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX B PROCESS FLOW DIAGRAM

Ramboll

Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX C AREA MAP

Application for Air Quality Permit Modification Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX D POTENTIAL EMISSIONS CALCULATIONS

Table 1

Calculation Inputs Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Operational Data								
Green Hammermills, Dryers, Pellet Mills, and Pellet Coolers								
Short-Term Throughput (ODT/hr)	120							
Annual Throughput (ODT/yr)	657,000							
Hours of Operation (Hr/yr)	8,760							
Softwood Composition	100%							
Dry Hammermills								
Short-Term Throughput (ODT/hr)	120							
Annual Throughput (ODT/yr) ¹	657,000							
Hours of Operation (Hr/yr) 8,760								
Softwood Composition	100%							

Notes:

^{1.} 100% of raw material will be processed by the dry hammermills.

.

Table 2
Summary of Facility-wide Criteria Pollutant and CO ₂ e Potential Emissions
Enviva Pellets Sampson, LLC
Faison, Sampson County, North Carolina

Emission Unit ID			Control Device Description	CO (tpy)	NO _X (tpy)	PM (tpy)	РМ ₁₀ (tpy)	PM _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO ₂ e (tpy)
IES-CHIP-1	Log Chipping									1.64	
ES-BARKHOG	Bark Hog					0.24	0.13	0.13		0.30	
ES-DRYER	250.4 MMBtu/hr wood- fired direct heat drying system										
ES-GHM-1 through 3	Three (3) Green Wood Hammermills	CD-WESP; CD-RTO	WESP; RTO	93.8	93.8	37.6	34.8	31.7	27.4	60.8	256,230
ES-HM-1 through 8	Eight (8) Dry Hammermills	-									
ES-FBYPASS	Furnace Bypass			2.06	0.76	1.98	1.78	1.54	0.086	0.058	721
IES-DDB-1 and -2	Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
ES-HMC	Hammermill Conveying System	CD-HMC-BH	One (1) baghouse			0.23	0.23	0.23			
ES-HMA	Hammermill Area										
ES-PCLP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	One (1) baghouse			0.47	0.47	0.47			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse			0.37	0.37	0.37			
ES-CLR-1 through 6	Twelve Pellet Mills and Six (6) Pellet Coolers	CD-CLR-1 through 6; CD-RCO	Six (6) simple cyclones (one on each cooler); RCO/RTO	8.26	13.7	191	47.2	12.2	0.051	37.7	12,069
ES-PCHP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	One (1) baghouse			0.15	0.15	0.15			
ES-PSTB	Pellet Sampling Transfer Bin	CD-PSTB-BH	One (1) baghouse			0.15	0.15	0.15			
ES-FPH	Finished Product Handling										
ES-PB-1 through 4	Four (4) Peliet Loadout Bins	CD-FPH-BH	One (1) baghouse			1.28	1.16	0.51			
ES-PL-1 and 2	Two (2) Pellet Mill Loadouts										
S-DWH	Dried wood handling operations	CD-DWH-BH-1 through -2	Two (2) baghouses			0.30	0.30	0.30		14.3	
S-ADD	Additive Handling and Storage	CD-ADD-BH	One (1) baghouse			0.15	0.15	0.15			
ES-GWH	Green wood handling operations					0.081	0.038	0.0058			
ES-TK-1	2,500 gal diesel storage tank									5.85E-04	
ES-TK-2	500 gal diesel storage tank									1.60E-04	
ES-TK-3	3,000 gal diesel storage tank									0.0022	
	Green wood storage piles					15.4	7.68	1.15	544	6.87	
ES-BFSP-1 and 2	Bark fuel storage piles Dry shavings material					0.64	0.32	0.048		0.29	
ES-DRYSHAVE	handling					0.054	0.025	0.0039			
ES-DEBARK-1	Debarker			1		1.13	0.62	0.62			
ES-BFB ¹	Bark fue! bin										
ES-EG	689 hp diesel-fired emergency generator			0.18	1.51	0.019	0.019	0.019	0.0019	0.019	195
ES-FWP	131 hp diesel-fired fire water pump			0.070	0.18	0.0092	0.0092	0.0092	4.79E-04	0.0081	50.4
-	Paved Roads					16.4	3.27	0.80			
			Total Emissions:	106	111	268	99.0	50.7	27.6	122	272,313
		Totai	Excluding Fugitives ² :	106	111	234	87.1	48.1	27.6	113	272,313

Notes:

² Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.

Abbreviations:

ES - Emission Sources

IES - Insignificant Emission Source

CO - carbon monoxide

CO2e - carbon dioxide equivalent

NO_x - nitrogen oxides

PM - particulate matter

PM10 - particulate matter with an aerodynamic diameter less than 10 microns PM2.5 - particulate matter with an aerodynamic diameter of 2.5 microns or less

SO₂ - sulfur dioxide

tpy - tons per year

VOC - volatile organic compounds

Table 3 Summary of Facility-wide HAP Potential Emissions Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Pollutant	HAP	NC TAP	CD-RTO1	ES-FBYPASS	IES-DDB- 1 and -2	CD-RCO2	IES-EG	IES-FWP	ES-DWH	IES-CHIP-1		
Acetaldehyde	Y	Y	(tpy) 2.03	(tpy) 2.9E-03	(tpy) 3.3E-07	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Acetophenone	Y	Y	1.8E-07	1.1E-08	3.32-07	0.14	9.2E-04	1.8E-04				2.17
crolein	Y	Y	1.82-07	1.4E-02	3.98-07			-				1.9E-07
Ammonia	N	Y		1.46-02		0.83	1.1E-04	2.1E-05				2.07
Antimony & Compounds		-	0.62		0.069	0.27	214					0.96
Arsenic & Compounds	Y	N Y	6.3E-04	2.7E-05								6.6E-04
Benzo(a)pyrene			1.8E-03	7.6E-05	4.3E-06	1.7E-05		++				0.0019
	Y	Y	1.4E-04	8.9E-06	2.6E-08	1.0E-07	2.3E-07	4.3E-08				1.5E-04
Benzene	Y	Y	0.37	1.4E-02	0.015	0.062	0.0011	2.1E-04	- 14			0.46
Beryllium	Y	Y	9.DE-05	3.8E-06	2.6E-07	1.0E-06		++				9.5E-05
Butadiene, 1,3-	Y	Y					4.7E-05	9.0E-06				5.6E-05
Cadmium	Y	Y	5.4E-04	1.4E-05	2.4E-05	9.4E-05						6.7E-04
Carbon tetrachloride	Y	Y	2.5E-03	1.5E-04	24							0.0026
Chiorine	Y	Y	0.87	2.7E-03					1 i i i i i i i i i i i i i i i i i i i			0.87
Chlorobenzene	Y	Y	1.8E-03	1.1E-04								0.0019
Chloroform	Y	Y	1.5E-03	9.6E-05					**	100.0		0.0016
Chromium VI	_3	Y	5.5E-04	1.2E-05	3.0E-05	1.2E-04						7.1E-04
Chromium-Other compds	Y	N	1.4E-03	6.0E-05		54						0.0015
Cobalt compounds	Y	N	5.2E-04	2.2E-05	1.85-05	7.1E-06						5.5E-04
Dichlorobenzene	Y	Y	2.3E-04		2.68-05	1.0E-04						3.6E-04
Dichloroethane, 1,2-	Y	Y	1.6E-03	1.0E-04								0.0017
Dichloropropane, 1,2-	Y	N	1.8E-03	1.1E-04								0.0017
Dinitrophenol, 2,4-	Y	N	9.9E-06	6.2E-07								
Di(2-ethylhexyl)phthalate	Y	Y	2.6E-06	1.5E-07								1.0E-05
Ethyl benzene	Y	N	1.7E-03	1.1E-04								2.7E-06
Formaldehyde	Y	Y	1.97	1.5E-02	0.033							0.0018
Hexachlorodibenzo-p-dioxin	N	Y	8.8E-05	5.5E-06	0.033	0.64	0.0014	2.7E-04	0.07			2.73
Hexane	Y	Y		-								9.32E-05
Hydrochloric acid	Y		0.35		0.039	0.15						0.54
		Y	2.08	6.5E-02								2.15
Lead and Lead Compounds	Y	N	3.8E-03	1.7E-04	1.1E-05	4.3E-05						0.0040
Manganese & Compounds	Y	Y	0.13	5.SE-03	8.2E-06	3.2E-05			**			0.13
Mercury	Y	Y	3.3E-04	1.2E-05	5.6E-06	2.2E-05						3.7E-04
Methanol	Y	N	2.28	4.0	(ke)	3.94			0.16	0.33	0.060	6.77
Methyl bromide	Y	N	8.2E-04	5.2E-05	327.2		**					8.7E-04
Methyl chioride	Y	N	1.3E-03	7.9E-05	**	++						0.0013
Methyl ethyl ketone	N	Y	3.0E-04	1.9E-05		**						0.0003
Methylene chloride	Y	Y	0.016	1.0E-03	9.0	**						0.017
Naphthalene	Y	N	0.005	3.3E-04	1.3E-05	5.4E-05	1.0E-04	1.9E-05				0.0060
Nickel	Y	Y	3.0E-03		4.5E-05	1.8E-04						0.0033
Nitrophenol, 4-	Y	N	6.0E-06	3.8E-07								6.4E-06
Pentachlorophenol	Y	Y	5.6E-05	1.8E-07	1 51 1							5.6E-05
Perchloroethylene	Y	Y	0.042	1.3E-04		22						0.042
Phenol	Y	Y	1.41	1.8E-04	+	0.41						1.82
Phosphorus Metal, Yellow or White	Y	N	2.1E-03	9.3E-05								0.0022
Polychiorinated Biphenyls	Y	Y	4.5E-07	2.8E-08								
Polycyclic Organic Matter	Y	N	0.15	4.3E-04	8.86-04	3.5E-03	2.0E-04					4.7E-07
Propionaldehyde	Y	N	0.78	2.1E-04	0.00-04	0.18		3.9E-05				0.15
Selenium Compounds	Y	N	2.2E-04	9.6E-06	5.2E-07				6.9E-02			1.03
Styrene	Y	Y	0.10	9.6E-06 6.5E-03	5.28-07	2.0E-05					**	2.3E-04
fetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y		· · · · · · · · · · · · · · · · · · ·						••		D.11
			4.7E-10	3.0E-11		**						5.0E-10
oluene	Y	Y	5.1E-02	3.2E-03	7.3E-05	2.9E-04	4.9E-04	9.4E-05				0.0552
richloroethane, 1,1,1-	Y	Y	0.034	1.1E-04								0.034
richloroethylene	Y	Y	1.6E-C3	1.0E-04								0.0017
Trichlorofluoromethane	N	Y	2.2E-03	1.4E-04			12					0.0024
richlorophenol, 2,4,6-	Y	N	1.2E-05	7.6E-08		++						1.3E-06
/inyl Chloride	Y	γ	9.9E-04	6.2E-05		- FF	E					1.0E-03
(ylene	Y	Y	1.4E-03	8.6E-05	44		3.4E-04	6.5E-05				0.0019
fotal HAP Emissions ⁴ (tpy)			13.9	0.13	0.088	6.36	0.0047	8.88E-04	0.30	0.33	0.060	21.2
laximum Individual HAP (tpy)			Methanol	Hydrochloric acid	Нехапе	Methanol	Formaldehyde	Formaldehyde		Methanol	Methanol	Methano
laximum Individual HAP Emissions (tpy)			2.28									

Includes emissions from the dryer (ES-DRYER), green hammermilis (ES-GHM-1 through 3), and dry hammermilis (ES-HM-1 through -6) as well as emissions from RTO fuel usage (maximum between natural gas and propane).
 Includes emissions from the Pollet Miles and Pellet Collers (ES-CLR-1 through -6) as well as emissions from RTO/RCO fuel usage (maximum between natural gas and propane).
 Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is any doublected as AP.
 Because benzo(a)pyrene and naphthalene emissions were presented individually and as components of total PAH emissions, the total HAP emissions presented here do not match the sum of all pollutant emissions to avoid double counting berzo(a)pyrene and naphthalene emissions.

Table 4a Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-RTO) Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput	120 ODT/hr
Annual Throughput	657,000 ODT/yr
Hourly Heat Input Capacity	250.4 MMBtu/hr
Annual Heat Input Capacity	2,193,504 MMBtu/yr
Hours of Operation	8,760 hr/yr
Total RTO/RCO Heat Input	45.2 MMBtu/hr
RTO Fuel Type	Natural Gas or Propane
RTO control efficiency	95%
WESP control efficiency	92.75%

Total Potential Emissions at RTO Stack

Pollutant	Potential	Emissions ¹
	(lb/hr)	(tpy)
со	34.3	93.8
NO _x	34.3	93.8
SO ₂	6.26	27.4
voc	22.2	60.8
Total PM	13.5	37.6
Total PM ₁₀	12.5	34.8
Total PM _{2.5}	11.5	31.7
CO ₂ e	93,600	256,230
Total HAP	4.47	13.9
Total TAP	3.45	11.3

Notes: ^{1.} Total emissions from the furnace/dryer, green hammermills, dry hammermills, and natural gas/propane combustion by the RTO (injection gas and burner fuel). Detailed calculations are provided below.

Potential Criteria Pollutant and Greenhouse Gas Emissions from Dryer/Furnace, Green Hammermills, and RTO Fuel Combustion

Pollutant	Emission	Units	Potential Emissions ¹	
	Factor		(lb/hr)	(tpy)
со	0.28	lb/ODT ²	34.2	93.5
NO _x	0.28	lb/ODT ²	34.1	93.5
SO ₂	0.025	b/MMBtu ³	6.26	27.4
VOC	0.15	Ib/ODT ⁴	18.5	50.6
PM (Filterable + Condensable)	0.11	lb/ODT ⁵	13.2	36.3
PM ₁₀ (Filterable + Condensable)	0.10	lb/ODT ⁵	12.2	33.5
PM _{2.5} (Filterable + Condensable)	0.095	Ib/ODT5	11.4	31.2
CO2	780	Ib/ODT ⁶	93,600	256,230

Notes:

Exhaust from the dryer (ES-DRYER), green hammermills (ES-GHM-1 through -3), and dry Hammermills (ES-HM-1 through -8) are routed to a WESP and then RTO for control of VOC and particulates. Additional emissions resulting from the dry harmmermills are shown in the tables below.

² Emission factor based on Sampson December 2019 compliance test average results plus 50% contingency.

³. No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

⁴ VOC emission factor was derived based on process information and an appropriate contingency based on engineering judgement.

^{5.} Emission factor based on Sampson December 2019 compliance test average results plus 20% contingency.

⁶. Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Sampson uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Table 4a

Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack

ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-RTO)

Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Potential VOC Emissions from Dry Hammermills

Pollutant	Controlled	Units	Potential Emissions ¹	
	Emission Factor		Hourly (lb/hr)	Annual (tpy)
VOC	0.031	lb/ODT ²	3.73	10.2

Notes:

^{1.} Exhaust from the dry hammermill baghouses (ES-DHM-1 through 8) will be controlled by the RTO (CD-RTO).

² Emission factor based on Sampson December 2019 compliance test average result, adjusted for pine percentage plus 20% contingency.

Potential Particulate Emissions from Dry Hammermills

Pollutant	Exhaust Flow Rate ¹	Exit Grain Loading ^{2,3} (gr/cf)	Potential Emissions ⁴	
	(cfm)		(lb/hr)	(tpy)
PM (Filterable)		0.004	0.30	1.31
PM ₁₀ (Filterable)	120,000	0.004	0.30	1.31
PM _{2.5} (Filterable)		0.0016	0.12	0.52

Notes:

¹ Total flow rate (scfm) from all 8 dry hammermill baghouses (CD-HM-BH1 through -BH8). Individual control device flowrate of 15,000 scfm was provided by design engineering firm (Mid-South Engineering Co.).

 $^{2}\cdot$ No speciation data is available for PM_{10} \cdot Therefore, it is conservatively assumed to be equal to total PM.

3. PM_{2.5} speciation (40% of total PM) based on a review of NCASI particle size distribution data for similar baghouses used in the wood products industry.

4. A 92.75% control efficiency is applied for the WESP (CD-WESP).

Thermally Generated Potential Criteria Pollutant Emissions from Dry Hammermills¹

Maximum high heating value of VOC constituents	0.018 MMBtu/lb
Uncontrolled VOC emissions	204 tons/yr
Uncontrolled VOC emissions	75 lb/hr
Heat input of uncontrolled VOC emissions	7,552 MMBtu/yr
Heat input of uncontrolled VOC emissions	1.38 MMBtu/hr

Pollutant	Emission	Units	Potential Emissions	
	Factor ²		Hourly (lb/hr)	Annual (tpy)
СО	0.082	lb/MMBtu	0.11	0.31
NO _x	0.10	lb/MMBtu	0.14	0.37

Notes:

^{1.} Emissions of CO and NO_X will be generated during combustion of VOC emissions by the RTO.

² Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from lb/MMscf to lb/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 4a Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-RTO) Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Potential HAP	and TAP	Emissions	

Pollutant	НАР	I HAP I NCIAP I VOC I		Emission	Units	Footnote		ential sions
				Factor	Onits	Foothote	(lb/hr)	(tpy)
Furnace Biomass Combustion, Drye			Dry Hamn	nermills				
Acetaldehyde	Y	Y	Y	6.17E-03	lb/ODT	1	0.74	2.03
Acrolein	Y	Y	Y	3.75E-03	Ib/ODT	1	0.45	1.23
Formaldehyde	Y	Y	Y	5.08E-03	lb/ODT	1	0.61	1.67
Methanol	Y	N	Y	6.93E-03	Ib/ODT	1	0.83	2.28
Phenol	Y	Y	Y	4.28E-03	lb/ODT	1	0.51	1.41
Propionaldehyde	Y	N	Y	2.39E-03	lb/ODT	1	0.29	0.78
Acetophenone	Y	N	Y	3.20E-09	lb/MMBtu	2,3	4.01E-08	1.75E-0
Antimony & Compounds	Y	N	N	7.90E-06	lb/MMBtu	2,4	1.43E-04	6.28E-0
Arsenic & Compounds	Y	Y	N	2.20E-05	lb/MMBtu	2,4	3.99E-04	1.75E-(
Benzene	Y	Y	Y	4.20E-03	lb/MMBtu	2,3	5.26E-02	2.30E-0
Benzo(a)pyrene	Y	Y	Y	2.60E-06	lb/MMBtu	2,3	3.26E-05	1.43E-0
Beryllium	Y	Y	N	1.10E-06	lb/MMBtu	2,4	2.00E-05	-
Cadmium	Y	Y	N	4.10E-06	lb/MMBtu	2,4	7.44E-05	
Carbon tetrachloride	Y	Y	Y	4.50E-05	lb/MMBtu	2,3	5.63E-04	
Chlorine	Y	Y	N	7.90E-04	lb/MMBtu	2	1.98E-01	
Chlorobenzene	Y	Y	Y	3.30E-05		2,3	4.13E-04	
Chloroform	Y	Y	Y	2.80E-05		2,3	3.51E-04	
Chromium VI	_6	Y	N	3.50E-06	lb/MMBtu	2,3	6.35E-05	-
Chromium-Other compds	Y	N	N	1.75E-05	lb/MMBtu	2,4	3.18E-04	
Cobalt compounds	Y	N	N	6.50E-06	-	2,4	1.18E-04	
Dichloroethane, 1,2-	Y	Y	Y	2.90E-05		2,4	3.63E-04	
Dichloropropane, 1,2-	Y	N	Y	3.30E-05		2,3	4.13E-04	
Dinitrophenol, 2,4-	Y	N	Y	1.80E-07	lb/MMBtu			
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.70E-08		2,3	2.25E-06	
Ethyl benzene	Y	N	Y			2,3	5.88E-07	
Hexachlorodibenzo-p-dioxin	N	Y	Y	3.10E-05		2,3	3.88E-04	
Hydrochloric acid	Y	Y		1.60E-06		2,3	2.00E-05	
Lead and Lead compounds	Y		N	1.90E-02		2,6	4.76E-01	
		N	N	4.80E-05		2,4	8.71E-04	
Manganese & compounds	Y	Y	N	1.60E-03		2,4	2.90E-02	
Mercury	Y	Y	N	3.50E-06		2,4	6.35E-05	
Methyl bromide	Y	N	Y	1.50E-05		2,3	1.88E-04	
Methyl chloride	Y	N	Y	2.30E-05		2,3	2.88E-04	
Methyl ethyl ketone	N	Y	Y	5.40E-06		2,3	6.76E-05	2.96E-0
Methylene chloride	Y	Y	Y	2.90E-04	lb/MMBtu	2,3	3.63E-03	1.59E-0
Naphthalene	Y	N	Y	9.70E-05	lb/MMBtu	2,3	1.21E-03	5.32E-0
Nickel	Y	Y	N	3.30E-05	lb/MMBtu	2,4	5.99E-04	2.62E-0
Nitrophenol, 4-	Y	N	Y	1.10E-07	lb/MMBtu	2,3	1.38E-06	6.03E-0
Pentachlorophenol	Y	Y	N	5.10E-08	lb/MMBtu	2	1.28E-05	5.59E-0
Perchloroethylene	Y	Y	N	3.80E-05	lb/MMBtu	2	9.52E-03	4.17E-0
hosphorus Metal, Yellow or White	Y	N	N	2.70E-05	lb/MMBtu	2,4	4.90E-04	2.15E-0
Polychlorinated biphenyls	Y	Y	Y	8.15E-09	lb/MMBtu	2,3	1.02E-07	4.47E-0
Polycyclic Organic Matter	Y	N	N	1.25E-04	lb/MMBtu	2	3.13E-02	1.37E-0
Selenium compounds	Y	N	N	2.80E-06		2,4	5.08E-05	
Styrene	Y	Y	Y	1.90E-03		2,3	2.38E-02	
Fetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.60E-12		2,3	1.08E-10	
Toluene	Y	Y	Y	9.20E-04	lb/MMBtu	2,3	1.15E-02	
Frichloroethane, 1,1,1-	Y	Y	N	3.10E-05		2	7.76E-03	
Frichloroethylene	Y	Y	Y		lb/MMBtu	2,3	3.76E-04	
Frichlorofluoromethane	N	Y	Y	4.10E-05	lb/MMBtu	2,3	5.13E-04	
richlorophenol, 2,4,6-	Y	N	Ŷ		lb/MMBtu	2,3	2.75E-07	
/inyl chloride	Y	Y	Y	1.80E-05		2,3	2.25E-04	
(ylene	Y	Y	Y	2.50E-05		2,3	3.13E-04	
		·				Z,3 missions:	4.28	1.37E-0 13.1
						missions:	3.13	9.91

Table 4a Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-RTO)

Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Pollutant	HAP		Emission	Units	Footnote		tential ssions	
				Factor	Gints	roothote	(lb/hr)	(tpy)
RTO Burners - Natural Gas/Propan	e Combustion							
2-Methylnaphthalene	Y	N	Y	2.40E-05	lb/MMscf	7	1.06E-06	4.66E-06
3-Methylchloranthrene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	7	7.09E-07	3.11E-06
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	7		3.49E-07
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Acetaldehyde	Y	Y	Y	1.52E-05	lb/MMscf	7	<u> </u>	2.95E-06
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	7		3.49E-06
Ammonia	N	Y	N	3.2	lb/MMscf	7	1.42E-01	-
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	7	1.06E-07	4.66E-07
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	7		3.88E-05
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Benzene	Y	Y	Y	7.10E-04	lb/MMBtu	8		1.41E-01
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	7	-	2.33E-07
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	7		3.49E-07
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	7		2.33E-07
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	7		3.49E-07
Beryllium	Y	Y	N	1.20E-05	Ib/MMscf	7		2.33E-06
Cadmium	Y	Y	N	1.10E-03	lb/MMscf	7		2.14E-04
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	7		2.72E-04
Chrysene	Y	N	Y	1.80E-06	lb/MMscf	7		3.49E-07
Cobalt	Y	N	N	8.40E-05	lb/MMscf	7		1.63E-05
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	7		2.33E-07
Dichlorobenzene	Y	Y	Y	1.20E-03	lb/MMscf	7	5.32E-05	
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	7	1.33E-07	
Fluorene	Y	N	Y	2.80E-06	ib/MMscf	7		5.43E-07
Formaldehyde	Y	Y	Y		lb/MMBtu	8		2.99E-01
Hexane	Y	Y	Y	1.8	lb/MMscf	7		3.49E-01
Indeno(1,2,3-cd)pyrene	Y	N	Y		lb/MMscf	7		3.49E-07
Lead	Y	N	N	5.00E-04	lb/MMscf	7		9.70E-05
Manganese	Y	Y	N	3.80E-04	lb/MMscf	7		7.38E-05
Mercury	Y	Y	N	2.60E-04	lb/MMscf	7		5.05E-05
Naphthalene	Y	N	Y	6.10E-04	lb/MMscf	7		1.18E-04
Nickel	Y	Y	N	2.10E-03	lb/MMscf	7		4.08E-04
Polycyclic Organic Matter	Y	Y	Y		lb/MMBtu	8,9		7.92E-03
Phenanthrene	Y	N	Y	1.70E-05	lb/MMscf	7		3.30E-06
Pyrene	Y	N	Y	5.00E-06	lb/MMscf	7	2.22E-07	
Selenium	Y	N	N	2.40E-05	lb/MMscf	7	1.06E-06	
Toluene	Y	Y	Y	3.40E-03	lb/MMscf	7	1.51E-04	6.60E-04
		· · · · · · · · · · · · · · · · · · ·				, missions:	0.18	0.80
						missions:	0.32	1.42

Notes:

^{1.} Emission factors derived based on Sampson December 2019 compliance test, process information, and an appropriate contingency based on engineering judgement. Emission factors represent controlled emissions.

^{2.} Emission factors for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03.

^{3.} The control efficiency of 95% for the RTO is applied to all VOC hazardous and toxic pollutants for those emission factors that are not derived from Enviva stack test data.

^{4.} The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.

⁵ Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

⁶ The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

^{7.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 -Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

8. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from SCAQMD's AER Reporting Tool for external combustion equipment fired with LPG.

9. The PAH emission factor for propane combustion was used to estimate emissions of Polycyclic Organic Matter.

Table 4a Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-RTO) Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Abbreviations:

 $\begin{array}{l} \mathsf{HAP} \mbox{-} hazardous air pollutant \\ hr \mbox{-} hour \\ lb \mbox{-} pound \\ \mathsf{LPG} \mbox{-} liquefied petroleum gas \\ \mathsf{MMBtu} \mbox{-} Million British thermal units \\ \mathsf{NCDAQ} \mbox{-} North Carolina Division of Air Quality \\ \mathsf{CH}_4 \mbox{-} methane \\ \mathsf{CO} \mbox{-} carbon monoxide \\ \mathsf{CO2} \mbox{-} carbon dioxide \\ \mathsf{CO2} \mbox{-} carbon dioxide equivalent \\ cf \mbox{-} cubic feet per minute \\ gr \mbox{-} grain \\ kg \mbox{-} kilogram \\ \mathsf{NO}_x \mbox{-} nitrogen oxides \\ \end{array}$

 $\mathsf{N}_2\mathsf{O}$ - nitrous oxide NCASI - National Council for Air and Stream Improvement, Inc. RTO - regenerative thermal oxidizer ODT - oven dried tons PAH - polycyclic aromatic hydrocarbons TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound WESP - wet electrostatic precipitator PM - particulate matter PM₁₀ - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SCAQMD - South Coast Air Quality Management District SO₂ - sulfur dioxide yr - year

Table 4c Potential Emissions from Dryer Furnace Bypass (Idle Mode)¹ ES-FBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions

Pollutant	Emission Factor	Units	Potential Emissions		
	ractor		Hourly (lb/hr)	Annual (tpy)	
со	0.60	lb/MMBtu ²	6.00	1.50	
NO _x	0.22	lb/MMBtu ²	2.20	0.55	
SO ₂	0.025	lb/MMBtu ²	0.25	0.063	
VOC	0.017	lb/MMBtu ²	0.17	0.043	
Total PM	0.58	lb/MMBtu ²	5.77	1.44	
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29	
Total PM _{2.5}	0.45	lb/MMBtu ²	4.47	1.12	
CO2	93.8	kg/MMBtu ³	2,068	517	
CH4	0.0072	kg/MMBtu ³	0.16	0.040	
N ₂ O	0.0036	kg/MMBtu ³	0.079	0.020	
CO ₂ e			2,096	524	

Notes:

^{1.} The furnace can operate up to 500 hours per year in "idle mode" using the furnace bypass stack. Idle mode is defined as operation at up to a maximum heat input rate of 10 MMBtu/hr.

CO, NO_x, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM, PM₁₀, and PM_{2.5} factors equal to the sum of the filterable and condensable factors from Table 1.6-1.

3. Emission factors for biomass combustion (dryer) from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 4c Potential Emissions from Dryer Furnace Bypass (Idle Mode)¹ ES-FBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP Emissions

Dell 1				Emission	Units	Potential	Potential Emissions	
Pollutant	HAP	NC TAP	VOC	Factor ¹		Hourly (lb/hr)	Annual (tpy)	
Acetaldehyde	Y	Y	Y	8.30E-04	lb/MMBtu	8.30E-03		
Acrolein	Y	Y	Y	4.00E-03		4.00E-02		
Formaldehyde	Y	Y	Y	4.40E-03		4.40E-02		
Phenol	Y	Y	Y	5.10E-05		5.10E-04		
Propionaldehyde	Y	N	Y	6.10E-05	Ib/MMBtu	6.10E-04	1.53E-04	
Acetophenone	Y	N	Y	3.20E-09	Ib/MMBtu	3.20E-08	8.00E-09	
Antimony & Compounds	Y	N	N	7.90E-06		7.90E-05		
Arsenic & Compounds	Y	Y	N	2.20E-05		2.20E-04		
Benzene	Y	Y	Y	4.20E-03		4.20E-02		
Benzo(a)pyrene	Y	Y	Y	2.60E-06	lb/MMBtu	2.60E-05	6.50E-06	
Beryllium	Y	Y	N	1.10E-06	lb/MMBtu	1.10E-05	2.75E-06	
Cadmium	Y	Y	N	4.10E-06		4.10E-05		
Carbon tetrachloride	Y	Y	Y	4.50E-05		4.50E-04	1.13E-04	
Chlorine	Y	Y	N	7.90E-04		7.90E-03		
Chlorobenzene	Y	Y	Y	3.30E-05	lb/MMBtu	3.30E-04	8.25E-05	
Chloroform	Ý	Y	Ŷ	2.80E-05		2.80E-04		
Chromium VI	_2	Y	N	3.50E-06		3.50E-04		
Chromium-Other compds	Y	N	N	1.75E-05				
Cobalt compounds	Y	N	N			1.75E-04		
Dichloroethane, 1,2-	Y	Y	Y	6.50E-06		6.50E-05		
Dichloropropane, 1,2-	Y		Y	2.90E-05		2.90E-04		
Dinitrophenol, 2,4-	Y	N		3.30E-05		3.30E-04		
Di(2-ethylhexyl)phthalate		N	Y	1.80E-07		1.80E-06		
Ethyl benzene	Y Y	Y	Y	4.70E-08		4.70E-07		
		N	Y	3.10E-05		3.10E-04		
Hexachlorodibenzo-p-dioxin	N	Y	Y	1.60E-06		1.60E-05		
Hydrochloric acid	Y	Y	N	1.90E-02		1.90E-01		
Lead and Lead compounds	Y	N	<u>N</u>	4.80E-05		4.80E-04		
Manganese & compounds	Y	Y	N			1.60E-02		
Mercury	Y	Y	N	3.50E-06		3.50E-05		
Methyl bromide	Y	N	Y	1.50E-05		1.50E-04		
Methyl chloride	Y	N	Y	2.30E-05	lb/MMBtu	2.30E-04	5.75E-05	
Methyl ethyl ketone	N	Y	Y	5.40E-06	lb/MMBtu	5.40E-05	1.35E-05	
Methylene chloride	Y	Y	Y	2.90E-04		2.90E-03		
Naphthalene	Y	N	Y	9.70E-05	lb/MMBtu	9.70E-04	2.43E-04	
Nickel metal	Y	Y	N	3.30E-05	lb/MMBtu	3.30E-04	8.25E-05	
Nitrophenol, 4-	Y	N	Y	1.10E-07	lb/MMBtu	1.10E-06	2.75E-07	
Pentachlorophenol	Y	Y	N	5.10E-08	lb/MMBtu	5.10E-07	1.28E-07	
Perchloroethylene	Y	Y	N	3.80E-05		3.80E-04		
Phosphorus Metal, Yellow or White	Y	N	N	2.70E-05	lb/MMBtu	2.70E-04	6.75E-05	
Polychlorinated biphenyls	Y	Y	Y	8.15E-09	lb/MMBtu	8.15E-08	2.04E-08	
Polycyclic Organic Matter	Y	N	N	1.25E-04	lb/MMBtu	1.25E-03	3.13E-04	
Selenium compounds	Y	N	N		lb/MMBtu	2.80E-05	7.00E-06	
Styrene	Y	Y	Y		lb/MMBtu	1.90E-02	4.75E-03	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.60E-12	Ib/MMBtu	8.60E-11	2.15E-11	
Toluene	Y	Y	Y	9.20E-04	lb/MMBtu	9.20E-03	2.30E-03	
Trichloroethane, 1,1,1-	Y	Y	N	3.10E-05	lb/MMBtu	3.108-04	7.75E-05	
Trichloroethylene	Y	Y	Y	3.00E-05	Ib/MMBtu	3.00E-04	7.50E-05	
Trichlorofluoromethane	Ň	Y	Ŷ		Ib/MMBtu		1.03E-04	
Trichlorophenol, 2,4,6-	Y	N	Ý	2.20E-08		2.20E-07	5.50E-04	
Vinyl chloride	Ý	Y	Y		Ib/MMBtu	1.80E-04	4.50E-05	
Xylene	Ŷ	Ý	Ý	2.50E-05			6.25E-05	
				biomass con				
						0.39	0.097	
es:	T	otal TAP Em	issions (biomass con	nbustion)	0.38	0.096	

Notes:

^{1.} Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

^{2.} Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Table 4c Potential Emissions from Dryer Furnace Bypass (Idle Mode)¹ ES-FBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Abbreviations:

CH₄ - methane CO - carbon monoxide CO₂ - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour kg - kilogram Ib - pound MMBtu - Million British thermal units NO_x - nitrogen oxides N_2O - nitrous oxide ODT - oven dried tons PM - particulate matter PM₁₀ - particulate matter vith an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO₂ - sulfur dioxide tpy - tons per year VOC - volatile organic compound yr - year

Table 5 Potential Emissions from Double Duct Burners IES-DDB-1 and -2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Duct Burner Inputs

2.5 MMBtu/hr
2
43,800 MMBtu/yr
8,760 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Natural Gas Combustion

Pollutant	Emission	Emission		Potential	I Emissions	
	Pollutant Factor Units Footnote		Footnote	Hourly (lb/hr)	Annual (toy)	
со	84.0	lb/MMscf	1	0.41	1.80	
NO _x	50.0	lb/MMscf	2	0.25	1.07	
SO2	0.60	lb/MMscf	1	0.0029	0.013	
VOC	5.50	lb/MMscf	1	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	1	0.028	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	1	0.0093	0.041	
Total PM/PM10/PM2.5				0.037	0.16	
CO2	53.1	kg/MMBtu	3	585	2,562	
CH4	0.0010	kg/MMBtu	3	0.011	0.048	
N ₂ O	0.0001	kg/MMBtu	3	0.0011	0.0048	
CO2e			3	585	2,564	

Potential Criteria Pollutant and Greenhouse Gas Emissions - Propane Combustion

Pollutant	Emission			Potential Emissions		
	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
со	7.50	lb/Mgal	4	0.41	1.80	
NOx	6.50	ib/Mgal	5	0.36	1.56	
SO2	0.054	lb/Mgal	4,6	0.0030	0.013	
voc	1.00	lb/Mgal	4	0.055	0.24	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	4	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	4	0.011	0.048	
Total PM/PM ₁₀ /PM _{2.5}				0.038	0.17	
CO ₂	62.9	kg/MMBtu	3	693	3,035	
CH₄	0.0030	kg/MMBtu	3	0.033	0.14	
N ₂ O	0.0006	kg/MMBtu	3	0.0066	0.029	
CO ₂ e	3	696	3,048			

Notes:

^{2.} Emission factors for NO_X assume burners are low-NO_X burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
 ^{3.} Emission factors for natural gas or propane combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

4- Emission factors for propane combustion obtained from AP-42 Section 1.5 - Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42 Section 1.5.

5. AP-42 Section 1.5 does not include an emission factor for low-NO_x burners. Per AP-42 Section 1.4, low-NO_x burners reduce NO_x emissions by accomplishing combustion in stages, reducing NO_x emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_x emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low-NO_x emission

⁶ SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion -

^{1.} Emission factors for natural gas combustion from AP-42 Section 1.4 - Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.

Table 5 Potential Emissions from Double Duct Burners IES-DDB-1 and -2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP and TAP Emissions

Pollutant	НАР	NC TAP	voc	Emission	Units	Footnote	Potential Emission	
	НАР			Factor			Hourly (lb/hr)	Annual (tpy)
Duct Burners - Natural Gas/Propan	e Combustion							
2-Methylnaphthalene	Y	N	Y	2.40E-05	lb/MMscf	1	1.18E-07	5.15E-07
3-Methylchloranthrene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	1	7.84E-08	3.44E-07
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Acetaldehyde	Y	Y	Y	1.52E-05	lb/MMscf	1	7.45E-08	3.26E-07
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	1	8.82E-08	3.86E-07
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.57E-02	6.87E-02
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	1	1.18E-08	5.15E-08
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	1	9.80E-07	4.29E-06
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Benzene	Y	N	Y	7.10E-04	lb/MMBtu	2	3.55E-03	1.55E-02
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Beryllium	Y	Y	N	1.20E-05	lb/MMscf	1	5.88E-08	2.58E-07
Cadmium	Y	Y	N	1.10E-03	ib/MMscf	1	5.39E-06	2.36E-05
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	1	6.86E-06	3.01E-05
Chrysene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08
Cobalt compounds	Y	N	N	8.40E-05	lb/MMscf	1	4.12E-07	1.80E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08
Dichlorobenzene	Y	Y	Y	1.20E-03	lb/MMscf	1	5.88E-06	2.58E-05
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	1	1.47E-08	6.44E-08
Fluorene	Y	N	Y	2.80E-06	lb/MMscf	1	1.37E-08	6.01E-08
Formaldehyde	Y	Y	Y	1.50E-03	lb/MMBtu	2	7.50E-03	3.29E-02
Hexane	Y	Y	Y	1.8	lb/MMscf	1	8.82E-03	3.86E-02
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-02
ead and Lead Compounds	Y	N	N	5.00E-04	lb/MMscf	1	2.45E-06	1.07E-05
Manganese & Compounds	Y	Y	N	3.80E-04	lb/MMscf	1	1.86E-06	8.16E-06
Mercury	Y	Y	N	2.60E-04	lb/MMscf	1	1.27E-06	5.58E-06
Naphthalene	Y	N	Y	6.10E-04	lb/MMscf	1	2.99E-06	1.31E-05
Vickel	Y	Y	N	2.10E-03	lb/MMscf	1	1.03E-05	4.51E-05
Polycyclic Organic Matter	Y	N	N	4.00E-05	lb/MMBtu	2	2.00E-04	4.51E-05 8.76E-04
Phenanthrene	Y	N	Y	1.70E-05	lb/MMscf	1	8.33E-08	3.65E-04
Pyrene	Y	N	Y	5.00E-06	lb/MMscf	1	2.45E-08	1.07E-07
Selenium compounds	Y	N	N	2.40E-05	Ib/MMscf	1	1.18E-07	5.15E-07
Toluene	Y	Y	Y	3.40E-03	Ib/MMscf	1		
	·			5.401-03	Total HAP		1.67E-05	7.30E-05
					Total TAP		0.020	0.088

Notes:

^{1.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's With TWN database WebFIRE database.

²². The duct burners can fire either natural gas or propane. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations: CO - carbon monoxide HAP - hazardous air pollutant hr - hour lb - pound LPG - liquified petroleum gas Mgal - thousand gallons MMBtu - Million British thermal units MMscf - Million standard cubic feet NCDAQ - North Carolina Divison of Air Quality NO_x - nitrogen oxides

ODT - oven dried tons PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns $Pu_{2,5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - sulfur dioxide TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound yr year

Table 6 Pellet Cooler and Pellet Mill Potential Emissions at Outlet of RTO/RCO Stack ES-CLR-1 through -6 (CD-RCO) Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput	120 ODT/hr
Annual Throughput	657,000 ODT/yr
Hours of Operation	8,760 hr/yr
Total RTO/RCO Heat Input	19.8 MMBtu/hr
RTO/RCO control efficiency	95%

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential I	Emissions ¹
Fonttant	(lb/hr)	(tpy)
со	2.04	8.26
NOx	3.30	13.7
SO2	0.012	0.051
VOC	13.6	37.7
Total PM	69.8	191
Total PM10	17.1	47.2
Total PM _{2.5}	4.37	12.2
CO ₂ e	2,755	12,069
Total HAP	2.28	6.36
Total TAP	0.82	2.45

Notes:

 Total emissions from the pellet mills, pellet coolers, and natural gas/propane combustion by the RTO/RCO (gas injection and burner fuel). Detailed calculations are provided below.

Potential PM, VOC, HAP, and TAP Emissions from Pellet Mills and Pellet Coolers

Pollutant	НАР	NC ТАР	voc	Controlled Emission Factor ¹	Potential Emissions ^{2,3}		
				(lb/ODT)	(lb/hr)	(tpy)	
Acetaldehyde	Y	Y	Y	4.2E-04	0.050	0.14	
Acrolein	Y	Y	Y	2.5E-03	0.30	0.83	
Formaldehyde	Y	Y	Y	1.6E-03	0.19	0.51	
Methanol	Y	N	Y	1.2E-02	1.44	3.94	
Phenol	Y	Y	Y	1.3E-03	0.15	0.41	
Propionaldehyde	Y	N	Y	5.4E-04	0.065	0.18	
			Total HA	P Emissions	2.20	6.01	
			Total TA	P Emissions	0.69	1.89	
Total VOC				0.11	13.4	36.7	
PM (Filterable + Condensable)				0.58	69.6	191	
PM ₁₀ (Filterable + Condensable)				0.14	17.0	46.5	
PM _{2.5} (Filterable + Condensable)				0.035	4.22	11.6	

Notes:

¹ Emission factors derived based on Sampson December 2019 compliance test, process information, and an appropriate contingency based on engineering judgement. The emission factors represent post-control emissions.

 $^{\rm 2}$ A 95.0% control efficiency is applied to the potential emissions for the RTO/RCO.

³ Emissions from the pellet mills and pellet coolers will be controlled by an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions when operating in thermal mode.

Thermally Generated Potential Criteria Pollutant Emissions from Pellet Mills and Pellet Coolers¹

Maximum high heating value of VOC constituents Uncontrolled VOC emissions Uncontrolled VOC emissions Heat input of uncontrolled VOC emissions Heat input of uncontrolled VOC emissions

0.018 MMBtu/lb 735 tons/yr 268 lb/hr 27,189 MMBtu/yr 4.97 MMBtu/hr

	Emission		Potential	Emissions	
Pollutant	Factor ²	Units	Hourly (ib/hr)	Annual (tpy)	
CO	0.082	lb/MMBtu	0.41	1.12	
NOx	0.10	lb/MMBtu	0.49	1.33	

Notes: ^{1.} Emissions of CO and NO_X will be generated during combustion of VOC emissions by the RTO/RCO.

2. Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Potential Criteria Pollutant Emissions and Greenhouse Gas Emissions - Natural Gas Combustion

	Emission		Potential Emission		
Pollutant	Factor ¹	Units	Hourly (lb/hr)	Annual (tpy)	
со	0.082	lb/MMBtu	1.63	7.14	
NOx	0.10	lb/MMBtu	1.94	8.50	
SO2	5.88E-04	lb/MMBtu	0.012	0.051	
VOC	5.39E-03	lb/MMBtu	0.107	0.47	
Total PM	7.45E-03	lb/MMBtu	0.15	0.65	
Total PM ₁₀	7.45E-03	lb/MMBtu	0.15	0.65	
Total PM _{2.5}	7.45E-03	lb/MMBtu	0.15	0.65	
CO2	53.1	kg/MMBtu ²	2,316	10,145	
CH₄	1.00E-03	kg/MMBtu ²	0.044	0.19	
N ₂ O	1.00E-04	kg/MMBtu ²	0.0044	0.019	
CO₂e			2,319	10,155	

Potential Criteria Pollutant and Greenhouse Gas Emissions - Propane Combustion

	Emission		Potential	Emissions	
Pollutant	Factor ³	Units	Hourly (lb/hr)	Annual (tpy)	
со	7.50	lb/Mgal	1.62	7.11	
NOx	13.0	lb/Mgal	2.81	12.3	
SO ₂	0.054	lb/Mgal	0.012	0.051	
VOC	1.00	lb/Mgal	0.22	0.95	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mga!	0.11	0.47	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	0.043	0.19	
Total PM/PM ₁₀ /PM _{2.5}			0.15	0.66	
CO2	62.9	kg/MMBtu ²	2,744	12,020	
CH₄	0.0030	kg/MMBtu ²	0.13	0.57	
N ₂ O	0.0006	kg/MMBtu ²	0.026	0.11	
CO ₂ e			2,755	12,069	

Natural Gas	Combustion	Potential	HAP	and TAP	Emissions

Pollutant	НАР	NO TAD		Emission			Potential	Emissions
Politiant	НАР	NC TAP	voc	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)
Natural Gas Source							1 100/00/	10011
2-Methylnaphthalene	Y	N	Y	2.40E-05	lb/MMscf	4	4.66E-07	2.04E-06
3-Methylchloranthrene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-07
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	4	3.11E-07	1.36E-06
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-07
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-07
Acetaldehyde	Y	Y	Y	1.52E-05	ib/MMscf	4	2.95E-07	1.29E-06
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	4	3.49E-07	1.53E-06
Ammonia	N	Y	N	3.2	Ib/MMscf	4	6.21E-02	2.72E-01
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	4	4.66E-08	2.04E-07
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	4	3.88E-06	1.70E-05
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-07
Benzene	Y	N	Y	7.10E-04	lb/MMBtu	5	1.41E-02	6.16E-02
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-07
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	ib/MMscf	4	3.49E-08	1.53E-07
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-07
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-07
Beryllium	Y	Y	N	1.20E-05	lb/MMscf	4	2.33E-07	1.02E-06
Cadmium	Y	Y	N	1.10E-03	lb/MMscf	4	2.14E-05	9.35E-05
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	4	2.72E-05	1.19E-04
Chrysene	Y	N	Y	1.80E-06	Ib/MMscf	4	3.49E-08	1.19E-04
Cobalt Compounds	Y	N	N	8,40E-05	lb/MMscf	4	1.63E-06	7.14E-06
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-07
Dichlorobenzene	Y	Y	Y	1.20E-03	lb/MMscf	4	2.33E-08	1.02E-07
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	4	5.82E-08	2.55E-07
Fluorene	Y	N	Y	2.80E-06	lb/MMscf	4	5.44E-08	2.33E-07
Formaldehyde	Y	Y	Y	1.50E-03	lb/MMBtu	5	2.97E-02	1.30E-01
Hexane	Y	Y	Y	1.8	lb/MMscf	4	3.49E-02	1.53E-01
Indeno(1,2,3-cd)pyrene	Y	N	Ŷ	1.80E-06	lb/MMscf	4	3.49E-02	1.53E-01 1.53E-07
Lead and Lead Compounds	Y	N	N	5.00E-04	Ib/MMscf	4	9.71E-06	4.25E-05
Manganese & Compounds	Y	Y	N	3.80E-04	Ib/MMscf	4	7.38E-06	4.23E-05
Mercury	Y	Y	N	2.60E-04	lb/MMscf	4	5.05E-06	
Naphthalene	Y	N	Y	6.34E-04	Ib/MMscf	4	1.23E-05	2.21E-05 5.39E-05
Nickel	Y	Y	N	2.10E-03	lb/MMscf	4	4.08E-05	
Polycyclic Organic Matter	Y	N	N	4.00E-05	ib/MMBtu	5,6		1.79E-04
Phenanthrene	Y	N	Y	1.70E-05	lb/MMscf	3,0	7.92E-04	3.47E-03
Pyrene	Y	N	Y	5.00E-06	Ib/MMscf		3.30E-07	1.45E-06
Selenium compounds	Y	N	N	2.40E-05		4	9.71E-08	4.25E-07
Toluene	Y	Y	Y	2.40E-05 3.40E-03	Ib/MMscf	4	4.66E-07	2.04E-06
		r			lb/MMscf		6.60E-05	2.89E-04
				Emissions (na Emissions (na			0.080	0.35

Notes:

1. Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

² Emission factors for natural gas or propane combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

3. Emission factors for propane combustion obtained from AP-42 Section 1.5 - Liquefied Petroleum Gas Combustion, 07/08. Heat content of propane was assumed to be 91.5 MMBtu/gal per AP-42 Section 1.5. ⁴ Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas

Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

5. The RCO burner can fire either natural gas or propane. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

⁶. The PAH emission factor for propane combustion was used to estimate emissions of Polycyclic Organic Matter.

bbreviations:	
cf - cubic feet	NCDAQ - North Carolina Division of Air Quality
cfm - cubic feet per minute	ODT - oven dried tons
gr - grain	PAH - polycyclic aromatric hydrocarbons
HAP - hazardous air pollutant	RCO - regenerative catalytic oxidizer
hr - hour	RTO - regenerative thermal oxidizer
kg - kilogram	TAP - toxic air pollutant
lb - pound	tpy - tons per year
LPG - liquified petroleum gas	USEPA - U.S. Environmental Protection Agency
MMBtu - million British thermal units	VOC - volatile organic compound
MMscf - million standard cubic feet	yr - year

Table 7Dried Wood Handling Potential EmissionsES-DWHEnviva Pellets Sampson, LLCFaison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput ¹	120 ODT/hr
Annual Throughput ¹	657,000 ODT/yr

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor ²	Potential	Emissions
	(Ib/ODT)	(lb/hr)	(tpy)
Formaldehyde	2.16E-04	0.026	0.071
Propionaldehyde	2.10E-04	0.025	0.069
Methanol	4.92E-04	0.059	0.16
Total H/	0.11	0.30	
Total VOC	0.044	5.22	14.3

Notes:

^{1.} Hourly and annual throughputs assumed to be the same as dryer throughput.

². Emission factors are based on Sampson December 2019 compliance test average results plus 20% contingency. The VOC emission factor was adjusted to account for the difference in pine percentage during testing and the maximum allowable.

Abbreviations:

hr - hour

lb - pound

ODT - oven dried tons

tpy - tons per year

VOC - volatile organic compound

yr - year

Table 8 Summary of Baghouse and Cyclone Potential Emissions Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

				Exhaust	Evit Grain Loading				Potential Emissions						
Emission Unit ID	Source Description	Control	Control Device	Flow Rate	Flow Rate			PM		PM ₁₀		PM2.5			
	source searchpion	Device ID	Description	(cfm)	PM (gr/cf)	PM ₁₀ (gr/cf)	PM _{2.5} (gr/cf)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
ES-HMC	Hammermill Conveying System	CD-HMC-BH	Baghouse ^{2, 3, 4}	1,500	0.004	0.004	0.004	0.051	0.23	0.051	0.23	0.051	0.23		
ES-HMA	Hammermill Area						-								
ES-PCHP	Pellet Cooler LP Fines Relay System	CD-PCLP-BH	Baghouse ^{1, 2, 3}	3,102	0.004	0.004	0.004	0.11	0.47	0.11	0.47	0.11	0.47		
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	Baghouse ^{1, 2, 3}	2,444	0.004	0.004	0.004	0.084	0.37	0.084	0.37	0.084	0.37		
ES-PCLP	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	Baghouse ^{1, 2, 3}	1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15		
ES-PSTB	Pellet Sampling Transfer Bin	CD-PSTB-BH	Baghouse ^{1, 2, 3}	1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15		
ES-FPH	Finished Product Handling										0110	0.031	0.40		
ES-PB-1 through 4	Four (4) Pellet Loadout Bins	CD-FPH-BH	Baghouse ^{1, 5, 6}	8,500	0.004	0.004	0.0016	0.29	1.28	0.27	1.16	0.12	0.51		
ES-PL-1 and 2	Two (2) Pellet Mill Loadouts		3										0.51		
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH-1	Baghouse ^{1, 2, 3}	1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15		
	(conveyors)	CD-DWH-BH-2		1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15		
ES-ADD	Additive Handling and Storage	CD-ADD-BH	Baghouse ^{2, 3}	1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15		

Notes:

^{1.} Control device flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.).

^{2.} No speciation data is available for PM₁₀. Therefore, it is conservatively assumed to be equal to total PM.

^{3.} No speciation data is available for PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

4. Exhaust flow rate provided by the vendor (WPI).

5. Finished product handling PM₁₀ speciation (91% of total PM) based on emission factors for wet wood combustion controlled by a mechanical separator from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. Because the particle size of particulate matter from finished product handling is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

6. Finished Product Handling PM2.5 speciation (40% of total PM) based on a review of NCASI particle size distribution data for similar baghouses used in the wood products industry.

Abbreviations:

cf - cubic feet	lb - pound
cfm - cubic feet per minute	NCASI - National Council for Air and Stream Improvement, Inc.
dcfm - dry cubic feet per minute	PM - particulate matter
ES - Emission Sources	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
IES - Insignificant Emission Source	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
gr - grain	tpy - tons per year
ha have	

hr - hour