

August 2, 2021 *PFAS in North Carolina*

Frannie Nilsen, PhD
Environmental Toxicologist, DEQ

PFAS in North Carolina

- The scope, extent, and nature of PFAS contamination in North Carolina is the current issue DEQ is working on.
 - Other emerging compounds also being examined, including 1,4,-Dioxane.
- At the last SSAB meeting, DEQ and DHHS heard the perspectives of the Board members for regulation and different strategies that could be applied in NC.

- A summary table was presented, and the Board asked for more information to be added.
 - Expanded toxicity data
 - Environmental data
 - Biological data

NORTH CAROLINA
Department of Environmental Quality

Presentation Goals

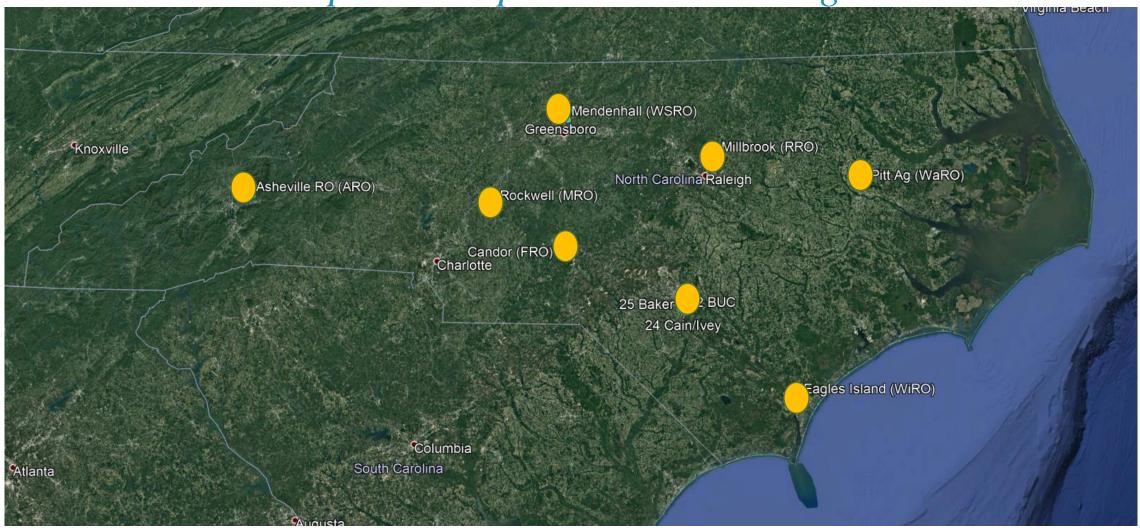
- This presentation serves as an introduction to the expanded table for both the Board and the public.
- Identify areas of research still needed.
- Provide the Board with potential uses of this data for regulatory purposes and solicit feedback.
- Discuss how to move forward and what the next steps could be.

Most frequer	ntly detected PFAS	in North Carolina ~		
PFAS Type	PFAS Group	PFAS Compound		
		PFBS		
	Sulfonic Acids	PFHxS		
spu	Sullottic Acids	PFOS		
noc		PFBA		
E O		PFPeA		
Legacy Compounds		PFHxA		
Leg	Carboxylic Acids	PFOA		
	·	PFNA		
		PFDA		
		PFHpA		
		PFMOPrA#		
s S		PFMOBA [#]		
un		PFMOAA		
odu		PMPA [#]		
) Jo		PFO2HxA		
) Je		PEPA [#]		
)rde	Ether Carboxylic Acids	PFO3OA		
t O		HFPO-DA (GenX)		
Consent Order Compounds		PFO4DA		
		PFO5DA		
		HydroEVE		
	Ether Sulfonic Acids	Nafion By-prod1		
		Nafion By-prod2		

- This is a collection of toxicological and environmental data from multiple international and peerreviewed sources that summarizes the complexity of PFAS data.
 - Both inside and outside of North Carolina.
- The purpose of this data collection is to present the NC Secretaries' Science Advisory Board with a synopsis of data to aid in its support and analysis of PFAS regulatory strategies most appropriate for North Carolina.

		Most frequently	detected PF	AS in North	Carolina ~		
				Р	hysical Characte	ristics	
PFAS Type	PFAS Group	PFAS Compound	Fluorinated Carbons	Total Chain Length	Molecular Formula	Molecular Weight (g/mol)	Water Solublity (20-25C (g/L))
			4	5	C₄HF ₉ O₃S	300.1	56.6
	Sulfonic Acids	PFHxS	6	7	C ₆ HF ₁₃ O ₃ S	400.12	2.3
spu	Sullottic Acids	PFOS	8	9	C ₈ HF ₁₇ O ₃ S	500.13	1.57
onu		PFBA	3	4	C ₇ H ₅ FO ₂	140.11	0.4
dwo		PFPeA	4	5	C ₅ HF ₉ O	264.05	112.6
Legacy Compounds		PFHxA	5	6	C ₆ HF ₁₁	314.05	21.7
Leg	Carboxylic Acids	PFOA	8	8	C ₈ HF ₁₅ O ₂	414.07	9.5
		PFNA	8	9	C ₉ HF ₁₇ O ₂	464.08	9.5
		PFDA	9	10	C ₁₀ HF ₁₉ O ₂	514.08	5.1
		PFHpA	6	7	C ₇ HF ₁₃ O ₂	364.06	4.2
		PFMOPrA#	3	5	C ₄ HF ₇ O ₃	230.04	
		PFMOBA [#]	4	6	C ₅ HF ₉ O ₃	280.04	
v		PFMOAA	2	4	C₃HF₅O₃	180.03	
pun		PMPA [#]	3	5	C ₄ HF ₇ O ₃	230.04	
odu		PFO2HxA	3	6	C ₄ HF ₇ O ₄	246.04	
Cor	5.1 6 1 1:	PEPA [#]	4	6	C₅HF ₉ O ₃	280.04	
.der	Ether Carboxylic Acids	PFO3OA	4	8	C ₅ HF ₉ O ₅	312.04	
Consent Order Compounds Acids	, telus	HFPO-DA (GenX)	5	7	$C_6HF_{11}O_3$	330.05	300
		PFO4DA	5	10	C ₆ HF ₁₁ O ₆	378.05	
		PFO5DA	6	12	C ₇ HF ₁₃ O ₇	444.06	
		HydroEVE	6	10	C ₈ H ₂ F ₁₄ O ₄	428.08	
		Nafion By-prod1	7	10	C ₇ HF ₁₃ O ₅ S	444.12	
	Ether Sulfonic Acids	Nafion By-prod2	7	10	C ₇ H ₂ F ₁₄ O ₅ S	464.13	
5		~- based o	on Dec 7, 2020). SSAB meeti	ng presentation	ons; # - branched	and linear isom

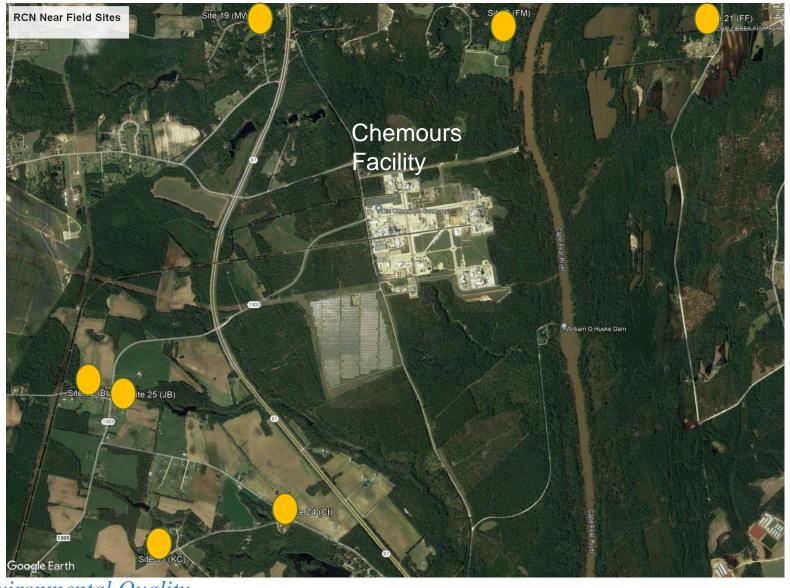
Physical Characteristics


- The Physical Characteristics describe the length, weight, and solubility of the PFAS compounds.
- Solubility refers to the number of grams of a substance that can be dissolved in 1 liter of water; the greater the solubility means that more of a substance can be dissolved in water.

-			Most	frequently detect	ted PFAS in North Carolina			
						onmental Data		
	İ				Concentration in NC w	vater (median (range)) ng/	L ppt	
DE 15 -	D=16.5			Atmospheric		Surface water		
PFAS Type	PFAS Group	PFAS Compound		ion 2018-2021				
	İ		Chemours Area n =	Regional Sites n	DWR Chemours Outfall	Cape Fear, Lock & Dam	Chemours area	DWR Lake
	İ		42	=19	002 (n = 213+)	(mean)	(mean) (n=100)	data (n = 140)
		PFBS	· <u>-</u>		36 (2 - 82)	<10	1.3	40 (3742)
S	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)
oun		PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)
od		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)
mo		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)
Ú >		PFHxA			40 (3 - 98)	33	2	40 (31-350)
Legacy Compounds		PFOA	5.4- 120	5.2-7.9	40 (4 - 130)	21	1	40 (26 - 90)
Ге́	Carboxylic Acids	PFNA			40 (1 - 82)	<10	0.4	40 (16 - 160)
	Car buxylic Acius	PFDA			40 (1 - 200)		3.7	40 (20 - 160)
		PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)
		PFMOPrA#						
		PFMOBA#				@		
		PFMOAA				95000	76	
S	İ	PMPA#				740	696.6	
unc	İ	PFO2HxA				8200	296.6	
μbc	i	PEPA#				280		
Č	Ether Carboxylic	PFO3OA				7000	37.2	
Consent Order Compounds	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)
sen	İ	PFO4DA				330	5.9	
) OD:	İ	PFO5DA				153	0.2	
J	İ	HydroEVE				<10		
	Ether Sulfonic	Nafion By-prod1						
	Acids	Nafion By-prod2				<10	18.8	

Environmental Data

 Total atmospheric deposition of PFAS includes both rainwater and dry deposition.


 Surface water is the visible water you can see in streams and lakes. Atmospheric Deposition Monitoring Sites

Atmospheric Deposition Monitoring Near Field Sites

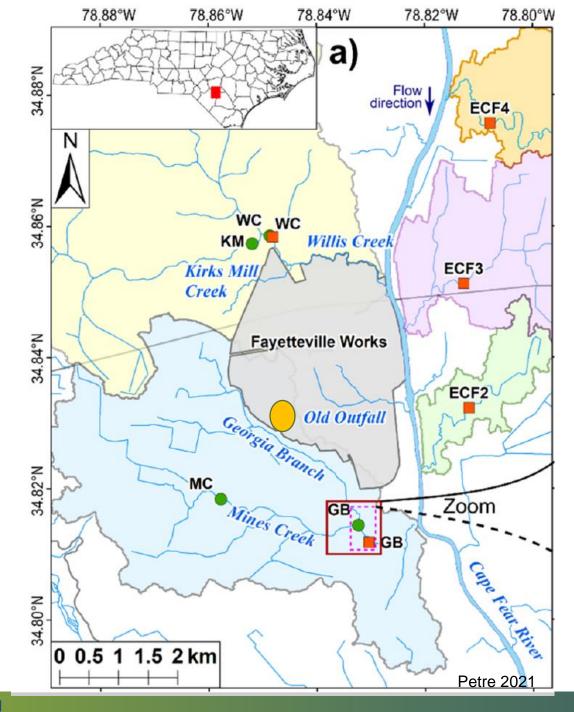
			IVIOSE	requently detect	ted PFAS in North Carolina Enviro	onmental Data				
						vater (median (range)) ng/	L ppt			
PFAS Type	PFAS Group	PFAS Compound		Atmospheric on 2018-2021	Surface water					
		·	Chemours Area (n = 42)		DWR Chemours Outfall 002 (n = 213+)	Cape Fear, Lock & Dam (mean)	Chemours area (mean) (n=100)	DWR Lake data (n = 140)		
		PFBS			36 (2 - 82)	<10	1.3	40 (3742)		
SD	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)		
nu		PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)		
odi		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)		
ош		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)		
C C		PFHxA			40 (3 - 98)	33	2	40 (31-350)		
Legacy Compounds		PFOA	5.4- 120	5.2-7.9	40 (4 - 130)	21	1	40 (26 - 90)		
reć	Caula ann lia Aaida	PFNA			40 (1 - 82)	<10	0.4	40 (16 - 160)		
	Carboxylic Acids	PFDA			40 (1 - 200)		3.7	40 (20 - 160)		
		PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)		
		PFMOPrA#								
		PFMOBA#								
		PFMOAA				95000	76			
S S		PMPA [#]				740	696.6			
ounc		PFO2HxA				8200	296.6			
upoc		PEPA#				280				
Con	Ether Carboxylic	PFO3OA				7000	37.2			
Consent Order Compounds	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)		
ent		PFO4DA				330	 5.9	ľ		
ons		PFO5DA				153	0.2			
Ō		HydroEVE				<10				
	Ether Sulfonic	Nafion By-prod1								
	Acids	Nafion By-prod2				<10	18.8			

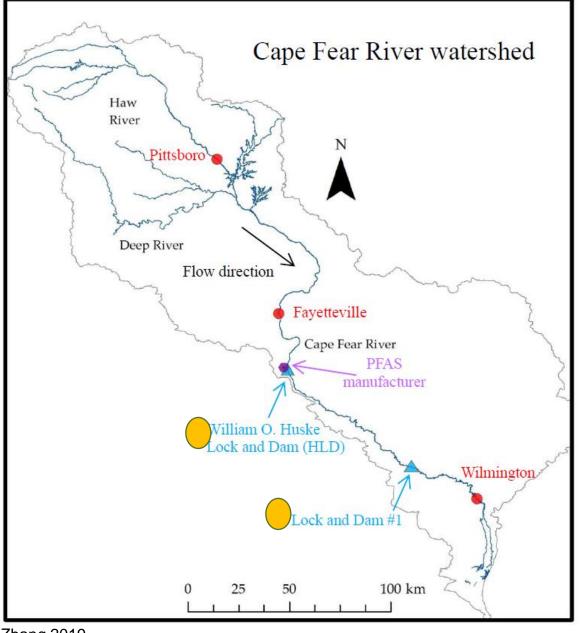
Most frequently detected PEAS in North Carolina

Atmospheric Data

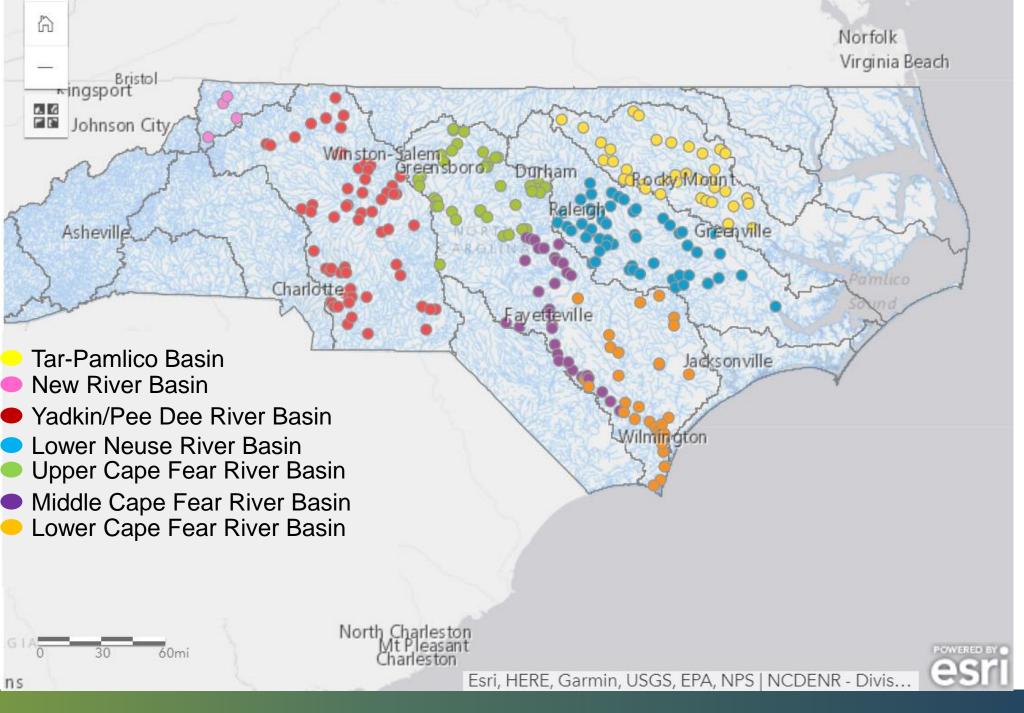
Atmospheric deposition of PFAS is a source of PFAS in North Carolina.

- Small study, limitations
- Chemours Consent Order and air permit required controls to remove 99.99% of PFAS emissions.


Atmospheric Deposition of contaminants is always an important source to consider and will be continually evaluated moving forward.


					En	vironmental Data						
		1	Concentration in NC water (median (range)) ng/L ppt									
		l	Takab	Name and a second	Concentration in N	C water (median (range	e)) ng/L ppt					
DEAC Tupo	PFAS Group	PFAS Compound		Atmospheric on 2018-2021	Surface water							
PFAS Type	PFA3 Group	PFAS Compound	Chemours	011 2018-2021	DWR Chemours							
			Area n =	Regional Sites n	Outfall 002	Cape Fear, Lock &	Chemours area	DWR Lake data				
			42	=19	(n = 213+)	Dam (mean)	(mean) (n=100)	(n = 140)				
		PFBS			36 (2 - 82)	<10	1.3	40 (3742)				
8	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (20 - 70)				
οun		PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)				
lod		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)				
Шо		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)				
Ŏ >		PFHxA			40 (3 - 98)	33	2	40 (31-350)				
Legacy Compounds		PFOA	5.4- 120	5.2-7.9	40 (4 - 130)	21	1	40 (26 - 90)				
) Feć	Caulanudia Arida	PFNA			40 (1 - 82)	<10	0.4	40 (16 - 160)				
	Carboxylic Acids	PFDA			40 (1 - 200)		3.7	40 (20 - 160)				
		PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)				
		PFMOPrA#				@						
		PFMOBA#				@						
		PFMOAA				95000	76					
S		PMPA [#]				740	696.6					
onno		PFO2HxA				8200	296.6					
npc		PEPA#				280						
Con	Ether Carboxylic	PFO3OA				7000	37.2					
Consent Order Compounds	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)				
ent		PFO4DA				330	5.9					
ons		PFO5DA				153	0.2					
Ö		HydroEVE				<10						
	Ether Sulfonic	Nafion By-prod1										
	Acids	Nafion By-prod2				<10	18.8					

Most frequently detected PEAS in North Carolina


Surface Water Data

- Surface water is the visible water you can see in streams and lakes.
- Surface water can collect many sources of contamination and identifying a clear point source can be difficult.
- The data here are from 4 different sources and locations.
- The locations from left to right increase in distance away from the Chemours site.

Zhang 2019

DEQ DWR
Monitoring
Coalition
Sites

			IVIOST Tre	equently detected	d PFAS in North Caro			
						vironmental Data		
					Concentration in N	C water (median (range	e)) ng/L ppt	
DEAC T	DEAC C			Atmospheric		Surface	water	
PFAS Type	PFAS Group	PFAS Compound	Deposit	on 2018-2021	5145 6			
			Chemours	Regional Sites n	DWR Chemours Outfall 002	Cape Fear, Lock &	Chemours area	DWR Lake data
			Area n = 42	=19	(n = 213+)	Dam (mean)	(mean) (n=100)	(n = 140)
		PFBS	42		36 (2 - 82)	<10	1.3	40 (3742)
S	Sulfonic Acids	PFHxS	5.9		37 (2 - 82)	27	0.7	40 (37 - 42)
pui	Sanome Acids	PFOS	4.2-9.7	4.1-37	37 (2 - 82)	29	2.1	40 (17 - 590)
пос		PFBA	2.0-40	4.0-8.0	40 (3 - 160)	31	8.6	40 (17 - 160)
jm.		PFPeA	4.3-14		35 (5 - 310)	35	6.3	40 (17 - 260)
S		PFHxA			40 (3 - 98)	33	2	40 (31-350)
Legacy Compounds		PFOA	5.4- 120	5.2-7.9	40 (4 - 130)	21	1	40 (26 - 90)
rec	Comboundie Aside	PFNA			40 (1 - 82)	<10	0.4	40 (16 - 160)
	Carboxylic Acids	PFDA			40 (1 - 200)		3.7	40 (20 - 160)
		PFHpA	4.6		37 (2 - 82)	25	1.3	40 (13 - 280)
		PFMOPrA#				@		
		PFMOBA#				@		
		PFMOAA				95000	76	
S		PMPA#				740	696.6	
onno		PFO2HxA				8200	296.6	
odu		PEPA#				280		
Con	Ether Carboxylic	PFO3OA				7000	37.2	
Consent Order Compounds	Acids	HFPO-DA (GenX)			110 (21 - 39000)+	790	475.2	40 (16 - 42)
sen		PFO4DA				330	5.9	
Con:		PFO5DA				153	0.2	
J		HydroEVE				<10		
	Ether Sulfonic	Nafion By-prod1						
	Acids	Nafion By-prod2				<10	18.8	

Most frequently detected PEAS in North Carolina

Surface Water Data

- Surface water values can be confused by the presence/absence of point sources of contamination.
- Moving away from a point source can show a gradient of values.
- The lake data is pooled from all 270 sampling sites across the State of NC, including those downstream of a known point source.

N	lost frequer	ntly detected P	FAS in North Carolina		
			Environmenta	l Data	
			Concentration in NC water (me	edian (range)) ng/L ppt	
PFAS Type	PFAS Group	PFAS Compound	Drinking Water Wells/ Groundwater		
			Chemours area (n=3406)	% Detection (n)	
		PFBS	2.9 (0.9 - 21)	1.8% (63)	
Legacy Compounds	Sulfonic Acids	PFHxS	3.5 (1.9 - 11)	1% (37)	
our		PFOS	6.9 (2.2 - 39)	1.4% (49)	
r q		PFBA	7.5 (2.2 - 300)	3.2% (109)	
Ö		PFPeA	6.8 (2 - 53)	3.2% (109)	
cy		PFHxA	3.4 (1.9 - 29)	2.5% (85)	
g		PFOA	4.5 (1.1 -61)	2.6% (89)	
ΓĘ	Carboxylic Acids	PFNA	3.5 (2.3 - 7.5)	0.2% (8)	
	Carboxylic Acids	PFDA	3.2 (3 - 7.5)	0.1% (3)	
		PFHpA	3 (0.9 - 43)	22% (740)	
		PFMOPrA [#]	@	@	
		PFMOBA#	@	@	
(A		PFMOAA	13 (2 - 3500)	66% (2241)	
p		PMPA [#]	63 (2 - 8800)	92% (3117)	
nodu		PFO2HxA	13 (1.5 - 2800)	73% (2495)	
ωoχ		PEPA [#]	33 (2 - 2100)	23% (792)	
er (Ether Carboxylic	PFO3OA	4.6 (1.3 - 490)	21% (704)	
Consent Order Compounds	Acids	HFPO-DA (GenX)	15 (2 - 3200)	69% (2355)	
sen		PFO4DA	3.5 (1.1 - 230)	6% (216)	
On:		PFO5DA	5.1 (2.1 - 460)	1% (34)	
O		HydroEVE			
	Ether Sulfonic	Nafion By-prod1	4.6 (1.5 - 20)	0.4% (14)	
	Acids	Nafion By-prod2	5.5 (1.1 - 110)	51% (1748)	
4.4		is a second of a distinguish	shadin this determine beauting D		

Groundwater Data

- Drinking water wells that are sourced through ground water have different PFAS concentrations.
- All values are median valuesacross individual wells and across the entire dataset.
 - Unique measurements may have had greater/lesser concentrations in previous DEQ presentations.
 - The median was calculated to be consistent across the entire table.
- Consent order compounds are most relevant to this area

	Mos	st frequently d	letected PFAS in Nor	rth Carolina ~	
			Environme	ental Data	
			Concentration in NC wate	er (median (range)) ng/L	States with Regulation or
PFAS Type	PFAS Group	PFAS Compound	Drinking Water We	ells/ Groundwater	Guidance ?
			Chemours area (n=3406)	% Detection (n)	
		PFBS	2.9 (0.9 - 21)	1.8% (63)	MI, MN
spi	Sulfonic Acids	PFHxS	3.5 (1.9 - 11)	1% (37)	VT, RI, MA, NH, MN,CT, AK, CO, DE, ME, MI, NM ³
Legacy Compounds		PFOS	6.9 (2.2 - 39)	1.4% (49)	MN, NH, RI, CA, NJ, NY
lmc		PFBA	7.5 (2.2 - 300)	3.2% (109)	MN
ŏ		PFPeA	6.8 (2 - 53)	3.2% (109)	None
Jac		PFHxA	3.4 (1.9 - 29)	2.5% (85)	MI
Fed	Carboxylic Acids	PFOA	4.5 (1.1 -61)	2.6% (89)	CA, RI, MA, NH, NY, CT, ME, AK, CO, DE, NM
		PFNA	3.5 (2.3 - 7.5)	0.2% (8)	MA, CT, NJ, NH, RI,
		PFDA	3.2 (3 - 7.5)	0.1% (3)	MA
		PFHpA	3 (0.9 - 43)	22% (740)	VT, CT , MA, RI
		PFMOPrA [#]	@	@	None
		PFMOBA [#]	@	@	None
		PFMOAA	13 (2 - 3500)	66% (2241)	None
spι		PMPA [#]	63 (2 - 8800)	92% (3117)	None
pour		PFO2HxA	13 (1.5 - 2800)	73% (2495)	None
шо	Ether Carboxylic	PEPA [#]	33 (2 - 2100)	23% (792)	None
O C	Acids	PFO3OA	4.6 (1.3 - 490)	21% (704)	None
Orde	Acius	HFPO-DA (GenX)	15 (2 - 3200)	69% (2355)	NC, MI, OH
ent		PFO4DA	3.5 (1.1 - 230)	6% (216)	None
Consent Order Compounds		PFO5DA	5.1 (2.1 - 460)	1% (34)	None
		HydroEVE			None
	Ether Sulfonic	Nafion By-prod1	4.6 (1.5 - 20)	0.4% (14)	None
	Acids	Nafion By-prod2	5.5 (1.1 - 110)	51% (1748)	None
15		@-isomers	not distinguished in thi	is dataset: ~- hased on	Dec 7, 2020, SSAB meetin

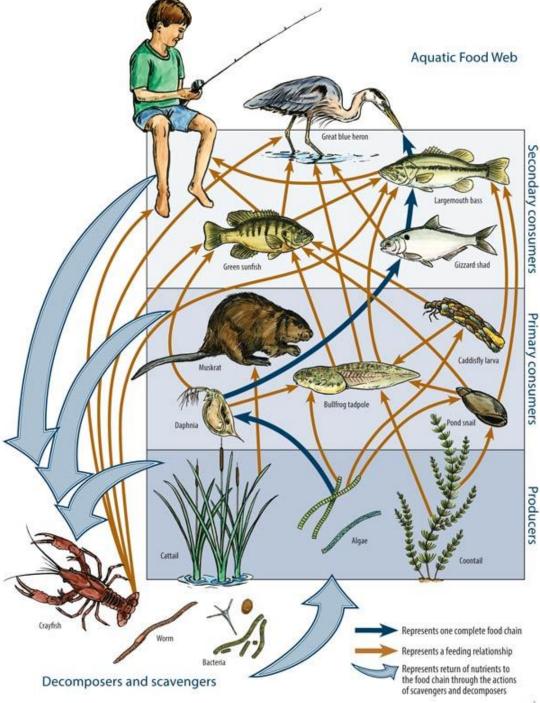
Groundwater Data

- Consent order compounds are most relevant to this area.
- The Consent Order group of PFAS have less data than the legacy group.
- Not yet regulated by any state.
- GenX has health advisories in 3 states.

			Most frequently detected PFAS in North Carolina						
				Biologic					
PFAS Type	PFAS	PFAS		triped Bass Serum [m	ean (range)] ng/L parts per tril	lion			
	Group	Compound	Pamlico Field Lab (n = 29)	% Detection (n)	Cape Fear River (n= 58)	% Detection (n)			
		PFBS	10 (10 - 200)	45% (13)	150 (10 - 1350)	24% (14)			
	Sulfonic	PFHxS	590	3.4% (1)	800 (200 - 1000)	98.3% (57)			
spu	Acids	PFOS	9410 (4620 - 16500)	100% (29)	490000 (122000 - 977000)	100% (58)			
noc		PFBA	<108 (LOD)	0% (0)	100 (100 - 200)	14% (8)			
Ĭ,		PFPeA							
ő		PFHxA							
Legacy Compounds		PFOA	160 (160 - 1140)	14% (4)	570 (160 - 4290)	15% (9)			
Le	Carboxylic	PFNA	480 (340 - 820)	96% (28)	4500 (800 - 11600)	100% (58)			
	Acids	PFDA	2500 (1680 - 4600)	96% (28)	68000 (10200 - 146000)	100% (58)			
		PFHpA							
		PFMOPrA#							
		PFMOBA#							
		PFMOAA							
SD		PMPA#	120 (120 -140)	10% (3)	120 (120 - 190)	14% (8)			
onuc		PFO2HxA							
ă du		PEPA#							
S	Ether	PFO3OA							
Consent Order Compounds	Carboxylic Acids	HFPO-DA (GenX)	1640 (240 - 2300)	10.3% (3)	1910 (310 - 5850)	48% (28)			
nse		PFO4DA							
S		PFO5DA	<5 (LOD)	0% (0)	490 (10 - 1350)	22% (13)			
		HydroEVE							
	Ether	Nafion By- prod1							
	Sulfonic Acids	Nafion By- prod2	<248 (LOD)	0% (0)	300 (250-1030)	77.6% (45)			
16			@ isomers not dis	اد و او د و و او از برو و ا	atacat: based on Dec 7	2020 CCAD			

Most frequently detected PFAS in North Carolina

Blood Serum Data


Blood data values are generally greater than water values since it is a biological fluid and is reflective of bioaccumulation.

This data tells us that a higher trophic level fish is accumulating PFAS in greater concentrations than is in the water in which it lives.

• Suggests bioaccumulation, not necessarily biomagnification.

This data suggests that fish that are consumed by humans are accumulating PFAS and are a source of exposure.

More data is needed.

- To better understand human exposure from fish consumption, more data is needed about contamination through the food web to determine if biomagnification is occurring.
 - 10x increase in concentration with each trophic level
- The muscle of fish needs to be examined to determine how much of the PFAS is portioning into that tissue.
 - This is the best metric of human exposure.
 - This has not been done yet.

			Most fre	quently detec	cted PFAS in North C	Carolina			
						Biological D			
				E	Blood Serum Data [m	nedian (rang	ge)] ng/L parts per t	rillion	
PFAS Type	PFAS Type PFAS Group	PFAS Compound		Wilmingt	on NC	Pittsboro NC	Fayetville Works adjacent, NC	NHANES Data US Population [geo	
		Adults (n=289)	% Detection (n)	Children (n=55)	% Detection (n)	Adults (n=49)	Aduts (n=30)	mean (95%CI)] (n=1929)	
		PFBS							
	Sulfonic Acids	PFHxS	3500 (1200 - 8600)	98% (282)	1900 (1.2-4.7)	98% (54)	3000 (20 - 12500)	2100 (700 - 6700)	1080 (990 - 1180)
spun		PFOS	9400 (3800-28200)	99% (287)	5100 (2800-11500)	100% (55)	11600 (3200 - 31800)	5500 (1400 - 34600)	4250 (3900 - 4620)
odu		PFBA					,	,	
TOT.		PFPeA							
> O		PFHxA					1500 (300 - 4000)		<100 (LOD)
Legacy Compounds	egaci	PFOA	4800 (1700 - 11300)	99.7% (288)	3000 (1900 - 6500)	100% (*55)	6400 (2100 - 42400)	1800 (400 - 7300)	1420 (1330 - 1520)
_	Carboxylic Acids	PFNA	1300 (600 - 3600)	97% (280)	800 (400 - 1500)	82% (45)	1500 (300 - 9500)	600 (<100 - 2100)	411 (360 - 460)
		PFDA					600 (400 - 2400)	200 (<100 - 1300)	200 (180 - 210)
		PFHpA	200 (100 - 1400)	59% (170)	400 (200 - 1000)	98% (54)		100 (<100 - 600)	
		PFMOPrA#							
		PFMOBA#							
spı		PFMOAA							
onu		PMPA [#]							
ďω		PFO2HxA							
Ö		PEPA#							
der	Ether Carboxylic	PFO3OA							
Orc	Acids	HFPO-DA (GenX)	<2000 (LOD)	0%	<2000 (LOD)	0%	not detected	<100 (LOD)	<100 (LOD)
Consent Order Compounds Ether Carboxylic Acids	PFO4DA	2300 (400 - 13700)	98% (284)	2600 (700 - 8900)	` ′				
Col		PFO5DA HydroEVE	300 (100 - 1000)	89% (256)	200 (100 - 400)	84% (46)			
	Ether Sulfonic	Nafion By-prod1							
	Acids	Nafion By-prod2	3200 (1000 - 8500)	99% (286)	1600 (600 - 3800)				
18			~- based on Dec	c 7, 2020, S	SAB meeting pres	sentations	; # - branched an	d linear isomer p	airs

Blood Serum Data

- Blood data values are generally greater than water values since it is a biological fluid and is reflective of bioaccumulation.
- Human blood data can tell us more about the exposure and accumulation that is occurring in North Carolina compared to the rest of the Unites States.

	N	lost frequent	ly detec	y detected PFAS in North Carolina ~					
						ty Data	.,		
DEAC Tuno	DEAC Croup	DEAC Compound			Cellular Rec	•	·		
PFAS Type	PFAS Group	PFAS Compound		(mean fold induction relative to control)					
			PPARα ⁹	PPARγ ⁹	RXRβ ⁹	ERα ⁹	Other Active Sites ¹⁰		
		PFBS							
	Sulfonic Acids	PFHxS	1 - 5	1.5 - 11	1 - 1.5	0.5 - 5			
Legacy Compounds	Sunome Acids	PFOS	1-5	1.5 - 11	1 1.0	0.5			
dwo		PFBA					CYP3A4, CYP2D6, CNG, ALDH1A1, NPSR, HTTQ103		
ŏ >		PFPeA	1 - 12 PFOA =15	1 - 21 PFOA = 22	1 - 18 PFOA = 13	1 - 9 PFOA = 7	VP16,RORγ, G9a, JMJD2A,		
egaci		PFHxA					Nrf2, ELG1, Smad3, Gsgap, DNA re-replication, GLP-1, ATXN, HT-1080-NT, DT40- hTDP1, Plk PBD		
Ľ	Carboxylic	PFOA							
	Acids	PFNA							
		PFDA							
		PFHpA							
		PFMOPrA [#]							
		PFMOBA [#]							
spi		PFMOAA							
unc		PMPA [#]							
ш		PFO2HxA PEPA [#]							
ට්	Ether	PFO3OA	3 - 7	5.5 - 9	1.5 - 11	1 - 2			
Orde	Carboxylic Acids	HFPO-DA (GenX)	3-7	5.5 - 9	1.5 - 11	1-2	CYP2D6, HTTQ103, G9a,		
Consent Order Compounds Carboxylic Acids	PFO4DA					JMJD2A, ATXN, HT-1080			
	PFO5DA					NT, DT40-hTDP1			
ŏ		HydroEVE							
	Ether Sulfonic	Nafion By-prod1							
	Acids	Nafion By-prod2							

- Toxicity data tells us what PFAS does biochemically in the body.
- Cellular receptors are sites on the cells that can interact with proteins and contaminants.
- PPARα reduces triglyceride level and is involved in regulation of energy homeostasis.
- PPARγ causes insulin sensitization and enhances glucose metabolism.
- RXRβ mediates the effects of retinoic acid which is related to learning and memory.
- ERα1 is activated by the sex hormone estrogen.

	IV	lost frequent	ly detec	ted PFAS			ıa		
						ity Data	vitv		
PFAS Type	PFAS Group	PFAS Compound	Cellular Receptor Activity (mean fold induction relative to control)						
TTAS TYPE	11A3 Group	11A3 compound	PPARα ⁹	PPARγ ⁹	RXRβ ⁹	ERα ⁹	Other Active Sites ¹⁰		
			117110	11744	ТИПР	Litta	Other Netive Sites		
		PFBS							
	Sulfonic Acids	PFHxS	1 - 5	1.5 - 11	1 - 1.5	0.5 - 5			
Legacy Compounds		PFOS							
ompo		PFBA					CYP3A4, CYP2D6, CNG ALDH1A1, NPSR, HTTQ10		
ŏ		PFPeA	1 - 12 PFOA =15	1 21	1 10	1 - 9 PFOA = 7	VP16,RORγ, G9a, JMJD2		
egac)		PFHxA					Nrf2, ELG1, Smad3, Gsgap DNA re-replication, GLP-1 ATXN, HT-1080-NT, DT40 hTDP1, Plk PBD		
Ľ	Carboxylic	PFOA		1 - 21 PFOA = 22	1 - 18 PFOA = 13				
	Acids	PFNA							
	-	PFDA							
		PFHpA							
		PFMOPrA [#]							
		PFMOBA [#]							
ds		PFMOAA	ı						
unc		PMPA [#]							
иb		PFO2HxA PEPA [#]							
S	Ether	PFO3OA	2 7	F F O	4 5 44	4 2			
Consent Order Compounds Carboxylic Acids	HFPO-DA (GenX)	3 - 7	5.5 - 9	1.5 - 11	1 - 2	CYP2D6, HTTQ103, G9a			
	PFO4DA					JMJD2A, ATXN, HT-1080			
	PFO5DA					NT, DT40-hTDP1			
ŏ		HydroEVE							
	Ether Sulfonic	Nafion By-prod1							
	Acids	Nafion By-prod2							

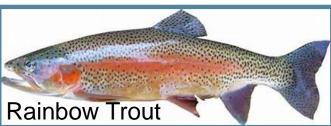

- The numbers indicate the 'average fold induction' above a control chemical.
- This number shows how much greater the PFAS interacted with the cellular receptors than the control chemical.
- This helps us understand how PFAS acts in the body and possible health effects.

Most frequently detected PFAS in North Carolina and a comment of the comment of t									
			Tox	icity Data					
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)				
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001				
	Culfonio Acido	PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6				
spu	Sulfonic Acids	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2				
Legacy Compounds		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05				
y Co		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05< td=""></rpf<0.05<>				
Legacy		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01				
	Carboxylic Acids	PFOA	Zebrafish, Minnow, Daphnia ¹⁴⁻¹⁸	Rat, Mouse ^{26,28,29}	1				
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10				
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10< td=""></rpf<10<>				
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1< td=""></rpf<1<>				
		PFMOPrA [#]		Mouse ³⁰					
S		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰					
pur		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}				
роп		PMPA [#]	Zebrafish ²²		~1 ^{22,35}				
ωo		PFO2HxA	Zebrafish ²²		~1 ^{22,35}				
O	Ether Carboxylic	PEPA [#]	Zebrafish ²²		~1 ^{22,35}				
rde	Acids	PFO3OA	Zebrafish ^{22,23}	25.22.22	~1 ^{22,35}				
nt Order Compounds	ricius	HFPO-DA (GenX)	Zebrafish ^{22,24,25} *	Rat, Mouse ^{26,29,32}	~1 ^{22,35}				
sen		PFO4DA	Zebrafish ^{22,23}	*24,25	~1 ^{22,35}				
Consei		PFO5DA	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}				
J		HydroEVE	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}				
	Ether Sulfonic	Nafion By-prod1							
04	Acids	Nafion By-prod2	* ^{24,25} /iews ^{24,25} : ~- based on Dec 7, 2020	Mouse ³³					

- After cellular effects, toxicology moves to animal science.
- There are both mammalian and nonmammalian model animals used in the laboratory.
 - All offer different advantages depending on the question the researcher is asking, and no single model animal is better or more appropriate than others.

Most frequently detected PFAS in North Carolina Toxicity Da

	Taviaite Data									
			10	oxicity Data						
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)					
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001					
	Cultonia Acida	PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6					
spu	Sulfonic Acids	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2					
inodu.		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05					
у Со		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05< td=""></rpf<0.05<>					
Legacy Compounds		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01					
	Carboxylic Acids	PFOA	Zebrafish, Minnow, Daphnia ¹⁴⁻¹⁸		1					
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10					
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10< td=""></rpf<10<>					
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1< td=""></rpf<1<>					
		PFMOPrA [#]		Mouse ³⁰						
S		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰	22.25					
ou n		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}					
bot		PMPA [#]	Zebrafish ²²		~1 ^{22,35}					
m o		PFO2HxA	Zebrafish ²²		~1 ^{22,35} ~1 ^{22,35}					
Sr C	Ether Carboxylic	PEPA#	Zebrafish ²²		~1 ^{22,35} ~1 ^{22,35}					
rde	Acids	PFO3OA	Zebrafish ^{22,23}	26.20.22						
t O		HFPO-DA (GenX)		Rat, Mouse ^{26,29,32}						
Consent Order Compounds		PFO4DA	Zebrafish ^{22,23}	*24,25	~1 ^{22,35}					
u o		PFO5DA	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}					
9		HydroEVE	Zebrafish ^{22,24,25} *	*24,25	~1 ^{22,35}					
	Ether Sulfonic	Nafion By-prod1								
	Acids	Nafion By-prod2	*24,25	Mouse ³³						





Most frequently detected PFAS in North Carolina										
			Тох	icity Data						
PFAS Type	PFAS Group	PFAS Compound	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)					
		PFBS	Zebrafish, Medaka, Trout ¹¹⁻¹³	Rat ²⁶	0.001 ³⁶					
	Sulfonic Acids	PFHxS	Zebrafish ^{14,15}	Mouse ²¹	0.6 ³⁶					
spu	Sulfornic Acids	PFOS	Zebrafish, Daphnia, Mysid Shrimp, Trout ¹⁴⁻¹⁶	Rat ^{26,27}	2 ³⁶					
mpour		PFBA	Daphnia, Zebrafish, Trout ¹⁷⁻¹⁹	Rat ²⁶	0.05 ³⁶					
y Col		PFPeA	Daphnia, Trout ¹⁷⁻¹⁸	Rat, Mouse ^{26,28}	0.01 <rpf<0.05<sup>36</rpf<0.05<sup>					
Legacy Compounds		PFHxA	Zebrafish, Daphnia, Trout ^{15,17-19}	Rat, Mouse ^{26,28}	0.01 ³⁶					
	Carboxylic Acids	PFOA	Zebrafish, Minnow, Daphnia ¹⁴⁻¹⁸	Rat, Mouse ^{26,28,29}	1 ³⁶					
		PFNA	Daphnia ^{20,21}	Mouse ³⁴	10 ³⁶					
		PFDA	Daphnia, Trout ²¹	Rat ²⁶	0.01 <rpf<10<sup>36</rpf<10<sup>					
		PFHpA	Zebrafish, Daphnia ^{14,21}	Mouse ²⁸	0.01 <rpf<1<sup>36</rpf<1<sup>					
		PFMOPrA [#]		Mouse ³⁰						
ω		PFMOBA [#]	Zebrafish ²²	Mouse ³⁰						
ju ju		PFMOAA	Zebrafish ²²	Mouse ^{30,31}	~1 ^{22,35}					
por		PMPA [#]	Zebrafish ²²		~1 ^{22,35}					
m C		PFO2HxA	Zebrafish ²²		~1 ^{22,35}					
, C	Ethor Corbondia	PEPA [#]	Zebrafish ²²		~1 ^{22,35}					
-de	Ether Carboxylic	PFO3OA	Zebrafish ^{22,23}		~1 ^{22,35}					
Consent Order Compounds	Acids	HFPO-DA (GenX)	Zebrafish ^{22,24,25} *	Rat, Mouse ^{26,29,32}						
sen		PFO4DA	Zebrafish ^{22,23}	* 24,25	~1 ^{22,35}					
o O		PFO5DA	Zebrafish ^{22,24,25} *	* 24,25	~1 ^{22,35}					
O		HydroEVE	Zebrafish ^{22,24,25} *	* 24,25	~1 ^{22,35}					
	Ether Sulfonic	Nafion By-prod1								
	Acids	Nafion By-prod2	* 24,25	Mouse ³³						
23		*- forthcoming	reviews ^{24,25} . ~- hased on Dec 7.2	0020 SSAR mag	ting presentations: # - bu					

- Relative Potency is an estimate of the adverse effects based on a chemical that we know more about.
- In this data, PFOA is the chemical all others are compared to and takes a value of 1.
- The effects of the other PFAS are compared to PFOA so all other numbers are relative to 1.

How can we use all this data?

- The data provides a lot of information how can we use it?
 - Other states have not regulated some of the most prevalent PFAS in NC.
 - One exception PFHpA;
 - This is a Consent Order compound that is regulated in other states, less potent and prevalent than some others.
 - It has a 22% detection in groundwater and has been detected in human samples.
 - Found in lakes across NC and in rainwater close to the Chemours site.
 - Recent development in sampling and analysis of PFAS foam throughout the state is providing more information about the complexity of PFAS contamination.

How can we use all this data?

- Potential Options:
 - 1. Determine which PFAS are at the nexus of having the most information and being the most prevalent in NC and start with that group.
 - 1. Use PFHpA as a starting point and build on similar characteristics and data?
 - 2. Emulate the regulations of other states that have grouped legacy PFAS.
 - 3. Work only with those that are the most prevalent in NC regardless of the amount of information that is known about them.
 - 4. How to proceed with PFAS either as class or individually?
 - 1. Current Congressional and EPA activities could influence our path forward.

How could we use PFHpA as a starting point?

PFAS Group	PFAS Compound	Fluorinate	Total Chain Length	Molecular	(g/mol)	Water Solublity (20-25C (g/L))	PPARα ¹	¹ PPARγ	1 RXRβ1	ERα ¹	Other Active Sites ²⁰	Non- Mammalian	Mammalian	Relative Potency in Rat (as compared to PFOA)	S	urface	water		Drinking V Wells, Groundw	/ F	Pamlico Field Lab (n = 29)	% Detection	Cape Fear River (n= 58)	% Detection	Adults (n=289)	% Detection (n)	Children (n=55)	% Detection (n)		States with Regulation or Guidance ?						
Carboxylic Acids	РЕНрА	6	7	C ₇ HF ₁₃ O ₂	364.06	4.2	1 - 12	1 - 21	1 - 18	1 - 9	Many	Zebrafish, Daphnia	Mouse	0.01 <rpf< 1</rpf< 	37 (2 - 82)	25	1.3	40 (13 3 - 280)	3 (0.9 - 43)	5 (740)					200 (100 - 1400)	59% (170)	400 (200 - 1000)	98% (54)	100 (<100 - 600)	VT, CT , MA, RI						
	PFMOAA	2	4	C ₃ HF ₅ O ₃	180.03							Zebrafish	Mouse	~1		95000	76		,	66% 241)																
	PMPA [#]	3	5	C ₄ HF ₇ O ₃	230.04							Zebrafish		~1		740	696.6)2% 117)	100 (100 - 100)	10%	100 (100 - 200)	14%												
	PFO2HxA	3	6	C ₄ HF ₇ O ₄	246.04							Zebrafish		~1		8200	296.6		- 2800) (2	'3% 495)																
	PEPA [#]	4	6	C ₅ HF ₉ O ₃	280.04						l - 2 CYP2D6, HTTQ103, G9a, JMJD2A,	Zebrafish		~1		280			33 (2 - 2100) 23%	(792)																
Ether	PFO3OA	4	8	C ₅ HF ₉ O ₅	312.04							CYP2D6, HTTQ103, G9a, JMJD2A,	Zebrafish		~1		7000	37.2		4.6 (1.3 - 21% 490)	5 (704)															
Carboxylic Acids	HFPO-DA (GenX)	5	7	C ₆ HF ₁₁ O ₃	330.05	300	3 - 7	5.5 - 9	1.5 - 1	1 1-2			CYP2D6, HTTQ103, G9a, JMJD2A,	Zebrafish*	Rat, Mouse ^{5,14,1}	~1	110 (21 - 39000)+	790	475.2	40 (16 - 42)		59% 355)	160 (200 - 230)	10%	1900 (300 - 5900)	48%										
	PFO4DA	5	10	C ₆ HF ₁₁ O ₆	378.05						ATXN, HT- 1080-NT, DT40-hTDP1	Zebrafish	*	~1		330	5.9		3.5 (1.1 - 6% 230)	(216)					2300 (400 - 13700)	98% (284)	2600 (700 - 8900)	100% (55)								
	PFO5DA	6	12	C ₇ HF ₁₃ O ₇	444.06						_							Zebrafish*	*	~1^		153	0.2		5.1 (2.1 - 1% 460)	5 (34)	all < LOD	0%	500 (10 - 1400)	22%	300 (100 - 1000)	89% (256)	200 (100 - 400)	84% (46)		
	HydroEVE	6	10	C ₈ H ₂ F ₁₄ O ₄	428.08							Zebrafish*	*	~1		<10																				
Ether Sulfonic	Nafion By- prod1	7	10	C ₇ HF ₁₃ O ₅ S	444.12														4.6 (1.5 - 0.49 20)	% (14)																
Acids	Nafion By- prod2	7	10	C ₇ H ₂ F ₁₄ O ₅ S	464.13							*	Mouse ²³			<10	18.8			51% 748)	all < LOD	0%	300 (300- 1000)	78%	3200 (1000 - 8500)	99% (286)	1600 (600 - 3800)	100% (55)								

Questions for the Board

- Does the expanded data table change or strengthen the recommendations you made at the last meeting?
- What to you think of each of the 4 possible approaches? Are there any additional approaches you would suggest DEQ explore further?
- Do you think we have enough data to make a decision about which approach to take?
- What would the Board like to be taken on to support the PFAS effort?

References

- 1. Zhang, C., Hopkins, Z. R., McCord, J., Strynar, M. J. & Knappe, D. R. Fate of per-and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. *Environ. Sci. Technol. Lett.* **6**, 662–668 (2019).
- 2. Petre, M.-A. et al. Per- and Polyfluoroalkyl Substance (PFAS) Transport from Groundwater to Streams near a PFAS Manufacturing Facility in North Carolina, USA. Environ. Sci. Technol. 55, 5848–5856 (2021).
- 3. Kindschuh, J. & Lee, T. State-By-State Regulation of PFAS Substances in Drinking Water. *Bryan Cave Leighton Paisner* https://www.bclplaw.com/en-US/insights/state-By-state-regulation-of-pfas-substances-in-drinking-water.html (2021).
- 4. Guillette, T. C. et al. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. Environ. Int. 136, 105358 (2020).
- 5. Kotlarz, N. et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina. Environ. Health Perspect. 128, 077005 (2020).
- 6. Stapleton, H. M. PFAS Exposure Study Duke's Research in the NC Piedmont. https://sites.nicholas.duke.edu/pfas/.
- 7. Pritchett, J. R. et al. Notes from the Field: Targeted Biomonitoring for GenX and Other Per- and Polyfluoroalkyl Substances Following Detection of Drinking Water Contamination North Carolina, 2018. MMWR Morb. Mortal. Wkly. Rep. 68, 647–648 (2019).
- 8. Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A. & Needham, L. L. Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. *Environ. Health Perspect.* **115**, 1596–1602 (2007).
- 9. Houck, K. A. et al. Bioactivity Profiling of Per-and Polyfluoroalkyl Substances (PFAS) Identifies Potential Toxicity Pathways Related to Molecular Structure. Toxicology 152789 (2021).
- 10. Cheng, W. & Ng, C. A. Using machine learning to classify bioactivity for 3486 per-and polyfluoroalkyl substances (PFASs) from the OECD list. Environ. Sci. Technol. 53, 13970–13980 (2019).
- 11. Foguth, R., Sepúlveda, M. S. & Cannon, J. Per-and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. *Toxics* 8, 42 (2020).
- 12. Chen, L. et al. Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquat. Toxicol. 201, 1–10 (2018).
- 13. Ulhaq, M., Örn, S., Carlsson, G., Morrison, D. A. & Norrgren, L. Locomotor behavior in zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquat. Toxicol. 144, 332–340 (2013)

References

- 14. Menger, F., Pohl, J., Ahrens, L., Carlsson, G. & Örn, S. Behavioural effects and bioconcentration of per-and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245, 125573 (2020).
- 15. Gaballah, S. et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ. Health Perspect. 128, 047005 (2020).
- 16. Hekster, F. M., Laane, R. W. & De Voogt, P. Environmental and toxicity effects of perfluoroalkylated substances. Rev. Environ. Contam. Toxicol. 99–121 (2003).
- 17. Hoke, R. A., Bouchelle, L. D., Ferrell, B. D. & Buck, R. C. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids. *Chemosphere* 87, 725–733 (2012).
- 18. Valsecchi, S. et al. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. J. Hazard. Mater. 323, 84–98 (2017).
- 19. Mahapatra, C. T. et al. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids. J. Appl. Toxicol. 37, 699–708 (2017).
- 20. Lu, G.-H., Liu, J.-C., Sun, L.-S. & Yuan, L.-J. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna. Water Sci. Eng. 8, 40–48 (2015).
- 21. Viberg, H., Lee, I. & Eriksson, P. Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology 304, 185–191 (2013).
- 22. Gebreab, K. Y. et al. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. Environ. Pollut. 265, 114928 (2020).
- 23. Wang, J. et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environ. Int. 134, 105317 (2020).
- 24. Pelch, K. E., Reade, A., Wolffe, T. A. & Kwiatkowski, C. F. PFAS health effects database: Protocol for a systematic evidence map. Environ. Int. 130, 104851 (2019).
- 25. Vendl, C. et al. Profiling Research on PFAS in Wildlife: Protocol of a Systematic Evidence Map and Bibliometric Analysis. (2021).
- 26. Bil, W. et al. Risk assessment of per-and polyfluoroalkyl substance mixtures: a relative potency factor approach. Environ. Toxicol. Chem. 40, 859–870 (2021).
- 27. Pedersen, K. E. et al. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). Environ. Res. 138, 22–31 (2015).
- 28. Han, J.-S. *et al.* Subacute dermal toxicity of perfluoroalkyl carboxylic acids: comparison with different carbon-chain lengths in human skin equivalents and systemic effects of perfluoroheptanoic acid in Sprague Dawley rats. *Arch. Toxicol.* **94**, 523–539 (2020).

References

- 29. Blake, B. E. et al. Evaluation of Maternal, Embryo, and Placental Effects in CD-1 Mice following Gestational Exposure to Perfluorooctanoic Acid (PFOA) or Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX). Environ. Health Perspect. 128, 027006 (2020).
- 30. Woodlief, T., Vance, S., Hu, Q. & DeWitt, J. Immunotoxicity of Per-and Polyfluoroalkyl Substances: Insights into Short-Chain PFAS Exposure. Toxics 9, 100 (2021).
- 31. Vance, S. 30-Day Immunotoxicity Study of PFMOAA in C57BL/6 Mice. (2019).
- 32. Conley, J. M. et al. Adverse maternal, fetal, and postnatal effects of hexafluoropropylene oxide dimer acid (GenX) from oral gestational exposure in Sprague-Dawley rats. Environ. Health Perspect. 127, 037008 (2019).
- 33. Lang, J. R. *et al.* Toxicity of Balb-c mice exposed to recently identified 1, 1, 2, 2-tetrafluoro-2-[1, 1, 1, 2, 3, 3-hexafluoro-3-(1, 1, 2, 2-tetrafluoroethoxy) propan-2-yl] oxyethane-1-sulfonic acid (PFESA-BP2). *Toxicology* **441**, 152529 (2020).
- 34. Wolf, C. J., Zehr, R. D., Schmid, J. E., Lau, C. & Abbott, B. D. Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-Alpha. PPAR Res. 2010, 1–11 (2010).
- 35. Gomis, M. I., Vestergren, R., Borg, D. & Cousins, I. T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. *Environ. Int.* 113, 1–9 (2018).
- 36. Zeilmaker, M. J., Fragki, S., Verbruggen, E. M. J., Bokkers, B. G. H. & Lijzen, J. P. A. Mixture exposure to PFAS: A relative potency factor approach. (2018). Publisher: Rijksinstituut voor Volksgezondheid en Milieu RIVM.

Keys to Toxicity Data Abbreviations and Computational Grouping Information

Supplementary Table 1- the ToxPrint Group information from Houck et al 2021.

	Diementary Table 1- the ToxPhilit Group information in				
code	ToxPrint Group Name	Casrn	Chemical name	abbrv	Notes
		3871-99-6	Potassium perfluorohexanesulfonate	PfHxS	salt form
1	Perfluoroalkane sulfonate	29420-49-3	Potassium perfluorobutanesulfonate	PFBS	salt form
•	1 Citidolodikane Sanonate	2795-39-3	Potassium perfluorooctanesulfonate	PFOS	salt form
		2806-15-7	Sodium perfluorodecanesulfonate	PFDS	not in NC table; salt form
		1763-23-1	Perfluorooctanesulfonic acid	PFOS	
2	Perfluorakyl (linear) sulfonates	355-46-4	Perfluorohexanesulfonic acid	PFHxS	
2	remuorakyi (iiileai) suilonates	375-92-8	Perfluoroheptanesulfonic acid	PFHpS	not in NC table
		375-73-5	Perfluorobutanesulfonic acid	PFBS	
		62037-80-3	Ammonium perfluoro-2-methyl-3-oxahexanoate	Gen X	salt form
		55621-21-1	Perfluoro-3,6-dioxaoctane-1,8-dioic acid	PFDoDa	
5	Perfluoroalkyl ether carboxylates	377-73-1	Perfluoro-3-methoxypropanoic acid	PFMOPra	
		801212-59-9	Perfluoro-4-isopropoxybutanoic acid	PFPE-1	not in NC table
		13252-13-6	Perfluoro-2-methyl-3-oxahexanoic acid	GenX	
		422-64-0	Perfluoropropanoic acid	PFProA	not in NC table
		2706-90-3	Perfluoropentanoic acid	PFPeA	
		335-67-1	Perfluorooctanoic acid	PFOA	
7	Darflyaraallyd (linear) Carbayydia Asida	375-95-1	Perfluorononanoic acid	PFNA	
1	Perfluoroalkyl (linear) Carboxylic Acids	307-24-4	Perfluorohexanoic acid	PFHxA	
		375-22-4	Perfluorobutanoic acid	PFBA	
		335-76-2	Perfluorodecanoic acid	PFDA	
		375-85-9	Perfluoroheptanoic acid	PFHpA	
	Perfluoroalkyl carboxylic acids (PFCAs) their salts and esters		Chloro-perfluorononanoic acid	PFOA	salt form

Supplementary Table 2-Active site descriptive information abridged from Cheng and Ng 2019.

abridged from Cheng & Ng 2019									
Target Class	Target	Description							
G protein-coupled receptors (GPCRs)	NPSR	The neuropeptide S receptor (NPSR), which is highly expressed in brain areas involving modulation of arousal, stress and anxiety, could be a novel drug target for the treatment of sleep and anxiety disorders. This assay is conducted to identify NPSR antagonists.							
a protein-coupled receptors (archs)	GLP-1	The overall aim of this assay is to discover ligands for class B1 GPCRs. Specifically, this assay focused on class B1 receptor for glucagon-like peptide-1 (GLP-1), which is a potential therapeutic target for diabetes and neurodegenerative disease.							
ion channel	CNG	The cyclic nucleotide gated (CNG) ion channel was used as a biosensor for cAMP induction in this assay. The rationale is that cAMP stimulation will cause the CNG ion channel to open and subsequent membrane depolarization to occur.							
miscellaneous	DNA re-replication	This assay is used to screen small molecules that induce DNA re-replication, which can cause the DNA damage response, arrest cell proliferation, and trigger apoptosis.							
	CYP2C9 , CYP3A4, CYP2D6	Cytochromes P450 (CYP) are a group of heme-thiolate monooxygenases that oxidize a variety of substances including steroids, fatty acids, and xenobiotics. In these assays, three different CYPs (CYP2C99, CYP3A410, and CYP2D611) were used to screen inhibitors and substrates for those CYP enzymes.							
other enzymes	ALDH1A1	Aldehyde dehydrogenase 1 (ALDH1A1) is an enzyme that oxidizes a variety of endogenous and exogenous aldehydes to the corresponding carboxylic acids and is the critical step for retinoic acid metabolism. In this assay, inhibitors of ALDH1A1 were identified.							
	G9a	G9a is a histone methyltransferase that is responsible for histone H3 lysine 9 (H3K9) mono- and di-methylation. It has been recognized as a potential drug target for several human diseases, including cancer. The goal of this assay is to identify inhibitors of G9a.							
promoter	ELG1	As the major subunit of a Replication Factor C-like complex, ELG1 is critical to ensure genomic stability during DNA replication14. This assay identifies small molecules that block ELG1 function.							
promoter	ATXN	Ataxin-2 protein (ATXN2) is encoded by the ATXN2 gene. The mutation in ATXN2 could cause Spinocerebellar ataxia type 2 (SCA2) disease. The objective of this assay is to identify compounds that inhibit the expression of ATXN2.							
protein kinase	PIk1 PBD	Polo-like kinase 1 (Plk1) is a member of a conserved subfamily of serine / threonine protein kinases and plays a central role in cell proliferation. Plk1 is a potential target for anti-cancer therapy. This assay aimed to identify inhibitors that target the Plk1 polo-box domain (PBD).							
	K18	In this assay, a recombinantly expressed fragment of tau, K18 was used to identify inhibitors of tau (which is an abundant protein in the axons of neurons that stabilizes microtubules) aggregation.							
protein-protein interaction	HTTQ103	When exon 1 of HTTQ103 (Huntingtin protein containing 103 polyglutamines expansion) is expressed, it causes cell death and GFP aggregates. This assay screens for small molecules that reduce aggregate formation.							
	JMJD2A	JMJD2A is a jumonji-domain-containing lysine demethylase. In this assay, the inhibitors of JMJD2A-tudor domain interactions (which is helpful in probing the regulatory pathways of selective demethylation of a given methyllysine locus) were identified20. signaling pathway Gsgsp The objective of this assay is to identify molecules with inhibitory activity at gsp mutations, which are responsible for McCune-Albright syndrome.							
	RORy	The goal of this assay is to identify small molecules that inhibit ROR (retinoic acid-related orphan receptor) gamma activity.							
	VP16	The goal of this assay is to identify small molecules that inhibit components common to both ROR gamma and VP16 transcription factor.							
transcription factor	Nrf2	Nrf2 is a transcription factor that maintains cellular redox homeostasis and protects cells from xenobiotics. This assay is used to screen inhibitors of Nrf2 function, which could be potential therapeutic targets for improvement in cancer treatment.							
	Smad3	TGF-b signaling pathway plays important roles in cellular and development pathways. Smad3 is the primary transducer of TGF-b's signals and regulates many functions related to TGF-b signaling. The goal of this assay is to identify Smad3-small molecule antagonists.							
	HT-1080-NT	In this assay, a synthetic lethal screen was conducted for chemical probes specific for 2HG-producing tumor cells using HT-1080-NT fibrosarcoma cell line.							
viability	DT40-hTDP1*	Human tyrosyl-DNA phosphodiesterase 1 (HTDP1) is a novel repair gene and can be used as a new target for anti-cancer drug development. In this assay, after exposure to small molecules in the absence of camptothecin, the growth kinetics of DT40-hTDP1 cells were evaluated to determine whether the molecules can inhibit the TDP1-mediated repair pathway.							
	DT40-hTDP1*	In this assay, after exposure to small molecules in the presence of camptothecin, the growth kinetics of DT40-hTDP1 cells were evaluated to determine whether the molecules can							

inhibit the TDP1-mediated repair pathway.

