

Mr. William Willets, PE Chief, Permitting Section, Division of Air Quality NC Department of Environmental Quality 1641 Mail Service Center Raleigh, NC 27699-1641

Re: Amended Application for Initial Title V Permit Enviva Pellets Sampson, LLC Faison, North Carolina Sampson County Permit No.: 10386R04 Facility ID: 8200152

ENVIRONMENT & HEALTH

Received

OCT 0 2 2020

Air Permits Section

Dear Mr. Willets:

Enclosed please find an amended application for an initial Title V permit for Enviva Pellets Sampson, LLC (Enviva) (NC DEQ Facility ID #8200152) in Sampson County. Enviva is submitting this application in accordance with Condition 2.2.A.7 of Air Quality Permit No. 10386R04 (issued on October 2, 2019) which requires submittal of an amended first time Title V permit application within 12 months of commencing operation of any of the new sources or control devices authorized by Air Quality Permit No. 10386R04. This application reflects the changes authorized by Air Quality Permit No. 10386R04 and the permit modification application submitted on April 2, 2020 which requests authorization for installation of controls for the dry hammermills, pellet mills, and pellet coolers.

This application replaces the original Title V permit application (8200152.17B) that was submitted in September 2017. As required, three (3) copies of the complete permit application package are enclosed.

Thank you for your attention to this matter. If you have any questions regarding this permit application, please contact me at (225) 408-2691 or Kai Simonsen, Air Permit Engineer at Enviva, at (984) 789-3628.

Date October 1, 2020

Ramboll 8235 YMCA Plaza Drive Suite 300 Baton Rouge, LA 70810 USA

T +1 225-408-2691 www.ramboll.com

Yours sincerely,

MAS 2

Michael Carbon Managing Principal

D 225-408-2691 M 225-907-3822 mcarbon@ramboll.com

cc: Yana Kravtsova (Enviva) Kai Simonsen (Enviva) Stephen Stroud (Enviva)

Enclosures: Permit Application

Prepared for Enviva Pellets Sampson, LLC Sampson County, North Carolina

Prepared By Ramboll US Corporation Baton Rouge, Louisiana

Date October 2020 CT 0 2 2020

AMENDED APPLICATION FOR INITIAL TITLE V PERMIT ENVIVA PELLETS SAMPSON, LLC

CONTENTS

1.	INTRODUCTION	1
2.	PROCESS DESCRIPTION	2
2.1	Green Wood Handling (IES-GWH) and Storage (IES-GWSP-1 through 4)	2
2.2	Debarking (IES-DEBARK-1), Chipping (IES-CHIP-1), Bark Hog (IES-BARKHOG), Bark	-
	Fuel Storage Piles (IES-BFSP-1 and 2), and Bark Fuel Bin (IES-BFB)	2
2.3	Green Hammermills (ES-GHM-1 through 3) and Dryer (ES-DRYER)	3
2.4	Furnace and Dryer Bypass Stacks (ES-FBYPASS and ES-DBYPASS)	3
2.5	Dryer Double Duct Burners (IES-DDB-1 and 2)	4
2.6	Dried Wood Handling (ES-DWH)	4
2.7	Dry Shavings Handling (IES-DRYSHAVE)	4
2.8	Dry Hammermills (ES-HM-1 through 8)	5
2.9	Dry Hammermill Conveying System (ES-HMC)	5
2.10	Pellet Mill Feed Silo (ES-PMFS)	5
2.11	Pellet Mills and Pellet Coolers (ES-CLR-1 through 6), Pellet Cooler HP Fines Relay	
2.12	System (ES-PCHP),	6
2.12	Additive Handling (IES-ADD)	6
2.13	Finished Product Handling (ES-FPH) and Loadout (ES-PB1 through 4 and ES-PL-1 and 2)	
2.14		6
2127	Emergency Generator (IES-EG), Fire Water Pump (IES-FWP), and Diesel Storage Tanks (IES-TK-1 through 3)	_
2.15	Propane Vaporizers (IES-PV-1 and 2)	7
		7
3.	POTENTIAL EMISSIONS QUANTIFICATION	8
3.1	Green Wood Handling (IES-GWH)	8
3.2	Green Wood Storage Piles (IES-GWSP-1 through 4) and Bark Fuel Storage Piles	
3.3	(IES-BFSP-1 and 2)	8
3.4	Debarker (IES-DEBARK-1) Bark Hog (IES-BARKHOG)	9
3.5	Chipper (IES-CHIP-1)	9
3.6	Bark Fuel Bin (IES-BFB)	9
3.7	Green Hammermills (ES-GHM-1 through ES-GHM-3) and Dryer (ES-DRYER)	9
3.8	Furnace and Dryer Bypass - Cold Start-up (ES-FBYPASS and ES-DBYPASS)	10
3.9	Furnace and Dryer Bypass - Idle Mode (ES-FBYPASS and ES-DBYPASS)	10
3.10	Double Duct Burners (IES-DDB-1 and IES-DDB-2)	11 11
3.11	Dried Wood Handling Operations (ES-DWH)	11
3.12	Dry Shavings Handling (IES-DRYSHAVE)	12
3.13	Dry Hammermills (ES-HM-1 through ES-HM-8)	12
3.14	Dry Hammermill Conveying System (ES-HMC)	12
3.15	Pellet Mill Feed Silo (ES-PMFS)	12
3.16	Pellet Mills and Pellet Coolers (ES-CLR-1 through ES-CLR-6)	12
3.17	Pellet Cooler HP Fines Relay System (ES-PCHP)	13
3.18	Additive Handling (IES-ADD)	13
3.19	Pellet Loadout Bins (ES-PB1 through 4), Finished Product Handling (ES-FPH), and	-
	Pellet Loadout (ES-PL-1 and 2)	13
3.20	Emergency Generator (IES-EG) and Fire Water Pump (ES-FWP)	14
3.21	Diesel Storage Tanks (ES-TK-1 through 3)	14
3.22	Paved Roads	14

Ramboll

3.23	Propane Vaporizers (IES-PV-1 and 2)	15
4.	STATE AND FEDERAL PERMITTING APPLICABILITY	16
4.1	Federal Permitting Programs	16
4.2	North Carolina Permitting Program	17
5.	REGULATORY APPLICABILITY	18
5.1	New Source Performance Standards	18
5.2	National Emission Standards for Hazardous Air Pollutants	
5.3	Compliance Assurance Monitoring	19
		21
5.4	Chemical Accident Prevention Provisions	21
5.5	North Carolina Administrative Code	21

APPENDIX

- Appendix A Permit Application Forms
- Appendix B Area Map
- Appendix C Process Flow Diagram
- Appendix D Potential Emissions Calculations

ACRONYMS AND ABBREVIATIONS

AER	Air Emissions Reporting
AP-42	Compilation of Air Pollutant Emission Factors
bhp	brake horsepower
ВМР	Best Management Practice
CAA	Clean Air Act
CAM	Compliance Assurance Monitoring
CFR	Code of Federal Regulations
CI	Compression Ignition
CISWI	Commercial and Industrial Solid Waste Incineration
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
DAQ	Division of Air Quality
FSC	Forest Stewardship Council
GHG	Greenhouse Gases
gr	Grains
НАР	Hazardous Air Pollutant
hr	Hour
lb	Pound
MACT	Maximum Achievable Control Technology
MMBtu	Million British thermal units
NAAQS	National Ambient Air Quality Standards
NCAC	North Carolina Administrative Code
NCDEQ	North Carolina Department of Environmental Quality
NESHAP	National Emission Standards for Hazardous Air Pollutants
NNSR	Nonattainment New Source Review
NOx	Nitrogen Oxides (NO + NO ₂)
NSPS	New Source Performance Standards
NSR	New Source Review
ODT	Oven Dried short Tons
PEFC	Programme for the Endorsement of Forest Certifications
PM	Particulate Matter

Acronyms

Ramboll

PM _{2.5}	Particulate Matter Less Than 2.5 Micrometers in Aerodynamic Diameter
PM10	Particulate Matter Less Than 10 Micrometers in Aerodynamic Diameter
PSD	Prevention of Significant Deterioration
PSEU	Pollutant Specific Emission Unit
RCO	Regenerative Catalytic Oxidizer
RTO	Regenerative Thermal Oxidizer
SCAQMD	South Coast Air Quality Management District
scf	Standard Cubic Feet
SIP	State Implementation Plan
SO ₂	Sulfur Dioxide
SFI	Sustainable Forestry Initiative
ТАР	Toxic Air Pollutant
tph	tons per hour
tpy	tons per year
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compounds
WESP	Wet Electrostatic Precipitator
yr	year

1. INTRODUCTION

Enviva Pellets Sampson, LLC (Enviva) owns and operates a wood pellet manufacturing plant (referred to herein as "the Sampson plant", "the plant", or "the facility") in Sampson County, North Carolina. The plant currently operates under Air Quality Permit No. 10386R04 issued by the North Carolina Department of Environmental Quality (NCDEQ), Division of Air Quality (DAQ) on October 2, 2019. The plant consists of the following processes: Log Chipper, Bark Hog, Green Hammermills, Rotary Dryer, Dry Hammermills, Pellet Mills and Coolers, Product Loadout operations and other ancillary activities. An application for an initial Title V permit for the Sampson plant was submitted in September 2017.

Air Quality Permit No. 10386R04 authorized changes to the Sampson plant in order to meet new customer softwood percentage and production rate demands and to incorporate significant emission reduction efforts to minimize emissions impacts associated with the project. Enviva is submitting this amended initial Title V application in accordance with Condition 2.2.A.7 to reflect the changes authorized by Air Quality Permit No. 10386R04 and the permit modification application submitted on April 2, 2020.

With this application, Enviva is also requesting that the permit be updated to reflect the following:

- Removal of the additive storage silo and baghouse (ES-ADD) from the permit as these will not be installed and instead reflect transfer of additive from supersacks to a hopper (IES-ADD);
- Removal of the Pellet Sampling Transfer Bin (ES-PSTB) and associated baghouse (CD-PSTB-BH) from the permit as these will not be installed; and
- Removal of the Hammermill Area (ES-HMA), Pellet Cooler Low Pressure (LP) Fines Relay System, and associated baghouse (CD-PCLP-BH) from the permit because this is part of a closed loop system and does not vent to the atmosphere.

Upon implementation of controls for the dry hammermills, pellet mills, and pellet coolers proposed in the April 2020 permit modification application, the Sampson plant will be a synthetic minor source with respect to the Prevention of Significant Deterioration (PSD) permitting program and a minor source of hazardous air pollutants (HAP).

Section 2 includes a process description. Methodologies used to quantify potential emissions are summarized in Section 3. Section 4 describes the applicability of federal and state permitting programs. Section 5 includes a detailed applicability analysis of both federal and state regulations. The completed air permit application forms are included in Appendix A. An area map and process flow diagram are included in Appendices B and C, respectively. Detailed potential emissions calculations are provided in Appendix D.

Introduction

2. PROCESS DESCRIPTION

Enviva manufactures wood pellets for use as a renewable fuel for energy generation and industrial customers. Enviva's customers use wood pellets in place of coal, significantly reducing emissions of pollutants such as lifecycle carbon dioxide (CO2)/greenhouse gases (GHGs), mercury, arsenic and lead. The company is dedicated to improving the environmental profile of energy generation while promoting sustainable forestry in the southeastern United States. Enviva holds certifications from the Forest Stewardship Council (FSC), Sustainable Forestry Initiative (SFI), Programme for the Endorsement of Forest Certification (PEFC), and Sustainable Biomass Program (SBP). Enviva requires that all suppliers adhere to state-developed "Best Management Practices" (BMPs) in their activities to protect water quality and sensitive ecosystems. In addition, Enviva is implementing an industry leading "track and trace" system to further ensure that all fiber resources come from responsible harvests. Enviva pays particular attention to: land use change, use and effectiveness of BMPs, wetlands, biodiversity, and certification status. All of this combined ensures that Enviva's forestry activities contribute to healthy forests both today and in the future. A detailed description of Enviva's Responsible Wood Supply Program can be found at: https://www.envivabiomass.com/sustainability/responsible-sourcing/responsible-sourcingpolicy/

The following sections provide a description of the sources that will be impacted by this application. An area map and process flow diagram are provided in Appendices B and C, respectively.

2.1 Green Wood Handling (IES-GWH) and Storage (IES-GWSP-1 through 4)

"Green" (i.e., wet) wood is delivered to the plant via trucks as either pre-chipped wood or unchipped logs from commercial thinning for on-site chipping. Purchased chips and bark are unloaded from trucks into hoppers that feed conveyors (IES-GWH) that transfer the material to Green Wood Storage Piles (IES-GWSP-1 through 4) or to Bark Fuel Storage Piles (IES-BFSP-1 and 2). Conveyors transferring green wood chips are enclosed.

Purchased chips are screened and oversized chips undergo additional chipping as needed prior to transfer to the Green Wood Storage Piles.

2.2 Debarking (IES-DEBARK-1), Chipping (IES-CHIP-1), Bark Hog (IES-BARKHOG), Bark Fuel Storage Piles (IES-BFSP-1 and 2), and Bark Fuel Bin (IES-BFB)

Logs are debarked by the electric-powered rotary drum Debarker (IES-DEBARK-1) and then sent to the electric-powered Chipper (IES-CHIP-1) which chips the wood to specification for drying. Bark from the Debarker is transferred to the Bark Hog (IES-BARKHOG) via conveyor for further processing.

Purchased bark delivered by trucks as well as bark produced by the Debarker and processed by the Bark Hog are transferred to the Bark Fuel Storage Piles (IES-BFSP-1 and 2) via conveyor. The primary Bark Fuel Storage Pile (IES-BFSP-1) is located under a covered structure. The secondary Bark Fuel Storage Pile (IES-BFSP-2) serves as overflow storage as needed. Following storage in the Bark Fuel Storage Piles (IES-BFSP-1 and 2), the bark is transferred via a walking floor to a covered conveyor and then to a fully enclosed Bark Fuel Bin (IES-BFB) where the material is pushed into the furnace.

2.3 Green Hammermills (ES-GHM-1 through 3) and Dryer (ES-DRYER)

Green wood that has passed through the chipper is further processed in the Green Hammermills (ES-GHM-1, 2, and 3) to reduce material to the proper size. Exhaust from the Green Hammermills is routed to the dryer wet electrostatic precipitator (WESP) and regenerative thermal oxidizer (RTO) control system (CD-WESP/CD-RTO) to control particulate matter (PM), volatile organic compound (VOC), and HAP emissions. Processed wood is then conveyed to a single rotary dryer (ES-DRYER). Direct contact heat is provided to the dryer via a 250.4 MMBtu/hr furnace which combusts bark and wood chips as fuel. Green wood is fed into the dryer where the moisture content is reduced to the desired level and routed to four (4) identical material recovery cyclones operating in parallel, which capture dried wood for further processing. Exhaust from the dryer cyclones is combined into a common duct with exhaust from the Green Hammermills (ES-GHM-1 through 3) and is routed to the WESP (CD-WESP) and RTO (CD-RTO) for control of particulates, VOC, and HAP.

2.4 Furnace and Dryer Bypass Stacks (ES-FBYPASS and ES-DBYPASS)

Bypass stacks for the furnace and dryer are used to exhaust hot gases during start-ups (for temperature control), shutdowns, and malfunctions. Specifically, the Furnace Bypass Stack is used in the following situations:

- **Cold Start-ups:** The furnace bypass stack is used when the furnace is started up from a cold shutdown until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate. Use of the furnace bypass stack for cold start-ups is limited to 50 hours per year at a maximum heat input of 37.6 MMBtu/hr. Diesel fuel may be used as an accelerant for cold start-up. The amount used per event is approximately 15-30 gallons and the annual usage is approximately 200 gallons; therefore, emissions resulting from diesel combustion are insignificant.
- Idle mode: The furnace may also operate up to 500 hours per year in idle mode with emissions routed to the furnace bypass stack. The purpose of operation in idle mode is to maintain the temperature of the fire brick lining the furnace which may be damaged if it cools too rapidly. Operation in "idle mode" also significantly reduces the amount of time required to restart the furnace. Use of the furnace bypass stack for idle mode is limited to 500 hours per year at 10 MMBtu/hr.
- Planned Shutdown: In the event of a planned shutdown, the furnace heat input is
 decreased and all remaining fuel is moved through the system to prevent a fire. The
 remaining fuel is combusted prior to opening the furnace bypass stack. The furnace
 bypass stack is not utilized until after the furnace achieves an idle state (10 MMBtu/hr or
 less). Until this time, emissions continue to be controlled by the WESP and RTO.
- Malfunction: The furnace automatically aborts to the bypass stack in the event of a malfunction. This may be caused by failsafe interlocks associated with the furnace or dryer and emissions control systems (i.e., electricity, compressed air, water/fire protection). As soon as the furnace aborts it automatically switches to "idle mode" (defined as operation at up to a maximum heat input rate of 10 MMBtu/hr), the fuel feed is stopped, and the heat input rate drops rapidly.

Conditions under which the dryer bypass stack is used are as follow:

Process Description

Ramboll

- Cold Start-ups and Transition from Furnace Idle: The dryer bypass stack is used when the furnace is started up from a cold shutdown and when the furnace transitions from idle mode to normal operation. Emissions are vented through the dryer bypass stack for approximately 10 minutes as exhaust flow is transitioned from the furnace bypass stack to the WESP and RTO. The dryer is not operational during this time and emissions are due solely to combustion of fuel in the furnace. Emissions during these brief transition periods are not separately quantified to avoid double-counting, as these emissions are already included under the furnace cold start-up and idle mode conditions.
- **Malfunction:** The dryer system automatically aborts due to power failure, equipment failure, or furnace abort. For example, if the RTO goes offline because of an interlock failure, the dryer will immediately abort. Dryer abort may also occur if the dryer temperature is out of range, or if a spark is detected.
- Planned Shutdown: During planned shutdowns, as the remaining fuel is combusted by the furnace, the Operator reduces the chip input to the dryer. When only a small amount of chips remain, the dryer drum is emptied. The dryer bypass stack is then opened, and a purge air fan is used to ensure no explosive build-up occurs in the drum. Emissions during this time are negligible and have not been quantified, as the furnace is directed to its abort stack (see furnace planned shutdown above) and the dryer is no longer operating.

Malfunctions are infrequent, unpredictable, and minimized to the maximum extent possible. They cannot be permitted, as they are by definition, unplanned events. These emissions cannot reasonably be quantified and are not included in the facility-wide potential emissions.

2.5 Dryer Double Duct Burners (IES-DDB-1 and 2)

As flue gas exits the dryer and begins to cool, wood tar can condense and coat the inner walls of the dryer ducts creating a fire risk. In order to prevent condensation from occurring and thus reduce the fire risk, the two (2) ducts (herein referred to as double ducts) are heated. The duct from the cyclone outlet to the ID fan is heated by one (1) low-NO_x burner with a maximum heat input rating of 2.5 MMBtu/hr and a second 2.5 MMBtu/hr low-NO_x burner is used to heat the duct used for exhaust gas recirculation and the WESP. The burners combust natural gas, with propane as back-up, and exhaust directly to the atmosphere. Potential emissions from the duct burners are below the thresholds in 15A NCAC 02Q .0503(8) and they are thus considered insignificant activities.

2.6 Dried Wood Handling (ES-DWH)

There are several conveyor transfer points comprising the Dried Wood Handling emission source (ES-DWH) that are located between the Dryer and Dry Hammermills. These conveyors and associated transfer points are completely enclosed with only two (2) emission points to the atmosphere that are controlled by individual baghouses (CD-DWH-BH-1 and 2).

2.7 Dry Shavings Handling (IES-DRYSHAVE)

Purchased dry shavings are unloaded from trucks into a hopper that feeds material via enclosed conveyors to a bucket elevator that ultimately fills a silo. Each of these material transfer points are entirely enclosed with the exception of truck unloading. From the silo, the dry shavings are transferred via an enclosed screw conveyor to the Dry Hammermills for further processing.

2.8 Dry Hammermills (ES-HM-1 through 8)

Dried wood chips from the dryer material recovery cyclones are conveyed to screening operations that remove smaller wood particles. Smaller particles passing through the screens are diverted to the dry hammermill discharge conveyor, while oversized wood is diverted to the eight (8) dry hammermills operating in parallel (ES-HM-1 through 8) for further size reduction prior to pelletization. Upon removal of the dry hammermill throughput limitation as requested in the April 2020 permit modification application, the screeners may or may not be used during normal process operations. Each dry hammermill includes a material recovery cyclone to capture milled fiber for further processing. Particulate emissions from the eight (8) dry hammermills are controlled using eight (8) baghouses (CD-HM-BH-1 through 8).

As proposed in the April 2020 permit modification application, an air flow recirculation process will be implemented to route a portion of the exhaust from each dry hammermill cyclone back into the front end of the respective dry hammermill to reduce fresh intake air and thus decrease the volume of air that is routed to the downstream control devices. The dry hammermill exhaust will be routed to baghouses, followed by a quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, before entering the RTO (CD-RTO). The purpose of the quench duct is to protect the RTO by reducing the risk of fire. Interlocks will be installed to cease operation of the dry hammermills if a minimum flow rate is not maintained in the quench duct or if the furnace/WESP/RTO system ceases normal operation.

At all times 100% of the dry hammermill exhaust will be controlled by a baghouse, WESP, and RTO. The furnace is not considered a control device and has no impact on estimated potential to emit. The WESP will provide a reduction in PM and metallic HAP and the RTO will provide a reduction in VOC and organic HAP and toxic air pollutant (TAP) emissions. The highest pollutant inlet loading to the control devices will occur when the furnace and dryer are operating at maximum capacity with all dry hammermill exhaust routed to the inlet of the furnace. The quench duct is considered inherent process equipment that is required to safely operate the RTO (i.e., reduce fire risk) and is not a control device.

2.9 Dry Hammermill Conveying System (ES-HMC)

A fully enclosed blower system collects and transports fines collected by the Dry Hammermill baghouses and discharges into a cyclone that separates the solids from process air. Process air from the cyclone is recirculated back to the blower and the solids are discharged on the dry hammermill conveying system (ES-HMC).

Dried, milled wood is transferred from the dry hammermill material recovery cyclones to the Pellet Mill Feed Silo via the hammermill conveying system (ES-HMC). This conveying system is vented to the hammermill conveyor baghouse (CD-HMC-BH) for control of particulate matter emissions.

2.10 Pellet Mill Feed Silo (ES-PMFS)

Sized wood from the dry hammermill material recovery cyclones is transported by a set of conveyors to the Pellet Mill Feed Silo (ES-PMFS) prior to pelletization. Particulate emissions from the Pellet Mill Feed Silo are controlled by a baghouse (CD-PMFS-BH).

2.11 Pellet Mills and Pellet Coolers (ES-CLR-1 through 6), Pellet Cooler HP Fines Relay System (ES-PCHP),

Sized wood from the Pellet Mill Feed Silo (ES-PMFS) is mechanically compressed through twelve (12) pellet mills operating in parallel. Formed pellets are discharged into one of six (6) pellet coolers (ES-CLR-1 through ES-CLR-6) where cooling air is passed through the pellets. At this point, the pellets contain a small amount of wood fines which are swept out with the cooling air and are controlled utilizing six (6) cyclones operating in parallel prior to discharge to the atmosphere (CD-CLR-1 to 6). As requested in the April 2020 permit modification application the exhaust from the six (6) pellet cooler cyclones will be routed to a quench duct and then to an RTO/RCO that will primarily operate in catalytic mode with thermal as a back-up during catalyst cleaning. The purpose of the quench duct is to protect the RTO/RCO by reducing the risk of fire. Operation of the pellet mills and coolers will be interlocked with operation of the quench duct (i.e., the quench duct must be ready for operation for the pellet mills and cooler to operate). No resin or other chemical binding agents are needed for pelletization.

Two high pressure blowers collect fines from the pellet cooler discharge cyclones (ES-PCHP) and convey them to the cooler high pressure fines filter (CD-PCHP-BH). Solids separated by the filter (CD-PCHP-BH) are returned to the dry hammermill conveying system (ES-HMC) and process air is discharged to atmosphere (ES-PCHP).

Each pellet cooler discharges pellets on to screeners before pellets are discharged onto the conveyor transporting the pellets to the truck loadout bins. Pellet screener fines are collected by the Pellet Cooler Low Pressure Fines Relay System and discharged into a baghouse. The fines separated by the baghouse discharge into the Pellet Cooler High Pressure Fines Relay System (ES-PCHP) and process air is recirculated back to the low pressure blower. No emissions are vented to atmosphere from the Pellet Cooler Low-Pressure Fines Relay System which is a closed loop system.

Finished wood pellets are transferred from the pellet coolers to the truck loadout operation via a conveyor that is controlled by the Finished Product Handling Baghouse (CD-FPH-BH).

2.12 Additive Handling (IES-ADD)

Additive is used in the pellet production process to increase the durability of the final product. This dry powder additive is added to sized wood from the dry hammermills prior to transfer to the pellet mills. The dry powder contains no hazardous chemicals or VOC.

The additive is received in 2,000 lb supersacks and is emptied into a hopper. The additive is then transferred from the hopper via enclosed screw conveyor and is added to the milled fiber conveyor which transfers milled wood to the pellet mills.

2.13 Finished Product Handling (ES-FPH) and Loadout (ES-PB1 through 4 and ES-PL-1 and 2)

Final product is conveyed to four (4) pellet loadout bins (ES-PB-1 through ES-PB-4) that feed the truck loadout station which includes two loadout spouts (ES-PL-1 and ES-PL-2). At the truck loadout station, pellets are gravity fed into trucks through two (2) covered chutes that automatically telescope upward during the loadout process to maintain constant contact with the product as it is loaded to prevent emissions. A slight negative pressure is maintained in this area of the loadout building using an induced draft fan which exhausts to the Finished Product Handling baghouse (CD-FPH-BH). Negative pressure is maintained in the loadout area as a fire prevention measure to prevent any build-up of dust on surfaces within the

Process Description

building. The Finished Product Handling baghouse controls emissions from finished product handling (ES-FPH), the four (4) pellet loadout bins (ES-PB-1 through ES-PB-4), and truck loadout operations (ES-PL-1 and ES-PL-2). Trucks are covered immediately after loading.

2.14 Emergency Generator (IES-EG), Fire Water Pump (IES-FWP), and Diesel Storage Tanks (IES-TK-1 through 3)

The Sampson plant includes a 713 brake horsepower (bhp) diesel-fired emergency generator (IES-EG) for emergency operations and a 131 bhp diesel-fired fire water pump engine (IES-FWP). Aside from maintenance and readiness testing, the generator and fire water pump engines are only utilized for emergency operations.

Diesel for the emergency generator is stored in a tank of up to 2,500 gallons capacity (IES-TK-1) and diesel for the fire water pump is stored in a storage tank of up to 1,000 gallons capacity (IES-TK-2). A third diesel storage tank (IES-TK-3) with a capacity of 2,500 gallons is also located on-site.

2.15 **Propane Vaporizers (IES-PV-1 and 2)**

The Sampson plant includes two (2) propane vaporizers to vaporize propane gas received by truck for combustion by the RTO burners, proposed RTO/RCO burners, and burners for the dryer system double ducts. Each vaporizer has a maximum heat input capacity of 1 MMBtu/hr and combusts propane. The propane vaporizers were exempt from construction permitting pursuant to 15A NCAC 02Q .0102(h)(1)(B) but should be added to the list of insignificant activities in the Sampson plant's permit.

3. POTENTIAL EMISSIONS QUANTIFICATION

This section discusses quantification of potential emissions for all sources of emissions at the Sampson plant. Detailed potential emissions calculations are included in Appendix D.

3.1 Green Wood Handling (IES-GWH)

Fugitive PM emissions result from unloading purchased chips and bark from trucks into hoppers and transfer of these materials to storage piles via conveyors. Fugitive PM emissions from chip and bark transfer operations were calculated based on AP-42 Section 13.2.4, *Aggregate Handling and Storage Piles.*¹ Chip conveyors are completely enclosed; therefore, emissions were only quantified for the final drop points (i.e., from conveyor to pile). Bark conveyors are not enclosed; however, due to the larger size of this material, fugitive PM emissions occurring along the conveyor itself are negligible. As such, emissions were only quantified for the final drop points (i.e., from conveyor to pile). Detailed potential emission calculations are included in Appendix D, Table 4.

Green wood and bark contain a high moisture content approaching 50 percent water by weight. Therefore, Green Wood Handling has insignificant PM emissions. Per 15A NCAC 02Q .0503, Green Wood Handling (IES-GWH) is included on the insignificant activities list because potential uncontrolled PM emissions are less than 5 tpy.

3.2 Green Wood Storage Piles (IES-GWSP-1 through 4) and Bark Fuel Storage Piles (IES-BFSP-1 and 2)

Particulate emission factors used to quantify emissions from storage pile wind erosion for the four (4) Green Wood Storage Piles and two (2) Bark Fuel Storage Piles were calculated based on EPA's *Control of Open Fugitive Dust Sources*.² The number of days with rainfall greater than 0.01 inch was obtained from AP-42 Section 13.2.2, *Unpaved Roads*³ and the percentage of time that wind speed exceeds 12 miles per hour (mph) was determined based on meteorological data from the Fayetteville National Weather Service (NWS) Station.⁴ The mean silt content of 8.4% for unpaved roads at lumber mills from AP-42 Section 13.2.2 was conservatively applied in the absence of site-specific data. Exposed surface area of the pile was calculated based on worst-case pile dimensions.

VOC emissions from storage piles were quantified based on the exposed surface area of the pile and emission factors from the National Council for Air and Stream Improvement (NCASI). NCASI emission factors range from 1.6 to 3.6 pounds (lb) VOC as carbon/acre-day; however, emissions were conservatively based on the maximum emission factor. Detailed potential emission calculations are included in Appendix D, Table 5.

Per 15A NCAC 02Q .0503, the Green Wood Storage Piles (IES-GWSP-1 through 4) and the Bark Fuel Storage Piles (IES-BFSP-1 and 2) are insignificant activities based on potential uncontrolled PM and VOC emissions less than 5 tpy.

¹ U.S. EPA AP-42 Section 13.2.4 Aggregate Handling and Storage Piles, (11/06).

² U.S. EPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.

³ U.S. EPA AP-42 Section 13.2.2 Unpaved Roads, (11/06).

⁴ AERMOD-ready data provided via email to Aubrey Jones (Ramboll) by Matthew Porter (NC DAQ) on May 12, 2017.

3.3 Debarker (IES-DEBARK-1)

PM emissions occur as a result of log debarking. Potential PM emissions from debarking were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for Source Classification Code (SCC) 3-07-008-01 (Log Debarking).⁵ All PM was assumed to be larger than 2.5 microns in diameter. PM emissions from debarking are minimal due to the high moisture content of green wood (~50%) and the fact that the debarking drum is enclosed, with the exception of the two ends where logs enter and material exits subsequent to debarking. A 90% control efficiency was applied for partial enclosure. Detailed potential emission calculations are included in Appendix D, Table 6.

The Debarker is considered an insignificant activity per 15A NCAC 02Q .0503 due to potential uncontrolled PM emissions less than 5 tpy.

3.4 Bark Hog (IES-BARKHOG)

Processing of bark by the bark hog results in emissions of PM, VOC, and methanol. Particulate emission factors were not available for this specific operation; therefore, potential PM emissions were quantified based on emission factors from EPA's *AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants* for log debarking (SCC 3-07-008-01).⁶ The bark hog is primarily enclosed and thus has minimal PM emissions. VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, Medium Density Fiberboard.⁷ Detailed potential emission calculations are included in Appendix D, Table 7.

The bark hog is considered an insignificant activity per 15A NCAC 02Q .0503 due to potential uncontrolled emissions less than 5 tpy.

3.5 Chipper (IES-CHIP-1)

The chipper is located inside of a building; therefore, PM emissions are negligible and were not quantified. The chipping process also results in emissions of VOC and methanol. VOC and methanol emissions were quantified based on emission factors for log chipping from AP-42 Section 10.6.3, *Medium Density Fiberboard*.⁸ Detailed emission calculations are included in Appendix D, Table 8.

The chipper is considered an insignificant activity per 15A NCAC 02Q .0503 due to potential uncontrolled emissions less than 5 tpy.

3.6 Bark Fuel Bin (IES-BFB)

Bark is transferred from the Bark Fuel Storage Piles via a walking floor to a covered conveyor and then to the fully enclosed Bark Fuel Bin (IES-BFB). Due to complete enclosure of the Bark Fuel Bin, emissions from transfer of bark into the bin are not explicitly quantified. Per 15A NCAC 02Q .0503, the Bark Fuel Bin is considered an insignificant activity due to potential uncontrolled PM emissions less than 5 tpy.

⁵ U.S. EPA. Office of Air Quality Planning and Standards. AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. EPA 450/4-90-003. March 1990.

⁶ Ibid.

⁷ U.S. EPA. AP-42 Section 10.6.3 Medium Density Fiberboard Manufacturing, (8/02).

⁸ Ibid.

3.7 Green Hammermills (ES-GHM-1 through ES-GHM-3) and Dryer (ES-DRYER)

Exhaust from the green hammermills and dryer is routed to a WESP/RTO (CD-WESP/CD-RTO) control system for control of particulate matter, VOC, and HAP. PM, PM less than 10 microns in diameter (PM₁₀), PM less than 2.5 microns in diameter (PM_{2.5}), carbon monoxide (CO), and oxides of nitrogen (NO_x) emissions were quantified based on compliance testing completed in December 2019 plus an appropriate contingency based on engineering judgement to account for inherent variability in stack test results. Potential emissions of sulfur dioxide (SO₂) from green wood combustion were calculated based on the heat input of the furnace and an emission factor for wood combustion from AP-42, Section 1.6, *Wood Residue Combustion in Boilers*⁹. VOC emissions were calculated using an emission factor derived from process information and an appropriate contingency based on engineering judgement. HAP and TAP emissions from wood combustion were calculated based on emission factors from several data sources including site-specific stack testing data and process information with an appropriate contingency based on engineering judgement and emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.

HAP and TAP emissions from natural gas and propane combustion by the RTO burners and emissions from direct injection of natural gas¹⁰ were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹¹, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*¹², NC DAQ's Wood Waste Combustion Spreadsheet¹³, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool. The maximum heat input of the RTO is 45.2 MMBtu/hr, which includes the heat input of the RTO burners and direct natural gas injection. Detailed emission calculations are included in Table 9 of Appendix D.

3.8 Furnace and Dryer Bypass - Cold Start-up (ES-FBYPASS and ES-DBYPASS)

Potential emissions of CO, NOx, SO₂, PM, VOC and HAP for furnace and dryer bypass conditions were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹⁴ GHG emissions were calculated based on emission factors for biomass combustion from Tables C-1 and C-2 of 40 Code of Federal Regulations (CFR) Part 98 and global warming potentials from Table A-1. Emissions were based on 15% of the maximum heat input capacity of the furnace (15% of 250.4 MMBtu/hr) and 50 hours per year of operation. As previously described in Section 2, during cold start-ups emissions may be released through the dryer bypass stack for approximately 10 minutes during transition from the furnace bypass stack to the WESP and RTO. Emissions during these brief transition periods are insignificant and are not separately quantified to avoid double-counting, as they are already accounted for under the 50 hours per year of furnace bypass.

⁹ U.S. EPA. AP-42 Section 1.6, Wood Residue Combustion in Boilers, (09/03).

¹⁰ Natural gas injection in an RTO reduces the amount of combustion air added to an RTO thereby increasing fuel efficiency and reducing NOx generation.

¹¹ U.S. EPA. AP-42 Section 1.4, Natural Gas Combustion, (07/98).

¹² U.S. EPA. AP-42 Section 1.5, Liquefied Petroleum Gas Combustion, (07/08).

¹³ NCDAQ Wood Waste Combustion Spreadsheet for a wood stoker boiler. Available online at: https://files.nc.gov/ncdeq/Air%20Quality/permits/files/WWC_rev_K_20170308.xlsx.

¹⁴ U.S. EPA. AP-42 Section 1.6 Wood Residue Combustion in Boilers, (09/03).

Emissions from diesel combustion during cold start-ups are insignificant and were not explicitly quantified. Detailed potential emission calculations are included in Table 10a of Appendix D.

3.9 Furnace and Dryer Bypass - Idle Mode (ES-FBYPASS and ES-DBYPASS)

The furnace may operate up to 500 hours per year in "idle mode", which is defined as operation up to a maximum heat input rate of 10 MMBtu/hr. During this time, emissions from biomass combustion in the furnace exhaust out of the furnace bypass stack. Potential emissions of CO, NOx, SO₂, VOC, and HAP were calculated based on emission factors from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*.¹⁵ GHG emissions were calculated based on emission factors for biomass combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. As previously described in Section 2, as the furnace ramps up from idle mode to normal operation, emissions may be released through the dryer bypass stack for approximately 10 minutes during transition from the furnace bypass stack to the WESP and RTO. Emissions during these brief transition periods are insignificant and are not separately quantified to avoid double-counting, as they are already accounted for under the 500 hours per year of furnace bypass. Detailed potential emission calculations are included in Table 10b of Appendix D.

3.10 Double Duct Burners (IES-DDB-1 and IES-DDB-2)

CO, NOx, SO₂, PM, VOC, and HAP emissions from natural gas and propane combustion by the double duct burners (IES-DDB-1 through IES-DDB-2) were calculated based on AP-42 Section 1.4, *Natural Gas Combustion*¹⁶, AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*¹⁷, and emission factors from the South Coast Air Quality Management District's (SCAQMD) Air Emissions Reporting (AER) Tool.¹⁸ Detailed emission calculations are included in Table 11 of Appendix D.

Per 15A NCAC 02Q.0503, the double duct burners (IES-DDB-1 through IES-DDB-2) are considered insignificant activities because potential uncontrolled criteria pollutant and HAP emissions are less than 5 tpy and 1,000 pounds per year (lb/yr), respectively.

3.11 Dried Wood Handling Operations (ES-DWH)

Dried wood handling operations (ES-DWH) include conveyor transfer points located between the dryer and dry hammermills. Emissions from these transfers are routed through one of two (2) baghouses (CD-DWH-BH-1 and BH-2). PM, PM₁₀ and PM_{2.5} emissions from each baghouse were calculated based on the exhaust flow rate and exit grain loading. VOC, HAP, and TAP emissions were estimated based on emission factors derived from December 2019 compliance test data and include an appropriate contingency based on engineering judgement to account for inherent variability in stack test results. Detailed potential emission calculations are provided in Table 12 of Appendix D.

¹⁵ U.S. EPA. AP-42 Section 1.5, Liquefied Petroleum Gas Combustion, (07/08).

¹⁶ U.S. EPA. AP-42 Section 1.4, Natural Gas Combustion, (07/98).

¹⁷ U.S. EPA. AP-42 Section 1.5, Liquefied Petroleum Gas Combustion, (07/08).

¹⁸ South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

3.12 Dry Shavings Handling (IES-DRYSHAVE)

Particulate emissions occur during unloading of dry shavings from trucks and may also occur as a result of air displaced during silo loading. Potential emissions were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles*.¹⁹ Dry shavings are transferred into the dry shavings silo via enclosed bucket elevator. Since the actual transfer is enclosed within the silo, a 90% control efficiency was applied for this material transfer point. Detailed potential emission calculations are provided in Appendix D, Table 13.

Per 15A NCAC 02Q .0503, dry shavings handling (IES-DRYSHAVE) is considered an insignificant activity because potential uncontrolled PM emissions are less than 5 tpy.

3.13 Dry Hammermills (ES-HM-1 through ES-HM-8)

Dry hammermill operations generate particulate matter, HAP, and VOC emissions during sizing of dried wood. Exhaust from the eight (8) dry hammermills are routed to baghouses for control of PM emissions (CD-HM-BH-1 through 8). Particulate emissions from the baghouses were calculated using an exit grain loading rate and the total maximum nominal exhaust flow rate of the baghouses. Exhaust from the baghouses will be routed through a quench duct and then to either the dryer furnace (ES-DRYER), the dryer WESP (CD-WESP), or a combination of the two, followed by the dryer RTO (CD-RTO). A 92.75% control efficiency was applied to the dry hammermill particulate emissions for the WESP.

Uncontrolled VOC, HAP, and TAP emissions at the outlet of the dry hammermill baghouses (CD-HM-BH1 through BH8) were quantified based on results from December 2019 compliance testing, process information, and appropriate contingencies based on engineering judgement. Controlled VOC, HAP, and TAP emissions were estimated based on a 95% destruction efficiency for the RTO (CD-RTO). NO_x and CO emissions resulting from thermal oxidation of VOC in the dry hammermill exhaust were calculated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion*²⁰, and the maximum high heating value of the anticipated VOC constituents. Detailed potential emissions calculations are provided in Table 9 of Appendix D.

3.14 Dry Hammermill Conveying System (ES-HMC)

PM emissions that escape the dry hammermill conveying system (ES-HMC) are controlled by a baghouse (CD-HMC-BH). PM emissions from this baghouse were calculated based on an exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Refer to Appendix D, Table 14.

3.15 Pellet Mill Feed Silo (ES-PMFS)

The Pellet Mill Feed Silo is equipped with a baghouse (CD-PMFS-BH) to control PM emissions associated with silo loading and unloading operations. PM emissions were calculated based on an exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Refer to Appendix D, Table 14 for detailed potential emissions calculations.

3.16 Pellet Mills and Pellet Coolers (ES-CLR-1 through ES-CLR-6)

Pellet mill and pellet cooler operations generate PM, VOC, HAP, and TAP emissions during the forming and cooling of wood pellets. The twelve (12) pellet mills and six (6) pellet coolers

¹⁹ U.S. EPA. AP-42 Section 13.2.4, Aggregate Handling and Storage Piles, (11/06).

²⁰ U.S. EPA. AP-42 Section 1.4, Natural Gas Combustion, (07/98).

are equipped with six (6) simple cyclones (CD-CLR-1 through CD-CLR-6) which will exhaust through a quench duct and RTO/RCO (CD-RCO) for VOC and HAP control. PM, PM_{10} , and $PM_{2.5}$ emissions from the pellet mills and pellet coolers were calculated based on results of December 2019 compliance testing, process information, and an appropriate contingency based on engineering judgement.

Uncontrolled VOC, HAP, and TAP emissions at the outlet of the pellet cooler cyclones were quantified based on results from December 2019 compliance testing, process information, and an appropriate contingency based on engineering judgement. This includes emissions from both the pellet mills and the pellet coolers. Controlled VOC, HAP and TAP emissions were conservatively based on a 95% control efficiency for the RCO/RTO. NOx and CO emissions resulting from thermal oxidation of VOC in the cyclone exhaust were calculated using AP-42 Section 1.4, *Natural Gas Combustion*²¹, and the maximum high heating value of the anticipated VOC constituents.

Emissions of criteria pollutants, HAP, and TAP from natural gas and propane combustion by the RTO/RCO burners and direct natural gas injection into the RTO/RCO were estimated using emission factors from AP-42 Section 1.4, *Natural Gas Combustion*, and AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*.^{22,23} GHG emissions were calculated using emission factors for natural gas and propane combustion from Tables C-1 and C-2 of 40 CFR Part 98 and global warming potentials from Table A-1. Detailed potential emission calculations are provided in Table 15 of Appendix D.

3.17 Pellet Cooler HP Fines Relay System (ES-PCHP)

Potential particulate emissions from the Pellet Cooler HP Fines Relay System baghouse (CD-PCHP-BH) were calculated based on the maximum exit grain loading rate and exhaust flow rate of the baghouse. Detailed potential emissions calculations are provided in Table 14 of Appendix D.

3.18 Additive Handling (IES-ADD)

A dry powder additive is used in the pellet production process to increase the durability of the final product. Potential emissions from transfer activities associated with Additive Handling (IES-ADD) were calculated based on AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles.*²⁴ Detailed potential emissions calculations are provided in Appendix D, Table 21. There are no HAPs or VOC materials present in the additive. Emissions from additive handling operations are below the thresholds in 15A NCAC 02Q .0503(8) and it is thus considered an insignificant activity.

3.19 Pellet Loadout Bins (ES-PB1 through 4), Finished Product Handling (ES-FPH), and Pellet Loadout (ES-PL-1 and 2)

PM emissions occur during transfer of finished product to the pellet loadout bins and during transfer of pellets from the bins to trucks. PM emissions from finished product handling, the four (4) pellet loadout bins, and the two (2) truck loadout spouts are all controlled by a single baghouse (CD-FPH-BH). Potential PM emissions from the baghouse were calculated

²¹ U.S. EPA. AP-42 Section 1.4, Natural Gas Combustion, (07/98).

²² U.S. EPA. AP-42 Section 1.5, Liquefied Petroleum Gas Combustion, (07/08).

²³ Natural gas injection in an RTO reduces the amount of combustion air added to an RTO, thereby increasing fuel efficiency and reducing NOx generation.

²⁴ U.S. EPA, AP-42 Section 13.2.4, Aggregate Handling and Storage Piles, (11/06).

based on a maximum exit grain loading rate and the maximum nominal exhaust flow rate of the baghouse. Detailed potential emissions calculations are provided in Table 14 of Appendix D.

3.20 Emergency Generator (IES-EG) and Fire Water Pump (ES-FWP)

Combustion of diesel fuel by the emergency generator and fire water pump generates emissions of criteria pollutants, HAP, and GHG. Potential PM, NO_x, and CO emissions from operation of the emergency generator were calculated based on applicable emission standards from 40 CFR 60, New Source Performance Standards (NSPS), Subpart IIII and the maximum horsepower rating of the engine. NO_x emissions were conservatively based on the emission standard for NO_x + non-methane hydrocarbon (NMHC).

Potential PM, NO_x, and CO emissions from the fire water pump were calculated based on emission factors from the manufacturer specification sheet and the maximum horsepower rating of the engine. Potential SO₂ emissions from each engine were calculated based on the fuel sulfur restriction in NSPS Subpart IIII.²⁵ Potential VOC and HAP emissions were quantified based on emission factors from AP-42 Sections 3.4, *Large Stationary Diesel and All Stationary Dual-fuel Engines* and 3.3, *Stationary Internal Combustion Engines*.^{26, 27} Annual potential emissions were conservatively calculated based on 500 hours per year.

Combustion of diesel fuel by the engines also results in emissions of GHG. Potential GHG emissions from each engine were quantified based on emission factors from Subpart C of 40 CFR Part 98 – *Mandatory Greenhouse Gas Reporting*. Emissions were converted to carbon dioxide equivalent based on Global Warming Potentials from Subpart A of 40 CFR 98.

The emergency generator and fire water pump are considered insignificant activities pursuant to 15A NCAC 02Q .0503. Detailed potential emissions calculations are provided in Tables 16 and 17 of Appendix D.

3.21 Diesel Storage Tanks (ES-TK-1 through 3)

The storage of diesel in on-site storage tanks generates emissions of VOC. VOC emissions from the three (3) diesel storage tanks were calculated using AP-42, Section 7.1, *Organic Liquid Storage Tanks*, based on the actual tank characteristics (e.g., orientation, dimensions, etc.) and potential annual throughput.²⁸ VOC emissions from the storage tanks are below 5 tpy and thus, per 15A NCAC 02Q .0503, they are considered insignificant activities. Refer to Table 18 of Appendix D for detailed potential emissions calculations.

3.22 Paved Roads

Fugitive PM emissions occur as a result of trucks and employee vehicles traveling on paved roads on the Sampson plant property. Emission factors were calculated based on Equation 2 from AP-42 Section 13.2.1, *Paved Roads*²⁹ using the mean silt loading for quarries (8.2 g/m²) and 110 days with rainfall greater than 0.01 inch based on Figure 13.2.1-2. A 90% control efficiency was applied for water/dust suppression activities followed by sweeping. This control efficiency is based on the *Air Pollution Engineering Manual* of the Air and Waste

Potential Emissions Quantification

²⁵ Sulfur content in accordance with Year 2013 standards of 40 CFR 80.510(b) as required by NSPS Subpart IIII.

²⁶ U.S. EPA. AP-42 Section 3.4 – Large Stationary Diesel and All Stationary Duel-fuel Engines, (10/96).

²⁷ U.S. EPA. AP-42 Section 3.3 - Stationary Internal Combustion Engines, (10/96).

²⁸ U.S. EPA. AP-42 Section 7.1 – Organic Liquid Storage Tanks, (06/20).

²⁹ U.S. EPA. AP-42 Section 13.2.1 - Paved Roads, (01/11).

Management Association. Refer to Appendix D, Table 19 for detailed potential emissions calculations.

3.23 Propane Vaporizers (IES-PV-1 and 2)

The direct-fired propane vaporizers are used to heat liquid propane to convert it to a gas for combustion by the RTO burners, proposed RCO/RTO burners, and dryer system double duct burners. Combustion of propane by each vaporizer's 1 MMBtu/hr burner results in emissions of criteria pollutants, HAP, and GHG. Potential criteria pollutant emissions were quantified based on emission factors from AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*.³⁰ Potential SO₂ emissions assume a sulfur content of 0.54 grains per 100 cubic feet for propane.³¹ Potential HAP emissions were quantified based on emission factors from the SCAQMD's AER Tool for external combustion equipment fired with LPG.³²

Potential GHG emissions were quantified based on emission factors from AP-42 Section 1.5, *Liquefied Petroleum Gas Combustion*.³³ Emissions were converted to CO₂e based on Global Warming Potentials from Subpart A of 40 CFR 98. Potential emissions from the propane vaporizers were quantified based on a rated capacity of 1 MMBtu/hr (each) and assume continuous operation (8,760 hours per year). Refer to Appendix D, Table 20 for detailed potential emissions calculations.

The propane vaporizers are considered insignificant activities per 15A NCAC 02Q .0503 because potential uncontrolled emissions for each vaporizer are less than 5 tpy.

³⁰ U.S. EPA AP-42 Section 1.5 Liquefied Petroleum Gas Production (7/08).

³¹ A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

 ³² South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting.
 ³³ U.S. EPA AP-42 Section 1.5 *Liquefied Petroleum Gas Production* (7/08).

4. STATE AND FEDERAL PERMITTING APPLICABILITY

The Enviva Sampson plant is subject to federal and state air quality permitting requirements. The following sections summarize the applicability of these requirements to the facility.

4.1 Federal Permitting Programs

The federal New Source Review (NSR) permitting program includes requirements for construction of new sources and modifications to existing sources, while the Title V Operating Permit Program includes requirements for operation of Title V major sources. The following sections discuss the applicability of these requirements to the Sampson plant.

4.1.1 New Source Review

NSR is a federal pre-construction permitting program that applies to certain major stationary sources. The federal NSR permitting program is implemented in North Carolina pursuant to 15A NCAC 2D .0530 and 15A NCAC 2D .0531. The primary purpose of NSR is to support the attainment and maintenance of ambient air quality standards across the country. There are two distinct permitting programs under NSR. The particular program that applies depends on the ambient air quality in the geographic area in which the source is located. The two programs are nonattainment New Source Review (NNSR) (15A NCAC 2D .0531) and Prevention of Significant Deterioration (PSD) (15A NCAC 2D .0530). Because NNSR and PSD requirements are pollutant-specific, a stationary source can be subject to NNSR requirements for one or more regulated NSR pollutants and to PSD requirements for the remaining regulated NSR pollutants.

NNSR permitting requirements apply to new or existing stationary sources located in an area where concentrations of a "criteria pollutant"³⁴ exceed the National Ambient Air Quality Standard (NAAQS) for that pollutant. PSD permitting requirements apply to major stationary sources for each criteria pollutant for which the geographic area in which the source is located has been designated as unclassifiable or attainment with respect to relevant NAAQS. PSD permitting requirements also apply to certain stationary sources regardless of location for each regulated NSR pollutant that is not a criteria pollutant (e.g., fluorides, hydrogen sulfide, and sulfuric acid mist).

The Sampson plant is located in Sampson County which is classified as attainment or unclassifiable for all criteria pollutants.³⁵ The Sampson plant is an existing major PSD source; however, upon implementation of the controls for the dry hammermills, pellet mills, and pellet coolers proposed in the April 2020 permit modification application the plant will no longer be a major PSD source.

4.1.2 Title V Operating Permit Program

The federal Title V Operating Permit program is promulgated in 40 CFR Part 70 and is implemented in North Carolina via 15A NCAC 2Q .0500. The Sampson plant is a major source with respect to the Title V Operating Permit Program because facility-wide potential emissions of one or more criteria pollutants exceed the major source threshold of 100 tpy. Additionally, the plant is currently considered a major source of HAP due to total HAP emissions and maximum individual HAP emissions exceeding the major source thresholds of

³⁴ The following are "criteria pollutants" under current NSR regulations: CO, nitrogen dioxide, SO₂, PM₁₀, PM_{2.5}, ozone (VOCs and NO_x), and lead.

^{35 40} CFR 81.334

25 tpy, and 10 tpy, respectively. Upon implementation of controls for the dry hammermills, pellet mills, and pellet coolers proposed in the April 2020 permit modification application the plant will no longer be a major source of HAPs, but will still be a major source for Title V purposes because the potential emissions will still exceed 100 tpy of criterial pollutants. This application is being submitted in accordance with Condition 2.2.A.7 of Air Quality Permit No. 10386R04 which requires submittal of an amended first time Title V permit application within 12 months of commencing operation of any of the new sources or control devices authorized by Air Quality Permit No. 10386R04. The original Title V permit application (8200152.17B) was submitted in September 2017. The required application forms are included as Appendix A.

4.2 North Carolina Permitting Program

In addition to the Title V permitting requirements in 15 NCAC 02Q .0500, specific requirements for permitting of construction and operation of new and modified sources are included in 15A NCAC 02Q .0300, in accordance with North Carolina's State Implementation Plan (SIP). No changes are requested as part of this amended initial Title V application.

5. **REGULATORY APPLICABILITY**

The Sampson plant is subject to federal and state air quality regulations. The following addresses all regulations potentially applicable to the facility.

5.1 New Source Performance Standards

New Source Performance Standards (NSPS) apply to new and modified sources and require sources to control emissions in accordance with standards set forth at 40 CFR Part 60. NSPS standards in 40 CFR Part 60 have been incorporated by reference in 15A NCAC 02D .0524.

5.1.1 40 CFR 60 Subpart A – General Provisions

All sources subject to a NSPS are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable to the emergency generator and fire water pump because they are subject to 40 CFR 60 Subpart IIII.

5.1.2 40 CFR Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

NSPS Subpart Dc applies to owners or operators of steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input of 100 MMBtu/hr or less but greater than or equal to 10 MMBtu/hr. The double duct burners and propane vaporizers each have a maximum heat input less than 10 MMBtu/hr and are not steam generating units; therefore, NSPS Subpart Dc does not apply.

5.1.3 40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels

NSPS Subpart Kb applies to volatile organic liquid (VOL) storage tanks that were constructed after July 23, 1984, have a maximum storage capacity greater than or equal to 75 m³ (19,813 gal), and meet the following criteria:³⁶

- The storage tank has a storage capacity greater than or equal to 75 m³ (19,813 gal) but less than 151 m³ (39,890 gal), and stores a VOL with a maximum true vapor pressure greater than or equal to 15.0 kPa (2.2 psia); or
- The storage tank has a storage capacity greater than or equal to 39,890 gal and stores a VOL with a maximum true vapor pressure greater than or equal to 3.5 kPa (0.51 psia).

The Sampson plant includes three (3) diesel storage tanks. These tanks are not subject to NSPS Subpart Kb, as the storage capacity of each tank is less than 19,813 gal, and diesel has a maximum true vapor pressure less than 2.2 psia.

5.1.4 40 CFR 60 Subpart CCCC – Standards of Performance for Commercial and Industrial Solid Waste Incineration Units

NSPS Subpart CCCC regulates emissions from commercial and industrial solid waste incineration (CISWI) units. A CISWI unit is one that combusts a solid waste meeting the definition under §241.2. The Sampson plant's dryer is heated by a furnace which combusts

Regulatory Applicability

Ramboll

³⁶ 40 CFR 60.110b(a)-(b)

bark and wood chip as fuels. In accordance with §241.2, traditional fuels that are produced as fuels and are unused products that have not been discarded, including cellulosic biomass (virgin wood), are not solid waste. As such, the furnace is not considered a CISWI unit, and Subpart CCCC does not apply.

5.1.5 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

NSPS Subpart IIII applies to owners or operators of compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006 that are not fire pump engines, and fire pump engines manufactured after July 1, 2006. The 713 bhp emergency generator and 131 bhp fire pump at the Sampson plant are subject to NSPS Subpart IIII and will continue to comply with all applicable requirements.

5.2 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate HAP emissions and apply to certain major and area sources of HAP. NESHAP can be found in 40 CFR Part 63 and have been incorporated by reference in 15A NCAC 02D .1111. Currently the Sampson plant is a major source of HAP; however, following implementation of the controls proposed in the April 2020 permit modification application for the dry hammermills, pellet mills, and pellet coolers the plant will be an area source of HAP.

5.2.1 40 CFR 63 Subpart A – General Provisions

All sources subject to a NESHAP are subject to the general requirements under Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for initial notification, performance testing, recordkeeping, monitoring, and reporting. Subpart A is applicable to the emergency generator and fire water pump because they are subject to 40 CFR 63 Subpart ZZZZ.

5.2.2 40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 112(g)(2)(B) requires that a new or reconstructed stationary source that does not belong to a regulated "source category" for which a NESHAP has been promulgated must control emissions to levels that reflect "maximum achievable control technology" (MACT). Because Wood Pellet Manufacturing Plants are not a regulated source category under 40 CFR 63, the Sampson plant previously underwent a case-by-case MACT analysis pursuant to Subpart B. However, the plant will no longer be a major source of HAP emissions following implementation of controls for the dry hammermills, pellet mills, and pellet coolers as proposed in the April 2020 permit modification application. Per the January 1, 2018 EPA policy memo, *Reclassification of Major Source as Area Sources Under Section 112 of the Clean Air Act*, if a source thresholds, the source will no longer be subject to a major source MACT or other major source requirements that were applicable to it as a major source under CAA section 112.³⁷ A proposed rule was published in the Federal Register on July 26, 2019 that would amend the General Provisions to the NESHAP to provide that a major source can be reclassified as an area source at any time by limiting its potential to

Regulatory Applicability

³⁷ U.S. EPA. Memorandum from William L. Wehrum (Assistant Administrator) to Regional Air Directors. *Reclassification of Major Sources as Area Sources Under Section 112 of the Clean Air Act.* January 1, 2018.

emit HAP below the major source thresholds.³⁸ The HAP limits must be legally and practically enforceable.

Requirements to install, maintain, and operate the controls for the dry hammermills, pellet mills, and pellet coolers will be incorporated into Air Quality Permit No. 10386R05 and will ensure that the facility becomes and remains a minor source of HAP. Upon issuance of this permit these requirements will be both legally and practically enforceable. Per the EPA policy memo, the Sampson plant will no longer be subject to the requirements of Subpart B upon implementation of the controls for the dry hammermills, pellet mills, and pellet coolers.

5.2.3 40 CFR 63 Subpart DDDD – NESHAP for Plywood and Composite Wood Products

Subpart DDDD regulates HAP emissions from plywood and composite wood products (PCWP) manufacturing facilities located at major sources of HAPs. A PCWP manufacturing facility is defined in §63.2292 as one that manufactures plywood and/or composite wood products by bonding wood material or agricultural fiber to form a panel, engineered wood product, or other product defined in §63.2292. Further, an engineered wood product is defined as a product made with wood elements that are bound together with resin, such as laminated strand lumber and glue-laminated beams. The wood pellets manufactured at the Sampson plant do not meet the definition for any of the PCWP products defined in §63.2292 as being subject to Subpart DDDD. Wood pellets are not an engineered wood product, as they are not bound together with resin or other chemical agent. Furthermore, the Sampson plant will no longer be classified as a major source of HAP upon implementation of controls for the dry hammermills, pellet mills, and pellet coolers. As such, this regulation is not applicable.

5.2.4 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

Subpart ZZZZ applies to reciprocating internal combustion engines (RICE) located at major and area source of HAP emissions. Emergency stationary RICE are defined in §63.6675 as any stationary RICE that operates in an emergency situation. These situations include engines used for power generation when a normal power source is interrupted, or when engines are used to pump water in the case of fire or flood. The Sampson plant's emergency generator and fire water pump engine are both classified as emergency stationary RICE under Subpart ZZZZ. Further, the engines are both classified as new sources, as they were constructed after June 12, 2006 [§63.6590(a)(2)(iii)].

Enviva must meet the requirements of Subpart ZZZZ by meeting the requirements of NSPS Subpart IIII for the emergency generator and fire water pump [\S 63.6590(c)(1)]. No further requirements apply under Subpart ZZZZ. The requirements under Subpart ZZZZ will not change as a result of the reclassification of the Sampson plant from a major source to an area source.

5.2.5 40 CFR 63 Subpart DDDDD – NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

Subpart DDDDD, also referred to as the Boiler MACT, provides emission standards for boilers and process heaters located at major sources of HAP emissions. The rule defines a process heater in §63.7575 as a device with the primary purpose of transferring heat indirectly to a process material or to a heat transfer material for use in a process unit. The duct burners are

Regulatory Applicability

³⁸ Federal Register. Vol. 84, No. 144. July 26, 2019.

not subject to Subpart DDDDD because they don't transfer heat to a process material or to a heat transfer material for use in a process unit and thus do not meet the definition of a process heater. The propane vaporizers provide direct heating and are therefore not subject to Subpart DDDDD. The Sampson plant's dryer is heated by a wood-fired furnace burner system; however, the furnace burner system provides direct heating of the wood chips, not indirect. Furthermore, upon implementation of controls for the dry hammermills, pellet mills, and pellet coolers the Sampson plant will no longer be a major source of HAP. As such, Subpart DDDDD does not apply.

5.2.6 40 CFR 63 Subpart JJJJJJ – NESHAP for Industrial, Commercial, and Institutional Boilers at Area Sources

Subpart JJJJJJ includes emission standards for boilers located at area sources of HAP emissions. The rule defines a boiler in §63.11237 as an "*enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water [...].*" The duct burners do not meet the Subpart JJJJJJ definition of a boiler; therefore, Subpart JJJJJJ is not applicable.

5.3 Compliance Assurance Monitoring

Compliance Assurance Monitoring (CAM) under 40 CFR 64 applies to emission units located at a Title V major source that use a control device to achieve compliance with an emission limit and whose pre-controlled emissions exceed the major source thresholds. A CAM plan is required to be submitted with the initial Title V operating permit application for emission units whose post-controlled emissions exceed the major source thresholds (i.e., large pollutant-specific emission units [PSEU]).³⁹ For emission units with post-controlled emissions below the major source thresholds, a CAM plan must be submitted with the first Title V permit renewal application.⁴⁰

CAM will potentially be applicable to sources at the Sampson plant; however, no emission units have post-controlled emissions above the major source threshold. As such, any CAM plans that may be required are not due until submittal of the initial Title V renewal. Applicability of 40 CFR 64 requirements will be fully assessed at that time.

5.4 Chemical Accident Prevention Provisions

The Chemical Accident Prevention Provisions, promulgated in 40 CFR 68, provide requirements for the development of risk management plans (RMP) for regulated substances. Applicability of RMP requirements is based on the types and amounts of chemicals stored at a facility. Propane, which is a regulated substance under Subpart F of this rule, is stored at the Sampson plant for use as a back-up fuel for the RTO burners, proposed RCO/RTO burners, and dryer system double duct burners. Per §68.126, substances used as a fuel or held for sale as a fuel at a retail facility are excluded from all provisions; therefore, an RMP is not required for the Sampson plant.

5.5 North Carolina Administrative Code

The Sampson plant sources are subject to regulations contained within 15A NCAC 02D and 02Q. Regulations that are potentially applicable to the sources at the Sampson plant are addressed in the following sections.

³⁹ §64.5(a)

^{40 §64.5(}b)

Regulatory Applicability

5.5.1 15A NCAC 02D .0503 Particulates from Fuel Burning Indirect Heat Exchangers

15A NCAC 02D .0503 provides PM emission limits for indirect heat exchangers combusting fuel, including natural gas. An indirect heat exchanger is defined as "*equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are separated by an impervious surface such that there is no mixing of the two fluids."* Per 15A NCAC 02D .0503(d), this rule applies to installations in which fuel is burned for the purposes of producing heat or power by indirect heat transfer. The duct burners are natural gas-fired and are subject to this regulation. The allowable emissions of PM are calculated by the equation $E = 1.090Q^{-0.2594}$ where E is the allowable emission limit in lb/MMBtu and Q is the maximum heat input in MMBtu/hr.

5.5.2 15A NCAC 02D .0504 Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 includes PM emission limits for indirect heat exchangers combusting wood. An indirect heat exchanger is defined as equipment used for the alteration of the temperature of one fluid by the use of another fluid in which the two fluids are not mixed. The dryer (ES-DRYER) is heated by a wood-fired furnace; however, the furnace provides direct heating of the wood chips, not indirect. As such, this regulation does not apply.

5.5.3 15A NCAC 02D .0512 Particulates from Wood Products Finishing Plants

This regulation provides control requirements designed to reduce PM emissions from the working, sanding, or finishing of wood. The Sampson plant does not perform the subject wood finishing operations and thus, 15A NCAC 02D .0512 does not apply.

5.5.4 15A NCAC 02D .0515 Particulates from Miscellaneous Industrial Processes

PM emissions from all stacks, outlets, and vents are regulated under 15A NCAC 02D .0515. This regulation limits particulate emissions resulting from any industrial process for which no other emission control standards are applicable. Allowable emission rates (E) are calculated o three significant figures based on process throughput using the equation $E = 4.10 \times P^{0.67}$, for process rates (P) less than or equal to 30 tons per hour (tph) and $E=55 \times P^{0.11}$ -40 for process rates greater than 30 tph.

All emissions from PM sources at the Sampson plant are either negligible or controlled by cyclones, baghouses, or the WESP, and thus, comply with this rule.

5.5.5 15A NCAC 02D .0516 Sulfur Dioxide Emissions from Combustion Sources

Emissions of SO₂ from combustion sources cannot exceed 2.3 pounds of SO₂ per MMBtu input. The emergency generator and fire water pump combust ultra-low sulfur diesel, the propane vaporizers combust propane, and the dryer furnace combusts bark and wood chips. The RTO (CD-RTO), the proposed RCO/RTO (CD-RCO), and the double duct burners are natural gas-fired with propane as a back-up. All of these fuels contain low amounts of sulfur and result in SO₂ emissions well below the limit of 2.3 lb/MMBtu.

5.5.6 15A NCAC 02D .0521 Control of Visible Emissions

For sources manufactured after July 1, 1971, visible emissions cannot exceed 20 percent opacity when averaged over a six-minute period except under the following conditions:

- No six-minute period exceeds 87 percent opacity,
- No more than one six-minute period exceeds 20 percent opacity in any hour, and

Regulatory Applicability

 No more than four six-minute periods exceed 20 percent opacity in any 24-hour period.

This rule applies to all processes at the facility that may have visible emissions.

5.5.7 15A NCAC 02D .0540 Particulate from Fugitive Dust Emission Sources

15A NCAC 02D .0540 requires a fugitive dust control plan be prepared if ambient monitoring or air dispersion modeling show violation or a potential for a violation of a PM NAAQS, or if NC DAQ observes excess fugitive dust emissions from the facility beyond the property boundary for six (6) minutes in any one hour using EPA Method 22. Previous dispersion modeling for the Sampson plant does not show a violation or the potential for a violation of the PM₁₀ or PM_{2.5} NAAQS. As such, a fugitive dust control plan is not required at this time.

5.5.8 15A NCAC 02D .1100 Control of Toxic Air Pollutants

A TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed under 15A NCAC 02Q .0702(a)(18). This regulation (15A NCAC 02D .1100) outlines the procedures that must be followed if a TAP permit and associated modeling are required under 15A NCAC 02Q .0700. Under 15A NCAC 02Q .0704(d), a TAP permit application is required to include an evaluation of the TAP emissions from a facility's sources, excluding exempt sources listed in Rule .0702 of this Section.

No modifications are requested as part of this amended application for an initial Title V permit, and previous TAP modeling showed concentrations well below the Acceptable Ambient Levels (AALs).⁴¹

5.5.9 15A NCAC 02Q .0700 Toxic Air Pollutant Procedures

As described above, no modifications are requested as part of this amended application for an initial Title V permit and previous TAP modeling showed concentrations well below the AALs. TAP modeling is not required as part of this submittal.

⁴¹ Acrolein had the highest modeled concentration at 83.7% of the AAL.

Amended Application for Initial Title V Permit Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX A PERMIT APPLICATION FORMS

Ramboll

FORM A

GENERAL FACILITY INFORMAT

EVISED 09/22/16					n for Air Permit to Cons			A	
		ATIO	N WILL NOT B	E PROCE	SSED WITHOUT TH	E FOLLOWING:	1.00		
Local Zoning Consistency Determination (new or modification only)				opies of Application Application Fee (please check one option					
Responsible Official/Authorized Contact Signature C P.E. Seal (if required)					Not Required	ePayment	Check Enclosed		
	122	11.2	GENER	AL INFOR	MATION	1251721126	N LOD /	1. 1. 192	
egal Corporate/Owner Name:	Enviva Pellets Sampso	n, LLC							
ite Name: Enviva Pellets Sampson,	LLC								
te Address (911 Address) Line 1:	5 Connector Road, US	117							
ite Address Line 2:									
ity: Falson					State: North C	arolina			
p Code: 28341					County: Sampso	n			
Contraction of the second	나는 한 일 대한 영향을		CONTA	CT INFOR	MATION				
esponsible Official/Authorized Contac	t:				Invoice Contact:				
ame/Title: Ken McBride, Plant Mana	iger				Name/Title: Johnath	an Toler, Corporate S	afety Coordinato	r	
ailing Address Line 1: 5 Connector Roa	d, US 117				Mailing Address Line 1:				
alling Address Line 2:					Mailing Address Line 2:				
ity: Faison State: I	NC Zip C	ode:	2834	1	City: Faison	State: NC	Zip Code:	28341	
rimary Phone No.: 919-820-9693	Fax No.:				Primary Phone No.:	910-515-5822	Fax No.:		
econdary Phone No.:					Secondary Phone No.:				
mail Address: Ken.McBride@envlvabio	mass.com				Email Address: Johnath	an.Toler@envivabior	nass.com		
acility/Inspection Contact:					Permit/Technical Conta	ect:			
ame/Title: Johnathan Toler, Corpor	ate Safety Coordinato	r			Name/Title: Kai Sim	onsen, Air Permit Eng	ineer		
ailing Address Line 1: 5 Connector Roa	d, US 117				Mailing Address Line 1:				
lailing Address Line 2:					Mailing Address Line 2:				
ity: Faison State: I	VC Zip C	ode:	2834	1	City: Raleigh State: NC Zip Code: 27609				
rimary Phone No.: 910-515-5822	Fax No.:				Primary Phone No.:	984-789-3628	Fax No.:		
condary Phone No.:					Secondary Phone No.:				
.:ail Address: Johnathan.Toler@envivabiomass.com Email Address: Kai.Simonsen@envivabiomass.com									
	1.15	F (4)	APPLICATIO	N IS BEIN	1		121217	1 S.	
New Non-permitted Facility/Greenfi	eld 🛛 Modif	ication o	of Facility (permitte	d)	Renewal Title V	Renev	val Non-Title V		
Name Change Ownership		nistrativ	e Amendment	,	Renewal with Mo			V	
	FACILITY	CLA	SSIFICATION A	FTER AF	PLICATION (Check				
General	Small			D Prohi	bitory Small	Synthetic Minor	2	Title V	
	7	-	FACILITY (Pla	ant Site) I		CONTRACTORY IN			
/ood pellet manufacturing facility rimary SIC/NAICS Code: 2499 (Wood Pr acility Coordinates: oes this application contain	oducts, not elsewhere Latilude: 35 degrees	, 7 min			Facility ID No. 8200152 Current/Previous Air Per Longitude: 78 degrees, please contact the DAQ n.*** (See Instru	10 minutes, 59.7 seco Regional Office prior			
onfidential data?									
erson Name: Michael Carbon					Firm Name: Ramboll US				
ailing Address Line 1: 8235 YMCA Plaza	Drive, Suite 300				Mailing Address Line 2:				
ity: Baton Rouge	State: LA				Zip Code: 70810		County:		
none No.: (225) 408-2691	Fax No.:				Email Address: mcarbo	n@ramboll.com			
		IRE O	F RESPONSIBI	LE OFFIC	AL/AUTHORIZED C				
ame (typed): Ken McBride					Title: Plant Manager				
Signature(Blue Ink):	ma	~			Date: 10-1-3	020			
for All		Attack	n Additional S	heets As	Necessary			Page 1	
	,					, 	eceived	1 496 1	

OCT 0 7 2020

Air Permits Section

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

GENERAL FACILITY INFORMATION						
REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate A						
SECTION AA1 - APPLICATION FOR NON-TITLE V PERMIT RENEWAL						
(Company Name) hereby formally requests renewal of Air Permit No.						
There have been no modifications to the originally permitted facility or the operations therein that would require an air permit since the last permit was issued.						
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Clean Air Act?						
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?						
Did you attach a current emissions inventory? YES NO						
If no, did you submit the inventory via AERO or by mail? Via AERO Mailed Date Mailed:						
SECTION AA2- APPLICATION FOR TITLE V PERMIT RENEWAL						
In accordance with the provisions of Title 15A 2Q .0513, the responsible official of (Company Name)						
hereby formally requests renewal of Air Permit No (Air Permit No.) and further certifies that:						
(1) The current air quality permit identifies and describes all emissions units at the above subject facility, except where such units are exempted under the						
North Carolina Title V regulations at 15A NCAC 2Q. 0500;						
(2) The current air quality permit cites all applicable requirements and provides the method or methods for determing compliance with the applicable						
requirements; (3) The facility is currently in compliance, and shall continue to comply, with all applicable requirements. (Note: As provided under 15A NCAC 20, 0512)						
(3) The facility is currently in compliance, and shall continue to comply, with all applicable requirements. (Note: As provided under 15A NCAC 2Q .0512 compliance with the conditions of the permit shall be deemed compliance with the applicable requirements specifically identified in the permit);						
 (4) For applicable requirements that become effective during the term of the renewed permit that the facility shall comply on a timely basis; 						
 (5) The facility shall fulfill applicable enhanced monitoring requirements and submit a compliance certification as required by 40 CFR Part 64. 						
The responsible official (signature on page 1) certifies under the penalty of law that all information and statements provided above, based on information and belief						
formed after reasonable inquiry, are true, accurate, and complete.						
SECTION AA3- APPLICATION FOR NAME CHANGE						
New Facility Name:						
Former Facility Name:						
An official facility name change is requested as described above for the air permit mentioned on page 1 of this form. Complete the other sections if there have been						
modifications to the originally permitted facility that would require an air quality permit since the last permit was issued and if there has been an ownership change						
associated with this name change.						
SECTION AA4- APPLICATION FOR AN OWNERSHIP CHANGE						
	1.					
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below.						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1);						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued.						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1);						
By this application we hereby request transfer of Air Quality Permit No						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (idate). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1); X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (idate). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1); X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (idate). There have been no modifications to the originally permitted facility that would require an air quality permit since the last permit was issued. Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1); X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on gradility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit the active permit was issued. Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on generative definition of the former owner to the new owner as described below. (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on generative definition of the facility that would require an air quality permit since the last permit was issued. (date). There have been no modifications to the originally Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on gradility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permit the active permit was issued. Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on generative definition of the former owner to the new owner as described below. (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on generative definition of the facility that would require an air quality permit since the last permit was issued. (date). There have been no modifications to the originally Signature of New [Buyer] Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (idate). There have been no modifications to the originally permit the facility described on page 1 of this form has been or will be transferred on Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on gemitted facility described on page 1 of this form has been or will be transferred on (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on gemitted facility described on page 1 of this form has been or will be transferred on name 1): (date). There have been no modifications to the originally Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (idate). There have been no modifications to the originally permit the facility described on page 1 of this form has been or will be transferred on Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X Signature (Blue Ink): Date:						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally generative of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X X X Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X X Signature of Former [Seller] Responsible Official/Authorized Contact; Name (typed or print); Title: X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on permit that would require an air quality permit since the last permit was issued. Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): (date). There have been no modifications to the originally of the facility described or print): X Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Signature of Former (Seller) Responsible Official/Authorized Contact: Name (typed or print): Title: X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally generative of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X X X Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1); X X Signature of Former [Seller] Responsible Official/Authorized Contact; Name (typed or print); Title: X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the Tablity described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the Tablity described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X X Signature (Blue Ink):						
By this application we hereby request transfer of Air Quality Permit No. from the former owner to the new owner as described below. The transfer of permit responsibility, coverage and liability shall be effective (immediately or insert date.) The legal ownership of the Tablity described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally permitted facility described on page 1 of this form has been or will be transferred on (date). There have been no modifications to the originally Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1): X X Signature (Blue Ink):						

Attach Additional Sheets As Necessary

Page 2 of 2

FORMS A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY	INFORMATION - A3
--------------------	-------------------------

REVISED 09/22/16	EMISSION SOURCE LISTIN	Air Quality - Applicat	ion for Air Permit to (Construct/Operate permitted, Replaced, Deleted	A2
EMISSION SOURCE	EMISSION SOUR	RCE	CONTROL DEVICE		
ID NO.	DESCRIPTION		ID NO.	DESCRIPTION	
E	uipment To Be ADDED By	This Application		Unpermitted, or Replacement)	
	Existing Permittee	d Equipment To E	Be MODIFIED B	By This Application	
					Contraction of the
_					
					-
		ent To Be DELE	TED By This App		
S-PSTB	Pellet Sampling Transfer Bin		CD-PSTB-BH	Baghouse	
S-HMA S-PCLP	Hammermill Area		CD-PCLP-BH	Baghouse	
D-PULP	Pellet Cooler LP Fines Relay System				
					_
					_
	112(r)	APPLICABIL	ITY INFORMA	TION	A 3
YOUR facility subject t	o 40 CFR Part 68 "Prevention of Accid				
No please specify in	detail how your facility avoided applica				No
	quantities, as determined under §68.		ine sampson plant de	oes not store any regulated substances in	excess of th
	t to 112(r), please complete the followi				
	y submitted a Risk Management Plan		ant to 40 CER Part 68	10 or Part 68 1502	
🗌 Yes 🔲				itted, RMP submittal date:	
B. Are you using a	dministrative controls to subject your fa	acility to a lesser 112(r)	program standard?		
🗋 Yes 🗖	No If yes, please specify:		-		
C. List the process	es subject to 112(r) at your facility:				•
		PROCESS LEVEL		MAXIMUM	INTENDED
PROC	CESS DESCRIPTION	(1, 2, or 3)	HAZARDO		DRY (LBS)

Attach Additional Sheets As Necessary

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/E	vivision of Air Q	uality - Application for A	ir Permit	to Construct/O	perate		D1
CRITERIA	AIR POLLUTA	NT EMISSIONS INFO	RMATIO	N - FACILITY-	WIDE		
		EXPECTED ACT EMISSIONS (AFTER CONTRO LIMITATIONS	UAL LS /	POTENTIAL (BEFORE CO LIMITAT	EMISSIONS ONTROLS /	(AFTER	AL EMISSIONS CONTROLS / TATIONS)
AIR POLLUTANT EMITTED	tons/yr		tons			ons/yr	
PARTICULATE MATTER (PM) PARTICULATE MATTER < 10 MICRONS (PM ₁ PARTICULATE MATTER < 2.5 MICRONS (PM SULFUR DIOXIDE (SO ₂) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD	See Emission Calculations in Appendix D						
GREENHOUSE GASES (GHG) (SHORT TONS OTHER		ANT EMISSIONS INFO	RMATI	ON - FACILITY	(-WIDE		
		EXPECTED ACTU	JAL				
		EMISSIONS (AFTER CONTROL LIMITATIONS)	LS/	POTENTIAL E (BEFORE CO LIMITAT	NTROLS /	(AFTER	AL EMISSIONS CONTROLS / FATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr		tons/	/yr	te	ons/yr
TOXIC AIF INDICATE REQUESTED ACTUAL EMISSIONS (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE	AFTER CONTR	EMISSIONS INFORMA	ATION -	ABOVE THE TO			RATE
					Modeling F	Required ?	1
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr lb/	day	lb/year	Yes	No	
		See Emission Calculations in Appendix D					
COMMENTS:		itional Sheets As					

Attach Additional Sheets As Necessary

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Q	uality - Application for	Air Permit to Construct/Operate D4
ACTIVITIES	EXEMPTED PR	ER 2Q .0102 OR 503 FOR TITLE V SOURCES
DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	
1. Green Wood Handling Operations IES-GWH	Varies	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
2. Bark Hog IES-BARKHOG	25 ODT/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
3. Emergency Generator Diesel Fuel Storage Tank IES-TK1	1,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
4. Firewater Pump Engine Diesel Fuel Storage Tank IES-TK2	185 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
5. Mobile Sources Diesel Fuel Storage Tank IES-TK3	3,000 gallons	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
5. Green Wood Storage Piles IES-GWSP-1 through 4	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
7. Bark Fuel Storage Piles IES-BFSP-1 and 2	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
3. Dry Shavings Material Handling IES-DRYSHAVE	25 tons/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
). Debarker IES-DEBARK-1	275 tons/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
0. Bark Fuel Bin IES-BFB	N/A	15A NCAC 02Q .0503(8)-negligible emissions, see Appendix D
1. Diesel Fired Emergency Generator IES-EG	713 НР	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
2. Diesel Fired Fire Water Pump IES-FWP	131 HP	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
3. Log Chipping IES-CHIP-1	138 ODT/hr	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
4. Double Duct Burners IES-DDB-1 and 2	2.5 MMMBtu/hr each	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
5. Paved Roads IES-PAVEDROADS	N/A	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
E. Propane Vaporizers IES-PV-1 and 2	1 MMBtu/hr each	15A NCAC 02Q .0503(8)-low emissions, see Appendix D
7. Additive Handling and Storage IES-ADD	1,643 tpy	15A NCAC 02Q .0503(8)-low emissions, see Appendix D

Attach Additional Sheets As Necessary

FORM D5

	-	TECHNICAL ANALYSIS TO SUI	PPORT PERMIT APPLICATION
	R	NCDEQ/Division of Air Quality - Application for	
A SPECIFIC EMISSIONS SOURCE (EMISSION PROFILE ALL TARY EMISSION SPECIFIC LISSUES ON SEPARATE PAGES MATERIAL RALANCES, ANDOR OTHER METHODS FROM WHICH THE PALLITIAT EMISSION CALCULATIONS USED, INCLUDING EMISSION FACTORS, CALCULATION (POPTISTIAL BERGE AND), WHERE PARIDAGE AND THE CONTROLS. CLEARLY GIVE ANY ASSUMPTIONS MADE AND PROVIDE ANY REPERINCES AS MEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS. SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE Y ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS AND AND THE ANALYSIS OF ANY REGULATIONS AND		DEMONSTRATIONS MADE IN THIS APPLICATION INCLU	UPPORT ALL EMISSION, CONTROL, AND REGULATORY
A SPECIFIC EMISSION SOURCE (EMISSION MINORMATION) (FORM 51 and 91 through 69) - SHOW CALCULATIONS USED. INcLUDING EMISSION FACTORS, MATERIAL BLANCES, AND/OR DIFER METHODS REAL # ADULTIANT EMISSION RATES IN THIS APPLICATION WHERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE # ADULTIANT EMISSION RATES IN THIS APPLICATION WHERE DERIVED. INCLUDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BLANCE ACCULATIONS. B SPECIFIC EMISSION SOURCE (REGULATORY MORMATION) FORM F2. TITLE Y DUNY. PROVIDE MANALYSIS OF ANY REGULATIONS APPLICABLE TO INDUCLUS SOURCE AND THE CALL TY AS A WHOLE MATERIAL BLANCE CALCULATIONS. B SPECIFIC EMISSION SOURCE (REGULATORY MORMATION) FORM F2. TITLE Y DUNY. PROVIDE MANALYSIS OF ANY REGULATIONS APPLICABLE TO INDUCLUS SOURCE AND THE CALL TY AS A WHOLE MATERIAL BLANCE CALCULATIONS. B SPECIFIC EMISSION SOURCE (REGULATORY MORPHICE. INCLUDE A DISDISION OTTION MAILYSIS OF ANY REGULATIONS INAMICES IN ADMINISTICUAL TORN TESTING AMOUNT AND RESTREMENTS IF ON COMMANY TO TO DOCUMENT TOOMNO FOR AVIDANCE OF AMPERIAL BLANCES IN ADMINISTICUAL TORN TESTING AMOUNT AND RESTREMENTS INTERVIDANTS INTERVIDANT INTERVIDANT AND AND THE CONTROL OF AMPERIAL ADMINISTICUAL TO THE REGULATIONS INTERVIDANTS INTERVIDANTS INTERVIDANTS INTERVIDANTS INTERVIDANT AND AND THANKES INTERVIDANTS INTERVIDANTS INTERVIDANTS INTERVIDANTS INTERVIDANT INTERVI	-	FOLLOWING SPECIFIC ISSU	JES ON SEPARATE PAGES
PARTES GREMING / UNDERVISE VIEWS PARTES GREMING PARTES GREMING / UNDERVISE VIEWS PARTES GREMING PARTES GREMING PARTES GREMING / UNDER VIEWS PARTES GREMING PARTES GREMING / UNDERVISE / UNDERVISE VIEWS PARTES GREMING PARTES GREMING PARTES GREMING / UNDER VIEWS PARTES GREMING PARTES GREMING PARTES FROM VIEWS PARTES GREMING PARTES GREMING PARTES FROM VIEWS PARTES GREMING PARTES FROM VIEWS PARTES GREMING PARTES FROM VIEWS PARTES VIEWS PARTES VIEWS PARTES GREMING PARTES FROM VIEWS PARTES VIEWS PARTES VIEWS PARTES GREMING PARTES FROM VIEWS PARTES VIEWS PARTES VIEWS PARTES GREMING PARTES FROM VIEWS PARTES VIEWS PARTES VIEWS PARTES VIEWS PARTES VIEWS PARTES PARTES VIEWS PARTES PAR	A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 the MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTA CALCULATION OF POTENTIAL BEFORE AND AN USES ADDRESS OF AND AN USES ADDRESS	rough B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS,
Processional Endited 64,000000000000000000000000000000000000	в	RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FO SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDAR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDEL FACILITY, SUBMIT ANY PEOL	JLARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS R AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF DS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR RAL REGULATIONS WHICH WOLLD OTHERWICE DE ADDITIONS FOR THE
The Professional Engineering Seal - PURSUANT TO 15A NCAC 20.0112 "APPLICABLE REGUIREMENTS IN THE REGULATORY ANALYSIS IN WITH THE APPLICABLE REGULATIONS. PROFESSIONAL ENGINEERING SEAL - PURSUANT TO 15A NCAC 20.0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL." A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY). <i>I. Russell Kemp</i> Ass been reviewed by me and is accurate, complete and consistent with the information supplied design has been prepared in accordance with the applicable regulations. Although certain portions of this submitted package may have been developed by other In accordance with NC General Statutes 143-216.04 and 13-216.04 a		APPLICATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RE APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONT FOR THE PARTICULAR CONTROL DEVICES AS CAUDIOUTED AND A CONTROL OF THE CONT	ECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS ROL DEVICES). INCLUDE AND LIMITATIONS OF MALELINGTON POTENTIAL
A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL " NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY). I. Russell Kemp aftest that this application for Enviva Pellets Sampson, LLC In the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been previewed this material portions of these materials under my seal signifies that I have reviewed this submittal package may have been developed by other and reviewed this material and have judged it to be consistent with the proposed design. Note: application of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) NAME: Russell Kemp, MS, PE DATE: 29 SEPT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Attanta, GA 30339 TELEPHONE: S78-388-1654 Application Report SEAL Application Report SEAL IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT		PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ON PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. R TEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT WITH THE APPLICABLE REGULATIONS.	ILY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING EFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE
I. Russell Kamp Envira Pellets Sampson, LLC In the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although content with the information supplied design has been prepared in accordance with the applicable regulations. Although content with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design. Note: in accordance with NC General Statutes 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeenor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) PLACE NORTH CAROLINA SEAL HERE NAME: Russell Kemp, MS, PE DATE: 2.9.56PT 2.0.2.0 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: Potential emission calculations (Appendix D) Application Report Application Report (DENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT STEEPH DocceVIEC	- IA	PROFESSIONAL ENGINEER REGISTERED IN NORTH CARDON NOAC 20.01	12 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," UIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR DNS FOR FURTHER APPLICABILITY).
In the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC eneral Statutes 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) NAME: Russell Kemp, MS, PE DATE: 2.9 SEPT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: Potential emission calculations (Appendix D) Application Report Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT STEREMIT FORM AND ATTACHMENT	l,	Puspell Kenne	
Design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal to the best of my knowledge. Further attest that to the best of my knowledge the proposed of portions of this submittal package may have been developed by other in accordance with NC General Statutes 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) PLACE NORTH CAROLINA SEAL HERE NAME: Russell Kemp, MS, PE DATE: 2.9 56PT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: Potential emission calculations (Appendix D) Application Report Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	ŀ		
NAME: Russell Kemp, MS, PE DATE: 29 SEPT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: Pages CERTIFIED: Pages CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT STEPHE	In	esign has been prepared in accordance with the applicable regulations. Although certa rofessionals, inclusion of these materials under my seal signifies that I have reviewed th accordance with NC General Statutes 142 off. CA and Linear the second second second second second second second	in portions of this submittal package may have been developed by other his material and have judged it to be consistent with the proposed device.
NAME: Russell Kemp, MS, PE DATE: 29 SEPT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: Pages CERTIFIED: Pages CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT STEPHE	(P	LEASE USE BLUE INK TO COMPLETE THE FOLLOWING)	
DATE: 29 SEPT 2020 COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT			PLACE NORTH CAROLINA SEAL HERE
COMPANY: REUS Engineers, P.C. ADDRESS: 1600 Parkwood Circle, Suite 310, Atlanta, GA 30339 TELEPHONE: 678-388-1654 SIGNATURE: PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	D/		
TELEPHONE: 678-388-1654 SIGNATURE: PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report	CC		TH CARON
TELEPHONE: 678-388-1654 SIGNATURE: PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	1	Totor Handwood Circle, Suite 310, Atlanta, GA 30339	OF SESSION 4
PAGES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4 Potential emission calculations (Appendix D) Application Report (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT	1	LEPHONE: 678-388-1654	5/8° 'Y Y
Application Report	1	GES CERTIFIED: Forms B, B1, B9, C1, C2, C3, C4	8EAL 19628
(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)			N.S. S. WGINEES
		(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)	STEPHEL Received

Attach Additional Sheets As Necessary

OCT 0 7 2020 All Permits Section

TITLE V GENERAL INFORMATION

REVISED 06/01/16	NCDEQ/Division of Air Quality	- Applicatio	n for Air Permit to Construct/Oper	ate E1
	IF YOUR FACILITY IS CLASSIF THIS FORM AND ALL OTHER RE			
Indicate here if your facility is subject	to Title V by: Set	ISSIONS	_ OTHER	
If subject to Title V by "OTHER", spec	cify why:	PS	E NESHAP (MACT)	
		HER (speci		
If you are or will be subject to any ma 112(d) of the Clean Air Act, specify be <i>EMISSION SOURCE ID</i>	ximum achievable control technology standards elow: EMISSION SOURCE DESCRIPTION Emergency Generator and Fire Wate		ed pursuant to section	MACT
IES-EG, IES-FWP	Pump Engine		40 CFR 63 Subpart ZZZZ	
			-	
	e requested to be included in the shield and prov	vide a detailed	explanation as to why	
the shield should be granted:				
REGULATION	EMISSION SOURCE (Include ID)			EXPLANATION
40 CFR 63 Subpart DDDD as incorporated in 15A NCAC 2D	All sources at site			loes not meet the definition of a plywood and
0.1111				CWP) manufacturing facility as defined in §63.2292.
V.1111	<u>.</u>			ntation of the proposed controls for the Dry
				nd Pellet Coolers the plant will no longer be a major ulation is not applicable to the Sampson plant.
			source of HAP. Thus, this re-	ulation is not applicable to the Sampson plant.
Comments:				

FORM E2 EMISSION SOURCE APPLICABLE REGULATION LISTING

REVISED 09/22/16	NCDEO/Divi	sion of Air Quality - Application	on for Air Pormit to C	Construct/Operate	E2
EMISSION	EMISSION		on for Air Permit to C	onstructoperate	LZ
SOURCE		OPERATING SCENARIO			
ID NO.	SOURCE DESCRIPTION	INDICATE PRIMARY (P) OR ALTERNATIVE (A)	POLLUTANT	APPLICABLE	
				REGULATION	
See attached table fol	llowing Form E3 for a summ	ary of regulatory requirem	ents and associate	d compliance requirements for t	he Sampson
Plant.					
		1.			
		anh Additional Chaste			

FORM E3 EMISSION SOURCE COMPLIANCE METHOD

	ty - Application for Air Permit to Construct/Operate
Emission Source ID NO. See attached table following Form E3	Regulated Pollutant
for a summary of regulatory requirements and associated	Regulated Foliatant
compliance requirements for the Sampson Plant.	
	Applicable Regulation
Alternative Operating Scenario (AOS) NO:	
ATTACH A SEPARATE PAGE TO E	XPAND ON ANY OF THE BELOW COMMENTS
MONITORI	ING REQUIREMENTS
Is Compliance Assurance Monitoring (CAM) 40 CFR Part 64 Appi If yes, is CAM Plan Attached (if applicable, CAM plan must be att Describe Monitoring Device Type:	Note - CAM plans are not required to licable? YES ached)? YES VES NO be submitted until the first Title V permit renewal.
Describe Monitoring Location:	
Other Monitoring Methods (Describe In Detail):	
	······································
Describe the frequency and duration of monitoring and how the d readings taken to produce an hourly average):	lata will be recorded (i.e., every 15 minutes, 1 minute instantaneous
2	
RECORDKEE	PING REQUIREMENTS
Data (Parameter) being recording: Frequency of recordkeeping (How often is data recorded?):	
	NG REQUIREMENTS
REPORTIN	VG REQUIREMENTS
Generally describe what is being reported:	
Frequency: MONTHLY (C) (OTHER (DESCRIBE):	QUARTERLY EVERY 6 MONTHS
	TESTING
Specify proposed reference test method: Specify reference test method rule and citation: Specify testing frequency:	
NOTE - Proposed test method subject to approv	val and possible change during the test protocol process

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting	
		РМ	15A NCAC 02D .0515		Daily monitoring of WESP secondary voltage and current. Inspections and maintenance as recommended by the control device manufacturers, as well as monthly visual inspection of the ductwork and material collection units. Annual inspections of WESP including, but not limited to, visual check of critical components, checks for any equipment that does not alarm when de-energized, checks for signs of plugging in the hopper and gas distribution equipment, and replacement of broken equipment as required. Annual inspection of the heat transfer medium and associated inlet/outiet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of WESP secondary voltage and current, date/time/result of inspections and maintenances, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 1SA NCAC 02D . 2602(f)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.	
Wood-fired Dryer, Green Hammermills, and Dry Hammermills	ES-Dryer & ES- GHM-1 to 3	VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317	RTO	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ). Maintain 3-hour average firebox temperature for each of the two fireboxes comprising the RTO at or above the minimum average temperatures established in the most recent performance test. Dally monitoring of minimum secondary voltage and secondary current for the WESP. Limit throughput to 657,000 ODT per consecutive 12-month period. Perform required inspections and maintenance for the WESP and RTO (see above).	Written or electronic log of monthly throughput, hardwood/softwood mix, actual emissions (facility- wide 12-month rolling basis), 3-hour rolling average firebox temperatures for each firebox comprising the RTO, dally WESP secondary voltage and current, date/time/result of inspections and maintenances, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 1SA NCAC 02D.2602(1)(4). Submit results of any maintenance performed on the WESP or RTO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.	
		SO ₂	15A NCAC 02D .0516		None required because inherently low sulfur content of woo	d fuel ensures compliance		
		НАР	15A NCAC 02Q .0308(a)	08(a)	Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)[4].	
		Dpacity 15A NCAC 02D .0521			Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annuaily (on or before Jan 30th and July 30th), Identify all instances of deviations from permit requirements.	
Pellet Mill Feed Silo	ES-PMF5	РМ	15A NCAC 02D .0515	Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.		Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.	
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of devlations from permit requirements.	

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
		РМ	15A NCAC 02D .0515		Inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, corrections made, and actual emissions (facility-wide 12-month rolling basis).	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (an or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
Finished Product Handling	ES-FPH, ES-PB-1 to -4, ES-PL-1 to 2	РМ/РМ ₁₀ /РМ _{2.5}	15A NCAC 02Q .0308(a)	Baghouse	Monthly actuals emissions.	Written or electronic log of actual emissions (facility- wide 12-month rolling basis).	Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.
		РМ	15A NCAC 02D .0515		Inspections and maintenance as recommended by the RTO/RCO manufacturer, as well as monthly visual inspection of the ductwork and material collection units. Annual inspection of the heat transfer medium and associated inlet/outlet valves on the RTO. Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, corrections made, and actual emissions (facility-wide 12-month rolling basis).	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of faclity-wide 12-month rolling actual emissions available to DAQ upon request.
Pellet Mills and Coolers	ES-CLR-1 to -6	VOC, CO, NO ₃ , PM/PM ₁₀ /PM _{2.5}	15A NCAC D2Q .0317		Initial and periodic stack testing for VOC and PM/PM ₁₀ /PM _{2.5} (at least annually unless a longer duration is approved by DAQ). Limit pellet production to 657,000 ODT per consecutive 12-month period. Continuously monitor and record the temperature of the combustion chamber and maintain temperature at or above the temperature range established during the performance test. Perform periodic catalyst attivity checks as recommended by the RCO manufacturer. At a minimum, perform annual internal inspection of the primary heat exchanger and associated intel/outlet valves of the control device to ensure structural integrity.	Written or electronic log of monthly throughput, hardwood/softwood mix, and actual emissions (facility-wide 12-month rolling basis). Written or electronic log of date/time/result of inspections, and maintenances, results of each inspections, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, and corrections made.	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 020.2602(f)(4). Submit results of any maintenance performed on the cyclones and RTO/RCO within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		НАР	15A NCAC 02Q .0308(a)		Initial and periodic stack testing (at least annually unless a longer duration is approved by DAQ).	N/A	Submit written report of test results not later than 3D days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting							
Pellet Cooler HP Fines Relay System	ES-PCHP	РМ	15A NCAC 02D .0515	Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, corrections made, and actual emissions (facility-wide 12-month rolling basis).	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.							
		Opacity	15A NCAC 02D .0521		Monthiy visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.							
Hammermill Conveyor	PM ES-HMC		ES-HMC	PM	15A NCAC 02D .0515	Baghouse	Inspections and maintenance, including monthly inspection of ductwork and material collection unit for leaks, and annual internal inspection of control device/baghouse integrity.	Written or electronic log of date/time/result of inspection and maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, corrections made, and actual emissions (facility-wide 12-month rolling basis).	Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.					
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.							
		РМ	15A NCAC 02D .0515		Initial stack testing, inspections and maintenance as recommended by the manufacturer as well as monthly visual inspections of the system ductwork and material collection units for leaks, annual internal inspection of baghouse structural integrity.	Written or electronic log of date/time/result of inspection, results of maintenance, results of each inspection, results of maintenance on control devices, any variance from manufacturers' recommendations, if any, corrections made, and actual emissions (facility-wide 12-month rolling basis).	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4). Submit results of any maintenance performed on the baghouse within 30 days of a written request by DAQ. Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.							
Dried Wood Handling	ES-DWH	ES-DWH	ES-DWH	ES-DWH	ES-DWH	ES-DWH	ES-DWH	ES-DWH	νος	15A NCAC 02Q .0317	Baghouses	Initial stack testing (completed).	Written or electronic log of actual criteria pollutant emissions (facility-wide 12-month rolling basis).	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 1SA NCAC 02D . 2602(f)(4). Make log of facility-wide 12-month rolling actual emissions for criteria pollutants available to DAQ upon request.
		НАР	15A NCAC 02Q .0308(a)		Initial stack testing.	N/A	Submit written report of test results not later than 30 days after sample collection, unless an extension is granted by DAQ under 15A NCAC 02D .2602(f)(4).							
		Opacity	15A NCAC 02D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.							

Emission Source Description	ID No.	Pollutant	Regulation	Final Control Device	Monitoring Method/Frequency/Duration	Recordkeeping	Reporting
Emergency Generator	IES-ES	РМ, CO, NO _v , NMHC, SO ₂	40 CFR Part 60 Subpart IIII		All requirement are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppm woulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operate of each engine.	Annual Compliance Certification
		50 ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of fuel a	chieves compliance	
		Opacity	15A NCAC 02D .0521	N/A	N/A	N/A	N/A
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements above and no other requirements apply.	Comply with the NSPS requirements above and no other requirements apply.	Annual Compliance Certification
Fire Water Pump	IES-FWP	РМ, СО, NO ₈ , NMHC, SO ₂	40 CFR Part 60 Subpart IIII	N/A	All requirement are outlined in the regulation, including the following: use certified emergency engines, operate according to manufacturers procedures, use fuel oil with fuel content of no more than 15 ppmw sulfur and cetane index of at least 40, install non-resettable hour meter.	Maintain records of engine certification, fuel certifications and hours/year of operate of each engine.	Annual Compliance Certification
		SO ₂	15A NCAC 02D .0516	N/A	Non required because inherently low sulfur content of fuel a	chieves compliance	•
		Opacity	15A NCAC 02D .0521	N/A	N/A	N/A	N/A
		HAPs	40 CFR Part 63 Subpart ZZZZ	N/A	Comply with the NSPS requirements above and no other requirements apply.	Comply with the NSPS requirements above and no other requirements apply.	Annual Compliance Certification
		PM	15A NCAC 02D .0515		Comply with the process weight limitation.	N/A	N/A
Furnace Bypass	ES-FBYPASS	VOC, CO, NO _X , PM/PM ₁₀ /PM _{2.5}	15A NCAC 02Q .0317		Limit hours of furnace bypass to 50 per year for cold start- ups. Limit heat input during cold start-up to no more than 37.6 MMBtu/hr. Limit duration of cold start-up to 8 hours or less. Limit hours of operation in idle mode to 500 hours per year. Limit heat input during idle to 10 MMBtu/hr.	Written or electronic log of monthly hours operation in cold start-up and idle mode and actual emissions (facility-wide 12-month rolling basis).	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements. Make log of facility-wide 12-month rolling actual emissions available to DAQ upon request.
		Opacity	15A NCAC D2D .0521		Monthly visible observation for "normal". If above normal, correct action or Method 9 observation required.	Written or electronic log of date/time/result of each observation, results of each non-compliant observation and actions taken to correct, and results of corrective action.	Submit summary report of monitoring and recordkeeping activities semi-annually (on or before Jan 30th and July 30th). Identify all instances of deviations from permit requirements.

VISED 09/22/16			SOURCE (COMPLIANCE SCHEE	DULE
	6	NCDEQ/Division of	Air Quality - Ap	plication for Air Permit to Cons	struct/Operate
	<u>COMPLIA</u>	ANCE STATUS V	NITH RESPE	CT TO ALL APPLICABLE	REQUIREMENTS
Will each emiss comply with the	sion source at y	your facility be in com			e of permit issuance and continue to
] YES	✓ NO		plete A through F below for each e is not achieved.	requirement for which
Will your facility timely basis?	/ be in compliar	nce with all applicable	e requirements ta	aking effect during the term of the	permit and meet such requirements of
J] YES	NO		plete A through F below for each is not achieved.	requirement for which
If this applicatio requirements?	on is for a modif	fication of existing en	nissions source(s	s), is each emission source currer	ntly in compliance with all applicable
	YES	✓ NO		plete A through F below for each i is not achieved.	requirement for which
A.	Emission Sou	rce Description (Inclu	de ID NO.)	ES-HM-1 through ES-HM-	8
					rroneous data supplied to DAQ.
C.	To be determ permit modifi	ined based on disc ication application,	iance will be ach ussions with D/ the Sampson p	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s	nents: e changes proposed in the April 202
C.	To be determ permit modifi	ined based on disc	iance will be ach ussions with D/ the Sampson p	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s	nents: e changes proposed in the April 202
	To be determ permit modifi permitting pro- Detailed Schere Step(s)	ined based on disc ication application, ogram and this limi dule of Compliance:	iance will be ach ussions with D/ the Sampson p t will no longer	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s apply.	ments: a changes proposed in the April 202 source with respect to the PSD Date Expected
	To be determ permit modifi permitting pro- Detailed Schere Step(s)	ined based on disc ication application, ogram and this limi	iance will be ach ussions with D/ the Sampson p t will no longer	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s apply.	ments: e changes proposed in the April 202 source with respect to the PSD
D. E.	To be determ permit modifi permitting pro- Detailed Schere Step(s) To be determine	ined based on disc ication application, ogram and this limi dule of Compliance:	iance will be ach ussions with D/ the Sampson p t will no longer ussions with D/	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s apply.	ments: a changes proposed in the April 202 source with respect to the PSD Date Expected
D. E.	To be determ permit modifi permitting pro- Detailed Scher Step(s) To be determine Frequency for 6 months	ined based on disc ication application, ogram and this limi dule of Compliance: ined based on disc	iance will be ach ussions with DA the Sampson p t will no longer ussions with DA	ieved with this applicable requirer AQ. Upon implementation of the lant will no longer be a major s apply.	ments: a changes proposed in the April 202 source with respect to the PSD Date Expected

VISED 09/22/1			SUURCE	COMPLIANCE SCHED	ULE	
	6	NCDEQ/Division of	Air Quality - A	plication for Air Permit to Cons	truct/Operate	
	COMPLIA	ANCE STATUS	NITH RESPE	CT TO ALL APPLICABLE	REQUIREMENTS	
Will each emis comply with th		your facility be in corr			e of permit issuance and continue to	
	YES	NO NO	If NO, com compliance	plete A through F below for each r e is not achieved.	equirement for which	
Will your facilit timely basis?	ty be in compliar	nce with all applicable	e requirements t	aking effect during the term of the	permit and meet such requirements	on
<u>_</u>	YES	NO NO		plete A through F below for each r e is not achieved.	equirement for which	
If this applicati requirements?	ion is for a modif	fication of existing en	nissions source(s), is each emission source curren	tly in compliance with all applicable	
	YES	V NO		plete A through F below for each n e is not achieved.	equirement for which	
۵	L Emission Sou	rce Description (Inclu	ude ID NO.)	ES-CLR-1 through ES-CLR	2-6	
						_
с	To be determ permit modifi	ined based on disc ication application,	ussions with D. the Sampson p	lant will no longer be a major so	changes proposed in the April 20	20
с	To be determ permit modifi	ined based on disc	ussions with D. the Sampson p	AQ. Upon implementation of the lant will no longer be a major so	changes proposed in the April 20	20
	To be determ permit modifi permitting pro- . Detailed Scher <u>Step(s)</u>	ined based on disc ication application,	ussions with D. the Sampson p nits will no long	AQ. Upon implementation of the lant will no longer be a major so ger apply.	changes proposed in the April 20	20
D	To be determ permit modifi permitting pro- be Detailed Schere Step(s) To be determine	ined based on disc ication application, ogram and these lin dule of Compliance:	ussions with D. the Sampson p nits will no long	AQ. Upon implementation of the lant will no longer be a major so ger apply.	changes proposed in the April 20 purce with respect to the PSD	20
D. E.	To be determ permit modifi permitting pro- be determined To be determined Frequency for 6 months	ined based on disc ication application, ogram and these lin dule of Compliance: ined based on disc	ussions with D. the Sampson p nits will no long ussions with D. s reports (6 mon	AQ. Upon implementation of the lant will no longer be a major so ger apply.	changes proposed in the April 20 purce with respect to the PSD	20

	TITLE V COMPLIANCE CERTIFICATION (Required)						
EVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate	E5					
In accordance with the p	provisions of Title 15A NCAC 2Q .0520 and .0515(b)(4) the responsible company officia	al of:					
SITE NAME:	Enviva Pellets Sampson, LLC						
SITE ADDRESS:	5 Connector Road, US 117						
CITY, NC :	Faison, NC						
COUNTY:	Sampson						
PERMIT NUMBER :	N/A						
 The facility is in control In accordance with minor modification process the perminent of the facility is not o	eck the appropriate statement(s): ompliance with all applicable requirements the provisions of Title 15A NCAC 2Q .0515(b)(4) the responsible company official certifies that the proposed in meets the criteria for using the procedures set out in 2Q .0515 and requests that these procedures be used to it application. currently in compliance with all applicable requirements ked, you must also complete Form E4 "Emission Source Compliance Schedule"						
The undersigned certifies u oased on information and b	nder the penalty of law, that all information and statements provided in the application elief formed after reasonable inquiry, are true, accurate, and complete.	n,					
Signature of respon	Date: 10-1-2020 sible company official (REQUIRED, USE BLUE INK)						
Ken McBride, Plant Mar							
Name, Title of respo	nsible company official (Type or print)						

Attach Additional Sheets As Necessary

Received

OCT 0 2 2020

Air Permits Section

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDI	EQ/Division o	f Air Quality - /	Application fo	r Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SC	URCE ID NO: E	ES-GHM-1, 2,	3	
Green Wood Hammermills				CONTROL DE	VICE ID NO(S):	CD-WESP a	nd CD-RTO	
	1			EMISSION PC	DINT (STACK) ID	NO(S): EP-1		
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCES	S (ATTACH F	LOW DIAGRA	M):					
Green wood chips are processed in the green wood ha	nmermills.							
TYPE OF EMISSION SOURCE	CHECK AND			FORM B1-B9				
Coal,wood,oil, gas, other burner (Form B1)			ing (Form B4)				tings/inks (For	m B7)
Int.combustion engine/generator (Form B2)			ishing/printing			n (Form B8)		
Liquid storage tanks (Form B3)			os/bins (Form		Other (For	m B9)		
START CONSTRUCTION DATE: 2016	******		DATE MANUF				05/// FO LA	KAKP
MANUFACTURER / MODEL NO.: West Salem Machinery			EXPECTED C		: _24 HR/DA		/WK _52_W	K/YR
	SUBPARTS?				P (SUBPARTS?)		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB CRITERIA AIR F		R-MAY 25%	JUN-AUG 25	% SEP-NO		CE		
CANENIA AINT	OLLOTAN				11113 3001	POTENTIAL	FINIONIONIO	
		SOURCE OF		DACTUAL				
		EMISSION FACTOR		ROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTR	
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM)		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	10/nr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀)		-						
PARTICULATE MATTER< 2.5 MICRONS (PM10)		4						
SULFUR DIOXIDE (SO2)		-						
NITROGEN OXIDES (NOx)		-		Son Emireion	Calculations in	Annondiy D		
CARBON MONOXIDE (CO)		-		See Limission	Calculations in			
VOLATILE ORGANIC COMPOUNDS (VOC)		-						
LEAD		1						
OTHER		1						
HAZARDOUS AIR	POLLUTA	NT EMISSIC	ONS INFOR	MATION FO	R THIS SOL	IRCE		
		SOURCE OF		DACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTR	OLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		1						
		1						
		1			Coloriations	Anne and in D		
		1		See Emission	Calculations in	Appendix D		
]						
]						
]						
TOXIC AIR PC	LLUTANT		INFORMA	TION FOR 1	THIS SOURC	E		
		SOURCE OF	EXPE	CTED ACTUA	EMISSIONS A	TER CONTR	ROLS / LIMITAT	TIONS
		EMISSION						
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	dl	/hr	lb/da	ay	lb/	yr
		4						
		4						
		4			Calculations in	Annondiv		
		1		See Emission	Galculations If	whhengry n		
		1						
		1						
Attachments: (1) emissions calculations and supporting documentat	on: (2) indicate :	all requested state	and federal enfo	orceable permit li	nits (e.a. hours of	operation emission	sion rates) and de	scribe how

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/Op	erate	B9				
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-GHM-1, 2, 3						
Green Hammermills		CONTROL DEVICE ID NO(S):	CD-WESP and CD-R	то				
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID	NO(S): EP-1					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA								
Green wood chips are processed in the green wood hammerm	nills.							
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED					
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(U	NIT/HR)				
Green Wood	ODT	120						
		MAX. DESIGN	REQUESTED					
MATERIALS ENTERING PROCESS - BATCH OPERA TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN					
			Elimitization (or					
	1	1						
MAXIMUM DESIGN (BATCHES / HOUR):		et rise						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):						
FUEL USED: N/A	TOTAL MAX	KIMUM FIRING RATE (MILLION	BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL U						
COMMENTS:								

							e)	
					Construct/Operate		3) 	в
EMISSION SOURCE DESCRIPTION:		or min quanty	- application to		OURCE ID NO: ES-I			
Green Wood Direct-Fired Rotary Dryer System				LIVII331014 30	JORGE ID NO. Ea-	DRIER		
				CONTROL DE	EVICE ID NO(S): CI	D-WESP C	D-RTO	
OPERATING SCENARIO 1 OF 1					DINT (STACK) ID NO			
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCE		LOW DIAGRAM	#):			0(0). EI -1		
Green wood is conveyed to a rotary dryer system. Dire	ct contact heat	is provided to	the system via					
cyclones. Particulate matter and metallic-HAP emissic regenerative thermal oxidizer (RTO) downstream of the		a utilizing a we	I electrostatic	precipitator (W	(ESP) and VOC and	organic H	IAP are contro	lied by a
TYPE OF EMISSION SOURCE			DDDODDIATE	FORM P4 PA			· .	
Coal,wood,oil, gas, other burner (Form B1)				FORM DI-Da			i). tings/inks (Form	a (17)
Int.combustion engine/generator (Form B2)			ing (Form B4) ishing/printing	(Form D5)	Incineration (1		ungs/inks (rom	п <i>Б/)</i>
Liquid storage tanks (Form B3)			os/bins (Form I		Other (Form E			
START CONSTRUCTION DATE: 2016		Storage si	DATE MANUF		Other (Form	D 9)		
MANUFACTURER / MODEL NO.: Teal Sales Inc. 24' x 8	A' Single Pass I	Drum Druer			: 24 HR/DAY	7 DAY	WK 52 WH	(YR
	S (SUBPARTS?)				P (SUBPARTS?):	<u></u>	VVIN _32 VVI	VIIX
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB			LALIG 25%	SEP-NOV 259	2 (000 ART0:)			
CRITERIA AIR	POLLUTAN	IT EMISSIO	NS INFORM	ATION FOR	THIS SOURCE	F		
		SOURCE OF		DACTUAL			EMISSIONS	
					(BEFORE CONTROLS	(AFTER CONTI		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr		tons/vr	b/hr	tons/vr
PARTICULATE MATTER (PM)		Indian	16/11	tonory		tonaryi	10/11	toriaryi
PARTICULATE MATTER<10 MICRONS (PM10)		1						
PARTICULATE MATTER<2.5 MICRONS (PM25)		1						
SULFUR DIOXIDE (SO2)		1						
NITROGEN OXIDES (NOx)		See Emission Calculations in Appendix D						
CARBON MONOXIDE (CO)		1						
VOLATILE ORGANIC COMPOUNDS (VOC)		1						
LEAD		1						
OTHER		1						
HAZARDOUS A	IR POLLUTA	NT EMISSI	ONS INFOR	MATION FO	OR THIS SOUR	CE		
		SOURCE OF		DACTUAL			EMISSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CONTROLS		(AFTER CONTI	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr		tons/yr	lb/hr	tons/yr
		1						
		1						
		1		See Emission	n Calculations in A	ppendix D		
		1						
TOXIC AIR F	POLLUTANT	EMISSIONS	SINFORMA	TION FOR 1	THIS SOURCE	1.16.2	1 X .	1. 7. 1. 01 -
		SOURCE OF	1		L EMISSIONS AFT	ER CONTR	OLS / LIMITAT	IONS
		EMISSION						
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	l Ib	/hr	lb/day		lb/	/yr
		4						
		4		See Emission	Calculations in A	nondiv D		
	-	4		366 EU1199101	· carculations in A	Phoneir D		
		1						
		L						

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSI	ON SOURCE (WO	DOD, COAI	, OIL, GAS, OTH	IER FUEL-I	FIRED I	BURNER)			
REVISED 09/22/16	NCDEQ/Division	of Air Quality -	Application for Air Permi	t to Construct/O	perate	B1			
EMISSION SOURCE DESCRIP	TION: Green Wood Direc	t-Fired Rotary D	EMISSION SOL	JRCE ID NO: ES	-DRYER				
System			CONTROL DEV	CONTROL DEVICE ID NO(S): CD-WESP and CD-RTO					
OPERATING SCENARIO:	1 OF 1		EMISSION POI	NT (STACK) ID N	IO(S): EP-	1			
DESCRIBE USE: VPROC	ESS HEAT	SPACE HEAT		ELECTRICAL G	ENERATIO	IN			
		STAND BY/EME	RGENCY	OTHER (DESCR	RIBE):				
HEATING MECHANISM:	INDIRECT		IRECT						
MAX. FIRING RATE (MMBTU/H	OUR): 250.4								
		WOOD	-FIRED BURNER						
WOOD TYPE: BARK	WOOD/BARK	WET WOO	D DRY WOO	D	то 🗌	THER (DESCRIBE):			
PERCENT MOISTURE OF FUE	.:20 to 50%								
		D WITH FLYAS	REINJECTION	1	CONTROL	LED W/O REINJECTION			
FUEL FEED METHOD: N/A		EAT TRANSFE	R MEDIA:			ER (DESCRIBE)			
		COAL	FIRED BURNER						
TYPE OF BOILER	IF OTHER DESCH	RIBE:							
PULVERIZED OVERFEED STO	OKER UNDERFEED	STOKER	SPREADER STO	DKER	FLUID	DIZED BED			
	LLED	LLED [UNCONTROLLED			CULATING			
DRY BED CONTROLL		D [FLYASH REINJECTIC	LYASH REINJECTION					
		[NO FLYASH REINJE	CTION					
		OIL/GA	S-FIRED BURNER						
TYPE OF BOILER:		STRIAL	COMMERCIAL		INSTITUTI				
TYPE OF FIRING:		ENTIAL	LOW NOX BURNERS		NO LOW N	NOX BURNER			
		OTHER FL	JEL-FIRED BURNER	2	Sec. 2.5				
TYPE(S) OF FUEL:		-	_	_					
		STRIAL	COMMERCIAL		INSTITUTI	ONAL			
TYPE OF FIRING:		CONTROL(S) (IF							
	FUEL US	AGE (INCLU	DE STARTUP/BACH MAXIMUM DESIGN	(UP FUELS)		REQUESTED CAPACITY			
FUEL TYPE	UNITS		CAPACITY (UNIT/HR)			LIMITATION (UNIT/HR)			
Bark/Wet Wood									
Bark/wet wood	tons		30						
	FUEL CHARACTE	RISTICS (CO	MPLETE ALL THAT						
		1	SPECIFIC	SULFUR CONT		ASH CONTENT			
FUEL TY	PE	вт	J CONTENT	(% BY WEIGH		(% BY WEIGHT)			
Bark/Wet V	Vood	Nomin	al 4,200 BTU/Ib	0.011		(
				0.011	-				
SAMPLING PORTS, COMPLIAN	IT WITH EPA METHOD 1	WILL BE INSTAL	LED ON THE STACKS	Y YES		NO			
COMMENTS:				i head	hand				

FORM C2 CONTROL DEVICE (Electrostatic Precipitator)

	TTODE QUDITIO	ion of Air Quality - App	lication for Air Permit to Construct/O	perate		C2	
			CONTROLS EMISSIONS FROM WHICH E		SOURCE ID		
CONTROL DEVICE ID NO:			through -3, and ES-DHM-1 through				
EMISSION POINT (STACK)	ID NO(S): EP-1		POSITION IN SERIES OF CONTROL		1 OF	2 UNITS (ES-DRYER-1)	
			POSITION IN SERIES OF CONTROL		1 OF	2 UNITS (ES-GHM-1 through	
			POSITION IN SERIES OF CONTROL	NO.	2 OF	3 UNITS (ES-DHM-1 through	
	al Sales, Inc.		MODEL NO.				
	PERATING SCENARIO:	4 05 4		0.0	L MEO		
OPERATING SCENA DESCRIBE CONTROL SYS		1OF1	P.E. SEAL REQUIRED (PER 2Q .011	2)?	YES	✓ NO	
		nd Dry Hammermills are	controlled by the WESP. The WESP	reduces	emissions	of PM, metal HAP, and HCI	
EQUIPMENT SPECIFICATIO	ONS	a spront care a	GAS DISTRIBUTION GRIDS:		✓ YES	NO	
TYPE:	WET	DRY	SINGLE-STAGE		Тт	D-STAGE	
TOTAL COLLECTION PLAT	E AREA (FT ²): 29,904			CTOR P		R FIELD: 567 tubes	
COLLECTOR PLATE SIZE (WIDTH:	SPACING BETWEEN COLLECTOR F				
TOTAL DISCHARGE ELECT		9"-0"	GAS VISCOSITY (POISE): 2.054E-04		. /		
NUMBER OF DISCHARGE			NUMBER OF COLLECTING ELECTR		PPERS: n	ione	
MAXIMUM INLET AIR FLOW	V RATE (ACFM): 117,0	00	PARTICLE MIGRATION VELOCITY (FT/SEC)	0.234		
MINIMUM GAS TREATMEN			BULK PARTICLE DENSITY (LB/FT3):				
FIELD STRENGTH (VOLTS) CHARGING: 83kVA COLLECTING: N/A CORONA POWER (WATTS/1000 CFM): 4000							
ELECTRICAL USAGE (KW/			1.				
CLEANING PROCEDURES:	RAPPING	PLATE VIB		OTHER			
OPERATING PARAME	TERS PRESSURE	E DROP (IN. H20): MIN	V 2" MAX 2" WARNING A	LARM?	YES	✓ NO	
RESISTIVITY OF POLLUTA	NT (OHM-CM): N/A		GAS CONDITIONIN YES NO	TYPE	OF AGENT	(IF YES):	
INLET GAS TEMPERATURE	E (°F): 240 °F nominal		OUTLET GAS TEMPERATURE (°F):	180 °F	Nominal		
VOLUME OF GAS HANDLE	D (ACFM): 117,000		INLET MOISTURE PERCENT:	MIN 40	% MAX	50%	
POWER REQUIREM	ENTS IS AN ENER	RGY MANAGEMENT SY	STEM USED? YES	NO			
FIELD NO.	NO. OF SETS	CHARGING	EACH TRANSFORMER (kVA)	E	ACH RECTI	FIER Kv Ave/Peak Ma Dc	
1	1		118			83 / 1265	
2	1		118			83 / 1265	
POLLUTANT(S) COLLECTE		PM / PM ₁₀ / PM _{2.5}			<i></i>		
POLLUTANT(S) COLLECTE BEFORE CONTROL EMISS	D:	<u>PM / PM₁₀ / PM_{2.5}</u>			2		
	D:	<u>PM / PM₁₀ /</u> PM _{2.5}		%	·	 %	
BEFORE CONTROL EMISS	D: ION RATE (LB/HR);		%	%	2 <u></u> 2 <u></u> 2	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY:	D: ION RATE (LB/HR): ENCY:	%	%				
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY:	%	%	%		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE:	% %	% %	%		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR)	% 	%	% %		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI	% % <u>%</u> 9 <u>See calcula</u> tions in Ap	% %	% %		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR)	% % % % See calculations in Ap DN CUMULATIVE	% % % % % D DESCRIBE STARTUP PROCEDURES	% %		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS)	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % <u>%</u> 9 <u>See calcula</u> tions in Ap	pendix D	% % S:		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % % % See calculations in Ap DN CUMULATIVE	% % % % % D DESCRIBE STARTUP PROCEDURES	% % S:		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % % % See calculations in Ap DN CUMULATIVE	% % % % % DESCRIBE STARTUP PROCEDURES Refer to previous submittal. DESCRIBE MAINTENANCE PROCED	% % S:		%	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % % % See calculations in Ap DN CUMULATIVE	%%%%%%%% DESCRIBE STARTUP PROCEDURES Refer to previous submittal. DESCRIBE MAINTENANCE PROCEE Refer to previous submittal.	% % S: DURES:	BODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % % % See calculations in Ap DN CUMULATIVE	% % % % % DESCRIBE STARTUP PROCEDURES Refer to previous submittal. DESCRIBE MAINTENANCE PROCED	% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT %	% % % % See calculations in Ap DN CUMULATIVE	% % % % % % % BESCRIBE STARTUP PROCEDURES Refer to previous submittal. DESCRIBE MAINTENANCE PROCED Refer to previous submittal. DESCRIBE ANY AUXILIARY MATERI	% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTION WEIGHT % OF TOTAL	% % % % % CUMULATIVE %		% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTION WEIGHT % OF TOTAL	% % % % % % CUMULATIVE % L 100		% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 DESCRIBE ANY MONITOR	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTION WEIGHT % OF TOTAL	% % % % % % CUMULATIVE % L 100		% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTION WEIGHT % OF TOTAL	% % % % % % CUMULATIVE % L 100		% % S: DURES:	RODUCED	% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 DESCRIBE ANY MONITORI COMMENTS:	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) TCLE SIZE DISTRIBUTION WEIGHT % OF TOTAL OF TOTAL TOTA NG DEVICES, GAUGES	% % % % % % % CUMULATIVE % L 100		% S: DURES:		% %	
BEFORE CONTROL EMISS CAPTURE EFFICIENCY: CONTROL DEVICE EFFICIE CORRESPONDING OVERA EFFICIENCY DETERMINAT TOTAL AFTER CONTROL E PART SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100 DESCRIBE ANY MONITORI COMMENTS:	D: ION RATE (LB/HR): ENCY: LL EFFICIENCY: ION CODE: MISSION RATE (LB/HR) ICLE SIZE DISTRIBUTI WEIGHT % OF TOTAL OF TOTAL ING DEVICES, GAUGES	% % % % % % % CUMULATIVE % L 0 L 100 , OR TEST PORTS AS A	% % <td< td=""><td>% % S: DURES: IALS INT</td><td>e spacing as</td><td>% % % NINTO THE CONTROL</td></td<>	% % S: DURES: IALS INT	e spacing as	% % % NINTO THE CONTROL	

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate										
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FO	RM MUST BE	SEALED B	Y A PROFESSION	L ENGIN	EER (P.E.) L	ICENSE	D IN N	ORTH	CAROLINA.	
CONTROL DEVICE ID NO: CD-RTO	CONTROLS E		FROM WHICH EMI	ISSION S	OURCE ID N	O(S): ES	-DRYE	R, ES	-GHM-1 through -3, ES-	
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN	SERIES O	F CONTROLS		NO.	2	OF_	2	UNITS (ES-DRYER-1)	
	POSITION IN	SERIES O	F CONTROLS		NO.	2	OF_	2	UNITS (ES-GHM-1 through 3	
	POSITION IN	SERIES O	F CONTROLS		NO.	3	_ OF _	3	UNITS (ES-DHM-1 through a	
MANUFACTURER: TSI, Inc.	MO	DEL NO:								
OPERATING SCENARIO:							_			
10F1										
TYPE 🚺 AFTERBURNER 🖸 REGENERATIVE THE			RECUPERATIV				C	ATALY	TIC OXIDATION	
EXPECTED LIFE OF CATALYST (YRS): CATALYST MASKING AGENT IN AIR STREAM HALC SULFUR			IG WHEN CATALYS	PHOSPH	OROUS CON		,		HEAVY METAL NONE	
TYPE OF CATALYST: CATALYST VO	L (FT ³):		VELOCITY THROU	GH CAT	ALYST (FPS)	;				
SCFM THROUGH CATALYST:										
POLLUTANT(S) COLLECTED:	voc		HAP			_				
BEFORE CONTROL EMISSION RATE (LB/HR):										
CAPTURE EFFICIENCY:		%		%		%			%	
CONTROL DEVICE EFFICIENCY:	95	%	95	%		%			%	
CORRESPONDING OVERALL EFFICIENCY:		%		%		%			%	
EFFICIENCY DETERMINATION CODE:										
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See calculation	ons in App	endix D	-		_	_			
PRESSURE DROP (IN. H ₂ O): MIN MAX		OUTLE	T TEMPERATURE ((°F):	MIN				MAX	
INLET TEMPERATURE (°F): MIN MAX		RESID	ENCE TIME (SECON	NDS):						
INLET AIR FLOW RATE (ACFM): (SCFM):		COMBI	JSTION TEMPERAT	URE (°F):	:	_				
COMBUSTION CHAMBER VOLUME (FT ³):		INLET	MOISTURE CONTE	NT (%):						
% EXCESS AIR:			ENTRATION (ppmv)			.ET	_		OUTLET	
AUXILIARY FUEL USED: Natural Gas and/or Propane		TOTAL	MAXIMUM FIRING	RATE (MI	LLION BTU/H	IR): 45.2	!			
DESCRIBE MAINTENANCE PROCEDURES: TBD										
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO N/A	THE CONTRO	LSYSTEM	:							
COMMENTS:										

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)										
REVISED 09/22/16 NCI)EQ/Division c	of Air Quality -	Application fo	r Air Permit to	Construct/Oper	ate			В	
EMISSION SOURCE DESCRIPTION:				EMISSION SC	URCE ID NO: E	S-FBYPASS				
Furnace Bypass				-						
				CONTROL DE	VICE ID NO(S):	N/A				
OPERATING SCENARIO _1OF1_				EMISSION PC	DINT (STACK) ID	NO(S): EP-2	8			
DESCRIBE IN DETAIL THE EMISSION SOURCE PROCES	S (ATTACH FL	OW DIAGRAN	1):							
A bypass stack following the furnace (ES-FBYPASS) is used	i to exhaust ho	t gases during	startup, shutdo	own, and malfu	nctions and duri	ng periods o	f furnace "idle	e mode"		
(defined as furnace heat input up to 10 MMBtu/hr). Furna	ice bypass dur	ing a cold start	-up begins wit	h the establish	ment of a flame i	n the fuel bea	l in the furnad	ce and er	nds at	
the point the furnace temperature reaches 600°F and emis	ssions are rout	ted to the drye	for control by	the WESP and	RTO, with total	start-up time	not to exceed	8 hours	for	
each cold start-up. The purpose of operation in "idle mod										
Operation in "idle mode" also significantly reduces the am										
in an idle state for up to 24 contiguous hours.			,							
TYPE OF EMISSION SOURCE	ICHECK AND	COMPLETE A	PPROPRIATE	FORM B1.B9			21-			
Coal,wood,oil, gas, other burner (Form B1)			ing (Form B4)				atings/inks (For	rm 87)		
Int.combustion engine/generator (Form B2)	H		ishing/printing (Form B5)	=	n (Form B8)	ungannea (i oi	nn or j		
Liquid storage tanks (Form B3)	H									
Liquid storage tanks (Form B3) Other (Form B9) TART CONSTRUCTION DATE: 2016 DATE MANUFACTURED:										
MANUFACTURER / MODEL NO.: Teal Sales Inc. 24' x 80'	Single Page F	turn Devor			: 24 HR/DAY	7 DAY	/WK 52 W	VK/YR (n	ormal	
	(SUBPARTS?):		EXFECTEDC		P (SUBPARTS?		VVI _52_ VV		ormal o	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB			14110 259/							
CRITERIA AIR I						re .				
CATENA AIN	OLLOIMN				11113 3001				_	
		SOURCE OF		DACTUAL			EMISSIONS			
		EMISSION		ROLS / LIMITS)	(BEFORE CONTR		(AFTER CON			
		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	l lb/hr	ton	ns/yr	
		4								
PARTICULATE MATTER<2.5 MICRONS (PM2.5)										
SULFUR DIOXIDE (SO2)		1								
NITROGEN OXIDES (NOx)		1		See Emission	Calculations in	Appendix D				
CARBON MONOXIDE (CO)										
VOLATILE ORGANIC COMPOUNDS (VOC)										
LEAD										
OTHER		1								
HAZARDOUS AIF	POLLUTA				OR THIS SOU					
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONTR	OLS / LIMITS)	(AFTER CON	TROLS / LI	MITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	ton	ns/yr	
]			Calculations in					
]		See Linission	Calculations in	Appendix D				
		1								
) 								
TOXIC AIR PC	DLLUTANT	EMISSIONS	INFORMA	TION FOR T	THIS SOURC	Ë.	1541. (Here)			
		SOURCE OF	EXPE		L EMISSIONS A	TER CONTE		TIONS		
		EMISSION			Elimotionon					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	lb/da	IV	1	b/yr		
					1	,		,		
		1								
		1		See Emission	Calculations in	Appendix D				
		1								
		1							0	

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.
COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD,	COAL, OIL,	GAS, O	OTHER FUEL-	FIRED BURNER)	
					_

REVISED 09/2	22/16		NCDEQ/Division	of Air Quality	- Applicati	on for Air Permi	t to Construct/C	Operate	e 🖉	B1		
EMISSION SC	OURCE DESCRIPT	FION: F	Furnace Bypass			EMISSION SOL	JRCE ID NO: E	S-FBY	PASS			
						CONTROL DEVICE ID NO(S): N/A EMISSION POINT (STACK) ID NO(S): EP-28						
OPERATING S		1 OF 1				EMISSION POI	1 1					
DESCRIBE US				SPACE HEAT			ELECTRICAL G		ATION			
		INUOU		STAND BY/EI			OTHER (DESC	RIBE):				
HEATING ME			INDIRECT	1	DIRECT							
MAX. FIRING	RATE (MMBTU/H	OUR):	37.6 (cold start-up			BURNER						
WOOD TYP	PE: BARK	: J	WOOD/BARK	_								
) to 50%	U WET WO	000	DRY WOO			OTHER (DESCRIB	E).		
	UNCONTROLLED	1		1				P	ROLLED W/O REINJ	ECTION		
FUEL FEED N	IETHOD: N/A		4	EAT TRANSF				₹ <u> </u>	OTHER (DESCRIBE)			
	100 Page 2001	14,1-5			L-FIRED	BURNER	1	1. 17 A.M.		and the second		
TYPE OF BOI			IF OTHER DESCR									
PULVERIZED	OVERFEED STO		UNDERFEED			SPREADER STO	OKER		LUIDIZED BED			
						ONTROLLED			CIRCULATING			
DRY BED		ED		D		ASH REINJECTI			RECIRCULATING			
				OIL (0		LYASH REINJE	CTION					
		- All				D BURNER						
TYPE OF BOI		UTILIT		STRIAL	111							
TYPE OF FIRI	NG:	NORM		ENTIAL		NOX BURNERS		NOLO	OW NOX BURNER			
				UINER	ruel-rir	KED BURNER		12	and the second	1000		
TYPE(S) OF F												
TYPE OF BOI	_	UTILIT		STRIAL		/IERCIAL		INST	TUTIONAL			
TYPE OF FIRI	NG:			CONTROL(S)		ARTUP/BACK			and the second			
	and a start of the	1	FUEL 03	AGE (INCL		MUM DESIGN	UF FUELS	1	REQUESTED CA	DACITY		
FUE	LTYPE		UNITS			TY (UNIT/HR)			LIMITATION (UI			
	: Bark/Wet Wood		tons					-	4.00			
	: Bark/Wet Wood	-				30		-	1.00			
Furnace fule.	. Dark/wet wood		tons			30		<u> </u>	1.00			
		FU	EL CHARACTE	RISTICS (COMPLE	TE ALL THA	TARE APPL	CAB	LE)	State Street St		
					SPECIFIC		SULFUR CON		ASH CO	NTENT		
	FUEL TY	PE			BTU CONTE	INT	(% BY WEIG	HT)	(% BY W	EIGHT)		
	Bark/Wet V	Vood		Non	ninal 4,200	BTU/Ib	0.011					
SAMPLING PO	ORTS, COMPLIAN		H EPA METHOD 1	WILL BE INST	ALLED ON	THE STACKS	YES		NO			
COMMENTS:												

ODEOLEIO EMICOIONI	COUDOE INFORMATION		
SPECIFIC ENIISSION	SOURCE INFORMATION	(REQUIRED FOR AL	L SOURCES)

REVISED 09/22/16 NCDEQ/Division	of Air Quality - /	Application for Air F	Permit to	Construct/	Operate		В		
EMISSION SOURCE DESCRIPTION:		EMIS	SION SC						
Dried Wood Handling			CONTROL DEVICE ID NO(S): CD-DWH-BH-1 and -2						
OPERATING SCENARIO 1 OF 1					() ID NO(S): EF				
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATT)	CH ELOW DIAG				() ID ((0). E	at and Er			
There are several transfer points comprising emission source E			he dover	and dry har	marmille The		are completely		
enclosed with only two (2) emission points that are controlled b						30 3001003 (are completely		
TYPE OF EMISSION SOURCE (CHECK AN	COMPLETE A	PPROPRIATE FOR	M B1-B9	ON THE FO		GES):			
Coal,wood,oil, gas, other burner (Form B1)	Woodwor	king (Form B4)		Manuf.	of chemicals/co	oatings/inks (Form B7)		
Int.combustion engine/generator (Form B2)	Coating/fi	hishing/printing (Forr	m B5)	Incinera	ation (Form B8)				
Liquid storage tanks (Form B3)	Storage s	los/bins (Form B6)		V Other (Form B9)				
START CONSTRUCTION DATE: 2016	in and	DATE MANUFACT	URED:						
MANUFACTURER / MODEL NO.:		EXPECTED OP. SC	CHEDUL	E: 24 HR.	DAY 7 D	AY/WK 52	WK/YR		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART	S?):			P (SUBPAR					
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25% M		JUN-AUG 25%							
CRITERIA AIR POLLUTA					DURCE		100 A 100		
	SOURCE OF	EXPECTED ACT			POTENTIAL	EMISSIONS			
	EMISSION	(AFTER CONTROLS /		(RESORE CON	TROLS / LIMITS)		TROLS / LIMITS)		
AIR POLLUTANT EMITTED	FACTOR		ns/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)	Thoron		inaryi	10/111	tona/yi	10/11	toriary		
PARTICULATE MATTER<10 MICRONS (PM10)	-								
PARTICULATE MATTER<2.5 MICRONS (PM ₂₆)	-								
SULFUR DIOXIDE (SO2)	-								
NITROGEN OXIDES (NOX)	-	Con Er		Coloulations	in Annoudiu f				
	_	See Emission Calculations in Appendix D							
	_								
VOLATILE ORGANIC COMPOUNDS (VOC)	_								
LEAD	_								
OTHER	THE FILLOON		TIONE						
HAZARDOUS AIR POLLUT				OR THIS S		E AN ALLY			
	SOURCE OF	EXPECTED ACT			POTENTIAL				
	EMISSION	(AFTER CONTROLS / I			ITROLS / LIMITS)		TROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT CAS NO	FACTOR	lb/hr to	ns/yr	lb/hr	tons/yr	lb/hr	tons/yr		
See Emission Calculations in Appendix D									
		See Er	mieeion	Calculations	s in Appendix [`			
		See Li	111331011	Calculations	s in Appendix i	,			
TOXIC AIR POLLUTAN	EMISSIONS	INFORMATIO	N FOR	THIS SOL	JRCE				
	SOURCE				AFTER CONT	ROLS / LIMI	TATIONS		
	OF								
TOXIC AIR POLLUTANT CAS NO	EMISSION	lb/hr		Ib	/day		b/yr		
N/A									
		See Er	mission	Calculations	s in Appendix [)			
					-				
	icate all requested								

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/Op	erate B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-DWH
Dried Wood Handling		CONTROL DEVICE ID NO(S):	CD-DWH-BH-1 and -2
OPERATING SCENARIO:1 OF1_		EMISSION POINT (STACK) ID	NO(S): EP-25 and EP-26
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA	M): There an	re several transfer points comp	rising emission source ES-DWH
that are located between the dryer and dry hammermilis. Thes	se sources ai	e completely enclosed with on	ly two (2) emission points that are
controlled by individual baghouses (CD-DWH-BH-1 and 2).			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	REQUESTED CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Dried Wood	ODT	120	
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTED CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	1		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	VR)	
FUEL USED: N/A	T	(IMUM FIRING RATE (MILLION	
MAX. CAPACITY HOURLY FUEL USE: N/A		D CAPACITY ANNUAL FUEL US	
COMMENTS:	Indeser		

Attach Additional Sheets as Necessary

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/D	ivision of Air Quality -	Applicati	on for	Air Permit 1	to Con	struct/Ope	rate		C1
CONTROL DEVICE ID NO: CD-DWH-BH-1	CONTROLS EMIS	SIONS F	ROM W	HICH EMIS	SION	SOURCE II) NO(S):	ES-DWH	
EMISSION POINT (STACK) ID NO(S): EP-25	POSITION IN SEF	RIES OF C	ONTRO	DLS		NC	. 10	OF 2	UNITS
OPERATING SCENARIO:									
1OF1		P.E. SEA	AL REQ	UIRED (PE	.R 2q .0)112)?	YES		/ NO
DESCRIBE CONTROL SYSTEM: One of two (2) baghouses used to create a sligh volume present in the dried wood handling.	negative pressure o	n the dried	d wood	handling c	perati	ons. The b	aghouse	s collects (dust from the air
POLLUTANTS COLLECTED:		PM	_	PM-10	_	PM-2.5			
BEFORE CONTROL EMISSION RATE (LB/HR):			_		_				
CAPTURE EFFICIENCY:			%		_%		_%		%
CONTROL DEVICE EFFICIENCY:		99	_%	99	_%	99	_% _		%
CORRESPONDING OVERALL EFFICIENCY:			_%		%		_% _		%
EFFICIENCY DETERMINATION CODE:			_	<u></u>	-				
TOTAL AFTER CONTROL EMISSION RATE (LB/H			ulation	s in Appen	dix D				
PRESSURE DROP (IN H ₂ 0): MIN: MAX:	GAUGE? 🗸			NO					
BULK PARTICLE DENSITY (LB/FT ³): 12-17	OD // T			ATURE (°F	,	pient			
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT ³			RATURE					
INLET AIR FLOW RATE (ACFM): 1,000			OPERA	TING TEMP					
	GS PER COMPARTM		2		_	GTH OF BA			
	RFACE AREA PER C.		· /		DIAN	IETER OF	BAG (IN.)):	
TOTAL FILTER SURFACE AREA (FT ²): 377	AIR TO CLOTH R		5:1						
DRAFT TYPE: INDUCED/NEGATIVE DESCRIBE CLEANING PROCEDURES	FORCED/POSITIN	/E		FILTER N	ATER		WOVE		FELTED
	1				_		-	ZE DISTRI	
AIR PULSE						SIZE		GHT %	CUMULATIVE
	SIMPLE BAG COL				(M	ICRONS)	OF	TOTAL	%
	RING BAG COLLA	APSE			-	0-1		Unki	nwor
					-	1-10	 		
Fans pull air from the conveyor leading from the dry	ar to the DHM island tr	anenorting	dried w	wood	-	10-25			
in the part of them the conveyer leading from the dry	or to the Drink Island, t	anaporting	Junear	1000.		25-50			
					-	50-100			
						>100			
					<u> </u>			TOTA	_ = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SI	OWING THE RELATI	ONSHIP (OF THE	CONTROL	DEVIC	CE TO ITS	MISSIO	N SOURCE	=(S):
COMMENTS:									-(~).

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/	Division of Air Quality	- Applicati	on for <i>i</i>	Air Permit t	o Cons	struct/Ope	rate		C1
CONTROL DEVICE ID NO: CD-DWH-BH-2	CONTROLS EMIS	SSIONS FR	ROMW	HICH EMIS	SION 5	SOURCE IE) NO(S):	ES-DWH	•
EMISSION POINT (STACK) ID NO(S): EP-26	POSITION IN SEF	RIES OF C	ONTRO	DLS		NO	. 2	0F 2	UNITS
OPERATING SCENARIO	H.		_			_			
1OF1		P.E. SEA	L REQ	UIRED (PE	R 2q .0	112)?	YES	~	NO
DESCRIBE CONTROL SYSTEM: One of two (2) baghouses used to create a slig volume present in the dried wood handling.	ht negative pressure o	n the dried	l wood	handling o	peratio	ons. The b	ighouse	s collects o	lust from the air
POLLUTANTS COLLECTED:		PM		PM -10	_	PM-2.5			
BEFORE CONTROL EMISSION RATE (LB/HR):			_		_				
CAPTURE EFFICIENCY:			_%		_%		%		%
CONTROL DEVICE EFFICIENCY:		99	_%	99	%	99	%		%
CORRESPONDING OVERALL EFFICIENCY:			_%	<u></u>	%		%		%
EFFICIENCY DETERMINATION CODE:		<u></u>	_		_				
TOTAL AFTER CONTROL EMISSION RATE (LB	/HR):	See calc	ulation	s in Appen	dix D				
PRESSURE DROP (IN H ₂ 0): MIN: MAX:	GAUGE?	YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 12-17		INLET TE	EMPER	ATURE (°F): Amt	pient			
POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT ³	OUTLET	TEMP	ERATURE (°F)				
INLET AIR FLOW RATE (ACFM): 1,000			OPERA	TING TEMP	? (°F):				
	AGS PER COMPARTM				LENC	GTH OF BA	G (IN.):	552	
	SURFACE AREA PER C		· · ·		DIAM	ETER OF	BAG (IN.):	
TOTAL FILTER SURFACE AREA (FT ²): 377	AIR TO CLOTH R		5:1						
DRAFT TYPE: V INDUCED/NEGATIVE	FORCED/POSITIV	VE	_	FILTER N	ATER		WOVE		FELTED
DESCRIBE CLEANING PROCEDURES					_	PAR	ICLE SI	ZE DISTRI	BUTION
	SONIC					SIZE	WE	IGHT %	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COI	LLAPSE			(M	ICRONS)	OF	TOTAL	%
	RING BAG COLL	APSE				0-1		Unki	nown
OTHER:						1-10			
DESCRIBE INCOMING AIR STREAM:						10-25			
Fans pull air from the conveyor leading from the d	ryer to the DHM island, to	ransporting	dried v	vood.		25-50			
						50-100			
						>100			
								TOTA	_ = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM	SHOWING THE RELAT	IONSHIP (DE THE	CONTROL	DEVIC	E TO ITS	MISSIC	N SOURCI	=(S):
COMMENTS:									

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCI	EQ/Division of	Air Quality - A	Application f	or Air Permit t	o Construct/C	Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	ES-HMC		
Hammermill Conveyor						S) CD-HMC-	BH	
OPERATING SCENARIO 1 OF	1) ID NO(S): EI		
DESCRIBE IN DETAIL THE EMISSION SOURCE PR	OCESS (ATTAC	H FLOW DIAG	RAM):	1		,		
Conveying system for transfer of material to the d								
	,							
TYPE OF EMISSION SOURCE	(CHECK AND	COMPLETE A	PPROPRIAT	E FORM B1-B	9 ON THE FO	LLOWING PAG	GES):	
Coal,wood,oil, gas, other burner (Form B1)	(king (Form B		_	of chemicals/co		Form B7)
Int.combustion engine/generator (Form B2)	r -		nishing/printir			tion (Form B8)		
Liquid storage tanks (Form B3)			los/bins (For		Other (F			
START CONSTRUCTION DATE: 2016		Oloruge a		JFACTURED:	o other fr	onn baj		
MANUFACTURER / MODEL NO.:				OP. SCHEDU	E 24 HR/	DAY 7 D	AY/WK 52	WK/YR
	S (SUBPARTS		LAFLOILD		AP (SUBPART		ATTWIC _52_	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-			JUN-AUG		OV 25%	13 f)		-
CRITERIA AIR			IS INFOR	VATION FO		TIRCE	1112211010	C
ONTENIA AIN	OLLOTAN	SOURCE OF		D ACTUAL	1		EMISSIONS	
		EMISSION						
AIR POLLUTANT EMITTED				FROLS / LIMITS)		TROLS / LIMITS)		ROLS / LIMITS)
PARTICULATE MATTER (PM)		FACTOR	lb/hr	tons/yr	l lb/hr	tons/yr	lb/hr	tons/yr
		4						
PARTICULATE MATTER<10 MICRONS (PM10)		-						
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		-						
SULFUR DIOXIDE (SO2)		-			Onlautofferen	the American March		
NITROGEN OXIDES (NOx)		4		See Emission	Calculations	in Appendix I)	
CARBON MONOXIDE (CO)		-						
VOLATILE ORGANIC COMPOUNDS (VOC)		-						
LEAD								
0.71157								
OTHER						011005		
OTHER HAZARDOUS AI	R POLLUTA				OR THIS S			
	R POLLUTA	SOURCE OF	EXPECT	D ACTUAL		POTENTIAL	EMISSIONS	
HAZARDOUS AI		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	SOURCE OF	EXPECT	D ACTUAL		POTENTIAL		
HAZARDOUS AI		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT		SOURCE OF EMISSION	EXPECTI (AFTER CON	ED ACTUAL TROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTI (AFTER CON Ib/hr	ED ACTUAL IROLS / LIMITS) tons/yr	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTI (AFTER CON Ib/hr	ED ACTUAL IROLS / LIMITS) tons/yr	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTI (AFTER CON Ib/hr	TROLS / LIMITS)	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT Ib/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR P	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTI (AFTER CON Ib/hr ib/hr	TROLS / LIMITS)	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT Ib/hr Ib/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR P	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr
HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR EMISSIONS SOURCE OF	EXPECTI (AFTER CON Ib/hr ib/hr	ACTUAL IROLS / LIMITS) tons/yr tons/yr tons/yr tons/yr tons/yr tons/yr CTED ACTUAL	(BEFORE CON Ib/hr 	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT	(AFTER CONT Ib/hr Ib/hr	TROLS / LIMITS) tons/yr

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/O	perate	B9				
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: 1	ES-HMC					
Hammermill Conveyor		CONTROL DEVICE ID NO(S):	CD-HMC-BH					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-24						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA Dust from the dry hammermill conveying system is vented to matter emissions.		nill conveyor baghouse (CD-H	MC-BH) to contro	l particluate				
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED	CAPACITY				
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	UNIT/HR)				
Dried Wood								
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR)	(BATCHES/	YR):						
FUEL USED: N/A	TOTAL MAX	MUM FIRING RATE (MILLION	BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	-	D CAPACITY ANNUAL FUEL U						
COMMENTS:								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	CDEQ/Divis	sion of Air Quality -	Applicatio	n for /	Air Permit to	o Consti	ruct/Oper	ate		C1
CONTROL DEVICE ID NO: CD-HMC-BH	1	CONTROLS EMIS	SIONS FR	OM W	HICH EMISS	SION SC	URCE ID	NO(S): E	S-HMC	
EMISSION POINT (STACK) ID NO(S): EF	P-24	POSITION IN SER	IES OF CO	NTRO	DLS		NO	1 0	- 1	UNITS
OPERATING SCI	ENARIO:	Den and the second								
1OF	1		P.E. SEAL	REQ	UIRED (PEF	R 2g .01	12)?	YES	5	/ NO
DESCRIBE CONTROL SYSTEM:					`			-		
This bagfilter controls particulate from	the dry han	imermill conveying	system.							
POLLUTANTS COLLECTED:			PM	-	PM-10		PM-2.5			
BEFORE CONTROL EMISSION RATE (L	.B/HR):			-						
CAPTURE EFFICIENCY:				%		_%		_%		%
CONTROL DEVICE EFFICIENCY:			~99.9	%	~99.9	_% _	~99.9	_%		%
CORRESPONDING OVERALL EFFICIEN	ICY:			%		_%		_%		.%
EFFICIENCY DETERMINATION CODE:				-						
TOTAL AFTER CONTROL EMISSION RA				lation	s in Append	dix D				
	IAX: 3"	GAUGE? 🗸	YES		NO					
BULK PARTICLE DENSITY (LB/FT ³): 12					ATURE (°F)					
POLLUTANT LOADING RATE: 0.004	LB/HR	GR/FT ³			ERATURE (
INLET AIR FLOW RATE (ACFM): 1500				PERA	TING TEMP	°(°F): N/	/A			
		S PER COMPARTME				LENGT	TH OF BA	G (IN.): 72	!	
		ACE AREA PER CA		(FT ²):		DIAME	TER OF E	BAG (IN.):	6	
TOTAL FILTER SURFACE AREA (FT ²):		AIR TO CLOTH RA		_						
DRAFT TYPE: VINDUCED/NEGA	TIVE	FORCED/POSITIV	E		FILTER M	IATERIA		WOVEN		FELTED
DESCRIBE CLEANING PROCEDURES							PART	ICLE SIZ	E DISTRI	BUTION
AIR PULSE		SONIC				S	SIZE	WEIG	iht %	CUMULATIVE
REVERSE FLOW		SIMPLE BAG COL	LAPSE			(MIC	RONS)	OF T	OTAL	%
MECHANICAL/SHAKER		RING BAG COLLA	PSE				0-1	Ι	Unk	nown
OTHER:						1	-10	l	_	
DESCRIBE INCOMING AIR STREAM:						1	0-25			
The air stream contains wood dust part	ticules.					2	5-50			
						50	0-100			
						>	100			
								<i></i>	ΤΟΤΑ	L = 100
ON A SEPARATE PAGE, ATTACH A DIA	GRAM SHC	WING THE RELATION	ONSHIP O	F THE	CONTROL	DEVICE	TOITS	MISSION	SOURC	E(S):
COMMENTS:										

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NC	DEQ/Division of	Air Quality - A	pplication fo	or Air Permit t	o Construct/Op	erate		В	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-HM-1 through 8							
Eight (8) Dry Hammermills				CONTROL D	EVICE ID NO(S): CD-HM-B	H-1 through a	8, CD-WESP,	
				CD-RTO			-		
OPERATING SCENARIO1OF	1			EMISSION P	OINT (STACK) I	D NO(S): EF	P-1		
DESCRIBE IN DETAIL THE EMISSION SOURCE PR	OCESS (ATTAC	H FLOW DIAG	GRAM):						
Dried materials are reduced to the appropriate siz	e needed for pe	lletization usin	ig eight (8) di	ry hammermil	ils operating in	parallel.			
TYPE OF EMISSION SOURC									
Coal,wood,oil, gas, other burner (Form B1)	_		king (Form B4		=		oatings/inks (F	orm B7)	
Int.combustion engine/generator (Form B2)			hishing/printing			on (Form B8)			
Liquid storage tanks (Form B3) START CONSTRUCTION DATE: 2016			los/bins (Form		✓ Other (Fo	rm B9)			
MANUFACTURER / MODEL NO.: West Salem Mac	inon Model #4		DATE MANU		E: 24 HR/D/		AY/WK 52	WK/YR	
	PS (SUBPARTS		EXPECTED		AP (SUBPARTS		ATTWK _52_	WINTE	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC			IUN-AUG	25% SEP-NO					
CRITERIA AIR						IRCE			
		SOURCE OF		DACTUAL			EMISSIONS		
		EMISSION		ROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)					1				
PARTICULATE MATTER<10 MICRONS (PM10)		1							
PARTICULATE MATTER<2.5 MICRONS (PM25)									
SULFUR DIOXIDE (SO2)]							
NITROGEN OXIDES (NOx)]	S	ee Emission	Calculations in	Attachment	D		
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
HAZARDOUS A	R POLLUTA						3112311-52		
	0	SOURCE OF		DACTUAL			EMISSIONS		
		EMISSION	· · · · · · · · · · · · · · · · · · ·	ROLS / LIMITS)	(BEFORE CONTR		<u>`</u>	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
		-							
		-							
		-							
		1	S	ee Emission (Calculations in	Attachment	D		
	-	1							
	0	1							
	-	1							
TOXIC AIR P	OLLUTANTI	EMISSIONS	INFORMA	TION FOR	THIS SOUR	CE	S	M.L. I	
	T	SOURCE							
		OF	EXPEC	TED ACTUAL	EMISSIONS A	FTER CONT	ROLS / LIMIT.	ATIONS	
		EMISSION							
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	lb	/hr	Ib/da	av	16	a/yr	
			10			,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		1							
]							
]	S	ee Emission	Calculations in	Attachment	D		
		1							
		1							
Attachments: (1) emissions calculations and supporting docu	mentation; (2) indica	ate all requested	state and federa	al enforceable pe	ermit limits (e.g. ho	urs of operation	n, emission rate	s) and describe	

how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/O	perate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: 1		
Eight (8) Dry Hammermills		CONTROL DEVICE ID NO(S):	CD-HM-BH-1 thr	ough 8, CD-
		WESP, CD-RTO		
OPERATING SCENARIO:1 OF1 DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA		EMISSION POINT (STACK) IE) NO(S): EP-1	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA Dried materials are reduced to the appropriate size needed for		using aight (8) dry hammer	aille operating in r	arallel
The materials are reduced to the appropriate size needed for	penetization	a ang eight (o) ary naninern	into operating in p	aranet.
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTE	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION	
Dried Wood	ODT	120		
	· · · · · · · · · · · · · · · · · · ·			
	-			
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTE	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (L	INIT/BATCH)
			_	
MAXIMUM DESIGN (BATCHES / HOUR):	1			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/			
FUEL USED: N/A		MUM FIRING RATE (MILLION	/	
MAX. CAPACITY HOURLY FUEL USE: N/A	IREQUESTE	D CAPACITY ANNUAL FUEL L	JSE: N/A	
COMMENTS:				
A44-LAIPC	mal Oha i	n na Managara		
Attach Additio	nal Sheel	s as Necessary		

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Div	ision of Air Quality	- Applicati	on for A	ir Permit to	Construct/O	perate		C1
CONTROL DEVICE ID NO: CD-HM-BH-1 through 8	CONTROLS EMIS	SIONS FRO	OM WHI	CH EMISSIO	N SOURCE I	D NO(S)	ES-HM-1 three	ough 8
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN SER	IES OF CO	NTROL	S		NO.	1 OF 3	UNITS
OPERATING SCENARIO:								
1OF1		P.E. SEAL	REQU	RED (PER 2	q .0112)?	V YE	ES [V NO
DESCRIBE CONTROL SYSTEM:								
Eight (8) baghouses are utilized for emission control	ol on the eight (8) d	ry hamme	rmill cyc	lones.				
POLLUTANTS COLLECTED:		PM		PM ₁₀	PM _{2.5}			
			-					-
BEFORE CONTROL EMISSION RATE (LB/HR):								
			- ,		·			-
CAPTURE EFFICIENCY:			%		%	%		%
			-		·			-
CONTROL DEVICE EFFICIENCY:		99	_%	99	% 9	9 %		_%
CORRESPONDING OVERALL EFFICIENCY:			_%		%	%		_%
EFFICIENCY DETERMINATION CODE:								
EFFICIENCE DETERMINATION CODE.			- }					-
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		See calcu	lations	in Attachme	nt D			
	ytem							
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6"	GAUGE? 🔽	YES		NO				
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05				TURE (°F):		120		
POLLUTANT LOADING RATE: 0.1 gr/cf in LB/HR	GR/FT ³			RATURE (°F)		100		
INLET AIR FLOW RATE (ACFM): 15,000			PERATI	NG TEMP (°P				
	PER COMPARTME				LENGTH O	<u>,</u>	,	
	ACE AREA PER CA		<u> </u>		DIAMETER	OF BAG	G (IN.): 5.75	
TOTAL FILTER SURFACE AREA (FT ²): 2,168	AIR TO CLOTH RA							
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIV	E		FILTER MAT				FELTED
DESCRIBE CLEANING PROCEDURES:					(180) mil	PARTICI	LE SIZE DISTR	IBUTION
✓ AIR PULSE	SONIC				SIZE		WEIGHT %	CUMULATIVE
REVERSE FLOW	SIMPLE BAG COL	LAPSE			(MICRON	IS)	OF TOTAL	%
MECHANICAL/SHAKER	RING BAG COLLA	PSE			0-1		See calculation	ns in Appendix D.
OTHER:					1-10			
DESCRIBE INCOMING AIR STREAM:					10-25			
The air stream contains wood dust particles. Large	er particles are remo	oved by the	e upstre	am cyclone	25-50			
for product recovery.					50-100)		
					>100			
							TOTA	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHON	WING THE RELATIO	NSHIP OF	THE CO	INTROL DEV	ICE TO ITS		IN SOURCE(S)	
COMMENTS								

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	Application for	or Air Permit t	o Construct/C	Operate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	: ES-PMFS		
Pellet Mill Feed Silo						S: CD-PMFS	BH	
OPERATING SCENARIO 1 OF	1) ID NO(S): EI		
DESCRIBE IN DETAILTHE EMISSION SOURCE PROC	ESS (ATTAC	H ELOW DIAG	RAM)	Termooront	ontri (onton			
The pellet mill feed silo stores dried milled wood pro								
TYPE OF EMISSION SOURCE (
Coal,wood,oil, gas, other burner (Form B1)	L		king (Form B4			of chemicals/c		Form B7)
Int.combustion engine/generator (Form B2)	_		hishing/printin			ation (Form B8)		
Liquid storage tanks (Form B3)	1	Storage si	los/bins (Forr		Other (Form B9)		
START CONSTRUCTION DATE: 2016			DATE MANL	IFACTURED:				
MANUFACTURER / MODEL NO .: Mast Lepley 30'x68"			EXPECTED	OP. SCHEDUI	.E: _24 HR/	DAY 7 D	AY/WK _52_	_WK/YR
	(SUBPARTS				AP (SUBPAR	TS?):		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE	B 25% MA	R-MAY 25%	JUN-AUG	25% SEP-NO	OV 25%			
CRITERIA AIR P	OLLUTAN	EMISSION	IS INFORI	MATION FC	R THIS SC	DURCE	Constant and	
		SOURCE OF		D ACTUAL			EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	-	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		- THOTON -	10/11	i tonorj.		T control ji	12/11	1 contory.
PARTICULATE MATTER<10 MICRONS (PM10)		1						
PARTICULATE MATTER<2.5 MICRONS (PM25)		1						
SULFUR DIOXIDE (SQ2)		1						
NITROGEN OXIDES (NOx)		1		See Emission	Calculatione	in Annondix I	n	
CARBON MONOXIDE (CO)		1		Sec Linission	Galculations	in Appendix i		
VOLATILE ORGANIC COMPOUNDS (VOC)		-						
LEAD		4						
OTHER		4						
	DOLLUTA	IT CHICOL	DAIC INICOL	DAAATION	OD TUIC	OUDOF		
HAZARDOUS AIR	POLLUTA				OR THIS S			1.001
		SOURCE OF		D ACTUAL			EMISSIONS	
		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
N/A								
	1							
								1
TOXIC AIR POL	LUTANT		INFORM	ATION FOR	THIS SOU	IRCE		
TOXIC AIR POL	LUTANT	SOURCE						
	LUTANT	SOURCE OF		ATION FOR CTED ACTUAL			ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT	LUTANT I	SOURCE	EXPE		EMISSIONS			ATIONS
	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		
TOXIC AIR POLLUTANT	_	SOURCE OF	EXPE	CTED ACTUAL	EMISSIONS	AFTER CONT		

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and desc how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Division	on of Air Quality - Ap	plicatio	n for Air Permit to	Construc	t/Operate	B6
EMISSION SOURCE DESCR	RIPTION: Pellet Mil	Feed Silo		EMISSION	SOURCE	ID NO: ES-PMFS	
				CONTROL	DEVICE I	D NO(S): CD-PMFS-BH	
OPERATING SCENARIO:	1	OF1		EMISSION	POINT(ST	ACK) ID NO(S): EP-6	
DESCRIBE IN DETAIL THE F	PROCESS (ATTACH	FLOW DIAGRAM):					
The pellet mill feed silo sto	res dried milled wo	ood prior to transport	to the p	pellet mills.			
MATERIAL STORED: Dried			Ľ	DENSITY OF MAT	ERIAL (LI	B/FT3): 40	
CAPACITY	CUBIC FEET:		-	TONS:			
DIMENSIONS (FEET)	HEIGHT: 70	DIAMETER: 46.6	(OR)	LENGTH:	WIDTH		
ANNUAL PRODUCT THR		ACTUAL:		MAXIMUM	DESIGN (
PNEUMATICALLY F	ILLED	MECHANIC		ILLED	-	FILLED FROM	10410.002.0
BLOWER		SCREW CONVEYO	R			RAILCAR	
						TRUCK	
	니님	BUCKET ELEVATO	R			STORAGE PILE	
		OTHER:				OTHER:	
NO. FILL TUBES:							
MAXIMUM ACFM:							
MATERIAL IS UNLOADED T	O: Pellet Mill/Press	ses					
BY WHAT METHOD IS MAT							
	ERIAL UNLOADED	FROM SILU?					
MAXIMUM DESIGN FILLING	RATE OF MATERIA	AL (TONS/HR): 105					
MAXIMUM DESIGN UNLOAI	DING RATE OF MAT	FERIAL (TONS/HR): 1	05				
COMMENTS:							

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Div	ision of Air Quality -	Applicatio	n for <i>i</i>	Air Permit to	o Construct	/Opera	ate		C1
CONTROL DEVICE ID NO: CD-PMFS	-BH	CONTROLS EMIS	SIONS FR	OM W	HICH EMISS	SION SOUR	CE ID	NO(S):	ES-PMFS	
EMISSION POINT (STACK) ID NO(S):	EP-6	POSITION IN SER	RIES OF CO	NTR	DLS		NO.	1 0)F 1	UNITS
OPERATING S	CENARIO:									
1OF	_1		P.E. SEAL	REQ	UIRED (PEF	R 2q .0112)?	T	YES		/ NO
DESCRIBE CONTROL SYSTEM:										
A baghouse is used to create a slight silo. The baghouse is sized to offset							lust fr	om the a	air volume	present in the
POLLUTANTS COLLECTED:			PM	_	PM10	PM2	.5			
BEFORE CONTROL EMISSION RATE	(LB/HR):			-						
CAPTURE EFFICIENCY:				%		%		.% _		%
CONTROL DEVICE EFFICIENCY:			~99.9	_%	~99.9	% ~	99.9	%		%
CORRESPONDING OVERALL EFFICI	ENCY:			_%		%		.~ _		%
EFFICIENCY DETERMINATION CODE	Ξ:			-						
TOTAL AFTER CONTROL EMISSION	RATE (LB/HF	२):	See calcu	lation	is in Append	dix D				
PRESSURE DROP (IN H ₂ 0): MIN:	MAX: 4"	GAUGE? 🗸	YES		NO					
BULK PARTICLE DENSITY (LB/FT ³):	1.43E-06		INLET TE	MPEF	RATURE (°F)	: Ambient				
POLLUTANT LOADING RATE: 0.004	LB/HR	GR/FT	OUTLET	TEMP	ERATURE (°F) Ambien	it			
INLET AIR FLOW RATE (ACFM): 2,44	4		FILTER O	PERA	TING TEMP	? (°F): N/A				
NO. OF COMPARTMENTS: 1	NO. OF BAC	GS PER COMPARTM	ENT: 1			LENGTH (DF BA	G (IN.): 1	20	
NO. OF CARTRIDGES:	FILTER SUP	RFACE AREA PER C	ARTRIDGE	(FT ²)	:	DIAMETER	R OF E	BAG (IN.)	: 5.875	
TOTAL FILTER SURFACE AREA (FT ²	2): 377	AIR TO CLOTH R	ATIO: 6							
DRAFT TYPE: V INDUCED/NE	GATIVE	FORCED/POSITIN	/E		FILTER M	IATERIAL:		WOVE	v 🗸	FELTED
DESCRIBE CLEANING PROCEDURE	5						PART	ICLE SI	ZE DISTRI	BUTION
AIR PULSE		SONIC SIMPLE BAG COL				SIZE (MICRO			GHT % TOTAL	CUMULATIVE %
		RING BAG COLLA				0-1	140)			nown
		KING BAG COLLA	AF OE			1-10	_		UIK	
DESCRIBE INCOMING AIR STREAM:				_		10-2		-		
The air stream contains wood dust p		lissions.				25-5				
						50-10			_	
						>100	_			
								L	τοτα	L = 100
								_	1017	100
ON A SEPARATE PAGE, ATTACH A	DIAGRAM SH	OWING THE RELAT	IONSHIP O	FTHE	CONTROL	DEVICE TO) ITS E	MISSIO	N SOURC	E(S):
COMMENTS:										

. . . .

SPECIFIC EMISSION	SOURCE		ATION (R	FOURED		SOURC	FS)	
		of Air Quality - A					20/	В
EMISSION SOURCE DESCRIPTION:	EQ/DIVISION 0	n An Quanty - I	Application 10			ES-CLR-1 thi	roush 6	
Pellet Mills and Pellet Coolers						6): CD-CLR-1 t		PCO
OPERATING SCENARIO 1 OF	1					ID NO(S): EP-		-1100
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCE		ELOW DIAGRA	M).	Ennooionti e			20	
Six (6) Pellet Coolers follow the twelve (12) Pellet Mills	to cool the n	ewly formed pe	ellets down to					
		1		FORM B1-B9				D7)
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4)	(2		of chemicals/co	atings/inks (Fi	orm B7)
Int.combustion engine/generator (Form B2)			ishing/printing	· · · · ·		tion (Form B8)		
Liquid storage tanks (Form B3) START CONSTRUCTION DATE: 2016		Storage si	los/bins (Form		✓ Other (F	orm Ba)		
MANUFACTURER / MODEL NO.: Bliss 14-393-6A Coole			DATE MANUE	P. SCHEDULE	- 24 UD/D		Y/WK 52	WK/YR
	SUBPARTS?		EXPECTED		-: _24 HR/D		1/VVK _52	WNTR
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	· ·		IN AUC 25%			57)		
CRITERIA AIR P						IPCE		
UNITENS AINT	OLLOTAN	SOURCE OF		DACTUAL	11110 000		EMISSIONS	
		EMISSION		ROLS / LIMITS)	(REFORE CON	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	ib/hr	tons/vr
PARTICULATE MATTER (PM) PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM ₂₅) SULFUR DIOXIDE (SO2) NITROGEN OXIDES (NOX) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT	POLLUTA CAS NO.	NT EMISSIC SOURCE OF EMISSION FACTOR	ONS INFOR			POTENTIAL	EMISSIONS	TROLS / LIMITS) tons/yr
TOXIC AIR PO	LUTANT	EMISSIONS				n Attachment I	D	
TOXIC AIR PO	LLUTANT	ISOURCE OF						10
		EMISSION	EXPE	CTED ACTUAL	_ EMISSIONS	AFTER CONTR	ROLS / LIMITA	ATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	dl	/hr	lb/	day	1	p/yr
						n Attachment I		
Attachments: (1) emissions calculations and supporting documenta	ation: (2) indicate	e all requested sta	ate and federal e	nforceable permi	it limits (e.a. hour	s of operation, er	mission rates) a	nd describe how

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. nours or operation, emission rates) and vescul these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source. COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B9 EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application	for Air Permit to Construct/O	perate	B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-CLR-1 through 6					
Pellet Mills and Pellet Coolers		CONTROL DEVICE ID NO(S)	CD-CLR-1 through	h 6, CD-RCO			
OPERATING SCENARIO:1 OF1_		EMISSION POINT (STACK) II	D NO(S): EP-29				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA Six (6) Pellet Coolers follow the twelve (12) Pellet Mills to cool	rmed pellets down to an acce	ptable storage ten	nperature.				
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	REQUESTED	CAPACITY			
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	UNIT/HR)			
Dried Wood	ODT	120					
MATERIALS ENTERING PROCESS - BATCH OPERA		MAX. DESIGN	REQUESTED				
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/						
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		IMUM FIRING RATE (MILLION					
COMMENTS:	REQUESTE	D CAPACITY ANNUAL FUEL U	JSE: N/A				

FORM C4 CONTROL DEVICE (CYCLONE, MULTICYCLONE, OR OTHER MECHANICAL)

REVISED 09/22/16	NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									C4	
CONTROL DEVICE ID NO: CD-	CLR-1 through 6	CONTROLS E	EMISSION	S FRO	WHICH	EMISS	SION SOUR	CEIE	D NO(S): ES-	CLR-1 through 6	
EMISSION POINT (STACK) ID NO(S): EP-29	POSITION IN	SERIES C	F CON	ITROLS		NO. 1		OF 2	UNITS	
OPERATIN	G SCENARIO:										
	OF1		P.E. SEA	L REQU	JIRED (PE	R 2Q	.0112)?		YES	I NO	
DESCRIBE CONTROL SYSTEM Exhaust from the Pellet Mills at cyclone. The cyclones operate primarily in catalytic mode with on emissions during thermal m	nd Pellet Coolers are a under negative pres n thermal (RTO) mod	sure. A new	RTO/RCO	will be	installed	down	stream of t	he ex	cisting cyclo	nes that will opera	te
POLLUTANT(S) COLLECTED:			PM	-	PM ₁₀	_	PM _{2.5}	-		_	
BEFORE CONTROL EMISSION RATE (LB/HR):				_		_		_			
CAPTURE EFFICIENCY:				%		_%		%		%	
CONTROL DEVICE EFFICIENC	Y:		90+	%	90+	_%	90+	%		%	
CORRESPONDING OVERALL E	FFICIENCY:			%		_%		%		%	
EFFICIENCY DETERMINATION	CODE:			-		_		_			
TOTAL AFTER CONTROL EMIS	SION RATE (LB/HR):		See Emis	sions	Calculatio	ns in /	Appendix D	<u>)</u> .			
PRESSURE DROP (IN. H ₂ 0):	MIN	6.0"_MAX									
INLET TEMPERATURE (°F):	MIN	MAX /	Ambient	OUTL	ET TEMP	ERATU	JRE (°F):		MIN	MAX Ambient	
INLET AIR FLOW RATE (ACFM): 16,746 each BULK PARTICLE DENSITY (LB/FT ³): 2.86E-05											
POLLUTANT LOADING RATE (GR/FT ³): 0.2			1							
SETTLING CHAMBER			CYCLONE	-			- 10		M	ULTICYCLONE	25-22
LENGTH (INCHES):									NO. TUBES:		
WIDTH (INCHES):		IMENSIONS (INCHES) See instructions			IF WET SPRAY UTILIZED			DIAMETER OF TUBES:			
HEIGHT (INCHES):	H: 38	Dd: 22		LIQUID USED:				HOPPER ASPIRATION SYSTEM?			
VELOCITY (FT/SEC.):	W: 25 De: 32	Lb: 74.25		FLOW RATE (GPM):				UVERS?	NO NO		
NO. TRAYS: NO. BAFFLES:	De: 32	Lc: 84.5 S: 44.38		MAKE UP RATE (GPM):			41 i i i i i i i i i i i i i i i i i i i	J YES			
NO. BAFFLES.	TYPE OF CYCLONE							_	OTHER		
DESCRIBE MAINTENANCE PRO						STRIBUTION	992 I. 1				
Periodic inspection of mechanical integrity during plant outages as specified by manufacturer.							SIZE	N I	VEIGHT % DF TOTAL	CUMULAT %	IVE
DESCRIBE INCOMING AIR STREAM:							0-1	-	TOTAL	Unknown	
The cyclones are used to capture particulates from the pellet mills and coolers.							1-10			UNKIOWI	
							10-25				
							25-50				
							50-100				
							>100				
							TOTAL = 100				
DESCRIBE ANY MONITORING I None				THE CC	DNTROL D	EVICE	TOITSEN	AISSI	ON SOURCE	<u>.</u> (S):	
		Attach Add								, <i>r</i>	

FORM C3 CONTROL DEVICE (THERMAL OR CATALYTIC)

			ation for Air Permit to Constr	,	C3				
AS REQUIRED BY 15A NCAC 2Q .0112, TH		-			ORTH CAROLINA.				
CONTROL DEVICE ID NO: CD-RCO			EROM WHICH EMISSION SO		1 through -6				
EMISSION POINT (STACK) ID NO(S): EP-29		LS EMISSIONS FROM WHICH EMISSION SOURCE ID NO(S): ES-CLR-1 through -6 I IN SERIES OF CONTROLS NO. 2 OF 2 UNITS							
MANUFACTURER: TBD		MODEL NO: TBD							
OPERATING SCENARIO:	ind.	JELINO. I							
1 OF 1									
	E THERMAL OXIDATI	ON [RECUPERATIVE THERMA		ATALYTIC OXIDATION				
EXPECTED LIFE OF CATALYST (YRS): CATALYST MASKING AGENT IN AIR STREAM			G WHEN CATALYST NEEDS						
TYPE OF CATALYST: CATALYS	ST VOL (FT ³):		VELOCITY THROUGH CATA	LYST (FPS):					
SCFM THROUGH CATALYST:									
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION	I TO OTHER CONTRO	DE DEVICE	ES AND SOURCES, AND ATT.	ACH DIAGRAM OF SYSTE	EM:				
POLLUTANT(S) COLLECTED:	VOC		НАР						
BEFORE CONTROL EMISSION RATE (LB/HR):	-	-							
CAPTURE EFFICIENCY:		%		%	%				
CONTROL DEVICE EFFICIENCY:	95	%	95 %	%	%				
CORRESPONDING OVERALL EFFICIENCY:		~ %	%	%	%				
EFFICIENCY DETERMINATION CODE:									
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	See calculation	ns in App	endix D						
PRESSURE DROP (IN. H ₂ O): MIN MAX		OUTLE	T TEMPERATURE (°F):	MIN	MAX				
INLET TEMPERATURE (°F): MIN MAX		RESID	ENCE TIME (SECONDS):						
INLET AIR FLOW RATE (ACFM): (SCFM):		COMBL	COMBUSTION TEMPERATURE (°F):						
COMBUSTION CHAMBER VOLUME (FT ³):	INLET MOISTURE CONTENT (%):								
% EXCESS AIR:		CONCENTRATION (ppmv) INLET OUTLET							
AUXILIARY FUEL USED: Natural Gas and/or Propane		TOTAL	MAXIMUM FIRING RATE (MILI	LION BTU/HR): 19.8					
DESCRIBE MAINTENANCE PROCEDURES: TBD									
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED N/A	INTO THE CONTROL	SYSTEM	:						
COMMENTS:	AMAGE A L DO								
	Attach Addit	ional S	heets As Necessary						

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	EQ/Division o	on of Air Quality - Application for Air Permit to Construct/Operate							
EMISSION SOURCE DESCRIPTION: Pellet Cooler H	IP Fines Relay	y System		EMISSION S	OURCE ID N	O: ES-PCHP			
				CONTROL	EVICE ID NO	(S) CD-PCH	P-BH		
OPERATING SCENARIO1OF	1				OINT (STACK				
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO	CESS (ATTA	CH FLOW DIAGE	RAM):	1		.,			
Two high pressure blowers collect fines from the p	•			and convey f	them to the c	ooler high pre	essure fines f	ilter (CD-	
PCHP-BH). Solids separated by the filter (CD-PCHF									
atmosphere (ES-PCHP).	-	-						-	
TYPE OF EMISSION SOURCE	CHECK AND	COMPLETE AP					ESI-		
Coal,wood,oil, gas, other burner (Form B1)	(Oneon And	Woodworking			_	of chemicals/c		Form B7)	
Int.combustion engine/generator (Form B2)	Ľ		ing/printing (F	Corm DE)		ation (Form B8			
Liquid storage tanks (Form B3)	L. L.	Storage silos				Form B9)	9		
START CONSTRUCTION DATE: 2016				JFACTURED:	jourer (i	ronn Baj			
MANUFACTURER / MODEL NO.: Western Pneumat	ten Inn Dentil a	105 100 100				DAY 3		14/1/0/15	
			EXPECTED	OP. SCHEDU			DAY/WK 52	WK/YR	
	S (SUBPARTS				AP (SUBPAR	15?):		-	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-F									
CRITERIA AIRI	OLLUTAN		1		K THIS SU	× <u> </u>			
		SOURCE OF	EXPECTE	DACTUAL		POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)									
PARTICULATE MATTER<10 MICRONS (PM10)									
PARTICULATE MATTER<2.5 MICRONS (PM2.5)									
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)			Se	e Emission C	alculations in	n Appendix D			
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
OTHER HAZARDOUS AIF	R POLLUTA	NT EMISSIO	NS INFOR	MATION FO	OR THIS S	OURCE	210-21		
	POLLUTA	NT EMISSIO		MATION FO	OR THIS S		EMISSIONS		
	R POLLUTA		EXPECTE				EMISSIONS	ROLS / LIMITS)	
	CAS NO.	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL		ROLS / LIMITS) tons/yr	
HAZARDOUS AIF		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR		SOURCE OF EMISSION	EXPECTE (AFTER CONT	ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CONT	-	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT	-	
HAZARDOUS AIR	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT	-	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CONT Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT Ib/hr	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR PO	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR PO	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr	TION FOR	(BEFORE CON Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr CONSING TROLS / LIMITS) TROLS / LIMITS)	(AFTER CONT Ib/hr ROLS / LIMIT	tons/yr	
HAZARDOUS AIR HAZARDOUS AIR POLLUTANT N/A TOXIC AIR POLLUTANT	CAS NO.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT Ib/hr Ib/hr EXPEC	D ACTUAL ROLS / LIMITS) tons/yr TION FOR TED ACTUAL	(BEFORE CONT Ib/hr Ib/hr EMISSIONS	POTENTIAL TROLS / LIMITS) tons/yr RCE AFTER CONT day	(AFTER CONT Ib/hr ROLS / LIMIT	ATIONS /yr	

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Division	of Air Quality - Appl	lication	n for Air	Permit to Co	nstru	ct/Operate	B6
EMISSION SOURCE DESCR	RIPTION: Pellet Coo	ler HP Fines Relay S	/stem	E	MISSION SO	URCE	ID NO: ES-PCHP	
				C	ONTROL DE	VICE I	D NO(S): CD-PCHP-BH	
OPERATING SCENARIO:	1	OF1		_ E	MISSION PO	INT(S	TACK) ID NO(S): EP-23	
	collect fines from t Solids separated by	he pellet cooler disch the filter (CD-PCHP-E					onvey them to the cooler high ermill conveying system (ES-	
MATERIAL STORED: Fine p	ellet material			DENSIT	Y OF MATER	IAL (L	B/FT3):	
CAPACITY	CUBIC FEET:			TONS:			~7.	
DIMENSIONS (FEET)	(OR)	LENGTH	-l: V	WIDTH	I: HEIGHT:			
ANNUAL PRODUCT THRO		N	AXIMUM DES	SIGN (CAPACITY:			
PNEUMATICALLY F		MECHANICA	LLY FI	ILLED	15920		FILLED FROM	
BLOWER COMPRESSOR COMPRESSOR OTHER: NO. FILL TUBES: MAXIMUM ACFM: MATERIAL IS UNLOADED TO BY WHAT METHOD IS MATE		SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OTHER:	-				RAILCAR TRUCK STORAGE PILE OTHER: Conveyor	
MAXIMUM DESIGN FILLING	RATE OF MATERIA	L (TONS/HR):						
MAXIMUM DESIGN UNLOAD	NING RATE OF MAT	ERIAL (TONS/HR):						
COMMENTS:								

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEC	Q/Division of Air	Quality - App	lication	for Air Permit	to Con	struct/Op	erate			C
CONTROL DEVICE ID NO: CD-PCHP-BH		CONTROLS EN	ISSIONS FR	OM WH	CH EMISSION	SOUR	E ID NO	(S): I	ES-PCHP		
EMISSION POINT (STACK) ID NO(S):	EP-23	POSITION IN S	ERIES OF CO	INTRO	.S		NO.		1 OF	1 UNI	TS
OPERATING SCEN	ARIO:	ALK BAL									
10F1			P.E. SEAL F	REQUIR	ED (PER 2q .0'	112)?	Г	YES		I	NO
DESCRIBE CONTROL SYSTEM: Two high pressure blowers collect fines fro Solids separated by the filter (CD-PCHP-BH	om the pelle I) are return	t cooler discharged to the dry har	ge cyclones (I mmermill con	ES-PCH veying	P) and convey system (ES-HM	them to MC) and	o the coo process	ler hi air is	igh pressu a discharge	re fines filte d to atmos	r (CD-PCHP-BH) phere (ES-PCHP
POLLUTANTS COLLECTED:			PM	_	PM ₁₀	_	PM _{2.5}	_			
BEFORE CONTROL EMISSION RATE (LB/HI	R):			_				_			
CAPTURE EFFICIENCY:				%		%		%		%	
CONTROL DEVICE EFFICIENCY:			~99.9	%	-99.9	%	-99.9	%		%	
CORRESPONDING OVERALL EFFICIENCY:				- %	/	~		%		%	
EFFICIENCY DETERMINATION CODE:				-		-		-			
TOTAL AFTER CONTROL EMISSION RATE	(LB/HR):		See calcula	tion in /	Appendix D	-		-	-		
PRESSURE DROP (IN H ₂ 0): MIN: MAX:		GAUGE?	YES	[NO						
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-	05		-		IRE (°F): Ambi						
POLLUTANT LOADING RATE: 0.004	LB/HR	GR/FT ³	OUTLET TE	MPERA	TURE (°F) Am	bient		_			
INLET AIR FLOW RATE (ACFM): 1,000			FILTER OPE	RATIN	G TEMP (°F): N	N/A					
NO. OF COMPARTMENTS: 1		AGS PER COMP				LENG	TH OF B	AG (II	N.): 120		
NO. OF CARTRIDGES:	FILTER S	URFACE AREA P	PER CARTRID	GE (FT	[!]):	DIAM	ETER OF	BAG	(IN.): 5.875	5	
TOTAL FILTER SURFACE AREA (FT ²): 942		AIR TO CLOTH	RATIO: 6								
DRAFT TYPE: INDUCED/NE	GATIVE	FORCED/POSI	TIVE		FILTER MA	TERIAL:		WO\	VEN	✓ FEL	TED
DESCRIBE CLEANING PROCEDURES:								PART	ICLE SIZE	DISTRIBUT	NON
AIR PULSE	Ľ	SONIC				5	SIZE		WEIGHT	%	CUMULATIVE
REVERSE FLOW	E	SIMPLE BAG C	OLLAPSE			(MIC	RONS)		OF TOTA	L	%
MECHANICAL/SHAKER	[RING BAG COL	LAPSE				0-1			Unknown	1
OTHER:						· - ·	1-10				
DESCRIBE INCOMING AIR STREAM:						1	0-25				
The air stream contains wood dust particul	ate emissio	ns.				2	5-50				
						50)-10 0				
						>	100				
										TOTAL = 1	00
ON A SEPARATE PAGE, ATTACH A DIAGRA COMMENTS:	M SHOWIN	G THE RELATIO	NSHIP OF TH	E CONT	ROL DEVICE	TO ITS I	EMISSIO	N SOI	URCE(S):		
		Attach Adv									

FORM B SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division of	Air Quality - A	pplication fe	or Air Permit t	o Construct/(Operate		B
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D: ES-FPH, ES	-PB1 thru 4	
Finished Product Handling/Pellet Loadout Bins/Pellet	et Loadout					ES-PL1 and 2		
				CONTROL D	EVICE ID NO	(S): CD-FPH-B	H	
OPERATING SCENARIO1OF	1) ID NO(S): EF		
DESCRIBE IN DETAILTHE EMISSION SOURCE PROC	CESS (ATTAC	H FLOW DIAG	RAM):					
Finished pellets are conveyed to four (4) pellet load	•			ellet loadout	operations (E	S-PL-1, -2). Pe	llet Loadout	is
accomplished by gravity feed of the pellets into truc								
maintain constant contact with product as it is loade								
loadout building as a fire prevention measure to pre Emissions from the feed conveyor, Finished Produc								
controlled by the Finished Product Handling baghou			is to the ren	IEL LUAUOUL BI	ns, and the t	uck loadout of	peracions an	5 GU
TYPE OF EMISSION SOURCE (2561	
Coal,wood,oil, gas, other burner (Form B1)	ONLOR AND		king (Form B4			of chemicals/co		Eorm B7)
Int.combustion engine/generator (Form B2)			nishing/printin		=	ation (Form B8)		-000 B7)
Liquid storage tanks (Form B3)		Storage si				Form B9)		
START CONSTRUCTION DATE: 2016					J Other (0111 03)		
MANUFACTURER / MODEL NO.: Agra Industries Inc.				IFACTURED:	E: 34 UD		AVANIK ET	WKMD
	G (SUBPARTS		EAPECIED	OP. SCHEDU	_E: _24 HR/ AP (SUBPAR		AY/WK _52_	
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE			JUN-AUG	Januari,	OV 25%	131)		
CRITERIA AIR P						IPCE		
CATENA AIR P	OLLUI MIN				in mis su		Flucelova	
		SOURCE OF EMISSION		ED ACTUAL	(055025 2	POTENTIAL		
		· · · · · · · · · · · · · · · · · · ·	ROLS / LIMITS)		TROLS / LIMITS)		ROLS / LIMITS)	
AIR POLLUTANT EMITTED PARTICULATE MATTER (PM)		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM10)		-						
PARTICULATE MATTER<10 MICRONS (PM10) PARTICULATE MATTER<2.5 MICRONS (PM25)								
SULFUR DIOXIDE (SO2)		•						
NITROGEN OXIDES (NOX)		-		Sao Emission	Calculations	in Appendix D	•	
CARBON MONOXIDE (CO)		•		See Emission	Calculations	In Appendix L	,	
VOLATILE ORGANIC COMPOUNDS (VOC)		-						
LEAD		1						
OTHER		-						
HAZARDOUS AIR	POLITA	NT EMISSIC	NS INFO	DMATION	OD THIS	OUDCE	10 5 5	se digita in
Interno o contra	I OLLOIA	SOURCE OF		ED ACTUAL		POTENTIAL	ENICCIONS	-
		EMISSION		ROLS / LIMITS)	(REEODE CON	TROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	Ib/hr	1
N/A	CAS NO.	FACTOR	10/11	tons/yi	IDVIT	tons/yr	1,5/112	tons/yr
				-				
	-			1				
				-				
				-				
			2	1				
TOXIC AIR PO	LLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	RCE		L
TONIO AINTO		- SOUNGE	,					
		OF EMISSION	EXPEC	CTED ACTUAL	EMISSIONS	AFTER CONTR	ROLS / LIMIT	ATIONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	11-	o/hr	lhi	'day	li-	o/yr
N/A			12		10,			
				-				
				1				
Attachments: (1) emissions calculations and supporting docume	ntation: (2) indice	te all requested a	tate and federa	l enforceable an	mit limite (e.e. b	ture of opposition	emission mt	and deperibe
how these are monitored and with what frequency; and (3) descr					(o.g. 11	o or opproxidity		,

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE

FORM B9

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -		or Air Permit to Construct/Op	erate B9
EMISSION SOURCE DESCRIPTION: Finished Product Handling		EMISSION SOURCE ID NO: E	ES-FPH
		CONTROL DEVICE ID NO(S):	CD-FPH-BH
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID	NO(S): EP-16
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Collection of pellet feed conveyor, pellet storage, and transfer to		out spouts and loadout area.	
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CEGE	MAX, DESIGN	REQUESTED CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Dried Wood	ODT		chair Anon (on many)
		120	
MATERIALS ENTERING PROCESS - BATCH OPERAT	ION	MAX. DESIGN	REQUESTED CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	1		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	(R):	
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION	BTU/HR): N/A
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL U	SE: N/A
COMMENTS:			

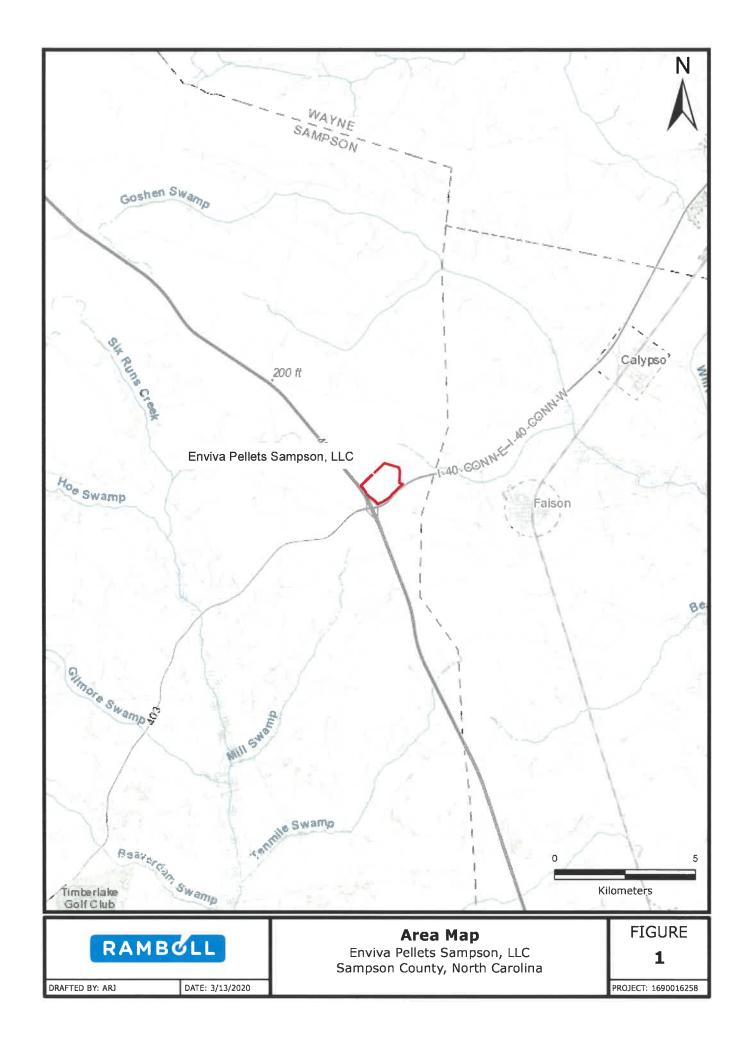
FORM B6 EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/DIVISIO	n of Air Quality - Applicati	on for Air Permit to C	Jonstruct/Operate	B6
RIPTION: Four (4) P	ellet Loadout Bins	EMISSION S	OURCE ID NO: ES-PB1 through 4	
		CONTROL D	EVICE ID NO(S): CD-FPH-BF	
1	0F1	EMISSION P	OINT(STACK) ID NO(S): EP-16	
1 to store pellets fo	r shipping. Pellets are the	n loaded from the bi	ns into trucks through either of the t	vo (2)
Product		DENSITY OF MATE	ERIAL (LB/FT3): 40	
CUBIC FEET:		TONS: 1,200 (total	for all four bins)	
HEIGHT:	DIAMETER: 12 (OR)	LENGTH:	WIDTH: HEIGHT:	
OUGHPUT (TONS)	ACTUAL:	MAXIMUM D	ESIGN CAPACITY: 120 ODT/hr	
ILLED	MECHANICALLY	FILLED	FILLED FROM	
	SCREW CONVEYOR		RAILCAR	
	BELT CONVEYOR		TRUCK	
	BUCKET ELEVATOR		STORAGE PILE	
	OTHER:		OTHER: Conveyor	
1				
°O:				
	RIPTION: Four (4) P	RIPTION: Four (4) Pellet Loadout Bins 1 OF PROCESS (ATTACH FLOW DIAGRAM): d to store pellets for shipping. Pellets are the CUBIC FEET: HEIGHT: DIAMETER: 12 DUGHPUT (TONS) ACTUAL: ILLED MECHANICALLY BELT CONVEYOR BUCKET ELEVATOR OTHER:	RIPTION: Four (4) Pellet Loadout Bins EMISSION S OF OF OF EMISSION F PROCESS (ATTACH FLOW DIAGRAM): EMISSION F d to store pellets for shipping. Pellets are then loaded from the bi Product DENSITY OF MATE CUBIC FEET: TONS: 1,200 (total HEIGHT: DIAMETER: 12 (OR) LENGTH: DUGHPUT (TONS) ACTUAL: MAXIMUM D ILLED MECHANICALLY FILLED ILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OTHER: OC: ERIAL UNLOADED FROM SILO?	CONTROL DEVICE ID NO(S): CD-FPH-BF

FORM B9 EMISSION SOURCE (OTHER)

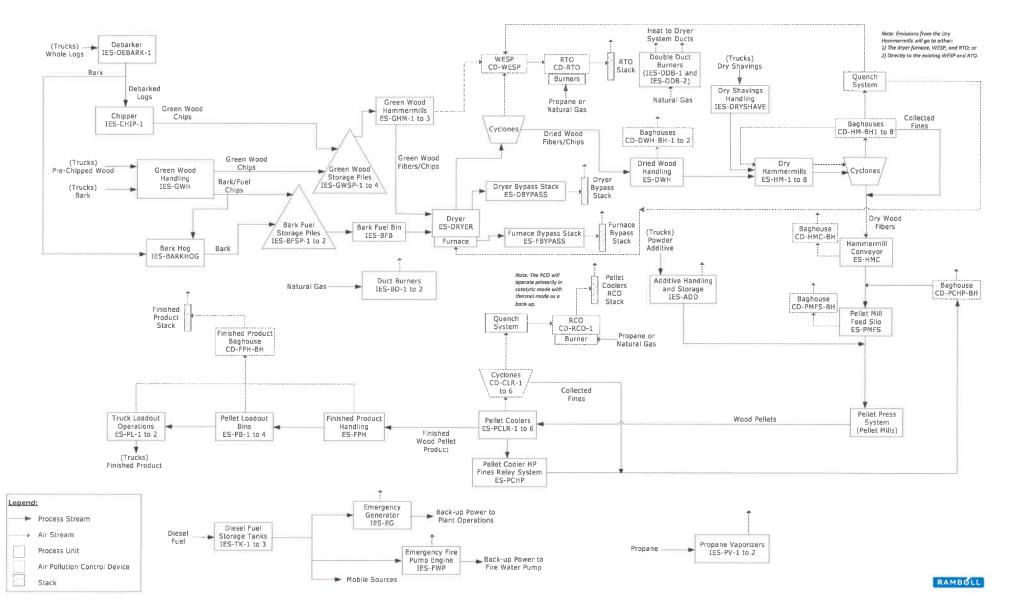
REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application	for Air Permit to Construct/Ope	erate	B9				
EMISSION SOURCE DESCRIPTION: Pellet Loadout 1 and 2		EMISSION SOURCE ID NO: E	S-PL-1 and PL-2					
		CONTROL DEVICE ID NO(S):	CD-FPH-BH					
OPERATING SCENARIO:1 OF1		EMISSION POINT (STACK) ID NO(S): EP-16						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAI	VI):							
Final product is loaded into trucks using two (2) pellet loadout	chutes.							
MATERIALS ENTERING PROCESS - CONTINUOUS PRO		MAX. DESIGN	REQUESTED					
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)				
Dried Wood	ODT	120						
MATERIALS ENTERING PROCESS - BATCH OPERA	FION	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U					
			(0					
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/	YR):						
FUEL USED: N/A	TOTAL MAX	(IMUM FIRING RATE (MILLION	BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL US	SE: N/A					
COMMENTS:	1							

FORM C1 CONTROL DEVICE (FABRIC FILTER)


REVISED 09/22/16 NCDEQ/	Division of Air Quality -	Applicatio	on for	Air Permit to	o Con	struct/Ope	rate		C1
CONTROL DEVICE ID NO: CD-FPH-BH	CONTROLS EMIS	SIONS FR	OM W	HICH EMIS	SION	SOURCE IE	NO(S):	
		_							gh 4, ES-PL1 and 2
EMISSION POINT (STACK) ID NO(S): EP-16	POSITION IN SEF	RIES OF CO	ONTR	OLS		NC	. 1	OF 1	UNITS
OPERATING SCENARIO		D. C. 051	000						
1OF1 DESCRIBE CONTROL SYSTEM:		P.E. SEA	LREG	QUIRED (PER	₹ 2q .()112)?	YES		V NO
This baghouse controls emissions from Finish Loadout Operations (ES-PL-1 and ES-PL-2).	ed Product Handling (E	ES-FPH), tr	ne fou	r (4) Pellet L	oadou	ıt Bins (ES	-PB-1 t	hrough ES-	PB-4) and Truck
POLLUTANTS COLLECTED:		PM	_	PM-10	_	PM-2.5	_		_
BEFORE CONTROL EMISSION RATE (LB/HR):			_		-		_		
CAPTURE EFFICIENCY:		99	_%	99	_%	99	%		%
CONTROL DEVICE EFFICIENCY:			-		-		_%		%
CORRESPONDING OVERALL EFFICIENCY:			_%		%		_%		%
EFFICIENCY DETERMINATION CODE:			_		-		_		
TOTAL AFTER CONTROL EMISSION RATE (LB	,		lation	n in Appendi	ix D				
PRESSURE DROP (IN H ₂ 0): MIN: MAX: 6"	GAUGE?			NO		Warning /	Alarm	⊻ Yes	No
BULK PARTICLE DENSITY (LB/FT ³): 1.43E-05 POLLUTANT LOADING RATE: 0.004 LB/HR	GR/FT	-		RATURE (°F) ERATURE (0			
INLET AIR FLOW RATE (ACFM): 8,500				TING TEMP	<i>'</i>				
	AGS PER COMPARTM					GTH OF BA	G (IN)	144	
	SURFACE AREA PER C		(FT ²)):		ETER OF			
TOTAL FILTER SURFACE AREA (FT ²): 4,842	AIR TO CLOTH R		. ,		-			.,	
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIN	/E		FILTER M	ATER	IAL:	WOV	EN 🔽	FELTED
DESCRIBE CLEANING PROCEDURES						PAR	TICLE !	SIZE DISTRI	BUTION
AIR PULSE	SONIC SIMPLE BAG COL	LAPSE			(M	SIZE ICRONS)		EIGHT % F TOTAL	CUMULATIVE %
	RING BAG COLLA					0-1			ns in Appendix D
						1-10			
DESCRIBE INCOMING AIR STREAM:					<u> </u>	10-25	1		
The air stream contains wood dust particules.						25-50	1		
						50-100			
						>100	1		
					-			ΤΟΤΑ	L = 100
ON A SEPARATE PAGE, ATTACH A DIAGRAM	SHOWING THE RELAT	IONSHIP C	FTHE	CONTROL	DEVI	CE TO ITS	EMISS	ION SOURC	E(S):
COMMENTS:									

.

Amended Application for Initial Title V Permit Enviva Pellets Sampson, LLC Sampson County, North Carolina


APPENDIX B AREA MAP

Ramboll

Amended Application for Initial Title V Permit Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX C PROCESS FLOW DIAGRAM

.

Figure 1. Process Flow Diagram Enviva Pellets Sampson, LLC – Sampson County, NC

Amended Application for Initial Title V Permit Enviva Pellets Sampson, LLC Sampson County, North Carolina

APPENDIX D POTENTIAL EMISSIONS CALCULATIONS

Table 1Calculation InputsEnviva Pellets Sampson, LLCFaison, Sampson County, North Carolina

Operational Data										
Green Hammermills, Dryers, Dry Ha Pellet Mills, and Pellet Coolers	mmermills,									
Short-Term Throughput (ODT/hr)	120									
Annual Throughput (ODT/yr)	657,000									
Hours of Operation (Hr/yr)	8,760									
Softwood Composition	100%									

Table 2
Summary of Facility-wide Criteria Pollutant and CO ₂ e Potential Emissions
Enviva Pellets Sampson, LLC
Faison, Sampson County, North Carolina

Emission Unit ID	Source Description	Control Device ID	Control Device Description	CO (tpy)	NO _x (tpy)	PM (tpy)	PM ₁₀ (tpy)	РМ _{2.5} (tpy)	SO ₂ (tpy)	VOC (tpy)	CO₂e (tpy)
IES-CHIP-1	Log Chipping									1.64	
IES-BARKHOG	Bark Hog		**			0.24	0.13	0.13		0.30	
ES-DRYER	250.4 MMBtu/hr wood- fired direct heat drying system										
ES-GHM-1 through 3	Three (3) Green Wood Hammermills	CD-WESP; CD-RTO	WESP; RTO	93.8	93.8	37.6	34.8	31.7	27.4	60.8	256,230
ES-HM-1 through 8	Eight (8) Dry Hammermills										
ES-FBYPASS	Furnace Bypass			2.06	0.76	1.98	1.78	1.54	0.086	0.058	721
IES-DDB-1 and -2	Double Duct Burners			1.80	1.56	0.17	0.17	0.17	0.013	0.24	3,048
ES-HMC	Hammermill Conveying System	CD-HMC-BH	One (1) baghouse			0.23	0.23	0.23			
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	One (1) baghouse			0.37	0.37	0.37			
ES-CLR-1 through 6	Twelve Pellet Mills and Six (6) Pellet Coolers	CD-CLR-1 through 6; CD-RCO	Six (6) simple cyclones (one on each cooler); RCO/RTO	8.26	13.7	191	47.2	12.2	0.051	37.7	12,069
ES-PCHP	Pellet Cooler HP Fines Reiay System	CD-PCHP-BH	One (1) baghouse			0.47	0.47	0.47			
ES-FPH	Finished Product Handling										
ES-PB-1 through 4	Four (4) Pellet Loadout Bins	CD-FPH-BH	One (1) baghouse			1.28	1.16	0.51			
ES-PL-1 and 2	Two (2) Pellet Mill Loadouts										
ES-DWH	Dried wood handling operations	CD-DWH-BH-1 through -2	Two (2) baghouses			0.30	0.30	0.30		14.3	
IES-ADD	Additive Handling and Storage					3.67E-04	1.74E-04	2.63E-05			
IES-GWH	Green wood handling operations					0.081	0.038	0.0058			
IES-TK-1	2,500 gal diesel storage tank									3.32E-04	
IES-TK-2	500 gal diesei storage tank			2.						6.79E-05	
IES-TK-3	3,000 gal diesel storage tank									0.0014	
IES-GWSP-1 through 4	Green wood storage piles					15.4	7.68	1.15		6.87	
IES-BFSP-1 and 2	Bark fuel storage piles					0.64	0.32	0.048		0.29	
IES-DRYSHAVE	Dry shavings material handling					0.054	0.025	0.0039			
IES-DEBARK-1	Debarker					1.13	0.62	0.62			
IES-BFB ¹	Bark fuel bin										
IES-EG	689 hp diesel-fired emergency generator			1.03	1.17	0.059	0.059	0.059	0.0019	0.114	204
IES-FWP	131 hp diesel-fired fire water pump		+-	0.070	0.18	0.0092	0.0092	0.0092	4.79E-04	0.0081	50.4
	Paved Roads					16.4	3.27	0.80			
IES-PV-1 and 2	Two (2) 1 MMBtu/hr Propane Vaporizers			0.72	1.24	0.067	0.067	0.067	0.0052	0.096	1,223
			Total Emissions:	108	112	268	98.7	50.4	27.6	122	273,545
		Total	Excluding Fugitives ² :	108	112	234	86.8	47.8	27.6	114	273,545

Notes:

1. Bark fuel is transferred by walking floor to covered conveyors to fully enclosed bark fuel bin to pusher(s) into furnace. Therefore, there are no emissions expected from the bin.

^{2.} Fugitive emissions are not included in comparison against the major source threshold because the facility is not on the list of 28 source categories in 40 CFR 52.21.

Abbreviations:

ES - Emission Sources

IES - Insignificant Emission Source

CO - carbon monoxide

CO2e - carbon dioxide equivalent NO_x - nitrogen oxides

PM - particulate matter

- PM₁₀ particulate matter with an aerodynamic diameter less than 10 microns $PM_{2.5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less
- SO₂ sulfur dioxide
- tpy tons per year
- VOC volatile organic compounds

Table 3 Summary of Facility-wide HAP Potential Emissions Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

			CD-RTO1	ES-FBYPASS	IES-DDB- 1 and -2	CD-RCO ²	IES-EG	IES-FWP	ES-DWH	IES-CHIP- 1	IES- BARKHOG	IES-PV-2 and 2	Total
Pollutant	HAP	NC TAP	(tpy)	(tpy)	(*py)	(tpy)	(tpy)	(*py)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Acetaldehyde	Y	Ŷ	2.03	2.9E-03	3.3E-07	0.14	3.1E-05	1.8E-04					2.17
Acetophenone	Y	Y	1.8E-07	1.1E-08			10						1.9E-07
Acrolein	Y	Y	2.07	1.4E-02	3.9E-07	0.83	9.8E-05	2.1E-05					2.91
Ammonia	N	Y	0.62		0.069	0.27	100						0.96
Antimony & Compounds	Y	N	6.3E-04	2.7E-05									6.6E-04
Arsenic & Compounds	Y	Y	1.8E-03	7.6E-05	4.3E-06	1.7E-05	1940						0.0019
Benzo(a)pyrene	Y	Y	1.4E-04	8.9E-06	2.6E-08	1.0E-07	3.2E-07	4.3E-08					1.5E-04
Benzene	Y	Y	0.37	1.4E-02	0.016	0.062	0.0010	2.1E-04				6.22E-03	0.47
Beryllium	Y	Y	9.0E-05	3.8E-06	2.6E-07	1.0E-06							9.5E-05
Butadiene, 1,3-	Y	Y	179	191		10		9.0E-05			**		9.0E-06
Cadmium	Y	Y	5.4E-04	1.4E-05	2.4E-05	9.4E-05							6.7E-04
Carbon tetrachloride	Y	Y	2.5E-03	1.5E-04	- 14 A	10							0.0026
Chiorine	Y	Y	0.87	2.7E-03		1.1							0.87
Chiorobenzene	Y	Y	1.8E-03	1.1E-04									0.0019
Chloroform	Y	Y	1.5E-03	9.6E-05									0.0016
Chromium VI	.3	Y	5.5E-04	1.2E-05	3.0E-05	1.2E-04							7.1E-04
Chromium-Other compds	Y	N	1.4E-03	6.0E-05									0.0015
Cobalt compounds	Y	N	5.2E-04	2.2E-05	1.8E-06	7.1E-06							5.5E-04
Dichlorobenzene	Y	Y	2.3E-04		2.6E-05	1.0E-04							3.6E-04
Dichloroethane, 1,2-	Y	Y	1.6E-03	1.0E-04	2.02.05								0.0017
Dichloropropane, 1,2-	Y	N	1.8E-03	1.1E-04									0.0017
	Y	-											
Dinitrophenol, 2,4-		N	9.9E-06	6.2E-07	1.447								1.0E-05
Di(2-ethylhexyl)phthalate	Y	Y	2.6E-06	1.6E-07									2.7E-06
Ethyl benzene	Y	N	1.7E-03	1.1E-04								**	0.0018
Formaldehyde	Y	Y	1.97	1.5E-02	0.033	0.64	0.0001	2.7E-04	0.07			0.013	2.74
Hexachlorodibenzo-p-dioxin	N	Y	6.8E-05	5.5E-06									9.32E-05
Hexane	Y	Y	0.35		0.039	0.15				**			0.54
Hydrochloric acid	Y	Y	2.08	6.5E-02			**						2.15
Lead and Lead Compounds	Y	N	3.8E-03	1.7E-04	1.1E-05	4.3E-05							0.0040
Manganese & Compounds	Y	Y	0.13	5.5E-03	8.2E-06	3.2E-05							0.13
Mercury	Y	Y	3.3E-04	1.2E-05	5.6E-06	2.2E-05							3.7E-04
Methanol	Y	N	2.28			3.94			0.16	0.33	0.060		6.77
Methyl bromide	Y	N	8.2E-04	5.2E-05									8.7E-04
Methyl chloride	Y	N	1.3E-03	7.9E-05									0.0013
Methyl ethyl ketone	N	Y	3.0E-04	1.9E-05			144 S	9445					0.0003
Methylene chloride	Y	Y	0.016	1.0E-03									0.017
Naphthalene	Y	N	0.005	3.3E-04	1.3E-05	5.4E-05	1.6E-04	1.9E-05					0.0060
Nickel	Y	Y	3.0E-03	1.1E-04	4.5E-05	1.8E-04	1.02-04						0.0034
Nitrophenol, 4-	Y	N	6.0E-06	3.8E-07		1.02-04							6.4E-06
		Y											
Pentachlorophenol	Y		5.6E-05	1.8E-07									5.6E-05
Perchloroethylene	Y	Y	0.042	1.3E-04									0.042
Phenol	Y	Y	1.41	1.8E-04		0.41							1.82
Phosphorus Metal, Yellow or White	Y	N	2.1E-03	9.3E-05		••							0.0022
Polychlorinated Biphenyls	Y	Y	4.5E-07	2.8E-08					**				4.7E-07
Polycyclic Organic Matter	Y	N	0.15	4.3E-04	8.8E-04	3.5E-03	2.6E-04	3.9E-05				3.50E-04	0.15
Propionaldehyde	Y	N	1.69	2.1E-04	140	0.18	100	144	6.9E-02			**	1.94
Selenium Compounds	Y	N	2.2E-04	9.6E-06	5.2E-07	2.0E-06	222	12-			**		2.3E-04
Styrene	Y	Y	0.10	6.5E-03		66	344.5	3440					0.11
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	4.7E-10	3.0E-11			382	1.000					5.0E-10
Toluene	Y	Y	5.1E-02	3.2E-03	7.3E-05	2.9E-04	3.5E-04	9.4E-05					0.0551
Trichloroethane, 1,1,1-	Y	Y	0.034	1.1E-04			(an)	1947					0.034
Trichloroethylene	Y	Y	1.6E-03	1.0E-04	0.000		144 S	140 L					0.0017
Trichlorofiuoromethane	N	Y	2.2E-03	1.4E-04									0.0024
richlorophenol, 2,4,6-	Y	N	1.2E-06	7.6E-08	-	12	24	146					1.3E-06
Vinyl Chloride	Y	Y	9.9E-04	6.2E-05			100						1.0E-03
Xylene	Y	Y	1.4E-03	8.6E-05			2.4E-04	6.5E-05					0.0018
	¥ 								0.20	0.22	0.000	0.020	
Total HAP Emissions ⁴ (tpy) Maximum Individual HAP (tpy)			15.7 Methanoł	0.13 Hydrochioric acid	0.088 Hexane	6.36 Methanol	0.0020 Benzene	8.88E-04 Formaldehyde	0.30 Methanol	0.33 Methanol	0.060 Methanol		23.0 Methano

Process

State

Process

Process

Process

Process

Process

Process

Process

Process

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Proce

Table 4 Green Wood Handling IES-GWH Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Source	Transfer Activity ¹	Number of Drop Points	Piolacuic	Factor ³	Factor ³	PM _{2.5} Emission Factor ³ (lb/ton)	Thro	tential ughput⁴ (tpy)	Potent Emis (Ib/hr)	tial PM sions (tpy)	1	al PM ₁₀ sions (tpy)		al PM _{2.5} sions (tpy)
	Purchased Bark/Fuel Chips Transfer to Outdoor Storage Area	1	48%	4.97E-05	2.35E-05	3.56E-06	25	81,640	1.2E-03	2.0E-03	5.9E-04	9.6E-04	8.9E-05	1.5E-04
IES-GWH	Purchased Wood Chips to Outdoor Storage Area	4	42%	6.00E-05	2.84E-05	4.30E-06	69	328,500	1.7E-02	3.9E-02	7.8E-03	1.9E-02	1.2E-03	2.8E-03
IES-GWH	Processed Wood Chips to Outdoor Storage Area	2	42%	6.00E-05	2.84E-05	4.30E-06	138	328,500	1.6E-02	2.0E-02	7.8E-03	9.3E-03	1.2E-03	1.4E-03
	Chip Truck Dump to Hoppers	2	42%	6.00E-05	2.84E-05	4.30E-06	69	328,500	8.3E-03	2.0E-02	3.9E-03	9.3E-03	5.9E-04	1.4E-03
	Total Emissions: 4.3E-02 8.1E-02 2.0E-02 3.8E-02 3.0E-03 5.8E-03										5.8E-03			

Notes:

where:

^{1.} These green wood handling emissions are representative of the fugitive emissions at the site. Note there may be multiple drop points for each type but as shown these emissions will be negligible.

² Average moisture content for bark based on material balance provided by design engineering firm (Mid-South Engineering). Moisture content for purchased and process wood chips provided by Enviva on July 12, 2017. Assumed the lower moisture content between pine and hardwood to conservatively estimate PM emissions. (Hardwood 42% moisture; pine 51% (purchased wood chips) and 49% (processed wood chips).

³ Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

E = emission factor (lb/ton)	
k = particle size multiplier (dimensionless) for PM	0.74
k = particle size multiplier (dimensionless) for PM ₁₀	0.35
k = particle size multiplier (dimensionless) for PM _{2.5}	0.053
U = mean wind speed (mph)	7.85
nuts represent dry weight of materials, calculated based on listed	material n

^{4.} Throughputs represent dry weight of materials, calculated based on listed material moisture contents. Hourly purchased bark throughput based on bark hog hourly throughput. Hourly purchased wood chip throughput based on weight of chips delivered to the facility. Hourly processed wood chip throughput based on log chipping hourly throughput.

Abbreviations:

hr - hour

- lb pound
- PM particulate matter

 $\ensuremath{\mathsf{PM}_{10}}\xspace$ - particulate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\mathsf{PM}_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

yr - year

Table 5 Storage Pile Wind Erosion IES-GWSP-1 through 4, and IES-BFSP-1 and 2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Source	Description	Emissio	PM In Factor ¹	Fa	mission ctor ²	Pile Width	Pile Length	Pile Height	Outer Surface Area of Pile ³	Potent Emis		1	al PM ₁₀ sions		al PM _{2.5} sions	Emissi	ial VOC ions as bane ⁴
		(lb/day/ acre)	(lb/hr/ft²)	(lb/day/ acre)	(lb/hr/ft²)	(ft)	(ft)	(ft)	(ft²)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
IES-GWSP-1	Green Wood Storage Pile No. 1	9.8	9.4E-06	3.6	3.4E-06	100	310	30	66,720	0.63	2.7	0.31	1.4	4.7E-02	0.21	0.28	1.2
IES-GWSP-2	Green Wood Storage Pile No. 2	9.8	9.4E-06	3.6	3.4E-06	100	310	30	66,720	0.63	2.7	0.31	1.4	4.7E-02	0.21	0.28	1.2
IES-GWSP-3	Green Wood Storage Pile No. 3	9.8	9.4E-06	3.6	3.4E-06	220	310	30	120,000	1.1	4.9	0.56	2.5	8.5E-02	0.37	0.50	2.2
IES-GWSP-4	Green Wood Storage Pile No. 4	9.8	9.4E-06	3.6	3.4E-06	220	310	30	120,000	1.1	4.9	0.56	2.5	8.5E-02	0.37	0.50	2.2
IES-BFSP-1	Bark Fuel Storage Pile No. 1	9.8	9.4E-06	3.6	3.4E-06	60	100	15	12,960	0.12	0.53	6.1E-02	0.27	9.1E-03	4.0E-02	5.4E-02	0.24
IES-BFSP-2	Bark Fuel Storage Pile No. 2	9.8	9.4E-06	3.6	3.4E-06	25	25	15	2,550	2.4E-02	0.10	1.2E-02	5.2E-02	1.8E-03	7.9E-03	1.1E-02	4.7E-02
	Total Emissions: 3.7 16 1.8 8.0 0.27 1.2 1.6 7.2																

Notes:

1- TSP emission factor based on U.S. EPA Control of Open Fugitive Dust Sources. Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988, Page 4-17.

$$E = 1.7 \left(\frac{s}{1.5}\right) \left(\frac{(365-p)}{235}\right) \left(\frac{f}{15}\right) (lb/day/acre)$$

where:

- re: s, silt content of wood chips (%): p, number of days with rainfall greater than 0.01 inch:
 - number of days with rainfall greater than 0.01 inch:
 - f (time that wind exceeds 5.36 m/s 12 mph) (%): 14.8 PM10/TSP ratio: 50%
- Based on meteorological data averaged for 2007-2011 for Sampson, NC.

Based on AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Figure 13.2.1-2.

 PM₁₀ is assumed to equal 50% of TSP based on U.S. EPA Control of Open Fugitive Dust Sources, Research Triangle Park, North Carolina, EPA-450/3-88-008. September 1988.
 PM_{2.5} is assumed to equal 7.5 % of TSP U.S. EPA Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission

s - silt content (%) for lumber sawmills (mean) from AP-42, Section 13.2.2 - Unpaved Roads, 11/06, Table 13.2.2-1

PM_{2.5}/TSP ratio: 7.5%

Factors. November 2006.

^{2.} Emission factors obtained from NCASI document provided by the South Carolina Department of Health and Environmental Control (DHEC) for the calculation of fugitive VOC emissions from Douglas Fir wood storage piles. Emission factors ranged from 1.6 to 3.6 lb C/acre-day. Enviva chose to employ the maximum emission factor for purposes of conservatism.

3. The surface area is calculated as {2*H*L+2*W*H+L*W] + 20% to consider the sloping pile edges. Length and width based on proposed site design with a conservative height.

8.4

120

4. Emissions are calculated in tons of carbon per year by the following formula:

tons C/year = 5 acres * 365 days * 1.6 lb C/acre-day / 2000 lb/ton

Emission factor converted from as carbon to as propane by multiplying by 1.22.

Abbreviations:

 EPA - Environmental Protection Agency
 PM - particulate ma

 ft - feet
 PM_{10} - particulate ma

 ft² - square feet
 $PM_{2,5}$ - particulate ma

 lb - pound
 tpy - tons per year

 mph - miles per hour
 TSP - total suspend

 NC - North Carolina
 VOC - volatile orgar

 NCASI - National Council for Air and Stream Improvement, Inc.
 VOC - volatile orgar

PM - particulate matter $PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns \\ PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less tpy - tons per year$ TSP - total suspended particulateyr - yearVOC - volatile organic compound

Table 6 Debarker Potential Emissions IES-DEBARK-1 Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput ¹	275 ton/hr
Annual Throughput ¹	1,133,325 ton/yr

Potential Criteria Pollutant Emissions

Source	Pollutant	Emission Factor	Potential Emissions			
		(lb/ton)	(lb/hr)	(tpy)		
IES-DEBARK-1	TSP ²	2.0E-02	0.55	1.1		
	PM ₁₀ ²	1.1E-02	0.30	0.62		

Notes:

^{1.} Hourly bark hog throughput data provided by Enviva (email from Kai Simonsen dated 12/21/17). Annual throughput of logs delivered for debarking, as reported for log chipping. Per 12/21/17 email from Enviva, 2 tons of green material is needed for every 1 ODT of pellets, and 1.15 times that amount for purchased logs. At most, Enviva would purchase 75% of the needed logs with the remaining 25% of green material coming from purchased chips.

^{2.} Particulate matter emission factors from the USEPA document titled AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns in diameter. PM emissions are assumed to be controlled due to the debarker being partially enclosed (assumed 90% control).

Abbreviations:

hr - hour lb - pound ODT - oven dried tons tpy - tons per year yr - year

Table 7 Bark Hog Potential Emissions IES-BARKHOG Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput ¹	50 ton/hr, wet
Hourry Hiroughput	25 ODT/hr
Annual Throughput ²	119,455 ODT/yr
Annual Inroughput	238,909 ton/yr, wet
Approx. Moisture Content ¹	50% of total weight

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor	Potential Emissions			
	Emission ractor	(ib/hr)	(tpy)		
THC as carbon ³	4.1E-03 lb/ODT	0.10	0.24		
VOC as propane ⁴	5.0E-03 lb/ODT	0.13	0.30		
Methanol ³	1.0E-03 lb/ODT	2.5E-02	6.0E-02		
TSP ⁵	2.0E-02 lb/ton	0.10	0.24		
PM ₁₀ ⁵	1.1E-02 lb/ton	5.5E-02	0.13		

Notes:

- ^{1.} Hourly bark hog throughput data and approximate moisture content provided by Enviva (email from Kai Simonsen dated 12/21/17).
- ^{2.} Maximum throughput assumes similar bark hog usage is proportional to the amount of log chipping that occurs for maximum pellet ODT and maximum 75% purchase of greenwood from logs.
- ^{3.} Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.
- ^{4.} Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7. VOC as propane = (1.22 x THC) + formaldehyde -(acetone+methane+methylene chloride). A value of zero is used for specified compounds where no emission factor is available or where the emission factor is reported only as "BDL" as indicated in AP-42, Section 10.6.3.
- ^{5.} Particulate matter emission factors from the USEPA document titled AIRS Facility Subsystem Source Classification Codes and Emission Factor Listing for Criteria Air Pollutants. Source Classification Code 3-07-008-01 (Log Debarking). All PM is assumed to be larger than 2.5 microns. PM emissions are assumed to be controlled due to the bark hog being partially enclosed (assumed 90% control).

Abbreviations:

hr - hour lb - pound ODT - oven dried tons THC - total hydrocarbon tpy - tons per year yr - year

Table 8 Log Chipping Potential Emissions IES-CHIP-1 Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput ¹	275 ton/hr, wet
	138 ODT/hr
Maximum Pellet Production	657,000 ODT/yr

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor	Potential E	missions
Fondtant	Ellission Factor	(lb/hr)	(tpy)
THC as carbon ²	4.1E-03 lb/ODT	0.56	1.3
VOC as propane ³	5.0E-03 lb/ODT	0.69	1.6
Methanol ²	1.0E-03 lb/ODT	0.14	0.33

Notes:

^{1.} Hourly chipper throughput data provided by Enviva (email from Kai Simonsen dated 12/21/17).

^{2.} Emission factor obtained from available emissions factors for chippers in AP-42 Section 10.6.3, Medium Density Fiberboard, 08/02, Table 7 and Section 10.6.4, Hardboard and Fiberboard, 10/02, Tables 7 and 9. Emission factors for THC and Methanol are the same across all three tables.

^{3.} Emission factor for VOC as propane is from AP-42, Section 10.6.3., Medium Density Fiberboard, 08/02, Table 7. VOC as propane = (1.22 x THC) + formaldehyde - (acetone+methane+methylene chloride). A value of zero is used for specified compounds where no emission factor is available or where the emission factor is reported only as "BDL" as indicated in AP-42, Section 10.6.3.

Abbreviations:

hr - hour Ib - pound ODT - oven dried tons THC - total hydrocarbon tpy - tons per year yr - year

Table 9 Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-WESP, CD-RTO) Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

120 ODT/hr
657,000 ODT/yr
250.4 MMBtu/hr
2,193,504 MMBtu/yr
8,760 hr/yr
45.2 MMBtu/hr
Natural Gas or Propane
95%
92.75%

Total Potential Emissions at RTO Stack

Pollutant	Potential I	Emissions ¹
Pondtant	(lb/hr)	(tpy)
со	34.3	93.8
NO _X	34.3	93.8
SO2	6.26	27.4
voc	22.2	60.8
Total PM	13.5	37.6
Total PM ₁₀	12.5	34.8
Total PM _{2.5}	11.5	31.7
CO2e	93,600	256,230
Total HAP	5.10	15.7
Total TAP	3.76	12.2

Notes:

Total emissions from the furnace/dryer, green hammermills, dry hammermills, and natural gas/propane combustion by the RTO (injection gas and burner fuel). Detailed calculations are provided below.

Potential Criteria Pollutant and Greenhouse Gas Emissions from Dryer/Furnace, Green Hammermills, and RTO Fuel Combustion

Pollutant	Emission	Units	Potential I	Potential Emissions ¹		
	Factor		(lb/hr)	(tpy)		
со	0.28	lb/ODT ²	34.2	93.5		
NO _x	0.28	lb/ODT ²	34.1	93.5		
SO ₂	0.025	lb/MMBtu ³	6.26	27.4		
voc	0.15	Ib/ODT ⁴	18.5	50.6		
PM (Filterable + Condensable)	0.11	lb/ODT ⁵	13.2	36.3		
PM ₁₀ (Filterable + Condensable)	0.10	Ib/ODT ⁵	12.2	33.5		
PM _{2.5} (Filterable + Condensable)	0.095	lb/ODT⁵	11.4	31.2		
CO2	780	lb/ODT ⁶	93,600	256,230		

Notes:

 Exhaust from the dryer (ES-DRYER), green hammermills (ES-GHM-1 through -3), and dry Hammermills (ES-HM-1 through -8) are routed to a WESP and then RTO for control of VOC and particulates. Additional emissions resulting from the dry hammermills are shown in the tables below.
 Emission factor based on Sampson December 2019 compliance test average results plus 50% contingency.

^{3.} No emission factor is provided in AP-42, Section 10.6.2 for SO₂ for rotary dryers. Enviva has conservatively calculated SO₂ emissions based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

4. VOC emission factor was derived based on process information and an appropriate contingency based on engineering judgement.

^{5.} Emission factor based on Sampson December 2019 compliance test average results plus 20% contingency.

^{6.} Emission factor for CO₂ from AP-42, Section 10.6.1 for rotary dryer with RTO control device. Enviva has conservatively calculated the CO₂ emissions using the hardwood emission factor because the dryer at Sampson uses a combination of hardwood and softwood and the hardwood emission factor is greater than the softwood emission factor.

Table 9

Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-WESP, CD-RTO) Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Potential VOC Emissions from Dry Hammermills

	Controlled		Potential I	Emissions ¹
Pollutant	Emission Factor	Units	Hourly (lb/hr)	Annual (tpy)
voc	0.031	Ib/ODT ²	3.73	10.2

Notes: 1. VOC emissions from the dry hammermill baghouses (ES-DHM-1 through 8) will be controlled by the RTO (CD-RTO).

². Emission factor based on Sampson December 2019 compliance test average result, adjusted for pine percentage plus 20% contingency.

Potential Particulate Emissions from Dry Hammermills

Pollutant	Exhaust Flow Rate ¹	Exit Grain Loading ^{2,3}	Potential Emissions ⁴		
	(cfm)	(gr/cf)	(lb/hr)	(tpy)	
PM (Filterable)		0.004	0.30	1.31	
PM ₁₀ (Filterable)	120,000	0.004	0.30	1.31	
PM _{2.5} (Filterable)		0.0016	0.12	0.52	

Notes: ^{1.} Total flow rate (scfm) from all 8 dry hammermill baghouses (CD-HM-BH1 through -BH8). Individual control device flowrate of 15,000 scfm was provided by design engineering firm (Mid-South Engineering Co.).

 $^{2\cdot}$ No speciation data is available for $\text{PM}_{10^{\circ}}$. Therefore, it is conservatively assumed to be equal to total PM.

3. PM2.5 speciation (40% of total PM) based on a review of NCASI particle size distribution data for similar baghouses used in the wood products industry.

4. A 92.75% control efficiency is applied for the WESP (CD-WESP).

Thermally Generated Potential Criteria Pollutant Emissions from Dry Hammermills¹

Maximum high heating value of VOC constituents	0.018 MMBtu/lb
Uncontrolled VOC emissions	204 tons/yr
Uncontrolled VOC emissions	75 lb/hr
Heat input of uncontrolled VOC emissions	7,552 MMBtu/yr
Heat input of uncontrolled VOC emissions	1.38 MMBtu/hr

	Emission		Potential Emissions		
Pollutant	Factor ²	Units	Hourly (lb/hr)	Annual (tpy)	
СО	0.082	lb/MMBtu	0.11	0.31	
NOx	0.10	lb/MMBtu	0.14	0.37	

Notes:

^{1.} Emissions of CO and NO_x will be generated during combustion of VOC emissions by the RTO.

2. Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Table 9 Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-WESP, CD-RTO) Enviva Pellets Sampson, LLC а

Faison,	Sampson	County,	North	Carolina
---------	---------	---------	-------	----------

Pollutant	НАР	NC TAP	voc	Emission	Units	Footnote	Potential Emissions	
- onatant		NC TAP		Factor	Onica	Foothote	(lb/hr)	(tpy)
Furnace Biomass Combustion, Drye	r, Green Hami	nermills, and	Dry Hamn	nermills			//	
Acetaldehyde	Y	Y	Y	6.17E-03	lb/ODT	1	0.74	2.03
Acrolein	Y	Y	Y	6.30E-03	Ib/ODT	1	0.76	2.07
Formaldehyde	Y	Y	Y	5.08E-03	Ib/ODT	1	0.61	1.67
Methanol	Y	N	Y	6.93E-03	Ib/ODT	1	0.83	2.28
Phenol	Y	Y	Y	4.28E-03	Ib/ODT	1	0.51	1.41
Propionaldehyde	Y	N	Y	5.14E-03	ib/ODT	1	0.62	1.69
Acetophenone	Y	N	Y	3.20E-09	lb/MMBtu	2,3	4.01E-08	1.75E-0
Antimony & Compounds	Y	N	N	7.90E-06	lb/MMBtu	2,4	1.43E-04	6.28E-0
Arsenic & Compounds	Y	Y	N	2.20E-05	lb/MMBtu	2,4	3.99E-04	1.75E-0
Benzene	Y	Y	Y	4.20E-03	lb/MMBtu	2,3	5.26E-02	2.30E-0
Benzo(a)pyrene	Y	Y	Y	2.60E-06	lb/MMBtu	2,3	3.26E-05	1.43E-0
Beryllium	Y	Y	N	1.10E-06	lb/MMBtu	2,4	2.00E-05	8.75E-0
Cadmium	Y	Y	N	4.10E-06	lb/MMBtu	2,4	7.44E-05	3.26E-0
Carbon tetrachloride	Y	Y	Y	4.50E-05		2,3	5.63E-04	
Chlorine	Y	Y	N	7.90E-04	lb/MMBtu	2	1.98E-01	
Chlorobenzene	Y	Y	Y	3.30E-05	lb/MMBtu	2,3	4.13E-04	
Chloroform	Y	Y	Y	2.80E-05	lb/MMBtu	2,3	3.51E-04	1.54E-0
Chromium VI	_6	Y	N	3.50E-06	lb/MMBtu	2,4	6.35E-05	2.78E-0
Chromium–Other compds	Y	N	N	1.75E-05	lb/MMBtu	2,4	3.18E-04	1.39E-0
Cobalt compounds	Y	N	N	6.50E-06	lb/MMBtu	2,4	1.18E-04	5.17E-0
Dichloroethane, 1,2-	Y	Y	Y	2.90E-05	lb/MMBtu	2,3	3.63E-04	1.59E-0
Dichloropropane, 1,2-	Y	N	Y	3.30E-05	lb/MMBtu	2,3	4.13E-04	1.81E-0
Dinitrophenol, 2,4-	Y	N	Y	1.80E-07		2,3	2.25E-06	
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.70E-08	lb/MMBtu	2,3	5.88E-07	2.58E-0
Ethyl benzene	Y	N	Y	3.10E-05	lb/MMBtu	2,3	3.88E-04	1.70E-0
Hexachlorodibenzo-p-dioxin	N	Y	Y	1.60E-06		2,3	2.00E-05	
Hydrochloric acid	Y	Y	N	1.90E-02	lb/MMBtu	2,6	4.76E-01	
Lead and Lead compounds	Y	N	N	4.80E-05	lb/MMBtu	2,4	8.71E-04	3.82E-0
Manganese & compounds	Y	Y	N	1.60E-03	<u> </u>	2,4	2.90E-02	
Mercury	Y	Y	N	3.50E-06	<u> </u>	2,4	6.35E-05	
Methyl bromide	Y	N	Y	1.50E-05		2,3	1.88E-04	
Methyl chloride	Y	N	Y	2.30E-05		2,3	2.88E-04	
Methyl ethyl ketone	N	Y	Y	5.40E-06		2,3	6.76E-05	
Methylene chloride	Y	Y	Y	2.90E-04		2,3	3.63E-03	
Naphthalene	Y	N	Y	9.70E-05	lb/MMBtu	2,3	1.21E-03	
Nickel	Y	Y	N	3.30E-05		2,4	5.99E-04	
Nitrophenol, 4-	Y	N	Y	1.10E-07		2,3	1.38E-06	
Pentachlorophenol	Y	Y	N	5.10E-08	lb/MMBtu	2	1.28E-05	
Perchloroethylene	Y	Y	N	3.80E-05		2	9.52E-03	
Phosphorus Metal, Yellow or White	Y	N	N	2.70E-05	lb/MMBtu	2,4	4.90E-04	
Polychlorinated biphenyls	Y	Y	Y	8.15E-09			1.02E-07	
Polycyclic Organic Matter	Y	N	N	1.25E-04		2	3.13E-02	
Selenium compounds	Y	N	N	2.80E-06			5.08E-05	
Styrene	Y	Y	Y	1.90E-03		2,3	2.38E-02	
etrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.60E-12		2,3	1.08E-10	
Toluene	Y	Y	Y	9.20E-04	lb/MMBtu	2,3	1.15E-02	
Frichloroethane, 1,1,1-	Y	Y	N	3.10E-05		2,5	7.76E-03	
Trichloroethylene	Y	Y	Y	3.00E-05		2,3	3.76E-04	
Trichlorofluoromethane	N	Y	Y	4.10E-05			5.13E-04	
Frichlorophenol, 2,4,6-	Y	N N	Y	2.20E-08			2.75E-07	
Vinyl chloride	Y	Y	Y				2.75E-07 2.25E-04	
•	Y	Y		1.80E-05				
(ylene	I Y	L Y	Y	2.50E-05			3.13E-04	
						missions: missions:	4.92 3.44	14.9 10.75

Table 9

Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-WESP, CD-RTO) Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Pollutant	НАР	I HAP I NCTAP I VOC I	Emission	Units	Footnote	Potential Emissions		
				Factor			(lb/hr)	(tpy)
RTO Burners - Natural Gas/Propan	e Combustion							
2-Methylnaphthalene	Ý	N	Y	2.40E-05	lb/MMscf	7	1.06E-06	4.66E-06
3-Methylchloranthrene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	7	7.09E-07	3.11E-06
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Acetaldehyde	Y	Y	Y	1.52E-05	lb/MMscf	7	6.74E-07	2.95E-06
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	7	7.98E-07	3.49E-06
Ammonia	N	Y	N	3.2	lb/MMscf	7	1.42E-01	6.21E-01
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	7	1.06E-07	4.66E-07
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	7	8.86E-06	3.88E-05
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Benzene	Y	Y	Y	7.10E-04	lb/MMBtu	8	3.21E-02	1.41E-01
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	7	5.32E-08	2.33E-07
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	7	5.32E-08	2.33E-07
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Beryllium	Y	Y	N	1.20E-05	lb/MMscf	7	5.32E-07	2.33E-06
Cadmium	Y	Y	N	1.10E-03	lb/MMscf	7		2.14E-04
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	7	6.20E-05	2.72E-04
Chrysene	Y	N	Y	1.80E-06	lb/MMscf	7		3.49E-07
Cobalt	Y	N	N	8.40E-05	lb/MMscf	7	3.72E-06	1.63E-05
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	7	5.32E-08	2.33E-07
Dichlorobenzene	Y	Y	Y	1.20E-03	b/MMscf	7		2.33E-04
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	7	1.33E-07	5.82E-07
Fluorene	Y	N	Y	2.80E-06	lb/MMscf	7		5.43E-07
Formaldehyde	Y	Y	Y	1.51E-03	lb/MMBtu	8		2.99E-01
Hexane	Y	Y	Y	1.8	lb/MMscf	7		3.49E-01
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.80E-06	lb/MMscf	7	7.98E-08	3.49E-07
Lead	Y	N	N	5.00E-04	lb/MMscf	7		9.70E-05
Manganese	Y	Y	N	3.80E-04	lb/MMscf	7		7.38E-05
Mercury	Y	Y	N	2.60E-04	lb/MMscf	7	1.15E-05	-
Naphthalene	Y	N	Y	6.10E-04	lb/MMscf	7	2.70E-05	
Nickel	Y	Y	N	2.10E-03	lb/MMscf	7	9.31E-05	
Polycyclic Organic Matter	Y	Y	Y	4.00E-05	lb/MMBtu	8,9	1.81E-03	
Phenanthrene	Y	N	Y	1.70E-05	lb/MMscf	7	7.53E-07	-
Pyrene	Y	N	Y	5.00E-06	lb/MMscf	7		9.70E-07
Selenium	Y	N	N	2.40E-05	lb/MMscf	7	1.06E-06	-
Toluene	Y	Y	Y	3.40E-03	lb/MMscf	7	1.51E-04	
				-		missions:	0.18	0.80
Total TAP Emissions:							0.32	1.42

Notes:

^{1.} Emission factors derived based on Sampson December 2019 compliance test, process information, and an appropriate contingency based on engineering judgement. Emission factors represent controlled emissions.

2. Emission factors for wood combustion in a stoker boiler from NCDAQ Wood Waste Combustion Spreadsheet/AP-42, Fifth Edition, Volume 1, Chapter 1.6 - Wood Residue Combustion in Boilers, 09/03.

³ The control efficiency of 95% for the RTO is applied to all VOC hazardous and toxic pollutants for those emission factors that are not derived from Enviva stack test data.

^{4.} The control efficiency of the wet electrostatic precipitator (WESP) for filterable particulate matter is applied to all metal hazardous and toxic pollutants. Actual design filterable efficiency is estimated to 96.4%, but 92.75% is assumed for toxics permitting.

^{5.} Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

^{6.} The WESP employs a caustic solution in its operation in which hydrochloric acid will have high water solubility. This caustic solution will neutralize the acid and effectively control it by 90%, per conversation on October 18, 2011 with Steven A. Jaasund, P.E. of Lundberg Associates, a manufacturer of WESPs.

^{7.} Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 -Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

⁸. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from SCAQMD's AER Reporting Tool for external combustion equipment fired with LPG.

9. The PAH emission factor for propane combustion was used to estimate emissions of Polycyclic Organic Matter

Table 9 Dryer, Green Hammermill, and Dry Hammermill Potential Emissions at Outlet of RTO Stack ES-DRYER, ES-GHM-1 through -3, and ES-HM-1 through -8 (CD-WESP, CD-RTO) Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Abbreviations:

 $\begin{array}{l} \mathsf{HAP} \mbox{-} \mbox{hazardous air pollutant} \\ \mathsf{hr} \mbox{-} \mbox{hour} \\ \mathsf{lb} \mbox{-} \mbox{pound} \\ \mathsf{LPG} \mbox{-} \mbox{liquefied petroleum gas} \\ \mathsf{MMBtu} \mbox{-} \mbox{Million British thermal units} \\ \mathsf{NCDAQ} \mbox{-} \mbox{North Carolina Division of Air Quality} \\ \mathsf{CDAQ} \mbox{-} \mbox{North Carolina Division of Air Quality} \\ \mathsf{CO2} \mbox{-} \mbox{carbon monoxide} \\ \mathsf{CO2} \mbox{-} \mbox{carbon dioxide equivalent} \\ \mathsf{cf} \mbox{-} \mbox{carbon dioxide equivalent} \\ \mathsf{cf} \mbox{-} \mbox{cubic feet per minute} \\ \mathsf{gr} \mbox{-} \mbox{grain} \\ \mathsf{klogram} \\ \mathsf{NOx} \mbox{-} \mbox{nitrogen oxides} \\ \end{array}$

 $\mathsf{N}_2\mathsf{O}$ - nitrous oxide NCASI - National Council for Air and Stream Improvement, Inc. RTO - regenerative thermal oxidizer ODT - oven dried tons PAH - polycyclic aromatic hydrocarbons TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound WESP - wet electrostatic precipitator PM - particulate matter PM₁₀ - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2,S} - particulate matter with an aerodynamic diameter of 2.5 microns or less SCAQMD - South Coast Air Quality Management District SO₂ - sulfur dioxide yr - year

Table 10a Potential Emissions from Furnace and Dryer Bypass (Cold Start-up)¹ ES-FBYPASS and ES-DYBPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Heat Input Capacity	37.6 MMBtu/hr
Annual Heat Input Capacity	1,878 MMBtu/yr
Hours of Operation ¹	50 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions

Pollutant	Emission Factor	Units	Potential Emissions		
			Hourly (lb/hr)	Annual (tpy)	
СО	0.60	lb/MMBtu ²	22.5	0.56	
NO _x	0.22	lb/MMBtu ²	8.26	0.21	
SO ₂	0.025	lb/MMBtu ²	0.94	0.023	
voc	0.017	lb/MMBtu ²	0.64	0.016	
Total PM	0.58	lb/MMBtu ²	21.7	0.54	
Total PM ₁₀	0.52	lb/MMBtu ²	19.4	0.49	
Total PM _{2.5}	0.45	lb/MMBtu ²	16.8	0.42	
CO ₂	93.8	kg/MMBtu ³	7,767	194	
CH₄	0.0072	kg/MMBtu ³	0.596	0.015	
N ₂ O	0.0036	kg/MMBtu ³	0.298	0.0075	
CO ₂ e			7,871	197	

Notes:

^{1.} During cold start-ups, the furnace bypass stack is used until the refractory is sufficiently heated and can sustain operations at a low level (approximately 15% of the maximum heat input rate). The furnace bypass stack is then closed, and the furnace is slowly brought up to a normal operating rate.

^{2.} CO, NO_x, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM, PM₁₀, and PM_{2.5} factors equal to the sum of the filterable and condensible factors from Table 1.6-1.

^{3.} Emission factors for biomass combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 10a Potential Emissions from Furnace and Dryer Bypass (Cold Start-up) ES-FBYPASS and ES-DYBPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP Emissions

				Emission		Potential Emissions		
Pollutant	HAP	NC TAP	voc	Factor ¹	Units	Hourly (lb/hr)	Annual (tpy)	
Acetaldehyde	Y	Y	Y	8.30E-04	lb/MMBtu	3.12E-02	7.79E-04	
Acrolein	Y	Y	Y	4.00E-03	lb/MMBtu	1.50E-01	3.76E-03	
Formaldehyde	Y	Y	Y	4.40E-03	lb/MMBtu	1.65E-01	4.13E-03	
Phenol	Y	Y	Y	5.10E-05		1.92E-03	4.79E-05	
Propionaldehyde	Y	N	Y	6.10E-05	lb/MMBtu	2.29E-03	5.73E-05	
Acetophenone	Y	N	Y	3.20E-09	lb/MMBtu	1.20E-07	3.00E-09	
Antimony & Compounds	Y	N	N	7.90E-06		2.97E-04		
Arsenic & Compounds	Y	Y	N	2.20E-05		8.26E-04		
Benzene	Y	Y	Y	4.20E-03	lb/MMBtu	1.58E-01	3.94E-03	
Benzo(a)pyrene	Y	Y	Y	2.60E-06	lb/MMBtu	9.77E-05	2.44E-00	
Beryllium	Y	Y	N	1.10E-06	lb/MMBtu	4.13E-05	1.03E-06	
Cadmium	Y	Y	N	4.10E-06		1.54E-04		
Carbon tetrachloride	Y	Y	Y	4.50E-05		1.69E-03		
Chlorine	Y	Y	N	7.90E-04		2.97E-02		
Chlorobenzene	Y	Y	Y	3.30E-05		1.24E-03		
Chloroform	Y	Y	Y	2.80E-05		1.05E-03		
Chromium VI	_2	Y	N	3.50E-06		1.31E-04		
Chromium-Other compds	Y	N	N	1.75E-05		6.57E-04		
Cobalt compounds	Y	N	N	6.50E-06		2.44E-04		
Dichloroethane, 1,2-	Y	Y	Y	2.90E-05		1.09E-03		
Dichloropropane, 1,2-	Y	N	Y	3.30E-05		1.24E-03		
	Y	N	Y			6.76E-06		
Dinitrophenol, 2,4-				1.80E-07				
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.70E-08		1.77E-06		
Ethyl benzene	Y	N	Y	3.10E-05		1.16E-03		
Hexachlorodibenzo-p-dioxin	N	Y	Y	1.60E-06	ID/MMBtu	6.01E-05	1.50E-06	
Hydrochloric acid	Y	Y	N	1.90E-02		7.14E-01		
Lead and Lead compounds	Y	N	N	4.80E-05		1.80E-03		
Manganese & compounds	Y	Y	N	1.60E-03		6.01E-02		
Mercury	Y	Y	N	3.50E-06		1.31E-04		
Methyl bromide	Y	N	Y	1.50E-05		5.63E-04		
Methyl chloride	Y	N	Y	2.30E-05		8.64E-04		
Methyl ethyl ketone	N	Y	Y	5.40E-06		2.03E-04		
Methylene chloride	Y	Y	Y	2.90E-04		1.09E-02		
Naphthalene	Y	N	Y	9.70E-05		3.64E-03		
Nickel	Y	Y	N	3.30E-05		1.24E-03		
Nitrophenol, 4-	Y	N	Y	1.10E-07		4.13E-06		
Pentachlorophenol	Y	Y	N	5.10E-08		1.92E-06		
Perchloroethylene	Y	Y	N	3.80E-05		1.43E-03		
Phosphorus Metal, Yellow or White	Y	N	N	2.70E-05		1.01E-03		
Polychlorinated biphenyls	Y	Y	Y	8.15E-09		3.06E-07		
Polycyclic Organic Matter	Y	N	N	1.25E-04	lb/MMBtu	4.69E-03	1.17E-04	
Selenium compounds	Y	N	N	2.80E-06		1.05E-04		
Styrene	Y	Y	Y	1.90E-03		7.14E-02		
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Y	Y	Y	8.60E-12		3.23E-10		
Toluene	Y	Y	Y			3.46E-02		
Trichloroethane, 1,1,1-	Y	Y	N	3.10E-05		1.16E-03		
Trichloroethylene	Y	Y	Y	3.00E-05	lb/MMBtu	1.13E-03	2.82E-0	
Trichlorofluoromethane	N	Y	Y	4.10E-05	lb/MMBtu	1.54E-03	3.85E-0	
Trichlorophenol, 2,4,6-	Y	N	Y	2.20E-08	Ib/MMBtu			
Vinyl chloride	Y	Y	Y	1.80E-05	lb/MMBtu		1.69E-0.	
Xylene	Ŷ	Ý	Ý	2.50E-05	Concernation and the second se			
				biomass cor			0.036	
				biomass cor			0.036	

Notes:

¹. Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

² Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

Table 10a otential Emissions from Furnace and Dryer Bypass (Cold Start-up) ES-FBYPASS and ES-DYBPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Abbreviations:

CH₄ - methane CO - carbon monoxide CO2 - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour kg - kilogram lb - pound MMBtu - Million British thermal units NO_x - nitrogen oxides N_2O - nitrous oxide ODT - oven dried tons PM - particulate matter PM₁₀ - particulate matter PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO₂ - sulfur dioxide tpy - tons per year VOC - volatile organic compound yr - year

Table 10b Potential Emissions from Furnace and Dryer Bypass (Idle Mode)¹ ES-FBYPASS and ES-DBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Hourly Heat Input Capacity	10 MMBtu/hr
Annual Heat Input Capacity	5,000 MMBtu/yr
Hours of Operation ¹	500 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions

Pollutant	Emission Factor	Units	Potential Emissions		
	i uccor		Hourly (lb/hr)	Annual (tpy)	
со	0.60	lb/MMBtu ²	6.00	1.50	
NO _x	0.22	lb/MMBtu ²	2.20	0.55	
SO ₂	0.025	lb/MMBtu ²	0.25	0.063	
voc	0.017	lb/MMBtu ²	0.17	0.043	
Total PM	0.58	lb/MMBtu ²	5.77	1.44	
Total PM ₁₀	0.52	lb/MMBtu ²	5.17	1.29	
Total PM _{2,5}	0.45	lb/MMBtu ²	4.47	1.12	
CO ₂	93.8	kg/MMBtu ³	2,068	517	
CH ₄	0.0072	kg/MMBtu ³	0.16	0.040	
N ₂ O	0.0036	kg/MMBtu ³	0.079	0.020	
CO2e			2,096	524	

Notes:

^{1.} The furnace can operate up to 500 hours per year in "idle mode" using the furnace bypass stack. Idle mode is defined as operation at up to a maximum heat input rate of 10 MMBtu/hr.

². CO, NO_x, SO₂, PM, PM₁₀, PM_{2.5}, and VOC emission rates based on AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03 for bark/bark and wet wood/wet wood-fired boilers. PM, PM₁₀, and PM_{2.5} factors equal to the sum of the filterable and condensable factors from Table 1.6-1.

3. Emission factors for biomass combustion (dryer) from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 10b Potential Emissions from Furnace and Dryer Bypass (Idle Mode) ES-FBYPASS and ES-DBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP Emissions

				Emission		Potential	Emissions
Pollutant	HAP	NC TAP	voc	Factor ¹	Units	Hourly (lb/hr)	Annual (tpy)
Acetaldehyde	Y	Y	Y	8.30E-04	lb/MMBtu	8.30E-03	
Acrolein	Y	Y	Y	4.00E-03		4.00E-02	
Formaldehyde	Y	Y	Y	4.40E-03		4.40E-02	1.10E-02
Phenol	Y	Y	Y	5.10E-05		5.10E-04	
Propionaldehyde	Y	N	Y	6.10E-05		6.10E-04	1.53E-04
Acetophenone	Y	N	Y	3.20E-09		3.20E-08	8.00E-09
Antimony & Compounds	Y	N	N	7.90E-06		7.90E-05	1.98E-05
Arsenic & Compounds	Y	Y	N	2.20E-05		2,20E-04	
Benzene	Y	Y	Y	4.20E-03		4.20E-02	1.05E-02
Benzo(a)pyrene	Y	Y	Y	2.60E-06		2.60E-05	
Beryllium	Y	Y	N	1.10E-06		1.10E-05	
Cadmium	Y	Y	N	4.10E-06		4.10E-05	1.03E-05
Carbon tetrachloride	Ŷ	Y	Y	4.50E-05		4.50E-04	1.13E-04
Chlorine	Ŷ	Y	N	7.90E-04		7.90E-03	1.98E-03
Chlorobenzene	Y	Y	Y	3.30E-05		3.30E-04	8.25E-05
Chloroform	Ŷ	Y	Y	2.80E-05		2.80E-04	7.00E-05
Chromium VI	_2	Y	N	3.50E-06		3.50E-05	8.75E-06
Chromium-Other compds	Y	N	N	1.75E-05			
Cobalt compounds	Y	N				1.75E-04	4.38E-05
Dichloroethane, 1,2-	Y	Y	Y	6.50E-06		6.50E-05	1.63E-05
	Y			2.90E-05		2.90E-04	7.25E-05
Dichloropropane, 1,2-		N	Y	3.30E-05		3.30E-04	
Dinitrophenol, 2,4-	Y	N	Y	1.80E-07		1.80E-06	
Di(2-ethylhexyl)phthalate	Y	Y	Y	4.70E-08		4.70E-07	1.18E-07
Ethyl benzene	Y	N	<u>Y</u>	3.10E-05		3.10E-04	7.75E-05
Hexachlorodibenzo-p-dioxin	N	Y	Y	1.60E-06		1.60E-05	
Hydrochloric acid	Y	Y	N	1.90E-02		1.90E-01	
Lead and Lead compounds	Y	N	N	4.80E-05		4.80E-04	
Manganese & compounds	Y	Y	N	1.60E-03		1.60E-02	
Mercury	Y	Y	N	3.50E-06		3.50E-05	
Methyl bromide	Y	N	Y	1.50E-05		1.50E-04	
Methyl chloride	Y	N	Y	2.30E-05		2.30E-04	
Methyl ethyl ketone	N	Y	Y	5.40E-06		5.40E-05	
Methylene chloride	Y	Y	Y	2.90E-04		2.90E-03	
Naphthalene	Y	N	Y	9.70E-05	lb/MMBtu	9.70E-04	2.43E-04
Nickel	Y	Y	N	3.30E-05	lb/MMBtu	3.30E-04	8.25E-05
Nitrophenol, 4-	Y	N	Y	1.10E-07	lb/MMBtu	1.10E-06	2.75E-07
Pentachlorophenol	Y	Y	N	5.10E-08		5.10E-07	1.28E-07
Perchloroethylene	Y	Y	N	3.80E-05	lb/MMBtu	3.80E-04	9.50E-05
Phosphorus Metal, Yellow or White	Y	N	N	2.70E-05		2.70E-04	6.75E-05
Polychlorinated biphenyls	Y	Y	Y	8.15E-09		8.15E-08	2.04E-08
Polycyclic Organic Matter	Y	N	N	1.25E-04		1.25E-03	3.13E-04
Selenium compounds	Y	N	N	2.80E-06		2.80E-05	
Styrene	Y	Y	Y	1.90E-03		1.90E-02	
Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	Ý	Y	Ý	8.60E-12		8.60E-11	
Toluene	Ý	Y	Ŷ			9.20E-03	
Trichloroethane, 1,1,1-	Y	Y	Ň	3.10E-05		3.10E-04	
Trichloroethylene	Y	Y	Y	3.00E-05		3.00E-04	7.50E-05
Trichlorofluoromethane	N	Ý	Y	4.10E-05	Ib/MMBtu		1.03E-04
Trichlorophenol, 2,4,6-	Y	N	Y	2.20E-08		2.20E-07	5.50E-04
Vinyl chloride	Y	Y	Y	1.80E-05		1.80E-04	4.50E-05
Xylene	Y	Y I	Y	2.50E-05		2.50E-04	6.25E-05
Allene		*					
				biomass con		0.39	0.097
	Т	otal TAP Em	issions (biomass cor	nbustion)	0.38	0.096

Notes:

^{1.} Emission factors for wood combustion in a stoker boiler from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03.

2. Chromium VI is a subset of chromium compounds, which is accounted for separately as a HAP. As such, Chromium VI is only calculated as a TAP.

RAMBOLL

Table 10b Potential Emissions from Furnace and Dryer Bypass (Idle Mode) ES-FBYPASS and ES-DBYPASS Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Abbreviations: CH₄ - methane

CO - carbon monoxide CO - carbon dioxide CO₂e - carbon dioxide equivalent HAP - hazardous air pollutant hr - hour kg - kilogram Ib - pound MMBtu - Million British thermal units NO_x = nitrogen oxides N_2O - nitrous oxide ODT - oven dried tons PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - sulfur dioxide tpy - tons per year VOC - volatile organic compound yr - year

Table 11 Potential Emissions from Double Duct Burners IES-DDB-1 and -2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Duct Burner Inputs

Hourly Heat Input Capacity	2.5 MMBtu/hr
Number of Duct Burners	2
Annual Heat Input Capacity	43,800 MMBtu/yr
Annual Operation	8,760 hr/yr

Potential Criteria Pollutant and Greenhouse Gas Emissions - Natural Gas Combustion

	Emission	Emission		Potential Emissions		
Pollutant Factor		Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
со	84.0	lb/MMscf	1	0.41	1.80	
NO _x	50.0	lb/MMscf	2	0.25	1.07	
SO2	0.60	lb/MMscf	1	0.0029	0.013	
voc	5.50	lb/MMscf	1	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Condensable	5.70	lb/MMscf	1	0.028	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	1.90	lb/MMscf	1	0.0093	0.041	
Total PM/PM ₁₀ /PM _{2.5}				0.037	0.16	
CO2	53.1	kg/MMBtu	3	585	2,562	
CH₄	0.0010	kg/MMBtu	3	0.011	0.048	
N ₂ O	0.0001	kg/MMBtu	3	0.0011	0.0048	
CO2e			3	585	2,564	

Potential Criteria Pollutant and Greenhouse Gas Emissions - Propane Combustion

Bell de st	Emission			Potential Emissions		
Pollutant	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
со	7.50	lb/Mgal	4	0.41	1.80	
NO _X	6.50	lb/Mgal	5	0.36	1.56	
SO ₂	0.054	lb/Mgal	4,6	0.0030	0.013	
VOC	1.00	lb/Mgal	4	0.055	0.24	
PM/PM10/PM2.5 Condensable	0.50	lb/Mgal	4	0.027	0.12	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgai	4	0.011	0.048	
Total PM/PM ₁₀ /PM _{2.5}				0.038	0.17	
CO2	62.9	kg/MMBtu	3	693	3,035	
CH₄	0.0030	kg/MMBtu	3	0.033	0.14	
N ₂ O	0.0006	kg/MMBtu	3	0.0066 0.02		
CO ₂ e			3	696	3,048	

Notes:

 Emission factors for NO_X assume burners are low-NO_X burners, per email from Kai Simonsen (Enviva) on August 8, 2018.
 Emission factors for natural gas or propane combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

4. Emission factors for propane combustion obtained from AP-42 Section 1.5 - Liquefied Petroleum Gas Combustion, 07/08. Propane heating value of 91.5 MMBtu/Mgal assumed per AP-42 Section 1.5.

⁵ AP-42 Section 1.5 does not include an emission factor for low-NO_x burners. Per AP-42 Section 1.4, low-NO_x burners reduce NO_x emissions by accomplishing combustion in stages, reducing NO_x emissions 40 to 85% relative to uncontrolled emission levels. A conservative control efficiency of 50% was applied to the uncontrolled NO_x emission factor from AP-42 Section 1.5. This reduction is consistent with the magnitude of reduction between the uncontrolled and low-NO_x emission

⁶. SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion ...

^{1.} Emission factors for natural gas combustion from AP-42 Section 1.4 - Natural Gas Combustion, 07/98. Natural gas heating value of 1,020 Btu/scf assumed per AP-42.

Table 11 Potential Emissions from Double Duct Burners IES-DDB-1 and -2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP and TAP Emissions

				Emission			Potential Emission		
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
Duct Burners - Natural Gas/Propan	e Combustion			1			(10/111)	(tpy)	
2-Methylnaphthalene	Y	N	Y	2.40E-05	lb/MMscf	1	1.18E-07	5.15E-07	
3-Methylchloranthrene	Y	N	Y	1.80E-06	Ib/MMscf	1	8.82E-09	3.86E-08	
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	1	7.84E-08	3.44E-07	
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Acetaldehyde	Y	Y	Y	1.52E-05	Ib/MMscf	1	7.45E-08	3.26E-07	
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	1	8.82E-08	3.86E-07	
Ammonia	N	Y	N	3.2	lb/MMscf	1	1.57E-02	6.87E-02	
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	1	1.18E-08	5.15E-08	
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	1	9.80E-07	4.29E-06	
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Benzene	Y	N	Y	7.10E-04	lb/MMBtu	2	3.55E-03	1.55E-02	
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08	
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08	
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Beryllium	Y	Y	N	1.20E-05	ib/MMscf	1	5.88E-08	2.58E-07	
Cadmium	Y	Y	N	1.10E-03	lb/MMscf	1	5.39E-06	2.36E-05	
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	1	6.86E-06	3.01E-05	
Chrysene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Cobalt compounds	Y	N	N	8.40E-05	lb/MMscf	1	4.12E-07	1.80E-06	
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	1	5.88E-09	2.58E-08	
Dichlorobenzene	Y	Y	Y	1.20E-03	ib/MMscf	1	5.88E-06	2.58E-05	
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	1	1.47E-08	6.44E-08	
Fluorene	Y	N	Y	2.80E-06	lb/MMscf	1	1.37E-08	6.01E-08	
Formaldehyde	Y	Y	Y	1.50E-03	lb/MMBtu	2	7.50E-03	3.29E-02	
Hexane	Y	Y	Y	1.8	lb/MMscf	1	8.82E-03	3.86E-02	
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.80E-06	lb/MMscf	1	8.82E-09	3.86E-08	
Lead and Lead Compounds	Y	N	N	5.00E-04	lb/MMscf	1	2.45E-06	1.07E-05	
Manganese & Compounds	Y	Y	N	3.80E-04	lb/MMscf	1	1.86E-06	8.16E-06	
Mercury	Y	Y	N	2.60E-04	lb/MMscf	1	1.27E-06	5.58E-06	
Naphthalene	Y	N	Y	6.10E-04	lb/MMscf	1	2.99E-06	1.31E-05	
Nickel	Y	Y	N	2.10E-03	lb/MMscf	1	1.03E-05	4.51E-05	
Polycyclic Organic Matter	Y	N	N	4.00E-05	lb/MMBtu	2	2.00E-04	8.76E-04	
Phenanthrene	Y	N	Y	1.70E-05	lb/MMscf	1	8.33E-08	3.65E-07	
Pyrene	Y	N	Y	5.00E-06	lb/MMscf	1	2.45E-08	1.07E-07	
Selenium compounds	Y	N	N	2.40E-05	lb/MMscf	1	1.18E-07	5.15E-07	
Toluene	Y	Y	Y	3.40E-03	lb/MMscf	1	1.67E-05	7.30E-05	
						Emissions:	0.020	0.088	
						Emissions:	0.032	0.14	

Notes:

 Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

² The duct burners can fire either natural gas or propane. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

CO - carbon monoxide HAP - hazardous air pollutant hr - hour Ib - pound LPG - liquified petroleum gas Mgal - thousand gallons MMBtu - Million British thermal units MMscf - Million British thermal units MMscf - Million standard cubic feet NCDAQ - North Carolina Divison of Air Quality NO_X - nitrogen oxides

ODT - oven dried tons PM - particulate matter PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns $PM_{2,5}$ - particulate matter with an aerodynamic diameter of 2.5 microns or less SO_2 - sulfur dioxide TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound yr - year

Table 12 Dried Wood Handling Potential Emissions ES-DWH Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Calculation Basis

Hourly Throughput ¹	120 ODT/hr
Annual Throughput ¹	657,000 ODT/yr

Potential Criteria Pollutant Emissions

Pollutant	Emission Factor ²	Potential Emissions				
	(Ib/ODT)	(lb/hr)	(tpy)			
Formaldehyde	2.16E-04	0.026	0.071			
Propionaldehyde	2.10E-04	0.025	0.069			
Methanoi	4.92E-04	0.059 0.16				
Total H/	AP Emissions	0.11	0.30			
Total VOC	0.044	5.22 14.3				

Notes:

^{1.} Hourly and annual throughputs assumed to be the same as dryer throughput.

^{2.} Emission factors are based on Sampson December 2019 compliance test average results plus 20% contingency. The VOC emission factor was adjusted to account for the difference in pine percentage during testing and the maximum allowable.

Abbreviations:

hr - hour

lb - pound

 ODT - oven dried tons

tpy - tons per year

VOC - volatile organic compound

yr - year

Table 13 **Dry Shavings Material Handling** IES-DRYSHAVE Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Source	Transfer Activity	Number of Drop Points	Material Moisture Content ¹	PM Emission Factor ²	PM ₁₀ Emission Factor ²	PM _{2.5} Emission Factor ²		intial Ihput ^{3,4}	Poten Emis	tial PM sions		ial PM ₁₀ sions		ial PM _{2,5} sions
			(%)	(lb/ton)	(ib/ton)	(lb/ton)	(tph)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
IES-DRYSHAVE	Dry Shavings Material Handling - Truck dump to truck dumpe	1	10%	4.5E-04	2.1E-04	3.2E-05	25	219,000	1.1E-02	4.9E-02	5.3E-03	2.3E-02	8.0E-04	3.5E-03
	Dry Shavings Material Handling - Bucket elevator to silo 5	1	10%	4.5E-04	2.1E-04	3.2E-05	25	219,000	1.1E-03	4.9E-03	5.3E-04	2.3E-03	8.0E-05	3.5E-04
Total Emissions: 1.2E-02 5.4E-02 5.8E-03 2.5E-							2.5E-02	8.8E-04	3.9E-03					

Notes:

where:

^{1.} Moisture content for dry shavings based on information provided by Enviva.

2. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

where:	E = emission factor (lb/ton)	
	k = particle size multiplier (dimensionless) for PM	0.74
	k = particle size multiplier (dimensionless) for PM_{10}	0.35
	k = particle size multiplier (dimensionless) for PM _{2.5}	0.053
	U = mean wind speed (mph)	7.85
^{3.} Hourly through	hput based on a maximum of 25 ton/hr transfer rate pounds	of dry shaving material.

^{4.} Annual throughput based on maximum daily throughput of 600 tons/day and 365 day/yr of operation.

5. Bucket elevator to silo material handling transfer point emissions associate a 90% control efficiency due to the enclosed nature of the silo (San Diego County, 1993).

Abbreviations:

hr - hour

- lb pound
- PM particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

 $\ensuremath{\mathsf{PM}_{2.5}}\xspace$ - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

yr - year

Table 14 Summary of Baghouse and Cyclone Potential Emissions Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

1				Exhaust	Evit	Grain Loa	ding		Potential Emissions					
Emission	Source Description	Control	Control Device	Flow Rate	Exit Grain Loading			P	М	PM ₁₀		PM	PM _{2.5}	
Unit ID	Source Description	Device ID		PM (gr/cf)	PM ₁₀ (gr/cf)	PM _{2.5} (gr/cf)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
ES-HMC	Hammermill Conveying System	CD-HMC-BH	Baghouse ^{2, 3, 4}	1,500	0.004	0.004	0.004	0.051	0.23	0.051	0.23	0.051	0.23	
ES-PMFS	Pellet Mill Feed Silo	CD-PMFS-BH	Baghouse ^{1, 2, 3}	2,444	0.004	0.004	0.004	0.084	0.37	0.084	0.37	0.084	0.37	
IIES-RCHR	Pellet Cooler HP Fines Relay System	CD-PCHP-BH	Baghouse ^{1, 2, 3}	3,102	0.004	0.004	0.004	0.106	0.47	0.106	0.47	0.106	0.47	
ES-FPH	Finished Product Handling													
ES-PB-1 through 4	Four (4) Pellet Loadout Bins	CD-FPH-BH	Baghouse ^{1, 5, 6}	8,500	0.004	0.004	0.0016	0.29	1.28	0.27	1.16	0.12	0.51	
ES-PL-1 and 2	Two (2) Pellet Mill Loadouts													
ES-DWH	Dried Wood Handling Operations	CD-DWH-BH-1	Baghouse ^{1, 2, 3}	1,000	0.004	0.004	0,004	0.034	0.15	0.034	0.15	0.034	0.15	
C3-DWH	(conveyors)	CD-DWH-BH-2	Baghouse ^{1, 2, 3}	1,000	0.004	0.004	0.004	0.034	0.15	0.034	0.15	0.034	0.15	
							Total:	0.60	2.63	0.58	2.52	0.43	1.87	

Notes:

^{1.} Control device flow rate (cfm) provided by design engineering firm (Mid-South Engineering Co.).

². No speciation data is available for PM₁₀. Therefore, it is conservatively assumed to be equal to total PM.

³. No speciation data is available for PM_{2.5}. Therefore, it is conservatively assumed to be equal to total PM.

4. Exhaust flow rate provided by the vendor (WPI).

5. Finished product handling PM₁₀ speciation (91% of total PM) based on emission factors for wet wood combustion controlled by a mechanical separator from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, 09/03. Because the particle size of particulate matter from finished product handling is anticipated to be larger than flyash, this factor is believed to be a conservative indicator of speciation.

6. Finished Product Handling PM2.5 speciation (40% of total PM) based on a review of NCASI particle size distribution data for similar baghouses used in the wood products industry.

Abbreviations:

cf - cubic feet	lb - pound
cfm - cubic feet per minute	NCASI - National Council for Air and Stream Improvement, Inc.
dcfm - dry cubic feet per minute	PM - particulate matter
ES - Emission Sources	PM_{10} - particulate matter with an aerodynamic diameter less than 10 microns
IES - Insignificant Emission Source	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
gr - grain	tpy - tons per year
hr - haur	

Calculation Basis

Hourly Throughput	120 ODT/hr
Annual Throughput	657,000 ODT/yr
Hours of Operation	8,760 hr/yr
Total RTO/RCO Heat Input	19.8 MMBtu/hr
RTO/RCO control efficiency	95%

Total Potential Emissions at RTO/RCO Stack

Pollutant	Potential	Emissions ¹
Fondtant	(lb/hr)	(tpy)
СО	2.04	8.26
NO _x	3.30	13.7
SO ₂	0.012	0.051
VOC	13.6	37.7
Total PM	69.8	191
Total PM ₁₀	17.1	47.2
Total PM _{2.5}	4.37	12.2
CO2e	2,755	12,069
Total HAP	2.28	6.36
Total TAP	0.82	2.45

Notes: ^{1.} Total emissions from the pellet mills, pellet coolers, and natural gas/propane combustion by the RTO/RCO (gas injection and burner fuel). Detailed calculations are provided below.

Potential PM, VOC, HAP, and TAP Emissions from Pellet Mills and Pellet Coolers

Pollutant	НАР	NC ТАР	voc	Controlled Emission Factor ¹	Potential E	missions ^{2,3}
					(lb/hr)	(tpy)
Acetaldehyde	Y	Y	Y	4.2E-04	0.050	0.14
Acrolein	Y	Y	Y	2.5E-03	0.30	0.83
Formaldehyde	Y	Y	Y	1.6E-03	0.19	0.51
Methanol	Y	N	Y	1.2E-02	1.44	3.94
Phenol	Y	Y	Y	1.3E-03	0.15	0.41
Propionaldehyde	Y	N	L Y	5.4E-04	0.065	0.18
			Total HA	P Emissions	2.20	6.01
			Total TA	P Emissions	0.69	1.89
Total VOC				0.11	13.4	36.7
PM (Filterable + Condensable)				0.58	69.6	191
PM ₁₀ (Filterable + Condensable)				0.14	17.0	46.5
PM _{2.5} (Filterable + Condensable)				0.035	4.22	11.6

Notes: ¹ Emission factors derived based on Sampson December 2019 compliance test, process information, and an appropriate contingency based on engineering judgement. The emission factors represent post-control emissions.

 $^{\rm 2}$ A 95.0% control efficiency is applied to the potential emissions for the RTO/RCO.

³ Emissions from the pellet mills and pellet coolers will be controlled by an RCO that will operate primarily in catalytic mode with thermal (RTO) mode as a backup. The RTO and RCO modes have the same control efficiency so there will be no impact on emissions when operating in thermal mode.

Thermally Generated Potential Criteria Pollutant Emissions from Pellet Mills and Pellet Coolers¹

Maximum high heating value of VOC constituents Uncontrolled VOC emissions Uncontrolled VOC emissions Heat input of uncontrolled VOC emissions Heat input of uncontrolled VOC emissions

0.018 MMBtu/lb 735 tons/yr 268 lb/hr 27,189 MMBtu/yr 4.97 MMBtu/hr

	Emission		Potential Emissions		
Pollutant	Factor ²	Units	Hourly (lb/hr)	Annual (tpy)	
СО	0.082	lb/MMBtu	0.41	1.12	
NO _x	0.10	lb/MMBtu	0.49	1.33	

Notes: ^{1.} Emissions of CO and NO_x will be generated during combustion of VOC emissions by the RTO/RCO.

2. Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

Potential Criteria Pollutant Emissions and Greenhouse Gas Emissions - Natural Gas Combustion

	Emission		Potential	Emissions
Pollutant	Factor ¹	Factor ¹ Units		Annual (tpy)
со	0.082	lb/MMBtu	1.63	7.14
NO _X	0.10	lb/MMBtu	1.94	8.50
SO2	5.88E-04	lb/MMBtu	0.012	0.051
VOC	5.39E-03	lb/MMBtu	0.107	0.47
Total PM	7.45E-03	lb/MMBtu	0.15	0.65
Total PM ₁₀	7.45E-03	lb/MMBtu	0.15	0.65
Total PM _{2.5}	7.45E-03	lb/MMBtu	0.15	0.65
CO2	53.1	kg/MMBtu ²	2,316	10,145
CH₄	1.00E-03	kg/MMBtu ²	0.044	0.19
N ₂ O	1.00E-04	kg/MMBtu ²	0.0044	0.019
CO2e			2,319	10,155

Potential Criteria Pollutant and	Greenhouse Gas Emissions - Propane Combustion
· otontiar ontenta i onacante ana	or controuse dus Entissions Tropane compasition

	Emission		Potential Emissions		
Pollutant	Factor ³	Units	Hourly (lb/hr)	Annual (tpy)	
CO	7.50	lb/Mgal	1.62	7.11	
NO _x	13.0	lb/Mgal	2.81	12.3	
SO ₂	0.054	lb/Mgal	0.012	0.051	
VOC	1.00	lb/Mgal	0.22	0.95	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	lb/Mgal	0.11	0.47	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	Ib/Mgal	0.043	0.19	
Total PM/PM10/PM2.5			0.15	0.66	
CO2	62.9	kg/MMBtu ²	2,744	12,020	
CH4	0.0030	kg/MMBtu ²	0.13	0.57	
N ₂ O	0.0006	kg/MMBtu ²	0.026	0.11	
CO2e			2,755	12,069	

Natural Gas Combustion Potential HAP and TAP Emissions

B . H . L . H				Emission		_	Potential Emissions		
Pollutant	HAP	NC TAP	voc	Factor	Units	Footnote	Hourly (lb/hr)	Annual (tpy)	
Natural Gas Source									
2-Methylnaphthalene	Y	N	Y	2.40E-05	lb/MMscf	4	4.66E-07	2.04E-0	
3-Methylchloranthrene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
7,12-Dimethylbenz(a)anthracene	Y	N	Y	1.60E-05	lb/MMscf	4	3.11E-07	1.36E-0	
Acenaphthene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Acenaphthylene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Acetaldehyde	Y	Y	Y	1.52E-05	lb/MMscf	4	2.95E-07	1.29E-0	
Acrolein	Y	Y	Y	1.80E-05	lb/MMscf	4	3.49E-07	1.53E-0	
Ammonia	N	Y	N	3.2	lb/MMscf	4	6.21E-02	2.72E-0	
Anthracene	Y	N	Y	2.40E-06	lb/MMscf	4	4.66E-08	2.04E-0	
Arsenic & Compounds	Y	Y	N	2.00E-04	lb/MMscf	4	3.88E-06	1.70E-0	
Benz(a)anthracene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Benzene	Y	N	Y	7.10E-04	lb/MMBtu	5	1.41E-02	6.16E-0	
Benzo(a)pyrene	Y	Y	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-0	
Benzo(b)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Benzo(g,h,i)perylene	Y	N	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-0	
Benzo(k)fluoranthene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Beryllium	Y	Y	N	1.20E-05	lb/MMscf	4	2.33E-07	1.02E-0	
Cadmium	Y	Y	N	1.10E-03	lb/MMscf	4	2.14E-05	9.35E-0	
Chromium VI	Y	N	N	1.40E-03	lb/MMscf	4	2.72E-05	1.19E-0	
Chrysene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Cobalt Compounds	Y	N	N	8.40E-05	lb/MMscf	4	1.63E-06	7.14E-0	
Dibenzo(a,h)anthracene	Y	N	Y	1.20E-06	lb/MMscf	4	2.33E-08	1.02E-0	
Dichlorobenzene	Y	Y	Y	1.20E-03	lb/MMscf	4	2.33E-05	1.02E-0	
Fluoranthene	Y	N	Y	3.00E-06	lb/MMscf	4	5.82E-08	2.55E-0	
Fluorene	Y	N	Y	2.80E-06	lb/MMscf	4	5.44E-08	2.38E-0	
Formaldehyde	Y	Y	Y	1.50E-03	lb/MMBtu	5	2.97E-02	1.30E-0	
Hexane	Y	Y	Y	1.8	lb/MMscf	4	3.49E-02	1.53E-0	
Indeno(1,2,3-cd)pyrene	Y	N	Y	1.80E-06	lb/MMscf	4	3.49E-08	1.53E-0	
Lead and Lead Compounds	Y	N	N	5.00E-04	lb/MMscf	4	9.71E-06	4.25E-0	
Manganese & Compounds	Y	Y	N	3.80E-04	Ib/MMscf	4	7.38E-06	3.23E-0	
Mercury	Y	Y	N	2.60E-04	Ib/MMscf	4	5.05E-06	2.21E-0	
Naphthalene	Ý	N	Y	6.34E-04	Ib/MMscf	4	1.23E-05	5.39E-0	
Nickel	Y	Y	N	2.10E-03	Ib/MMscf	4	4.08E-05	1.79E-0	
Polycyclic Organic Matter	Y	N	N	4.00E-05	lb/MMBtu	5,6	7.92E-04	3.47E-0	
Phenanthrene	Y	N	Y	1.70E-05	Ib/MMscf	4	3.30E-07	1.45E-0	
Pyrene	Y	N	Y	5.00E-06	Ib/MMscf	4	9.71E-08	4.25E-0	
Selenium compounds	Y	N	N N	2.40E-05	Ib/MMscf	4	4.66E-07	4.23E-0	
Toluene	Y	Y	Y	3.40E-03	Ib/MMscf	4	4.66E-07	2.04E-0	
louene	T	1 1		Emissions (n		· ·	0.002-05		
				cimissions (N	aturai yas c	ombusción)	0.000	0.35	

Notes:

Emission factors from AP-42, Section 1.4 - Natural Gas Combustion, 07/98. Emission factors converted from Ib/MMscf to Ib/MMBtu based on assumed heating value of 1,020 Btu/scf for natural gas per AP-42 Section 1.4.

 ² Emission factors for natural gas or propane combustion from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.
 ³ Emission factors for propane combustion obtained from AP-42 Section 1.5 - Liquefied Petroleum Gas Combustion, 07/08. Heat content of propane was assumed to be 91.5 MMBtu/gal per AP-42 Section 1.5.

4. Emission factors for natural gas combustion are from NCDAQ Natural Gas Combustion Spreadsheet and AP-42, Fifth Edition, Volume 1, Chapter 1.4 - Natural Gas Combustion, 07/98 for small boilers. The emission factors for acetaldehyde, acrolein, and ammonia are cited in the NCDAQ spreadsheet as being sourced from the USEPA's WebFIRE database.

5. The RCO burner can fire either natural gas or propane. Propane is worst-case for these HAP emissions. Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

⁶. The PAH emission factor for propane combustion was used to estimate emissions of Polycyclic Organic Matter

Abbreviations: cf - cubic feet

cfm - cubic feet per minute

NCDAQ - North Carolina Division of Air Quality ODT - oven dried tons

gr - grain HAP - hazardous air pollutant hr - hour kg - kilogram Ib - pound LPG - liquified petroleum gas MMBtu - million British thermal units MMscf - million standard cubic feet PAH - polycyclic aromatric hydrocarbons RCO - regenerative catalytic oxidizer RTO - regenerative thermal oxidizer TAP - toxic air pollutant tpy - tons per year USEPA - U.S. Environmental Protection Agency VOC - volatile organic compound yr - year

Table 16 Emergency Generator Potential Emissions IES-EG Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Engine Output	0.45 MW
Horsepower Rating	713 brake hp
Diesel Density ¹	7.1 lb/gal
Hours of Operation	500 hr/yr
Hourly Fuel Consumption ²	34.8 gal/hr
Energy Input ³	4.99 MMBtu/hr

Notes:

^{1.} Diesel density from AP-42 Section 3.4 - Large Stationary Diesel and All Stationary Dual-fuel Engines, 10/96, Table 3.4-1, footnote a.

^{2.} Fuel consumption obtained from generator's spec sheet, assuming 100% load.

^{3.} Energy calculated on a brake-specific fuel consumption of 7,000 Btu/hp-hr.

Pollutant	Emission	Units	Potential Emissions ¹			
Fondant	Factor		(lb/hr)	(tpy)		
со	3.50	g/kW-hr (2)	4.10	1.03		
NO _X	4.00	g/kW-hr (2)	4.69	1.17		
SO₂	15	ppmw (3)	7.41E-03	1.85E-03		
voc	6.4E-04	lb/hp-hr (4)	0.46	0.11		
PM	0.20	g/kW-hr (2)	0.23	0.06		
PM ₁₀	0.20	g/kW-hr (2)	0.23	0.06		
PM _{2.5}	0.20	g/kW-hr (2)	0.23	0.06		
CO ₂	74.0	kg/MMBtu(5)	814	203		
CH₄	3.0E-03	kg/MMBtu(5)	3.3E-02	8.3E-03		
N ₂ O	6.0E-04	kg/MMBtu(5)	6.6E-03	1.7E-03		
CO ₂ e			817	204		

Notes:

^{1.} NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr at 100% load.

^{2.} Emissions standards from NSPS Subpart IIII for emergency engines with a maximum power rating greater than 50 horsepower [§60.4202(a)(2)]. NO_x emissions are based on combined emission standard for NMHC+NO_x.

^{3.} Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(c) as required by NSPS Subpart IIII.

^{4.} TOC emission factor from AP-42 Section 3.4, Large Stationary Diesel and All Stationary Dual-Fuel Engines and assumes 91% is nonmethane hydrocarbons per footnote f of Table 3.4-1.

^{5.} Emission factors from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Table 16 **Emergency Generator Potential Emissions** IES-EG

Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Potential	HAP	Emissions
· · · · · · · · · · · · · · · · · · ·		

Pollutant	CAS No.	Νር ΤΑΡ	voc	Emission Factor ¹	Potential Emissions ²		
			(lb/MMBtu)	(lb/hr)	(tpy)		
Acetaldehyde	75-07-0	Y	Y	2.52E-05	1.26E-04	3.14E-05	
Acrolein	107-02-8	Y	Y	7.88E-06	3.93E-05	9.83E-06	
Benzene	71-43-2	Y	Y	7.76E-04	3.87E-03	9.68E-04	
Benzo(a)pyrene	50-32-8	Y	Y	2.57E-07	1.28E-06	3.21E-07	
Formaldehyde	50-00-0	Y	Y	7.89E-05	3.94E-04	9.84E-05	
Naphthalene	91-20-3	N	Y	1.30E-04	6.49E-04	1.62E-04	
Total PAH (POM) ³		N	Y	2.12E-04	1.06E-03	2.65E-04	
Toluene	108-88-3	Y	Y	2.81E-04	1.40E-03	3.51E-04	
Xylene	1330-20-7	1330-20-7 Y Y		1.93E-04	9.63E-04	2.41E-04	
			Total H	AP Emissions	0.0079	0.0020	

Notes:

^{1.} Emission factor obtained from AP-42 3.4: Large Stationary Diesel and All Stationary Dual-Fuel Engines Table 3.4-3 and Table 3.4-4. ² NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.

^{3.} The PAH emission factor includes all the PAH compounds listed in AP-42. Emissions for naphthalene and benzo(a)pyrene are also calculated separately. For the purposes of calculating total HAP emissions, the naphthalene and benzo(a)pyrene are not included separately to avoid double counting these emissions.

Abbreviations:

Btu - British thermal unit	MW - megawatt
CAS - chemical abstract service	MMBtu - Million British thermal units
CH₄ - methane	NO _x - nitrogen oxides
CO - carbon monoxide	N2O - nitrous oxide
CO ₂ - carbon dioxide	ODT - oven dried tons
CO ₂ e - carbon dioxide equivalent	PAH - polycyclic aromatic hydrocarbon
g - gram	PM - particulate matter
gal - gallon	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
HAP - hazardous air pollutant	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
hp - horsepower	POM - polycyclic organic matter
hr - hour	SO ₂ - sulfur dioxide
kg - kilogram	TAP - toxic air pollutant
kW - kilowatt	tpy - tons per year
lb - pound	VOC - volatile organic compound
NC - North Carolina	yr - year

Table 17 Fire Pump Potential Emissions IES-FWP Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis

Engine Output	0.10 MW
Horsepower Rating	131 brake hp
Diesel Density ¹	7.1 lb/gal
Hours of Operation	500 hr/yr
Hourly Fuel Consumption	9 gal/hr
Energy Input ²	1.23 MMBtu/hr

Notes:

 Diesel density from AP-42 Section 3.4 - Large Stationary Diesel and All Stationary Dual-fuel Engines, 10/96, Table 3.4-1, footnote a.

^{2.} Energy calculated on a fuel consumption basis using an energy factor of 0.137 MMBtu/gal.

Pollutant	Emission	Units	Potential Emissions ¹				
	Factor	Olinta	(lb/hr)	(tpy)			
CO ²	1.3	g/kW-hr	0.28	7.0E-02			
NO _X ²	3.4	g/kW-hr	0.72	0.18			
SO ₂ ³	15	ppmw	1.9E-03	4.8E-04			
VOC ²	0.15	g/kW-hr	3.2E-02	8.1E-03			
PM ²	0.17	g/kW-hr	3.7E-02	9.2E-03			
PM ₁₀ ²	0.17	g/kW-hr	3.7E-02	9.2E-03			
PM _{2.5} ²	0.17	g/kW-hr	3.7E-02	9.2E-03			
CO2	74	kg/MMBtu ⁴	201	50			
CH₄	3.0E-03	kg/MMBtu ⁴	8.2E-03	2.0E-03			
N ₂ O	6.0E-04	kg/MMBtu ⁴	1.6E-03	4.1E-04			
CO ₂ e			202	50			

Potential Criteria Pollutant Emissions

Notes:

- ^{1.} NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.
- ^{2.} Emissions factors for PM/PM₁₀/PM_{2.5}, NO_x, hydrocarbons, and CO obtained from generator's spec sheet.
- ^{3.} Sulfur content in accordance with Year 2010 standards of 40 CFR 80.510(c) as required by NSPS Subpart IIII.
- ^{4.} Emission factors from Table C-1 and C-2 of 40 CFR Part 98 and Global Warming Potentials from Table A-1.

Abbreviations:

Btu - British thermal unit	MW - megawatt
CH ₄ - methane	MMBtu - Million British thermal units
CO - carbon monoxide	NO _x - nitrogen oxides
CO ₂ - carbon dioxide	N ₂ O - nitrous oxide
CO ₂ e - carbon dioxide equivalent	PM - particulate matter
g - gram	PM ₁₀ - particulate matter with an aerodynamic diameter less than 10 microns
gal - gallon	PM _{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less
hp - horsepower	SO ₂ - sulfur dioxide
hr - hour	tpy - tons per year
kg - kilogram	VOC - volatile organic compound
kW - kilowatt	yr - year
lb - pound	

Table 17 Fire Pump Potential Emissions IES-FWP Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Potential HAP Emissions

Pollutant	CAS No.	NC TAP	voc	Emission Factor ¹	Potential Emission		
			(lb/hp-hr)	(lb/hr)	(tpy)		
Acetaldehyde	75-07-0	Y	Y	5.4E-06	7.0E-04	1.8E-04	
Acrolein	107-02-8	Y	Y	6.5E-07	8.5E-05	2.1E-05	
Benzene	71-43-2	Y	Y 6.5E-06		8.6E-04	2.1E-04	
Benzo(a)pyrene	50-32-8	Y	Y	1.3E-09	1.7E-07	4.3E-08	
Butadiene, 1,3-	106-99-0	Y	Y	2.7E-07	3.6E-05	9.0E-06	
Formaldehyde	50-00-0	Y	Y	8.3E-06	1.1E-03	2.7E-04	
Naphthalene	91-20-3	N	Y	5.9E-07	7.8E-05	1.9E-05	
Total PAH (POM) ³		Ň	Y	1.18E-06	1.5E-04	3.9E-05	
Toluene	108-88-3	Y	Y	2.9E-06	3.8E-04	9.4E-05	
Xylene	1330-20-7	1330-20-7 Y Y		2.0E-06	2.6E-04	6.5E-05	
			Total HA	P Emissions	3.6E-03	8.9E-04	

Notes:

^{1.} Emission factor obtained from NCDAQ Internal Combustion (Small Gasoline and Diesel Engines) Spreadsheet/AP-42 Section 3.3 - Stationary Internal Combustion Engines, 10/96, Table 3.3-2.

^{2.} NSPS allows for only 100 hrs/yr of non-emergency operation of these engines. Potential emissions for the emergency generator are conservatively based on 500 hr/yr.

^{3.} The PAH emission factor includes all the PAH compounds listed in AP-42. Emissions for naphthalene and benzo(a)pyrene are also calculated separately. For the purposes of calculating total HAP emissions, the naphthalene and benzo(a)pyrene are not included separately to avoid double counting these emissions.

Abbreviations:

CAS - chemical abstract service HAP - hazardous air pollutant hp - horsepower hr - hour Ib - pound NC - North Carolina ODT - oven dried tons PAH - polycyclic aromatic hydrocarbon POM - polycyclic organic matter TAP - toxic air pollutant tpy - tons per year VOC - volatile organic compound

Table 18 Diesel Storage Tanks IES-TK-1 through 3 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Constants

Description	IES-TK-1 IES-TK-2 IES-TK-3		Units	Notes	
a - Tank Paint Solar Absorptance		0.25		dimensionless	AP-42, Chapter 7 - Table 7.1-6 for White Tank, Average Condition
I - Annual Avg Total Solar Insolation Factor		1,395		dimensionless	AP-42, Chapter 7 - Table 7.1-7 for Charlotte, NC
Tax - Annual Avg Maximum Ambient Temperature	530.5 F		R	AP-42, Chapter 7 - Table 7.1-7 for Charlotte, NC	
T _{AN} - Annual Avg Minimum Ambient Temperature	510.8 R		R	AP-42, Chapter 7 - Table 7.1-7 for Charlotte, NC	
R - Ideal Gas Constant	10.731		psia*ft ³ /lb-mole R	AP-42, Chapter 7 - Page 7.1-23	
Kp - Product Factor		1		dimensionless	Assume conservative value of 1
P _{VX} - Vapor Pressure at T _{AX}		0.0092		psia	AP-42, Chapter 7 - Equation 1-25 (exp[A-(B/T _{LA})])
P _{VN} - Vapor Pressure at T _{AN}		0.0048		psia	AP-42, Chapter 7 - Equation 1-25 (exp[A-(B/T _{LA})])
ΔP _v - Daily Vapor Pressure Range		0.0044		psia	AP-42, Chapter 7 - Equation 1-9
ΔP_{B} - Breather Vent Pressure Setting Range		0.06		psia	AP-42, Chapter 7 - Page 7.1-19 Note 3 (default)
P _A - Atmospheric Pressure		14.32		psia	AP-42, Chapter 7 - Table 7.1-7 for Charlotte, NC

Calculation Inputs

Description	IES-TK-1	IES-TK-2	IES-TK-3	Units	Notes
Tank Diameter	5.3	3.3	5.3	ft	Dimensions were provided by Enviva
Tank Length	6.0	3.3	18.0	ft	Dimensions were provided by Enviva
Tank Design Volume	1,000	185	3,000	gal	Conservative design specifications
Tank Working Volume	500	92.5	1,500	gal	50% of tank design volume because tanks will not be full at all times
Tank Throughput	17,400	4,500	200,000	gal/yr	Throughput for IES-TK-1 and IES-TK-2 based on fuel consumption provided by Enviva and 500 hours of operation per year for the fire pump and emergency generator. Throughput for IES-TK-3 provided by Enviva.
Equivalent Tank Diameter (D _E)	6.4	3.7	11.1	ft	AP-42, Chapter 7 - Equation 1-14 (SQRT(LD/(PI/4)))
Effective Height (H _E)	4.2	2.6	4.2	ft	AP-42, Chapter 7 - Equation 1-15 (PI/4*D)
V _v - Vapor Space Volume	66.2	13.8	201.1	ft ³	AP-42, Chapter 7 - Equation 1-3 (PI/4* $D^{2*}H_{VO}$), substitute D_E for D for horizontal tanks
H _{vo} - Vapor Space Outage	2.1	1.3	2.1	ft	AP-42, Chapter 7 - $H_{VO} = 0.5*H_E$ for horizontal tanks
Pva - Vapor Pressure	0.009	0.009	0.009	psia	Vapor pressure for Distillate Fuel Oil No. 2 at 70°F
M _v - Vapor Molecular Weight	130	130	130	lb/lb-mole	AP-42, Chapter 7 - Table 7.1-2 for diesel
Q - Throughput	414.3	107.1	4,762	bbl/yr	

Table 18 Diesel Storage Tanks IES-TK-1 through 3 Enviva Pellets Sampson, LLC

Description	IES-TK-1	IES-TK-2	IES-TK-3	Units	Notes
K _e - Vapor Space Expansion Factor	0.036	0.036	0.036	dimensionless	AP-42, Chapter 7 - Equation 1-5 $(\Delta T_V/T_{LA} + ((\Delta P_V - \Delta P_B)/(P_A - \Delta P_{VA}))$
ΔT _v - Daily Vapor Temperature Range	20.77	20.77	20.77	R	AP-42, Chapter 7 - Equation 1-7 (0.7*ΔT _A + 0.02*σ*Ι)
ΔT _A - Daily Ambient Temperature Range	19.7	19.7	19.7	R	AP-42, Chapter 7 - Equation 1-11 (T _{AX} - T _{AN})
K _s - Vented Vapor Saturation Factor	1.00	1.00	1.00	dimensionless	AP-42, Chapter 7 - Equation 1-21 (1/(1 + 0.053Pva*Hvo))
W _v - Stock Vapor Density	0.00021	0.00021	0.00021	lb/ft ³	AP-42, Chapter 7 - Equation 1-22 (Mv * PvA) / (R * Tv)
T _v - Average Vapor Temperature	524.1	524.1	524.1	R	AP-42, Chapter 7 - Equation 1-33 (0.7*T _{AA} + 0.3T _B + 0.009a*I)
T _{AA} - Daily Average Ambient Temperature	520.7	520.7	520.7	R	AP-42, Chapter 7 - Equation 1-30 ($(T_{AX} + T_{AN})/2$)
T _B - Liquid Bulk Temperature	521.7	521.7	521.7	R	AP-42, Chapter 7 - Equation 1-31 (T _{AA} + 0.003oI)
T _{LA} - Daily Average Liquid Surface Temperature	523.0	521.7	521.7	R	AP-42, Chapter 7 - Equation 1-28 (0.4*T _{AA} + 0.6T _B + 0.005*a*I)
N - Number of Turnovers	34.8	48.6	133.3	dimensionless	
K_N - Working Loss Turnover (Saturation) Factor	1	0.78	0.39	dimensionless	AP-42, Chapter 7 - Page 7.1-28 (For N>36, $K_N = (180 + N)/6N$; For N≤36, $K_N = 1$)
V_Q - Net Working Loss Throughput	2,326	602	26,733	ft³/yr	AP-42 Chapter 7 - Equation 1-39 (5.614*Q)
K _p - Working Loss Product Factor	1	1	1	dimensionless	AP-42 Chapter 7 - Page 7.1-28
K ₈ - Vent Setting Correction Factor	1	1	1	dimensionless	AP-42 Chapter 7 - Page 7.1-28

Potential VOC Emissions

Description	IES-TK-1	IES-TK-2	IES-TK-3	Units	Notes
L _s - Standing Loss	0.18	0.038	0.55	lbs/yr	AP-42, Chapter 7 - Equation 1-2 (365 * Vv * Wv * Ke * Ks)
L _w - Working Loss	0.48	0.098	2.2	lbs/yr	AP-42, Chapter 7 - Equation 1-35 ($V_Q * K_N * K_p * W_V * K_B$)
L _t - Total Loss	0.66	0.14	2.7	lbs/yr	AP-42, Chapter 7 - Equation 1-1 (Ls + Lw)
Contingency Factor	1.00	1.00	1.00	dimensionless	Assumed contingency factor to account for unaccounted variables.
Total VOC Emissions per Tank	0.66	0.14	2.7	lbs/yr	
Total VOC Emissions	3.3E-04	6.8E-05	0.0014	tons/yr	

Reference:

U.S. AP-42, Section 7.1 - Organic Liquid Storage Tanks, 07/2020

Table 19 Potential Fugitive PM Emissions from Paved Roads Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Vehicle Activitiy	Distance Traveled per Roundtrip ¹	Trips Per Dav ²	Daily VMT	Events Per Year	Empty Truck Weight	Loaded Truck Weight	Average Truck Weight	Annuai VMT	PM Emission Factor ³	PM ₁₀ Emission Factor ³	PM _{2.5} Emission Factor ³	Poteni Emise		Potenti Emis	ial PM ₁₀ Sions ⁴	Potenti Emise	al PM _{2.5} Sions ⁴
	(ft)	Day		(days)	(lb)	(Ib)	(ton)		(Ib/VMT)	(Ib/VMT)	(Ib/VMT)	(lb/day)	(tpy)	(lb/day)	(tpy)	(lb/day)	(tpy)
Logs Delivery to Crane	9,102	60	103.4	365	31,700	87,380	30	37,753	2.2	0.44	0.11	23	4.2	4.5	0.83	1.1	0.20
Logs Delivery to Log Storage Area	9,102	60	103.4	365	31,700	87,380	30	37,753	2.2	0.44	0.11	23	4.2	4.5	0.83	1.1	0.20
Chips Delivery	7,660	95	138	365	30,080	90,060	30	50,305	2.2	0.44	0.11	31	5.6	6.1	1.1	1.5	0.27
Hog Fuel Delivery	7,660	12	17.4	365	30,080	90,060	30	6,354	2.2	0.44	0.11	3.9	0.70	0.77	0.14	0.19	3.5E-02
Pellet Delivery	3,654	66	45.7	365	25,460	87,980	28	16,671	2.1	0.42	0.10	9.6	1.7	1.9	0.35	0.47	8.6E-02
Employee Car Parking	2,400	37	16.8	365	4,000	4,000	2	6,139	0.14	2.8E-02	6.9E-03	0.24	4.3E-02	4.7E-02	8.6E-03	1.2E-02	2.1E-03
	Total Emissions:											90	16	18	3.27	4.4	0.80

Notes:

^{1.} Distance traveled per round trip was estimated based measuring wheel values. Data provided by Joe Harrell (Enviva) via email on May 16, 2017.

2. Daily trip counts provided by Joe Harrell (Enviva) via email on May 16, 2017. Log delivery trips updated assuming a maximum of 75% of greenwood is from logs.

^{3.} Emission factors calculated based on Equation 2 from AP-42 Section 13.2.1 - Paved Roads, 01/11.

where:

E = emission factor (lb/ton)	
k = particle size multiplier (dimensionless) for PM	0.011

k = particle size multiplier (dimensionless) for PM 10 0.0022

k = particle size multiplier (dimensionless) for PM25 0.00054

sL - mean road surface silt loading from AP-42 Table 13.2.1-3 for quarries (g/m²) 8.2

P - No. days with rainfall greater than 0.01 inch 110 Per AP-42, Section 13.2.1, Figure 13.2.1-2 (Sampson County, NC).

^{4.} Potential emissions calculated from appropriate emission factor times vehicle miles traveled with control efficiency of 90% for water / dust suppression activities followed by sweeping. Per Table 5 in Chapter 4 of the Air Pollution Engineering Manual, Air and Waste Management Association, page 141. Control efficiency (%) = 96-0.263*V, where V is the number of vehicle passes since application of water. Use of dry shavings would replace log or chip delivery and thus, dry shaving paved road emissions are assumed to equal those of log or chip delivery if Enviva opts to use dry shavings instead; thus, separate emissions calculations for dry shaving vehicle activity is not needed.

Abbreviations:

ft - feet	tpy - tons per year
hr - hour	yr - year
lb - pound	VMT - vehicle miles traveled
PM - particulate matter	VOC - volatile organic compound
PM ₁₀ - particulate matter with an	aerodynamic diameter less than 10 microns

PM_{2.5} - particulate matter with an aerodynamic diameter of 2.5 microns or less

Table 20 Potential Emissions from Propane Vaporizers IES-PV-1 and 2 Enviva Pellets Sampson, LLC Faison, Sampson County, North Carolina

Calculation Basis¹

Propane Heating Value ²	91.5 MMBtu/Mgal
Hours of Operation	8,760 hr/yr
No. of Vaporizers	2
Maximum Heat Input Rate	1.0 MMBtu/hr
Hourly Fuel Consumption	0.011 Mgal/hr

Notes:

^{1.} The propane vaporizers are considered insignificant activities per 15A NCAC 02Q .0503

^{2.} Propane heat content from AP-42 Section 1.5 - Liquefied Petroleum Gas Production, 7/08.

Potential Criteria Pollutant and Greenhouse Gas Emissions

Pollutant	Emission	Units	Potential E	missions	
Fondtant	Factor1 7.5 lb/Mg 13.0 lb/Mg 0.054 lb/Mg 1.0 lb/Mg 1.10 lb/Mg 1.2,500 lb/Mg	Units	(lb/hr)	(tpy)	
CO	7.5	lb/Mgal	0.16	0.72	
NO _X	13.0	lb/Mgal	0.28	1.24	
SO ₂ ²	0.054	ib/Mgai	0.0012	0.0052	
voc	1.0	lb/Mgal	0.022	0.096	
PM/PM ₁₀ /PM _{2.5} Condensable	0.50	ib/Mgal	0.011	0.048	
PM/PM ₁₀ /PM _{2.5} Filterable	0.20	lb/Mgal	0.0044	0.019	
Total PM/PM ₁₀ /PM _{2.5}			0.015	0.067	
CO₂	12,500	lb/Mgal	273	1,197	
CH4	0.20	lb/Mgal	0.0044	0.019	
N ₂ O	0.90	lb/Mgal	0.020	0.086	
CO ₂ e			279	1,223	

Notes:

^{1.} Emission factors obtained from AP-42 1.5- Liquefied Petroleum Gas Combustion, 07/08, Table 1.5-1.

². SO₂ emissions are based on an assumed fuel sulfur content of 0.54 grains/100 ft³ per A National Methodology and Emission Inventory for Residential Fuel Combustion.

Potential HAP Emissions

Pollutant	CAS No.	voc	Emission Factor ¹	Potential	ntial Emissions		
			(lb/MMBtu)	(lb/hr)	(tpy)		
Benzene 71-43-2		Y	7.1E-04	0.0014	0.0062		
Formaldehyde	50-00-0	50-00-0 Y		0.0030	0.013		
PAHs		N	4.0E-05	8.0E-05	3.5E-04		
	0.0044	0.020					

Notes:

^{1.} Emission factors for propane combustion from the South Coast Air Quality Management District's Air Emissions Reporting Tool for external combustion equipment fired with LPG.

Abbreviations:

Btu - British thermal unit CAS - chemical abstract service CH₄ - methane CO - carbon monoxide CO2 - carbon dioxide CO₂e - carbon dioxide equivalent gal - gallon HAP - hazardous air pollutant hr - hour lb - pound LPG - liquified petroleum gas MMBtu - Million British thermal units $\begin{array}{l} \mathsf{Mgal} \ \text{-} \ \mathsf{Thousand} \ \mathsf{gallons} \\ \mathsf{NO}_x \ \text{-} \ \mathsf{nitrogen} \ \mathsf{oxides} \\ \mathsf{N}_2\mathsf{O} \ \text{-} \ \mathsf{nitrogen} \ \mathsf{oxides} \\ \mathsf{PAH} \ \text{-} \ \mathsf{polycyclic} \ \mathsf{aromatic} \ \mathsf{hydrocarbon} \\ \mathsf{PM} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \\ \mathsf{PM}_{10} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \\ \mathsf{PM}_{2,5} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \ \mathsf{with} \ \mathsf{an} \ \mathsf{aerodynamic} \ \mathsf{diameter} \ \mathsf{less} \ \mathsf{tha} \\ \mathsf{PM}_{2,5} \ \text{-} \ \mathsf{particulate} \ \mathsf{matter} \ \mathsf{with} \ \mathsf{an} \ \mathsf{aerodynamic} \ \mathsf{diameter} \ \mathsf{less} \ \mathsf{tha} \\ \mathsf{PM}_{2,5} \ \text{-} \ \mathsf{suff} \ \mathsf{diameter} \ \mathsf{of} \ \mathsf{2.5} \\ \mathsf{SO}_2 \ \mathsf{suff} \ \mathsf{diameter} \ \mathsf{diameter} \ \mathsf{of} \ \mathsf{2.5} \\ \mathsf{SO}_2 \ \mathsf{suff} \ \mathsf{diameter} \ \mathsf{diameter} \ \mathsf{of} \ \mathsf{2.5} \\ \mathsf{VOC} \ \text{-} \ \mathsf{volatile} \ \mathsf{organic} \ \mathsf{compound} \\ \mathsf{yr} \ \mathsf{-} \ \mathsf{year} \\ \end{array}$

References:

A National Methodology and Emission Inventory for Residential Fuel Combustion (2001). Retrieved from https://www3.epa.gov/ttnchie1/conference/ei12/area/haneke.pdf.

U.S. EPA. AP-42, Chapter 1.5 - Liquid Petroleum Gas Combustion, 07/08.

South Coast Air Quality Management District. AER Reporting tool. Emission factors available in the Help and Support Manual at: http://www.aqmd.gov/home/rules-compliance/compliance/annual-emission-reporting

Table 21

Additive Handling

IES-ADD

Enviva Pellets Sampson, LLC

Faison, Sampson County, North Carolina

Source		of Drop	Material Moisture Content	PM Emission Factor ¹	PM ₁₀ Emission Factor ¹	PM _{2,5} Emission Factor ¹	on Throughput ^{2,3}					Potential PM ₁₀ Emissions		Potential PM _{2.5} Emissions	
		Points	(%)	(lb/ton)	(ib/ton)	(lb/ton)	(tph)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
IES-ADD	Transfer from Supersacks to Hopper	1	10%	4.47E-04	2.12E-04	3.20E-05	0.19	1,643	8.64E-05	3.67E-04	4.09E-05	1.74E-04	6.19E-06	2.63E-05	

Notes:

¹. Emission factor calculation based on formula from AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06).

where:

E = emission factor (lb/ton) k = particle size multiplier (dimensionless

0.74 k = particle size multiplier (dimensionless 0.35

0.053

k = particle size multiplier (dimensionless

U = mean wind speed (mph) 7.85

 $^{\rm 2.}$ Hourly and annual additive throughputs based on expected maximum usage.

Abbreviations:

hr - hour

lb - pound

PM - particulate matter

PM₁₀ - particulate matter with an aerodynamic diameter less than 10 microns

PM2.5 - particulate matter with an aerodynamic diameter of 2.5 microns or less

tpy - tons per year

yr - year

References:

U.S. EPA. AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, 11/06.

