Duke Energy Company Marshall Steam Station - Ash Basin Forecasting 2014 Wet Weather Detention Volume Calculation

Determination of Wet Weather Detention Volume: Wet Weather Detention Volume is the sum of the runoff accumulated in the ash basin which results from a 10-yr 24-hr storm (assuming 100% runoff) plus the maximum 24-hr dry weather waste stream which discharges to the Ash Basin (refer to NPDES Permit NC0004961)

I. Estimate Runoff to the Ash Basin from a 10-yr 24-hr storm:

Natural Drainage Area of Ash Basin = 1180.0 Acres
 Station Yard Drainage Area Pumped to Ash Basin = 14.7 Acres
 Total = 1194.7 Acres

2. Precipitation from 10-yr 24-hr storm = 5.0 Inches

3. Total Stormwater Runoff to Ash Basin = 497.79 Acre-feet (Assuming 100% runoff)

II. Estimated Maximum 24-hr Dry Weather Waste Stream Discharging to Ash Basin:

1. Maximum recorded Ash Basin Discharge = 11,200,000 Gallons/day

Increase maximum daily disharge by 10% for conservatism and convert units to acre-feet = 37.81 Acre-feet

III. Wet Weather Detention Volume:

Sum of Parts I. and II. = 535.60 Acre-feet

IV. Estimated Quantity of Solids (Ash) to be discharged to Ash Basin through December 31, 2020. Note: NPDES Permit expiration date is 4/30/2015.

Time Period	Actual or	% Ash	Estimated	Estimated	Estimated	Estimated
	Estimated Coal		Total Ash	Ash Sent to	Ash	Ash
	Consumption		Production	Structural	Discharged	Discharged
	(1000's tons)		(1000's	Fill or Lined	to Ash basin	to Ash basin
			tons)	Land Fills	(1000's	(Acre-feet)
				(1000's	tons)	
				tons)		
2014 (Jun-Dec)	2744.79	10.00%	274.48	233.31	41.17	34.37
2015	3642.73	10.00%	364.27	309.63	54.64	45.61
2016	4106.74	10.00%	410.67	349.07	61.60	51.42
2017	3495.78	10.00%	349.58	297.14	52.44	43.77
2018	2442.76	10.00%	244.28	207.63	36.64	30.59
2019	2371.18	10.00%	237.12	201.55	35.57	29.69
2020	2406.97	10.00%	240.70	204.59	36.10	30.14
Total	21210.94	10.00%	2121.09	1802.93	318.16	265.60

^{*} Calculation assumes an in-place ash density of 55 lbs. per cubic foot.

Duke Energy Company Marshall Steam Station - Ash Basin Forecasting 2014 Wet Weather Detention Volume Calculation

V. Estimated Total Storage Volume Required through 2015:

Wet Weather Detention Volume = 535.6 Acre-feet Estimated Solids to Ash Basin = 265.6 Acre-feet

Required Storage Volume Through 12/31/2020 = 801.2 Acre-feet

VI. Results:

Ash Basin @ Pond Elevation 793'+9" = 849.9 Acre-feet
Total Available Storage = 849.9 Acre-feet

Note: Available Storage based on basin survey dated 8/13/2014

Available Storage > Required Storage

Based on these calculations, there is sufficient capacity in the ash basin to provide the retention volume specified in the permit through the year 2020.