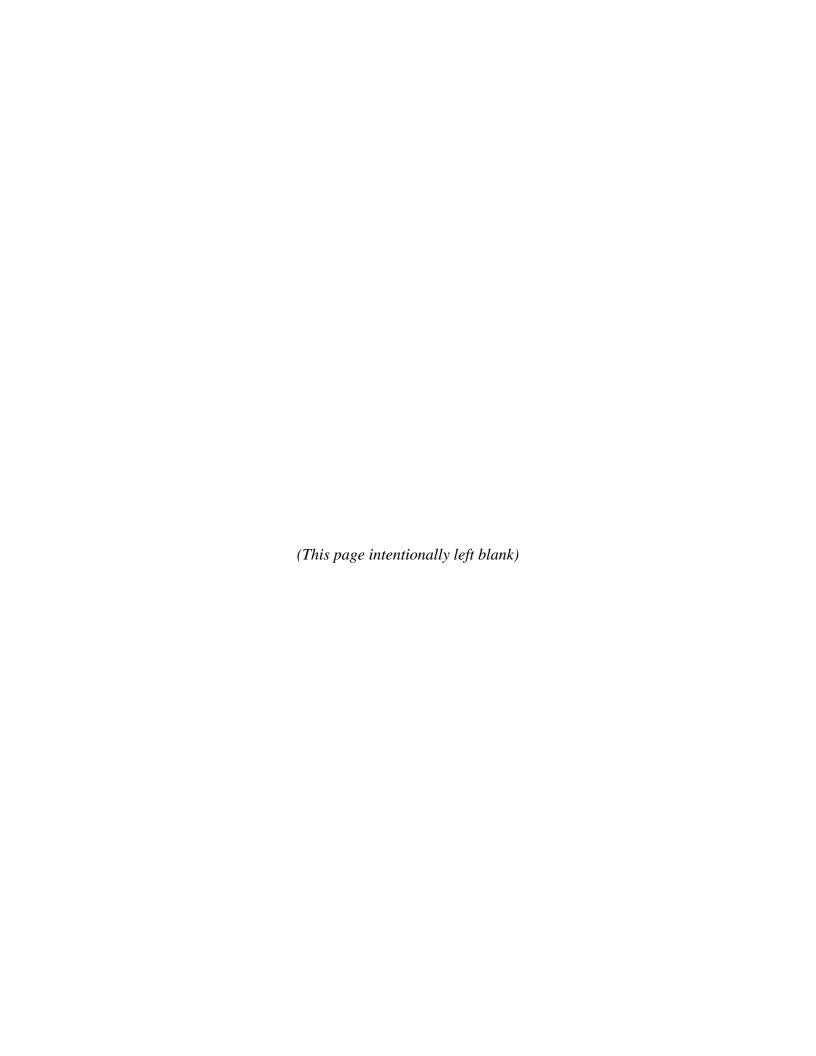
# Supplement to the

# Redesignation Demonstration and Maintenance Plan for the

Hickory (Catawba County) and
Greensboro/Winston-Salem/High Point
(Davidson and Guilford Counties)
Fine Particulate Matter Nonattainment Areas




Prepared by

North Carolina Department of Environment and Natural Resources

Division of Air Quality

**December 22, 2010** 



#### INTRODUCTION

This document is intended to supplement the Redesignation Demonstration and Maintenance Plan for the Hickory (Catawba County) and Greensboro/Winston-Salem/High Point (Davidson and Guilford Counties) Fine Particulate Matter Nonattainment Areas that was submitted to the United States Environmental Protection Agency (USEPA) on December 18, 2009. This document revises the on-road mobile source emissions and the motor vehicle emission budgets (MVEBs) using the new USEPA mobile model Motor Vehicle Emission Simulator (MOVES). In March 2010, the USEPA announced in the Federal Register (FR) that the new MOVES model was required for State Implementation Plan purposes and would be required for transportation conformity purposes starting March 2012 (40 FR 9411). The North Carolina Division of Air Quality (NCDAQ) committed to the transportation partners to revise the MVEBs once the new mobile model was released.

# **REVISED SECTIONS**

Attached are the revised sections to the Redesignation Demonstration and Maintenance Plan for the Hickory and Greensboro/Winston-Salem/High Point Fine Particulate Matter Nonattainment Areas. To appropriately revise the original package, replace the pages as outlined below:

# **Narrative Replacements**

Replace December 18, 2009 page 3-6 with the attached December 22, 2010 page 3-6. (Note that Errata December 22, 2010 page 3-7 has been included for ease of substitution.)

Replace December 18, 2009 pages 3-13 through 3-17 with the attached December 22, 2010 pages 3-12 through 3-17. (Note that Errata December 22, 2010 page 3-12 has been included for ease of substitution.)

Replace December 18, 2009 pages 4-8 through 4-11 with the attached December 22, 2010 pages 4-8 through 4-11.

# Appendix C Replacements

Replace all of December 18, 2009 Appendix C.3 "On-Road Mobile Source Emission Inventory Documentation" with the attached December 22, 2010 Appendix C.3 "On-Road Mobile Source Emission Inventory Documentation".

# **Appendix E Replacements**

Replace December 18, 2009 Appendix E "Public Notice Report, Comments Received and Responses" page i with the attached December 22, 2010 Appendix E page i. (Note that December 18, 2009 Appendix E page ii has been included for ease of substitution.)

Add December 22, 2010 Appendix E pages 15 through 23 to end of December 18, 2009 Appendix E.

**Table 3-1 OBDII Phase-in Effective Dates** 

| County    | Date         |
|-----------|--------------|
| Catawba   | July 1, 2003 |
| Davidson  | July 1, 2003 |
| Guildford | July 1, 2002 |

These emission reductions are state enforceable. The expected  $NO_x$  benefits for the maintenance years are listed in Table 3-2 below.

Table 3-2 I/M NO<sub>x</sub> Benefits by County

| NO <sub>x</sub> I/M Benefit (Tons/year) | 2008 | 2011 | 2014 | 2017 | 2021 |
|-----------------------------------------|------|------|------|------|------|
| Catawba County                          | 171  | 136  | 132  | 122  | 111  |
| Davidson County                         | 180  | 166  | 139  | 129  | 114  |
| Guilford County                         | 541  | 505  | 403  | 358  | 318  |

# NO<sub>x</sub> SIP Call Rule/CAIR

In response to the USEPA's NO<sub>x</sub> SIP call, North Carolina adopted rules to control the emissions of NO<sub>x</sub> from large stationary combustion sources. These rules cover (1) fossil fuel-fired stationary boilers, combustion turbines, and combined cycle systems serving a generator with a nameplate capacity greater than 25 MW and selling any amount of electricity, (2) fossil fuel-fired stationary boilers, combustion turbines, and combined cycle systems having a maximum design heat input greater than 250 million British thermal units per hour, and (3) reciprocating stationary internal combustion engines rated at equal to or greater than 2400 brake horsepower (3000 brake horsepower for diesel engines and 4400 brake horsepower for dual fuel engines). As part of the NO<sub>x</sub> SIP Call, the USEPA rules established a NO<sub>x</sub> budget for sources in North Carolina and other states. North Carolina has a Phase II budget (i.e., emission allowance) of 165,022 tons NO<sub>x</sub> per ozone season.

Besides amending existing  $NO_x$  rules and adopting new  $NO_x$  rules specifically to address the USEPA  $NO_x$  SIP Call, the North Carolina rules also require new sources to control emissions of  $NO_x$ . The objective of this requirement is (1) to aid in meeting the  $NO_x$  budget for North Carolina for minor sources and (2) to aid in attaining and maintaining the ambient air quality standard for ozone in North Carolina. North Carolina's  $NO_x$  SIP Call rule was predicted to reduce summertime  $NO_x$  emissions from power plants and other industries by 68% by 2006. In October 2000, the North Carolina Environmental Management Commission (EMC) adopted rules requiring the reductions.

In 2009, the  $NO_x$  SIP Call program was replaced with the CAIR, a cap-and-trade program that will achieve reductions of emissions of  $SO_2$  and  $NO_x$  in the eastern United States.  $NO_x$  sources that were regulated under the  $NO_x$  SIP Call are now regulated under the CAIR program. North Carolina adopted the CAIR rules in 2006 (amended in 2008). North Carolina's CAIR rules set annual  $SO_2$  allowances as well as both ozone season and annual  $NO_x$  allowances for coal-fired electric generating units and other large combustion sources. These regulations are due to a Federal program and thus are both State and Federally enforceable.

Due to the Court challenges of CAIR in 2008, the USEPA will be making changes to this program soon. However, the existing CAIR rules will remain in place until the USEPA promulgates changes to the program.

#### Clean Smokestacks Act

In June 2002, the North Carolina General Assembly enacted the NCCSA, which requires coal-fired power plants in North Carolina to reduce annual NO<sub>x</sub> emissions by 77% by 2009. These power plants must also reduce annual SO<sub>2</sub> emissions by 49% by 2009 and 73% by 2013. It is significant to note that this law sets a cap on NO<sub>x</sub> and SO<sub>2</sub> emissions for the State which the North Carolina public utilities cannot meet by purchasing credits from sources outside of North Carolina. With requiring year-round NO<sub>x</sub> controls and not allowing the purchase of NO<sub>x</sub> credits to meet the caps, the NCCSA reduces NO<sub>x</sub> emissions beyond the requirements of the NO<sub>x</sub> SIP Call Rule. One of the first state laws of its kind in the nation, this legislation provides a model for other states in controlling multiple air pollutants from older coal-fired power plants. These emissions reductions are state enforceable.

#### Prevention of Significant Deterioration

All new major sources of SO<sub>2</sub> and NO<sub>x</sub> will be evaluated under the prevention of significant deterioration program and are required to use best available control technology. These emissions reductions are state enforceable.

# **Open Burning**

The North Carolina open burning regulation prohibits the burning of man-made materials statewide. In June 2004, the EMC approved revisions to the open burning regulation banning open burning of yard waste and land clearing debris on forecasted Code Orange or higher "air quality action days," for those counties that the NCDAQ or local air programs forecast ozone or fine particulate matter. The following counties in the Hickory area are subject to this rule: Alexander, Catawba, southeastern Burke and southeastern Caldwell. The following counties in

**Table 3-5 Point Source SO<sub>2</sub> Emissions (tons per year)** 

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 6,189 | 6,187 | 6,186 | 6,184 | 6,183 |
|             |       |       |       |       |       |
| Davidson    | 286   | 289   | 292   | 295   | 299   |
| Guilford    | 449   | 451   | 453   | 455   | 458   |
| Triad Total | 735   | 740   | 745   | 750   | 757   |

**Table 3-6. Point Source PM<sub>2.5</sub> Emissions (tons per year)** 

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 6,976 | 6,975 | 6,975 | 6,973 | 6,971 |
|             |       |       |       |       |       |
| Davidson    | 179   | 178   | 177   | 176   | 175   |
| Guilford    | 62    | 62    | 62    | 63    | 63    |
| Triad Total | 241   | 240   | 239   | 239   | 238   |

Area sources are those stationary sources whose emissions are relatively small but due to the large number of these sources, the collective emissions could be significant (i.e., dry cleaners, service stations, etc.). For area sources, emissions are estimated by multiplying an emission factor by some known indicator of collective activity such as production, number of employees, or population. These types of emissions are estimated on the county level. For the projected year's inventory, area source emissions are changed by population growth, projected production growth, or when applicable, by E-GAS 5.0 growth factors. For detailed discussion on how the area source emission inventory was developed, see Appendix C.2. A summary of the area source emissions are presented in Tables 3-7 to 3-9.

Table 3-7. Area Source NO<sub>x</sub> Emissions (tons per year)

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 662   | 614   | 566   | 520   | 454   |
|             |       |       |       |       |       |
| Davidson    | 583   | 551   | 516   | 486   | 438   |
| Guilford    | 1,243 | 1,210 | 1,177 | 1,146 | 1,099 |
| Triad Total | 1,826 | 1,816 | 1,693 | 1,632 | 1,537 |

**Table 3-8. Area Source SO<sub>2</sub> Emissions (tons per year)** 

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 2,263 | 2,037 | 1,808 | 1,580 | 1,277 |
|             |       |       |       |       |       |
| Davidson    | 983   | 838   | 692   | 548   | 353   |
| Guilford    | 4,129 | 3,905 | 3,683 | 3,460 | 3,164 |
| Triad Total | 5,112 | 4,743 | 4,375 | 4,008 | 3,517 |

Table 3-9. Area Source PM<sub>2.5</sub> Emissions (tons per year)

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 682   | 658   | 629   | 606   | 559   |
| Davidson    | 1,071 | 1,028 | 979   | 937   | 857   |
| Guilford    | 697   | 663   | 623   | 590   | 524   |
| Triad Total | 1,768 | 1,691 | 1,602 | 1,527 | 1,381 |

For mobile sources, the USEPA's Motor Vehicle Emission Simulator (MOVES) mobile model is run to generate emissions. The MOVES model includes the road class vehicle miles traveled (VMT) as an input file and can directly output the estimated emissions. For the projected years' inventories, the on-road mobile sources emissions are calculated by running the MOVES mobile model for the future year with the projected VMT to generate emissions that take into consideration expected Federal tailpipe standards, fleet turnover and new fuels. For detailed discussion on how the on-road mobile emission inventory was developed, see Appendix C.3. A summary of the on-road mobile source emissions are presented in Tables 3-10 to 3-12.

**Table 3-10. On-road Mobile Source NO<sub>x</sub> Emissions (tons per year)** 

| County      | 2008   | 2011   | 2014   | 2017  | 2021  |
|-------------|--------|--------|--------|-------|-------|
| Catawba     | 4,982  | 4,005  | 3,240  | 2,591 | 2,054 |
|             |        |        |        |       |       |
| Davidson    | 5,267  | 4,095  | 3,227  | 2,536 | 1,974 |
| Guilford    | 14,499 | 11,157 | 8,882  | 7,143 | 5,796 |
| Triad Total | 19,766 | 15,252 | 12,109 | 9,679 | 7,770 |

**Table 3-11. On-road Mobile Source SO<sub>2</sub> Emissions (tons per year)** 

| County      | 2008 | 2011 | 2014 | 2017 | 2021 |
|-------------|------|------|------|------|------|
| Catawba     | 35   | 20   | 18   | 19   | 20   |
|             |      |      |      |      |      |
| Davidson    | 36   | 19   | 17   | 18   | 18   |
| Guilford    | 111  | 62   | 55   | 59   | 63   |
| Triad Total | 147  | 81   | 72   | 77   | 81   |

**Table 3-12. On-road Mobile Source PM<sub>2.5</sub> Emissions (tons per year)** 

| County      | 2008 | 2011 | 2014 | 2017 | 2021 |
|-------------|------|------|------|------|------|
| Catawba     | 166  | 127  | 107  | 89   | 73   |
|             |      |      |      |      |      |
| Davidson    | 169  | 121  | 97   | 77   | 60   |
| Guilford    | 465  | 330  | 272  | 221  | 183  |
| Triad Total | 634  | 451  | 369  | 298  | 243  |

Nonroad mobile sources are equipment that can move but do not use the roadways, i.e., lawn mowers, construction equipment, railroad locomotives, aircraft, etc. The emissions from this category are calculated using the USEPA's NONROAD2008a nonroad mobile model, with the exception of the railroad locomotives and aircraft engine. The railroad locomotive and aircraft engine emissions are estimated by taking activity data, such as landings and takeoffs, and multiply by an emission factor. These emissions are also estimated at the county level. For the projected years' inventories, the emissions are estimated using the USEPA's NONROAD2008a nonroad mobile model, E-GAS 5.0 growth factors or projected landing and takeoff data for aircraft. For detailed discussion on how the nonroad mobile emission inventory was developed, see Appendix C.4. A summary of the nonroad mobile source emissions are presented in Tables 3-13 to 3-15.

Table 3-13. Nonroad Mobile Source NO<sub>x</sub> Emissions (tons per year)

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 1,173 | 922   | 700   | 551   | 453   |
|             |       |       |       |       |       |
| Davidson    | 1,831 | 1,632 | 1,467 | 1,275 | 1,115 |
| Guilford    | 3,864 | 3,371 | 2,816 | 2,350 | 1,980 |
| Triad Total | 5,695 | 5,003 | 4,283 | 3,625 | 3,095 |

Table 3-14. Nonroad Mobile Source SO<sub>2</sub> Emissions (tons per year)

| County      | 2008 | 2011 | 2014 | 2017 | 2021 |
|-------------|------|------|------|------|------|
| Catawba     | 18   | 6    | 4    | 3    | 4    |
| Davidson    | 25   | 17   | 2    | 2    | 2    |
| Guilford    | 96   | 51   | 42   | 42   | 43   |
| Triad Total | 121  | 68   | 44   | 44   | 45   |

**Table 3-15. Nonroad Mobile Source PM<sub>2.5</sub> Emissions (tons per year)** 

| County      | 2008 | 2011 | 2014 | 2017 | 2021 |
|-------------|------|------|------|------|------|
| Catawba     | 70   | 67   | 57   | 46   | 38   |
|             |      |      |      |      |      |
| Davidson    | 71   | 67   | 58   | 46   | 40   |
| Guilford    | 264  | 252  | 220  | 186  | 157  |
| Triad Total | 335  | 319  | 278  | 232  | 197  |

# 3.3.3 Summary of Emissions

The sum total of these man-made emissions for the  $PM_{2.5}$  nonattainment areas is tabulated in Tables 3-16 though 3-18.

Table 3-16. Total Man-Made NO<sub>x</sub> Emissions (tons per year)

| County      | 2008   | 2011   | 2014   | 2017   | 2021   |
|-------------|--------|--------|--------|--------|--------|
| Catawba     | 20,127 | 16,090 | 15,054 | 14,210 | 13,509 |
|             |        |        |        |        |        |
| Davidson    | 8,522  | 7,143  | 6,102  | 5,217  | 4,488  |
| Guilford    | 19,837 | 15,969 | 13,107 | 10,872 | 9,112  |
| Triad Total | 28,359 | 23,112 | 19,209 | 16,089 | 13,600 |

Table 3-17. Total Man-Made SO<sub>2</sub> Emissions (tons per year)

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 8,505 | 8,250 | 8,016 | 7,786 | 7,484 |
|             |       |       |       |       |       |
| Davidson    | 1,330 | 1,163 | 1,003 | 863   | 672   |
| Guilford    | 4,785 | 4,469 | 4,233 | 4,016 | 3,728 |
| Triad Total | 6,115 | 5,632 | 5,236 | 4,879 | 4,400 |

Table 3-18. Total Man-Made PM<sub>2.5</sub> Emissions (tons per year)

| County      | 2008  | 2011  | 2014  | 2017  | 2021  |
|-------------|-------|-------|-------|-------|-------|
| Catawba     | 7,894 | 7,827 | 7,768 | 7,714 | 7,641 |
| Davidson    | 1,490 | 1,394 | 1,311 | 1,236 | 1,132 |
| Guilford    | 1,488 | 1,307 | 1,177 | 1,060 | 927   |
| Triad Total | 2,978 | 2,701 | 2,488 | 2,296 | 2,059 |

#### 3.3.4 Maintenance Demonstration

As discussed above, maintenance is demonstrated when the future years total man-made emissions are less than the 2008 baseline emissions. The following tables summarized the  $SO_2$ ,  $NO_x$ , and primary  $PM_{2.5}$  emissions for both the Hickory and Triad nonattainment areas. The difference between the base year and the final year of the plan illustrates that the continued maintenance of the annual fine particulate matter NAAQS is expected.

Table 3-19 Maintenance Demonstration for Hickory PM<sub>2.5</sub> Nonattainment Area

| Year                         | NO <sub>x</sub> (tons per year) | SO <sub>2</sub> (tons per year) | PM <sub>2.5</sub> (tons per year) |
|------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| 2008                         | 20,127                          | 8,505                           | 7,894                             |
| 2011                         | 16,090                          | 8,250                           | 7,827                             |
| 2014                         | 15,054                          | 8,016                           | 7,768                             |
| 2017                         | 14,210                          | 7,786                           | 7,714                             |
| 2021                         | 13,509                          | 7,484                           | 7,641                             |
| Difference from 2008 to 2021 | -6,618                          | -1,021                          | - 253                             |

Table 3-20 Maintenance Demonstration for Triad PM<sub>2.5</sub> Nonattainment Area

| Year                         | NO <sub>x</sub> (tons per year) | SO <sub>2</sub> (tons per year) | PM <sub>2.5</sub> (tons per year) |
|------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| 2008                         | 28,359                          | 6,115                           | 2,978                             |
| 2011                         | 23,112                          | 5,632                           | 2,701                             |
| 2014                         | 19,209                          | 5,236                           | 2,488                             |
| 2017                         | 16,089                          | 4,879                           | 2,296                             |
| 2021                         | 13,600                          | 4,400                           | 2,059                             |
| Difference from 2008 to 2021 | -14,759                         | -1,715                          | - 919                             |

The difference between the attainment level of emissions (2008) from all man-made sources and the projected level of emissions from all man-made sources in the nonattainment areas are considered the "safety margin". The safety margin for each projected year is listed below in Table 3-21 and 3-22.

Table 3-21 Safety Margin for Hickory PM<sub>2.5</sub> Nonattainment Area

| Year | NO <sub>x</sub> (tons per year) | SO <sub>2</sub> (tons per year) | PM <sub>2.5</sub> (tons per year) |
|------|---------------------------------|---------------------------------|-----------------------------------|
| 2011 | -4,037                          | -255                            | -67                               |
| 2014 | -5,073                          | -489                            | -126                              |
| 2017 | -5,917                          | -719                            | -180                              |
| 2021 | -6,618                          | -1,021                          | -253                              |

Table 3-22 Safety Margin for Triad PM<sub>2.5</sub> Nonattainment Area

| Year | NO <sub>x</sub> (tons per year) | SO <sub>2</sub> (tons per year) | PM <sub>2.5</sub> (tons per year) |
|------|---------------------------------|---------------------------------|-----------------------------------|
| 2011 | -5,247                          | -483                            | -277                              |
| 2014 | -9,150                          | -879                            | -490                              |
| 2017 | -12,270                         | -1,236                          | -682                              |
| 2021 | -14,759                         | -1,715                          | -919                              |

For both nonattainment areas, there are significant safety margins from 2011 to 2021. In addition to the above safety margins within the  $PM_{2.5}$  nonattainment areas,  $SO_2$  emissions from nearby coal-fired power plants will be significantly reduced due to the NCCSA. This effectively gives the  $PM_{2.5}$  nonattainment areas an even larger safety margin for  $SO_2$ . Table 2-5 shows the  $SO_2$  reductions at nearby coal-fired power plants. These reductions will benefit both the Triad and Hickory nonattainment areas and will provide large safety margins through 2021.

#### 3.4 CONTINGENCY PLAN

# 3.4.1 Overview

The two main elements of the North Carolina contingency plan are tracking and triggering mechanisms to determine when contingency measures are needed and a process of developing and adopting appropriate control measures. There will be three potential triggers for the contingency plan. The primary trigger of the contingency plan will be a violation of the annual PM<sub>2.5</sub> NAAQS at any of the monitors in either PM<sub>2.5</sub> nonattainment area. The secondary trigger

copy of the letter can be found in Appendix B. In the letter, the NCDAQ expressed its preference for setting county level budgets and the reasons why the NCDAQ believed county level budgets were appropriate.

The NCDAQ received comments from the Greensboro Urban Area Metropolitan Planning Organization (GUAMPO) regarding the geographic extent of the MVEBs. The GUAMPO was in favor of having county level MVEBs. A copy of the letter received can be found in Appendix B. Therefore, the NCDAQ decided to move forward with setting county-by-county MVEBs.

Additionally, there was discussion through the interagency consultation process on the years to set MVEBs for the Hickory and Triad  $PM_{2.5}$  maintenance plans. According to Section 93.118 of the transportation conformity rule, a maintenance plan must establish MVEBs for the last year of the maintenance plan (in this case, 2021). Through the interagency consultation process, it was decided that MVEBs would be set for the year 2011 for both the Hickory and Triad  $PM_{2.5}$  nonattainment areas.

Although the emissions up to this point have been expressed in terms of tons per year, the MVEBs will be set in terms of kilograms (kg) per year. In past conformity exercises, there have been some issues with conversion to tons, as well as concerns with how the MVEBs were rounded to the hundredth place. Setting MVEBs in kilograms will avoid these issues in future conformity determinations. Additionally, setting the MVEBs in kilograms was agreed to as part of the interagency consultation process.

The table below shows the counties with their on-road mobile  $PM_{2.5}$  and  $NO_x$  emissions expressed in kilograms per year and the corresponding tons per year values for 2011 and 2021.

Table 4-1. On-Road Mobile Source PM<sub>2.5</sub> Emissions

| County      | Kilograms/year |         | Tons/year |      |
|-------------|----------------|---------|-----------|------|
| County      | 2011           | 2021    | 2011      | 2021 |
| Davidson    | 109,769        | 54,431  | 121       | 60   |
| Guilford    | 299,371        | 166,015 | 330       | 183  |
| Triad Total | 409,140        | 220,446 | 451       | 243  |

Table 4-2. On-Road Mobile Source NO<sub>x</sub> Emissions

| County      | Kilograms/year |           | Tons/year |       |
|-------------|----------------|-----------|-----------|-------|
| County      | 2011           | 2021      | 2011      | 2021  |
| Catawba     | 3,633,274      | 1,863,357 | 4,005     | 2,054 |
|             |                |           |           |       |
| Davidson    | 3,714,921      | 1,790,782 | 4,095     | 1,974 |
| Guilford    | 10,121,459     | 5,258,042 | 11,157    | 5,796 |
| Triad Total | 13,836,380     | 7,048,824 | 15,252    | 7,770 |

The NCDAQ will set MVEB, for transportation conformity purposes, as county budgets within the Hickory and Triad maintenance areas for 2011 and 2021. Tables 4-3 through 4-5 below list out the MVEBs in kilograms per year, for transportation conformity purposes, by county for the years 2011 and 2021. Upon the USEPA's affirmative adequacy finding for these county level sub-area MVEBs, these MVEBs will become the applicable MVEBs for each county.

**Table 4-3 Catawba County MVEB** 

|                                     | 2011      | 2021      |
|-------------------------------------|-----------|-----------|
| NO <sub>x</sub> Emissions (kg/year) |           |           |
| Base Emissions                      | 3,633,274 | 1,863,357 |
| Safety Margin Allocated to MVEB     | 363,327   | 372,671   |
| NO <sub>x</sub> Conformity MVEB     | 3,996,601 | 2,236,028 |

**Table 4-4 Davidson County MVEB** 

|                                       | 2011      | 2021      |
|---------------------------------------|-----------|-----------|
| $NO_x$ Emissions (kg/year)            |           |           |
| Base Emissions                        | 3,714,921 | 1,790,782 |
| Safety Margin Allocated to MVEB       | 371,492   | 358,156   |
| NO <sub>x</sub> Conformity MVEB       | 4,086,413 | 2,148,938 |
| PM <sub>2.5</sub> Emissions (kg/year) |           |           |
| Base Emissions                        | 109,769   | 54,431    |
| Safety Margin Allocated to MVEB       | 43,544    | 98,882    |
| PM <sub>2.5</sub> Conformity MVEB     | 153,313   | 153,313   |

**Table 4-5 Guilford County MVEB** 

|                                       | 2011       | 2021      |
|---------------------------------------|------------|-----------|
| NO <sub>x</sub> Emissions (kg/year)   |            |           |
| Base Emissions                        | 10,121,459 | 5,258,042 |
| Safety Margin Allocated to MVEB       | 1,012,146  | 1,051,608 |
| NO <sub>x</sub> Conformity MVEB       | 11,133,605 | 6,309,650 |
| PM <sub>2.5</sub> Emissions (kg/year) |            |           |
| Base Emissions                        | 299,371    | 166,015   |
| Safety Margin Allocated to MVEB       | 122,470    | 255,826   |
| PM <sub>2.5</sub> Conformity MVEB     | 421,841    | 421,841   |

# 4.5 NEW SAFETY MARGINS

For the Hickory nonattainment area, a total of 363,327 kg/year (400 tons/year) and 372,671 kg/year (411 tons/year) of the 2011 and 2021  $NO_x$  safety margins, respectively, were added to the  $NO_X$  MVEBs.

For the Triad nonattainment area, a total of 1,383,638 kg/year (1,525 tons/year) and 1,409,764 kg/year (1,554 tons/year) of the 2011 and 2021 NO $_{\rm x}$  safety margins, respectively, were added to the Triad NO $_{\rm x}$  MVEBs. For PM $_{\rm 2.5}$ , a total of 166,014 kg/year (183 tons/year) and 354,708 kg/year (391 tons/year) of the 2011 and 2021 PM $_{\rm 2.5}$  safety margins, respectively, were added to the Triad PM $_{\rm 2.5}$  MVEBs.

Table 4-6 New Safety Margins for the Hickory PM<sub>2.5</sub> nonattainment area

| Year | NO <sub>x</sub> (tons/year) | PM <sub>2.5</sub> (tons/year) |
|------|-----------------------------|-------------------------------|
| 2011 | -3,637                      | -67                           |
| 2014 | -5,073                      | -126                          |
| 2017 | -5,917                      | -180                          |
| 2021 | -6,207                      | -253                          |

Table 4-7 New Safety Margins for the Triad  $PM_{2.5}$  nonattainment area

| Year | NO <sub>x</sub> (tons/year) | PM <sub>2.5</sub> (tons/year) |
|------|-----------------------------|-------------------------------|
| 2011 | -3,722                      | -94                           |
| 2014 | -9,150                      | -490                          |
| 2017 | -12,270                     | -682                          |
| 2021 | -13,205                     | -528                          |