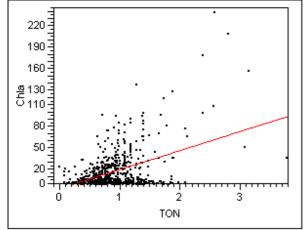

North Carolina is home to many estuarine waters, from Albemarle Sound in the North, to Lockwoods Folly in the South. In order to investigate possible linkages between nutrient concentrations and chlorophyll a concentrations in estuarine waters, we have examined data from several monitoring stations throughout North Carolina's coastal area. These stations are shown in yellow above. Finding a link between nutrient concentrations and chlorophyll concentrations would allow for the development of statewide nutrient concentration limits. North Carolina monitor's a large number of stations in the coastal areas. The ones chosen to examine here had to meet the following criteria: the waters are classified as estuarine, chlorophyll a and nutrient concentrations were analyzed for, and samples were collected in the period January 1, 2002 through December 31, 2006, which was the assessment period used.

The data were divided in many different ways to help evaluate what has an effect and what does not. For example, the data were divided by basin location (north, central, and south), location within the estuary (upper, middle, and lower), and season. Location is a useful distinction because the tidal movements of each area vary significantly, from mostly wind driven in the north to strong lunar tides in the south. For similar reasons, location within an estuary is also a useful divider. Upper estuarine locations get heavier loading of sediment due to drops in stream velocity, and the lower in the estuary you are, the greater the tidal action (though this varies greatly from north to south).

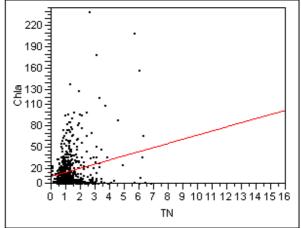
The first task is to evaluate whether there is a direct link between chlorophyll a and nutrient concentrations.

Chlorophyll a vs. Nutrients


Fit of Chlorophyll a By Inorganic Nitrogen

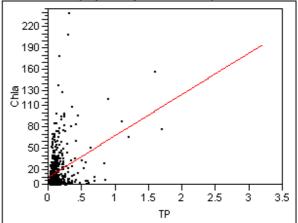
Summary of Fit

RSquare	9		0.00006	
RSquare	e Adj		-0.00154	
Root Me	an S	quare Error	25.9416	
Mean of	Resp	oonse	18.22127	
Observa	tions	(or Sum Wgts)	629	
Analys	sis d	of Variance		
Source	DF	Sum of Square	s Mean Squar	e F Ratio
Model	1	25.1	5 25.15	4 0.0374
Error	627	421950.1	9 672.96	7 Prob > F
C. Total	628	421975.3	4	0.8468


Fit of Chlorophyll a By Total Organic Nitrogen

Summary of Fit

RSquare RSquare			0.189569 0.188278	
		quare Error	23.34329	
Mean of			18.19505	
		(or Sum Wgts)	630	
Analys	sis d	of Variance		
Source	DF	Sum of Square	s Mean Squar	e F Ratio
Model	1	80045.0	1 80045.	0 146.8961
Error	628	342202.8	5 544.	9 Prob > F
C. Total	629	422247.8	6	<.0001

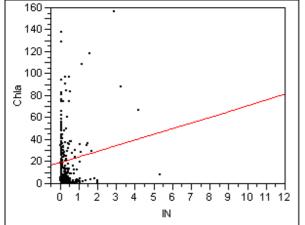

Fit of Chlorophyll a By Total Nitrogen

Summary of Fit

RSquare RSquare Root Me Mean of	e Adj an S	quare Error	0	0.042728 0.041201 25.3821 8.22127		
Observa	tions	(or Sum W	gts)	629		
Analysis of Variance						
Source	DF	Sum of Sq	uares	Mean Squ	are	F Ratio
Model	1	180	30.08	1803	30.1	27.9861
Error	627	4039	45.26	64	4.3	Prob > F
C. Total	628	4219	75.34			<.0001

Fit of Chlorophyll a By Total Phosphorus

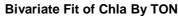
RSquare)		C	.115536		
RSquare	e Adj		C	.114128		
Root Me	an Ś	quare Error	2	4.38619		
Mean of	Resp	onse	1	8.19505		
Observa	tions	(or Sum Wgts)	630		
Analys	sis d	of Variance				
Source	DF	Sum of Squar	es	Mean Squar	е	F Ratio
Model	1	48784.	89	48784.	9	82.0347
Error	628	373462.	97	594.	7	Prob > F
C. Total	629	422247.	86			<.0001

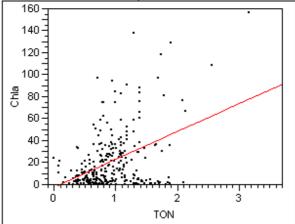

Linear regression indicates that there are weak correlations between chlorophyll a (chla) concentrations and total organic nitrogen (TON), total nitrogen (TN), and total phosphorus (TP) concentrations, and no correlation at all between chla and inorganic nitrogen concentrations (IN). The strongest of the four is TON, which has an r² value of 0.190. However, it is problematic to rely on TON, TP, or TN, because each of them includes in their concentration the nitrogen and phosphorus already incorporated into the biomass of algae, resulting in self-correlation. This self-correlation probably explains most of the observed correlation. IN does not have this problem and is thus a better indicator of free nutrient concentrations. Additionally, because IN is not yet incorporated into algal biomass, it is more available to algae to use for growth.

The graph of chla vs. IN appears to indicate an exclusive relationship, where most commonly, either chla is present or IN is present, but not both. This is consistent with the idea that IN is taken up readily by algae when present.

Growing Season

Because the initial comparison did not provide satisfactory results, various data restrictions were used to probe the relationship further. This included restricting data points to May through September, the "growing season," which is the time of most concern for algal blooms.



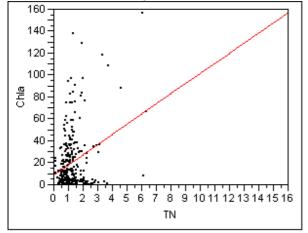

Summary of Fit

RSquare	0.012521
RSquare Adj	0.009127
Root Mean Square Error	25.69493
Mean of Response	21.30836
Observations (or Sum Wgts)	293

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	2436.05	2436.05	3.6897
Error	291	192126.74	660.23	Prob > F
C. Total	292	194562.79		0.0557

Summary of Fit

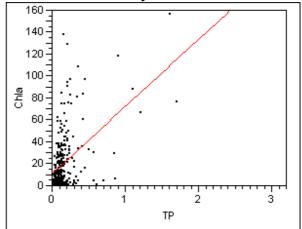

RSquare	0.175035
RSquare Adj	0.17221
Root Mean Square Error	23.4684
Mean of Response	21.24167
Observations (or Sum Wgts)	294

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	34122.32	34122.3	61.9543
Error	292	160823.65	550.8	Prob > F
C. Total	293	194945.97		<.0001

Attachment II Estuarine Data Evaluation Report

Bivariate Fit of Chla By TN


Summary of Fit

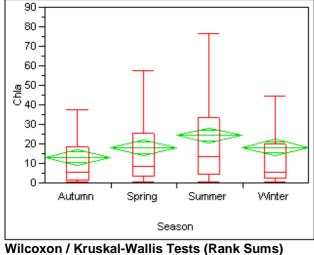
RSquare	0.086235
RSquare Adj	0.083094
Root Mean Square Error	24.71729
Mean of Response	21.30836
Observations (or Sum Wgts)	293

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	16778.03	16778.0	27.4625
Error	291	177784.76	610.9	Prob > F
C. Total	292	194562.79		<.0001

Bivariate Fit of Chla By TP

Summary of Fit

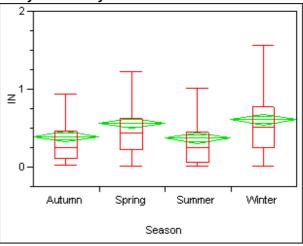

RSquare	0.214952
RSquare Adj	0.212264
Root Mean Square Error	22.89358
Mean of Response	21.24167
Observations (or Sum Wgts)	294

Analysis of Variance

DF	Sum of Squares	Mean Square	F Ratio
1	41904.08	41904.1	79.9519
292	153041.89	524.1	Prob > F
293	194945.97		<.0001
	1 292	1 41904.08 292 153041.89	292 153041.89 524.1

Restricting the data to the growing season did generally improve the correlations slightly; however the best correlation, chla vs TP, still only yielded an r² of 0.215. IN still did not significantly correlate with chla. However, there were fewer points in the graph where IN was present without chla, indicating that IN concentrations are seasonal. The next step was to examine seasonal and geographical variation in chla and IN concentrations.

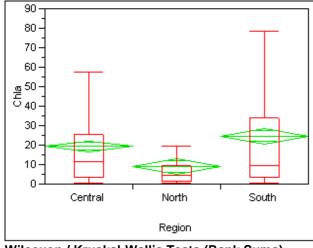
Analysis of Chla By Season


Level Count Score Sum Score Mean (Mean-Mean0)/Std0

175	50813	290.360	-3.456
157	54220	345.350	0.883
180	70730.5	392.947	4.855
154	46347.5	300.958	-2.395
	157 180	157 54220 180 70730.5	157 54220 345.350 180 70730.5 392.947

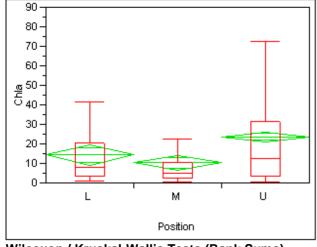
1-way Test, ChiSquare Approximation

ChiSquare	DF	Prob>ChiSq
31.0196	3	<.0001

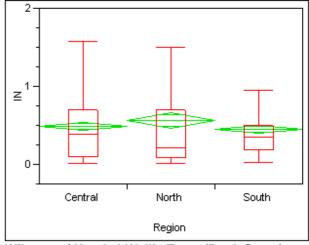

Analysis of IN By Season

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0

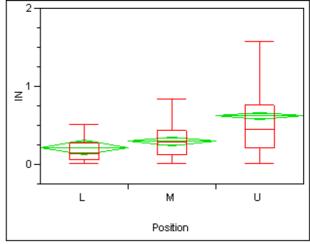
Level	Count	Score Sum	Score Mean	(Mean-Mean0)/Std0	
Autumn	380	247038	650.100	-4.784	
Spring	365	299526	820.619	4.127	
Summer	378	226689	599.706	-7.425	
Winter	357	322687	903.885	8.295	
1-way Test, ChiSquare Approximation					
C	hiSquar	e l	DF Pr	ob>ChiSq	
1	23.096	9	3	<.0001	


Oneway Analysis of Chla By Region

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Count Score Sum Score Mean (Mean-Mean0)/Std0 Level Central 348 121635.5 349.527 2.250 North 148 38117.5 257.551 -5.448 170 62358 366.812 2.617 South 1-way Test, ChiSquare Approximation ChiSquare DF Prob>ChiSq


30.6088 2 <.0001

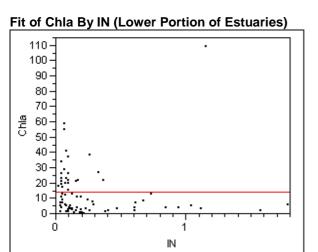
Oneway Analysis of Chla By Position


Wilc	oxon	/ Kruskal	-Wallis Te	sts (Rank 3	Sums)
Level	Count	Score Sum	Score Mean	(Mean-Mean	0)/Std0
L	96	32052.5	333.880		0.021
М	191	49567.5	259.516		-6.296
U	379	140491	370.689		5.735
1-way Test, ChiSquare Approximation					
	ChiSq	uare	DF	Prob>ChiSq	
	42.4	1521	2	<.0001	

Oneway Analysis of IN By Region

Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 Central 624 479268.5 768.058 2,119 112884.5 North 675.955 167 -2.073 South 689 503787 731.186 -0.783 1-way Test, ChiSquare Approximation ChiSquare DF Prob>ChiSq 6.7346 2 0.0345

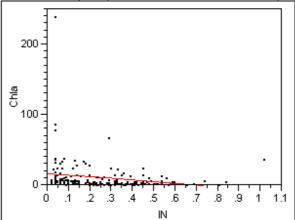
Oneway Analysis of IN By Position

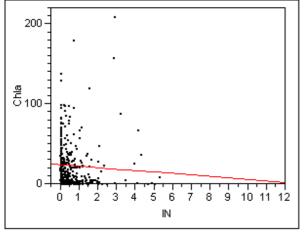


Wilcoxon / Kruskal-Wallis Tests (Rank Sums) Level Count Score Sum Score Mean (Mean-Mean0)/Std0 176 -9.805 L 78157.5 444.077 Μ 424 262207.5 618.414 -6.965 U 880 755575 858.608 12.879 1-way Test, ChiSquare Approximation ChiSquare DF Prob>ChiSq 186.5773 2 . <.0001

Chla is highest in the Summer and lowest in the Autumn. IN is highest in the Winter and Spring, and lowest in the Summer. This again implies the exclusive relationship where generally one is present when the other is not. When viewed from the perspective of loading, this makes sense. The accumulation of IN in the winter and spring is consumed by algae during the summer.

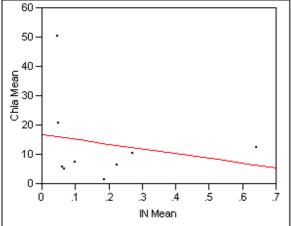
Differences among "Regions" show the variation between concentrations in the North (Albemarle Sound and related waters), the Central (the Neuse and Pamlico rivers), and the Southern (the White Oak, Cape Fear and other smaller rivers near to them) estuaries. This comparison again shows the exclusive relationship of IN and chla. IN is highest in the northern estuaries and chla is lowest in them, and the reverse is true in the southern estuaries.


"Positions" show the differences between The lower, middle, and upper sections of each estuary. In this comparison there is a hint of correlation, as the highest concentrations of both chla and IN occur in the upper portions of the estuaries. This again makes sense from a loading standpoint, as once waters enter the slower waters of the estuary, the drop most of their burden of sediment, including any particulate IN burden, leaving less to move into the middle and lower portions of the estuary. It also makes sense for the highest algal growth to take place where the most loading has taken place. To investigate this further, the data was separated by estuary position and then chla and IN were compared again.


Summary of Fit

RSquare Adj -0 Root Mean Square Error 16	000016 .01314 .70544 .27564 78
Source DF Sum of Squares M Model 1 0.331 1 Error 76 21209.453 21209.784 C. Total 77 21209.784 21209.784	lean Square F Ratio 0.331 0.0012 279.072 Prob > F 0.9726

Mean of Observa Analys	e Adj an Se Resp tions	(or Sum Wgts) of Variance	0.037834 0.032716 20.52202 10.572 190	E D. I.
Source	DF	Sum of Square	s Mean Square	
Model	1	3113.33	2 3113.33	7.3924
Error	188	79176.81	4 421.15	Prob > F
C. Total	189	82290.14	6	0.0072

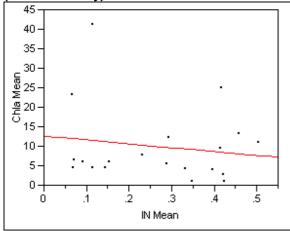

Fit of Chla By IN (Upper Portion of Estuaries)

Summary of Fit

RSquare	Э		0.003	12		
RSquare	e Adj		0.00034	43		
Root Me	an Śo	quare Error	28.744	59		
Mean of	Resp	onse	23.099	72		
Observa	itions	(or Sum Wgts)	30	61		
Analys	Analysis of Variance					
Source	DF	Sum of Square	s Mean	Square	F Ratio	
Model	1	928.2	4	928.239	1.1234	
Error	359	296624.1	7	826.251	Prob > F	
C. Total	360	297552.4	.1		0.2899	

This graph again shows the pattern of exclusivity. However, because chla and IN are both highest in the upper portions of the estuaries, it is worth breaking this down further into the seasons. A comparison of the high seasons for IN (winter and spring) and the high season for chla (summer), may reveal a correlation.

Fit of Summer Chla Mean By Spring IN Mean (Lower Estuary)


Summary of Fit

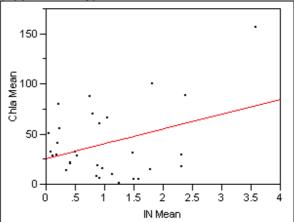
RSquare	0.041723
RSquare Adj	-0.09517
Root Mean Square Error	15.68284
Mean of Response	13.87963
Observations (or Sum Wgts)	9

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	74.9601	74.960	0.3048
Error	7	1721.6598	245.951	Prob > F
C. Total	8	1796.6199		0.5981

Fit of Summer Chla Mean By Spring IN Mean (Middle Estuary)

Summary of Fit

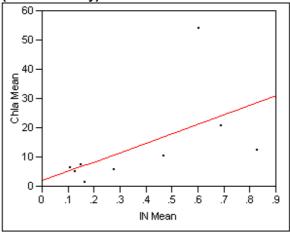

0.0238
-0.03043
9.955826
10.07325
20

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	43.4982	43.4982	0.4389

Source	DF	Sum of Squares	Mean Square	F Ratio
Error	18	1784.1325	99.1185	Prob > F
C. Total	19	1827.6306		0.5161

Fit of Summer Chla Mean By Spring IN Mean (Upper Estuary)

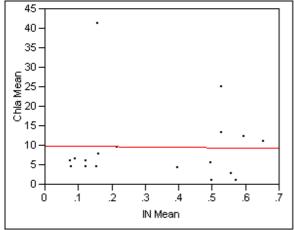

Summary of Fit

RSquare	0.127286
RSquare Adj	0.098196
Root Mean Square Error	32.9874
Mean of Response	40.56771
Observations (or Sum Wgts)	32

Analysis of Variance

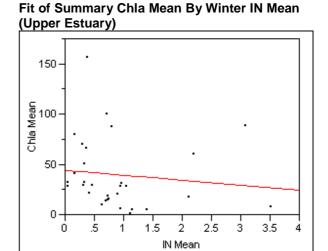
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4761.323	4761.32	4.3755
Error	30	32645.058	1088.17	Prob > F
C. Total	31	37406.381		0.0450

Fit of Summer Chla Mean By Winter IN Mean (Lower Estuary)



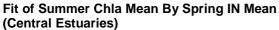
RSquare	0.303137
RSquare Adj	0.203585
Root Mean Square Error	14.29951
Mean of Response	14.25
Observations (or Sum Wgts)	9

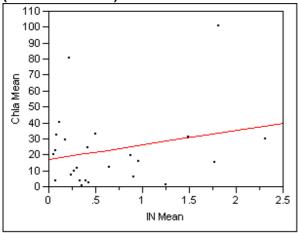
Analysis of Variance


Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	622.6330	622.633	3.0450
Error	7	1431.3325	204.476	Prob > F
C. Total	8	2053.9656		0.1245

Fit of Summer Chla Mean By Winter IN Mean (Middle Estuary)

Summary of Fit

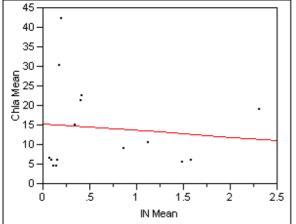

Mean of Observa	e Adj an S Res tions	Square Error	0.000425 -0.06205 10.01116 9.631667 18	
	DF 1 16	Sum of Squares 0.6825 1603.5719 1604.2544	0.682 100.223	



Summary of Fit

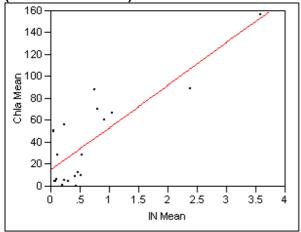
	e Adj an S	Square Error	0.012827 -0.02121 35.55056	
Mean of		ponse s (or Sum Wgts)	40.03763 31	
		of Variance	31	
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	476.228	476.23	0.3768
Error	29	36651.422	1263.84	Prob > F
C. Total	30	37127.651		0.5441

The fit of summer chla by spring IN in the upper portions of estuaries shows a significant correlation, and an r^2 of 0.127. However, a visual examination of this graph indicates that the correlation does not begin until above 50 ug/L chla. Below 50, the correlation is very noisy. The other correlations were not significant. A cross-season comparison was also done by estuary location.



RSquare	;			0.05	7084	
RSquare	e Adj			0.01	5088	
Root Me	an S	Square	Error	23.6	7267	
Mean of	Res	ponse	•	23.	2386	
Observa	tions	s (or S	um Wgts)	25	
Analys	sis	of Va	riance			
Source	DF	Sum	of Square	es Mea	an Square	F Ratio
Model	1		780.30		780.305	
Error	23		12889.09	4	560.395	Prob > F
C. Total	24		13669.39	9		0.2501

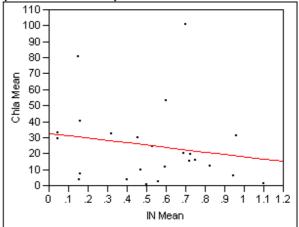
Summary of Fit


Fit of Summer Chla Mean By Spring IN Mean (Northern Estuaries)

Summary of Fit

RSquare 0.011078 RSquare Adj -0.06499	
Root Mean Square Error 11.52923	
Mean of Response 14.34444	
Observations (or Sum Wgts) 15	
Analysis of Variance	
Source DF Sum of Squares Mean Squa	are F Ratio
Model 1 19.3581 19.3	58 0.1456
Error 13 1728.0012 132.9	23 Prob > F
C. Total 14 1747.3593	0.7089

Fit of Summer Chla Mean By Spring IN Mean (Southern Estuaries)

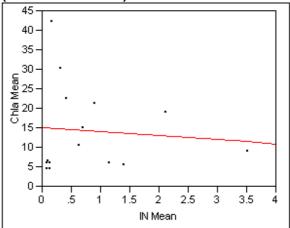

Summary of Fit

RSquare	0.673362
RSquare Adj	0.65617
Root Mean Square Error	23.73667
Mean of Response	39.44841
Observations (or Sum Wgts)	21

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	22068.579	22068.6	39.1683
Error	19	10705.163	563.4	Prob > F
C. Total	20	32773.742		<.0001

Fit of Summer Chla Mean By Winter IN Mean (Central Estuaries)


Summary of Fit

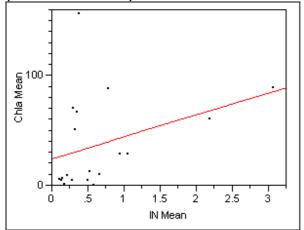
RSquare	0.031108
RSquare Adj	-0.01293
Root Mean Square Error	24.9873
Mean of Response	25.30014
Observations (or Sum Wgts)	24

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	441.017	441.017	0.7063
Error	22	13736.036	624.365	Prob > F
C. Total	23	14177.053		0.4097

Fit of Summer Chla Mean By Winter IN Mean (Northern Estuaries)

Summary of Fit


RSquare	0.007992
RSquare Adj	-0.06832
Root Mean Square Error	11.54721
Mean of Response	14.34444
Observations (or Sum Wgts)	15

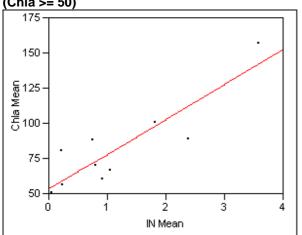
Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	13.9656	13.966	0.1047
Error	13	1733.3937	133.338	Prob > F
C. Total	14	1747.3593		0.7514

Fit of Summer Chla Mean By Winter IN Mean (Southern Estuaries)

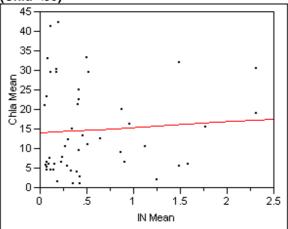
Summary of Fit


RSquare	0.12753
RSquare Adj	0.076209
Root Mean Square Error	40.707
Mean of Response	37.91667
Observations (or Sum Wgts)	19

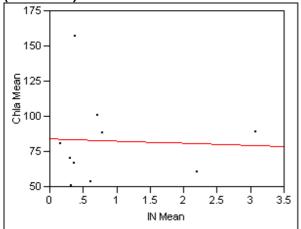
Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4117.655	4117.66	2.4849
Error	17	28170.011	1657.06	Prob > F
C. Total	18	32287.666		0.1334

The fit of summer chla to spring IN in the southern estuaries shows significant correlation and an r2 of 0.673, by far the best fit seen. The rest of the location fits did not produce significant results. However, similar to what was seen in the fit of summer chla to spring IN in the upper estuary set, the correlation does not appear until approximately 50 ug/L chla and above. So next, chla concentrations were separated into those greater then 50 ug/L and those less than 50 ug/L.

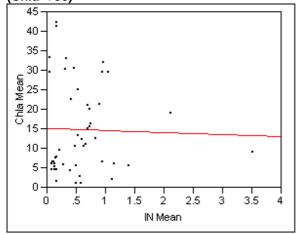

Fit of Summer Chla Mean By Spring IN Mean (Chla >= 50)

Summary of Fit


RSquare RSquare			0.79505 0.772278	
		Square Error	14.6922	
Mean of	Res	sponse	80.10606	
Observa	tions	s (or Sum Wgts)	11	
Analysis of Variance				
Source	DF	Sum of Squares	s Mean Square	F Ratio
Model	1	7536.379		34.9132
Error	9	1942.7468	3 215.86	Prob > F
C. Total	10	9479.1263	3	0.0002

Fit of Summer Chla Mean By Spring IN Mean (Chla <50)

RSquare RSquare	e Adj		0.005033 -0.0157 11.4631	
Mean of		•	14.86763	
		s (or Sum Wgts)	50	
Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	31.9070	31.907	0.2428
Error	48	6307.3329	131.403	Prob > F
C. Total	49	6339.2400		0.6244


Fit of Summer Chla Mean By Winter IN Mean (Chla >= 50)

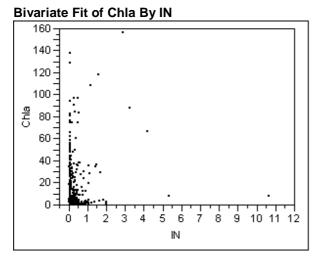
Summary of Fit

RSquare			0.002461	
RSquare	e Adj		-0.12223	
Root Me	an S	Square Error	32.92227	
Mean of	Res	ponse	82.75	
Observa	tion	s (or Sum Wgts)	10	
Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	21.3939	21.39	0.0197
Error	8	8671.0088	1083.88	Prob > F
C. Total	9	8692.4028		0.8917

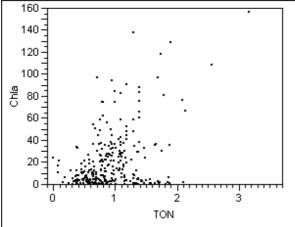
Fit of Summer Chla Mean By Winter IN Mean (Chla < 50)

RSquare)		0.000663	
RSquare	e Adj		-0.02106	
Root Me	an S	Square Error	11.55844	
Mean of	Res	ponse	14.90181	
Observa	tions	s (or Sum Wgts)	48	
Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4.0761	4.076	0.0305
Error	46	6145.4856	133.598	Prob > F
C. Total	47	6149.5617		0.8621

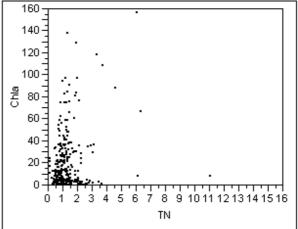
A strong correlation appears to exist between summer chla concentrations and spring IN concentrations (r^2 is 0.795), but only at high concentrations of chla (>= 50). The other fits were not significant.

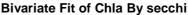

Conclusions

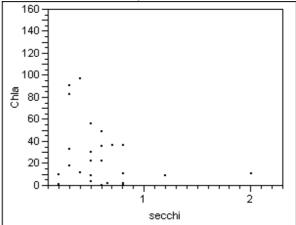
TN, TON, and TP all suffer from self-correlation when compared to chla. IN does not have that problem, but must be viewed seasonally because it is used up by algae when chla is highest. Nutrient loading occurs each day of the year, but monitoring of concentrations only happens once or twice a month at these stations. Occasional monitoring of concentration is not sufficient to accurately reflect total loading. In areas where the highest chla is found, it is reasonable to suppose that there is high loading of IN, which is reflected in the continually high observed concentrations in the spring. But in areas where chla concentrations are lower, it is also reasonable to assume that the daily loading is quite variable, leaving little correlation between concentration on six or seven days, and the total loading for the season. Because the standard for chla in North Carolina is 40 ug/L, and no correlation exists until 50+ ug/L, IN concentrations are also not useful as a statewide standard.


Appendix

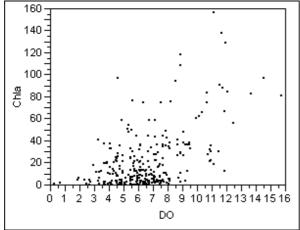
Additional comparisons of chla or IN to other parameters were made, which did not result in useful correlations. They are included here.

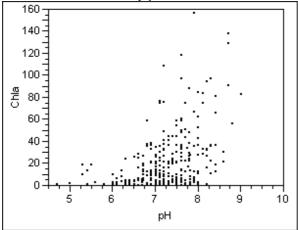

Growing Season:



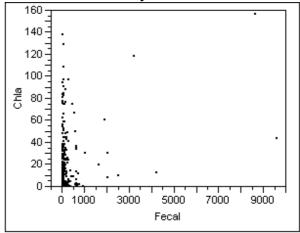

Bivariate Fit of Chla By TON

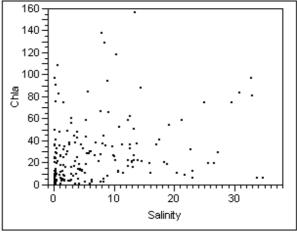
Bivariate Fit of Chla By TN

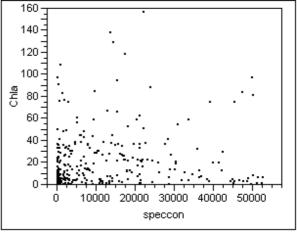


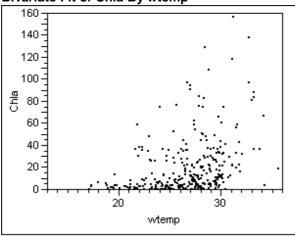

Attachment II Estuarine Data Evaluation Report

Bivariate Fit of Chla By Turbidity

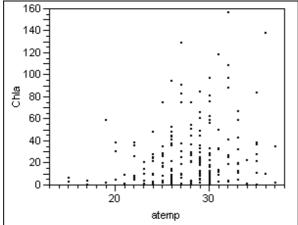

Bivariate Fit of Chla By DO


Bivariate Fit of Chla By pH

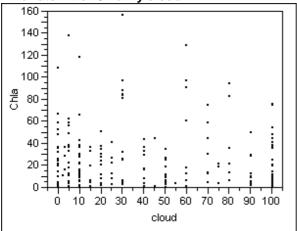

Bivariate Fit of Chla By Fecal


Bivariate Fit of Chla By Salinity

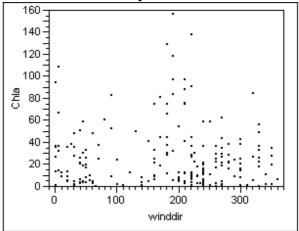
Bivariate Fit of Chla By speccon

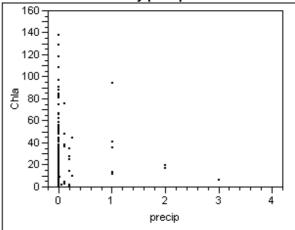


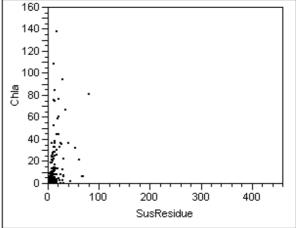
Attachment II Estuarine Data Evaluation Report



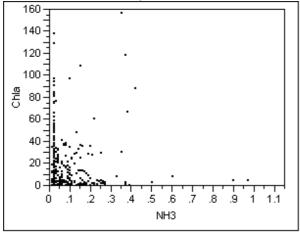
Bivariate Fit of Chla By wtemp


Bivariate Fit of Chla By atemp

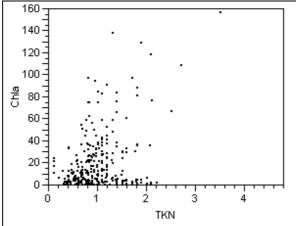

Bivariate Fit of Chla By cloud


Bivariate Fit of Chla By winddir

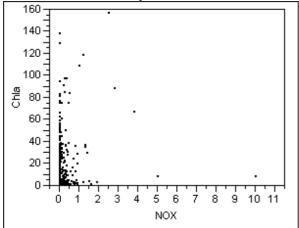
Bivariate Fit of Chla By precip

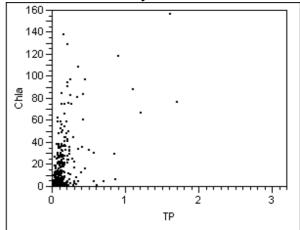


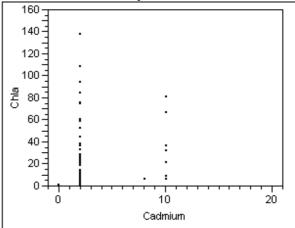
Bivariate Fit of Chla By SusResidue

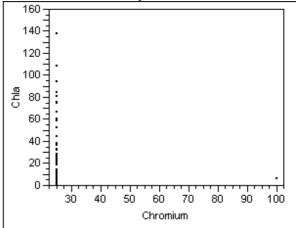


Attachment II Estuarine Data Evaluation Report

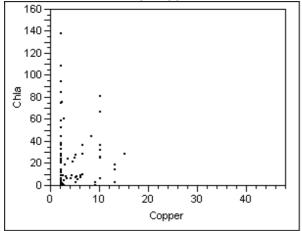

Bivariate Fit of Chla By NH3

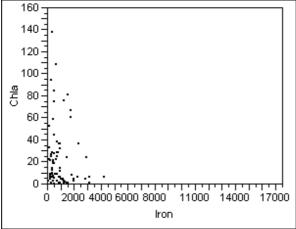

Bivariate Fit of Chla By TKN


Bivariate Fit of Chla By NOX

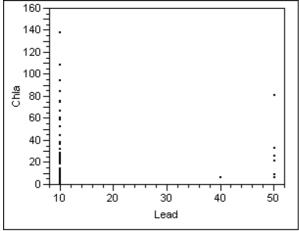

Bivariate Fit of Chla By TP

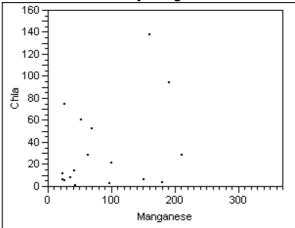
Bivariate Fit of Chla By Cadmium

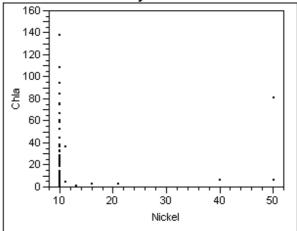


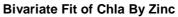


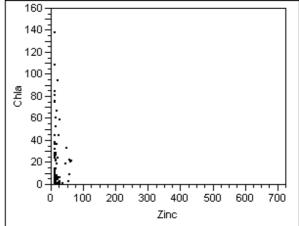
Attachment II Estuarine Data Evaluation Report


Bivariate Fit of Chla By Copper

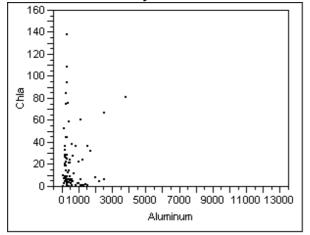

Bivariate Fit of Chla By Iron

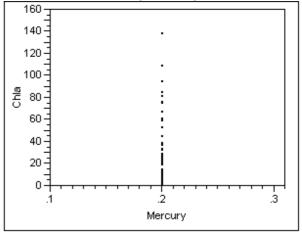





Bivariate Fit of Chla By Manganese

Bivariate Fit of Chla By Nickel





Attachment II Estuarine Data Evaluation Report

Bivariate Fit of Chla By Aluminum

Bivariate Fit of Chla By Mercury

