

August 11, 2020

Mr. Jeffrey D. Cole North Carolina Department of Environmental Quality Division of Air Quality 225 Green Street, Suite 714 Fayetteville, NC 28301 ALIG 1 2 2020

RECEIVED

Division of Air Quality Fayetteville Regional Office

RE: International Tie Disposal, LLC – Application Number 7700101.20A

Dear Mr. Cole:

International Tie Disposal, LLC (International Tie Disposal) is proposing to develop a biochar production site to be located in Hamlet, Richmond County, North Carolina (the Hamlet site). The Hamlet site is a greenfield facility; therefore, International Tie Disposal is submitting this revised synthetic minor construction permit application to authorize the proposed operation.

The enclosed application includes all required elements, including those identified as incomplete in the letter from the Division of Air Quality on June 29, 2020. Since International Tie Disposal is now requesting a synthetic minor permit application, this submittal includes a check for \$350 for the difference between the synthetic minor application fee (\$400) and the small source application fee, which was already submitted (\$50). Note that International Tie Disposal is working to obtain a street address for inclusion in the application and requests that the Division of Air Quality process the application concurrently with these efforts.

International Tie Disposal appreciates the Division of Air Quality's review of this synthetic minor construction permit application for the Hamlet site. If there are any questions or more information is needed, please contact me at (704) 553-7747.

Sincerely,

TRINITY CONSULTANTS

Mich Sant

Nicole Saniti, P.E. Managing Consultant

RECEIVED

AUG 1 2 2020

Division of Air Quality Fayetteville Regional Office

AIR QUALITY CONSTRUCTION PERMIT APPLICATION International Tie Disposal, LLC > Hamlet, NC Site

International Tie Disposal, LLC

Marks Creek Church Rd. Parcel No. 840200970265 Hamlet, NC 28345 (704) 321-0802

Prepared By:

Nicole Saniti, PE - Manager of Consulting Services

TRINITY CONSULTANTS

325 Arlington Ave. Suite 500 Charlotte, NC 28203 (704) 553-7747

Project 203402.0124

August 2020

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	1-1
2. PROJECT DESCRIPTION	2-1
 3. EMISSION CALCULATIONS 3.1. Kiln Emissions 3.2. Feedstock and Product Handling	.3-1
4. STATE AND FEDERAL REGULATORY REQUIREMENTS	4-1
4.1. Federal Regulations	.4-1
4.1.1. Parts 51– New Source Review (NSR)	4-1
4.1.2. New Source Performance Standards (NSPS)	4-2
4.1.3. National Emission Standards for Hazardous Air Pollutants (NESHAP)	
4.1.4. NNSR Applicability	
4.1.5. Federal Title V Program Applicability	4-3
4.2. State Regulations	.4-4
4.2.1. 15A NCAC 02D.0503, Particulates from Fuel Burning Indirect Heat Exchangers	4-4
4.2.2. 15A NCAC 02D.0504, Particulates from Wood Burning Indirect Heat Exchangers	4-4
4.2.3. 15A NCAC 02D.0515, Particulates from Miscellaneous Process Industries	4-4
4.2.4. 15A NCAC 02D.0516, Sulfur Dioxide Emissions from Combustion Sources	4-4
4.2.5. 15A NCAC 02D.0521, Control of Visible Emissions	4-5
4.2.6. 15A NCAC 02D.0540, Particulates from Fugitive Dust Emission Sources	
4.2.7. 15A NCAC 02D .1100, Control of Toxic Air Pollutants (State Only)	4-5
4.2.8. 15A NCAC 02D .1806, Control of Odors (State Only)	

.....

5. NORTH CAROLINA DEQ APPLICATION FORMS

5-1

i

APPENDIX A: AREA MAP, SITE LAYOUT, AND PROCESS FLOW

APPENDIX B: POTENTIAL EMISSION CALCULATIONS

APPENDIX C: PERMIT APPLICATION FEE

International Tie Disposal, LLC (International Tie Disposal) is proposing to develop a biochar production site to be located in Hamlet, Richmond County, North Carolina (the Hamlet site). The Hamlet site is a greenfield facility; therefore, International Tie Disposal is submitting this state construction and operating permit application to authorize the proposed operations.

The proposed Hamlet facility will be classified as a synthetic minor source with respect to Title V of the Clean Air Act (CAA), as International Tie Disposal is requesting a federally enforceable limits to restrict criteria pollutant emissions of nitrogen oxides (NO_X), volatile organic compounds (VOC), carbon monoxide (CO) less than the 100 ton per year (tpy) major source threshold and hazardous air pollutants (HAP) less than the 10 tpy major source threshold for individual HAP and 25 tpy for combined HAP. All other criteria pollutant emissions will be less than the 100 tpy major source threshold without the use of air pollution control equipment. The proposed project will not trigger Prevention of Significant Deterioration (PSD) permitting requirements, as the emissions from the proposed project are less than the 250 tpy PSD major source threshold.

International Tie Disposal is submitting this permit application in accordance with 15A NCAC 02Q .0300 to install a biochar production process, consisting of untreated wood and railroad tie handling and sizing equipment, biochar kilns, and product handling, sizing, and packaging equipment. All information required to issue a construction permit under 02Q .0300 for the proposed project is contained in this permit application. International Tie Disposal is requesting a synthetic minor permit in accordance with 15A NCAC 02Q .0315 and has included the required air quality permit application fee of \$400.

The International Tie Disposal site will include the following sources of regulated air pollutants:

- Kilns that share common stacks. There will be 426 kilns on site, with an estimated 160 kilns operating per day. Each kiln will utilize:
 - A natural gas-fired process heater used to initiate the kiln reaction within each individual kiln.
 - Shared stacks that include afterburner devices to provide process and emission controls.
- Fugitive haul road emissions from truck traffic that delivers raw materials to the site and transports finished biochar from the site (not included in Title V or PSD applicability determinations).
- Fugitive haul road emissions from mobile sources that are used for on-site raw material transfers and kiln transfers from loading and unloading locations within the site (not included in Title V or PSD applicability determinations).
- > A shredder that is used to size the wood or railroad tie feedstock that is processed in the kiln.
- Material handling equipment including conveyors, screening equipment, storage silos, and packaging units for finished product.

This application is organized in the following manner:

- > Section 2 provides a detailed description of the project;
- Section 3 provides the emission calculation methodology;
- Section 4 provides the regulatory applicability analysis;
- > Section 5 contains the required DEQ permit application forms;
- Appendix A contains the area map, site layout diagram, and process flow diagram for the proposed facility;
- > Appendix B contains detailed emission calculations and stack test reports; and
- > Appendix C contains a check for the permit application fee.

The proposed facility will receive logs (untreated lumber) and creosote-treated railroad ties by rail or truck. Received materials will be offloaded and stacked. All raw material is reduced to a 3 – 4 inch by 12-18 inch size using a shredder and loaded into kilns in the raw material staging area. Raw material staging and handling will be performed using a tracked excavator with a handling arm.

Empty kilns will be transported to the processing area for charging with shredded ties and returned to the kiln area using a wheel-loader.

For emission calculation purposes, the site is assumed to have 426 kilns, approximately 160 of which will operate each day, while the remaining kilns are being prepared for the next day's operations, cooling or used for rotational purposes.

The capacity of each kiln will be approximately 2000 pounds of woody raw material. A kiln loaded with raw material will be equipped with an emission control stack (afterburner) for the processing period that may last 7 to 8 hours. Processing involves controlled heating (pyrolysis) to volatilize unwanted chemical components to produce the carbonaceous biochar.

Pyrolysis within the kiln is initiated by the combustion of natural gas. Once the pyrolysis is initiated, it is self-sustaining and does not require additional natural gas combustion. The kiln exhaust stacks are refractory-lined and are equipped with an afterburner to combust any organic compounds. The afterburner will be natural gas fired with a capacity of no greater than 0.125 MMBtu/hr.

At the end of the pyrolysis operation, the exhaust stack will be removed and placed on an adjacent kiln, already loaded with raw material, in preparation for firing the next day. Thus, adjacent kilns will share an emission control stack. The processed kiln is covered by seal-cover lid during the cool-down period as the kiln cools for approximately 10 to 18 hours. Stacks and lids will be handled by a mid-sized loader.

Emissions from the kiln pyrolysis process include combustion related emissions (nitrogen oxides (NO_X), carbon monoxide (CO)), VOC, including methanol, and particulate matter (PM). Emissions from the process initiation combustion and the afterburner combustion are included in the kiln emission factor since there is only one emission point for each kiln during the processing period. There are no emissions from the kilns during the cool-down period.

After the pyrolysis process and cool down, the kilns containing biochar will be transported to the sizing and packaging building by the mid-sized wheel loader for mechanical off-loading into a hopper. The loader will then transport the empty kiln to the log area where it will be loaded and then transported back to the kiln area for the next day's processing. The biochar product will be screened, crushed to a desired size, and charged to a bagging system or conveyed into one of three storage silos. Up to 500 pounds of biochar will be produced by a single kiln process. The product processing operation is conducted within the sizing and packaging building. Sizing and packaging emissions are particulates. Emissions from the wheel-loader are shown in the haul road calculations.

Packaged product will be loaded onto pallets for shipment by truck or rail off-site. Product trucks will travel to and from the sizing & packaging building via the product transport route. Emissions from truck transport are shown in the haul road emission calculations.

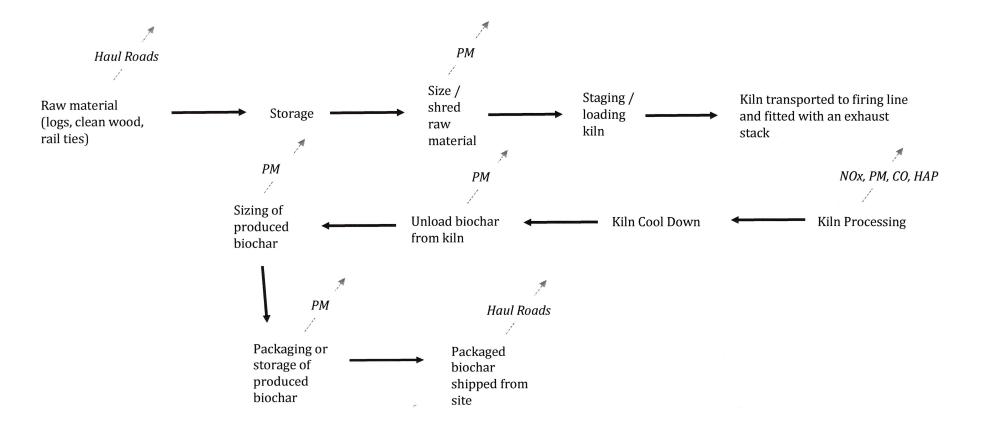
Other sources of emissions of regulated pollutants may include small fuel tanks, propane storage tanks, and maintenance activities such as welding. These sources, individually and collectively, are negligible sources of emission and are exempt from permitting requirements.

orels. Received materials will be offlooded and stacked. All raw material is reduced to a 3 – 4 intri 5; 2-13 tach size using a sineddor and loeded into kilas in the raw couterial staging area. Haw material aging and randling will be performed using a tracked excavator with a handling arm.

Empty follas will be transported to the processing area for charging with stredded tics and returned to the firm area using a wheel-fonder.

Ear consisten exiculation purposes, the site is assumed to have 4.26 kilos, approximately 160 of which will neurate each day, while the remaining klins are being prepared for the neu-thy's operations, cooling of used for remaining prepases

The capacity of each kin will be approximately 2000 pounds of woody ray, systemal. A kin jourded with raw material will be equipped with an unitation control studic(afterburner) for the processing period that may last 7 to 8 hours. Fracesting is volves controlled hearing (pyrolysis) to volabilize unweated channest components to produce the carbonaccous biochan.


Pyrodysis within the ldba is initiated by the analosition of natural gas. Once the pyrodysis is initiated, it is ach-sumining and does not arounce additional natural gas comboadore. The ldba exitants stacks are refeated by inced and the equipped with an adorbationer to actubust any organal compounds. The affection will be natural gas fixed with a concern of ac grantee than 0.025 to Minufor.

At the out of the pyeatysis operation, the calianst stack will be removed and maned on imodynecit (dm. A next period with rew material, in preparation doubting the next day. To us, adjacent idles will share an environe contral stack. The processed (dim is created by scale) much (id do this the cool-downsperiod as the control to constant to anyous which to the hours. Stacks and (ids will be handled by a mid-sired feador

Brassians (and the kills (5, orlys) popoles tradicio manustion polici, discuted as (mangen exident (40%), carbia minoritie (60)), kilf, antheling methanoloural particulate may no (4%). Cantennas (non cho' protees (itiliation combastion and the off-arbitine confrontian are only off-discute may noncine there is only one calastropoint for each tabulants (23, protosten gravity) in the state on a substate the off-model. The callest or each tabulated are confronted as the callest off-term of the substate the off-term calastropoint for each tabulant are protosten gravity (1000).

Adverting of a fasts gar exectant cool disate the best containing to the well be to mapped dual to consecute and probably high display for an definite the back containing to diservel of backet, into dual to greet. The back to fight that the transmit is grappy high to be began contained for the backet, and the part of the back to fight the the transmit of the prophy high to be and contained for the backet, and the transmitted back to fight the the transmit of the to be and contained to be the backet, and the transmitted defined so the back of the back of the to be the prophy of the to be and the source of the fight of defined so the back of the back of the fight of the prophy of the tot of the source of the fight. We produce to be the back of the back of the transmitter of the probability of the tot of the source of the neutron so the the source of the back of the tot of the probability of the tot of the source of the tot of the tot of the tot of the back of the tot of tot

ા તાલાકુઓ ભાગ પ્રતામ મળતું છે. જિલ્લાંથી તાલાપુ ક્યોં પ્રકારના બોફિલ્લો લાપેકુ પ્રાથવિક માં આ પ્રતિકારણ લેવાન હ મળે આવે આ આવે માથ પ્રતિવૃત્તિ હુલ પિત્ત પ્રદાં સમયદાં દુષ્ટ્ર પ્રતિ પ્રિયા ભાખાનું છે તે આ તે સાથે તે જિલ્લાની આ આવે આ ગામ છે. આ પ્રેમલ્લાની મહેલ બોક્સેલ્લે માન્ય પ્રત્યાનીયોય છ

SIMPLIFIED PROCESS FLOW DIAGRAM SHOWING POTENTIAL EMISSION SOURCES

International Tie Disposal, LLC | Hamlet, North Carolina Site Trinity Consultants

2-3

 \mathbb{D}

This section discusses the methodologies used to calculate emissions from the proposed project.

3.1. KILN EMISSIONS

The emission calculation methodology used for potential emission calculations from the kiln involves multiplying emission factors in lb/ton of material heated by the maximum amount of material heated in tons, or multiplying lb/MMBtu emission factors by the maximum heat input of the material heated in MMBtu.

Emission factors for CO, NO_X, VOC, methanol, and PM are taken from one of two stack test reports for a similar pyrolysis operation in Weld County, Colorado (Biochar Now). One performance test in 2015 was conducted using creosote treated railroad ties, and the other test in 2019 was conducted using untreated wood. Emissions are calculated using the worst-case emission factor from the two performance tests on a pollutant-by-pollutant basis, including a 25% safety factor. Note that the kilns and afterburners used at the Biochar Now facility are identical in size to the proposed kilns for this operation. Tested pollutant emissions from the process initiation combustion and afterburner are included in the kiln emission factor since there is only one emission point for each kiln during the pyrolysis period. There are no emissions from the kilns during the cool down period.

Emissions of all other pollutants from the kilns were calculated based on emission factors from AP-42, 5th Edition, Section 1.6 *Wood Residue Combustion in Boilers*, Tables 1.6-3 and 1.6-4 (Sep 2003), or using test data from the Craven County Wood Energy facility in North Carolina.¹ For these pollutants, potential emissions were calculated using the maximum of the test data and AP-42 emission factor or the test data if an AP-42 factor was not available. Although the pyrolysis process occurs in an oxygen starved environment and does not involve combustion of the material in the kiln, the use combustion emission factors provides a conservative estimate of emissions for which no test data is available.

The afterburner control efficiency of 95% is applied to all uncontrolled VOC and volatile HAP and TAP emissions.

Sulfur dioxide (SO₂), HAP and TAP emissions from the process initiation combustion and afterburners are calculated using DEQ's *Natural Gas Combustion Emissions Calculator*, Revision N (Jan 2017).

Equations used to calculate emissions from each process are provided in Appendix B.

3.2. FEEDSTOCK AND PRODUCT HANDLING

Emissions from feedstock handling (shredding and kiln loading) are calculated based on the maximum throughput of feedstock, and emission factors obtained from the table in the memorandum "Particulate Matter Potential to Emit Emission Factors from Activities at Sawmills, Excluding Boilers, Located in Pacific Northwest Indian Country", May 8, 2014, from Dan Meyer, US EPA Region 10. Emissions from product handling and packaging are calculated based on published factors in AP-42 Section 11.19.2 – Crushed Stone Processing and Pulverized Mineral Processing. Emission factors in lb/ton are multiplied by the

¹ Application submitted by Coastal Carolina Clean Power, LLC to North Carolina Division of Air Quality, *PSD Air Quality Construction and Operating Permit Application*. Oct 2013.

maximum material throughput in tons. Control efficiency is applied for enclosures, which reduce PM emissions to the atmosphere.

Storage silo emissions for are based on AP-42 Section 13.2.4 – Aggregate Handling and Storage Piles, Equation 1:

$$E\left(\frac{lb}{ton}\right) = k\left(0.0032\right) \left[\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right]$$

Where E is the calculated emission factor, k is the particle size multiplier, U is the mean wind speed in miles per hour, and M is the moisture content of the material. The particulate emissions (PM, PM_{10} , and $PM_{2.5}$) are calculated using the potential throughput of the material in tons per year and the calculated emission factor E (lb/ton) from the equation above.

Equations used to calculate emissions from each process are provided in Appendix B.

3.3. UNPAVED HAUL ROADS

The proposed project will include unpaved haul roads for deliveries of feedstock to the site, transporting kilns and stacks, and product transfers. Potential emissions were calculated using the methods presented in AP-42, 5th Edition, Section 13.2.2 *Unpaved Roads* (Nov 2006). Detailed emission calculations are provided in Appendix B.

The proposed Hamlet site is subject to federal and state air regulations. This section summarizes the air permitting requirements and the key air quality regulations that apply to the proposed facility. Specifically, applicability of PSD, New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP) and North Carolina DEQ Air Quality Regulations are addressed.

4.1. FEDERAL REGULATIONS

Federal air quality regulations are codified under 40 CFR. The applicability of the following Parts were reviewed:

- > Parts 51- NSR
- > Part 60 NSPS
- > Part 61 pollutant specific NESHAP
- > Part 63 source category NESHAP
- > Part 70 Title V Operating Permit Program

4.1.1. Parts 51- New Source Review (NSR)

The NSR permitting program generally requires a stationary source to obtain a permit and undertake other obligations prior to construction of any project at an industrial facility if the proposed project results in a net emissions increase in excess of certain threshold levels. The NSR program is comprised of two elements: nonattainment NSR (NNSR) and PSD. The NNSR program potentially applies to new construction or modifications that result in emission increases of a particular pollutant for which the area in which the facility is located is classified as "nonattainment" for that pollutant. The PSD program applies to project increases of those pollutants for which the area the facility is located in is classified as "attainment" or "unclassifiable."

4.1.1.1. Attainment Status

Richmond County is currently designated by the US EPA as "attainment" or "unclassifiable" for all criteria pollutants. Therefore, PSD regulations apply to any new major stationary source or major modifications to an existing major stationary source.

4.1.1.2. Part 51.166 - PSD

The PSD program regulates emissions from "major" stationary sources of regulated pollutants (i.e., criteria pollutants). As defined in 40 CFR 51.166, a stationary source is considered PSD major if

- the facility belongs to one of the 28 named source categories in 40 CFR 51.166(b)(1)(iii) and has the potential to emit 100 tpy of any pollutant subject to the regulations; or
- the facility has the potential to emit 250 tpy or more of any pollutant subject to the regulations, regardless of its source category.

The Hamlet facility is not in one of the 28 named source categories, and potential emissions from the proposed facility, excluding fugitive emissions less than the 250 tpy major source threshold. Therefore, the Hamlet facility is a minor source with respect to the PSD permitting regulations.

4.1.2. New Source Performance Standards (NSPS)

NSPS apply to new, modified, or reconstructed equipment after a given applicability date. NSPS applicability was reviewed for the Hamlet site; the sections below review applicability to specific NSPS that could potentially apply to the facility.

Potentially applicable NSPS subparts of 40 CFR Part 60 are discussed in the subsections below.

4.1.2.1. Subpart A - General Provisions

Any source subject to a source-specific NSPS is also subject to the general provisions of NSPS Subpart A. Unless specifically excluded by the source-specific NSPS, Subpart A generally requires initial construction notification, initial startup notification, performance tests, performance test date initial notification, general monitoring requirements, general recordkeeping requirements, and semiannual monitoring and/or excess emission reports. The Hamlet facility will comply with all applicable requirements.

4.1.2.2. Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units (40 CFR 60, Subpart Dc)

This subpart applies to units that use any fuel to generate steam or heat any heat transfer medium with heat input of greater than 10 MMBtu/hr; process heaters are not covered by this subpart. The propane heaters used in the kiln process are process heaters and have heat input of 0.125 MMBtu/hr. Therefore, this subpart does not apply.

4.1.2.3. 40 CFR 60 Subparts CCCC and DDDD - Commercial and Industrial Solid Waste Incineration (CISWI) Rules

NSPS Subpart CCCC and the emission guidelines in Subpart DDDD apply to commercial and industrial solid waste incineration (CISWI) units. Subpart CCCC applies to units for which construction commenced after June 4, 2010 or modification or reconstruction commenced after August 7, 2013. Subpart DDDD applies to units not covered by Subpart CCCC. The most recent versions of Subparts CCCC and DDDD were published on June 23, 2016 in response to comments and concerns raised from the previous final rules published on February 7, 2013. The rules define a CISWI unit as any distinct operating unit of any commercial or industrial facility that combusts, or has combusted in the preceding 6 months, any solid waste as that term is defined in 40 CFR 241. The definition of solid waste in 40 CFR 241 was published on March 21, 2011 and amended on February 7, 2013.

The provisions of Subpart CCCC apply to incineration units which commenced construction after June 4, 2010 or modified/reconstructed after August 7, 2013 that combust solid waste as defined in 40 CFR 60.2265 and are not exempted under 40 CFR 60.2020. The provisions of Subpart DDDD apply to combustion units not covered by Subpart CCCC that combust solid waste as defined in 40 CFR 60.2875.

With this application, International Tie Disposal is proposing to generate biochar from creosote-treated railroad ties through pyrolysis in kilns at the Hamlet facility. Pyrolysis is the chemical decomposition of condensed substances by heating that occurs spontaneously at high enough temperatures or a chemical change or degradation of material brought about by the action of heat. By comparison, combustion or burning is the sequence of exothermic chemical reactions between a fuel and an oxidant accompanied by the production of heat and conversion of chemical species. International Tie Disposal does not consider the kilns used for pyrolysis of the creosote treated rail ties as incinerators since pyrolysis does not involve combustion of the creosote treated rail ties. Furthermore, the kilns are utilizing a wood

feedstock for the production of charcoal, which is included in the definition of a chemical recovery unit provided in 40 CFR 60.2265. Chemical recovery units are not incinerators. For these reasons, the proposed kilns are not subject to NSPS Subpart CCCC.

The afterburners are not subject to NSPS Subpart CCCC since they are control devices and therefore do not meet the definition of a CISWI unit in 60.2265.

4.1.3. National Emission Standards for Hazardous Air Pollutants (NESHAP)

The proposed facility will be an area source of HAP, as it will have a PTE of <25 tpy total HAP and <10 tpy of any individual HAP, including fugitive emissions.

The following MACT subparts in 40 CFR Part 63 are potentially applicable to the emission sources at the plant:

Subpart	Description	Applicability	Affected Sources (ID)
Subpart A	General Provisions	Yes	Sources listed below
Subpart JJJJJJ	National Emission Standards for Hazardous Air Pollutants for Boilers Area Sources	No	Kiln propane heaters

Table 6-1. Potentially Applicable MACT Subparts

Each applicable MACT Subpart of 40 CFR Part 63 is discussed in the subsections below.

4.1.3.1. Subpart A - General Provisions

Any source subject to a source-specific NESHAP is also subject to the general provisions of NESHAP Subpart A. Unless specifically excluded by the source-specific NESHAP, Subpart A generally requires initial construction notification, initial startup notification, performance tests, performance test date initial notification, general monitoring requirements, general recordkeeping requirements, and semiannual monitoring and/or excess emission reports.

4.1.3.2. NESHAP for Industrial Boilers (40 CFR Part 63, Subpart JJJJJJ)

The kiln propane heaters are considered process heaters as defined in this subpart and are not affected sources.

4.1.4. NNSR Applicability

The proposed facility is located in Richmond County, North Carolina. Richmond County is currently attainment or unclassifiable for all criteria pollutants. Therefore, the proposed facility is not subject to requirements under the Nonattainment New Source Review (NNSR) program.

4.1.5. Federal Title V Program Applicability

As shown in this application, the proposed facility will be a synthetic minor source of criteria pollutants (NO_X, SO₂, VOC, CO PM, PM₁₀, PM_{2.5}) and HAPs with respect to Title V permitting (i.e., emissions < 100 tpy for criteria pollutants and < 25 tpy for HAPs). Therefore, the proposed facility is not subject to Title V Operating Permit requirements. International Tie Disposal is requesting a federally enforceable limit

of 100 tpy for NO_X , VOC, and CO, 10 tpy for individual HAP, and 25 tpy for combined HAP to remain a synthetic minor source.

4.2. STATE REGULATIONS

The following is a discussion of the applicability or non-applicability of regulations contained in North Carolina's State Implementation Plan (SIP) under 15A NCAC.

4.2.1. 15A NCAC 02D.0503, Particulates from Fuel Burning Indirect Heat Exchangers

15A NCAC 02D .0503 specifies that particulate matter emissions from fuel burning indirect heat exchangers should not exceed the values provided in 02D .0503(c). For burners with a heat input capacity less than 10 MMBtu/hr, the emission limit is 0.6 lb/MMBtu. The proposed natural gas-fired kiln burners and the proposed afterburners are direct-fired. Therefore, the requirements of 15A NCAC 02D .0503 do not apply.

4.2.2. 15A NCAC 02D.0504, Particulates from Wood Burning Indirect Heat Exchangers

15A NCAC 02D .0504 specifies that particulate matter emissions from wood burning indirect heat exchangers should not exceed the values provided in 02D .0504(c). The proposed kilns utilize a pyrolysis process to generate biochar from wood. This is not considered wood burning. Therefore, this section is not applicable to the proposed kilns.

4.2.3. 15A NCAC 02D.0515, Particulates from Miscellaneous Process Industries

15A NCAC 02D .0515 provides the following:

(a) The allowable emission rates for particulate matter from any stack, vent, or outlet of any industrial process for which no other emission control standards are applicable shall not exceed the level calculated with the equation $E = 4.10(P)^{0.67}$ calculated to three significant figures for process weight rates less than or equal to 30 tons per hour. For process weight rates greater than 30 tons per hour, the allowable emission rates for particulate matter shall not exceed the level calculated with the equation $E = 55.0(P)^{0.11}$ - 40 calculated to three significant figures. For the purpose of these equations "E" equals the allowable emission rate for particulate matter in pounds per hour and "P" equals the process weight rate in tons per hour.

The maximum throughput of material for the kilns, shredder, and product handling, and packaging equipment will be less than 30 tons per hour. Therefore, equation $E=4.10(P)^{0.67}$ applies to these emission sources. Based on kiln stack tests results and published emission factors for other facility processes, PM emissions from the facility particulate matter emission sources will comply with the limit above.

4.2.4. 15A NCAC 02D.0516, Sulfur Dioxide Emissions from Combustion Sources

15A NCAC 02D.0516 provides the following:

(a) Emission of sulfur dioxide from any source of combustion that is discharged from any vent, stack, or chimney shall not exceed 2.3 pounds of sulfur dioxide per million BTU input. Sulfur dioxide formed by the combustion of sulfur in fuels, wastes, ores, and other substances shall be included when determining compliance with this standard. Sulfur dioxide formed or reduced as a result of treating flue gases with sulfur trioxide or other materials shall also be accounted for when determining compliance with this standard.

Emissions of SO_2 from the combustion of fossil fuels in the kilns and the afterburner will not exceed the standard listed above. These sources will inherently comply with this limit through the combustion of clean fuels (natural gas).

4.2.5. 15A NCAC 02D.0521, Control of Visible Emissions

North Carolina Regulation 02D .0521 limits visible emissions from emission sources constructed after July 1, 1971, to 20 percent, when averaged over a six-minute period. The proposed operations (kilns, shredder, product handling, and packaging equipment) will comply with this requirement.

4.2.6. 15A NCAC 02D.0540, Particulates from Fugitive Dust Emission Sources

North Carolina Regulation 02D .0540 states the following:

The owner or operator of a facility required to have a permit pursuant to 15A NCAC 02Q or a source subject to a requirement pursuant to 15A NCAC 02D shall not cause or allow fugitive dust emissions to cause or contribute to substantive complaints or visible emissions in excess of that allowed pursuant to Paragraph (e) of this Rule

International Tie Disposal will utilize unpaved haul road to move feedstock, product, and equipment throughout the facility. To minimize fugitive dust emissions from these roads, the facility will implement dust control measures, including speed limits, surface chemical treatment, wet suppression, and gravel.

4.2.7. 15A NCAC 02D .1100, Control of Toxic Air Pollutants (State Only)

Under 15A NCAC 02Q .0706 (b)(1)(A) and (B), the facility is only required to submit a permit application to demonstrate compliance with 15A NCAC 02D .1100 if the modification results in:

(1) a net increase in emissions or ambient concentration as previously determined pursuant to 15A NCAC 02D .1106 and 15A NCAC 02Q .0709 of any toxic air pollutant that the facility was emitting before the modification; or

(2) emissions of any toxic air pollutant that the facility was not emitting before the modification if such emissions exceed the levels set forth in 15A NCAC 02Q.0711.

The proposed project results in emissions of toxic air pollutants (TAP). As shown in Appendix A, facilitywide emissions of all toxic air pollutants are less than the toxic pollutant exemption rates (TPERs) provided in 15A NCAC 02Q.0711. Therefore, no toxic air pollutant permitting or dispersion modeling demonstration is required.

4.2.8. 15A NCAC 02D .1806, Control of Odors (State Only)

(e) Control Requirements. The owner or operator of a facility subject to this Rule shall not operate the facility without implementing management practices or installing and operating odor control equipment sufficient to prevent odorous emissions from the facility from causing or contributing to objectionable odors beyond the facility's boundary.

International Tie Disposal will take measures to comply with this regulation if the Hamlet site is causing or contributing to an objectionable odor beyond the facility's boundary.

North Caroline Regulation (IZD), ES2 Elizaits visible unitations from emission saurres constraited after July 1, 1922, to 20 percent, which averaged or op ask minute period. The proposed operations (idno: should reproduct handling, and packages communicity with comply with the construction.

 K. & K. & NCAC 02D, 0540; Particulaties from Fugitive Dust Emission Sources Neutrologility from prime 220, 0546 preserve befolgening;

l de comercia, operator of a focality equinact co dates o ponocipiement no 5% la GAC BAQ per a somene velgent to o conjunciment per valaticito 1.54 46340323 shall est co-o e en alfone jugitica ch st emissions for consumer reconstituet es societanative completator e en chilo en assign for constructions of that o devent pinemani co Para societa for of this Rafe

heternational: Bio Dispussion III Initias unsumed Devi nand ta nerve (extended proenzet, and equence) theodytems the facility – To minerative institue dust emissions in an these analy, the facility and hughament and control or assume, indiction, spectrants, surface chemical treatment, wet oppresses in and growel

4.3.7.153. RCAC 020 , 1400, Control of Toxic Air PolloSants (State Only).

Under (1555-WCAC-9355-316-36-66-66-66), and 763, the traditity to employed an operation statement of the common december is the SAC-8C-9C-12D-3-13C-91 December (1997) and the constitution of the con-

jely, konstrikte annen de delse menne andrike – annaren berrente – nedera och delse annar an annar annar 1550 Meridi 1910 – 1910 – an 180 Maril Viente – 1916 af anger et delse en en dintale annar et en annar e annar ermetika dec en dire – al Urana et an

ਾਹੀਂ, ਦਾ ਆਪ ਜਾ ਮੁੱਖਣਾ (ਜਨਦਾ ਜਾਂ ਆਪੀ ਬੇਖਾਜ਼ੀ ਉੱਜਾਂ ਪਿਛਾ ਮੰਡੀਉਨ ਸਨਾਂ (ਜਨਾਂ ਦਲਗਾਂਦਾ) (ਗਾਇੱਕ ਬੇਬਾ ਉਹ ਦੇ ਦੇ ਦਾ ਪੁੱਤ ਬੇਬਾਇ ਦਸ ਬੱਚੇ ਦਾ ਸਾਲਾਬਾਂ ਦਾ ਜੀ ਇਡੀ ਆ ਜੁੱਦਾ ਹੈ। ਜਾਂ ਜਿਸ ਦੇ ਜਿਸਦੀ ਕਿਹਾ, ਜਿਸ ਉ

לא היה האוריים המקומת השאולים יה הגם אומה אלה הכיריים ההאורים להלים הייתה ההאורים האורים יהייתה אלהיים אלה יה ההיה החורים ההיה להלל האהיה היה אאלים היה יותר ההיה להיני הייתו אלי היותר היה הייתר ההיה הלהיים להלילים לה ההיא הייתר להגם להלאלה להליץ הלל לה המיניה היה אה ההיה אנה אישוניה. כל האלי מילג הן הראשונים אורים האלה להאיה הייתו גדוה היה ליניה האליים הייתר This section contains the following NCDEQ Forms:

- Form A1 Facility (General Information);
- > Form A2 & A3 Emission Source Listing;
- Form B Emission Source (General);
- Form B1 Emission Source (Combustion Source);
- Form C3 Control Device (Thermal or Catalytic);
- > Form D1 Facility-wide Emissions Summary; and
- > Form D5 Technical Analysis to Support Permit Application.

A preliminary zoning consistency determination is also included. International Tie Disposal will continue to work with the zoning department to ensure the determination is completed and sent to the state.

FORM A

EVISED 09/22/16 NCDEQ/Division of Air	Quality - Application for Air Permit to Construct/Operate
	NOT BE PROCESSED WITHOUT THE FOLLOWING:
Local Zoning Consistency Determination (new Appropriat Appropriat	e Number of Copies of Application Application Fee (please check one option below)
	가지 거리에서 많은 것은 소리되었는 것을 해야 했다. 것을 많은 것은 것이 많은 것은 것은 것을 위해 하는 것을 가지 않는 것을 하는 것을 수 있다. 것을 하는 것을 수 있는 것을 하는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 하는 것을 수 있는 것을 것을 수 있다. 것을 것을 것을 수 있는 것을 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 것을 것을 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 수 있는 것을 것을 것을 것을 수 있는 것을 수 있는 것을 것을 것을 것을 것을 것을 것 같이 않는 것을 것 같이 것을 것 같이 않는 것을 것 같이 않는 것이 같이 않는 것이 같이 것 않는 것 같이 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는 것 않는 것 않는 것 같이 않는 것 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는
	(if required Payment V Check Enclosed
	ENERAL INFORMATION
egal Corporate/Owner Name: International Tie Disposal, LLC	
ite Name: Project Tie	
ite Address (911 Address) Line 1: Marks Creek Church Rd Parcel# 840200970265 ite Address Line 2:	
ity: Hamlet	State: NC
p Code:	28345 County: Richmond
	ONTACT INFORMATION
esponsible Official/Authorized Contact:	Invoice Contact:
ame/Title: A. Basil Polivka / CEO	Name/Title: Helen Lupton
ailing Address Line 1: 13700 Providence Road	Mailing Address Line 1: 13700 Providence Road
ailing Address Line 2: Suite 200	Mailing Address Line 2: Suite 200
ity: Weddington State: NC Zip Code:	28104 City: Weddington State: NC Zip Code: 28104
	04-321-0805 Primary Phone No.: 704-321-0802 Fax No.: 704-321-0805
econdary Phone No.:	Secondary Phone No.:
mail Address: basilp@polivkaintl.com	Email Address: helenl@polivkaintl.com
acility/Inspection Contact:	Permit/Technical Contact:
ame/Title: Jill DeLisio	Name/Title: A. Basil Polivka / CEO
ailing Address Line 1: 13700 Providence Road	Mailing Address Line 1: 13700 Providence Road
ailing Address Line 2: Suite 200	Mailing Address Line 2: Suite 200
ty: Weddington State: NC Zip Code:	28104 City: Weddington State: NC Zip Code: 28104
rimary Phone No.: 704-321-0802 Fax No.: 70	04-321-0805 Primary Phone No.: 704-321-0802 Fax No.: 704-321-0805
econdary Phone No.:	Secondary Phone No.:
mail Address: jilld@polivkaintl.com	Email Address: basilp@polivkaintl.com
	CATION IS BEING MADE FOR
New Non-permitted Facility/Greenfield	nitted) Renewal Title V Renewal Non-Title V
Name Change Ownership Change Administrative Amendment	Renewal with Modification
	TION AFTER APPLICATION (Check Only One)
General Small	Prohibitory Small Synthetic Minor Title V
	ry (Plant Site) INFORMATION
escribe nature of (plant site) operation(s):	
rocessing and pyrolysis of used railroad ties and wood to produce saleable biochar.	
	Facility ID No. N/A
rimary SIC/NAICS Code: 335991	Current/Previous Air Permit No. N/A Expiration Date:
acility Coordinates: Latitude: 34.918829	Longitude: -79.634894 ***If yes, please contact the DAQ Regional Office prior to submitting this application.***
oes this application contain confidential 🗌 YES 📝 NO	(See Instructions)
	RM THAT PREPARED APPLICATION
	Firm Name: Trinity Consultants, Inc.
erson Name: Nicole Saniti, PE ailing Address Line 1 :325 Arlington Ave. Suite 500	Mailing Address Line 2:
	Maining Address Line 2.
	Zin Code: 28203
ity: Charlotte State: NC	Zip Code: 28203 County: Mecklenburg
ity: Charlotte State: NC hone No.: 704.553.7747 x104 Fax No.:	Email Address: NSaniti@trinityconsultants.com
State: NC 'hone No.: 704.553.7747 x104 Fax No.: SIGNATURE OF RESPOndence Signature of Respondence	Email Address: NSaniti@trinityconsultants.com
Sity: Charlotte State: NC Phone No.: 704.553.7747 x104 Fax No.: Fax No.:	Email Address: NSaniti@trinityconsultants.com

Attach Additional Sheets As Necessary

Page 1 of 2

FORM A (continued, page 2 of 2) GENERAL FACILITY INFORMATION

REVISED 09/22/16 NCDEQ/Division of Air Qualit	ty - Application for Air Permit to Construct/Operate
SECTION AA1 - APPLICATIO	ON FOR NON-TITLE V PERMIT RENEWAL
	e) hereby formally requests renewal of Air Permit No.
There have been no modifications to the originally permitted facility or the operations therein that wo Is your facility subject to 40 CFR Part 68 "Prevnetion of Accidental Releases" - Section 112(r) of the	
If yes, have you already submitted a Risk Manage Plan (RMP) to EPA?	e Clean Air Act? L YES NO VES NO Date Submitted:
Did you attach a current emissions inventory?	
If no, did you submit the inventory via AERO or by mail? Via AERO	Mailed Date Mailed:
SECTION AA2- APPLICA	TION FOR TITLE V PERMIT RENEWAL
In accordance with the provisions of Title 15A 2Q .0513, the responsible official of	(Company Name)
hereby formally requests renewal of Air Permit No.	(Air Permit No.) and further certifies that:
 The current air quality permit identifies and describes all emissions units at the al North Carolina Title V regulations at 15A NCAC 2Q .0500; 	bove subject facility, except where such units are exempted under the
 (2) The current air quality permit cits all applicable requirements and provides the me 	ethod or methods for determing compliance with the applicable
requirements;	
(3) The facility is currently in compliance, and shall continue to comply, with all applic in the second state of the secon	
compliance with the conditions of the permit shall be deemed compliance with the (4) For applicable requirements that become effective during the term of the renewe	
 (5) The facility shall fulfill applicable enhanced monitoring requirements and submit a 	
The responsible official (signature on page 1) certifies under the penalty of law that all information a	
formed after reasonable inquiry, are true, accurate, and complete.	
SECTION AA3- API	PLICATION FOR NAME CHANGE
New Facility Name:	
Former Facility Name:	
An official facility name change is requested as described above for the air permit mentioned on page	
modifications to the originally premitted facility that would requie an air quality permit since the last p associated with this name change.	ermit was issued and if ther has been an ownership change
associated with this hame change.	
SECTION AA4- APPLICA	ATION FOR AN OWNERSHIP CHANGE
By this application we hereby request transfer of Air Quality Permit No.	from the former owner to the new owner as described below.
The transfer of permit responsibility, coverage and liability shall be effective	(immediately or insert date.) The legal ownership of the
facility described on page 1 of this form has been or will be transferred on permitted facility that would require an air quality permit since the last permit was issued.	(date). There have been no modifications to the originally
Signature of New (Buyer) Responsible Official/Authorized Contact (as typed on page 1):	
X Signature (Blue Ink):	
Date:	
New Facility Name:	
Former Facility Name:	
(4) A. S.	
Signature of Former (Seller) Responsible Official/Authorized Contact:	
Name (typed or print):	
Title:	
X Signature (Blue Ink):	
Date:	
Former Legal Corporate/Owner Name:	
In lieu of the seller's signature on this form, a letter may b	be submitted with the seller's signature indicating the ownership change
SECTION AA5- APPLICATIO	ON FOR ADMINISTRATIVE AMENDMENT
Describe the requested administrative amendment here (attach additional documents as necessary):
OC V R	
	the second
· · · · · · · · · · · · · · · · · · ·	
	Sheets As Necessary Page 2 of 2

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2

112r APPLICABILITY INFORMATION - A3

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate EMISSION SOURCE LISTING: New, Modified, Previously Unpermitted, Replaced, Deleted							
			CONTROL DEVICE				
EMISSION SOURCE ID NO.	EMISSION SOURCE DESCRIPTION	CONTROL DEVICE ID NO.	DESCRIPTION				
	oment To Be ADDED By This Applie						
S-1	426 Kilns	CD-1	Afterburners for operating kilns				
.5-1	420 Millis		Alterburners for operating kins				
·PA(E3):	WATE FORM ST-89 ON THE FOLLOWING	SONS A STREET A PROP	TYPE OF EMISSION SOLID E				
inter ingenities (Form B7)	4) Marine of chemicals	E most probavadore Form B	it cas, when human from B71	a book			
(83	er (Bonn 86) [] Indinention [] or (Bonn 8	uanto aniferenzai) II	o antioekee aor (Com 132)	<u>daudau</u>			
	ped mic () reals) in the first						
na si							
	Existing Permitted Equipme	nt To Be MODIFIED By This	s Application				
ing in the	the solution of the solution o	TRACTOR 1 BOTTOR	Garrina	HATU			
8114	88.88	004	(573) <u>(577</u> 4)	3144			
	PORG PAR TANK		ALTERAL BORGAS PM				
				10.000			
ALL CAREER		90.00					
				MOM			
	Malak province and and						
	Equipment To Be	DELETED By This Applicati	ion				
THO HERE IN	INAGTON LAUTOA HA	Danke Lan Spenzil					
and a state of the state of the							
and the second	nienal entre entre inter	Here HOTONIA -	THATU (209 1	6 2120			

11:	2(r) APPLICABILIT	Y INFORMATION		A 3
Is your facility subject to 40 CFR Part 68 "Prevention of Accide If No, please specify in detail how your facility avoided applica		(r) of the Federal Clean Air Act?	🗆 Yes 🗹	No
If your facility is Subject to 112(r), please complete the followir A. Have you already submitted a Risk Management Plan (Pes No Specify required RMP B. Are you using administrative controls to subject your fac Yes No If yes, please specify: C. List the processes subject to 112(r) at your facility:	(RMP) to EPA Pursuant to 40 ² submittal date: cility to a lesser 112(r) program	If submitted, RMP submittal date:		
PROCESS DESCRIPTION	PROCESS LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL	MAXIMUM IN INVENTOR	
				A SOME

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDE	Q/Division o	f Air Quality - A	Application fo	r Air Permit te	o Construct/O	perate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	:	ES-1	
426 Kilns				_	EVICE ID NO		CD-1	
OPERATING SCENARIO 1	OF	1			DINT (STACK)	,	EP-1	
DESCRIBE IN DETAILTHE EMISSION SOURCI Up to 426 wood-fiiring kilns for pyrolysis of wood		•						
TYPE OF EMISSION SOUR	CE (CHECK A							
└┘ Coal,wood,oil, gas, other burner (Form B1)		Woodwork	ing (Form B4)		Manuf.	of chemicals/c	oatings/inks (F	Form B7)
Int.combustion engine/generator (Form B2)			ishing/printing	· /	Incinera	ation (Form B8)	
Liquid storage tanks (Form B3)		Storage sil	os/bins (Form	B6)	_√Other (I	Form B9)		
START CONSTRUCTION DATE: August 2020			DATE MANU	FACTURED:	August 2020			
MANUFACTURER / MODEL NO .: Biochar No	W		EXPECTED (OP. SCHEDUL	.E:9 HR/[DAY <u>7</u> D	AY/WK <u>52</u>	_WK/YR
IS THIS SOURCE SUBJECT TO?	(SUBPARTS	?):		NESH.	AP (SUBPART	S?):		
PERCENTAGE ANNUAL THROUGHPUT (%):			-MAY 25%		-AUG 25%		P-NOV 25%	6
CRITERIA AI	R POLLUT	ANT EMISS	IONS INFO	RMATION	FOR THIS S	SOURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)			4.20	6.84	11.18	48.98	11.18	6.84
PARTICULATE MATTER<10 MICRONS (PM10)			2.87	4.60	7.63	48.98	7.63	4.60
PARTICULATE MATTER<2.5 MICRONS (PM2.5)			2.07	3.42	5.50	24.10	5.50	3.42
SULFUR DIOXIDE (SO2)			0.01	0.03	0.03	0.15	0.03	0.03
NITROGEN OXIDES (NOx)			60.00	97.84	159.75	699.71	159.75	97.84
CARBON MONOXIDE (CO)			12.00	19.57	31.95	139.94	31.95	19.57
VOLATILE ORGANIC COMPOUNDS (VOC)			1.38	13.12	73.48	321.86	3.67	13.12
			9.85E-06	2.73E-05	2.61E-05	1.44E-04	2.61E-05	2.73E-05
OTHER								
HAZARDOUS	AIR POLLU	ITANT EMIS	SIONS INF	ORMATIO	N FOR THIS	SOURCE		
		SOURCE OF		DACTUAL			EMISSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	CAUNO.	TAOTOR	10/11	toris/yr	10/11	toria/yi	10/11	toris/yr
				1	See An	pendix B		
TOXIC AIR	ΡΟΓΓΙΤΑ	NT EMISSIO	NS INFOR	MATION FO	OR THIS SC	DURCE		
		SOURCE OF						
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		/hr	EMISSIONS	day		/yr
					10/0			, j.
					See An	pendix B		
Attachments: (1) emissions calculations and supporting	documentation	· (2) indicate all re		nd fodoral onfor	I cooblo normit lin	aite (o a boure o	f operation ami	ssion rates) and

describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE Attach Additional Sheets As Necessary

FORM B1

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of	Air Quality - A	pplication for <i>I</i>	Air Permit to Constr	uct/Opera	te	B1
EMISSION SOURCE DESCRIPTION	:		E	MISSION SOURCE	ES-1		
426 Kilns	С	CONTROL DEVICE ID NO(S): CD-1			CD-1		
OPERATING SCENARIO:	OF	1	E	MISSION POINT (ST	ACK) ID N	IO(S):	EP-1
	S HEAT	SPACE HEAT			GENERA	ΓΙΟΝ	
	JOUS USE	STAND BY/EM	ERGENCY	OTHER (DES	CRIBE): <u>P</u>	rolosis to produce Bio	<u>char product</u>
HEATING MECHANISM:		\checkmark	DIRECT				
MAX. FIRING RATE (MMBTU/HOUR):						
		WOOD-	FIRED BUR	NER			
WOOD TYPE: BARK	WOOD/BARK	WET WO	OD L	DRY WOOD		OTHER (DESCRIBE	E):
PERCENT MOISTURE OF FUEL:							
		O WITH FLYAS	H REINJECTIO	Ν		ROLLED W/O REINJE	CTION
FUEL FEED METHOD:		HEAT TRANS			IR 🗌 OT	HER (DESCRIBE)	
		COAL-	FIRED BURI	NER			
TYPE OF BOILER	IF OTHER DESCRI	BE:					
	_	-		ADER STOKER		FLUIDIZED BED	
				TROLLED		CIRCULATING	
)		REINJECTION		RECIRCULATING	
			_	NO FLYASH REINJECTION			
			FIRED BUR	r			
TYPE OF FIRING: V	ORMAL TANGE		EL-FIRED B			W NOX BURNER	
				-		UTIONAL	
TYPE OF BOILER:		ONTROL(S) (II	_			UTIONAL	
				P/BACKUP FUE	_S)		
			MAXIMUM D			REQUESTED CA	APACITY
FUEL TYPE	UNITS				LIMITATION (UI	NIT/HR)	
Natural Gas	Btu/hr		7.800 Btu/h				
			,				
	FUEL CHARACTER	RISTICS (CO	MPLETE AL	L THAT ARE AP	PLICAB	LE)	
		SI	PECIFIC	SULFUR CO	ONTENT	ASH CO	NTENT
FUEL TYPE	BTU	CONTENT	(% BY WEIGH		(% BY W	'EIGHT)	
Natural gas	102	20 Btu/scf					
COMMENTS:							
L							

Attach Additional Sheets As Necessary

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

		•	ation for Air Permit to Co	,	C	3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM	M MUST BE SE	ALED BY A	PROFESSIONAL ENGIN	IEER (P.E.) LICENSED I	N NORTH CAROLINA.	
CONTROL DEVICE ID NO: CD-1	CONTROLS E	MISSIONS	FROM WHICH EMISSIO	N SOURCE ID NO(S):	ES-1	
EMISSION POINT (STACK) ID NO(S): EP-1	POSITION IN	SERIES OF	F CONTROLS	NO. <u>1</u>	_OF1_UNITS	
MANUFACTURER:	МС	DEL NO:				
OPERATING SCENARIO:						
OF1						
TYPE 🗸 AFTERBURNER 🗌 REGENERATIVE TH	1				CATALYTIC OXIDA	TION
EXPECTED LIFE OF CATALYST (YRS):	METHOD OF			EDS REPLACMENT: PHOROUS COMPOUNE	D HEAVY ME	
TYPE OF CATALYST: CATALYST VC	DL (FT ³):		VELOCITY THROUGH C	ATALYST (FPS):		
SCFM THROUGH CATALYST:						
Combustion of exhaust gases from kilns to control residual VOC	emissions fron	n pyrolysis.				
POLLUTANT(S) COLLECTED:	VOC					
BEFORE CONTROL EMISSION RATE (LB/HR):	27.60					
CAPTURE EFFICIENCY:	100	%	%	%	%	
CONTROL DEVICE EFFICIENCY:	95	%	%	%	%	
CORRESPONDING OVERALL EFFICIENCY:	95	%	%	%	%	
EFFICIENCY DETERMINATION CODE:	2					
TOTAL AFTER CONTROL EMISSION RATE (LB/HR) :	1.38					
PRESSURE DROP (IN. H ₂ O): MIN MAX		OUTLE	T TEMPERATURE (°F):	1000 F MIN	1700 F MAX	
NLET TEMPERATURE (°F): 1000 F MIN 1700F	MAX	RESIDE	ENCE TIME (SECONDS):			
NLET AIR FLOW RATE (ACFM): 2,100 (SCFM): 500		COMBL	JSTION TEMPERATURE	(°F):		
COMBUSTION CHAMBER VOLUME (FT ³):		INLET N	MOISTURE CONTENT (%):		
% EXCESS AIR:		CONCE	ENTRATION (ppmv)		OUTLET	
ě		TOTAL	MAXIMUM FIRING RATE	(MILLION BTU/HR):	0.125	
INLET TEMPERATURE (°F): 1000 F MIN 1700F INLET AIR FLOW RATE (ACFM): 2,100 (SCFM): 500 COMBUSTION CHAMBER VOLUME (FT ³): % EXCESS AIR:	MAX	RESIDE COMBU INLET M CONCE	ENCE TIME (SECONDS): JSTION TEMPERATURE MOISTURE CONTENT (% ENTRATION (ppmv)	(°F): .): INLET	OUTLET	
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO	THE CONTRC	L SYSTEM	:			
COMMENTS:						
Atta	ach Additio	nal She	ets As Necessary			

FORM D1 FACILITY-WIDE EMISSIONS SUMMARY

REVISED 09/22/16 NCDEQ/Div	ision of Air Quali	ty - Application	for Air Permit to	o Construct/Op	erate		D1
CRITERIA A	AIR POLLUTAN	T EMISSIONS	INFORMATIO	N - FACILITY-	WIDE		
		EMIS: (AFTER CO	D ACTUAL SIONS ONTROLS / TIONS)	(BEFORE C	. EMISSIONS ONTROLS / TIONS)	(AFTER CO	EMISSIONS ONTROLS / TIONS)
AIR POLLUTANT EMITTED			s/yr		is/yr		s/yr
PARTICULATE MATTER (PM)			30		.95		30
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		4.	80	35	.40	4.	80
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})	PARTICULATE MATTER < 2.5 MICRONS ($PM_{2.5}$)		52	25	.63	3.	52
SULFUR DIOXIDE (SO ₂)		0.	03	0.	15	0.	03
NITROGEN OXIDES (NOx)		97	.84	699	9.71	<1	00
CARBON MONOXIDE (CO)		19	.57	139	9.94	19	.57
VOLATILE ORGANIC COMPOUNDS (VOC)		13	.12	32	1.86	13	.12
LEAD		2.73	E-05	1.44	E-04	2.73	E-05
GREENHOUSE GASES (GHG) (SHORT TONS)							
OTHER							
* NOTE: VALUES PROVIDED EXCLUDE FUGITIVE EN	IISSIONS						
HAZARDOUS	AIR POLLUTA	NT EMISSION	S INFORMATI	ON - FACILIT	-WIDE		
		EMIS: (AFTER CO	D ACTUAL SIONS ONTROLS / TIONS)	POTENTIAL EMISSIONS (BEFORE CONTROLS / LIMITATIONS)		POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITATIONS)	
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr		tons/yr		ton	s/yr
		See Appendix B					
	R POLLUTANT I		FORMATION		DE		
INDICATE REQUESTED ACTUAL EMISSIONS AFTER							
2Q .0711 MAY REQUIRE AIR DISPERSION MODELING						Required ?	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
	Ş	See Appendix B	-			х	
		ļ					
COMMENTS							
COMMENTS:							

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

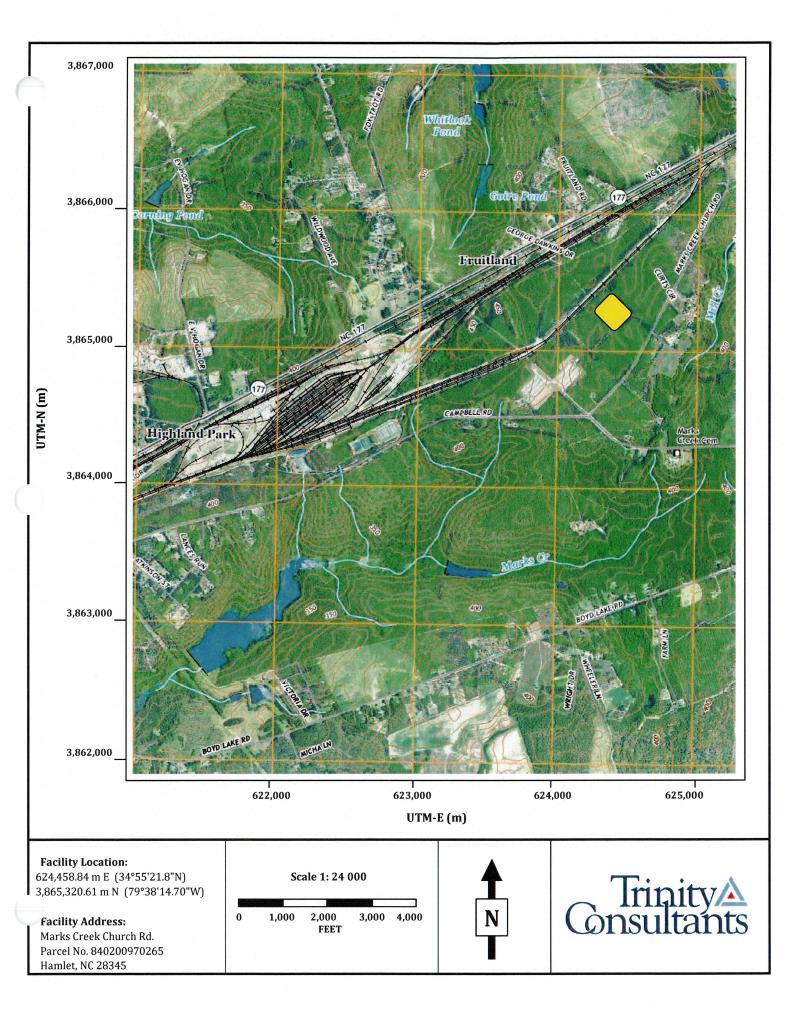
	lity - Application for Air Permit 1	
INSIGNIFICANT ACTIVIT	EXEMPTED PER 2Q . IES PER 2Q .0503 FO	
DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICAN
. EX-1- Shredder and Kiln Loading	426 tpd	15A NCAC 2Q .0102(h)(5)
	60.6 58.12	2007, PD (2007 (200) MR 0364 (2007 (200)
2. EX-2 - Product Handling and Packaging	106.5 tpd	15A NCAC 2Q .0102(h)(5)
	1997 S	UND G 486045098 GASUS (CHC) (SHORT TONS)
3. EX-3 - Haul Roads	N/A	15A NCAC 2Q .0102(h)(5)
	LAUTO A GEORGE CONTRACT ENGERINE	
4. EX-4 - Diesel Storage Tank	TBD	15A NCAC 2Q .0102(g)(4)
	Board starts of the B	
5. EX-5 - Maintenance Welding	N/A	15A NCAC 2Q .0102(g)(1)(A)
).		
7.		
and the second s		Biortiave Ties su contrart desar
0.		

Attach Additional Sheets As Necessary

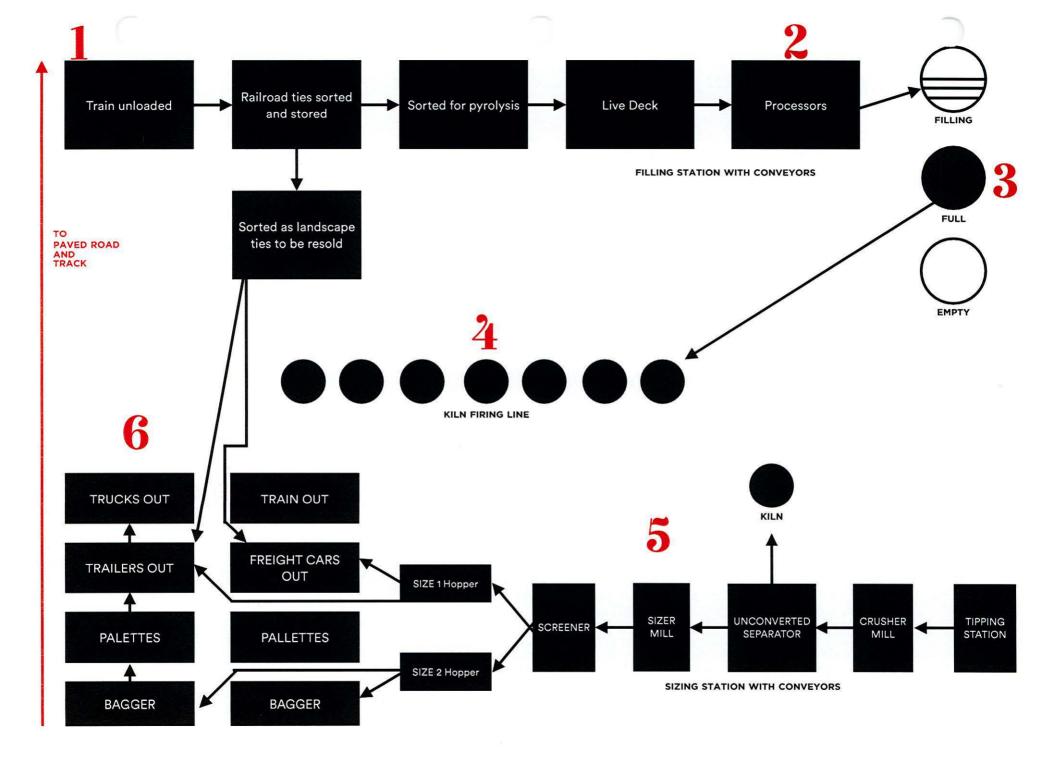
FORM D5

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

E	VISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate D5
	PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY
	DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS
	NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE
	FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES:
A	SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS.
В	SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS.
с	CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS, OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED.
D	PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS.
E	PROFESSIONAL ENGINEERING SEAL - PURSUANT TO 15A NCAC 2Q.0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL," A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY).
	1. Nucle Saniti attest that this application for International Tie Dispotal, LLC
	I. Anth attest that this application for Information Supplied
	in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be guilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation.
	(PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) PLACE NORTH CAROLINA SEAL HERE
	NAME: NICOLE Sanch and
	DATE: 8/11/20
	COMPANY: Thring Consultante, mc.
	ADDRESS: <u>325 the lingth Ave. Juile Job Churlany NU</u> 28103
	TELEPHONE: 204-553-1147
	SIGNATURE:
	TELEPHONE: 204-553-7147, 2800 SIGNATURE: 1000-1000 PAGES CERTIFIED: All
	Et NGINEET AS
	(IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT
	THAT IS BEING CERTIFIED BY THIS SEAL)


Attach Additional Sheets As Necessary

Zoning Consistency Determination


Facility Name	Project Tie
Facility Street Address	174 Marks Creek Church Road Parcel 840200970265
Facility City	, Hamlet
Description of Process	Pyrolysis
SIC/NAICS Code	Not Applicable
Facility Contact	Basil A Polivka II
Phone Number	(704) 321-0802
Mailing Address	13700 Providence Road, Suite 200
Mailing City, State Zip	Weddington, NC 28104
Based on the information given	above:
	the air permit application (draft or final) AND
The proposed operation IS (please include a copy	S consistent with applicable zoning ordinances within H-T zoning of parce is NOT consistent with applicable zoning ordinances of the rules in the package sent to the air quality office) ing further information and can not be made at this time
Agency	Richmond County Government
Name of Designated Official	Tracy R. Parvis
Title of Designated Official	Planning Director
Signature	TracyPlance
Date	1/6/2021
	nailing address listed above and the air quality office hecked on the back of this form.
Courtesy of t	he Small Business Environmental Assistance Program

Courtesy of the Small Business Environmental Assistance Program <u>sb.ncdenr.gov</u> 877-623-6748 APPENDIX A: AREA MAP, SITE LAYOUT, AND PROCESS FLOW

International Tie Disposal, LLC \mid Hamlet, North Carolina Site Trinity Consultants

APPENDIX B: POTENTIAL EMISSION CALCULATIONS

International Tie Disposal, LLC | Hamlet, North Carolina Site Trinity Consultants

.....

Appendix B.1 - Facility Inputs for Limited Operations

	Operating	Schedule		Raw M	laterials and	Product		Kiln Inpu		Capture or Co	ntrol
Category	Daily hrs	days/yr	Estimated #/day	Typical lb/load	Estimated ton/day	Estimated annual tons	Burner Fuel, MMBtu/yr	Wood charge (ton/kiln)	Biochar product (lb/kiln)	Description	Capture or Control Efficiency
Kilns Processing ¹	9	365	160					1.00		Afterburner	95%
Afterburners	9	365	160				65,659				
Wood delivery	9	365	8	40,000	160	58,400					
Wood chomping	9	365			160					Enclosed in a conex	90%
Product shipped	9	365	6	15,000	40	14,600			500	Enclosed in building	90%

¹ Number of kilns: 426 160 kilns are assumed to operate daily. The number of kilns operated daily and the current emission factors will be used to calculate the emissions.

Appendix B.1 - Facility Summary for Limited Operations

							Hourly En	nissions (lb/l	nr)					
Source ID	Description	TSP (Unc.)	PM ₁₀ (Unc.)	PM _{2.5} (Unc.)	TSP	PM ₁₀	PM _{2.5}	NO _X	SO ₂	VOC (Unc.)	VOC (Cont.)	CO	Lead	HAP
ES-1	Kiln Operation	4.20	2.87	2.07	4.20	2.87	2.07	60.00	2.22E-05	27.60	1.38	12.00	4.27E-08	3.93E-03
ES-1	Afterburner and Kiln Combustion								0.01				9.80E-06	0.04
EX-1	Tie Chomper & Kiln Load	0.09	0.04	0.02	0.09	0.04	0.02	-	-	-	-	-	-	-
EX-2	Biochar Sizing & Packaging	2.79	1.08	0.89	0.19	0.080	0.045	-	-	-	-	-	-	-
EX-3	Haul Roads	10.08	2.87	0.29	1.89	0.54	0.05	-	-	-	-	-	-	-
	Totals:	17.16	6.87	3.26	6.37	3.53	2.18	60.00	0.01	27.60	1.38	12.00	9.85E-06	0.04

							Annual E	Emissions (tp	y)					
Source ID	Description	TSP (Unc.)	PM ₁₀ (Unc.)	PM _{2.5} (Unc.)	TSP	PM ₁₀	PM _{2.5}	NO _X	SO ₂	VOC (Unc.)	VOC (Cont.)	CO	Lead	HAP
ES-1	Kiln Operation	6.84	4.60	3.42	6.84	4.60	3.42	97.84	0.01	262.31	13.12	19.57	1.12E-05	1.03
ES-1	Afterburner and Kiln Combustion								0.02				1.61E-05	0.06
EX-1	Tie Chomper & Kiln Load	0.15	0.07	0.03	0.15	0.07	0.03	-	-	-	-	-	-	-
EX-2	Biochar Sizing & Packaging	1.72	0.67	0.55	0.32	0.13	0.07	-	-	-	-	-	-	-
EX-3	Haul Roads	17.41	4.96	0.50	3.26	0.93	0.09	-	-	-	-	-	-	-
	Total Excluding Fugitives:	8.70	5.34	3.99	7.30	4.80	3.52	97.84	0.03	262.31	13.12	19.57	2.73E-05	1.09
	Total All Sources:	26.11	10.30	4.49	10.56	5.73	3.61	97.84	0.03	262.31	13.12	19.57	2.73E-05	1.09

Toxic/Hazardous Air Pollutant Summary

Toxic Air Pollutant	HAP?	TAP?	Tota	l Emission:	s	2Q.0)711 TPER Liı	nits	TPER?
			(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)	
Metals									
Antimony	Н		7.03E-09	1.01E-05					N/A
Arsenic	Н	Т	1.96E-08	2.82E-05	1.03E-02			0.053	No
Beryllium	Н	Т	9.78E-10	1.41E-06	5.14E-04			0.28	No
Cadmium	Н	Т	3.65E-09	5.25E-06	1.92E-03			0.37	No
Chromium	Н		3.45E-08	4.97E-05	1.81E-02				N/A
Chromium VI	Н	Т	3.11E-09	4.48E-06	1.64E-03			0.0056	No
Cobalt	Н		1.65E-06	2.31E-05	8.44E-03				N/A
Manganese	Н	Т	1.42E-06	2.05E-03	7.48E-01		0.63		No
Mercury	Н	Т	3.11E-09	4.48E-06	1.64E-03		0.013		No
Nickel	Н	Т	2.94E-08	4.22E-05	1.54E-02		0.013		No
Selenium	Н		4.73E-07	7.82E-06	2.85E-03				N/A
Miscellaneous									
Chlorine	Н	Т	7.03E-07	1.01E-03	3.69E-01		0.79		No
Hydrogen chloride	Н	Т	1.69E-05	2.43E-02	8.88E+00	0.18			No
Organics									
1,1,1-Trichloroethane	Н		1.38E-09	1.98E-06	7.24E-04				N/A
1,2-Dichloropropane	Н		1.47E-09	2.11E-06					N/A
1,4-Dichlorobenzene	Н	Т	3.87E-11	5.57E-08		16.8			Ńo
2,3,7,8-Tetrachlorodibenzo-p-dioxins	Н	Т	1.74E-15	2.50E-12				0.0002	No
2,4,6-Trichlorophenol	Н		9.78E-13	1.41E-09					N/A
2,4-Dinitrophenol	Н		8.01E-12	1.15E-08					N/A
4-Nitrophenol	Н		4.89E-12	7.04E-09	2.57E-06				N/A
Acetaldehyde	Н	Т	3.35E-07	5.58E-05		6.8			No
Acetophenone	Н		1.42E-13	2.05E-10		0.0			N/A
Acrolein	Н	Т	5.31E-07	2.59E-04		0.02			No
Ammonia		Т	6.27E-02		2.06E+02	0.68			No
Benzene	Н	Т	4.14E-05	6.39E-04		0.00		8.1	No
Benzo(a)pyrene	Н	T	2.36E-08	3.78E-07	1.38E-04			2.2	No
Bis(2-ethylhexyl)phthalate	Н	T	1.89E-10	2.72E-07	9.94E-05		0.63	2.2	No
Carbon Tetrachloride	Н	Т	2.00E-09		1.05E-03		0.05	460	No
Chlorobenzene	Н	T	1.47E-09	2.88E-00 2.11E-06			46	400	No
Chloroform	Н	T	1.25E-09	1.79E-06			40	290	No
Cresol isomers (m,p,o)	Н	T	1.23E-09 1.22E-10	1.79E-00 1.76E-07	6.42E-04	0.56		290	No
Ethylbenzene	Н		1.38E-09		0.42E-03 7.24E-04	0.50			N/A
Ethylene dichloride	Н	т	1.29E-09	1.98E-06 1.86E-06				260	NO
Formaldehyde	Н	T	1.47E-03	1.35E-00		0.04		200	No
Hexane	Н	T	3.53E-02		4.93E+00 1.16E+02	0.04	23		No
Methanol	Н						23		
Methyl bromide	Н		3.91E-03 6.67E-10	9.60E-07	2.05E+03 3.50E-04				N/A
5	H H			9.60E-07 1.47E-06					N/A
Methyl chloride	H H	 T	1.02E-09			0.20		1(00	N/A
Methylene chloride		T	1.29E-08	1.86E-05		0.39		1600	No N/A
Naphthalene Dente ablement en el	H H	 T	1.20E-05	1.14E-04		0.0074	0.072		N/A
Pentachlorophenol			1.01E-10	1.45E-07		0.0064	0.063		No
Phenol	Н	Т	2.27E-09	3.26E-06		0.24		F (No
Polychlorinated biphenyls (PCB)	Н	Т	3.52E-13	5.07E-10				5.6	No
Polycyclic organic matter (POM)	Н		5.64E-09	8.11E-06					N/A
Propionaldehyde	Н		2.71E-09	3.90E-06		a -			N/A
Styrene	Н	Т	8.45E-08	1.22E-04		2.7		0.0000	No
Tetrachlorodibenzo-p-dioxins		Т	2.09E-14	3.01E-11				0.0002	No
Tetrachloroethylene	Н	Т	1.69E-09	2.43E-06				13000	No
Toluene	Н	Т	6.67E-05	6.59E-04			98		No
Trichloroethene	Н	Т	1.33E-09	1.92E-06				4000	No
Vinyl chloride	Н	Т	8.01E-10	1.15E-06				26	No
Xylenes	Н	Т	1.11E-09	1.60E-06	5.84E-04		57		No

Appendix B.1 - Biochar Production from Processing of Wood for Limited Operation

Inputs		
Activity	Value	Units
Average Kilns Processed	160	kilns/day
Average Kilns Processed	58,400	kilns/year
Annual Operating Days	365	days/yr
Load size	1.00	ton/kiln
Railroad Tie Heating Value	8,000	Btu/ton
Estimated Heat Intput	8.89E-04	MMBtu/hr
Estimated Heat Intput	467	MMBtu/yr

Single Kiln Emission Factors - Controlled¹

Pollutant	Worst- Case Emission Factor	Units
РМ	0.23	lb/ton
1 141	0.03	lb/hr
PM ₁₀	0.16	lb/ton
1 14110	0.02	lb/hr
PM _{2.5}	0.12	lb/ton
1 112.5	0.01	lb/hr
NO _x	3.35	lb/ton
NOX	0.38	lb/hr
VOC	0.45	lb/ton
voc	0.01	lb/hr
CO	0.67	lb/ton
CO	0.08	lb/hr

¹ Emission factors are based on the worst-case of performance tests for untreated wood and creosote-treated railroad ties for similar size kilns, and include the safety factors indicated below:

PM emission factor multiplier:	1.25
NOx emission factor mutiplier:	1.25
VOC uncontrolled emission factor mutiplier:	1.25
CO emission factor mutliplier:	1.25
MeOH uncontrolled emission factor multiplier:	1.25

Emissions

			Н	ourly Emissi	ons (lb/hr)	1		
						VO	C ²	
Number of Kilns	NO _X	CO	РМ	PM ₁₀	PM _{2.5}	Unc.	Cont.	SO ₂ ⁴
Per Kiln	0.38	0.08	0.026	0.018	0.013	1.73E-01	8.63E-03	1.39E-07
Average Kilns Processed	60.00	12.00	4.20	2.87	2.07	27.60	1.38	2.22E-05

			A	Annual Emis	sions (tpy) ³			
						VO	C^2	
Number of Kilns	NO _X	CO	РМ	PM ₁₀	PM _{2.5}	Unc.	Cont.	SO ₂ ⁴
Average Kilns Processed	97.84	19.57	6.84	4.60	3.42	262.31	13.12	5.84E-03

95%

 1 Per kiln emissions based on the worst-case value from the two stack test reports.

Average Kilns Processed (lb/hr) = Per Kiln Emissions (lb/hr) * Average Kilns Processed

² Controlled emissions based on destruction ratio efficiency (DRE) of

³ Annual Emissions (tpy) = Emission Factor (lb/ton) * Kilns Processed (kilns/yr) * Load size (ton/kiln) ÷ 2000 lb/ton

⁴ SO₂ emissions calculated based on AP-42 emission factors. Detailed calculations presented in the Other Pollutant Kiln Emissions table.

Appendix B.1 - Kiln Emission Factor Analysis

Value	20	019 Untreate	ed Wood Tes	t ¹	2015 Creosote Treated Rail Tie Test ²
	Kiln 8	Kiln 21	Kiln 7	Average	Pole 2 NE
Quantity Processed (tons)	0.990	1.000	1.030	1.007	1.007
Run Hours	9.317	9.333	8.333	8.994	8.994
NO _X (lb/hr)	0.223	0.260	0.230	0.238	0.300
NO _x (lb/ton)	2.099	2.427	1.861	2.129	2.680
CO (lb/hr)	0.002	0.012	0.009	0.007	0.060
CO (lb/ton)	0.018	0.109	0.070	0.066	0.536
PM filt. (lb/hr)	0.014	0.018	0.015	0.015	0.005
PM filt. (lb/ton)	0.132	0.166	0.118	0.139	0.045
PM cond. (lb/hr)	0.006	0.005	0.006	0.006	N/A
PM cond. (lb/ton)	0.056	0.046	0.045	0.049	N/A
PM (lb/hr) ³	0.020	0.023	0.020	0.021	0.011
PM (lb/ton) ³	0.187	0.212	0.163	0.187	0.094
PM ₁₀ (lb/hr)	0.014	0.015	0.014	0.014	N/A
PM_{10} (lb/ton)	0.122	0.142	0.114	0.126	N/A
PM _{2.5} (lb/hr)	0.010	0.011	0.010	0.010	N/A
PM _{2.5} (lb/ton)	0.099	0.099	0.083	0.094	N/A
VOC (lb/hr)	0.002	0.002	0.001	0.002	0.007
VOC (lb/ton)	0.414	0.454	0.210	0.359	0.062
MeOH (lb/hr)	1.62E-04	1.46E-04	1.64E-04	1.57E-04	2.00E-04
MeOH (lb/ton)	0.030	0.027	0.027	0.028	0.002

¹ All data taken from Source Test Report 2019 Compliance Test for the Biochar Now! Berthoud Facility. Emission factors in lb/ton are calculated as the lb/hr test result multiplied by the run hours and divided by the quantity processed in tons.

² All data taken from Source Emissions Testing Report 2015 for the Biochar Now! Berthoud Facility, unless otherwise specified. Emission factors in lb/ton are calculated as the lb/hr test result multiplied by the run hours and divided by the quantity processed in tons. Kin is the same size as those tested in the 2019 compliance test. Kiln weight and run time during the test estimated as the average of the three tests conducted in 2019.

³ 2015 value is the sum of PM filt from 2015 test and PM cond from 2019 test.

Appendix B.1 -Other Pollutant Kiln Emissions for Limited Operations

	Uncontrolled Emission	Emission Factor	Unco	ntrolled Emis	ssions	Cont	rolled Emiss	ions ²
Pollutant	Factor	Source ¹	(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)
Fonutant	Factor	Source		(ID/uay)	(ID/yI)		(ID/uay)	(ID/yI
SO ₂	2.5E-02 lb/MMBtu	f	2.22E-05	3.20E-02	1.17E+01	2.22E-05	3.20E-02	1.17E+(
Metals								
Antimony	7.9E-06 lb/MMBtu	b	7.03E-09	1.01E-05	3.69E-03	7.03E-09	1.01E-05	3.69E-0
Arsenic	2.2E-05 lb/MMBtu	b	1.96E-08	2.82E-05	1.03E-02	1.96E-08	2.82E-05	1.03E-0
Beryllium	1.1E-06 lb/MMBtu	b	9.78E-10	1.41E-06	5.14E-04	9.78E-10	1.41E-06	5.14E-(
Cadmium	4.1E-06 lb/MMBtu	b	3.65E-09	5.25E-06	1.92E-03	3.65E-09	5.25E-06	1.92E-(
Chromium	3.9E-05 lb/MMBtu		3.45E-09	4.97E-05	1.92E-03 1.81E-02	3.45E-09	4.97E-05	1.92E-0
		C						
Chromium VI	3.5E-06 lb/MMBtu	b	3.11E-09	4.48E-06	1.64E-03	3.11E-09	4.48E-06	1.64E-0
Cobalt	6.5E-06 lb/MMBtu	b	5.78E-09	8.32E-06	3.04E-03	5.78E-09	8.32E-06	3.04E-0
Lead	4.8E-05 lb/MMBtu	b	4.27E-08	6.14E-05	2.24E-02	4.27E-08	6.14E-05	2.24E-
Manganese	1.6E-03 lb/MMBtu	b	1.42E-06	2.05E-03	7.48E-01	1.42E-06	2.05E-03	7.48E-
Mercury	3.5E-06 lb/MMBtu	b	3.11E-09	4.48E-06	1.64E-03	3.11E-09	4.48E-06	1.64E-
Nickel	3.3E-05 lb/MMBtu	b	2.94E-08	4.22E-05	1.54E-02	2.94E-08	4.22E-05	1.54E-0
Phosphorus	2.7E-05 lb/MMBtu	b	2.40E-08	3.46E-05	1.26E-02	2.40E-08	3.46E-05	1.26E-
Selenium	2.8E-06 lb/MMBtu	b	2.49E-09	3.58E-06	1.31E-03	2.49E-09	3.58E-06	1.31E-
Miscellaneous								
Chlorine	7.9E-04 lb/MMBtu	а	7.03E-07	1.01E-03	3.69E-01	7.03E-07	1.01E-03	3.69E-0
Hydrogen chloride	1.9E-02 lb/MMBtu	а	1.69E-05	2.43E-02	8.88E+00	1.69E-05	2.43E-02	8.88E+
Organics								
1,1,1-Trichloroethane	3.1E-05 lb/MMBtu	а	2.76E-08	3.97E-05	1.45E-02	1.38E-09	1.98E-06	7.24E-(
1,2-Dichloropropane	3.3E-05 lb/MMBtu	a	2.76E-08 2.94E-08	4.22E-05	1.43E-02 1.54E-02	1.38E-09 1.47E-09	2.11E-06	7.24E- 7.71E-
1,2-Dichlorobenzene	· ·		2.94E-08 7.73E-10	4.22E-05 1.11E-06	1.54E-02 4.06E-04	1.47E-09 3.87E-11	2.11E-06 5.57E-08	2.03E-
	8.7E-07 lb/MMBtu	c						
2,3,7,8-Tetrachlorodibenzo-p-dioxins	3.9E-11 lb/MMBtu	С	3.48E-14	5.00E-11	1.83E-08	1.74E-15	2.50E-12	9.13E-
2,3,7,8-Tetrachlorodibenzo-p-furans	9.0E-11 lb/MMBtu	а	8.01E-14	1.15E-10	4.20E-08	4.00E-15	5.76E-12	2.10E-
2,4,6-Trichlorophenol	2.2E-08 lb/MMBtu	а	1.96E-11	2.82E-08	1.03E-05	9.78E-13	1.41E-09	5.14E-
2,4-Dinitrophenol	1.8E-07 lb/MMBtu	а	1.60E-10	2.30E-07	8.41E-05	8.01E-12	1.15E-08	4.20E-
2-Chloronaphthalene	2.4E-09 lb/MMBtu	а	2.13E-12	3.07E-09	1.12E-06	1.07E-13	1.54E-10	5.61E-
2-Methylnaphthalene	1.6E-07 lb/MMBtu	а	1.42E-10	2.05E-07	7.48E-05	7.12E-12	1.02E-08	3.74E-
4-Nitrophenol	1.1E-07 lb/MMBtu	а	9.78E-11	1.41E-07	5.14E-05	4.89E-12	7.04E-09	2.57E-
Acenaphthene	9.1E-07 lb/MMBtu	а	8.09E-10	1.16E-06	4.25E-04	4.05E-11	5.82E-08	2.13E-
Acenaphthylene	5.0E-06 lb/MMBtu	а	4.45E-09	6.40E-06	2.34E-03	2.22E-10	3.20E-07	1.17E-
Acetaldehyde	8.3E-04 lb/MMBtu	a	7.38E-07	1.06E-03	3.88E-01	3.69E-08	5.31E-05	1.94E-
Acetophenone	3.2E-09 lb/MMBtu	a	2.85E-12	4.10E-09	1.50E-06	1.42E-13	2.05E-10	7.48E-
Acrolein	4.0E-03 lb/MMBtu		3.56E-06	5.12E-03	1.87E+00	1.78E-07	2.56E-04	9.34E-
		а						
Anthracene	3.0E-06 lb/MMBtu	а	2.67E-09	3.84E-06	1.40E-03	1.33E-10	1.92E-07	7.01E-
Benzene	4.2E-03 lb/MMBtu	а	3.74E-06	5.38E-03	1.96E+00	1.87E-07	2.69E-04	9.81E-
Benzo(a)anthracene	6.5E-08 lb/MMBtu	а	5.78E-11	8.32E-08	3.04E-05	2.89E-12	4.16E-09	1.52E-
Benzo(a)pyrene	2.6E-06 lb/MMBtu	а	2.31E-09	3.33E-06	1.21E-03	1.16E-10	1.66E-07	6.07E-
Benzo(b)fluoranthene	1.0E-07 lb/MMBtu	а	8.89E-11	1.28E-07	4.67E-05	4.45E-12	6.40E-09	2.34E-
Benzo(e)pyrene	2.6E-09 lb/MMBtu	а	2.31E-12	3.33E-09	1.21E-06	1.16E-13	1.66E-10	6.07E-
Benzo(g,h,i)perylene	9.3E-08 lb/MMBtu	а	8.27E-11	1.19E-07	4.34E-05	4.14E-12	5.95E-09	2.17E-
Benzo(j,k)fluoranthene	1.6E-07 lb/MMBtu	а	1.42E-10	2.05E-07	7.48E-05	7.12E-12	1.02E-08	3.74E-
Benzo(k)fluoranthene	3.6E-08 lb/MMBtu	а	3.20E-11	4.61E-08	1.68E-05	1.60E-12	2.30E-09	8.41E-
Bis(2-ethylhexyl)phthalate	4.3E-06 lb/MMBtu	с	3.78E-09	5.45E-06	1.99E-03	1.89E-10	2.72E-07	9.94E-
Carbazole	1.8E-06 lb/MMBtu	а	1.60E-09	2.30E-06	8.41E-04	8.01E-11	1.15E-07	4.20E-
Carbon Tetrachloride	4.5E-05 lb/MMBtu	а	4.00E-08	5.76E-05	2.10E-02	2.00E-09	2.88E-06	1.05E-
Chlorobenzene	3.3E-05 lb/MMBtu	a	2.94E-08	4.22E-05	1.54E-02	1.47E-09	2.11E-06	7.71E-
Chloroform	2.8E-05 lb/MMBtu	a	2.94E-08 2.49E-08	4.22E-05 3.58E-05	1.34E-02 1.31E-02	1.25E-09	2.11E-00 1.79E-06	6.54E-
	3.8E-08 lb/MMBtu							
Chrysene		a	3.38E-11	4.86E-08	1.78E-05	1.69E-12	2.43E-09	8.88E-
Cresol isomers (m,p,o)	2.7E-06 lb/MMBtu	С	2.44E-09	3.52E-06	1.28E-03	1.22E-10	1.76E-07	6.42E-
Decachlorobiphenyl	2.7E-10 lb/MMBtu	а	2.40E-13	3.46E-10	1.26E-07	1.20E-14	1.73E-11	6.31E-
Dibenzo(a,h)anthracene	9.1E-09 lb/MMBtu	а	8.09E-12	1.16E-08	4.25E-06	4.05E-13	5.82E-10	2.13E-
Dichlorobiphenyl	7.4E-10 lb/MMBtu	а	6.58E-13	9.47E-10	3.46E-07	3.29E-14	4.74E-11	1.73E-
Dioxins/furans	1.7E-06 lb/MMBtu	е	1.49E-09	2.14E-06	7.81E-04	7.44E-11	1.07E-07	3.91E-
Ethylbenzene	3.1E-05 lb/MMBtu	а	2.76E-08	3.97E-05	1.45E-02	1.38E-09	1.98E-06	7.24E-
Ethylene dichloride	2.9E-05 lb/MMBtu	а	2.58E-08	3.71E-05	1.35E-02	1.29E-09	1.86E-06	6.77E-
Fluoranthene	1.6E-06 lb/MMBtu	а	1.42E-09	2.05E-06	7.48E-04	7.12E-11	1.02E-07	3.74E-
Fluorene	3.4E-06 lb/MMBtu	a	3.02E-09	4.35E-06	1.59E-03	1.51E-10	2.18E-07	7.94E-
Formaldehyde	4.4E-03 lb/MMBtu	a	3.91E-06	5.63E-03	2.06E+00	1.96E-07	2.82E-04	1.03E-
Heptachlorobiphenyl	6.6E-11 lb/MMBtu	a	5.87E-14	3.05E-05 8.45E-11	3.08E-08	2.94E-15	4.22E-12	1.54E-
	,				3.08E-08 9.34E-07			1.54E- 4.67E-
Heptachlorodibenzo-p-dioxins	2.0E-09 lb/MMBtu	a	1.78E-12	2.56E-09		8.89E-14	1.28E-10	
Heptachlorodibenzo-p-furans	2.4E-10 lb/MMBtu	a	2.13E-13	3.07E-10	1.12E-07	1.07E-14	1.54E-11	5.61E-
Hexachlorobiphenyl	5.5E-10 lb/MMBtu	а	4.89E-13	7.04E-10	2.57E-07	2.45E-14	3.52E-11	1.28E-
Hexachlorodibenzo-p-dioxins	1.6E-06 lb/MMBtu	а	1.42E-09	2.05E-06	7.48E-04	7.12E-11	1.02E-07	3.74E-
Hexachlorodibenzo-p-furans	2.8E-10 lb/MMBtu	а	2.49E-13	3.58E-10	1.31E-07	1.25E-14	1.79E-11	6.54E-
Indeno(1,2,3-cd)pyrene	8.7E-08 lb/MMBtu	а	7.74E-11	1.11E-07	4.06E-05	3.87E-12	5.57E-09	2.03E-
Methanol	87.92 lb/MMBtu	d	0.08	1.13E+02	41074.67	3.91E-03	5.63E+00	2.05E+
Methyl bromide	1.5E-05 lb/MMBtu	а	1.33E-08	1.92E-05	7.01E-03	6.67E-10	9.60E-07	3.50E-
Methyl chloride	2.3E-05 lb/MMBtu	a	2.05E-08	2.94E-05	1.07E-02	1.02E-09	1.47E-06	5.37E-
Methylene chloride	2.9E-04 lb/MMBtu	a	2.58E-07	3.71E-04	1.35E-01	1.29E-08	1.86E-05	6.77E-
Naphthalene	9.7E-05 lb/MMBtu	a	8.63E-08	1.24E-04	4.53E-01	4.31E-09	6.21E-06	2.27E-
-	'							
Octachlorodibenzo-p-dioxins	6.6E-08 lb/MMBtu	а	5.87E-11	8.45E-08	3.08E-05	2.94E-12	4.22E-09	1.54E-
Octachlorodibenzo-p-furans	8.8E-11 lb/MMBtu	а	7.83E-14	1.13E-10	4.11E-08	3.91E-15	5.63E-12	2.06E-
Pentachlorobiphenyl	1.2E-09 lb/MMBtu	а	1.07E-12	1.54E-09	5.61E-07	5.34E-14	7.68E-11	2.80E-0
Pentachlorodibenzo-p-dioxins	1.5E-09 lb/MMBtu	а	1.33E-12	1.92E-09	7.01E-07	6.67E-14	9.60E-11	3.50E-
			-		4 0 (1 0 7			
Pentachlorodibenzo-p-furans	4.2E-10 lb/MMBtu	а	3.74E-13	5.38E-10	1.96E-07	1.87E-14	2.69E-11	9.81

International Tie Disposal, LLC

Page 5 of 20

Appendix B.1 -Other Pollutant Kiln Emissions for Limited Operations

	Uncontrolled Emission	Emission Factor	Unco	ntrolled Emis	ssions	Controlled Emissions ²			
Pollutant	Factor	Source ¹	(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)	
Perylene	5.2E-10 lb/MMBtu	а	4.63E-13	6.66E-10	2.43E-07	2.31E-14	3.33E-11	1.21E-08	
Phenanthrene	7.0E-06 lb/MMBtu	а	6.23E-09	8.96E-06	3.27E-03	3.11E-10	4.48E-07	1.64E-04	
Phenol	5.1E-05 lb/MMBtu	а	4.54E-08	6.53E-05	2.38E-02	2.27E-09	3.26E-06	1.19E-03	
Polychlorinated biphenyls (PCB)	7.9E-09 lb/MMBtu	e	7.05E-12	1.01E-08	3.70E-06	3.52E-13	5.07E-10	1.85E-07	
Polycyclic organic matter (POM)	1.3E-04 lb/MMBtu	е	1.13E-07	1.62E-04	5.92E-02	5.64E-09	8.11E-06	2.96E-03	
Propionaldehyde	6.1E-05 lb/MMBtu	а	5.43E-08	7.81E-05	2.85E-02	2.71E-09	3.90E-06	1.42E-03	
Pyrene	3.7E-06 lb/MMBtu	а	3.29E-09	4.74E-06	1.73E-03	1.65E-10	2.37E-07	8.64E-05	
Styrene	1.9E-03 lb/MMBtu	а	1.69E-06	2.43E-03	8.88E-01	8.45E-08	1.22E-04	4.44E-02	
Tetrachlorobiphenyl	2.5E-09 lb/MMBtu	а	2.22E-12	3.20E-09	1.17E-06	1.11E-13	1.60E-10	5.84E-08	
Tetrachlorodibenzo-p-dioxins	4.7E-10 lb/MMBtu	а	4.18E-13	6.02E-10	2.20E-07	2.09E-14	3.01E-11	1.10E-08	
Tetrachlorodibenzo-p-furans	7.5E-10 lb/MMBtu	а	6.67E-13	9.60E-10	3.50E-07	3.34E-14	4.80E-11	1.75E-08	
Tetrachloroethylene	3.8E-05 lb/MMBtu	а	3.38E-08	4.86E-05	1.78E-02	1.69E-09	2.43E-06	8.88E-04	
Toluene	9.2E-04 lb/MMBtu	а	8.18E-07	1.18E-03	4.30E-01	4.09E-08	5.89E-05	2.15E-02	
Trichlorobiphenyl	2.6E-09 lb/MMBtu	а	2.31E-12	3.33E-09	1.21E-06	1.16E-13	1.66E-10	6.07E-08	
Trichloroethene	3.0E-05 lb/MMBtu	а	2.67E-08	3.84E-05	1.40E-02	1.33E-09	1.92E-06	7.01E-04	
Vinyl chloride	1.8E-05 lb/MMBtu	а	1.60E-08	2.30E-05	8.41E-03	8.01E-10	1.15E-06	4.20E-04	
Xylenes	2.5E-05 lb/MMBtu	а	2.22E-08	3.20E-05	1.17E-02	1.11E-09	1.60E-06	5.84E-04	
Total HAP			0.08	112.58	41,093	3.93E-03	5.66	2,064	

Emission Factor Data Sources as indicated below. Note that Craven County Wood Energy test results for creosote-treated wood combustion were used if the test results exceeded the emission factor in AP-42, or if there was no emission factor in AP-42. Test results obtained from application submitted by Coastal Carolina Clean Power, LLC to North Carolina Division of Air Quality, PSD Air Quality Construction and Operating Permit Application. Oct 2013.

a AP-42, 5th Edition, Section 1.6, Table 1.6-3 (09/03)

b AP-42, 5th Edition, Section 1.6, Table 1.6-4 (09/03)

c Craven County Wood Energy Test Data

d Based on stack testing completed at similar Biochar Now facility in Berthound, Colorado conducted on October 2019. Includes a 25% safety factor.

e Sum of emissions of individual compounds in pollutant category (dioxins/furans, PCBs, POM)

f AP-42, 5th Edition, Section 1.6, Table 1.6-2 (09/03)

 $^{2}\,$ Controlled emissions based on destruction ratio efficiency (DRE) of

95% for organic compounds

Appendix B.1 -Kiln Initiation and Afterburner Emissions for Limited Operations

Inputs		
Parameter	Value	Units
Burner Heat Input	0.125	MMBtu/hr
Number of Burners Operating	160	burners
Daily Hours	9	hrs/day
Operating Schedule	365	days/yr
Natural Gas HHV	1020	Btu/scf
Estimated Hourly Fuel Usage	20.00	MMBtu/hr
Estimated Annual Fuel Usage	65,658.6	MMBtu/yr

Emissions

	Emission Factor ¹	Total Emissions									
Pollutants	(lb/MMscf)	(lb/hr)	(lb/day)	(lb/yr)	(tpy)						
Criteria Pollutants											
SO ₂	0.6	1.18E-02	1.06E-01	3.86E+01	1.93E-02						
Hazardous/Toxic Air Pollutants											
Acetaldehyde	1.52E-05	2.98E-07	2.68E-06	9.78E-04	4.89E-07						
Acrolein	1.80E-05	3.53E-07	3.17E-06	1.16E-03	5.79E-07						
Ammonia	3.20E+00	6.27E-02	5.64E-01	2.06E+02	1.03E-01						
Benzene	2.10E-03	4.12E-05	3.70E-04	1.35E-01	6.76E-05						
Benzo(a)pyrene	1.20E-06	2.35E-08	2.12E-07	7.72E-05	3.86E-08						
Cobalt	8.40E-05	1.65E-06	1.48E-05	5.41E-03	2.70E-06						
Formaldehyde	7.50E-02	1.47E-03	1.32E-02	4.83E+00	2.41E-03						
Hexane	1.80E+00	3.53E-02	3.17E-01	1.16E+02	5.79E-02						
Lead	5.00E-04	9.80E-06	8.82E-05	3.22E-02	1.61E-05						
Naphthalene	6.10E-04	1.20E-05	1.08E-04	3.93E-02	1.96E-05						
Selenium	2.40E-05	4.71E-07	4.23E-06	1.54E-03	7.72E-07						
Toluene	3.40E-03	6.67E-05	6.00E-04	2.19E-01	1.09E-04						
Total HAP		0.04	0.33	121.13	0.06						

¹ Emission factors from DEQ natural gas combustion calculation spreadsheet, Rev. N (January 5, 2017). Afterburner and kiln criteria pollutant emissions were included in the kiln source test results.

Inputs

Description	Value	Units
Kilns Processed	160	kilns/day
Daily Operating Hours	9	hrs/day
Annual Operating Days	365	days/yr
Wood Throughput	1.00	tons/kiln
Wood Throughput	17.79	tons/hr

Emissions

	Emiss	ion Factor (lb/t	ton) ^{1,2}	Enclosure	Hour	rly Emissior	ıs (lb/hr) ⁴	Annual Emissions (tpy) ⁵				
Activity	РМ	PM ₁₀	PM _{2.5}	Capture Efficiency ³	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}		
Tie Chomper	0.03500	0.01750	0.00875	90%	0.06	0.03	0.02	0.10	0.05	0.03		
Kiln Loading	0.0015	0.0007	0.0001	0%	0.03	0.01	1.78E-03	0.04	0.02	2.92E-03		
				Total:	0.09	0.04	0.02	0.15	0.07	0.03		

¹ Emission factor for log bucking (i.e., sizing logs down). The chomper reduces railroad ties to 3 inch "chunks" of wood and is more akin to log bucking than to log sawing. The emission factor is obtained from the table in the memorandum "Particulate Matter Potential to Emit Emission Factors from Activities at Sawmills, Excluding Boilers, Located in Pacific Northwest Indian Country", May 8, 2014, Dan Meyer, US EPA Region 10.

² Emission factor for a "drop" of "bone-dry" material into a kiln. Emission factor from the aforementioned source.

³ Chomper will be enclosed within a conex (shipping container). Represented capture efficiency accounts for emissions occurring in an enclosed building.

⁴ Hourly emissions (lb/hr) = Emission factor (lb/ton) * Log Processing Throughput (tons/hr) * (1 - Capture Efficiency)

⁵ Annual emissions (tpy) = Hourly Emissions (lb/hr) * Daily Operating Hours (hrs/day) * Annual Operating Days (days/yr) / 2,000 (lb/ton)

Appendix B.2 -EX-2 Product Handling and Packaging Emissions for Unrestricted Operations

Inputs		
Parameter	Value	Units
Product Throughput ¹	500	lb biochar/kiln
Percent Unconverted Wood	10%	percent
Daily Operating Hours	9	hrs/day
Daily Kilns Processed	426	kilns/day
Annual Operating Days	365	days/yr

Controlled Operation Emissions

	Emission Factor (lb/ton biochar) ² Mater		Material Throughput ⁴		Capture	Dust Collector Control	Uncontrolled Hourly Emissions (lb/hr) ⁵		Uncontrolled Annual Emissions (tpy) ⁵			Controll	ed Hourly E (lb/hr) ⁵	missions	Controlled Annual Emiss (tpy) ⁵		missions		
Activity	РМ	PM ₁₀	PM _{2.5}	(tons/hr)	(tons/yr)	Efficiency ³	Efficiency	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Process 1: Kiln Dump to Hopper onto Conveyor ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03	7.32E-04	1.68E-02	7.94E-03	1.20E-03
Process 2a: Sizing Chomper	0.039	0.015	0.015	11.84	38,873	90%	99%	0.46	0.18	0.18	0.76	0.29	0.29	0.05	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 4: Sizing Hammermil	0.039	0.015	0.015	11.84	38,873	90%	99%	0.46	0.18	0.18	0.76	0.29	0.29	0.05	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 5a: Screener 1	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 5b: Small Char Long Conveyor	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03	7.32E-04	1.68E-02	7.94E-03	1.20E-03
Process 5c: Three Destoners	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 6: Rollermill	0.039	0.015	0.015	11.84	38,873	90%	99%	0.46	0.18	0.18	0.76	0.29	0.29	0.05	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 7b: Screener 2	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 7c: Bagging Drop ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03	7.32E-04	1.68E-02	7.94E-03	1.20E-03

Uncontrolled Operation Emissions

	Emission Factor (lb/ton biochar) ² Material Throughput ⁴		Building Enclosure	Dust Collector Control	Uncontrolled Hourly Emissions (lb/hr) ⁵		Uncontrolled Annual Emissions (tpy) ⁵		Controlled Hourly Emissions (lb/hr) ⁵			(tpy) ⁵		missions					
Activity	РМ	PM ₁₀	PM _{2.5}	(tons/hr)	(tons/yr)	Efficiency 7	Efficiency	РМ	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}
Process 2b: Unconverted Wood Drop to Outdoor Bin ⁶	0.0079	0.0037	0.0006	1.18	3,887	0%		0.01	4.44E-03	6.72E-04	0.02	7.28E-03	1.10E-03	0.01	4.44E-03	6.72E-04	0.02	0.01	1.10E-03
Process 3: Detwigging	0.025	0.0087	0.0087	11.84	38,873	90%		0.03	0.01	0.01	0.05	0.02	0.02	0.03	0.01	0.01	0.05	0.02	0.02
Process 7a: Drop to Bucket Elevator ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%		0.01	4.44E-03	6.72E-04	0.02	7.28E-03	1.10E-03	0.01	4.44E-03	6.72E-04	0.02	0.01	1.10E-03
Process 7d: Storage Silos ⁶	0.0079	0.0037	0.0006	11.84	38,873	0%		0.19	0.09	0.01	0.31	0.15	2.21E-02	0.19	0.09	0.01	0.31	0.15	0.02
					_														
						Total		2.79	1.08	0.89	4.58	1.78	1.46	0.51	0.21	0.12	0.84	0.35	0.20

¹ Includes a margin of safety multiplier for product shipped daily as shown in the Facility Inputs tab.

² Emission factors are from AP-42 Section 11.19.2, Table 11.19.2-2, unless otherwise noted.

³ Capture efficiency accounts for activities occurring under a hood, or within an enclosure where doors could potentially be open.

⁴ Material Throughput (ton/hr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) / Daily Operating Hours (hrs/day)

Material Throughput (ton/yr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) * Operating Days (days/yr)

⁵ Uncontrolled hourly emissions (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * (1-Building Enclosure Efficiency%), where building enclosure efficiency is applicable

Controlled hourly emissions for controlled sources (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * ((1-Capture Efficiency %) + (Capture Efficiency %) + (Capture Efficiency %) + (Capture Efficiency %)))

Uncontrolled annual emissions (tpy) = Emission Factor (lb/ton) * Throughput (tpy) * (1-Building Enclosure Efficiency %)/2000 lb/ton, where building enclosure efficiency is applicable.

Controlled annual emissions for controlled sources (tpy) = Emission factor (lb/ton) * Throughput (tpy) * ((1-Capture Efficiency %) + (Capture Efficiency %) * (1-Dust Collector Control Efficiency %))) / 2000 lb/ton

⁶ Material is transferred to using conveyors. Material drop point emissions are based on AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1. Silo emissions assume two drop points.

$$E\left(\frac{lb}{ton}\right) = k\left(0.0032\right) \left[\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right]$$

Where k = Particle size multiplier

0.74 PM < 30 microns 0.35 PM < 10 microns 0.053 PM < 2.5 microns 6 mph

U = Mean wind speed http://myforecast.co/bin/climate.m?city=24989&zip_code=28345&metric=false&selectedMonthNum=2

M = Moisture content

1 % for charcoal fresh from kiln

 $\underline{http://www.fao.org/3/x5328e/x5328e0b.htm{\#:} ~: text=Charcoal%20 fresh%20 from \%20 an \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 opened.even \%20 in \%20 well \%20 burned \%20 charcoal \%20 from \%20 and \%20 burned \%20 burned$

⁷ Building enclosure efficiency of 90% accounts for activities conducted within an enclosed building based on the TCEQ emission calculation workbook for rock crushing plants (https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx)

Appendix B.2 -EX-3 Fugitive Road Dust for Unrestricted Operations

Unpaved Road Dust Emission Factors

	silt (s) ¹	Unloaded Weight ²	Loaded Weight ³	Average Weight ⁴ (W)	Uncontrolled ⁵	Control ⁵	Uncontrolled Emission Factor (lb/VMT) ⁶			Contro	on Factor	
Category	(%)	(lb)	(lb)	(tons)	(%)	(%)	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}
Log/rail tie delivery	8.4	40,000	80,000	30.0	72%	95%	3.01	0.86	0.09	0.56	0.16	0.02
Rail tie pile and chomper	8.4	36,226	38,226	18.6	72%	95%	2.43	0.69	0.07	0.46	0.13	0.01
Kiln lids and stacks	8.4	10,849	11,849	5.7	72%	95%	1.42	0.41	0.04	0.27	0.08	0.01
Kilns transport	8.4	26,083	31,083	14.3	72%	95%	2.16	0.62	0.06	0.40	0.12	0.01
Product shipping	8.4	32,000	15,000	11.8	72%	95%	1.98	0.56	0.06	0.37	0.11	0.01

¹ Silt content of road surface material (s) obtained from EPA AP-42, Section 13.2.2, Table 13.2.2-1 for Lumber sawmills/log yards.

² Unloaded weights: kiln wheel loader obtained from spec sheet for a Case-621 loader; log piles, Case CX160 excavator; and lids, Case 121E.

Log delivery unloaded weight of trucks based on typical log truck. http://www.forestry.uga.edu/research/forestry/forestbusiness/log-truck-weight-policy.php

Product delivery vehicles are semi-trailer trucks (tractor and cargo trailer). Typical empty weights from http://www.ask.com/vehicles/much-empty-semi-trailer-weigh-735e3574c4658c6d

³ Loaded weight estimated as the sum of the unloaded weight and the capacity or working load of each loader or truck, respectively.

 $^{\rm 4}$ Weight (tons) calculated as the average of the unloaded and loaded weights for each type of vehicle.

⁵ Control efficiency for unpaved roads obtained from CDPHE Guidance, Control Efficiencies, Appendix B as a total of Gravel (50%), water as needed (25%), and Surface Chemical Treatment (75%), as well as a control efficiency for a speed limit of 25 mph (44%) from the WRAP Fugitive Dust Handbook. Uncontrolled reduction efficiency reflects gravel roads and speed limit only.

⁶ Emission factor in lb/VMT calculated per EPA AP-42, Section 13.2.2, Equation 1a as follows:

E = k	(s/12)	^a (W	/3) ^t
-------	--------	-----------------	------------------

k: Particle Size Multiplier (lb/VMT)

W: Mean vehicle weight (tons)

s: Silt content of road	d surface material (%)		
	PM	PM_{10}	PM _{2.5}
k	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

Emission Calculation for Unpaved Roads

	Round Trip Distance (miles)	Number of T Per Hour	Frucks ¹ Per Year		iles Traveled ² VMT) Annual VMT	Uncontrol PM	led Hourly (lb/hr) PM ₁₀	Emissions ³ PM _{2.5}		ntrolled A nissions ⁴ (PM ₁₀		Controlle PM	ed Hourly En (lb/hr) PM ₁₀	nissions ³ PM _{2.5}	Control PM	lled Annual E (tpy) PM ₁₀	Emissions ⁴ PM _{2.5}
Log/rail tie delivery ⁵ Log/rail tie pile and shredder ⁶ Kiln lids and stacks ⁷ Kiln transport ⁵ Product shipping ⁵	0.60 0.20 0.05 0.20 0.60	0.92 0.07 28 18 0.63	8,030 365 155,490 155,490 5,475	0.55 0.01 1.42 3.55 0.38	4,818 73 7,775 31,098 3,285	1.66 0.03 2.02 7.66 0.74	0.47 0.01 0.58 2.18 0.21	0.05 9.24E-04 0.06 0.22 0.02	7.26 0.09 5.54 33.55 3.25	2.07 0.03 1.58 9.56 0.93	0.21 2.53E-03 0.16 0.96 0.09	0.31 0.01 0.38 1.44 0.14	0.09 1.73E-03 0.11 0.41 0.04	0.01 1.73E-04 0.01 0.04 3.96E-03	1.36 0.02 1.04 6.29 0.61	0.39 4.74E-03 0.30 1.79 0.17	0.04 4.74E-04 0.03 0.18 0.02
Totals:	•					11.37	3.24	0.32	46.43	13.24	1.32	2.13	0.61	0.06	8.71	2.48	0.25

¹ Number of trucks calculated as Loads per Day/Hours per Day:

Description	Load size (lb)	Loads per day	Hours per day
Log delivery	40,000	22	24
Log pile & shredder	N/A	1	15
Kiln stacks and lids	1,000	426	15
Kilns to sizing/packaging & shredder	5000	426	24
Product shipping	15,000	15	24

 2 $\,$ Vehicle miles traveled calculated as the Number of Trucks x Round trip distance per truck.

³ Hourly emissions (lb/hr) = Emission factor for unpaved or paved (lb/VMT) x Hourly VMT.

⁴ Annual emissions (tpy) = Emission factor for unpaved or paved (lb/VMT) x Annual VMT.

⁵ Routes distance based on distances for existing facility with similar layout to the proposed facility.

⁶ The log/rail tie pile and shredder vehicle will travel an estimated 1000 feet per working day. Most motion will be axial swivels and relatively little lateral movement will take place.

⁷ The kiln lid/stack units will operate in the vicinity of a kiln bank.

Appendix B.1 -EX-2 Product Handling and Packaging Emissions for Limited Operations

Inputs		
Parameter	Value	Units
Product Throughput ¹	500	lb biochar/kiln
Percent Unconverted Wood	10%	b percent
Daily Operating Hours	9	hrs/day
Daily Kilns Processed	160	kilns/day
Annual Operating Days	365	days/yr

Controlled Operation Emissions

	Emission	Factor (lb/ton)	biochar) ²	Material Th	1roughput ⁴	Capture	Dust Collector Control	Uncontro	olled Hourly I (lb/hr) ⁵	Emissions	Uncontro	lled Annual (tpy) ⁵	Emissions	Controll	ed Hourly E (lb/hr) ⁵	missions	Controlle	ed Annual E (tpy) ⁵	missions
Activity	PM	PM ₁₀	PM _{2.5}	(tons/hr)	(tons/yr)	Efficiency ³	Efficiency	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}
Process 1: Kiln Dump to Hopper onto Conveyor ⁶	0.0079	0.0037	0.0006	4.45	14,600	90%	99%	0.04	0.02	2.52E-03	0.06	0.03	4.14E-03	3.84E-03	1.82E-03	2.75E-04	6.30E-03	2.98E-03	4.51E-04
Process 2a: Sizing Chomper	0.039	0.015	0.015	4.45	14,600	90%	99%	0.17	0.07	0.07	0.28	0.11	0.11	0.02	0.01	0.01	3.10E-02	1.19E-02	1.19E-02
Process 4: Sizing Hammermil	0.039	0.015	0.015	4.45	14,600	90%	99%	0.17	0.07	0.07	0.28	0.11	0.11	0.02	0.01	0.01	3.10E-02	1.19E-02	1.19E-02
Process 5a: Screener 1	0.025	0.0087	0.0087	4.45	14,600	90%	99%	0.11	0.04	0.04	0.18	0.06	0.06	0.01	4.22E-03	4.22E-03	1.99E-02	6.92E-03	6.92E-03
Process 5b: Small Char Long Conveyor	0.0079	0.0037	0.0006	4.45	14,600	90%	99%	0.04	0.02	2.52E-03	0.06	0.03	4.14E-03	3.84E-03	1.82E-03	2.75E-04	6.30E-03	2.98E-03	4.51E-04
Process 5c: Three Destoners	0.025	0.0087	0.0087	4.45	14,600	90%	99%	0.11	0.04	0.04	0.18	0.06	0.06	0.01	4.22E-03	4.22E-03	1.99E-02	6.92E-03	6.92E-03
Process 6: Rollermill	0.039	0.015	0.015	4.45	14,600	90%	99%	0.17	0.07	0.07	0.28	0.11	0.11	0.02	0.01	0.01	3.10E-02	1.19E-02	1.19E-02
Process 7b: Screener 2	0.025	0.0087	0.0087	4.45	14,600	90%	99%	0.11	0.04	0.04	0.18	0.06	0.06	0.01	4.22E-03	4.22E-03	1.99E-02	6.92E-03	6.92E-03
Process 7c: Bagging Drop ⁶	0.0079	0.0037	0.0006	4.45	14,600	90%	99%	0.04	0.02	2.52E-03	0.06	0.03	4.14E-03	3.84E-03	1.82E-03	2.75E-04	6.30E-03	2.98E-03	4.51E-04

Uncontrolled Operation Emissions

	Emission	Factor (lb/ton	biochar) ²	Material Tl	nroughput ⁴	Building Enclosure	Dust Collector Control	Uncontro	lled Hourly H (lb/hr) ⁵	Emissions	Uncontrolled Annual Emission (tpy) ⁵			Controlled Hourly Emissions (lb/hr) ⁵			Controlled Annual Emis (tpy) ⁵		missions
Activity	РМ	PM ₁₀	PM _{2.5}	(tons/hr)	(tons/yr)	Efficiency 7	Efficiency	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Process 2b: Unconverted Wood Drop to Outdoor Bin ⁶	0.0079	0.0037	0.0006	0.44	1,460	0%		3.52E-03	1.67E-03	2.52E-04	0.01	2.73E-03	4.14E-04	3.52E-03	1.67E-03	2.52E-04	0.01	2.73E-03	4.14E-04
Process 3: Detwigging	0.025	0.0087	0.0087	4.45	14,600	90%		0.01	3.87E-03	3.87E-03	0.02	0.01	0.01	0.01	3.87E-03	3.87E-03	0.02	0.01	0.01
Process 7a: Drop to Bucket Elevator ⁶	0.0079	0.0037	0.0006	4.45	14,600	90%		3.52E-03	1.67E-03	2.52E-04	0.01	2.73E-03	4.14E-04	3.52E-03	1.67E-03	2.52E-04	0.01	2.73E-03	4.14E-04
Process 7d: Storage Silos ⁶	0.0079	0.0037	0.0006	4.45	14,600	0%		0.07	0.03	0.01	0.12	0.05	8.28E-03	0.07	0.03	0.01	0.12	0.05	0.01
					_														
						Total		1.05	0.41	0.33	1.72	0.67	0.55	0.19	0.08	0.04	0.32	0.13	0.07

¹ Includes a margin of safety multiplier for product shipped daily as shown in the Facility Inputs tab.

² Emission factors are from AP-42 Section 11.19.2, Table 11.19.2-2, unless otherwise noted.

³ Capture efficiency accounts for activities occurring under a hood, or within an enclosure where doors could potentially be open.

⁴ Material Throughput (ton/hr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) / Daily Operating Hours (hrs/day)

Material Throughput (ton/yr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) * Operating Days (days/yr)

⁵ Uncontrolled hourly emissions (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * (1-Building Enclosure Efficiency%), where building enclosure efficiency is applicable

Controlled hourly emissions for controlled sources (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * ((1-Capture Efficiency %) + (Capture Efficiency %) + (Capture Efficiency %) + (Capture Efficiency %)))

Uncontrolled annual emissions (tpy) = Emission Factor (lb/ton) * Throughput (tpy) * (1-Building Enclosure Efficiency %)/2000 lb/ton, where building enclosure efficiency is applicable.

Controlled annual emissions for controlled sources (tpy) = Emission factor (lb/ton) * Throughput (tpy) * ((1-Capture Efficiency %) + (Capture Efficiency %) * (1-Dust Collector Control Efficiency %))) / 2000 lb/ton

⁶ Material is transferred to using conveyors. Material drop point emissions are based on AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1. Silo emissions assume two drop points.

$$E\left(\frac{lb}{ton}\right) = k\left(0.0032\right) \left[\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right]$$

Where k = Particle size multiplier

0.74 PM < 30 microns 0.35 PM < 10 microns 0.053 PM < 2.5 microns 6 mph

U = Mean wind speed http://myforecast.co/bin/climate.m?city=24989&zip_code=28345&metric=false&selectedMonthNum=2

M = Moisture content

1 % for charcoal fresh from kiln

http://www.fao.org/3/x5328e/x5328e0b.htm#:~:text=Charcoal%20fresh%20from%20an%20apened.even%20in%20well%2Dburned%20charcoal.

Building enclosure efficiency of 90% accounts for activities conducted within an enclosed building based on the TCEQ emission calculation workbook for rock crushing plants (https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx)

Appendix B.1 -EX-3 Fugitive Road Dust for Limited Operations

Unpaved Road Dust Emission Factors

	silt (s) ¹	Unloaded Weight ²	Loaded Weight ³	Average Weight ⁴ (W)	Uncontrolled ⁵	Control ⁵	Uncontro	Uncontrolled Emission Factor (lb/VMT) ⁶			lled Emissio (lb/VMT)	
Category	(%)	(lb)	(lb)	(tons)	(%)	(%)	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}
Log/rail tie delivery	8.4	40,000	80,000	30.0	72%	95%	3.01	0.86	0.09	0.56	0.16	0.02
Rail tie pile and chomper	8.4	36,226	38,226	18.6	72%	95%	2.43	0.69	0.07	0.46	0.13	0.01
Kiln lids and stacks	8.4	10,849	11,849	5.7	72%	95%	1.42	0.41	0.04	0.27	0.08	0.01
Kilns transport	8.4	26,083	31,083	14.3	72%	95%	2.16	0.62	0.06	0.40	0.12	0.01
Product shipping	8.4	32,000	15,000	11.8	72%	95%	1.98	0.56	0.06	0.37	0.11	0.01

¹ Silt content of road surface material (s) obtained from EPA AP-42, Section 13.2.2, Table 13.2.2-1 for Lumber sawmills/log yards.

² Unloaded weights: kiln wheel loader obtained from spec sheet for a Case-621 loader; log piles, Case CX160 excavator; and lids, Case 121E.

Log delivery unloaded weight of trucks based on typical log truck. http://www.forestry.uga.edu/research/forestry/forestbusiness/log-truck-weight-policy.php

Product delivery vehicles are semi-trailer trucks (tractor and cargo trailer). Typical empty weights from http://www.ask.com/vehicles/much-empty-semi-trailer-weigh-735e3574c4658c6d

³ Loaded weight estimated as the sum of the unloaded weight and the capacity or working load of each loader or truck, respectively.

⁴ Weight (tons) calculated as the average of the unloaded and loaded weights for each type of vehicle.

⁵ Control efficiency for unpaved roads obtained from CDPHE Guidance, Control Efficiencies, Appendix B as a total of Gravel (50%), Water as needed (25%), and Surface Chemical Treatment (75%), as well as a control efficiency for a speed limit of 25 mph (44%) from the WRAP Fugitive Dust Handbook. Uncontrolled reduction efficiency reflects gravel roads and speed limit only.

⁶ Emission factor in lb/VMT calculated per EPA AP-42, Section 13.2.2, Equation 1a as follows:

$E = k (s/12)^{a} (W/3)^{b}$

k: Particle Size Multiplier (lb/VMT)

W: Mean vehicle weight (tons)

s: Silt content of roa	d surface material (%)		
	PM	PM_{10}	PM _{2.5}
k	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

Emission Calculation for Unpaved Roads

	Round Trip Distance	Number of Trucks ¹		Vehicle Miles Traveled ² (VMT)		Uncontrolled Hourly Emissions (lb/hr)		Emissions ³	Emissions ⁴ (tpy)			Controlled Hourly Emissions ³ (lb/hr)		nissions ³	(tpy)		Emissions ⁴
	(miles)	Per Hour	Per Year	Hourly	Annual VMT	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Log/rail tie delivery ⁵	0.60	0.89	2,920	0.53	1,752	1.61	0.46	0.05	2.64	0.75	0.08	0.30	0.09	0.01	0.49	0.14	0.01
Log/rail tie pile and chomper ⁶	0.20	0.07	365	0.01	73	0.03	0.01	9.24E-04	0.09	0.03	2.53E-03	0.01	1.73E-03	1.73E-04	0.02	4.74E-03	4.74E-04
Kiln lids and stacks ⁷	0.05	11	58,400	0.53	2,920	0.76	0.22	0.02	2.08	0.59	0.06	0.14	0.04	4.06E-03	0.39	0.11	0.01
Kiln transport ⁵	0.20	18	58,400	3.56	11,680	7.68	2.19	0.22	12.60	3.59	0.36	1.44	0.41	0.04	2.36	0.67	0.07
Product shipping ⁵	0.60	0.67	2,190	0.40	1,314	0.79	0.23	0.02	1.30	0.37	0.04	0.15	0.04	4.23E-03	0.24	0.07	0.01
Totals:						10.08	2.87	0.29	17.41	4.96	0.50	1.89	0.54	0.05	3.26	0.93	0.09

¹ Number of trucks calculated as Loads per Day/Hours per Day:

Description	Load size (lb)	Loads per day	Hours per day
Log delivery	40,000	8	9
Log pile & shredder	N/A	1	15
Kiln stacks and lids	1,000	160	15
Kilns to sizing/packaging & shredder	5000	160	9
Product shipping	15,000	6	9

² Vehicle miles traveled calculated as the Number of Trucks x Round trip distance per truck.

³ Hourly emissions (lb/hr) = Emission factor for unpaved or paved (lb/VMT) x Hourly VMT.

⁴ Annual emissions (tpy) = Emission factor for unpaved or paved (lb/VMT) x Annual VMT.

⁵ Routes distance based on distances for existing facility with similar layout to the proposed facility.

⁶ The log/rail tie pile and shredder vehicle will travel an estimated 1000 feet per working day. Most motion will be axial swivels and relatively little lateral movement will take place.

⁷ The kiln lid/stack units will operate in the vicinity of a kiln bank.

Appendix B.2 - Facility Inputs for Unrestricted Operations

	Operating	schedule		Raw	Materials and	d Product		Kiln Inpu	/ 1	Capture or Co	
Category	Daily hrs	days/yr	Estimated #/day	Typical lb/load	Potential ton/day	Potential annual tons	Burner Fuel, MMBtu/yr	Wood charge (ton/kiln)	Biochar product (lb/kiln)	Description	Capture or Control Efficiency
Kilns Processing ¹	24	365	426					1.00		Afterburner	95%
Afterburners	24	365	426				466,470				
Wood delivery	24	365	22	40,000	426	155,490					
Wood chomping	24	365			426					Enclosed in a conex	90%
Product shipped	24	365	15	15,000	107	38,873			500	Enclosed in building	90%

¹ Number of kilns: **426** The number of kilns operated daily and the current emission factors will be used to calculate the emissions.

Appendix B.2 - Facility Summary for Unrestricted Operations

		Hourly Emissions (lb/hr)												
Source ID	Description	TSP (Unc.)	PM ₁₀ (Unc.)	PM _{2.5} (Unc.)	TSP	PM ₁₀	PM _{2.5}	NOx	SO ₂	VOC (Unc.)	VOC (Cont.)	CO	Lead	HAP
ES-1	Kiln Operation	11.18	7.63	5.50	11.18	7.63	5.50	159.75	8.33E-06	73.48	3.67	31.95	1.60E-08	1.47E-03
ES-1	Afterburner and Kiln Combustion								0.03				2.61E-05	0.10
EX-1	Tie Chomper & Kiln Load	0.09	0.04	0.02	0.09	0.04	0.02	-	-	-	-	-	-	-
EX-2	Biochar Sizing & Packaging	2.79	1.08	0.89	0.51	0.214	0.119	-	-	-	-	-	-	-
EX-3	Haul Roads	11.37	3.24	0.32	2.13	0.61	0.06	-	-	-	-	-	-	-
	Totals:	25.43	12.00	6.73	13.92	8.50	5.70	159.75	0.03	73.48	3.67	31.95	2.61E-05	0.10

		Annual Emissions (tpy)												
Source ID	Description	TSP (Unc.)	PM ₁₀ (Unc.)	PM _{2.5} (Unc.)	TSP	PM ₁₀	PM _{2.5}	NO _X	SO ₂	VOC (Unc.)	VOC (Cont.)	CO	Lead	HAP
ES-1	Kiln Operation	48.98	33.43	24.10	48.98	33.43	24.10	699.71	0.02	321.86	16.09	139.94	2.99E-05	2.75
ES-1	Afterburner and Kiln Combustion								0.14				1.14E-04	0.43
EX-1	Tie Chomper & Kiln Load	0.39	0.19	0.08	0.39	0.19	0.08	-	-	-	-	-	-	-
EX-2	Biochar Sizing & Packaging	4.58	1.78	1.46	0.84	0.35	0.20	-	-	-	-	-	-	-
EX-3	Haul Roads	46.43	13.24	1.32	8.71	2.48	0.25	-	-	-	-	-	-	-
	Total Excluding Fugitives:	53.95	35.40	25.63	50.21	33.97	24.37	699.71	0.15	321.86	16.09	139.94	1.44E-04	3.18
	Total All Sources:	100.38	48.63	26.96	58.92	36.45	24.62	699.71	0.15	321.86	16.09	139.94	1.44E-04	3.18

Toxic/Hazardous Air Pollutant Summary

Toxic Air Pollutant	HAP?	HAP? TAP? Total Emissions 2Q.0711 TPER Limits			nits	TPER?			
			(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)	
Metals									
Antimony	Н		2.63E-09	2.69E-05	9.83E-03				N/A
Arsenic	Н	Т	7.33E-09	7.50E-05	2.74E-02			0.053	Ňo
Beryllium	Н	Т	3.67E-10	3.75E-06	1.37E-03			0.28	No
Cadmium	Н	Т	1.37E-09	1.40E-05	5.10E-03			0.37	No
Chromium	Н		1.29E-08	1.32E-04	4.83E-02				N/A
Chromium VI	Н	Т	1.17E-09	1.19E-05	4.35E-03			0.0056	Ňo
Cobalt	Н		4.39E-06	1.27E-04	4.65E-02				N/A
Manganese	Н	Т	5.33E-07	5.45E-03	1.99E+00		0.63		Ńo
Mercury	Н	Т	1.17E-09	1.19E-05	4.35E-03		0.013		No
Nickel	Н	Т	1.10E-08	1.12E-04	4.10E-02		0.013		No
Selenium	Н		1.25E-06	3.96E-05	1.45E-02				N/A
Miscellaneous									
Chlorine	Н	Т	2.63E-07	2.69E-03	9.83E-01		0.79		No
Hydrogen chloride	Н	Т	6.33E-06	6.48E-02	2.36E+01	0.18			No
Organics		-	0.001 00	0.102 02	21002.01	0110			
1,1,1-Trichloroethane	Н		5.17E-10	5.28E-06	1.93E-03				N/A
1,2-Dichloropropane	Н		5.50E-10	5.62E-06	2.05E-03				N/A
1,4-Dichlorobenzene	Н	Т	1.45E-11	1.48E-07	5.41E-05	16.8			No
2,3,7,8-Tetrachlorodibenzo-p-dioxins	Н	Ť	6.51E-16	6.66E-12	2.43E-09	10.0		0.0002	No
2,4,6-Trichlorophenol	Н		3.67E-13	3.75E-09	1.37E-06			0.0002	N/A
2,4-Dinitrophenol	Н		3.00E-12	3.07E-08	1.12E-05				N/A
4-Nitrophenol	H		1.83E-12	1.87E-08	6.84E-06				N/A
Acetaldehyde	Н	Т	8.07E-07	1.60E-04	5.86E-02	6.8			No
Acetophenone	H		5.33E-14	5.45E-10	1.99E-02	0.0			N/A
Acrolein	H	 T	1.01E-06	7.04E-04	2.57E-01	0.02			No
Ammonia		T		4.01E+00	1.46E+03	0.62			No
Benzene		T	1.67E-01 1.10E-04	4.01E+00 3.35E-03	1.46E+03 1.22E+00	0.00		8.1	No
		T							
Benzo(a)pyrene	Н		6.27E-08	1.95E-06	7.10E-04		0.62	2.2	No
Bis(2-ethylhexyl)phthalate	H	T T	7.09E-11	7.25E-07	2.65E-04		0.63	460	No
Carbon Tetrachloride	Н		7.50E-10	7.67E-06	2.80E-03		16	460	No
Chlorobenzene	Н	Т	5.50E-10	5.62E-06	2.05E-03		46	200	No
Chloroform	Н	Т	4.67E-10	4.77E-06	1.74E-03	0.54		290	No
Cresol isomers (m,p,o)	Н	Т	4.58E-11	4.68E-07	1.71E-04	0.56			No
Ethylbenzene	Н		5.17E-10	5.28E-06	1.93E-03			0.60	N/A
Ethylene dichloride	Н	Т	4.83E-10	4.94E-06	1.80E-03			260	No
Formaldehyde	Н	Т	3.92E-03	9.47E-02	3.46E+01	0.04			No
Hexane	Н	Т	9.40E-02	2.26E+00	8.23E+02		23		No
Methanol	Н		1.47E-03	1.50E+01	5.47E+03				N/A
Methyl bromide	Н		2.50E-10	2.56E-06	9.33E-04				N/A
Methyl chloride	Н		3.83E-10	3.92E-06	1.43E-03				N/A
Methylene chloride	Н	Т	4.83E-09	4.94E-05	1.80E-02	0.39		1600	No
Naphthalene	Н		3.18E-05	7.81E-04	2.85E-01				N/A
Pentachlorophenol	Н	Т	3.79E-11	3.87E-07	1.41E-04	0.0064	0.063		No
Phenol	Н	Т	8.50E-10	8.69E-06	3.17E-03	0.24			No
Polychlorinated biphenyls (PCB)	Н	Т	1.32E-13	1.35E-09	4.93E-07			5.6	No
Polycyclic organic matter (POM)	Н		2.11E-09	2.16E-05	7.88E-03				N/A
Propionaldehyde	Н		1.02E-09	1.04E-05	3.79E-03				N/A
Styrene	Н	Т	3.17E-08	3.24E-04	1.18E-01	2.7			No
Tetrachlorodibenzo-p-dioxins		Т	7.83E-15	8.01E-11	2.92E-08			0.0002	No
Tetrachloroethylene	Н	Т	6.33E-10	6.48E-06	2.36E-03			13000	No
Toluene	Н	Т	1.78E-04	4.42E-03	1.61E+00		98		No
Trichloroethene	Н	Т	5.00E-10	5.11E-06	1.87E-03			4000	No
Vinyl chloride	Н	Т	3.00E-10	3.07E-06	1.12E-03			26	No
Xylenes	Н	Т	4.17E-10	4.26E-06	1.55E-03		57		No

Appendix B.2 - Biochar Production from Processing of Wood for Unrestricted Operations

Inputs		
Activity	Value	Units
Average Kilns Processed	426	kilns/day
Average Kilns Processed	155,490	kilns/year
Annual Operating Days	365	days/yr
Load size	1.00	ton/kiln
Railroad Tie Heating Value	8,000	Btu/ton
Estimated Heat Intput	3.33E-04	MMBtu/hr
Estimated Heat Intput	1,244	MMBtu/yr

Single Kiln Emission Factors - Controlled¹

Pollutant	Worst- Case Emission Factor	Units
	0.23	lb/ton
PM	0.03	lb/hr
DM	0.16	lb/ton
PM ₁₀	0.02	lb/hr
PM ₂₅	0.12	lb/ton
P1M _{2.5}	0.01	lb/hr
NO _x	3.35	lb/ton
NOX	0.38	lb/hr
VOC	0.45	lb/ton
VOC	0.01	lb/hr
	0.67	lb/ton
CO	0.08	lb/hr

¹ Emission factors are based on the worst-case of performance tests for untreated wood and creosote-treated railroad ties for similar size kilns, and include the safety factors indicated below:

PM emission factor multiplier:	1.25
NOx emission factor mutiplier:	1.25
VOC uncontrolled emission factor mutiplier:	1.25
CO emission factor mutliplier:	1.25
MeOH uncontrolled emission factor multiplier:	1.25

Emissions

		Unrestricted Hourly Emissions (lb/hr) ¹							
						VO	C ²		
Number of Kilns	NO _X	CO	РМ	PM ₁₀	PM _{2.5}	Unc.	Cont.	SO ₂ ⁴	
Per Kiln	0.38	0.08	0.026	0.018	0.013	1.73E-01	8.63E-03	1.96E-08	
Average Kilns Processed	159.75	31.95	11.18	7.63	5.50	73.48	3.67	8.33E-06	

	Unrestricted Annual Emissions (tpy) ³							
						VO	C^2	
Number of Kilns	NO _X	CO	РМ	PM ₁₀	PM _{2.5}	Unc.	Cont.	SO ₂ ⁴
All Kilns	699.71	139.94	48.98	33.43	24.10	321.86	16.09	1.55E-02

 1 Per kiln emissions based on the worst-case value from the two stack test reports.

Average Kilns Processed (lb/hr) = Per Kiln Emissions (lb/hr) * Average Kilns Processed

² Controlled emissions based on destruction ratio efficiency (DRE) of

³ Annual Emissions (tpy) = Emission Rate (lb/hr) * 8,760 (hr/yr) ÷ 2000 lb/ton

95%

Appendix B.2 - Kiln Emission Factor Analysis

Value	20)19 Untreate	2015 Creosote Treated Rail Tie Test ²		
	Kiln 8	Kiln 21	Kiln 7	Average	Pole 2 NE
Quantity Processed (tons)	0.990	1.000	1.030	1.007	1.007
Run Hours	9.317	9.333	8.333	8.994	8.994
NO _X (lb/hr)	0.223	0.260	0.230	0.238	0.300
NO _x (lb/ton)	2.099	2.427	1.861	2.129	2.680
CO (lb/hr)	0.002	0.012	0.009	0.007	0.060
CO (lb/ton)	0.018	0.109	0.070	0.066	0.536
PM filt. (lb/hr)	0.014	0.018	0.015	0.015	0.005
PM filt. (lb/ton)	0.132	0.166	0.118	0.139	0.045
PM cond. (lb/hr)	0.006	0.005	0.006	0.006	N/A
PM cond. (lb/ton)	0.056	0.046	0.045	0.049	N/A
PM (lb/hr) ³	0.020	0.023	0.020	0.021	0.011
PM (lb/ton) ³	0.187	0.212	0.163	0.187	0.094
PM ₁₀ (lb/hr)	0.014	0.015	0.014	0.014	N/A
PM ₁₀ (lb/ton)	0.122	0.142	0.114	0.126	N/A
PM _{2.5} (lb/hr)	0.010	0.011	0.010	0.010	N/A
PM _{2.5} (lb/ton)	0.099	0.099	0.083	0.094	N/A
VOC (lb/hr)	0.002	0.002	0.001	0.002	0.007
VOC (lb/ton)	0.414	0.454	0.210	0.359	0.062
MeOH (lb/hr)	1.62E-04	1.46E-04	1.64E-04	1.57E-04	2.00E-04
MeOH (lb/ton)	0.030	0.027	0.027	0.028	0.002

¹ All data taken from Source Test Report 2019 Compliance Test for the Biochar Now! Berthoud Facility. Emission factors in lb/ton are calculated as the lb/hr test result multiplied by the run hours and divided by the quantity processed in tons.

² All data taken from Source Emissions Testing Report 2015 for the Biochar Now! Berthoud Facility, unless otherwise specified. Emission factors in lb/ton are calculated as the lb/hr test result multiplied by the run hours and divided by the quantity processed in tons. Kin is the same size as those tested in the 2019 compliance test. Kiln weight and run time during the test estimated as the average of the three tests conducted in 2019.

³ 2015 value is the sum of PM filt from 2015 test and PM cond from 2019 test.

Appendix B.2 -Other Pollutant Kiln Emissions for Unrestricted Operations

Pollutant	Uncontrolled Emission Factor	Emission Factor Source ¹				Conti (lb/hr)	trolled Emissions ² (lb/day) (lb/yr)	
SO ₂	2.5E-02 lb/MMBtu	f	8.33E-06	8.52E-02	3.11E+01	8.33E-06	8.52E-02	3.11E+0
Metals								
Antimony	7.9E-06 lb/MMBtu	b	2.63E-09	2.69E-05	9.83E-03	2.63E-09	2.69E-05	9.83E-0
Arsenic	2.2E-05 lb/MMBtu	b	7.33E-09	7.50E-05	2.74E-02	7.33E-09	7.50E-05	2.74E-0
Beryllium	1.1E-06 lb/MMBtu	b	3.67E-10	3.75E-06	1.37E-03	3.67E-10	3.75E-06	1.37E-0
Cadmium	4.1E-06 lb/MMBtu	b	1.37E-09	1.40E-05	1.37E-03 5.10E-03	1.37E-09	1.40E-05	5.10E-(
Chromium					4.83E-02	1.29E-09		
	3.9E-05 lb/MMBtu	C	1.29E-08	1.32E-04			1.32E-04	4.83E-0
Chromium VI	3.5E-06 lb/MMBtu	b	1.17E-09	1.19E-05	4.35E-03	1.17E-09	1.19E-05	4.35E-0
Cobalt	6.5E-06 lb/MMBtu	b	2.17E-09	2.22E-05	8.09E-03	2.17E-09	2.22E-05	8.09E-0
Lead	4.8E-05 lb/MMBtu	b	1.60E-08	1.64E-04	5.97E-02	1.60E-08	1.64E-04	5.97E-0
Manganese	1.6E-03 lb/MMBtu	b	5.33E-07	5.45E-03	1.99E+00	5.33E-07	5.45E-03	1.99E+
Mercury	3.5E-06 lb/MMBtu	b	1.17E-09	1.19E-05	4.35E-03	1.17E-09	1.19E-05	4.35E-
Nickel	3.3E-05 lb/MMBtu	b	1.10E-08	1.12E-04	4.10E-02	1.10E-08	1.12E-04	4.10E-
Phosphorus	2.7E-05 lb/MMBtu	b	9.00E-09	9.20E-05	3.36E-02	9.00E-09	9.20E-05	3.36E-0
Selenium	2.8E-06 lb/MMBtu	b	9.33E-10	9.54E-06	3.48E-03	9.33E-10	9.54E-06	3.48E-0
Miscellaneous								
Chlorine	7.9E-04 lb/MMBtu	а	2.63E-07	2.69E-03	9.83E-01	2.63E-07	2.69E-03	9.83E-0
Hydrogen chloride	1.9E-02 lb/MMBtu	а	6.33E-06	6.48E-02	2.36E+01	6.33E-06	6.48E-02	2.36E+0
Organics								
1,1,1-Trichloroethane	3.1E-05 lb/MMBtu	а	1.03E-08	1.06E-04	3.86E-02	5.17E-10	5.28E-06	1.93E-0
1,2-Dichloropropane	3.3E-05 lb/MMBtu	а	1.10E-08	1.12E-04	4.10E-02	5.50E-10	5.62E-06	2.05E-
1,4-Dichlorobenzene	8.7E-07 lb/MMBtu	с	2.90E-10	2.96E-06	1.08E-03	1.45E-11	1.48E-07	5.41E-
2,3,7,8-Tetrachlorodibenzo-p-dioxins	3.9E-11 lb/MMBtu	с	1.30E-14	1.33E-10	4.86E-08	6.51E-16	6.66E-12	2.43E-
2,3,7,8-Tetrachlorodibenzo-p-furans	9.0E-11 lb/MMBtu	а	3.00E-14	3.07E-10	1.12E-07	1.50E-15	1.53E-11	5.60E-
2,4,6-Trichlorophenol	2.2E-08 lb/MMBtu	а	7.33E-12	7.50E-08	2.74E-05	3.67E-13	3.75E-09	1.37E-
2,4-Dinitrophenol	1.8E-07 lb/MMBtu	а	6.00E-11	6.13E-07	2.24E-04	3.00E-12	3.07E-08	1.12E-
2-Chloronaphthalene	2.4E-09 lb/MMBtu	a	8.00E-13	8.18E-09	2.99E-06	4.00E-14	4.09E-10	1.49E-
2-Methylnaphthalene	1.6E-07 lb/MMBtu	a	5.33E-11	5.45E-07	1.99E-04	2.67E-12	2.73E-08	9.95E-
4-Nitrophenol	1.1E-07 lb/MMBtu	a	3.67E-11	3.75E-07	1.37E-04	1.83E-12	1.87E-08	6.84E-
Acenaphthene	9.1E-07 lb/MMBtu		3.03E-10	3.10E-06	1.13F-04	1.52E-11		
•		а					1.55E-07	5.66E-0
Acenaphthylene	5.0E-06 lb/MMBtu	а	1.67E-09	1.70E-05	6.22E-03	8.33E-11	8.52E-07	3.11E-
Acetaldehyde	8.3E-04 lb/MMBtu	а	2.77E-07	2.83E-03	1.03E+00	1.38E-08	1.41E-04	5.16E-
Acetophenone	3.2E-09 lb/MMBtu	а	1.07E-12	1.09E-08	3.98E-06	5.33E-14	5.45E-10	1.99E-
Acrolein	4.0E-03 lb/MMBtu	а	1.33E-06	1.36E-02	4.98E+00	6.67E-08	6.82E-04	2.49E-
Anthracene	3.0E-06 lb/MMBtu	а	1.00E-09	1.02E-05	3.73E-03	5.00E-11	5.11E-07	1.87E-
Benzene	4.2E-03 lb/MMBtu	а	1.40E-06	1.43E-02	5.22E+00	7.00E-08	7.16E-04	2.61E-
Benzo(a)anthracene	6.5E-08 lb/MMBtu	а	2.17E-11	2.22E-07	8.09E-05	1.08E-12	1.11E-08	4.04E-
Benzo(a)pyrene	2.6E-06 lb/MMBtu	а	8.67E-10	8.86E-06	3.23E-03	4.33E-11	4.43E-07	1.62E-
Benzo(b)fluoranthene	1.0E-07 lb/MMBtu	а	3.33E-11	3.41E-07	1.24E-04	1.67E-12	1.70E-08	6.22E-
Benzo(e)pyrene	2.6E-09 lb/MMBtu	a	8.67E-13	8.86E-09	3.23E-06	4.33E-14	4.43E-10	1.62E-
Benzo(g,h,i)perylene	9.3E-08 lb/MMBtu	a	3.10E-11	3.17E-07	1.16E-04	1.55E-12	1.58E-08	5.78E-
Benzo(j,k)fluoranthene	1.6E-07 lb/MMBtu		5.33E-11	5.45E-07	1.99E-04	2.67E-12	2.73E-08	9.95E-
		а						
Benzo(k)fluoranthene	3.6E-08 lb/MMBtu	а	1.20E-11	1.23E-07	4.48E-05	6.00E-13	6.13E-09	2.24E-
Bis(2-ethylhexyl)phthalate	4.3E-06 lb/MMBtu	С	1.42E-09	1.45E-05	5.29E-03	7.09E-11	7.25E-07	2.65E-
Carbazole	1.8E-06 lb/MMBtu	а	6.00E-10	6.13E-06	2.24E-03	3.00E-11	3.07E-07	1.12E-
Carbon Tetrachloride	4.5E-05 lb/MMBtu	а	1.50E-08	1.53E-04	5.60E-02	7.50E-10	7.67E-06	2.80E-
Chlorobenzene	3.3E-05 lb/MMBtu	а	1.10E-08	1.12E-04	4.10E-02	5.50E-10	5.62E-06	2.05E-
Chloroform	2.8E-05 lb/MMBtu	а	9.33E-09	9.54E-05	3.48E-02	4.67E-10	4.77E-06	1.74E-
Chrysene	3.8E-08 lb/MMBtu	а	1.27E-11	1.30E-07	4.73E-05	6.33E-13	6.48E-09	2.36E-
Cresol isomers (m,p,o)	2.7E-06 lb/MMBtu	с	9.16E-10	9.37E-06	3.42E-03	4.58E-11	4.68E-07	1.71E-
Decachlorobiphenyl	2.7E-10 lb/MMBtu	а	9.00E-14	9.20E-10	3.36E-07	4.50E-15	4.60E-11	1.68E-
Dibenzo(a,h)anthracene	9.1E-09 lb/MMBtu	a	3.03E-12	3.10E-08	1.13E-05	1.52E-13	1.55E-09	5.66E-
Dichlorobiphenyl	7.4E-10 lb/MMBtu	a	2.47E-13	2.52E-09	9.21E-07	1.23E-14	1.26E-10	4.60E-
Dioxins/furans	1.7E-06 lb/MMBtu	e	5.57E-10	5.70E-06	2.08E-03	2.79E-11	2.85E-07	1.04E-
Ethylbenzene	3.1E-05 lb/MMBtu	a	1.03E-08	1.06E-04	2.08E-03 3.86E-02	5.17E-10	5.28E-07	1.93E-
-								
Ethylene dichloride	2.9E-05 lb/MMBtu	a	9.67E-09	9.88E-05	3.61E-02	4.83E-10	4.94E-06	1.80E-
Fluoranthene	1.6E-06 lb/MMBtu	а	5.33E-10	5.45E-06	1.99E-03	2.67E-11	2.73E-07	9.95E-
Fluorene	3.4E-06 lb/MMBtu	а	1.13E-09	1.16E-05	4.23E-03	5.67E-11	5.79E-07	2.11E-
Formaldehyde	4.4E-03 lb/MMBtu	а	1.47E-06	1.50E-02	5.47E+00	7.33E-08	7.50E-04	2.74E-
Heptachlorobiphenyl	6.6E-11 lb/MMBtu	а	2.20E-14	2.25E-10	8.21E-08	1.10E-15	1.12E-11	4.10E-
Heptachlorodibenzo-p-dioxins	2.0E-09 lb/MMBtu	а	6.67E-13	6.82E-09	2.49E-06	3.33E-14	3.41E-10	1.24E-
Heptachlorodibenzo-p-furans	2.4E-10 lb/MMBtu	а	8.00E-14	8.18E-10	2.99E-07	4.00E-15	4.09E-11	1.49E-
Hexachlorobiphenyl	5.5E-10 lb/MMBtu	а	1.83E-13	1.87E-09	6.84E-07	9.17E-15	9.37E-11	3.42E-
Hexachlorodibenzo-p-dioxins	1.6E-06 lb/MMBtu	a	5.33E-10	5.45E-06	1.99E-03	2.67E-11	2.73E-07	9.95E-
Hexachlorodibenzo-p-furans	2.8E-10 lb/MMBtu	a	9.33E-14	9.54E-10	3.48E-07	4.67E-15	4.77E-11	1.74E-
Indeno(1,2,3-cd)pyrene	8.7E-08 lb/MMBtu		9.33E-14 2.90E-11	9.54E-10 2.96E-07	1.08E-04	4.07E-13 1.45E-12	4.77E-11 1.48E-08	5.41E-
		a			1.08E-04 109361.30	1.45E-12 1.47E-03	1.48E-08 1.50E+01	5.41E- 5.47E+
Methanol	87.92 lb/MMBtu	d	0.03	3.00E+02				
Methanol Mathul bromide		а	5.00E-09	5.11E-05	1.87E-02	2.50E-10	2.56E-06	9.33E-
Methyl bromide	1.5E-05 lb/MMBtu		7.67E-09	7.84E-05	2.86E-02	3.83E-10	3.92E-06	1.43E-
Methyl bromide Methyl chloride	2.3E-05 lb/MMBtu	а						
Methyl bromide Methyl chloride Methylene chloride	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu	a a	9.67E-08	9.88E-04	3.61E-01	4.83E-09	4.94E-05	
Methyl bromide Methyl chloride	2.3E-05 lb/MMBtu			9.88E-04 3.31E-04	3.61E-01 1.21E-01	4.83E-09 1.62E-09	4.94E-05 1.65E-05	
Methyl bromide Methyl chloride Methylene chloride	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu	а	9.67E-08					6.03E-
Methyl bromide Methyl chloride Methylene chloride Naphthalene	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu 9.7E-05 lb/MMBtu	a a	9.67E-08 3.23E-08	3.31E-04	1.21E-01	1.62E-09	1.65E-05	6.03E-0 4.10E-0
Methyl bromide Methyl chloride Methylene chloride Naphthalene Octachlorodibenzo-p-dioxins Octachlorodibenzo-p-furans	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu 9.7E-05 lb/MMBtu 6.6E-08 lb/MMBtu 8.8E-11 lb/MMBtu	a a a	9.67E-08 3.23E-08 2.20E-11 2.93E-14	3.31E-04 2.25E-07 3.00E-10	1.21E-01 8.21E-05 1.09E-07	1.62E-09 1.10E-12 1.47E-15	1.65E-05 1.12E-08 1.50E-11	1.80E-(6.03E-(4.10E-(5.47E-(7.46E-(
Methyl bromide Methyl chloride Methylene chloride Naphthalene Octachlorodibenzo-p-dioxins Octachlorodibenzo-p-furans Pentachlorobiphenyl	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu 9.7E-05 lb/MMBtu 6.6E-08 lb/MMBtu 8.8E-11 lb/MMBtu 1.2E-09 lb/MMBtu	a a a a	9.67E-08 3.23E-08 2.20E-11 2.93E-14 4.00E-13	3.31E-04 2.25E-07 3.00E-10 4.09E-09	1.21E-01 8.21E-05 1.09E-07 1.49E-06	1.62E-09 1.10E-12 1.47E-15 2.00E-14	1.65E-05 1.12E-08 1.50E-11 2.04E-10	6.03E-(4.10E-(5.47E-(7.46E-(
Methyl bromide Methyl chloride Methylene chloride Naphthalene Octachlorodibenzo-p-dioxins Octachlorodibenzo-p-furans	2.3E-05 lb/MMBtu 2.9E-04 lb/MMBtu 9.7E-05 lb/MMBtu 6.6E-08 lb/MMBtu 8.8E-11 lb/MMBtu	a a a	9.67E-08 3.23E-08 2.20E-11 2.93E-14	3.31E-04 2.25E-07 3.00E-10	1.21E-01 8.21E-05 1.09E-07	1.62E-09 1.10E-12 1.47E-15	1.65E-05 1.12E-08 1.50E-11	6.03E- 4.10E- 5.47E-

International Tie Disposal, LLC

Page 15 of 20

Appendix B.2 -Other Pollutant Kiln Emissions for Unrestricted Operations

	Uncontrolled Emission	Emission Factor	Uncol	ntrolled Emi	ssions	Cont	rolled Emiss	ions ²
Pollutant	Factor	Source ¹	(lb/hr)	(lb/day)	(lb/yr)	(lb/hr)	(lb/day)	(lb/yr)
Perylene	5.2E-10 lb/MMBtu	а	1.73E-13	1.77E-09	6.47E-07	8.67E-15	8.86E-11	3.23E-08
Phenanthrene	7.0E-06 lb/MMBtu	а	2.33E-09	2.39E-05	8.71E-03	1.17E-10	1.19E-06	4.35E-04
Phenol	5.1E-05 lb/MMBtu	а	1.70E-08	1.74E-04	6.34E-02	8.50E-10	8.69E-06	3.17E-03
Polychlorinated biphenyls (PCB)	7.9E-09 lb/MMBtu	e	2.64E-12	2.70E-08	9.86E-06	1.32E-13	1.35E-09	4.93E-07
Polycyclic organic matter (POM)	1.3E-04 lb/MMBtu	e	4.23E-08	4.32E-04	1.58E-01	2.11E-09	2.16E-05	7.88E-03
Propionaldehyde	6.1E-05 lb/MMBtu	а	2.03E-08	2.08E-04	7.59E-02	1.02E-09	1.04E-05	3.79E-03
Pyrene	3.7E-06 lb/MMBtu	а	1.23E-09	1.26E-05	4.60E-03	6.17E-11	6.30E-07	2.30E-04
Styrene	1.9E-03 lb/MMBtu	а	6.33E-07	6.48E-03	2.36E+00	3.17E-08	3.24E-04	1.18E-01
Tetrachlorobiphenyl	2.5E-09 lb/MMBtu	а	8.33E-13	8.52E-09	3.11E-06	4.17E-14	4.26E-10	1.55E-07
Tetrachlorodibenzo-p-dioxins	4.7E-10 lb/MMBtu	а	1.57E-13	1.60E-09	5.85E-07	7.83E-15	8.01E-11	2.92E-08
Tetrachlorodibenzo-p-furans	7.5E-10 lb/MMBtu	а	2.50E-13	2.56E-09	9.33E-07	1.25E-14	1.28E-10	4.66E-08
Tetrachloroethylene	3.8E-05 lb/MMBtu	а	1.27E-08	1.30E-04	4.73E-02	6.33E-10	6.48E-06	2.36E-03
Toluene	9.2E-04 lb/MMBtu	а	3.07E-07	3.14E-03	1.14E+00	1.53E-08	1.57E-04	5.72E-02
Trichlorobiphenyl	2.6E-09 lb/MMBtu	а	8.67E-13	8.86E-09	3.23E-06	4.33E-14	4.43E-10	1.62E-07
Trichloroethene	3.0E-05 lb/MMBtu	а	1.00E-08	1.02E-04	3.73E-02	5.00E-10	5.11E-06	1.87E-03
Vinyl chloride	1.8E-05 lb/MMBtu	а	6.00E-09	6.13E-05	2.24E-02	3.00E-10	3.07E-06	1.12E-03
Xylenes	2.5E-05 lb/MMBtu	а	8.33E-09	8.52E-05	3.11E-02	4.17E-10	4.26E-06	1.55E-03
Total HAP			0.03	299.75	109,410	1.47E-03	15.06	5,496

Emission Factor Data Sources as indicated below. Note that Craven County Wood Energy test results for creosote-treated wood combustion were used if the test results exceeded the emission factor in AP-42, or if there was no emission factor in AP-42. Test results obtained from application submitted by Coastal Carolina Clean Power, LLC to North Carolina Division of Air Quality, PSD Air Quality Construction and Operating Permit Application. Oct 2013.

a AP-42, 5th Edition, Section 1.6, Table 1.6-3 (09/03)

b AP-42, 5th Edition, Section 1.6, Table 1.6-4 (09/03)

c Craven County Wood Energy Test Data

d Based on stack testing completed at similar Biochar Now facility in Berthound, Colorado conducted on October 2019. Includes a 25% safety factor.

e Sum of emissions of individual compounds in pollutant category (dioxins/furans, PCBs, POM)

f AP-42, 5th Edition, Section 1.6, Table 1.6-2 (09/03)

 $^{2}\,$ Controlled emissions based on destruction ratio efficiency (DRE) of

95% for organic compounds

Appendix B.2 -Kiln Initiation and Afterburner Emissions for Unrestricted Operations

Inputs		
Parameter	Value	Units
Burner Heat Input	0.125	MMBtu/hr
Number of Burners Operating	426	burners
Daily Hours	24	hrs/day
Operating Schedule	365	days/yr
Natural Gas HHV	1020	Btu/scf
Estimated Hourly Fuel Usage	53.25	MMBtu/hr
Estimated Annual Fuel Usage	466,470.0	MMBtu/yr

Emissions

	Emission Factor ¹		Total Ei	nissions	
Pollutants	(lb/MMscf)	(lb/hr)	(lb/day)	(lb/yr)	(tpy)
Criteria Pollutants					
SO ₂	0.6	3.13E-02	7.52E-01	2.74E+02	1.37E-01
Hazardous/Toxic Air Pollutants					
Acetaldehyde	1.52E-05	7.94E-07	1.90E-05	6.95E-03	3.48E-06
Acrolein	1.80E-05	9.40E-07	2.26E-05	8.23E-03	4.12E-06
Ammonia	3.20E+00	1.67E-01	4.01E+00	1.46E+03	7.32E-01
Benzene	2.10E-03	1.10E-04	2.63E-03	9.60E-01	4.80E-04
Benzo(a)pyrene	1.20E-06	6.26E-08	1.50E-06	5.49E-04	2.74E-07
Cobalt	8.40E-05	4.39E-06	1.05E-04	3.84E-02	1.92E-05
Formaldehyde	7.50E-02	3.92E-03	9.40E-02	3.43E+01	1.71E-02
Hexane	1.80E+00	9.40E-02	2.26E+00	8.23E+02	4.12E-01
Lead	5.00E-04	2.61E-05	6.26E-04	2.29E-01	1.14E-04
Naphthalene	6.10E-04	3.18E-05	7.64E-04	2.79E-01	1.39E-04
Selenium	2.40E-05	1.25E-06	3.01E-05	1.10E-02	5.49E-06
Toluene	3.40E-03	1.78E-04	4.26E-03	1.55E+00	7.77E-04
Total HAP		0.10	2.36	860.57	0.43

¹ Emission factors from DEQ natural gas combustion calculation spreadsheet, Rev. N (January 5, 2017). Afterburner and kiln criteria pollutant emissions were included in the kiln source test results.

Page 17 of 20

Appendix B.2 - Tie Chomper and Kiln Loading Emissions for Unrestricted Operations

Inputs

Description	Value	Units
Kilns Processed	426	kilns/day
Daily Operating Hours	24	hrs/day
Annual Operating Days	365	days/yr
Wood Throughput	1.00	tons/kiln
Wood Throughput	17.75	tons/hr

Emissions

	Emiss	ion Factor (lb/t	ton) ^{1,2}	Enclosure	Hour	rly Emissior	ıs (lb/hr) ⁴	Annual Emissions (tpy) ⁵			
Activity	РМ	PM ₁₀	PM _{2.5}	Capture Efficiency ³	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	
Tie Chomper	0.03500	0.01750	0.00875	90%	0.06	0.03	0.02	0.27	0.14	0.07	
Kiln Loading	0.0015	0.0007	0.0001	0%	0.03	0.01	1.78E-03	0.12	0.05	0.01	
				Total:	0.09	0.04	0.02	0.39	0.19	0.08	

¹ Emission factor for log bucking (i.e., sizing logs down). The chomper reduces railroad ties to 3 inch "chunks" of wood and is more akin to log bucking than to log sawing. The emission factor is obtained from the table in the memorandum "Particulate Matter Potential to Emit Emission Factors from Activities at Sawmills, Excluding Boilers, Located in Pacific Northwest Indian Country", May 8, 2014, Dan Meyer, US EPA Region 10.

² Emission factor for a "drop" of "bone-dry" material into a kiln. Emission factor from the aforementioned source.

³ Chomper will be enclosed within a conex (shipping container). Represented capture efficiency accounts for emissions occurring in an enclosed building.

⁴ Hourly emissions (lb/hr) = Emission factor (lb/ton) * Log Processing Throughput (tons/hr) * (1 - Capture Efficiency)

⁵ Annual emissions (tpy) = Hourly Emissions (lb/hr) * Daily Operating Hours (hrs/day) * Annual Operating Days (days/yr) / 2,000 (lb/ton)

Appendix B.2 -EX-2 Product Handling and Packaging Emissions for Unrestricted Operations

Inputs		
Parameter	Value	Units
Product Throughput ¹	500	lb biochar/kiln
Percent Unconverted Wood	10%	percent
Daily Operating Hours	9	hrs/day
Daily Kilns Processed	426	kilns/day
Annual Operating Days	365	days/yr

Controlled Operation Emissions

Activity	Emission PM	Factor (lb/ton) PM ₁₀	biochar) ² PM _{2.5}	Material Th (tons/hr)	nroughput ⁴ (tons/yr)	Capture Efficiency ³	Dust Collector Control Efficiency	Uncontro PM	lled Hourly I (lb/hr) ⁵ PM ₁₀	Emissions PM _{2.5}	Uncontrol PM	lled Annual (tpy) ⁵ PM ₁₀	Emissions PM _{2.5}	Controll PM	ed Hourly E (lb/hr) ⁵ PM ₁₀	missions PM _{2.5}	Controlle PM	ed Annual E (tpy) ⁵ PM ₁₀	Emissions PM _{2.5}
Process 1: Kiln Dump to Hopper onto Conveyor ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03	7.32E-04		7.94E-03	1.20E-03
Process 2a: Sizing Chomper	0.0075	0.015	0.0000	11.84	38,873	90%	99%	0.05	0.18	0.01	0.15	0.29	0.01	0.01	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 4: Sizing Hammermil	0.039	0.015	0.015	11.84	38,873	90%	99%	0.46	0.10	0.18	0.76	0.29	0.29	0.05	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 5a: Screener 1	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 5b: Small Char Long Conveyor	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03		1.68E-02	7.94E-03	1.20E-03
Process 5c: Three Destoners	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 6: Rollermill	0.039	0.015	0.015	11.84	38,873	90%	99%	0.46	0.18	0.18	0.76	0.29	0.29	0.05	0.02	0.02	8.26E-02	3.18E-02	3.18E-02
Process 7b: Screener 2	0.025	0.0087	0.0087	11.84	38,873	90%	99%	0.30	0.10	0.10	0.49	0.17	0.17	0.03	0.01	0.01	5.30E-02	1.84E-02	1.84E-02
Process 7c: Bagging Drop ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%	99%	0.09	0.04	0.01	0.15	0.07	0.01	0.01	4.84E-03	7.32E-04	1.68E-02	7.94E-03	1.20E-03

Uncontrolled Operation Emissions

	Emission	Factor (lb/ton	biochar) ²	Material Th	roughput ⁴	Building Enclosure	Dust Collector Control	Uncontro	olled Hourly H (lb/hr) ⁵	Emissions	Uncontro	lled Annual (tpy) ⁵	Emissions	Controll	ed Hourly E (lb/hr) ⁵	missions	Controlle	ed Annual E (tpy) ⁵	missions
Activity	РМ	PM ₁₀	PM _{2.5}	(tons/hr)	(tons/yr)	Efficiency ⁷	Efficiency	РМ	PM ₁₀	PM _{2.5}	РМ	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
Process 2b: Unconverted Wood Drop to Outdoor Bin ⁶	0.0079	0.0037	0.0006	1.18	3,887	0%		0.01	4.44E-03	6.72E-04	0.02	7.28E-03	1.10E-03	0.01	4.44E-03	6.72E-04	0.02	0.01	1.10E-03
Process 3: Detwigging	0.025	0.0087	0.0087	11.84	38,873	90%		0.03	0.01	0.01	0.05	0.02	0.02	0.03	0.01	0.01	0.05	0.02	0.02
Process 7a: Drop to Bucket Elevator ⁶	0.0079	0.0037	0.0006	11.84	38,873	90%		0.01	4.44E-03	6.72E-04	0.02	7.28E-03	1.10E-03	0.01	4.44E-03	6.72E-04	0.02	0.01	1.10E-03
Process 7d: Storage Silos ⁶	0.0079	0.0037	0.0006	11.84	38,873	0%		0.19	0.09	0.01	0.31	0.15	2.21E-02	0.19	0.09	0.01	0.31	0.15	0.02
	-			-			-												
						Total		2.79	1.08	0.89	4.58	1.78	1.46	0.51	0.21	0.12	0.84	0.35	0.20

¹ Includes a margin of safety multiplier for product shipped daily as shown in the Facility Inputs tab.

² Emission factors are from AP-42 Section 11.19.2, Table 11.19.2-2, unless otherwise noted.

³ Capture efficiency accounts for activities occurring under a hood, or within an enclosure where doors could potentially be open.

⁴ Material Throughput (ton/hr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) / Daily Operating Hours (hrs/day)

Material Throughput (ton/yr) = Product Throughput (lb biochar/kiln) / 2,000 (lb/ton) * Daily Kilns Cooked (kilns/day) * Operating Days (days/yr)

⁵ Uncontrolled hourly emissions (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * (1-Building Enclosure Efficiency%), where building enclosure efficiency is applicable Controlled hourly emissions for controlled sources (lb/hr) = Emission Factor (lb/ton) * Throughput (tons/hr) * ((1-Capture Efficiency %) + (Capture Efficiency % * (1-Dust Collector Control Efficiency %))) Uncontrolled annual emissions (tpy) = Emission Factor (lb/ton) * Throughput (tpy) * (1-Building Enclosure Efficiency %)/2000 lb/ton, where building enclosure efficiency is applicable. Controlled annual emissions for controlled sources (tpy) = Emission factor (lb/ton) * Throughput (tpy) * ((1-Capture Efficiency %) + (Capture Efficiency % * (1-Dust Collector Control Efficiency %))) / 2000 lb/ton

⁶ Material is transferred to using conveyors. Material drop point emissions are based on AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 1. Silo emissions assume two drop points. . . .

$$E\left(\frac{lb}{ton}\right) = k(0.0032) \left[\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right]$$

Where k = Particle size multiplier

0.74 PM < 30 microns 0.35 PM < 10 microns 0.053 PM < 2.5 microns 6 mph

U = Mean wind speed

http://myforecast.co/bin/climate.m?city=24989&zip_code=28345&metric=false&selectedMonthNum=2

1 % for charcoal fresh from kiln M = Moisture content http://www.fao.org/3/x5328e/x5328e0b.htm#:~:text=Charcoal%20fresh%20from%20an%20opened,even%20in%20well%2Dburned%20charcoal.

⁷ Building enclosure efficiency of 90% accounts for activities conducted within an enclosed building based on the TCEQ emission calculation workbook for rock crushing plants (https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx)

Appendix B.2 -EX-3 Fugitive Road Dust for Unrestricted Operations

Unpaved Road Dust Emission Factors

Category	silt (s) ¹ (%)	Unloaded Weight ² (lb)	Loaded Weight ³ (lb)	Average Weight ⁴ (W) (tons)	Uncontrolled ⁵ (%)	Control ⁵ (%)		lled Emissi (lb/VMT) ⁶ PM ₁₀	on Factor PM _{2.5}	Contro PM	lled Emissio (lb/VMT) ⁽ PM ₁₀	
Log/rail tie delivery	8.4	40,000	80,000	30.0	72%	95%	3.01	0.86	0.09	0.56	0.16	0.02
Rail tie pile and chomper	8.4	36,226	38,226	18.6	72%	95%	2.43	0.69	0.07	0.46	0.13	0.01
Kiln lids and stacks	8.4	10,849	11,849	5.7	72%	95%	1.42	0.41	0.04	0.27	0.08	0.01
Kilns transport	8.4	26,083	31,083	14.3	72%	95%	2.16	0.62	0.06	0.40	0.12	0.01
Product shipping	8.4	32,000	15,000	11.8	72%	95%	1.98	0.56	0.06	0.37	0.11	0.01

¹ Silt content of road surface material (s) obtained from EPA AP-42, Section 13.2.2, Table 13.2.2-1 for Lumber sawmills/log yards.

² Unloaded weights: kiln wheel loader obtained from spec sheet for a Case-621 loader; log piles, Case CX160 excavator; and lids, Case 121E.

Log delivery unloaded weight of trucks based on typical log truck. http://www.forestry.uga.edu/research/forestry/forestbusiness/log-truck-weight-policy.php

Product delivery vehicles are semi-trailer trucks (tractor and cargo trailer). Typical empty weights from http://www.ask.com/vehicles/much-empty-semi-trailer-weigh-735e3574c4658c6d

³ Loaded weight estimated as the sum of the unloaded weight and the capacity or working load of each loader or truck, respectively.

⁴ Weight (tons) calculated as the average of the unloaded and loaded weights for each type of vehicle.

⁵ Control efficiency for unpaved roads obtained from CDPHE Guidance, Control Efficiencies, Appendix B as a total of Gravel (50%), Water as needed (25%), and Surface Chemical Treatment (75%), as well as a control efficiency for a speed limit of 25 mph (44%) from the WRAP Fugitive Dust Handbook. Uncontrolled reduction efficiency reflects gravel roads and speed limit only.

⁶ Emission factor in lb/VMT calculated per EPA AP-42, Section 13.2.2, Equation 1a as follows:

 $E = k (s/12)^{a} (W/3)^{b}$

k: Particle Size Multiplier (lb/VMT)

W: Mean vehicle weight (tons)

s: Silt content of road surface material (%)

	PM	PM ₁₀	PM _{2.5}
k	4.9	1.5	0.15
а	0.7	0.9	0.9
b	0.45	0.45	0.45

Emission Calculation for Unpaved Roads

	Round Trip Distance (miles)	Number of T Per Hour	frucks ¹ Per Year		iles Traveled ² VMT) Annual VMT	Uncontroll PM	led Hourly (lb/hr) PM ₁₀	Emissions ³ PM _{2.5}		ntrolled A hissions ⁴ (PM ₁₀		Controlle PM	ed Hourly En (lb/hr) PM ₁₀	nissions ³ PM _{2.5}	Control PM	led Annual E (tpy) PM ₁₀	Emissions ⁴ PM _{2.5}
Log/rail tie delivery ⁵	0.60	0.92	8,030	0.55	4,818	1.66	0.47	0.05	7.26	2.07	0.21	0.31	0.09	0.01	1.36	0.39	0.04
Log/rail tie pile and shredder ⁶	0.20	0.07	365	0.01	73	0.03	0.01	9.24E-04	0.09	0.03	2.53E-03	0.01	1.73E-03	1.73E-04	0.02	4.74E-03	4.74E-04
Kiln lids and stacks ⁷	0.05	28	155,490	1.42	7,775	2.02	0.58	0.06	5.54	1.58	0.16	0.38	0.11	0.01	1.04	0.30	0.03
Kiln transport ⁵	0.20	18	155,490	3.55	31,098	7.66	2.18	0.22	33.55	9.56	0.96	1.44	0.41	0.04	6.29	1.79	0.18
Product shipping ⁵	0.60	0.63	5,475	0.38	3,285	0.74	0.21	0.02	3.25	0.93	0.09	0.14	0.04	3.96E-03	0.61	0.17	0.02
Totals:						11.37	3.24	0.32	46.43	13.24	1.32	2.13	0.61	0.06	8.71	2.48	0.25

¹ Number of trucks calculated as Loads per Day/Hours per Day:

Load size (lb)	Loads per day	Hours per day
40,000	22	24
N/A	1	15
1,000	426	15
5000	426	24
15,000	15	24
	40,000 N/A 1,000 5000	40,000 22 N/A 1 1,000 426 5000 426

² Vehicle miles traveled calculated as the Number of Trucks x Round trip distance per truck.

³ Hourly emissions (lb/hr) = Emission factor for unpaved or paved (lb/VMT) x Hourly VMT.

⁴ Annual emissions (tpy) = Emission factor for unpaved or paved (lb/VMT) x Annual VMT.

⁵ Routes distance based on distances for existing facility with similar layout to the proposed facility.

⁶ The log/rail tie pile and shredder vehicle will travel an estimated 1000 feet per working day. Most motion will be axial swivels and relatively little lateral movement will take place.

⁷ The kiln lid/stack units will operate in the vicinity of a kiln bank.

SOURCE TEST REPORT 2019 COMPLIANCE TEST BIOCHAR NOW! BERTHOUD FACILITY THREE BIOCHAR KILNS BERTHOUD, COLORADO

Prepared For:

Biochar Now, LLC 19500 County Road 7 Berthoud, CO 80513

For Submittal To:

Colorado Department of Public Health and Environment Air Pollution Control Division 4300 Cherry Creek South Drive Denver, CO 80246

Prepared By:

Montrose Air Quality Services, LLC 990 West 43rd Avenue Denver, CO 80238

Document Number: Test Dates: C-043AS-552991-RT-188 October 8th through 14th, 2019

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	MY Doff	Date:	November 7, 2019	
Name:	Jeff Goldfine	Title:	Field Project Manager	

I have reviewed, technically and editorially, details calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Date:	November 7, 2019	

Name: _____Jeff Holtz _____Title: ____Client Project Manager _____

FACILITY CERTIFICATION

I have reviewed this document and agree that the information contained herein is true, accurate, and complete, to the best of my knowledge.

Signature: _____ Date: _____

Name: Jim Geist Title: Owner

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0 OBJECTIVES AND SUMMARY OF TEST PROGRAM	4
1.1 PROGRAM OBJECTIVES	4
1.3 PROJECT CONTACTS	7
2.0 SOURCE DESCRIPTION	8
2.1 FACILITY AND SOURCE DESCRIPTION	8
2.2 SAMPLING LOCATIONS AND ACCESS	8
3.0 TEST METHOD DETAILS	9
3.1 LIST OF TEST METHODS	9
3.1.1 TEST DETAILS	10
APPENDIX A CALCULATIONS	13
A.1 Pollutant Emissions Spreadsheets	14
A.2 Example Calculations	15
APPENDIX B FIELD AND COMPUTER-GENERATED DATA	16
B.1 Sampling Locations	17
B.2 Field Data Sheets	18
APPENDIX C LABORATORY ANALYSIS DATA	19
APPENDIX D PROCESS DATA	20
APPENDIX E QUALITY ASSURANCE/QUALITY CONTROL	21
E.1 Quality Assurance Program Summary and Equipment Calibration Schedule	22
E.2 ASTM D-7036 Accreditation and QI Certificates	23
E.3 Equipment Calibration Data	24
E.4 Span Gas Certificates	25
SECTION	PAGE
LIST OF TABLES	
TABLE 1-1 KILN TEST RESULTS	6
TABLE 3-1 TEST PROCEDURES	9

(

1.0 OBJECTIVES AND SUMMARY OF TEST PROGRAM

1.1 PROGRAM OBJECTIVES

Montrose Air Quality Services, LLC (Montrose) was contracted by Biochar Now, LLC to perform a series of air emission tests at the biochar kiln facility located in Berthoud, Colorado. The purpose of the test program was to determine the compliance of three (3) biochar kilns with emissions limits as required by the facility's State of Colorado Construction Permit # 15WE1395 Issuance: 4.

The purpose of the test program was to determine the concentrations and mass emission rates of particulate matter (PM), particulate matter with an aerodynamic diameter less than or equal to 2.5 microns (PM_{2.5}), particulate matter with an aerodynamic diameter less than or equal to 10 microns (PM₁₀), carbon monoxide (CO), nitrogen oxides (NO_X), volatile organic compounds (VOC) and methanol (MeOH) from the exhaust stack of three (3) kilns during the processing step. The emissions of non-methane organic compounds (NMOC) were reported for VOC emission rates.

Prior to the commencement of tests, three kilns were loaded with clean wood. The wood mass loaded into each kiln was recorded in order to calculate emission factors with units of "lb pollutant/ton raw wood". The three kilns were transported to available locations on the firing line and each were fitted with a stack. Connections were made from the kiln/stack to the process control system and to utilities. The kilns are then ready for the stack emission testing.

The kilns are identical in mechanical and electric design, as are the stacks. While kilns and stacks include identifying marks, these are for maintenance purposes only. The placement of a kiln on the firing line is based on availability of space. Thus kilns, stack, and firing line location are interchangeable factors that have no effect on the emissions during processing. For purposes of the differentiating the emission tests, the kiln/stack combinations were indicated as Kiln #7, Kiln #8, Kiln #21, and Kiln #40^{*}.

Performance test runs of 120-minutes each were conducted to determine the emissions concentrations of particulate matter (filterable and condensable), CO, NO_X, and VOC. The first performance test started upon the initiation of the processing. Concurrent stack gas velocity, oxygen (O₂), carbon dioxide (CO₂) and moisture (H₂O) content were measured to determine mass emission rates.

Methanol emissions testing followed the 120-minute test run method described above. Concurrent stack gas velocity, oxygen (O_2), carbon dioxide (CO_2) and moisture (H_2O) content were measured to determine mass emission rates.

^{*}The testing on Kiln #40 was stopped on October 8, 2019. The particulate data and the gas data are displayed in the appendix at the request of CDPHE. The methanol testing was not completed.

The PM_{10} and $PM_{2.5}$ emissions were calculated based on the emission factors presented in the permit. A PM_{10} emission factor of 58% of total filterable PM, and $PM_{2.5}$ emission factor of 32% of total filterable PM were used to calculate filterable PM_{10} and $PM_{2.5}$ emissions. Condensable particulate matter (CPM) were included in PM_{10} and $PM_{2.5}$ total emissions (filterable plus condensable).

The opacity of visible emissions (VE) were measured from each kiln on an hourly basis for the duration of the processing cycle (~ 8 to 15-hours). Each hourly Method 9 observation period was six minutes in duration.†

⁺ Opacity observations are displayed in the appendix.

TABLE 1-1

KILN TEST RESULTS

EMISSION FACTORS USED TO DETERMINE COMPLIANCE WITH CONDITION 2, 15WE1395, ISSUANCE 4

Pollutant	Units	Kiln #8	Kiln #21	Kiln #7	Averag e Emission Factor	Notes to Permit Holder, #4 Table Point 001: Kilns
PM		0 <u>.187</u>	0.212	0.163	0.19	0.19
PM ₁₀	lb / ton raw wood	0.122	0.142	0.1 <u>14</u>	0.13	0.18
PM _{2.5}		0.0987	0.099	0.083	0.09	0.18
NOx	lb / hr	0.223	0.260	0.230	0.24	0.14
СО	lb / hr	0.00186	0.01170	0.00866	0.01	0.12
VOC*		0.414	0.454	0.21	0.36	9.3
Methanol*	lb / ton raw wood	0.0304	0.0274	0.0266	0.03	4

*The uncontrolled value shown assumes 95% control.

1.3 PROJECT CONTACTS

A list of project participants is included below:

Facility Information

Source Location:	Biochar Now, LLC
÷	Berthoud Plant
	19500 Weld County Road 7
	Berthoud, Colorado
Project Contact:	Jim Geist
Role:	COO
Telephone:	970-218-3364
Email:	jim.geist@biocharnow.com

Agency Information

Regulatory Agency:	Colorado Department of Public Health and Environment
	Air Pollution Control Division
Agency Contact:	Jeffrey Bishop
Telephone:	303-692-3106
Email:	jeffrey.bishop@state.co.us

Testing Company Information

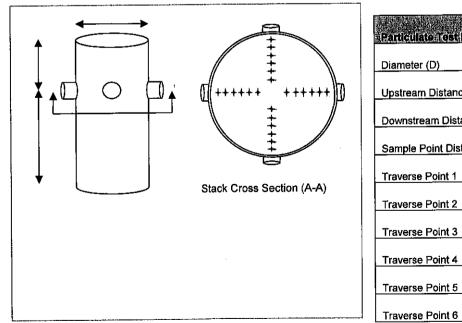
Testing Firm: Montrose Air Quality Services, LLC (Montrose) Contact: Jeff Holtz Telephone: 303-670-0530 Email: jholtz@montrose-env.com

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D-7036 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose completed multiple functional assessments for ASTM D7036-04 which were conducted by the American Association for Laboratory Accreditation (A2LA). All testing is overseen and supervised on site by at least one Qualified Individual (QI), as defined in 40 CFR 72.2. Our project managers are either certified as a qualified source testing individual (QSTI) through the program instituted by the Source Evaluation Society (SES), or as a QI by successfully completing the SES QSTI exams or through internal examination.

2.0 SOURCE DESCRIPTION

2.1 FACILITY AND SOURCE DESCRIPTION

Kilns were loaded with approximately 2200 - 2700 pounds of clean wood. The loaded kilns were transported to the firing line where a stack is attached to each kiln prior to processing.


Processing removes volatile components from the clean wood through pyrolysis to create biochar. The process goals in the production of the biochar are kiln and stack temperature. In turn, these parameters are modulated by an automated process control system to ensure controlled volatilization and optimal biochar yield.

Processing progresses through a period of gasification. Processing ends when the kiln is sealed; its air supply having been capped off. The typical processing duration is 8 - 10 hours after which the stack is removed and a sealed lid is fitted to the kiln for a cool down period with a duration of 9 - 18 hours.

Pollutants that potentially impact air quality are emitted only during the processing step. There are no pollutant emissions during the sealed, cool-down step.

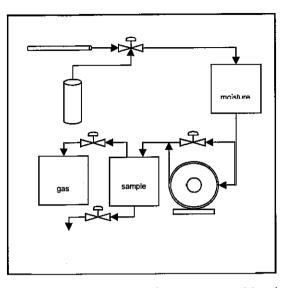
2.2 SAMPLING LOCATIONS AND ACCESS

The sampling locations consisted of vertical, circular stacks with four orthogonal sampling ports located at least two diameters downstream and one-half diameter upstream of the nearest flow disturbances. Particulate matter testing was conducted across a grid of 24 points determined using EPA Method 1. See the schematic below.

Particulate Test Diagram	
Diameter (D)	24"
Upstream Distance (A)	>12"
Downstream Distance (B)	>48"
Sample Point Distances from Stack	<u>Wall</u>
Traverse Point 1	0.5"
Traverse Point 2	1.6"
Traverse Point 3	2.8"
Traverse Point 4	4.2"
Traverse Point 5	6.0"
Traverse Point 6	8.5"

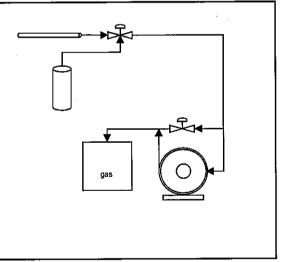
3.0 TEST METHOD DETAILS

3.1 LIST OF TEST METHODS


The test procedures for this test program are summarized in Table 3-1 below. Additional information regarding specific applications or modifications to standard procedures is presented in the following sub-sections.

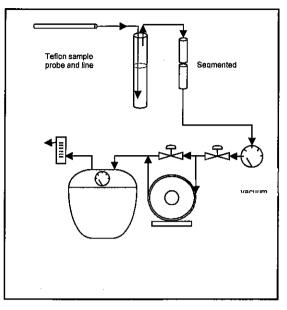
Parameter	Measurement Principle	Reference Method
Volumetric flow rate	Pitot/temperature traverse	EPA 1, 2
O ₂	Paramagnetism	EPA 3A
CO ₂	Non-dispersive infrared	EPA 3A
Moisture	Impinger weight gain	EPA 4
NOx	Chemiluminescence	EPA 7E
Opacity	Visual observation	EPA 9
CO	Gas filter correlation NDIR	EPA 10
VOC	Flame Ionization Detection	EPA 25A
Filterable & Condensable Particulate Matter	Gravimetry with condensable analysis	EPA 5/202
Methanol	Gas chromatography – Flame ionization detector	EPA 308

TABLE 3-1 TEST PROCEDURES

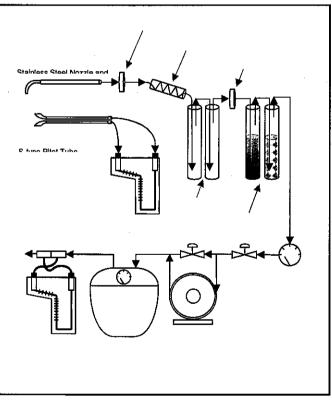

3.1.1 TEST DETAILS

Pollutant gas testing were performed using EPA Methods 3A, 7E, 10 and 25A. The O₂/CO₂/NO_x and CO sample were withdrawn from the exhaust stack at a constant flow rate, transported through a Teflon sample line, through a moisture removal system, and directed to a Horiba PG-250z O₂ / CO₂ / NOx / CO analyzer. (See the diagram of EPA Method 7E at right.) Concentrations of O₂ and CO₂ were reported in units of dry volume percent (%vd); concentrations of NO_x and CO were reported in units of parts per million on a dry volume basis (ppmvd). Gas concentration data were recorded as ten-second and one-minute averages to an Excel Following each test run, the spreadsheet. analyzers were challenged with EPA Protocol 1 calibration gases to determine instrument drift and

to correct the raw pollutant data for system bias. NO_x and CO concentration data were combined with measured exhaust flow rate data to determine NO_x and CO mass emissions in units of pounds per hour (lb/hr).


Concurrent with the above, the VOC sample were withdrawn from the exhaust stack at a constant flow rate, transported through a heated Teflon sample line and directed to a California Analytical Model 600 M-HFID Analyzer equipped with a methane cutter. (See the diagram of EPA Method 25A at right.) Prior to sampling, the instrument was calibrated with EPA Protocol 1 propane calibration gases and challenged with a methane calibration gas to confirm methane cutter operation. Concentrations of non-methane VOC were reported in units of parts per million on a wet volume basis (ppmvw) as propane. Gas concentration data were recorded as ten-second and one-minute averages to an Excel spreadsheet. Following each test run, the analyzer was challenged with EPA Protocol 1 calibration gases to determine instrument

drift. VOC concentration data were combined with measured exhaust flow rate and moisture data to determine VOC mass emissions in units of pounds per hour (lb/hr).



Methanol sampling was performed in accordance with EPA Method 308. Each sample was withdrawn from the stack at a constant flow rate of 0.4 liters per minute through a Teflon sample line, through a chilled midget impinger containing 20 milliliters of HPLC-grade water, through a twosegment adsorption tube packed with silica gel. and through a calibrated dry gas meter. Following sampling, the liquid catches from the midget impinger and the adsorption tube were recovered and transported to Enthalpy Analytical Inc. in Durham, North Carolina for analysis using gas chromatography. All Quality Assurance requirements of Method 308 were followed. Following sampling, concentrations of methanol were combined with concurrently collected moisture data (see below) to determine pollutant concentrations in units of parts per million on a dry volume basis. Pollutant concentrations were

combined with exhaust flow rate data to determine pollutant mass emission rates in units of pounds per hour (lb/hr).

PM and CPM testing were performed using EPA Methods 1, 2, 3, 4, 5 and 202. Each test run were 120 minutes. Sampling was performed along a grid of points determined using EPA Method 1. Exhaust gas flow measurements were taken using an S-type pitot tube. K-type thermocouple and inclined-vertical manometer in accordance with EPA Method 2. A sample of exhaust gas were withdrawn from the stack at an isokinetic flow rate through a stainlesssteel nozzle, through a heated stainlesssteel probe liner, through a water-cooled condenser and two empty glass impingers, through an out-of-stack CPM filter, through a chilled glass impinger containing 100 mL of water and a chilled glass impinger containing a known mass of silica gel, and through a calibrated dry (See Figure 1 at right.) gas meter. Stack gas moisture concentrations were determined gravimetrically in accordance with EPA Method 4.

Following each sampling period, the impinger train was purged with nitrogen for 60 minutes in accordance with §8.5.3 of Method 202. The filter and acetone rinses of the nozzle and probe liner were recovered and shipped to the Montrose laboratory for gravimetric analysis. The CPM filter, impinger contents and hexane rinses of the glassware were recovered in accordance with

Method 202 and returned to the Montrose laboratory for gravimetric analysis. Following analysis, the total PM and CPM masses captured during each test run were combined with concurrent flow, diluent and moisture data to calculate particulate matter emissions in units of pounds per hour (lb/hr).

4.1 DISCUSSION OF RESULTS

The results for individual kiln tests are shown in Table 1-1. Because the limits shown in the table in Condition 2 of the Air Quality Permit 15WE1395, Issuance 4 are annual limits based on the total number of kilns processed, a comparison of a single kiln test with the permit limits is meaningless. Instead, a comparison of the average of the emission factors for each regulated pollutant, as determined by the tests, with the emission factors shown in the *Notes to Permit Holder, item 4, Table "Point 001: Kilns"* of the permit provides basis for determining whether an Air Pollution Emission Notice revision is required. The emission factors determined by the stack tests can also be used to calculate the actual annual emissions for comparison to the annual limits shown in the table in Condition 2 of the permit.

The average emission factors resulting from the three kiln tests are shown in Table 1-1. The average emission factors are compared to the emission factors found in *Notes to Permit Holder, item 4, Table "Point 001: Kilns"* Air Quality Permit 15WE1395, Issuance 4

Additional information is included in the appendices. Appendix A presents the general and specific equations used for the emissions calculations and computer spreadsheets. Raw field data sheets and data acquisition printouts are included in Appendix B. Laboratory reports and chain of custody sheets for the samples are located in Appendix C. Appendix D includes the process data collected by the facility. Appendix E presents the quality assurance information, including instrument calibration data.

4.2 DEVIATIONS AND EXCEPTIONS

The testing was completed on October 9, October 11, and October 14, 2019. This was a deviation from the proposed schedule provided in the test protocol. Run 3 on Kiln #8 on October 9, 2019 was only 80 minutes due to the completion of the process cycle. Testing was delayed due to weather and equipment operation. Testing on Kiln #40 began on October 8, 2019, issues withy process conditions led to stopping the testing and resuming on October 9 with new process conditions. The data recorded and recovered during the test are provided in the appendix.

No other deviations or exceptions were reported by the test crew and/or field project manager.

APPENDIX A CALCULATIONS

C-043AS-552991-RT-188

13 of 277

Appendix A.1 Pollutant Emissions Spreadsheets

043AS-522991 Biochar Now Kiln #8 10/9/2019

	Run # Start Time	1 7:56	2 12:07	3 15:12		
	Stop Time	10:23	14:33	16:48		
EPA Meth	od 2 Data	1	2	3	Average	
	Inputs					_
Ds	Stack Diameter (inches)	24.00	24.00	24.00	24.00	
P _{bar}	Barometric Pressure ("Hg)	24.87	24.87	24.87	24.87	
Pg	Stack Static Pressure ("H ₂ O)	-0.01	-0.01	-0.01	-0.01	
C _p	Pitot Tube Coefficient (unitless)	0.84	0.84	0.84	0.84	
/∆p _{avg}	Avg. Velocity Head of Stack Gas V("H ₂ O)	0.1208	0.1261	0.1295	0.1255	
r's	Stack Gas Temperature (°F)	1300	1324	1095	1240	
	Calculations					
4	Stack Area (ft ²)	3.142	3.142	3.142	3.142	
ь В	Stack Static Pressure ("Hg)	0.00	0.00	0.00	0.00	
Иd	Stack Gas Molecular Weight, dry basis (Ib/Ib-mole)	30.06	29.93	29.70	29.90	
Ms	Stack Gas Molecular Weight, wet basis (lb/lb-mole)	28.28	28.42	28.43	28.38	
, ,	Absolute Stack Pressure ("Hg)	24.87	24.87	24.87	24.87	
- F _{s(abs)}	Absolute Stack Gas Temperature (°R)	1760	1784	1555.3	1700	
/ _s	Stack Gas Velocity (ft/sec)	13.72	14.39	13.79	13.97	
ຊ	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	32,987	34,940	39,213	35,713	
i i	Stack Gas Dry Volumetric Flow Rate (dscf/min)	550	582	654	595	
PA Meth	od 4 Data	1	2	3	Average	_
	Inputs					
/ _{Ic}	Volume of Water Condensed (mL)	228.2	199.3	122.0	183.2	
/_	Volume of Stack Gas Collected (dcf)	72.422	81.099	58.558	70.693	
	Meter Calibration Factor (unitless)	1.0270	1.0270	1.0270	1.0270	
Η	Pressure Differential Across Orifice ("H ₂ O)	1.26	1.50	1.80	1.52	
m	Temperature at Gas Meter (°F)	68	110	106	95	
	Calculations					
m.	Absolute Pressure at Gas Meter ("Hg)	24.96	24.98	25.00	24.98	
m	Absolute Temperature at Gas Meter (°R)	528	570	566.4	555	
wc(std)	Volume of Water Condensed (scf)	10.74	9.38	5.74	8.62	
/ _{m(std)}	Sample Gas Volume (dscf)	62.03	64.39	46.83	57.75	
B _{ws}	Stack Gas Moisture Content (%/100)	0.148	0.127	0.109	0.128	
PA Meth	od 3A, 7E, 10 and 25A Data	1	2	3	Average	Limit
	O ₂ (%vd)	8.5	9.7	10.2	9.5	
	CO ₂ (%vd)	10.8	9.7	8.1	9.5	
	NO _x (ppmvd)	54.3	66.3	37.9	52.8	
	CO (ppmvd)	1.1	0.0	1.0	0.7	
	TVOC (ppmvw as C ₃ H ₈)	1.0	0.2	0.2	0.5	
	TVOC (ppmvd as C₃H₅)	1.2	0.2	0.3	0.6	
Aəss Emis	ssion Calculations (Using EPA Methods 1-4)	1	2	3	Average	Limit
	Exhaust Flow (dscfh)	32987	34940	39213	35713	
	NO _x (lb/hr)	0.214	0.276	0.177	0.223	0.14
	CO (lb/hr)	0.00270	0.0000	0.00289	0.00186	0.12
	TVOC (lb/hr as C₅H ₈)	0.00463	0.000827	0.00114	0.00220	
	TVOC (lb/ton raw feed as C₃Hଃ)	0.0436	0.00778	0.0107	0.0207	0.41

Ĺ

*Kiln processed 0.99 tons of raw feed in 9.317 hours.

043A5-552991 Bìochar Kiln #8 10/9/2019

٠

ť

1

	Start Time	7:56	12:07	15:12		
	Stop Time	10:23	14:33	16:48 BO		
)	Sample Time (min.)	120	120	80		
PA Metho		1	2	3	Average	-
) <u>,</u>	Inputs Stack Diameter (Inches)	24.0	24.0	24.0	24.0	
's ber	Barometric Pressure ("Hg)	24.87	24.0	24.87	24.9	
ber B	Stack Static Pressure ("H ₂ O)	0.0	0.0	0.0	-0.01	
5 5 ₀	Pitot Tube Coefficient (unitiess)	0.84	0.84	0,84	0.84	
~р /∆р _{ача}	Avg. Velocity Head of Stack Gas V("H ₂ O)	0,1208	0.1261	0.1295	0.1255	
rmana Fa	Stack Gas Temperature (*F)	1300	1324	1095.3	1240	
•	Catculations					
4	Stack Area (ft ²)	3.142	3.142	3,142	3.142	
P _e	Stack Static Pressure ("Hg)	0.00	0.00	0.00	0.00	
Ma	Stack Gas Molecular Weight, dry basis (lb/lb-mole)	30.07	29.94	29.70	29.90	
М,	Stack Gas Molecular Weight, wet basis (Ib/Ib-mole)	28.29	28.42	28.43	28.38	
Ρ,	Absolute Stack Pressure ("Hg)	24.87	24.87	24.87	24.87	
T _{s[ebs]}	Absolute Stack Gas Temperature (°R)	1760	1784	1555.3	1700	
ν,	Stack Gas Velocity (ft/sec)	13.7	14.4	13.8	14.0	
a	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	32,985	34,937	39,213	35,712 595	
2	Stack Gas Dry Volumetric Flow Rate (dscf/min)	550	582	654	242	
PA Metho	od 3A Data	1	2	3	Average	-
	O2 (%vd)	8,5	9.7	10.2	9.5	
	CO ₂ (%vd)	10.8	9.7	8.1	9.5	
EPA Metho	od 4 Data	1	2	3	Average	
	Inputs	-	*			
Vic	Volume of Water Condensed (mL)	228.2	199.3	122.0	183.2	
v	Volume of Stack Gas Collected (dcf)	72.422	81.099	58,558	70.693	
Y	Meter Calibration Factor (unitiess)	1.0270	1.0270	1.0270	1.0270	
۵н	Pressure Differential Across Orifice ("H ₂ O)	1.3	1.5	1.8	1.5	
T _m	Temperature at Gas Meter ("F)	68	110	106.4	95	
-	Calculations	34.00	24.05	75.00	24.98	
P.,	Absolute Pressure at Gas Meter ("Hg) Absolute Temperature at Gas Meter ("R)	24.96 528	24.98 570	25.00 566.4	554.8	
T _m	Volume of Water Condensed (scf)	10.74	9.38	5.74	8.62	
Vwc[atd)	•	62.03	5.38 64.39	46,83	57.75	
V _{mistd)} B _{ws act}	Sample Gas Volume (dscf) Observed Stack Gas Moisture Content (%/100)	0.148	0.127	0.109	0.128	
Hws act B _{ws sat}	Saturated Moisture Content (%/100)	2383.917	2526.464	1345.195	2085.192	
B _{ws}	Maisture Content Used (%/100)	0.148	0.127	0.109	0.128	
	······································					
EPA Metho		1	2	3	Average	-
	Inputs Marsia diameter (")	0,750	0.750	0.75	0.75	
D _n C1	Nozzle diameter (") Mass of PM collected on filter (mg)	9,5	8.2	2.9	6.9	
C2	Mass of PM collected on mer (mg) Mass of PM collected in rinses (mg)	4.7	2.9	3.6	5.7	
w.	Mass of acetone blank (rng)	0.2	0.2	0.1	0.Z	
						Pern
EPA Metho	od 202 Data	1	2	3	Average	Lim
	Inputs Mass of Inorganic Condensible PM (mg)	5.8	4.4	2.3	4.2	
	Mass of Organic Condensible PM (mg)	2.2	2.5	2,6	2.4	
	Total CPM Mass (mg)	8.0	6.9	4.9	6.6	
				2.0	2.0	
	Mass of train blank (mg) Teast CDM Mass loss Blank (met)	2.0	2.0	76		
	Mass of train blank (mg) Total CPM Mass less Blank (mg)	2.0 6.0	2.0 4.9	2.9	4.6	
				2.9	4.6	
An	Total CPM Mass less Blank (mg)			2.9 3.07E-03	4.6 3.07E+03	
	Total CPM Mass less Blank (mg) Emission Calculations	6.0 3.07E-03 96.3	4.9 3.07E-03 94,4	3.07E-03 91.8	3.07E-03 94.2	
1	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²)	6.0 3.07E-03	4.9 3.07E-03	3.07E-03	3.07E+03	
1	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) (sokinetic verietion (%) Total Filterable PM mass less blank (mg)	5.0 3.07E-03 96.3 14.0	4.9 3.07E-03 94.4 10.9	3.07E-03 91.8 6.4	3.07E-03 94.2 10.4	
і m _n с.	Total CPM Mass less Blank (mg) Emission Celculations Cross-sectional area of nozzle (ft ²) isokinetic verietion (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf)	6.0 3.07E-03 96.3 14.0 3.48E-03	4.9 3.07E-03 94,4 10.9 2.61E-03	3.07E-03 91.8 6.4 2.11E-03	3.07E-03 94.2 10.4 2.73E-03	
۱ m _n C <u>s</u>	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (ib/dscf)	6.0 3.07E-03 36.3 14.0 3.48E-03 4.98E-07	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07	3.07E-03 91.8 6.4 2.11E-03 3.01E-07	3.07E-03 94,2 10.4 2.73E-03 3.91E-07	
l m _n Cs Elb/ar	Total CPM Mass Jess Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass Jess blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (jb/dscf) Filterable Particulate concentration (jb/dscf)	6.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.016	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.013	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012	3.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014	
l m _n Cs Elb/ar	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (ib/dscf)	6.0 3.07E-03 36.3 14.0 3.48E-03 4.98E-07	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07	3.07E-03 91.8 6.4 2.11E-03 3.01E-07	3.07E-03 94,2 10.4 2.73E-03 3.91E-07	
l m _n Cs Elb/ar Fc	Total CPM Mass less Blank (mg) Emission Celculations Cross-sectional area of nozzle (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (li/dscf) Filterable Particulate concentration (li/dscf) Filterable Particulate mass emission rate (li/hr) Filterable Particulate mass emission rate (li/hr)	6.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.016 0.008	4.9 3.07E-03 94,4 10.9 2.61E-03 3.73E-07 0.013 0.007	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012	3.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014	
l Mn Cs Cs Elbyfin Fc Cs	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hrm) Filterable Particulate mass emission rate (lb/hrm) Filterable Particulate mass emission rate (lb/hrm)	5.0 3.07E-03 95.3 14.0 3.48E-03 4.98E-07 0.016 0.008 1.49E-03	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.013	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007	
I Mn Cs Cs Elle/ar Fc Cs Cs	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate mass emission rate (lb/mr)Btu) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf)	5.0 3.07E-03 36.3 14.0 3.48E-03 4.98E-03 0.016 0.008 1.49E-03 2.13E-07	4.9 3.07E-03 94.4 10.9 2.61E-03 3.75E-07 0.013 0.007 1.17E-03 1.68E-07	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03	
l Mn Cs Cs Elle/ar Fc Cs Cs Elle/ba	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) (sokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Perticulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/mr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (lb/dscf) Condensible Particulate mass emission rate (lb/mr)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.016 0.008 1.49E-03 2.13E-07 0.007	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.013 0.007 1.17E-03 1.68E-07 0.006	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07	3.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07	
l Mn Cs Cs Elle/ar Fc Cs Cs Elle/ba	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate mass emission rate (lb/mr)Btu) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf)	5.0 3.07E-03 36.3 14.0 3.48E-03 4.98E-03 0.016 0.008 1.49E-03 2.13E-07	4.9 3.07E-03 94.4 10.9 2.61E-03 3.75E-07 0.013 0.007 1.17E-03 1.68E-07	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005	3.07E-03 94,2 10.4 2.73E-03 3.91E-07 9.014 0.007 1.21E-03 1.73E-07 0.005	
l M _n Cs Elity?ar Fc Cs Cs Elity/br	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) (sokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (lb/dscf) Condensible Particulate concentration (lb/dscf) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate concentration (gr/dscf)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.016 0.008 1.49E-03 2.13E-07 0.007 0.004 4.98E-03	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.013 0.007 1.17E-03 1.68E-07 0.006 0.003 3.79E-03	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03	2.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.005 0.005 0.003 3.94E-03	
l Mn Cs Cs Elle/ar Fc Cs Cs Elle/ba	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hrr) Filterable Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hrr) Condensible Particulate concentration (gr/dscf) Total Particulate concentration (lb/dscf)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.016 0.008 1.49E-03 2.13E-07 0.007 0.0004 4.98E-03 7.11E-07	4.9 3.07E-03 94,4 10,9 2.61E-03 3.73E-07 0.013 0.007 1.17E-03 1.68E-07 0.006 0.003 3.79E-03 5.41E-07	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.05E-03 4.38E-07	3.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07	
l Mn Cs Cs Ellefar Fc Cs Cs Elle/har	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate mass emission rate (lb/mr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate mass emission rate (lb/mr) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (gr/dscf)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-03 0.016 0.008 1.49E-03 2.13E-07 0.007 0.004 4.98E-03 7.11E-07 0.023	4.9 3.07E-03 94.4 10.9 2.61E-03 3.75E-07 0.013 0.007 1.17E-03 1.68E-07 0.006 0.003 3.79E-03 5.41E-07 0.015	3.07E-03 93.8 6.4 2.11E-03 3.0.1E-07 0.0.02 0.007 9.56E-04 1.37E-07 0.005 0.005 3.06E-03 4.38E-07 0.007	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020	
l Mn Cs Cs Elle/ar Fc Cs Cs Elle/ba	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (b/dscf) Total Particulate mass emission rate (lb/hrn) Total Particulate mass emission rate (lb/hrn)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.99E-07 0.016 0.008 1.49E-03 2.13E-07 0.007 0.004 4.98E-03 7.11E-07 0.023 0.012	4.9 3.07E-03 94.4 10.9 2.61E-03 3.78E-07 0.013 0.007 1.17E-03 1.68E-07 0.0005 0.003 3.79E-03 5.41E-07 0.019 0.010	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03 4.38E-07 0.017 0.017	2.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.72E-03 1.72E-07 0.006 0.003 3.94E-03 5.63E-07 0.020	0.1
l M _n Cs Elity?ar Fc Cs Cs Elity/br	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate mass emission rate (lb/mr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate mass emission rate (lb/mr) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (gr/dscf)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-03 0.016 0.008 1.49E-03 2.13E-07 0.007 0.004 4.98E-03 7.11E-07 0.023	4.9 3.07E-03 94.4 10.9 2.61E-03 3.75E-07 0.013 0.007 1.17E-03 1.68E-07 0.006 0.003 3.79E-03 5.41E-07 0.015	3.07E-03 93.8 6.4 2.11E-03 3.0.1E-07 0.0.02 0.007 9.56E-04 1.37E-07 0.005 0.005 3.06E-03 4.38E-07 0.007	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020	0.3
l mn C, C, Eis/ar Fc C, Eis/ar Fc	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/dscf) Total Particulate concentration (b/dscf) Total Particulate mass emission rate (lb/hrn) Total Particulate mass emission rate (lb/hrn)	5.0 3.07E-03 96.3 14.0 3.48E-03 4.99E-07 0.016 0.008 1.49E-03 2.13E-07 0.007 0.004 4.98E-03 7.11E-07 0.023 0.012	4.9 3.07E-03 94.4 10.9 2.61E-03 3.78E-07 0.013 0.007 1.17E-03 1.68E-07 0.0005 0.003 3.79E-03 5.41E-07 0.019 0.010	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03 4.38E-07 0.017 0.017	2.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020 0.011 0.187 0.014	0.1
l mn C, C, Eis/ar Fc C, Eis/ar Fc	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/mr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (b/dscf) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate mass emission rate (lb/mr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/hr)	5.0 3.07E-03 96:3 14.0 3.48E-03 4.98E-07 0.006 1.49E-03 2.13E-07 0.007 0.004 4.98E-03 7.11E-07 0.023 0.012 0.221	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.007 1.17E-03 1.68E-07 0.006 0.003 3.79E-03 5.41E-07 0.019 0.010 0.178	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03 4.38E-07 0.017 0.010	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020 0.011 0.187	
C, Eis/Ar Fc C, Eis/Ar Fc Eis/Ar	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hmBtu) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/hr) PM10 mass emission rate (lb/hr)* PM10 mass emission rate (lb/hr) rev	5.0 3.07E-03 96.3 14.0 3.48E-03 4.98E-07 0.008 1.49E-03 2.13E-07 0.004 4.98E-03 7.11E-07 0.023 0.012 0.221 0.017 0.156	4.9 3.07E-03 94.4 10.9 2.61E-03 3.73E-07 0.013 0.007 1.17E-03 1.68E-07 0.0006 0.003 3.79E-03 5.41E-07 0.0006 0.003 5.41E-07 0.018 0.019 0.013 0.013 0.013	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03 4.38E-07 0.017 0.017 0.0162 0.012 0.012	3.07E-03 94.2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020 0.011 0.187 0.014 0.122	0.1
l mn C, C, Eis/ar Fc C, Eis/ar Fc	Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozale (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/dscf) Total Particulate mass emission rate (lb/hrmBtu) Total Particulate mass emission rate (lb/hrmBtu)	6.0 3.07E-03 96.3 14.0 3.48E-03 4.99E-07 0.016 0.008 1.49E-03 2.13E-07 0.004 4.98E-03 7.11E-07 0.023 0.012 0.221 0.017	4.9 3.07E-03 94.4 10.9 2.61E-03 3.78E-07 0.013 0.007 1.17E-03 1.68E-07 0.005 0.003 3.79E-03 5.41E-07 0.019 0.010 0.178 0.013	3.07E-03 91.8 6.4 2.11E-03 3.01E-07 0.012 0.007 9.56E-04 1.37E-07 0.005 0.003 3.06E-03 4.38E-07 0.017 0.010 0.162 0.012	2.07E-03 94,2 10.4 2.73E-03 3.91E-07 0.014 0.007 1.21E-03 1.73E-07 0.006 0.003 3.94E-03 5.63E-07 0.020 0.011 0.187 0.014	

*PM1D = Total Filterable PM * 0.58 + CPM **PM2.5 = Total Filterable PM * 0.32 + CPM ***Klin processed 0.99 tons of raw feed over 9.317 hours.

.

043AS-552991 Biochar Kiln #8

		Run #	1	2	3		
		Start Time Stop Time	7:56 10:23	12:07 14:33	15:12 16:47		
EPA Meth	od 308 Meter Data		1	2	3	Average	
	Inputs						-
Pbar	Barometric Pressure ("Hg)		24.87	24.87	24.87	24.87	
Vm	Volume of Stack Gas Collected (L)		48.243	48.753	32.068	43.021	
Y	Meter Calibration Factor (unitless)		1.009	1.009	1.009	1.009	
Tm	Temperature at Gas Meter (°F)		63	95	83	80	
	Calculations						
V _m	Volume of Stack Gas Collected (dcm)		0.048	0.049	0.032	0.043	
Pbar	Absolute Pressure at Gas Meter (mmHg)		631.63	631.63	631.63	631.63	
Tm	Absolute Temperature at Gas Meter (K)		290	308	301	300	
V _{m(std)}	Sample Gas Volume (dscm)		0.041	0.039	0.026	0.035	
V _{m(std)}	Sample Gas Volume (std L)		40.821	38.873	26.159	35.284	
EPA Meth	od 308 Laboratory Results		1	2	3	Average	
	Methanol (µg)		2.60	2.85	2.08	2.51	
MW=32.04	Methanol (ppmvd)		0.0478	0.0550	0.0597	0.0542	
Mass Emis	ssion Calculations (Using EPA Methods 1-4)		1	2	3	Average	
	Exhaust Flow (dscfh)		32,987	34,940	39,213	35,713	
MW=32.04	Methanol (lb/hr)		0.000131	0.000160	0.000195	0.000162	
	Methanol (lb/ton raw feed)*		0.00123	0.00151	0.00183	0.00152	1

 $\left(\right)$

*Kiln processed 0.99 tons of raw feed in 9.317 hours.

043AS-522991 Biochar Now Kiln #21

10/11/2019

(

١.__

	Run #	1	2	3		
	Start Time Stop Time	8:40 11:02	11:47 14:03	14:59 17:18		
EPA Meth	od 2 Data	1	2	3	Average	_
	Inputs					
D₅	Stack Diameter (inches)	24.00	24.00	24.00	24.00	
P _{bar}	Barometric Pressure ("Hg)	25.14	25.14	25.14	25.14	
Pg	Stack Static Pressure ("H ₂ O)	-0.01	-0.01	-0.01	-0.01	
Cp	Pitot Tube Coefficient (unitless)	0.84	0.84	0.84	0.84	
√∆p _{avg}	Avg. Velocity Head of Stack Gas V("H ₂ O)	0.1339	0.1328	0.1333	0.1333	
T,	Stack Gas Temperature (°F)	1395	1400	819	1205	
	Calculations					
А	Stack Area (ft ²)	3.142	3.142	3.142	3.142	
Pg	Stack Static Pressure ("Hg)	0.00	0.00	0.00	0.00	
M _d	Stack Gas Molecular Weight, dry basis (Ib/Ib-mole)	30.28	30.08	29.78	30.05	
M,	Stack Gas Molecular Weight, wet basis (lb/lb-mole)	28.55	28.63	29.04	28.74	
Ps	Absolute Stack Pressure ("Hg)	25.14	25.14	25.14	25.14	
T _{s(abs)}	Absolute Stack Gas Temperature (°R)	1855	1860	1279	1665	
V _s	Stack Gas Velocity (ft/sec)	15.46	15.33	12.67	14.49	
Q	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	35,915	36,393	46,589	39,632	
Q.	Stack Gas Dry Volumetric Flow Rate (dscf/min)	599	607	776	661	
EPA Meth	oci 4 Data	1	2	3	Average	
	Inputs				405.4	
Vic	Volume of Water Condensed (mL)	239.3	201.6	117.5	186.1	
Vm	Volume of Stack Gas Collected (dcf)	75.370	82.227	98.520	85.372	
Y	Meter Calibration Factor (unitless)	1,0270	1.0270	1.0270	1.0270	
ΔH	Pressure Differential Across Orifice ("H ₂ O)	1.50	1.70	2.40	1.87	
T _m	Temperature at Gas Meter (°F)	43	81	86	70	
	Calculations					
Pm	Absolute Pressure at Gas Meter ("Hg)	25.25	25.27	25.32	25.28	
Τ _m	Absolute Temperature at Gas Meter ("R)	503	541	546	530	
V _{wc(std)}	Volume of Water Condensed (scf)	11,26	9.49	5.53	8.76	
V _{m(std)}	Sample Gas Volume (dscf)	68.54	69.57	82.76	73.62	
B _{ws}	Stack Gas Moisture Content (%/100)	0.141	0.120	0.063	0.108	
EPA Meth	nod 3A, 7E, 10 and 25A Data	1	2	3	Average	Limit
	O ₂ (%vd)	8.3	9.8	10.4	9.5	
	CO ₂ (%vd)	12.2	10.5	8.5	10.4	
	NO _x (ppmvd)	62.2	75.9	33.1	57.1	
	CO (ppmvd)	3.4	0.0	7.8	3.7	
	TVOC (ppmvw as C ₃ H ₈)	0.3	0.8	0.4	0.5	
	TVOC (ppmvd as C ₃ H ₈)	0.3	0.9	0.4	0.5	
Mass Emi	ission Calculations (Using EPA Methods 1-4)	1	2	3	Average	Limit
	Exhaust Flow (dscfh)	35915	36393	46589	39632	
	NO _x (lb/hr)	0.267	0.330	0.184	0.260	0.14
	CO (lb/hr)	0.00882	0.0000	0.0263	0.01170	0.12
	TVOC (lb/hr as C ₃ H ₈)	0.00130	0.00378	0.00222	0.00243	
	TVOC (lb/ton raw feed as C ₃ H ₈)	0.0121	0.0352	0.0207	0.0227	0.41

;

.....

*Kiln processed 1.0 tons of raw feed in 9.333 hours.

043AS-552991 Biochar Kiln #21 10/11/2019

	Run Start Tir	ne 8:40	2 11:47	3 14:59		
•	Stop Tin Semple Time (mir		14:03 120	17:18 120		
		ij 120	120	120		
PA Met	hod 2 Data	1	2	3	Average	_
	Stack Diameter (inches)	24.0	24.0	24.0	24.0	
- Sar	Barometric Pressure ("Hg)	25.14	25.14	25.14	25.1	
5	Stack Static Pressure ("H ₂ O)	0.0	0.0	0.0	-0.01	
P	Pitot Tube Coefficient (unitless)	0.84	0,84	0.84	0.84	
Δp _{eve}	Avg. Velocity Head of Stack Gas V(*H2O)	0.1339	0.1328	0.1333	0.1393	
	Stack Gas Temperature (*F)	1395	1400	819	1203	
	Calculations					
	Stark Area (ft²) Stark Static Pressure ("Hg)	3.142	3.142 0.00	3.142 0.00	3.142 · 0.00	
a la	Stack Statt Plessore (198) Stack Gas Molecular Weight, dry basis (Ib/Ib-mole)	30.28	30.07	29.77	30.04	
٩,	Stack Gas Molecular Weight, wet basis (ib/ib-mole)	28.55	28.62	29.03	28.73	
· ·	Absolute Stack Pressure ("Hg)	25.14	25.14	25.14	25.14	
uja (25)	Absolute Stack Gas Temperature ("R)	1855	1860	1279	1665	
5	Stack Gas Velocity (ft/sec)	15.5	15.3	12.7	14.5	
	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	35,911	36,396	46,598	39,635	
	Stack Gas Dry Volumetric Flow Rate (dscf/min)	599	607	777	661	
A Mett	hod 3A Data	1	2	3	Average	
	O2 (%vd)	8.3	9.8	10.6	9,6	-
	CO ₂ (%vd)	, 12.2	10.5	8.4	10.4	
'A Meth	Inputs	1	2	3	Average	-
•	Volume of Water Condensed (mL)	239.3	201.6	117.5	186.1	
n N	Volume of Stack Gas Collected (dcf)	75.37	82.227	98.52	85.372	
	Meter Calibration Factor (unitless)	1.0270	1.0270	1.0270	1.0270	
н	Pressure Differential Across Orifice ("H ₂ O)	1.5	1.7	2.4	. 1.9	
m	Temperature at Gas Meter (°F)	43	81	86	70	
	Calculations Absolute Pressure at Gas Meter ("Hg)	25.25	25.27	25.32	25.28	
m m	Absolute Temperature at Gas Meter (*R)	503	25.27 541	25.52 546	23.28 530.0	
m wc(std]	Volume of Water Condensed (scf)	11.26	9,49	5,53	8.76	
m(std)	Sample Gas Volume (dscf)	68.54	69.57	82.76	73.62	
ws.	Moisture Content Used (%/100)	0.141	0.120	0.063	0.108	
PA Meth	hod 5 Data	1	2	3	Average	-
n	Nozzle diameter (")	0.75	0.75	0.75	0.75	
1	Mass of PM collected on filter (mg)	12.0	13,1	7.4	10.8	
2	Mass of PM collected in rinses (mg)	6.9	3,5	3.3	4.6	
4	Mass of acetone blank (mg)	0.3	0.3	Q,3	0,3	_
PA Meth	hod 202 Data	1	2	3	Average	Perm Limi
	Inputs		-			
		5.4	4.6	2.0	4.0	
	Mass of Inorganic Condensible PM (mg)			1.8	2.2	
	Mass of Organic Condensible PM (mg)	2.1	2.8			
		2.1 7.5 2.0	2.8 7.4 2.0	3.8	6.2	
	Mass of Organic Condensible PM (mg) Total CPM Mass (mg)	7.5	7.4			
	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg)	7.5 2.0	7.4 2.0	3.8 2.0	6.2 2.0	
	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations	7.5 2.0 5.5	7.4 2.0 5.4	3.8 2.0 1.8	6.2 2.0 4.2	
n	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg)	7.5 2.0	7.4 2.0	3.8 2.0	6.2 2.0	
	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Cafculations Cross-sectional area of nozzle (ft ²)	7.5 2.0 5.5 3.07E-03	7.4 2.0 5.4 3.07E-03	3.8 2.0 1.8 3.07E-03	6.2 2.0 4.2 3.07E-03	
	Mass of Organic Condensible PM (mg) Total CP/J Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg)	7.5 2.0 5.5 3.07E-03 97.8	7.4 2.0 5.4 3.07E-03 97.9	3.8 2.0 1.8 3.07E-03 91.0	6.2 2.0 4.2 3.07E-03 95.6	
ln s	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Cafculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03	7.4 2.0 5.4 3.07E-03 97.9	3.8 2.0 1.8 3.07E-03 91.0	6.2 2.0 4.2 3.07E-03 95.6	
h ;	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Celculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07	3.8 2.0 1.8 3.07E-03 91.0 10.5	6.2 2.0 4.2 3.07E-03 95.6 15.1	
tn i i iv/Tx	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.018B	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178	
tn i i iv/Tx	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Celculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07	
tn s byTx	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr)	7.5 2.0 5.5 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090	7.4 2.0 5.4 97.9 16.3 3.62E-03 5.17E-07 0.018B 0.0091	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061	6.2 2.0 4.2 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081	
tn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate concentration (lb/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.018B	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178	
n Mite	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzie (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.5 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03	7.4 2.0 5.4 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0150 0.0061 3.36E-04	6.2 2.0 4.2 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04	
n Witt	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (tb/dscf) Filterable Particulate mass emission rate (tb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07	7.4 2.0 5.4 97.9 16.3 3.62£-03 5.17£-07 0.0188 0.0091 1.20£-03 1.71E-07	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07	
h i b/hr i b/hr	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hrr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hrr) Condensible Particulate mass emission rate (lb/hrr) Condensible Particulate mass emission rate (lb/hrr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027	7.4 2.0 5.4 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03 1.73E-07 0.0062 0.0030	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022	
h i b/hr i b/hr	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate concentration (gr/dscf)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027 5.43E-03	7.4 2.0 5.4 3.07E-09 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03 1.73E-07 0.0062 0.0030 4.81E-03	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03	6.2 2.0 4.2 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022 4.18E-03	
h i b/hr i b/hr	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hrr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hrr) Condensible Particulate mass emission rate (lb/hrr) Condensible Particulate mass emission rate (lb/hrr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027	7.4 2.0 5.4 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03 1.73E-07 0.0062 0.0030	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022	
in i by/tx 	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (tb/dscf) Filterable Particulate concentration rate (tb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (tb/hr) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (b/dscf) Total Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate concentration (b/hr) Total Particulate mass emission rate (b/hr) Total Particulate mass emission rate (b/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027 5.43E-03 7.755-07	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03 1.71E-07 0.0062 0.0030 4.81E-03 6.88E-07	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.00049 0.0022 4.18E-03 5.97E-07	
h s iv/hr s s s	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate concentration (tb/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/mBtu) Total Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/mBtu)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.028	7.4 2.0 5.4 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.20E-03 1.73E-07 0.0062 0.0030 4.81E-03 6.88E-07 0.025	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0150 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07 0.015	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022 4.38E-03 5.97E-07 0.023	0.15
n s s s s s s s s s s s s	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/hr) Total Particulate mass emission rate (lb/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.0064 0.0027	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.70E-03 1.71E-07 0.0062 0.0030 4.81E-03 6.88E-07 0.025 0.012 0.234	3.8 2.0 1.8 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07 0.015 0.007 0.143	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.00022 4.18E-03 5.97E-07 0.023 0.010 0.212	0.19
hn ⊾ by/hr by/hr	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (tb/dscf) Filterable Particulate mass emission rate (tb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (tb/hr) Condensible Particulate mass emission rate (tb/hr) Total Particulate concentration (gr/dscf) Total Particulate concentration (tb/dscf) Total Particulate concentration (tb/dscf) Total Particulate concentration (tb/dscf) Total Particulate mass emission rate (tb/hr) Total Particulate mass emission rate (tb/hr) Total Particulate mass emission rate (tb/hr) Particulate mass emission rate (tb/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.27E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.028 0.012 0.260	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.71E-07 0.0062 0.00030 4.81E-03 6.88E-07 0.025 0.012 0.234 0.017	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07 0.015 0.007 0.143 0.010	6.2 2.0 4.2 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022 4.18E-03 5.97E-07 0.023 0.010 0.212	
n s s s s s s s s s s s s	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/hr) Total Particulate mass emission rate (lb/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.77E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.0064 0.0027	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.70E-03 1.71E-07 0.0062 0.0030 4.81E-03 6.88E-07 0.025 0.012 0.234	3.8 2.0 1.8 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07 0.015 0.007 0.143	6.2 2.0 4.2 3.07E-03 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.00022 4.18E-03 5.97E-07 0.023 0.010 0.212	0.11
n s s bbhr c bbhr	Mass of Organic Condensible PM (mg) Total CPM Mass (mg) Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (tb/dscf) Filterable Particulate mass emission rate (tb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (tb/hr) Condensible Particulate mass emission rate (tb/hr) Total Particulate concentration (gr/dscf) Total Particulate concentration (tb/dscf) Total Particulate concentration (tb/dscf) Total Particulate concentration (tb/dscf) Total Particulate mass emission rate (tb/hr) Total Particulate mass emission rate (tb/hr) Total Particulate mass emission rate (tb/hr) Particulate mass emission rate (tb/hr)	7.5 2.0 5.5 3.07E-03 97.8 18.6 4.19E-03 5.98E-07 0.0215 0.0090 1.24E-03 1.27E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.0064 0.0027 5.43E-03 7.75E-07 0.028 0.012 0.260	7.4 2.0 5.4 3.07E-03 97.9 16.3 3.62E-03 5.17E-07 0.0188 0.0091 1.71E-07 0.0062 0.00030 4.81E-03 6.88E-07 0.025 0.012 0.234 0.017	3.8 2.0 1.8 3.07E-03 91.0 10.5 1.96E-03 2.80E-07 0.0130 0.0061 3.36E-04 4.80E-08 0.0022 0.0011 2.29E-03 3.28E-07 0.015 0.007 0.143 0.010	6.2 2.0 4.2 95.6 15.1 3.25E-03 4.65E-07 0.0178 0.0081 9.24E-04 1.32E-07 0.0049 0.0022 4.18E-03 5.97E-07 0.023 0.010 0.212	

*PM10 = Total Filterable PM * 0.58 + CPM **PM2.5 = Total Filterable PM * 0.32 + CPM *Kiin processed 1.0 tons of raw feed in 9.333 hours.

043AS-552991 Biochar Kiln #21 10/11/2019

(

750

		Run # Start Time	1 8:40	2 11:47	3 14:59		
		Stop Time	11:02	14:03	17:18		
EPA Meth	od 308 Meter Data		1	2	3	Average	_
	Inputs						
P _{bar}	Barometric Pressure ("Hg)		25.14	25.14	25.14	25.14	
/m	Volume of Stack Gas Collected (L)		48.612	48.509	48.311	48.477	
Y	Meter Calibration Factor (unitless)		1.009	1.009	1.009	1.009	
T _m	Temperature at Gas Meter (°F)		32	69	71	57	
	Calculations						
/ _m	Volume of Stack Gas Collected (dcm)		0.049	0.049	0.048	0.048	
Pbar	Absolute Pressure at Gas Meter (mmHg)		638.48	638.48	638.48	638.48	
F _m	Absolute Temperature at Gas Meter (K)		273	294	295	287	
V _{m(std)}	Sample Gas Volume (dscm)		0.044	0.041	0.041	0.042	
V _{m(std)}	Sample Gas Volume (std L)		44.201	41.021	40.699	41.974	
EPA Meth	od 308 Laboratory Results		1	2	3	Average	_
	Methanol (µg)		2.60	2.42	2.42	2.48	_
AW=32.04	Methanol (ppmvd)		0.0442	0.0443	0.0446	0.0	
Mass Emis	sion Calculations (Using EPA Methods 1-4)		1	2	3	Average	_
	Exhaust Flow (dscfh)		35,915	36,393	46,589	39,632	_
MW=32.04	Methanol (lb/hr)		0.000132	0.000134	0.000173	0.000146	
	Methanol (lb/ton raw feed)*		0.00123	0.00125	0.00161	0.00137	0.0

-

,

*Kiln processed 1.0 ton of raw feed in 9.33 hours.

043AS-522991 Biochar Now Kiln #7 10/14/2019

	Run #	1	2	3		
	Start Time	9:38	12:37	15:37		
	Stop Time	11:58	14:56	17:45		
EPA Met	hod 2 Data	1	2	3	Average	_
	Inputs					_
D,	Stack Diameter (inches)	24.00	24.00	24.00	24.00	
P _{bar}	Barometric Pressure ("Hg)	24.87	24.87	24.87	24.87	
Pg	Stack Static Pressure ("H ₂ O)	-0.01	-0.01	0.01	0.00	
Cp	Pitot Tube Coefficient (unitless)	0.84	0.84	0.84	0.84	
√∆p _{evg}	Avg. Velocity Head of Stack Gas v("H ₂ O)	0.1343	0.1348	0.1337	0.1343	
T,	Stack Gas Temperature (°F)	1270	1355	1306	1310	
	Calculations					
Α	Stack Area (ft ²)	3.142	3.142	3.142	3.142	
P _E	Stack Static Pressure ("Hg)	0.00	0.00	0.00	0.00	
Md	Stack Gas Molecular Weight, dry basis (Ib/Ib-mole)	30.24	30.18	29.66	30.02	
Ms	Stack Gas Molecular Weight, wet basis (Ib/Ib-mole)	28.69	28.58	28.76	28.68	
Ρ,	Absolute Stack Pressure ("Hg)	24.87	24.87	24.87	24.87	
T _{s(abs)}	Absolute Stack Gas Temperature (°R)	1730	1815	1766	1770	
V _s	Stack Gas Velocity (ft/sec)	15.02	15.47	15.09	15.19	
Q	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	37,646	36,746	39,135	37,842	
Q	Stack Gas Dry Volumetric Flow Rate (dscf/min)	627	612	652	631	
EPA Meth	nod 4 Data	1	2	3	Average	
	Inputs					-
Vic	Volume of Water Condensed (mL)	225.1	234.6	125.3	195.0	
Vm	Volume of Stack Gas Collected (dcf)	89.032	90.980	89.074	89.695	
Y	Meter Calibration Factor (unitless)	1.0270	1.0270	1.0270	1.0270	
ΔH	Pressure Differential Across Orifice ("H ₂ O)	1.90	1.90	1.80	1.87	
Tm	Temperature at Gas Meter (°F)	90	105	112	102	
	Calculations					
Pm	Absolute Pressure at Gas Meter ("Hg)	25.01	25.01	25.00	25.01	
T _m	Absolute Temperature at Gas Meter (°R)	550	565	571.7	562	
V _{wc(std)}	Volume of Water Condensed (scf)	10.59	11.04	5.90	9.18	
V _{m(std)}	Sample Gas Volume (dscf)	73.34	72.96	70.57	72.29	
B _{ws}	Stack Gas Moisture Content (%/100)	0.126	0.131	0.077	0.112	
EPA Meth	10d 3A, 7E, 10 and 25A Data	1	2	3	Average	Limit
	O ₂ (%vd)	8.6	8.9	11.4	9.6	
	CO ₂ (%vd)	11,8	11.4	7.5	10.2	
	NO _x (ppmvd)	51.1	75.2	27,8	51.3	
	CO (ppmvd)	7.6	0.0	1.8	3.1	
	TVOC (ppmvw as C ₃ H _B)	0.5	0.1	0.2	0.3	
	TVOC (ppmvd as C ₃ H ₆)	0.5	0.1	0.2	0.3	
Mass Fmi	ssion Calculations (Using EPA Methods 1-4)	1	2	3	Average	Limit
	Exhaust Flow (dscfh)	37646	36746	39135	37842	
	NO, (lb/hr)	0.230	0.330	0.130	0.230	0.14
	CO (lb/hr)	0.02077	0.0000	0.00521	0.00866	0.12
	TVOC (lb/hr as C _s H ₈)	0.00229	0.000525	0.00107	0.00129	
	TVOC (Ib/ton raw feed as C ₃ H ₈)	0.000283	0.000065	0.000132	0.000160	0.41
		0.000203	0.000000	0.000132	0.000100	0.41

*Kiln processed 1.03 tons of raw feed in 8.333 hours.

043AS-552991 Biochar Kiin #7 10/14/2019

7 T N

	Run # Start Time	1 9;38	2 12:37	9 15:37		
	Stop Time	11:58	14:56	17:45		
	Sample Time (min.)	120	120	120		
PA Meth	od 2 Data	1	2	3	Average	-
	Inputs Stack Diameter (inches)	24.0	24.0	24.0	24.0	
sr.	Barometric Pressure ("Hg)	24.87	24.87	24.87	24.9	
	Stack Static Pressure ("H ₂ O)	0.0	0.0	0.0	-0.01	
	Pitot Tube Coefficient (unitiess)	0.84	0.84	0.84	0.84	
₽ _{eve}	Avg. Velocity Head of Stack Gas V("H2O)	0.1343	D,1348	0.1337	0.1343	
	Stack Gas Temperature (°F)	1270	1355	1305	1310	
	Calculations					
	Stack Area (ft ²)	3.142	3.142	3.142	3.142	
	Stack Static Pressure ("Hg)	0,00	0.00	0.00	0.00 30.02	
d	Stack Gas Molecular Weight, dry basis (ib/lb-mole)	30.23	30.18	29.64 28.74	28.67	
	Stack Gas Molecular Weight, wet basis (lb/lb-mole)	28.69	28.58 24.87	28.74	24.87	
	Absolute Stack Pressure ("Hg)	24.87 1730	24.87	1766.4	1770	
abs)	Absolute Stack Gas Temperature (*R)	15.0	15.5	15.1	15.2	
	Stack Gas Velocity (ft/sec) Stack Gas Dry Volumetric Flow Rate (dscf/hr)	37,650	36,744	39,143	37,845	
	Stack Gas Dry Volumetric Flow Rate (dscf/min)	627	612	652	631	
	Siete dis big formente non nate (and ming					
A Meth	od 3A Data	1	2	3	Average 9.7	-
	O ₂ (%vd)	8.6	8.9 11 A	11.7 7.3	9.7	
	CO ₂ (%vd)	11.8	11.4	<i></i> 2	2472	
A Meth	od 4 Data	1	2	3	Average	_
	Inputs	225.1	234.6	125.3	195.D	
	Volume of Water Condensed (mL)	225.J 89.032	234.0	89,074	89.695	
	Volume of Stack Gas Collected (dcf) Meter Callbration Factor (unitiess)	1.0270	1.0270	1.0270	1.0270	
ł	Pressure Differential Across Orifice ("H ₂ O)	1.9	1.9	1.8	1.9	
	Temperature at Gas Meter (*F)	90	105	112	102	
	Calculations Absolute Pressure at Gas Meter ("Hg)	25.01	25,01	25,00	25.01	
	Absolute Temperature at Gas Meter ("R)	550	565	571.7	562.2	
cistd)	Volume of Water Condensed (scf)	10.59	11.04	5,90	9.18	
rc(std) 1(std)	Sample Gas Volume (dscf)	73.34	72.96	70.57	72,29	
n(std) vs	Moisture Content Used (%/100)	0.126	0,131	0.077	0.112	
		1	2	э	Average	
'A Meth	ind 5 Data	<u> </u>				-
,	Nozzle diameter (")	0.75	0.75	0.75	0.75	
1	Mass of PM collected on filter (mg)	18.4	9.1	3.7	10.4	
2	Mass of PM collected in rinses (rng)	3.2	2.1	2.4 0.2	2.6 0.2	
' •	Mass of acetone blank (mg)	0.1	0.2	0.2	0.2	Par
PA Meth	ned 202 Data	1	2	3	Average	Lin
	Inputs Mass of Inorganic Condensible PM (mg)	5.4	5.3	2.9	4.5	
	Mass of Organic Condensible PM (mg)	2.3	2.4	2.4	2.4	
	Total CPM Mass (mg)	7.7	7.7	5.3	6.9	
	Mass of train blank (mg)	2.0	2.0	2.0	2.0	
	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations	2.0 5.7	2.0 5.7	2.0 3.3	2.0 4.9	
•	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²)	2.0 5.7 3.07E-03	2.0 5.7 3.07E-03	2.0 3.3 3.07E-03	2.0 4,9 3.07E-03	
-	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%)	2.0 5.7 3.07E-03 99.8	2.0 5.7 3.07E-03 101.7	2.0 3.3 3.07E-03 92,4	2.0 4.9 3.07E-03 98.0	
	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²)	2.0 5.7 3.07E-03	2.0 5.7 3.07E-03	2.0 3.3 3.07E-03	2.0 4,9 3.07E-03	
۰ ۸	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%)	2.0 5.7 3.07E-03 99.8	2.0 5.7 3.07E-03 101.7	2.0 3.3 3.07E-03 92,4	2.0 4.9 3.07E-03 98.0	
- In	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg)	2.0 5.7 3.07E-03 99.8 21.5	2.0 5.7 3.07E-03 101.7 11.0	2.0 3.3 3.07E-03 92.4 5.9	2.0 4.9 3.07E-03 58.0 12.8	
- n 	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03	
i i b/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetit variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07	
in i b/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetit variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0145	
∩ b/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 9.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-03 0.0122 0.0054	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046	2.0 4.9 98.0 12.8 2.71E-03 3.88E-07 0.0146 0.0067	
n √har	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03	2.0 5.7 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03 3.88E-07 0.0146 0.0067 1.04E-03	
n k/hr s/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) isokinetic variation (%) Total Filterable PATiculate concentration (gr/dscf) Filterable Particulate concentration (br/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (br/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07	
n a/hr b/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0027	2.0 5.7 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0083 0.0028	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03 3.88E-07 0.0146 0.00067 1.04E-03 1.49E-07 0.0056 0.0027	
n b/hr i	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gt/dscf) Filterable Particulate concentration (lb/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate concentration (gt/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0027 5.72E-03	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.0028 3.53E-03	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026 2.01E-03	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07 0.0056 0.0027 3.76E-03	
n b/hr i	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Total Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0005 5.72E-03 8.18E-07	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.00028 3.53E-03 5.05E-07	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026 2.01E-03 2.87E-07	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0146 0.0067 1.04E-03 1.49E-07 0.0056 0.0027 3.76E-03 5.37E-07	
n a/hr b/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/mmBtu) Condensible Particulate mass emission rate (lb/mmBtu) Total Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf) Total Particulate mass emission rate (lb/mBtu)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0005 0.00027 5.12E-03 8.18E-07 0.031	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0068 0.0028 3.53E-03 5.05E-07 0.019	2.0 3.3 9.24 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0026 2.01E-03 2.87E-07 0.001	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07 0.0055 0.0027 3.76E-03 5.37E-07 0.020	
n s s s s s s s by/hr	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (fr ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (b/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gr/dscf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/hr) Total Particulate concentration (gr/dscf) Total Particulate concentration (gr/dscf)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0005 5.72E-03 8.18E-07	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.00028 3.53E-03 5.05E-07	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026 2.01E-03 2.87E-07	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0146 0.0067 1.04E-03 1.49E-07 0.0056 0.0027 3.76E-03 5.37E-07	٥
П., п., п., п., п., п., п., п., с	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gt/dscf) Filterable Particulate concentration (gt/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/mmBtu) Total Particulate concentration (gt/dscf) Total Particulate concentration (gt/dscf) Total Particulate concentration (gt/dscf) Total Particulate mass emission rate (lb/mmBtu) Total Particulate mass emission rate (lb/hr) Total Particulate mass emission rate (lb/hr)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0005 0.00027 5.72E-03 8.18E-07 0.031 0.013 0.249	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.0028 3.53E-03 5.05E-07 0.019 0.008 0.150	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0026 2.01E-03 2.87E-07 0.011 0.007 0.091	2.0 4.9 3.07E-03 58.0 12.8 2.71E-03 3.88E-07 0.0145 0.00067 1.04E-03 1.49E-07 0.0055 0.00027 3.76E-03 5.37E-07 0.020 0.009 0.163	٥
ln s lb/hr c	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (br/dscf) Filterable Particulate concentration (br/dscf) Filterable Particulate mass emission rate (br/mf) Filterable Particulate mass emission rate (br/mf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (br/mf) Condensible Particulate mass emission rate (br/mfbu) Total Particulate mass emission rate (br/mfbu)	2.0 5.7 3.07E-03 99.8 2.1.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0027 5.72E-03 8.18E-07 0.031 0.013 0.249 0.021	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.0028 3.53E-03 5.05E-07 0.019 0.008 0.150	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026 2.01E-03 2.87E-07 0.0011 0.007 0.091	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07 0.00056 0.0027 3.76E-03 5.37E-07 0.020 0.029	
ln s lb/hr c	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) Isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gt/dscf) Filterable Particulate concentration (gt/dscf) Filterable Particulate mass emission rate (lb/hr) Filterable Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate concentration (gt/dscf) Condensible Particulate mass emission rate (lb/hr) Condensible Particulate mass emission rate (lb/mmBtu) Total Particulate concentration (gt/dscf) Total Particulate concentration (gt/dscf) Total Particulate concentration (gt/dscf) Total Particulate mass emission rate (lb/mmBtu) Total Particulate mass emission rate (lb/hr) Total Particulate mass emission rate (lb/hr)	2.0 5.7 3.07E-03 99.8 21.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0005 0.00027 5.72E-03 8.18E-07 0.031 0.013 0.249	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.0028 3.53E-03 5.05E-07 0.019 0.008 0.150	2.0 3.3 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0026 2.01E-03 2.87E-07 0.011 0.007 0.091	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07 0.0056 0.0027 3.76E-03 5.37E-07 0.0220 0.009 0.163 0.014	
ha Mana an	Mass of train blank (mg) Total CPM Mass less Blank (mg) Emission Calculations Cross-sectional area of nozzle (ft ²) isokinetic variation (%) Total Filterable PM mass less blank (mg) Filterable Particulate concentration (gr/dscf) Filterable Particulate concentration (br/dscf) Filterable Particulate concentration (br/dscf) Filterable Particulate mass emission rate (br/mf) Filterable Particulate mass emission rate (br/mf) Condensible Particulate concentration (gr/dscf) Condensible Particulate mass emission rate (br/mf) Condensible Particulate mass emission rate (br/mfbu) Total Particulate mass emission rate (br/mfbu)	2.0 5.7 3.07E-03 99.8 2.1.5 4.52E-03 6.46E-07 0.0243 0.0101 1.20E-03 1.71E-07 0.0065 0.0027 5.72E-03 8.18E-07 0.031 0.013 0.249 0.021	2.0 5.7 3.07E-03 101.7 11.0 2.33E-03 3.32E-07 0.0122 0.0054 1.21E-03 1.72E-07 0.0063 0.0028 3.53E-03 5.05E-07 0.019 0.008 0.150	2.0 3.3 3.07E-03 92.4 5.9 1.29E-03 1.84E-07 0.0072 0.0046 7.22E-04 1.03E-07 0.0040 0.0026 2.01E-03 2.87E-07 0.0011 0.007 0.091	2.0 4.9 3.07E-03 98.0 12.8 2.71E-03 3.88E-07 0.0145 0.0067 1.04E-03 1.49E-07 0.0056 0.0027 3.76E-03 5.37E-07 0.0220 0.009 0.163 0.014	a. ם. ס

:

*PM 10 = Total Filterable PM * 0.58 + CPM **PM2.5 = Total Filterable PM * 0.32 + CPM *Kiin processed 1.03 tons of raw feed in 8.333 hours.

C-043AS-552991-RT-188

043AS-522991 Biochar Now Kiln #7 10/14/2019

		Run # Start Time Stop Time	1 9:38 11:58	2 12:37 14:56	3 15:37 17:45	
EPA Meth	od 308 Meter Data		1	2	3	Average
	Inputs					
P _{bar}	Barometric Pressure ("Hg)		24.87	24.87	24.87	24.87
Vm	Volume of Stack Gas Collected (L)		48.376	48.221	48.011	48.203
Y	Meter Calibration Factor (unitless)		1.009	1.009	1.009	1.009
Tm	Temperature at Gas Meter (°F)		82.0	89.0	72.0	81.0
	Calculations					
Vm	Volume of Stack Gas Collected (dcm)		0.048	0.048	0.048	0.048
P _{bar}	Absolute Pressure at Gas Meter (mmHg)		631.63	631.63	631.63	631.63
T _m	Absolute Temperature at Gas Meter (K)		301	305	295	300
V _{m(std)}	Sample Gas Volume (dscm)		0.039	0.039	0.040	0.039
V _{m(std)}	Sample Gas Volume (std L)		39.498	38.869	39.937	39.435
EPA Meth	od 308 Laboratory Results		1	2	3	Average
	Methanol (µg)		2.77	2.77	2.68	2.74
MW=32.04	Methanol (ppmvd)		0.0527	0.0535	0.0504	0.0522
Mass Emis	ssion Calculations (Using EPA Methods 1-4)		1	2	3	Average
	Exhaust Flow (dscfh)		37,646	36,746	39,135	37,842
MW=32.04	Methanol (lb/hr)		0.000165	0.000163	0.000164	0.000164
	Methanol (lb/ton raw feed)*		0.00133	0.00132	0.00133	0.00133

1 .

0.02

*Kiln processed 1.03 tons of raw feed in 8.33 hours.

043AS-552991 Biochar Now Kiln #40 10/8/2019

	Rur Start Tin Stop Tin	ne 10:00	
EPA Meth	od 2 Data	1	
	Inputs		
D,	Stack Diameter (inches)	24.0	
bar	Barometric Pressure ("Hg)	24.85	
e .	Stack Static Pressure ("H ₂ O)	-0.01	
C _P	Pitot Tube Coefficient (unitless)	0.84	
/∆p _{avg}	Avg. Velocity Head of Stack Gas V("H ₂ O)	0.1308	
r,	Stack Gas Temperature (°F)	1296	
	Calculations		
Ą	Stack Area (ft ²)	3.142	
g	Stack Static Pressure ("Hg)	0.00	
Ma	Stack Gas Molecular Weight, dry basis (lb/lb-mole)	30.21	
Ms	Stack Gas Molecular Weight, wet basis (Ib/Ib-mole)	28.46	
P.	Absolute Stack Pressure ("Hg)	24.85	
- F _{s(abs)}	Absolute Stack Gas Temperature (°R)	1756	
V _s	Stack Gas Velocity (ft/sec)	14.80	
a	Stack Gas Dry Volumetric Flow Rate (dscf/hr)	35,834	
d L	Stack Gas Dry Volumetric Flow Rate (dscf/min)	597	
PA Meth	od 4 Data	1	
	Inputs		
V _{Ic}	Volume of Water Condensed (mL)	251.4	
V _m	Volume of Stack Gas Collected (dcf)	85.284	
(Meter Calibration Factor (unitless)	1.0270	
7H	Pressure Differential Across Orifice ("H ₂ O)	1.70	
r _m	Temperature at Gas Meter (°F)	83	
	Calculations		
Pm	Absolute Pressure at Gas Meter ("Hg)	24.98	
r _m	Absolute Temperature at Gas Meter ("R)	543	
V _{wc(std)}	Volume of Water Condensed (scf)	11.83	
V _{m(std)}	Sample Gas Volume (dscf)	71.06	
B _{ws}	Stack Gas Moisture Content (%/100)	0.143	
EPA Meth	od 3A, 7E, 10 and 25A Data	1	Limit
	O ₂ (%vd)	10.3	
	CO _z (%vd)	11.2	
	NO _x (ppmvd)	42.8	
	CO (ppmvd)	479.8	
	TVOC (ppmvw as C ₃ H ₈)	22.9	
	TVOC (ppmvd as C ₃ H ₈)	26.7	
Mass Emi	ssion Calculations (Using EPA Methods 1-4)	1	Limit
	Exhaust Flow (dscfh)	35834	
	NO _x (lb/hr)	0.18	0.14
	CO (lb/hr)	1.25	0.12
	TVOC (lb/hr as C3H8)	0.11	
	TVOC (lb/ton raw feed as C ₃ H ₈)		0.41

*Only a single run was completed, the operating temperature was adjusted.

7

C-043AS-552991-RT-188

043AS-552991 Blochar Kifn #40 10/8/2019

	Run # Stert Time	1 10:00	
	Stop Time	12:28	
e	Sample Time (min.)	120	
EPA Meth		1	_
D,	Inputs Stack Diameter (inches)	24.0	
Pbar	Barometric Pressure ("Hg)	24.85	
Pg	Stack Static Pressure ("H ₂ O)	-0.01	×.
C _p	Pitot Tube Coefficient (unitless)	0.84	
√∆p _{∎va}	Avg. Velocity Head of Stack Gas √("H₂O)	0.1308	
τ,	Stack Gas Temperature (°F)	1296	
A	Calculations Stack Area (ft ²)		
P ₂	Stack Static Pressure ("Hg)	3.142 0.00	
Ma	Stack Gas Molecular Weight, dry basis (ib/lb-mole)	30.24	
м,	Stack Gas Molecular Weight, wet basis (ib/ib-mole)	28.49	
Ps.	Absolute Stack Pressure ("Hg)	24.85	
T _{s(abs)}	Absolute Stack Gas Temperature (*R)	1756	
ν,	Stack Gas Velocity (ft/sec)	14.8	
Q	Stack Gas Dry Volumetric Flow Rate (dscf/hr) Stack Gas Dry Volumetric Flow Rate (dscf/min)	35,818 597	
EPA Meth	Og (%vd)	10.3	_
	CO ₂ (%vď)	10.3	
EDA 44-4*			
EPA Meth	od 4 Data	1	_
Vic	Volume of Water Condensed (mL)	251.4	
Vm	Volume of Stack Gas Collected (dcf)	85.284	
Y AH	Meter Calibration Factor (unitiess)	1.0270	
ΔH T _m	Pressure Differential Across Orifice ("H ₂ O} Temperature at Gas Meter ("F)	1.7 83	
'm	Calculations	83	
ዎጠ	Absolute Pressure at Gas Meter ("Hg)	24.98	
Tm	Absolute Temperature at Gas Meter (°R)	543	
V _{wolstd)}	Volume of Water Condensed (scf)	11,83	
V _{m(std)}	Sample Gas Volume (dscf)	71.06	
B _{ws act}	Observed Stack Gas Molsture Content (%/100)	0,143	
Bws	Moisture Content Used (%/100)	0.143	
EPA Metho		1	_
D,	Inputs Nozzle diameter (*)	0.75	
C1	Mass of PM collected on filter (mg)	11.8	
C2	Mass of PM collected in rinses (mg)	7.4	
w,	Mass of acetone blank (mg)	0.1	Deres 16
EPA Metho	od 202 Data	1	Permit Limit
	inputs Mass of inorganic Condensible PM (mg)	3.2	
	Mass of Organic Condensible PM (mg)	3.2	
	Total CPM Mass (mg)	18.5	
	Mass of train blank (mg) Total CPM Mass less Blank (mg)	2.0 16.5	
		70.0	
	Emission Calculations		
A _n	Cross-sectional area of nozzle (ft ²)	3.07E-03	
1 m _n	Isokinetic variation (%) Total Filterable PM mass less blank (mg)	101.6 19.1	
ç,	Filterable Particulate concentration (gr/dscf)	4.15E-03	
С, Б	Filterable Particulate concentration (lb/dscf)	5.93E-07	
E _{lb/W} F _c	Filterable Particulate mass emission rate (lb/hr) Filterable Particulate mass emission rate (lb/marRau)	0.0212	
• ¢	Filterable Particulate mass emission rate (lb/mmBtu)	0.00956	
C,	Condensible Particulate concentration (gr/dscf)	3.58E-03	
c,	Condensible Particulate concentration (lb/dscf)	5.12E-07	
Elb/hv	Condensible Particulate mass emission rate (lb/hr)	0.0183	
F,	Condensible Particulate mass emission rate (lb/mmBtu)	0.00826	
	Total Particulate concentration (gr/dscf)	7.73E-03	
	Total Particulate concentration (lb/dscf)	1.10E-06	
	Total Particulate mass emission rate (Ib/hr) Total Particulate marc emission rate (Ib/mmPtu)	0.0396	
	Total Particulate mass emission rate (ib/mmBtu) Total Particulate mass emission rate (ib/ton raw feed)***	0.0178	0,19
E _{lb/hr}	PM10 mass emission rate (lb/hr)* PM10 mass emission rate (lb/ton raw feed)***	0.0306	0.18
		-	A.10
E _{lb/tr}	PM2.5 mass emission rate (lb/hr)**	0.0251	
	PM2.5 mass emission rate (ib/ton raw feed)***	-	0.18
*PM10 = Ta	otal Filterable PM * 0.58 + CPM		
**PM2.5 =	Total Filterable PM * 0.32 + CPM		

 $\left(\right)$

MUE = Total Filterable PM * 0.53 + CPM ***PM2.5 = Total Filterable PM * 0.32 + CPM *Only a single run was completed, the operating temperature was adjusted.

Source Emissions Testing Report Biochar Now

One (1) Batch Biochar Kiln CO, NOx, VOC, Methanol, & Particulate Matter

Weld County, Colorado

Test Date: December 22, 2015

Report prepared for: Biochar Now 1907 Gail Court Loveland, Colorado 80537

Report prepared by: Air Pollution Testing Inc. 5530 Marshall Street Arvada, Colorado 80002

APT Project BCN5355

Certification

Team Leader Certification:

I certify that all of the sampling and analytical procedures and data presented in this report are authentic and accurate.

Matthew Ferrier Field Team Leader / Project Manager

Reviewer Certification:

I certify that all of the testing details and conclusions are accurate and valid.

Matthew Ferrier Reviewer / Technical Writer

Table of Contents

1. Introduction	1
2. Summary of Results	2
3. Sampling Methods	4
4. Test Program Summary	4
5. Test Method Details	5
Tables	<u>.</u>
Table 1.1 : Emissions Testing Program Contact Personnel	2
Table 2.1 : Kiln Test Results Summary-12/22/2015	3
Table 4.1 : Sampling and Analytical Methods Summary	5
Appendices	
Testing Parameters & Sample Calculations	Appendix 1
Laboratory Data	Appendix 2
Field Data	Appendix 3
Calibration Information	Appendix 4
Schematics	Appendix 5

Test Report – Biochar Now Biochar Facility – Kiln Testing NO_X, CO, NMOC, MeOH, & PM APT Project BCN5355

1. Introduction

Air Pollution Testing, Inc. (APT) was contracted by Biochar Now (Biochar) for emission testing services at their manufacturing facility, located in Weld County at 19750 Weld County Road 7, Berthoud, Colorado 80513.

The purpose of the emissions testing program was to determine the concentrations and mass emission rates of nitrogen oxides (NO_X), carbon monoxide (CO), non-methane organic compounds (NMOC), methanol (MeOH), and particulate matter (PM) from the exhaust of one (1) biochar producing kiln during the volatilization step. Concurrent stack gas velocity, oxygen (O₂), carbon dioxide (CO₂) and moisture (H₂O) content were measured to determine mass emission rates.

The kiln was charged with railroad tie feedstock prior to processing. Operating conditions in the kiln included tightly controlled temperature, pressure, and oxygen levels to volatilize organic components. A cool down prior to unloading produced biochar follows. The volatilization step is typically complete after 8 – 15 hours.

The Biochar yield is optimized and emissions of pollutants are mitigated by the following methods:

- Sophisticated sensors and process controls during the kiln processing;
- Processing conditions which include a balanced oxygen environment with high temperature and negative pressure in the kiln during the volatilization step;
- Exit stack temperature of approximately 1650 degrees Fahrenheit in the presence of excess oxygen during the volatilization step

Key contact personnel involved in the project are shown in Table 1.1, on the following page.

Test Report – Biochar Now Biochar Facility – Kiln Testing NO_x, CO, NMOC, MeOH, & PM APT Project BCN5355

Biochar Now: Kiln Testing Testing Program Contact Personnel					
Name, Title	Company, Address	Contact Numbers			
Mr. Dave Parks, COO	Biochar Now 1907 Gail Court Loveland, Colorado 80537	970-305-1609			
Mr. Bill Beierwaltes, CEO	Biochar Now 1907 Gail Court Loveland, Colorado 80537	970-593-9100, 970-667-3380 fax			
Mr. Jeffrey Bishop Environmental Protection Specialist	CDPHE, APCD-SS-B1 4300 Cherry Creek Drive South Denver, Colorado 80246	303-692-3106			
Mr. Dave Maiers, Operations Director	Air Pollution Testing, Inc. 5530 Marshall Street Arvada, Colorado 80002	303-420-5949 ext. 33, 303-420-5920 fax			
Mr. George Iwaszek Managing Consultant	Trinity Consultants 1391 N Speer Blvd, Suite 350 Denver, Colorado 80204	720-638-7647 x105 303-349-4673 (m)			

Table 1.1: Testing Program Contact Personnel

2. Summary of Results

The results of the testing program are summarized in Table 2.1. Any emission parameters not found in the table may be found in *Appendix 1 – Testing Parameters & Sample Calculations*. The following terms are used in the table:

- °F temperature in degrees Fahrenheit
- "H₂O pressure drop in inches of water
- %vd diluent concentration, dry volume percent
- dscfm volumetric flow, dry standard cubic feet per minute
- %vw concentration, percent volume wet
- ppmvd parts per million, dry volume basis
- g/dscf grams per dry standard cubic foot
- Ib/hr pounds per hour
- tpy tons per year
- NO_x nitrogen oxides
- CO carbon monoxide
- NMOC non-methane organic compounds
- C₃H₈ as propane
- MeOH methanol
- PM particulate matter

Test Report – Biochar Now Biochar Facility – Kiln Testing NO_x, CO, NMOC, MeOH, & PM APT Project BCN5355

Biochar Now, Berthoud, Colorado Pole 2 NE Kiln NOx, CO, NMOC, MeOH, & Particulate Matter Emission Testing Results Summar EPA Methods 1-5, 7E, 10, 18, 25A December 22, 2015						
	Run 1	Run 2	Run 3	Average		
Date	12/22/2015	12/22/2015	12/22/2015			
Start Time	7:54	10:20	13:00			
Stop Time	9:57	12:23	15:03			
Stack Temp. (°F)	1,211	1,147	1,130	1,163		
O2 (%vd)	8.6	10.1	9.4	9.4		
CO ₂ (%vd)	10.7	8.7	9.9	9.7		
H₂O (%vw)	11.5	12.0	13.1	12.2		
Stack Flow (dscfm)	489	474	461	475		
Isokinetic Ratio (%)	95.2	99.4	100.0	98.2		
NO _x (ppmvd)	93.5	58.6	81.8	77.9		
NO _x (lb/hr)	0.3	0.2	0.3	0.3		
NO _X (tpy)*	0.9	0.6	0.7	0.7		
CO (ppmvd)	74.6	4.4	4.3	27.8		
CO (lb/hr)	0.16	0.01	0.01	0.06		
CO (tpy)*	0.44	0.02	0.02	0.16		
NMOC (ppmvd as C₃Hଃ)	6.1	0.1	0.0	2.1		
NMOC (lb/hr as C₃Hଃ)	0.0204	0.0005	0.0000	0.0069		
NMOC (tpy as C ₃ H ₈)*	0.056	0.001	0.000	0.019		
MeOH (ppmvd)	0.10	0.10	0.06	0.09		
MeOH (lb/hr)	0.0002	0.0002	0.0001	0.0002		
MeOH (tpy)*	0.0007	0.0006	0.0004	0.0006		
Front Half Particulate Matter – N						
PM emissions (gr/dscf)	0.004	0.003	0.007	0.005		
PM emissions (lb/hr)	0.004	0.003	0.007	0.005		
PM emissions (tpy)	0.001	0.001	0.003	0.002		
*Tons per year calculated using 5,	475 hours of operation	per year.	······································			

Table 2.1: Kiln Test Results Summary – 12/22/2015

3. Sampling Methods

All testing was conducted in accordance with the following U.S. Environmental Protection Agency (USEPA) source emissions test methods referenced in 40 CFR Part 60, Appendix A.

- Method 1 Sample and Velocity Traverses for Stationary Sources
- Method 2 Determination of Gas Velocity and Volumetric Flow Rate in Ducts (S-Type Pitot)
- Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)
- Method 4 Determination of Moisture Content in Stack Gases
- Method 5 Determination of Particulate Matter Emissions from Stationary Sources
- Method 7E Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)
- Method 10 Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)
- Method 18 Measurement of Gaseous Organic Compound Emissions by Gas Chromatography
- Method 25A Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer

4. Test Program Summary

Three (3), 2-hour sample runs were conducted at the unit's exhaust to determine the emission concentrations of NO_x, CO, non-methane organic compounds (NMOC), methanol (MeOH), and particulate matter (PM). Concentration data were combined with concurrently collected oxygen (O₂), carbon dioxide (CO₂), moisture (H₂O) and gas velocity data to determine pollutant mass emission rates.

APT provided all necessary equipment and labor for the determination of all emission parameters detailed in Table 4.1, on the following page. All on-site gas analyzers were housed in a mobile, analytical trailer to provide a temperature-controlled environment for stable, accurate analyzer response. Test Report – Biochar Now Biochar Facility – Kiln Testing NO_X, CO, NMOC, MeOH, & PM APT Project BCN5355

Biochar Now: Kiln Testing Sampling and Analytical Methods						
Gas Parameter	Sampling Method	Analytical Method	Laboratory			
gas flow	Methods 1, 2	draft gauge, thermocouple, pitot tube				
O ₂ , CO ₂	Method 3A	paramagnetic and non-dispersive infrared analyzers				
H₂O	Method 4	gravimetric				
NOx	Method 7E	chemiluminescent analyzer	APT - on-site			
со	Method 10	gas filter correlation, infrared analyzer				
MEOH	Method 18	gas chromatography				
NMOC	Method 25A	flame ionization analyzer with methane separation				
PM	Method 5	gravimetric	APT – Arvada, CO			

 Table 4.1: Sampling and Analytical Methods Summary

5. Test Method Details

5.1. Stack Gas Velocity, Volumetric Flow Rate, Moisture, & Particulate Matter

Stack gas velocity, volumetric flow rate, moisture (H₂O) content, and particulate matter were measured in accordance with EPA Methods 1, 2, 4, and 5.

Each sampling period consisted of conducting a temperature and differential pressure traverse of the stack using a K-type thermocouple and a wind tunnel-calibrated S-type pitot tube. A gas sample was extracted from the stack along a grid of points at an isokinetic flow rate. The gas sample was passed through a quartz probe nozzle, a heated quartz probe, across a heated quartz fiber filter, through a series of chilled glass impingers, and through a calibrated dry gas meter.

Prior to sampling, the first two impingers were seeded with 100 milliliters of water each. The third impinger was left empty. The fourth impinger was seeded with 250 grams of dried silica gel. Following sampling, the moisture gain in the impingers was measured gravimetrically to determine the moisture content of the stack gas. The filter and a series of acetone rinses of the nozzle, probe, and front-half connecting hardware (including the front half filter bell housing) were quantitatively recovered for gravimetric analysis to determine the PM content of the stack gas.

A total of three integrated samples for stack gas PM content analysis were collected.

The temperature and differential pressure traverse data were combined with diluent data to calculate the stack gas velocity and volumetric flow rate in units of feet per

second (ft/sec), actual cubic feet per minute (acfm), and dry standard cubic feet per minute (dscfm). PM emissions were reported in concentrations of grains per dry standard cubic feet (gr/dscf), and mass rates of pounds per hour (lb/hr) and tons per year (tpy).

5.2. Diluent (O₂ and CO₂), Nitrogen Oxides and Carbon Monoxide

 O_2 , CO_2 , NO_x and CO emission concentrations were measured in accordance with EPA Methods 3A (O_2 and CO_2), 7E (NO_x) and 10 (CO).

Each sampling period consisted of extracting a gas sample from the stack at a constant flow rate of approximately four liters per minute (lpm). The sample passed through a refrigeration-type gas conditioner to remove moisture and into the sampling port of a Thermo Environmental Instruments (TECO) Model 42CHL chemiluminescent NO_X analyzer, a TECO Model 48H gas filter correlation infrared CO analyzer, and a Servomex Series 1400 paramagnetic O₂ / non-dispersive infrared CO₂ analyzer. The gas concentrations were displayed on the analyzer front panels in units of either parts per million, dry volume basis (ppmvd – NO_X and CO) or percent, dry volume basis (%vd – O₂ and CO₂) and logged to a computerized data acquisition system (CDAS). Please see Appendix 5 – Schematics for a diagram of the EPA Methods 3A, 7E and 10 sampling train.

The initial three-point calibration test for each species was conducted in direct calibration mode. Periodically, the sample system was challenged with calibration gases for a system bias check, and to quantify zero and span drift for the previous sampling period. The calibration gases were prepared and certified in accordance with EPA Protocol 1.

The initial 3-point calibration error was less than $\pm 2\%$ of the calibration span gas (CS). The sampling system bias recorded during the performance test was less than ± 5 percent of the CS. The zero and span calibration drift did not exceed ± 3 percent of the CS over the period of each run.

Sampling was conducted from a single point in the approximate area center of the stack. The stack geometry provided adequate gas mixing. A stratification was not conducted due to the process cycling through multiple batch conditions.

A NO_X converter efficiency test was conducted on-site.

Following sampling, the CDAS data were averaged in one-minute increments, corrected for instrumental drift, and reported as average O_2 , CO_2 , NO_x and CO emission concentrations for each sampling period in units of %vd or ppmvd. The concentration data was combined with concurrently collected stack gas flow data to calculate the CO_2 , NO_x and CO mass emission rates in units of lb/hr and tpy based on production. NO_x is expressed as NO₂.

6

5.3. Non-Methane Organic Compounds

NMOC concentrations were measured in accordance with EPA Method 25A using a hydrocarbon analyzer equipped with a methane separator.

Each sampling period consisted of extracting a hot, wet gas sample from the stack at a constant flow rate of approximately two liters per minute using a heated Teflon line. The gas was directed into a column of the Thermo Model 55C flame ionization analyzer, where the methane is separated from the sample. NMOC concentrations were displayed on the analyzer front panel in units of parts per million, wet volume basis (ppmvw – as propane) and logged to a CDAS (see *Appendix 5 – Schematics*).

Triplicate Protocol 1 propane standards were used to calibrate the 55C non-methane measurement system. Periodically, the analyzer was challenged with EPA Protocol 1 calibration gases to calibrate the instrument, to verify linearity of response, and to quantify zero and span drift for the previous sampling period. To ensure no system bias, the analyzer calibrations were conducted by introducing all gases to the analyzer at the sampling probe at stack pressure. Following sampling, the CDAS data were averaged in one-minute increments, corrected for instrumental drift, and reported as average emission concentrations for each sampling period.

The concentration measurements were combined with concurrently collected flow data to calculate NMOC emissions in units of lb/hr and tpy based on production.

5.4. Methanol

Methanol emission levels were determined in accordance with EPA Method 18 using the direct interface sampling and analysis procedures detailed in the method. Samples were analyzed on-site with an HP Model 5890 Series II Gas Chromatograph equipped with a flame ionization detector (FID) and Chemstation software.

Gas phase calibration standards were prepared by dilution of a +/-2% accuracy certified gas standard. Preparation of diluted standards was conducted using a gas-tight volumetric syringe and new Tedlar bags. Triplicate injections, per gas standard, were used to create a three-point calibration curve for each gas component. A least squares line (y=mx) was fit to each data set.

Prior to sampling, a system check was conducted with methanol. The sampling system is valid if sample loss is less than +/-20%. Additionally, a grab sample of stack gas was spiked with methanol to ensure quantification of the appropriate peak.

Direct interface sampling consisted of approximately five (5) injections per hour. Using a heated sample probe/line, stack gas was transported directly to the GC gas sampling valve. Following analysis of stack gas samples, the mid-level calibration standard was re-analyzed at the gas sampling valve in triplicate. The initial calibration response (triplicate average) and the post-test check response (triplicate average) were within 5%

of their mean value, so the initial calibration linear regression data was used to quantify emission levels.

The results of the GC analysis were used to calculate methanol emission levels in units of parts per million, wet volume basis (ppmvw). Methanol concentrations were combined with volumetric flow rates to determine mass emission rates.