APPENDIX 2-A

USE SUPPORT RATINGS FOR ALL MONITORED WATERS IN THE SOUTH FORK NEW RIVER & FOX CREEK WATERSHEDS

Draft 2010 IR Category	INTEGRATED REPORTING CATEGORIES FOR INDIVIDUAL ASSESSMENT UNIT/USE SUPPORT CATEGORY/ PARAMETER ASSESSMENTS. A SINGLE AU CAN HAVE MULTIPLE ASSESSMENTS DEPENDING ON DATA AVAILABLE AND CLASSIFIED USES.
1	All designated uses are monitored and supporting
1b	Designated use was impaired, other management strategy in place and no standards violations for the parameter of interest (POI)
1nc	DWQ have made field determination that parameter in exceedance is due to natural conditions
1r	Assessed as supporting watershed is in restoration effort status
1t	No criteria exceeded but approved TMDL for parameter of interest
2	Some designated uses are monitored and supporting none are impaired Overall only
2b	Designated use was impaired other management strategy in place and no standards violations Overall only
2r	Assessed as supporting watershed is in restoration effort status overall only
2t	No criteria exceeded but approved TMDL for POI Overall only
3а	Instream/monitoring data are inconclusive (DI)
3b	No Data available for assessment
3с	No data or information to make assessment
3n1	Chlorophyll a exceeds TL value and SAC is met-draft
3n2	Chlorophyll a exceeds EL value and SAC is not met first priority for further monitoring-draft
3n3	Chlorophyll a exceeds threshold value and SAC is not met first second priority for further monitoring-draft
3n4	Chlorophyll a not available determine need to collect-draft
3t	No Data available for assessment –AU is in a watershed with an approved TMDL
4b	Designated use impaired other management strategy expected to address impairment
4c	Designated use impaired by something other than pollutant
4cr	Recreation use impaired no instream monitoring data or screening criteria exceeded
4cs	Shellfish harvesting impaired no instream monitoring data-no longer used
4ct	Designated use impaired but water is subject to approved TMDL or under TMDL development
4s	Impaired Aquatic Life with approved TMDL for Aquatic Life POI or category 5 listing
4t	Designated use impaired approved TMDL
5	Designated use impaired because of biological or ambient water quality standards violations and needing a TMDL
5r	Assessed as impaired watershed is in restoration effort status

NC 2010 Integrated Report

	All 13	3.123 Waters in NC are in Category 5-3	03(d) Li	st for Mercury due to statewide f	ish consumption advice	for sev	veral f	ish spe	cies
AU_	Numb	ber AU_Name	AU_I	Description	LengthArea	AU_L	Inits	Class	ification
Cat	egory	7 Parameter		Reason for Rating	Use Category	Coll	ectior	Year	303(d)year
Ne	w Riv	ver Basin		No	orth Fork New River W	aters	hed	0505	000101
•	10-2	2-21-8-1 Middle Fork Litt Horse Creek	le	From source to Little Horse C	reek	4.5	FW	Miles	C;Tr:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	, -	2008		
0	10-2	2-28 Millpond Brancl	า	From source to North Fork N	ew River	2.0	FW	Miles	C:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	2	2003		
0	10-2	2-(1) North Fork New	River	From source to Three Top Cre	eek	14.1	FW	Miles	C;Tr:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	2	2008		
	1	Ecological/biological Integrity Fish	Com	Good Bioclassification	Aquatic Life	2	2008		
•	10-2	2-(12) North Fork New	River	From Three Top Creek to New	w River	36.5	FW	Miles	C:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life		2008		
	1	Fecal Coliform (recreation)		No Criteria Exceeded	Recreation	,	2008		
	1	Water Quality Standards Aquatic I	life	No Criteria Exceeded	Aquatic Life	,	2008		
0	10-2	.0-2-15 Rich Hill Creek		From source to North Fork N	ew River	4.9	FW	Miles	C;Tr:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	2	2008		
•	10-2	2-10 Roundabout Cre	ek	From source to North Fork N	ew River	4.0	FW	Miles	C;Tr:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	ź	2008		
•	10-2	2-13 Three Top Creel	(From source to North Fork N	ew River	13.2	FW	Miles	C;Tr:+
	1	Ecological/biological Integrity Bent	hos	Good Bioclassification	Aquatic Life	,	2008		
	За	Ecological/biological Integrity Fish	Com	Not Rated Bioclassification	Aquatic Life	,	2008		
Ne	w Riv	ver Basin		So	uth Fork New River W	aters	hed	0505	000102
•	10-1	1-37 Cranberry Creel (Mulberry Creel	(()	From source to South Fork N	ew River	18.9	FW	Miles	B;Tr:+
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	,	2008		
	1	Ecological/biological Integrity Fish	Com	Good Bioclassification	Aquatic Life	ź	2008		
•	10-1	1-3-(1) East Fork South New River	Fork	From source to Watauga Cou	inty SR 1524	2.3	FW	Miles	WS-IV;Tr:+
	5	Ecological/biological Integrity Bent	hos	Fair Bioclassification	Aquatic Life	,	2003		2008
•	10-1	1-3-(8) East Fork South New River	Fork	From .8 mile downstream of SR 1524 to S Fk New River	Watauga Co	0.5	FW	Miles	WS-IV;CA:+
	1	Ecological/biological Integrity Bent	hos	Good Bioclassification	Aquatic Life		2008		

				NC 2010 Integrated	a Report		
	All 13,	,123 Waters in	NC are in Category 5-303	3(d) List for Mercury due to state	wide fish consumption adv	vice for several fish spe	cies
AU_	Numb	er AU_	Name	AU_Description	LengthA	rea AU_Units Class	ification
Cat	egory	Parameter		Reason for Rating	Use Category	Collection Year	303(d)year
Ne	w Rive	er Basin			South Fork New Rive	r Watershed 0505	000102
•	10-1	-9-(6)	Howard Creek	From the Appalachian Water Supply Intake D New River	State University Raw am to South Fork	3.6 FW Miles	C;Tr,HQW
	1	Ecological/bio	logical Integrity Bentho	Good Bioclassification	Aquatic Life	2008	
	3a	Ecological/bio	logical Integrity FishCo	Mot Rated Bioclassificat	ion Aquatic Life	2008	
0	10-1-	-35-4	Little Peak Creek	From source to Peak C	reek	2.8 FW Miles	B;Tr:+
	4s	Ecological/bio	logical Integrity Bentho	Poor Bioclassification	Aquatic Life	2008	2000
0	10-1	-10	Meat Camp Creek	From source to South	Fork New River	10.4 FW Miles	C;Tr:+
	1	Ecological/bio	logical Integrity Bentho	S Excellent Bioclassificati	on Aquatic Life	2008	
	3a	Ecological/bio	logical Integrity FishCo	om Not Rated Bioclassificat	ion Aquatic Life	2008	
0	10-1	-2-(15)	Middle Fork Soutl Fork New River	h From 0.4 mile downstr 321 to South Fk New R	of US Hwy 221 & iver	0.5 FW Miles	WS-IV;CA:
	1	Ecological/bio	logical Integrity Bentho	Good-Fair Bioclassificat	ion Aquatic Life	2008	
	3a	Ecological/bio	logical Integrity FishCo	Mot Rated Bioclassificat	ion Aquatic Life	2008	
•	10-1	-2-(6)	Middle Fork Soutl Fork New River	h From Brown Branch to	Boone Dam	3.5 FW Miles	WS-IV;Tr:+
	1	Ecological/bio	logical Integrity Bentho	Good-Fair Bioclassificat	ion Aquatic Life	2003	
•	10-1	-32b	Naked Creek	From 0.4 miles above J South Fork New River	efferson WWTP to	2.5 FW Miles	C:+
	1	Ecological/bio	logical Integrity Bentho	Good-Fair Bioclassificat	ion Aquatic Life	2008	
	5	Ecological/bio	logical Integrity FishCo	m Fair Bioclassification	Aquatic Life	2008	2010
0	10-1	-10-2	Norris Fork	From source to Meat C	Camp Creek	4.3 FW Miles	C;Tr:+
	1	Ecological/bio	logical Integrity Bentho	Good Bioclassification	Aquatic Life	2008	
0	10-1	-27-(2)	Obids Creek	From a point 0.9 mile o Hwy 163 to South Fork	lownstream of NC KNew River	2.8 FW Miles	WS-IV;Tr:+
	1	Ecological/bio	logical Integrity Bentho	Good Bioclassification	Aquatic Life	2008	
	1	Ecological/bio	logical Integrity FishCo	Good Bioclassification	Aquatic Life	2008	
0	10-1	-35-3	Ore Knob Branch	From source to Peak C	reek	0.9 FW Miles	B;Tr:+
	4s	Ecological/bio	logical Integrity Bentho	Poor Bioclassification	Aquatic Life	2003	2000
0	10-1	-35-(2)a	Peak Creek	From Water Supply Da Sulphides, Inc to Ore K	m at Appalachian nob Branch	2.1 FW Miles	B;Tr:+
	1	Ecological/bio	logical Integrity Bentho	Good Bioclassification	Aquatic Life	2008	

NC 2010 Integrated Report

				0			
	All 13	3,123 Waters in I	NC are in Category 5-303(d) Li	st for Mercury due to statewide	fish consumption adv	ice for several fish spe	cies
	Numb	Der AU_	Name AU_I	Description	LengthA	rea AU_Units Class	
Ca	egory	Parameter		Reason for Rating	Use Category	Collection Year	303(d)year
Ne	w Riv	ver Basin		S	outh Fork New Rive	r Watershed 0505	000102
•	10-1	35-(2)b	Peak Creek	From Ore Knob Branch to S River	outh Fork New	2.9 FW Miles	B;Tr:+
	4s	Ecological/biol	logical Integrity Benthos	Poor Bioclassification	Aquatic Life	2008	2006
0	10-1	-15-1	Pine Orchard Creek	From source to Elk Creek		3.5 FW Miles	C;Tr:+
	1	Ecological/bio	ogical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
•	10-1	24	Pine Swamp Creek (Pine Swamp)	From source to South Fork	New River	5.5 FW Miles	C:+
	1	Ecological/bio	logical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	
Ο	10-1	-38	Prathers Creek	From source to South Fork	New River	11.1 FW Miles	B;Tr:+
	1	Ecological/bio	logical Integrity FishCom	Good-Fair Bioclassification	Aquatic Life	2008	
•	10-1	-31-(2)	Roan Creek	From 0.5 mile upstream of Fork New River	mouth to South	0.4 FW Miles	WS- IV;Tr,CA:+
	1	Ecological/biol	logical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	
	1	Ecological/biol	logical Integrity FishCom	Good Bioclassification	Aquatic Life	2008	
•	10-1	-25-2a	South Beaver Creek(Lake Ashe)	From source to Lake Ashe		5.1 FW Miles	C;Tr:+
	1	Ecological/bio	logical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	
•	10-1	(20.5)	South Fork New River	From a point 0.4 mile upstru Creek to a point 2.8 mile up Creek	eam of Couches ostream of Obids	21.8 FW Miles	WS-V;HQW
	1	Ecological/bio	logical Integrity Benthos	Good Bioclassification	Aquatic Life	2008	
•	10-1	-(26)b	South Fork New River	From Obids Creek to a poin upstream of Roan Creek	t 0.6 miles	6.6 FW Miles	WS-IV;HQV
	1	Ecological/bio	logical Integrity Benthos	Excellent Bioclassification	Aquatic Life	2008	
	1	Fecal Coliform	ı (recreation)	No Criteria Exceeded	Recreation	2008	
	1	Water Quality	Standards Aquatic Life	No Criteria Exceeded	Aquatic Life	2008	
	1	Water Quality	Standards Water Supply	No Criteria Exceeded	Water Supply	2008	
0	10-1	(3.5)a	South Fork New River	From Winkler Creek to 0.1 r downstream of Hunting Lar	niles ne	0.3 FW Miles	C:+
	5	Ecological/bio	logical Integrity Benthos	Fair Bioclassification	Aquatic Life	2003	2008
	1	Ecological/biol	logical Integrity FishCom	Good Bioclassification	Aquatic Life	2008	
	1	Fecal Coliform	1 (recreation)	No Criteria Exceeded	Recreation	2008	
	1	Water Ouality	Standards Aquatic Life	No Criteria Exceeded	Aquatic Life	2008	

NC 2010 Integrated Report

	All 13,123 Waters in NC are in Category 5-303(d) List for Mercury due to statewide fish consumption advice for several fish species											
AU_	Numb	er AU_Name	AU_C	Description	LengthArea	AU_Units C	lassification					
Ca	tegory	Parameter		Reason for Rating	Use Category	Collection Ye	ar 303(d)year					
Ne	w Riv	ver Basin		Sc	outh Fork New River W	atershed 05	505000102					
0	10-1	-(3.5)b South Fork New	River	From 0.1 mile downstream H US Hwy.221/421	Hunting Lane to	5.1 FW Mil	es C:+					
	5	Ecological/biological Integrity Bentl	hos	Fair Bioclassification	Aquatic Life	2008	2008					
	1	Ecological/biological Integrity Fish	Com	Good Bioclassification	Aquatic Life	2008						
	1 Fecal Coliform (recreation)			No Criteria Exceeded	Recreation	2008						
	1 Water Quality Standards Aquatic Life			No Criteria Exceeded	Aquatic Life	2008						
•	10-1	-(33.5) South Fork New	River	From Dog Creek to New Rive	er	22.5 FW Mil	es B;ORW					
	1	Ecological/biological Integrity Bentl	hos	Excellent Bioclassification	Aquatic Life	2008						
	1	Fecal Coliform (recreation)		No Criteria Exceeded	Recreation	2008						
	1	Water Quality Standards Aquatic L	ife	No Criteria Exceeded	Aquatic Life	2008						
•	10-1	-18ut4 UT MILL CR		Source to MILL CR		1.3 FW Mil	es					
	1	1 Ecological/biological Integrity Benthos		Not Impaired Bioclassification	Aquatic Life	2007						
•	10-1	-(14.5)ut4 UT S FK NEW R		Source to S FK NEW R		1.0 FW Mil	es					
	3a	Ecological/biological Integrity Bentl	hos	Data Inconclusive	Aquatic Life	2007						
•	10-1	-4-(3.5)b Winkler Creek		From Winkler Creek Road (SR #1549) to South Fork New River		1.7 FW Mil	es C;Tr:+					
	1	Ecological/biological Integrity Bentl	hos	Excellent Bioclassification	Aquatic Life	2008						
Ne	w Riv	er Basin		F	ox Creek-New River W	atershed 05	05000103					
•	10-3	Grassy Creek		From North Carolina-Virginia	a State	4.1 FW Mil	es C;Tr:+					
	1	Ecological/biological Integrity Bentl	hos	Good Bioclassification	Aquatic Life	2008						
	1	Ecological/biological Integrity Fish(Com	Good-Fair Bioclassification	Aquatic Life	2008						
•	10b	New River (Nort Carolina Portion	h)	From first point of crossing s point of crossing state line	tate line to last	6.4 FW Mil	es C;ORW					
	За	Copper		Standard Violation	Aquatic Life	2006						
	1	Ecological/biological Integrity Bent	hos	Excellent Bioclassification	Aquatic Life	2008						
	3a	Zinc		Standard Violation	Aquatic Life	2006						

APPENDIX 2-B

BIOLOGICAL (BENTHIC & FISH) SAMPLE SITE DATA SHEETS

Station ID*	WATERBODY	Assessment Unit #	DESCRIPTION	COUNTY	Site Location	SAMPLE RESULTS
		_	Benthic Sample Sites			
KB130*	Ut. S. Fk. New R.	10-1-(14.5)ut4	Source to South Fork New River	Watauga	SR 1353	07 - Not Rated
KB140*	Ut. S. Fk. New R.	10-1-(14.5)ut4	Source to South Fork New River	Watauga	SR 1353	07 - Not Rated
KB2	S. Fk. New R.	10-1-(20.5)	From a point 0.4 mile upstream of Couches Creek to a point 2.8 mile upstream of Obids Creek	Ashe	SR 1169	08 - Good 03 - Excellent
KB3	S. Fk. New R.	10-1-(26)b	From Obids Creek to a point 0.6 miles Ashe NC 16-18 upstream of Roan Creek			08 - Excellent 03 - Excellent
KB16	S. Fk. New R.	10-1-(3.5)b	From 0.1 mile downstream Hunting Lane to US Hwy.221/421	Watauga	US 421	08 - Fair 03 - Fair
KB10	S. Fk. New R.	10-1-(33.5)	From Dog Creek to New River	Ashe	US 221	08 - Excellent 03 - Excellent
KB20	Meat Camp Cr.	10-1-10	From source to South Fork New River	Watauga	SR 1333	08 - Excellent 03 - Good
KB21	Norris Fk.	10-1-10-2	From source to Meat Camp Creek	Watauga	SR 1337	08 - Good 03 - Excellent
KB22	Pine Orchard Cr.	10-1-15-1	From source to Elk Creek	Watauga	SR 1369	08 - Not Impaired 03 - Excellent
KB1	M. Fk. S. Fk. New R.	10-1-2-(15)	From 0.4 mile downstr of US Hwy 221 & 321 to South Fk New River	Watauga	SR 1522	08 - Good-Fair 03 - Good-Fair
KB108	Pine Swamp Cr.	10-9-5	From source to S. Fork New River	Alleghany	SR 1128	08 - Good 03 - Good
KB5	S. Beaver Cr.	10-1-25-2a	From source to Lake Ashe Ashe SR 1		SR 1147	08 - Good 03 - Good
KB6	Obids Cr.	10-1-27-(2)	From a point 0.9 mile downstream of NC Hwy 163 to South Fork New River	Ashe	SR 1192	08 - Good 03 - Good
KB12	E. Fk. S. Fk. New R.	10-1-3-(8)	From .8 mile downstream of Watauga Co SR 1524 to S Fk New River	Watauga	SR 1522	08 - Good '03 - Good
KB7	Roan Cr.	10-1-31-(2)	From 0.5 mile upstream of mouth to South Fork New River	Ashe	SR 1588	08 - Good 03 - Excellent
KB8	Naked Cr.	10-1-32b	From 0.4 miles above Jefferson WWTP to South Fork New River	Ashe	NC 16-88	08 - Good 03 - Good-Fair
KB139*	Naked Cr.	10-1-32b	From 0.4 miles above Jefferson WWTP to South Fork New River	Ashe	SR 1589	08 - Good-Fair
KB11	Peak Cr.	10-1-35-(2)a	From Water Supply Dam at Appalachian Sulphides, Inc to Ore Knob Branch	Ashe	SR 1599	08 - Excellent 03 - Good
KB13	Peak Cr.	10-1-35-(2)b	From Ore Knob Branch to South Fork New River	Ashe	SR 1599	08 - Poor '03 - Poor
KB14	L. Peak Cr.	10-1-35-4	From source to Peak Creek	Ashe	SR 1595	08 - Poor 03 - Poor
KB15	Cranberry Cr.	10-1-37	From source to South Fork New River	Ashe	SR 1603	08 - Excellent 03 - Excellent
KB17	Winkler Cr.	10-1-4-(3.5)b	From Winkler Creek Road (SR #1549) to South Fork New River	Watauga	SR 1549	08 - Excellent 03 - Excellent
KB18	Howard Cr.	10-1-9-(6)	From the Appalachian State University Raw Water Supply Intake Dam to South Fork New River	Watauga	SR 1328	08 - Excellent 03 - Good
KB126*	Grassy Cr.	10-3	From North Carolina-Virginia State Ashe SR 1548		08 - Good	
KB34	New R.	10b	From first point of crossing state line to last point of crossing state line	Alleghany	SR 1345	08 - Excellent 03 - Excellent

* New station location; therefore, no data from the previous cycle.

Station ID*	WATERBODY	Assessment Unit #	DESCRIPTION	COUNTY	Site Location	SAMPLE RESULTS
			Fish Community Sample Sites			
KF6	Howard Cr.	10-1-9-(6)	From the Appalachian State University Raw Water Supply Intake Dam to South Fork New River	Watauga	SR 1306	08 - Not Rated 98 - Not Rated
KF8	M. Fk. S. Fk. New R.	10-1-2-(15)	From 0.4 mile downstr of US Hwy 221 & 321 to South Fk New River	Watauga	SR 1522	08 - Not Rated 98 - Excellent
KF24	Meat Camp Cr.	10-1-10	From source to South Fork New River	Watauga	SR 1333	08 - Not Rated 98 - Not Rated
KF14	Naked Cr.	10-1-32b	From 0.4 miles above Jefferson WWTP to South Fork New River	Ashe	NC 16/88	08 - Fair 98 - Fair
KF13*	Obids Cr.	10-1-27-(2)	From a point 0.9 mile downstream of NC Hwy 163 to South Fork New River	Ashe	SR 1192	08 - Good
KF15*	Prathers Cr.	10-1-38	From source to South Fork New River	Alleghany	SR 1302	08 - Good-Fair
KF20*	Roan Cr.	10-1-31-(2)	From 0.5 mile upstream of mouth to South Fork New River	Ashe	SR 1588	08 - Good
KF12	S. Fk. New R.	10-1-(3.5)b	From 0.1 mile downstream Hunting Lane to US Hwy.221/421	Watauga	US 421	08 - Good 98 - Good

* New station location; therefore, no data from the previous cycle.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10551	75	19	5.80	4.88	Fair
11/04/03	9302		11		4.25	Fair
08/20/03	9257	67	24	5.46	4.81	Good-Fair
08/17/98	7734	71	22	5.68	4.14	Good-Fair
07/12/93	6261	69	18	6.17	3.80	Fair

Taxonomic Analysis

The 2008 sample is dominated by taxa that are pollution-tolerant. Abundant mayflies found here in 2008 included: *Pseudocloeon propinquum, Plauditus dubius* group, *Heterocloeon anoka, Isonychia,* and *Baetis flavistriga*. Other abundant taxa here that are considered generalists and are tolerant were the caddisfly *Cheumatopsyche* and the dragonfly *Calopteryx*.

Data Analysis

The South Fork New River at US 421/221 rated Fair in 2008, the same rating as in 2003. There have been eight samples collected here from 1984 through 2008. Of the seven summer samples (all Full Scale samples) this site rated Fair four times and Good-Fair thrice. This site is just downstream of the Boone WWTP. The 2004 Basinwide Assessment Report noted a gradual decrease in the Biotic Index here (indicating a slightly more pollution-sensitive benthic community) in relation to reductions in NH3 and TKN from effluent from the Boone WWTP beginning in 1998. Unfortunately this trend did not continue in 2008 and the Biotic Index is now back to the level it was in the mid 1990's which indicates a more pollution-tolerant benthic community. This watershed is also heavily agricultural. A large silt load covers 40% of the benthos of this reach limiting habitat for aquatic macroinvertebrates. There is very little substrate over 10 inches in length in this reach. Overall habitat quality here is low and has been since at least 2003 (scores of 58, 59 and 60).

Waterboo	dy		L	Date	Date Station ID Bioclassificatio				ication			
S FK NE	WR		U	S 421		05/22/0	8	KF1	2		Goo	d
County	Subb	asin	8 digit HUC	Latitude	Long	itude	AU N	lumber		Level	IV Ecore	gion
WATAUGA	1		05050001	36.220736	-81.63	39974	10-1-	-(3.5)b	Soι	uthern Crystal	line Ridge	es & Mountains
Stream Classifica	tion	Draii	nage Area (mi2)	Flevatio	n (ft)	Stream	Widt	'h (m)	Δv	erage Denth	(m)	Reference Site
		Drui	34.2	310	וו (וג) ר	Otream	13			0.4	(,	No
0, 1			01.2	010			10			0.1		
	_	For	ested/Wetland	Urk	ban		Agri	culture		0	ther (des	scribe)
Visible Landuse	(%)		70	1	5			10			0	
Unotroom NDDES Di	cohara	oro (51		and within 1 n	aila)			NDDEG	Numb	~r	Vo	luma (MGD)
	Town of		WWTP (0.9 mile	s unstream)	ine)			NCO	020621		•0	4.8
		Doome						1100	020021			1.0
Water Quality Param	eters							S	ite Pho	tograph		
Temperature (°C)			11.7	and a second					-	A	Kill	
Dissolved Oxygen (mg	g/L)		8.5	and the second	Sec.	and the second	17			Sec.	CARK &	STAT 10
Specific Conductance	(µS/cm)	126			Transfel						
pH (s.u.)			6.0				and a set	1			CAN T	NOR DE
	ſ			the second								
Water Clarity			Clear		4.4. 4						100	
Habitat Assassment	Scores	(may)										1 12 -3
Channel Medification	(5)	(max)	5					and the second				
Instream Habitat (20)	(3)		16									Ser 1
Bottom Substrate (15))		5									A SAMPAN
Pool Variety (10)	/		4									
Riffle Habitat (16)			10									- Andrew
Left Bank Stability (7)			5						F	15		Star 1
Right Bank Stability (7	7)		5							-		See Long See
Light Penetration (10)			5					-	-	ites		
Left Riparian Score (5	5)		5		-							
Right Riparian Score ((5)		3									
Total Habitat Score ((100)		63	Subs	strate	gravel, sand	d, bou	ulder, silt.				
Sample Date	•		Sample I	D	Spe	cies Total			NCIBI		Bio	classification
05/22/08	,		2008-49	-		22			56			Good
06/08/98			98-51			20			52			Good
Most Abundan	t Specie	es	Western Blackno	se Dace.		Exoti	ic Sp	ecies	Rock Ba	ass, Rainbow	Trout, Br	own Trout.
Species Change	Since L	ast Cy	cle Gains k	(anawha Minno	ow, Green	side Darter, I	Kana	wha Darte	er, Appal	achia Darter.	Losses	Bluegill.
Data Analysis												

Watershed -- this large site is located in the northeast corner of Boone and drains the entire southern-most tip of the New River basin in Watauga County, including the catchments of Winkler Creek, Middle Fork South Fork New River, and East Fork South Fork New River. Habitats -- shallow runs, with a few large riffles, and a few shallow side pools; the canopy was open due to the river's width, but the banks were generally healthy; substrates were highly embedded in this reach of the river; conductivity was elevated because of Boone's WWTP. 2008 -- an extremely diverse and abundant (n=2058) community of fish was collected, including eight intolerant taxa, three of which were not previously collected; Western Blacknose Dace (n=524) comprised 25% of the sample, and Central Stoneroller represented 24% (n=484). 1998-2008 -- although many more fish were collected in 2008, little difference exists between the trophic structures and NCIBI values between samples, suggesting that little has changed in this watershed over a 10 year period (in spite of upstream fish kill in 2003); overall, the fish community continues to thrive here, and suggests good water quality.

Waterbody			Location			Station ID			Date	Bioclassification	
S FK NE	WR		SR 1169			KB	2		80	8/18/08	Good
County	County Subbasin			Lati	tude	Longitude AU N		AU Num	nber	L	evel IV Ecoregion
ASHE	1		05050001	36.29	99167	-81.468056	6	10-1-(20	0.5)	Southern Cr	stalline Ridges and Mountains
Stream Classification WS-V; HQW			rainage Area (mi 143	2)	Elev	/ation (ft) 2830		Stream V	Width 25	(m)	Stream Depth (m) 0.3
	-	For	ested/Wetland		Urban	I	A	griculture)		Other (describe)
Visible Landuse	(%)		25		0			75			0
Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) NPDES Number Volume (MGD								Volume (MGD)			
Town of Boone, Jimm	y Smith V	WWTP						NCC	002062	21	4.82

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/18/08	10547	99	38	4.84	3.78	Good
08/21/03	9263	98	45	4.19	3.33	Excellent
08/18/98	7737	101	48	4.61	3.64	Excellent

Taxonomic Analysis

Small changes in rare and in some cases common taxa were the main differences between the 2008 collection and past collections. Only one taxonomic group showed any drastic changes: the dragonfly family Gomphidae. In both 1998 and 2003 four taxa were found in the samples but in 2008, this group was absent. One unusual chironomid taxa was found in 2008: *Polypedilum* sp. P. The infrequently collected caddisfly *Oecetis avara* was first collected here in 2008. There are only 37 BAU records of this species. Overall EPT and total diversity remains high here.

Data Analysis

This South Fork New River site rated Good in 2008, a decrease from Excellent in both 1998 and 2003. An increase in the Biotic Index indicates that a more pollution-tolerant community resides in this reach than did in previous years. The number of EPT taxa was also lower in 2008 compared with 1998 and 2003. This reach earned a low habitat scorce due to limited in-stream habitat including substrate sizes that consisted mostly of sand, silt and gravel. The water quality at SR 1169 is an improvement from the next site upstream of here (at US 421, approximately 20 miles upstream). That site rated Fair in 2008.

Substrate

69

mix of bedrock, boulder, cobble, gravel, sand and silt

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
06/19/08	10474	106	54	4.26	3.48	Excellent
08/22/03	9271	104	58	3.67	3.12	Excellent
08/18/98	7742	95	48	4.01	3.44	Excellent
07/14/93	6270	104	51	3.41	2.75	Excellent
07/11/90	5375	97	50	3.79	3.11	Excellent

Taxonomic Analysis

Total Habitat Score (100)

A large number of taxa were collected here in 2008. The number of EPT taxa collected was 54, only 4 fewer than in 2003, but the total number of taxa collected was slightly higher in 2008 than 2003 (106 versus 104). A diverse aquatic macroinvertebrate community resides in this reach of the South Fork New River. Abundant taxa in past years were generally both collected again in 2008 and were also abundant. Some noteable taxa were first collected at the site in 2008, including: the mayflies *Drunella lata, Eurylophella aestiva* and *Anthopotamus* (all common in the sample); the stoneflies *Acroneuria mela* and *Agnetina annulipes* (both rare in the sample); and the caddisfly *Apatania* (common in the sample).

Data Analysis

This South Fork New River site rated Excellent again in 2008 as it has following each prior sampling event since 1987. The 2008 sample was collected one to two months earlier in the year than past samples, but still within the summer basinwide sampling window. This earlier sampling may have accounted for a few taxa not seen in previous samples (e.g. *Drunella lata, Eurylophella aestiva*). Though the total number of aquatic invertebrate taxa collected in 2008 was greater than in all previous years, the Biotic Index was also higher suggesting a slightly more pollution-sensitive community than in past years.

Waterbo	ody		Location			Station ID			Date Bioclass		Bioclassificatio	on	
S FK NE	WR		US 221 BELOW CREE	CRAN EK	BERRY	ĸ	KB10		08	08/22/08		Excellent	:
County	Subb	asin	8 digit HUC	Lat	titude	Longi	tude	AU I	Number		Lev	vel IV Ecoregion	
ASHE	1		05050001	36.4	73889	-81.336	6944	10-1	1-(33.5)		Ne	w River Plateau	
Stream Classific	ation		Drainage Area (mi2	2)	Elev	vation (ft)		Strea	am Width	(m)		Stream Depth (m)	
B;ORW			300			2545			25			0.4	
		Foi	rested/Wetland		Urban			Agricul	ture		O	ther (describe)	
Visible Landuse	9 (%)		50		25			25				0	
Upstream NP	DES Dis	charge	ers (>1MGD or <1N	IGD ar	nd withii	n 1 mile)		NF	DES Nur	nber	-	Volume (MGD)	
Town of Boone, Jimm	y Smith	WWTP							NC00206	21		4.82	
Water Quality Param	neters								Site Ph	otograph	ı		
Temperature (°C)			22.6									in dealer and	MAR
Dissolved Oxygen (m	g/L)		7.2										
Specific Conductance	e (µS/cm)		82								4		
pH (s.u.)			8.1							200	ALC: N		The g
Water Clarity			clear						A				
Habitat Assessment	Scores	(max)			Change Co	A REAL PROPERTY.	-	1				N. P	and the second second
Channel Modification	(5)		5				Provide Sta		CALLE				
Instream Habitat (20)			13		- State						Later a		
Bottom Substrate (15)		11					tel an					
Pool Variety (10)			10	5		-	- 12.				No.		
Riffle Habitat (16)			10			and the second s			AND DESCRIPTION OF				Ten
Left Bank Stability (7)			3		and the			Contraction of the			- 3.		
Right Bank Stability (7	7)		6							-			-
Light Penetration (10))		0			100	-	and the second	and free and		-		
Left Riparian Score (5	5)		1							-		and the second	
Right Riparian Score	(5)		4		a contraction		-	ATTA A			and the second second		a second

Substrate mix of bedrock, boulder, cobble, gravel and sand

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/22/08	10563	102	49	4.41	3.26	Excellent
08/23/03	9272	112	47	4.62	3.43	Excellent
08/20/98	7749	112	55	4.24	3.57	Excellent
07/15/93	6273	103	46	4.06	3.09	Excellent

63

Taxonomic Analysis

Total Habitat Score (100)

A large number of taxa continue to inhabit this downstream section of the South Fork New River. Many pollution-sensitive taxa are abundant here, including the mayflies: *Heterocloeon curiosum, Acerpenna macdunnoughi, Serratella serratoides, Stenacron pallidum,* and *Leucrocuta*. The pollution-sensitive stonefly *Acroneuria arenosa* and the caddisflies *Brachycentrus numerosus* and *Helicopsyche* were also abundant here in in 2008. Most taxa collected in 2008 were also collected in previous years.

Data Analysis

This site has consistently rated Excellent since 1990. A total of thirteen samples have been collected from this location since 1983. The number of Total Taxa and EPT Taxa have remained high and the Biotic Index has been consistent in showing a pollution-sensitive aquatic community residing here. The site upstream of here (NC 16-88, approximately 18 miles upstream) was also Excellent. The US 221 site is the farthest downstream basinwide site on the South Fork New River. The South Fork and North Fork New River converge approximately 15 miles downstream of this site and then flow northward to Virginia a further five miles downstream. There are no permitted discharges between the US 221 site and the North Carolina-Virginia border, suggesting that an Excellent water quality rating could continue downstream to Virginia.

New

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10550		27		4.19	Good-Fair
11/04/03	9307		29*		2.99	Good
08/20/03	9259		24		3.26	Good-Fair
08/17/98	7732		31		2.99	Good
07/12/93	6260		37		2.97	Excellent

*value corrected for seasonality

Taxonomic Analysis

In general, the EPT taxa found in the Middle Fork of the South Fork New River in 2008 were typical of previous collections. However, the most recent collection contained fewer EPT taxa than most of the past sampling efforts. This site supports an increasingly pollution-tolerant benthic community. Abundant taxa found in 2008 were cosmopolitan species (e.g. *Isonychia, Cheumatopsyche, Plauditus dubius* group) with few pollution-sensitve species.

Data Analysis

This site rated Good-Fair in 2008, the same rating it received in summer 2003. The four summer basinwide collections have seen this site go from Excellent and Good in 1993 and 1998 respectively, to Good-Fair in 2003 and 2008. The Biotic Index indicates that the benthic community is becoming more tolerant of aquatic pollution with sensitve species no longer residing in this reach. This site is located just downstream of Boone Golf Club, a large expanse of open area with only a narrow grass riparian zone and few trees. Silt and sand comprised 30% of the benthic area, limiting interstitial benthic habitats and increasing embeddedness. Additionally, there is a small reservior 1.6 miles upsteam of this site and three minor dischargers (>1.5 miles upstream) that may be affecting the benthic community here. In October 2003, one of these dischargers, Blowing Rock Water Treatment Plant (WTP), spilled approximately 3,000 gallons of sodium hydroxide into the Middle Fork South Fork New River (BAU memorandum B-20031113). There does not appear to be any long term effect of this event on the macroinvertebrate community at SR 1522.

Waterboo	dy			Location		Date		Station	ID	Bioclas	sification
M FK S FK	NEW F	R	S	R 1522		05/22/0)8	KF	3	Not Rated	
County	Subba	sin	8 digit HUC	Latitudo	Long	itudo	Δ11 N	umber			region
WATAUGA	1	5111	05050001	36 20128	-81 64	19851	10-1-	-2-(15)	(15) Southern Crysta		dges & Mountains
	•		0000001	00.20120	0110		10 1	2 (10)	00		
Stream Classifica	tion	Drair	nage Area (mi2)	Elevatio	on (ft)	Stream	Widt	h (m)	A	verage Depth (m)	Reference Site
WS-IV, CA, +			12	310	0		5			0.5	No
		For	ested/Wetland	Urt	oan		Aari	culture		Other (describe)
Visible Landuse	(%)		50	2	:0			10		20 (gol	f course)
Upstream NPDES Di	scharger	rs (>1	MGD or <1MGD	and within 1 n	nile)			NPDES	S Numb	ber	Volume (MGD)
			None		,						
Water Quality Param	eters							S	ite Pho	otograph	
Temperature (°C)			12.3	A Read Contraction			Service Services		Alen A	A STATE A	
Dissolved Oxvaen (mo	a/L)		9.3	2.2 **						ALL ALL	
Specific Conductance	(µS/cm)		92			1100	2.1				145
pH (s.u.)	u ,		6.4	Alleria a					e.		P
	_				and the second	1995 - 1995 -				and the	
Water Clarity			Clear	and the second		6 e	1 m. A. 1				E THE AND
Habitat Assessment	Scores ((max)									1 ANA
Channel Modification	(5)	(5	A A A A	Also -						V AND AND A
Instream Habitat (20)	(0)		20								A PARA
Bottom Substrate (15))		8	and the second							
Pool Variety (10)	·		6								
Riffle Habitat (16)			16	- 10000			had	Martin Contraction			
Left Bank Stability (7)			3		- car				Sec. 2		
Right Bank Stability (7	7)		5	and the second		and the	Paris				
Light Penetration (10)			8	Er and		and the	white	- Main			A Property in
Left Riparian Score (5	5)		2			and and the	- 1 h	- K12-M			
Right Riparian Score ((5)		2								
Total Habitat Score ((100)		75	Sub	strate	cobble, grav	vel, bo	oulder, sill	t, sand.		
Sample Date)		Sample	ID	Spe	cies Total			NCIB	I B	ioclassification
05/22/08			2008-5	0		14			38		Not Rated
06/09/98			98-53			16			58		Excellent
Most Abundan	t Species	5	Mottled Sculpin.			Exot	ic Spe	ecies	Green Trout.	Sunfish, Bluegill, Ra	nbow Trout, Brown

Species Change Since Last Cycle

Gains -- Green Sunfish, Rosyside Dace, Bluehead Chub, Creek Chub. **Losses** -- Rock Bass, New River Shiner, Kanawha Minnow, Longnose Dace, Greenside Darter, Kanawha Darter.

Data Analysis

Watershed - a large trib to the South Fork New River; drains the southern-most tip of the basin. Habitats - riffles, runs, swift chutes, and a few snag pools; high substrate embeddedness; bordered by a golf course (left) and a fenced cattle operation (right) with narrow riparian widths; the four NPDES facilities (combined discharge of 1.0 MGD, 1.9 to 7.0 miles above) may have elevated the instream waste concentration during droughts. 2008 - a diverse and abundant community of fish (n=803) was collected, including two intolerant taxa (Tounguetied Minnow, and Rainbow Trout); however six of ten NCIBI metrics fell during this assessment. 1998-2003 -- the decline in bioclassification, and particularly the loss of four sparsely populated intolerant species (Rock Bass, New River Shiner, Kanawha Minnow, and Kanawha Darter - 18 individuals combined) may be related to a 2003 spill of sodium hydroxide (3,000 gal.), that occurred in Blowing Rock. These losses may be explained by the combined effects of this spill, and the urban nature of this stream. In light of these extremes, this site was Not Rated; it has likely seen impressive recovery toward its previous bioclass and may continue to improve.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10549		31		3.54	Good
11/04/03	9306		3		5.21	Poor
08/20/03	9258		31		3.06	Good
08/17/98	7731		32		3.29	Good
07/12/93	6259		37		3.34	Excellent

Taxonomic Analysis

The EPT taxa found in the East Fork of the South Fork New River in 2008 were similar to past basinwide collections. Some taxa were collected in lower abundances (e.g. *Isonychia*) and some have yet to reestablish (e.g. *Maccaffertium pudicum* and *Ceratopsyche sparna*) following an acute, unknown event that occurred in 2003 after the basinwide sampling event for that year. In terms of EPT richness the benthic community has recovered to summer 2003 levels. This site still supports a pollution-intolerant benthic community.

Data Analysis

This site rated Good in 2008, the same classification it received in summer 1998 and 2003. The loss of benthic fauna in late 2003 following an acute, unknown event does not appear to have been permanent. This site was sampled in November 2003 as a reference site after a spill in the Middle Fork South Fork New River (BAU memorandum B-20031113). This East Fork site has no dischargers upstream nor any larger reserviors which may have been the source of the problems seen in late 2003. Despite the ample evidence of being located just downstream of Boone Golf Club (e.g. grass clippings and golf balls in stream) the benthic fauna at this site appears less affected by the golf course in 2008 than the Middle Fork South Fork New River.

2-B.12

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10548		36		2.93	Excellent
08/21/03	9262		39		2.36	Excellent
08/17/98	7733		34		2.89	Good
07/12/93	6258		37		2.02	Excellent

Taxonomic Analysis

EPT taxa collected in 2008 were very similar to past samples here. Abundant taxa included the mayflies *Baetis pluto, Epeorus vitreus, Maccaffertium* modestum, M. pudicum and Paraleptophlebia. Six stonefly taxa were found at Winkler Creek with Leuctra and Tallaperla being dominant. Caddisflies were well represented with 12 taxa present, but only Ceratopsyche sparna, Cheumatopsyche and Dolophilodes were abundant. The less commonly collected caddisfly, Mystacides nr. alafimbriata, was found to be common here in 2008.

Data Analysis

The benthic site on Winkler Creek is near the headwaters of South Fork New River, and is located within and near the town limits of Boone. Much of the catchment upstream of the site is forested; only a very minor portion is urban.

Winkler Creek rated Excellent in 2008, the same as in 2003 and 1993. The number of EPT taxa collected here has remained stable since the first sampling effort in 1993. The low Biotic Index indicates a pollution-intolerant benthic community residing in this section of Winkler Creek.

Waterbo	dy		L	ocation		Date		Station	ID	В	Bioclassi	fication
HOWAR) CR		S	R 1306		05/21/	08	KF6	5		Not R	ated
							••					
County	Subb	asin	8 digit HUC	Latitude	Long	itude		AU Numbe	er	L	evel IV E	coregion
WATAUGA	1		05050001	36 241748	-81.6	6127		10-1-9-(6)	/ 1	_ An	nphibolite	Mountains
			0000001	00.211110	01.0	0121				7.01		mountaino
Stream Classifica	tion	Drai	nage Area (mi2)	Elevatio	on (ft)	Strear	n Widt	th (m)	Ave	rage Depth	(m)	Reference Site
C;Tr,HQW			7.9	319	8		7			0.4		No
								P				
		For	ested/Wetland	Residenti	ial/School		Agri	iculture		C	Other (de	scribe)
Visible Landuse	(%)		85	1	5			0			0	
											.,	
Upstream NPDES Di	scharg	ers (>1	MGD or <1MGD	and within 1 n	nile)			NPDES	Numbe	r I	Vo	olume (MGD)
			None					-				
Water Quality Param	eters							Si	ite Phot	ograph		
Temperature (°C)			15.1	See 1	1. M.	1 1 × 1	1000					
Dissolved Oxygen (m	a/L)		0.3		a mess		1	14		P SK		
Specific Conductance	yr∟) √uS/cm		9.5					142	Nix	1 200		and the second
nH (s II)		''	65		-		The second	Telle .			Setter 1	A state of the
P. 1 (0.0.)			0.0		125	1.18	1.3	1 and		and the second	dail	
Water Clarity			Clear	1.	- A 🖉							Constant B
Water Clarity			Olcal		1				-			
Habitat Assessment	Scores	(max)			1 Daw					A second		
Channel Medification	(5)	, (max)	E		2-15					-		
Instroom Habitat (20)	(5)		20	a second	Alexandre a							and the second second
Bottom Substrate (15)	、 、		20			-	-	and the second			Parties Service	
Boll Variaty (10))		6		a car				and the			
Riffle Habitat (16)			16					- 6 C	T. Mar	TAT		
Left Bank Stability (7)			7		Carl Carl							
Pight Bank Stability (7)	7)		7				E.	- 65	12-3-	and the set	norman.	
Light Penetration (10))		10		- and				1	5. 32	and the	
Left Riparian Score (5	5)		4		100	and the	a the			1. 1.	Part Part	
Right Riparian Score	(5)		4	ge tel							10 Mail 19	
Total Habitat Score	(0)			Sub	strate	abundant -	flat roc	ks. cobble.	aravel.	boulder.		
	,		0.					,	J ,			
Sample Date)		Sample I	D	Spe	cies Total			NCIBI		Bio	classification
05/21/08			2008-48	1		17						Not Rated
06/08/98			98-52			12						Not Rated
Most Abundan	t Speci	es	Central Stoneroll	er.	Exc	otic Specie	s	Rock Bass,	Redbrea	ast Sunfish,	Green Si	unfish, Bluegill,
	-					-	F	Rainbow II	oul, Bro	wn Troul.		
Spacios Chango	Sinco I	act Cu	Gains C	Green Sunfish,	Bluegill, T	onguetied I	Minnov	w, Bluehea	d Chub,	Longnose D	ace, App	oalachia Darter.
opecies onalige	Onice L		Losses	Creek Chub.								
Data Analysis												
Watershed a tributa	ary to th	e North	Fork New River	located one wa	atershed so	outh of the	Meat C	Camp Cree	k catchr	nent in north	east Wat	tauga County;
drains the primarily fo	rested a	area jus	at north of Boone.	Habitats hig	gh quality i	instream ha	abitats	consisting	of excel	lent riffles, b	edrock cl	hutes, and pools;
a highly diverse mix o	f cold c	ig abui rool an	d warm water sne	cies was colle	cted from t	his mounta	in stre	am includi	ina four i	ntolerant tax	n ine npa va (Rock	Rass Tonquetied
Minnow, Appalachia	Darter, a	and Rai	nbow Trout); Cen	tral Stoneroller	s represer	nted 25% of	f the ca	atch, and th	ne six ne	w species c	ollected v	were represented by
low abundances (max	imum o	f 8 indi	viduals). 1998-20	08 a total of	18 fish spe	ecies have	been o	collected fro	om this I	ocation, incl	uding two	o species of sucker,
four species of sunfisl	n (three	of whic	ch are warm water	exotics, sugge	esting alter	ration of the	e origir	nal populati	on), six	species of m	ninnow, tv	wo darter species,
and two trout species	overall	, this si	ream appears he	aitny, and is su	ipporting a	rich comm	iunity c	of fish throu	igh good	quality wate	er and ha	iditats.

Substrate

89

mix of boulder, cobble, gravel, sand and silt

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10552		44		2.19	Excellent
08/20/03	9254		35		2.35	Good
08/17/98	7735		40		2.64	Excellent
07/13/93	6262	102	52	3.85	2.87	Excellent
07/26/88	4633		38		3.22	Excellent

Taxonomic Analysis

Total Habitat Score (100)

Howard Creek conatains a pollution-intolerant macroinvertebrate community dominated by taxa that one would expect to find in a minimally disturbed small mountain watershed (e.g. *Litobrancha recurvata, Neoephemera purpurea*). Shredders, such as the stoneflies *Tallaperla* and *Pteronarcys proteus*, were abundant in 2008.

Data Analysis

Howard Creek rated Excellent in 2008, an increase from Good in 2003. As noted in the 2003 report, the Good rating was one EPT taxon away from an Excellent rating. Data from 1988 to 2008 show consistently high water quality with a diverse and pollution intolerant macroinvertebrate community. Residential and commercial development appears to be increasing in this watershed but the sampled reach did not appear to be affected by this as of August 2008.

Waterbo	dy		1	Location		Date		Station ID	1	Bioclassi	fication
	MP CF	२	S	R 1335		05/21/	08	KF24		Not Rate	
County	Subb	asin	8 digit HUC	Latitude	Long	itude		AU Number	L	.evel IV E	coregion
WATAUGA	1		05050001	36.271611	-81.65	58809		10-1-10	Ar	nphibolite	Mountains
<u>-</u>											
Stream Classifica	ation	Drai	nage Area (mi2)	Elevatio	on (ft)	Stream	n Wic	ith (m)	Average Depth	n (m)	Reference Site
C;Tr			10.7	330	0		7		0.2		Yes
		For	ested/Wetland	Urt	ban		Ag	riculture		Other (de	scribe)
Visible Landuse	(%)		80	()			15		5 (roa	ad)
Upstream NPDES Di	ischarge	ers (>1	MGD or <1MGD	and within 1 n	nile)			NPDES Nu	nber	Vo	olume (MGD)
			None								
Water Quality Param	neters							Site F	hotograph		
Temperature (°C)			13.2			and the			é dé		and the state
Dissolved Oxygen (m	ig/L)		9.8						1 5 4 A	- All	
Specific Conductance	e (µS/cm)	42	and the second			1			1 216	
pH (s.u.)			6.5	a com					AL A DA		and the second
	F					an it was		AD A STA	Star Con Star	all and a set	And a state of the
Water Clarity			Clear							\$ - s	
Habitat Assassment	L Seeree	(max)			ante Alla		All and a second		and a		XIV
Habitat Assessment	Scores	(max)			Coller.					Set at	
Channel Modification	(5)		5			the Maria	a series		and and a set		
Dettern Substrate (20)	``		18		P St.	the share			- APRIL	and the	
Boll Variaty (10))		12	a set				The states		the state	AND C
Riffle Habitat (16)			16							in the	
Left Bank Stability (7)			6						- Ward	10	
Right Bank Stability (, 7)		5							- Carlin	
Light Penetration (10))		5						-	-L-	11
Left Riparian Score (5	, 5)		5				al se		Che Mail	-	
Right Riparian Score	(5)		3			1999 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	No. The Co		A REAL		
Total Habitat Score	(100)		75	Sub	strate	cobble, gra	vel,	boulder.			
Sample Date	9		Sample		Sno	cies Total		NC	IBI	Bio	classification
05/21/08	5		2008-4	7	Spe	10		NC		Вю	Not Rated
06/09/98			98-54			11		-	-		Not Rated

05/21/08	2008-47	10			Not Rated
06/09/98	98-54	11			Not Rated
Most Abundant Species	Mottled Sculpin.	Exotic	Species	Rock Bass, Rainbov	v Trout, Brown Trout.

Species Change Since Last Cycle

Gains -- Bluehead Chub, Rainbow Trout. Losses -- White Sucker, Northern Hogsucker, Rosyside Dace.

Data Analysis

This site was moved about 2.7 miles upstream from the SR 1333 crossing (above Rittle Fork and Cobb Creek) to serve as a regional reference site. **Watershed** - a tributary to the South Fork New River that drains part of rural northeast Watauga County. **Habitats** - the 100% riffle habitats are high quality, but there are no functional pools in this 600 foot reach, and the lower 2/3 is completely without a canopy; however, bank stabilities are still good, and the substrates show relatively low levels of embeddedness, which suggests minor amounts of upstream sedimention. **2008** - a fairly diverse mix of cold and cool water species was collected, including three intolerant taxa (Rock Bass, Kanawha Darter, and Rainbow Trout) and almost four times the abundance was observed at this new location (n=1060 vs. 271); Mottled Sculpin (cold water benthic insectivore) represented 84% of the sample. **1998-2008** - although separated by a few miles and Not Rated, the fish taxa collected at these two locations reflect similar trophic structures (in spite of the high number of Mottled Sculpin at SR 1335); overall, the fish community suggests good water quality characteristics in this catchment.

Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) pH (s.u.)

Water Clarity

slightly	turbid

15.2

8.7

57

7.0

Habitat Assessment Scores (max)

Channel Modification (5)	5
Instream Habitat (20)	18
Bottom Substrate (15)	15
Pool Variety (10)	10
Riffle Habitat (16)	16
Left Bank Stability (7)	6
Right Bank Stability (7)	7
Light Penetration (10)	10
Left Riparian Score (5)	5
Right Riparian Score (5)	5
Total Habitat Score (100)	97

Site Photograph

mix of bedrock, boulder, cobble, gravel, sand and silt

 Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10554		39		2.80	Excellent
08/20/03	9255		35		2.81	Good
08/17/98	7736		39		2.69	Excellent
07/13/93	6263		31		2.52	Good
03/05/90	5205		37		2.60	Good

Taxonomic Analysis

In 2008 Meat Camp Creek contained 39 EPT taxa, equaling the largest number of taxa collected from this stream. Many of the species collected in 2003 and previous samples were found in 2008. Most of these taxa are sensitive to aquatic pollution. Several taxa appeared for the first time here in 2008. These included the caddisflies Neophylax consimilis (abundant in the sample), Goera fuscula (common), Ceratopsyche morosa, and Neureclipsis (both rare in the sample). The pollution-sensitive mayfly Stenacron pallidum (common) and Tricorythodes (rare) also appeared at this site for the first time in 2008.

Data Analysis

Meat Camp Creek rated Excellent in 2008. The Good rating received in 2003 was only one EPT short of an Excellent bioclassification. The number of EPT collected here during the five collections since 1990 suggest a stable, pollution-sensitive macroinvertebrate community at the site. Riparian habitat along this reach shows little disturbance and a variety of in-stream microhabitats exist for macroinvertebrate colonization despite a large percentage of bedrock. Water temperatures in Meat Camp Creek were the lowest recorded for all sites in this part of the HUC in 2008.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/19/08	10553		35		2.11	Good
08/20/03	9256		36		1.56	Excellent

Taxonomic Analysis

Taxa collected in 2003 that were not found in 2008 included the caddisflies *Fattigia pele, Parapsyche cardis, Brachycentrus spinae* and *Apatania*. New caddisflies for this site in 2008 included *Ceratopsyche bronta, Pycnopsyche gentilis* and a second (unidentified) species of *Pycnopcyshe, Polycentropus* and *Lype diversa*. The stoneflies *Suwallia* and *Isoperla* nr *holochlora* were present in 2003 though absent in 2008, while *Paragnetina immarginata* was absent in 2003 and present in 2008. These taxa differences resulted in a slightly higher EPT Biotic Index in 2008 compared with 2003. However, overall this site contains a pollution-intolerant macroinvertebrate community.

Data Analysis

Norris Fork at SR 1337 received a classification of Good in 2008, though the addition of a single EPT taxon would have pushed the classification up to Excellent. The difference in the number of EPT taxa between 2003 and 2008 is very small, but the difference in EPT Biotic Index values is relatively large. Many of the rare but highly intolerant taxa collected in 2003 were absent in 2008. Some recent development has occurred upstream of the site. Higher silt levels were seen in 2008 corresponding to ongoing land clearing activities here. A large number of lots were for sale at the time of sampling suggesting that development would continue in the watershed. Despite this, the EPT Biotic Index in Norris Fork was the second lowest in this part the HUC (formerly subbasin 1).

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10555		36		2.09	Not Impaired
08/21/03	9260		33		1.64	Excellent

Taxonomic Analysis

Small differences exist with the taxa collected at the site between 2003 and 2008, but overall the benthic community here remains diverse and pollution-sensitive. *Neophylax consimils*, a pollution-intolerant case-making caddisfly, was abundant in 2003 and absent in 2008. However, two other taxa, *N. mitchelli* and *N. oligius*, were common in 2008. Abundant taxa collected in 2008 included these pollution-sensitive taxa: the mayfly, *Drunella conestee*; the stonefly *Malirekus hastatus*; and the caddisfly *Dolophilodes*.

Data Analysis

Pine Orchard Creek had the lowest EPT Biotic Index of any stream in this part of the HUC (formerly subbasin 1) indicating a very pollution-intolerant benthic community here. The classification for the site in 2003 was derived using High Quality Small Mountain Stream (HQSMS) criteria, which are used for stream sites with undisturbed drainage areas under 3.5 square miles. Recent aerial photos and streamside observations show the presence of disturbance from residences, agriculture, and state roads and highways in the watershed, therefore HQSMS criteria can not be applied to the site for 2008. Additionally, since no criteria have been completed for stream sites with drainage areas under 3.0 square miles with disturbance present, this site is given a classification of Not Impaired for 2008 (it would have been classified as Good with large-stream criteria). One notable difference in habitat at the site was an increase in silt from 2003 to 2008 (40% in 2008 versus 0% in 2003 by visual estimation).

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/18/08	10546		34		3.82	Good
08/19/03	9253		30		3.14	Good

Taxonomic Analysis

Macroinvertebrates collected in Pine Swamp Creek differed slightly between 2003 and 2008, with four more EPT taxa collected in the latter year. Taxa abundant in the sample were similar between 2003 and 2008, but rare and common taxa varied. New taxa that appeared in 2008 included the caddisflies *Ceratopsyche bronta, C. morosa* and the mayfly *Ephoron leukon*. The stonefly *Isoperla*, common in 2003, was not collected in 2008. The macroinvertebrate community residing in Pine Swamp Creek in 2008 appears to be slightly more pollution-tolerant than in 2003.

Data Analysis

Pine Swamp Creek at SR 1179 rated Good in 2008 despite the lack of a healthy riparian zone upstream. Active cow pastures and tree farms constitute a sizeable portion of the visible watershed upstream of the sampling reach. A large amount of silt was visible in this stream (30% of the substrate by visual estimation). Though more EPT taxa were found in 2008 than 2003, the Biotic Index for these macroinvertebrates was higher, suggesting a response to either chemical or physical stressors at the site.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/18/08	10411		35		2.83	Good
08/21/03	9264		31		2.68	Good

Taxonomic Analysis

The taxa collected in 2008 from South Beaver Creek were very similar to those collected in 2003. The list of abundant taxa in both years were nearly identical. Addional taxa seen in 2008 were mostly rare in abundance with a few exceptions, such as the mayflies *Stenacron pallidum*, *Maccertium modestum* and *Leucrocuta* (all common in the sample). Generally, the macroinvertebrate community residing in this reach is pollution-sensitive and diverse.

Data Analysis

South Beaver Creek rated Good in 2008, the same rating as in 2003. One additional EPT taxon would have resulted in an Excellent bioclassification. Based on only two samples, the macroinvertebrate community at this site appears stable, diverse and pollution-sensitive. Drought conditions in 2008 resulted in most of the root mats being exposed. Typically, this type of habitat is heavily colonized by aquatic macroinvertebrates.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/08/08	10410		31		3.28	Good
08/19/03	9252		32		3.16	Good

Taxonomic Analysis

The EPT taxa collected from Obids Creek in 2008 are very similar to those from the 2003 collection. An exception to this was the baetid mayfly *Baetis tricaudatus*, which was abundant in 2003 and absent in 2008. Despite this, all six other taxa from the mayfly family Baetidae were found here in 2008. Other "missing" taxa in 2008 were the heptageniid mayflies *Maccaffertium pudicum* and *M. ithaca*, which were common and abundant respectively. One rare taxon, *Mystacides* nr *alafimbriata*, was found in 2008. Only 17 records of this species exist in the BAU database going back to 1985. Four of these records, however, are in the New River drainage. Overall, 31 EPT taxa were found in 2008, one fewer than the number in the 2003 collection.

Data Analysis

Obids Creek rated Good in 2008, the same rating as in 2003. The taxa collected in both years are generally intolerant to aquatic pollution. A slight increase in the EPT Biotic Index reflects the few taxonomic differences and abundances between 2003 and 2008. The open canopy here has resulted in a higher water temperature than other nearby sampled streams of similar size. Additionally, cattle appear to have direct access to the stream which could be limiting in-stream habitat quality.

Waterboo	dy		Location		Date		Station ID	В	lioclassif	fication
OBIDS	CR		SR 1192		05/09/	08	KF13		Goo	bd
County	Subba	sin 8 diait HUC	Latitude	Long	litude		AU Number	L	evel IV E	coregion
ASHE	1	05050001	36.345566	-81.40	42353		10-1-27-(2)		New River Plateau	
Stream Classifica	tion	Drainage Area (mi	2) Elevatio	on (ft)	Stream	n Wid	th (m) 🛛 🖌	verage Depth	(m)	Reference Site
WS-IV; Tr:+		8.3	271	0		6		0.4		No
				_						
Visible Londuse	(0/)	Forested/Wetland	Ur	ban	_	Agr	iculture		Other (de	scribe)
VISIDIE Landuse ((%)	75		0			25		0	
Upstream NPDES Di	scharger	s (>1MGD or <1MG	D and within 1	mile)			NPDES Num	ber	Vc	olume (MGD)
		None								
Water Quality Param	eters						Site Pr	notograph		
Temperature (°C)		15.5		TRUE				Starting -	A NOT	and a galing
Dissolved Oxygen (mg	g/L)	9.3				1		Carlot an	MAR	在 国际的 国际的
Specific Conductance	(µS/cm)	37						a destation	and a state	
pH (s.u.)		6.4		No.	A Rose	-				The second second
	_			Service .	Con State		appendies of	and the second	State 1	
Water Clarity		Clear			the start		- Heren	THE REAL	and the second	e (pp
			Carlor March					All and a second	- Unite	La talàn La s
Habitat Assessment	Scores (I	nax)			4 22 -		2			At a transferrer
Channel Modification	(5)	5		1000				al la	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Instream Habitat (20)		19	and the second						14/14	Salar and the
Bottom Substrate (15))	13		-	All and the second second	-		The second	Alt all	
Pool Variety (10)		9	100				SHART NO	e la jost	1	S S S S D
Riffle Habitat (16)		16			-	, P	22-5% AL			S Antes
Left Bank Stability (7)		2		-				Section 1	to a	
Right Bank Stability (7	')	7	-	-	M. al	No.	Sieles and		2 and	
Light Penetration (10)		7			the well			A state of the second	1.84	
Left Riparian Score (5)	1	-			2	Hand Market		- And a state	
Right Riparian Score ((5)	5								
Total Habitat Score (100)	84	Sub	strate	Cobble, bo	oulder	, gravel, and silt			
Sample Date	1	Sampl	e ID	Spe	cies Total		NCII	31	Bio	classification
05/09/08		2008-	37		17		50			Good
Most Abundant Spe	ecies	Mottled Sculpi	n and Central Sto	oneroller	Exotic S	Speci	es Warp Redb	aint Shiner, Bro reast Sunfish, a	own Trout and Smal	t, Rock Bass, Imouth Bass
Species Change Sind	ce Last C	ycle N/A								
Data Analysis		-								
This is the first fish co	mmunity	sample collected at	this site. Waters	shed dra	ains southea	stern	Ashe County; no	municipalities	within the	e watershed;

tributary to South Fork New River, site is ~ 600 ft. upstream from the creek's confluence with the river. **Habitat** -- high gradient riffles and plunge pools; *Rhododendron* - and Eastern Hemlock-lined banks; grasses and pastures in the riparian zones; unstable left bank; livestock with access to the stream. **2008** -- diversity of cyprinids and intolerant species were slightly lower than expected; proximity to the river enables the site to serve as a nursery area for Age 1 Rock Bass (n=124 collected) and Smallmouth Bass (n=26 collected); and two endemic species (Kanawha Darter and Appalachia Darter) were collected.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10558		32		3.18	Good
08/18/03	9245		44		3.03	Excellent
08/18/98	7741		39		2.61	Excellent
07/14/93	6271		39		3.02	Excellent

Taxonomic Analysis

Most taxonomic differences between 2003 and 2008 pertained to rare taxa. Exceptions to this were: the stone-cased caddisfly *Glossosoma*, which was abundant in 2003 but absent in 2008; the stoneflies *Isoperla* and *Malirekus hastatus* and the caddisfly *Rhyacophila fuscula*, which were all common in 2003 though absent in 2008. The caddisfly *Triaenodes ignitus* appeared here in 2008 (and was common in the sample) but had not been found in previous collections.

Data Analysis

Roan Creek declined from Excellent in the first three samples collected here from 1993 through 2003, to Good in 2008. Four additional EPT taxa would be required for the site to attain a classification of Excellent in 2008. The EPT Biotic Index suggests a slightly more pollution-tolerant macroinvertebrate community than in past years. Overall however, the species residing in this reach contribute to a pollution-sensitive macroinvertebrate community. Noticeable amounts of silt in 2008, (30% by visual estimation compared to 0% in 2003) may have reduced the number of EPT taxa residing here by filling benthic interstitial habitat.

NEW

Waterbo	dy	L	ocation		Date	Statio	n ID	Bio	oclassifica	ation
ROAN	CR	S	R 1588		05/19/0	08 KF2	20		Good	
County	Subbasin		Latituda	Long	itudo					rogion
	Jubbasin		26 407040		111100	40 Nullii		Lev		leteeu
ASHE	I	05050001	30.407949	-01.40	JITZ	10-1-31-	(2)	INC		lateau
Stream Classifica	tion Dra	inage Area (mi2)	Elevatio	on (ft)	Stream	Width (m)	Aver	rage Depth (m) F	Reference Site
WS-IV, Tr, CA-	+	6.7	269	4		5		0.3		No
	Fo	rested/Wetland	Rural Re	sidential		Agriculture		Ot	her (desci	ribe)
Visible Landuse	(%)	30	1	5		55			0	
Upstream NPDES Di	schargers (>	1MGD or <1MGD	and within 1 n	nile)		NPDE	S Number	r	Volu	me (MGD)
		None								
Water Quality Param	neters						Site Photo	ograph		
Temperature (°C)		12.5					AAA	ALC: N		
Dissolved Oxygen (m	g/L)	10.4	a start				AND-	A starting of the		
Specific Conductance	(µS/cm)	38					という理論	Menter:	A NO	INSE
pH (s.u.)		6.1					Sales S	AL X		
Water Clarity		Clear		A 14 4		22 Days	C. Jack	AND THE		
					-	C. Carlos Part	- see		- 710	
Habitat Assessment	Scores (max	()					Tartes		A	12 1 2
Channel Modification	(5)	5			Contraction of the					15
Instream Habitat (20)		19	PINE	a state of	- Participation				a Valla Ir	
Bottom Substrate (15)	8	and the		and a second		-			
Pool Variety (10)		8				-	-		- Adhe	
Riffle Habitat (16)		16		al ant	and the second		-			A AN A
Left Bank Stability (7)		5	2400 11-0							AL AN
Right Bank Stability (7	7)	5	-				and the second s		and the	·
Light Penetration (10)	->	7						The la	ala Tar	
Left Riparian Score (5) (=)	2	No Alexandre					and and	ALL ST	
Right Riparian Score	(5)	2	Sub	-	groval appl	ala aand haul	dor			
lotal Habitat Score	(100)	11	Sub	strate	gravel, cobi	bie, sand, boui	der.			
Sample Date)	Sample I	D	Spe	cies Total		NCIBI		Biocla	ssification
05/19/08		2008-41			14		48			Good
Most Abundan	t Species	Mottled Sculpin			Exot	ic Species	Rock Bas	ss, Smallmou	th Bass, B	rown Trout.
Species Change	Since Last C	ycle N/A								

New basinwide site. Watershed -- a tributary to the South Fork New River that drains the southeastern central edge of Ashe County, located southeast of Jefferson. Habitats -- good riffles and runs, with one good pool that was holding trout; moderately embedded substrates, but cattle are fenced out of the stream, allowing generally healthy banks; narrow vegetated riparian widths on both sides of the stream and a canopy that provides equal amounts of sun and shade. 2008 -- a very abundant (n=1273), fairly diverse, and trophically balanced community of mostly cool and cold water fish species was collected, including four intolerant taxa (Rock Bass, Smallmouth Bass, Kanawha Darter, and Appalachia Darter); Mottled Sculpin represented 53% of the sample; in light of the agricultural land use in the watershed and lasting drought conditions, this stream appears fairly healthy as indicated by its instream habitats, water parameters, and its abundance of fish.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/20/08	10557		34		4.37	Good
08/19/03	9250	70	30	4.92	4.11	Good-Fair
08/18/98	7739	71	32	5.16	4.18	Good-Fair
07/14/93	6269	84	36	4.65	3.77	Good

Taxonomic Analysis

Naked Creek at NC 16-88 contains a typical benthic fauna for this part of the New River Basin. Abundant taxa collected in 2008 (and in most previous years) included the mayflies Acentrella, Baetis flavistriga, Maccaffertium ithaca, and M. modestum. Abundant caddisflies were Ceratopsyche sparna, Cheumatopsyche, Hydropsyche betten i and Leucotrichia pictipes. A few more EPT taxa were collected in 2008 than in recent samples. New taxa to this location in 2008 were the caddisflies Neureclipsis, Oligostomis, Hydatophylax argus and the stonefly Pteronarcys proteus.

Data Analysis

The few additional EPT taxa found in 2008 elevated this sample from Good-Fair to Good. Though this stream reach is entirely within an agricultural area (corn production), the headwaters of some small tributaries to this stream originate in Mount Jefferson State Park. A forested riparian buffer along this section of stream could aid in maintaining the Good bioclassification or possibly improving it.

Taxonomic Analysis

A greater number of taxa were collected here in 2008 compared with the former basinwide site in 2003. Coleoptera (beetles) and Gastropoda (snails) were the most notable groups that reflected greater diversity in 2008, with increases of five and four taxa respectively. Overall, most taxa collected in 2003 at the former basinwide site were also found in 2008 at the new site.

Compared with the upstream basinwide site on Naked Creek (at NC 16-88, which received a classification of Good), there were nine fewer EPT taxa. All abundant taxa collected upstream were found here. However, five taxa that were common in the upstream sample were absent at this site off SR 1589: the caddisflies *Neophylax consimilis*, *N. oligus*, and *Glossosoma*; and the mayflies *Epeorus vitreus* and *Maccaffertium pudicum*. The beetle *Cymbiodyta* (Hydrophilidae) was collected here in 2008; this is the first BAU record of the taxon in the New River drainage. This uncommon beetle has only been collected in 25 BAU samples since 1985.

Data Analysis

This site replaces the former basinwide site at SR 1585, which is about one stream-mile upstream. The former site is within a recently established gated community.

Naked Creek off SR 1589 rated Good-Fair in 2008, the same rating received at the former basinwide site at SR 1585 in 2003. The upstream basinwide site on Naked Creek at NC 16-88 rated Good in 2008. A golf course and the outfalls from two minor dischargers (Town of Jefferson WTP, permit NC0083470; Town of Jefferson WWTP, permit NC0021709) are situated between the upstream and downstream basinwide sites, and appear to have an effect on water quality at the downstream site.

According to the 2004 Basinwide Assessment Report, upgrades to the WWTP were ongoing at the time of sampling. The specific conductance measured 140 µmhos/cm in 2008, higher than in 2004 at SR 1585 (102 µmhos/cm). Also, habitat issues remain a problem here with large amounts of silt covering benthic surface and ongoing water withdrawals for lawn and golf course irrigation. At the time of the 2008 sampling event new homes were being constructed on the left side of the stream.

Waterboo	dy		L	_ocation		Date	е	Station	ID	Bi	oclassifi	cation
NAKED	CR		off	SR 1589		05/09	/08	KF1	4		Fai	r
County	Subba	asin	8 digit HUC	Latitude	Long	itude		AU Numbe	er	Le	vel IV E	coregion
ASHE	1		05050001	36.413027	-81.40	70488		10-1-32b		N	ew River	Plateau
Stream Classifica	tion	Drair	nage Area (mi2)	Elevatio	n (ft)	Strea	am Wio	dth (m)	Ave	rage Depth (m)	Reference Site
C;+			12.4	2670)		8			0.4		No
		For	ostod/Wetland	Subu	urhan		۸a	riculture		0	hor (dos	cribe)
Visible Landuse	(%)	101	40	3	0		лy	30				cribe)
	• · · <u>-</u>				- !! - `	U		NDDEO	Nerraha	_	N-	
Town of Jefferson W	scharge	ers (>1	MGD or <1MGD	and within 1 n	nile)			NCO	Numbe	r0	6 VO	lume (MGD)
											.0	
Water Quality Param	ieters			A PROVIDE		Same and a state	1.1.1	5	ite Phot	ograpn	Page 1	2
Temperature (°C)			15.6		NT	1.10	1		St. Sal			14
Dissolved Oxygen (m	g/L)		8.1		Carl Carl		TTON		a sec		and the second	- V - State
Specific Conductance	e (µS/cm))	104		- 4	The second		2 Marking	and line	and the second	the case	- Nether
pH (s.u.)	_		6.2		1 A	AN AL		THERE	3/	Serie	2ª	
Water Clarity			Turbid	and a star		-		and the second		and a second		A These
Habitat Assessment	Scores	(max)			STATES -	1 Take	17/0		1	A FEE		
Channel Modification	(5)		5	the state of the s		- Marca		ALC: N	-	AC		
Instream Habitat (20)	()		15		A - Surt		S. Com				1.50	
Bottom Substrate (15))		6		1217	and the					1	
Pool Variety (10)	,		4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	alt S.							
Riffle Habitat (16)			7		1 10	a det					SYNC T	
Left Bank Stability (7)			3	2	1514 - P. S.						- War A	
Right Bank Stability (7	7)		3	100	A DEPERTURN IN THE	endor P						MARKA STATIST
Light Penetration (10)			5							13:469	And W	REPUBLIC ALLS
Left Riparian Score (5	5)		1							TRANSPORT	和父母们	
Right Riparian Score	, (5)		1							$h \sim 10$		
Total Habitat Score ((100)		50	Subs	strate	Cobble, I	ooulde	r, gravel, an	d silt			
Sample Date)		Sample I	D	Spe	cies Tota	l		NCIBI		Biod	classification
05/09/08			2008-36	5		20			36			Fair
06/09/98			98-55			12			34			Fair
Most Abundant Spe	ecies		Central Stoneroll	er		Exotic	: Spec	ies	Warpaint Rock Ba Sunfish, Bass	: Shiner, Brov ss, Redbreas Smallmouth I	vn Bullhe t Sunfish Bass, an	ead, Brown Trout, n, Pumpkinseed d Largemouth
Species Change Sin	ce Last	Cycle	Gains Trout, Rec Losses	Spotfin Shiner, dbreast Sunfish Blacknose Dao	Warpaint n, Pumpkir ce, Creek	Shiner, S nseed Sur Chub, an	pottal S nfish, S d Blueg	Shiner, Kana Smallmouth I gill.	awha Ro Bass, La	syface Shine rgemouth Ba	r, Brown ss, and (Bullhead, Brown Greenside Darter.
Data Analysis												
1998 site was ~2.2 mi community is within th	iles upsti ne immed	ream a diate w	it NC 16/88. Wat atershed; WWTP	ershed drain discharge is ~	s south-ce 2 miles u	entral Ash pstream:	ie Coui tributai	nty, including	g the Tov uth Fork	wn of Jefferso New River; si	on; golf c ite is ~ 7	ourse residential 00 ft. upstream

from the creek's confluencewith the river. Habitat -- lowest total habitat scores of any fish site in the basin in 2008; runs, riffles, slick periphyton; eroded vertical banks; open canopy within the golf course. 2008 -- diversities of darters, cyprinids, and intolerant species were lower than expected; the

percentage of tolerant fish (primarily White Sucker and Redbreast Sunfish) was elevated for a mountain stream; high percentage of Omnivores+Herbivores; proximity to the river enables the site to serve as a nursery area for Age 1 Rock Bass (n=250) and a source of temporary migrants (Spotfin Shiner, Warpaint Shiner, Spottail Shiner, Kanawha Rosyface Shiner, and Greenside Darter); and the most nonindigenous species and the second greatest conductivity at any fish site in the basin in 2008. 1998 & 2008 -- 23 species known from the stream, including 2 endemic and 9 nonindigenous species.

Waterboo	dy	Locati	ion	Station II	D	Date	Bioclassification
PEAK (CR	OFF SR 1599 3 UPSTREAM OF C	50 METERS DRE KNOB BR	KB11		06/19/08	Excellent
County	Subbasin	8 digit HUC	Latitude	Longitude	AU Numbe	er	Level IV Ecoregion
ASHE	1	05050001	36.420833	-81.319444	10-1-35-(2)a	New River Plateau
Stream Classifica	tion I	Drainage Area (mi2	2) Elev	ation (ft)	Stream Wi	dth (m)	Stream Depth (m)
B;Tr:+		9.0		2700	6		0.2
	Fo	rested/Wetland	Urban	ļ	Agriculture		Other (describe)
Visible Landuse	(%)	75	25		0		0
Upstream NPD	DES Discharge	ers (>1MGD or <1N	IGD and within	1 mile)	NPDES	Number	Volume (MGD)
none							
Water Quality Parame	eters				Site	Photograph	
Temperature (°C)		18.0				and the second second	
Dissolved Oxygen (mg	J/L)	8.3					
Specific Conductance	(µS/cm)	38	100	and the second			
pH (s.u.)		6.3	Same Test				
			and the				the second
Water Clarity		clear	- 92	Not sint	in the second	E array	
			- U	AL STE			
Habitat Assessment	Scores (max)		And And		1992.		and the second second
Channel Modification (5)	5		Charles and			
Instream Habitat (20)		20		11.			
Bottom Substrate (15)		12	the state	N.		The set	
Pool Variety (10)		10	1 and the		Printer -	and the states	
Riffle Habitat (16)		16		aller in the		and the second second	
Left Bank Stability (7)		6	Sec.	and a second		ALL PROPERTY	
Right Bank Stability (7)	7		and the second		A CAPACINA	
Light Penetration (10)		10	1	And the second		A PALCIN	Ser Triber
Left Riparian Score (5))	2		A ARX		and the second	Children and the second
Right Riparian Score (5)	5					
Total Habitat Score (*	100)	93	Substra	ate mix of	bedrock, boul	lder, cobble, grav	el and sand
Sample Date		Sample ID	ST	EPT	BI	EPT BI	Bioclassification

Sample Date	Sample ID	51	EPI	ы	EPIBI	Bioclassification
06/19/08	10473		44		2.32	Excellent
08/18/03	9248		31		2.53	Good
08/19/98	7746		35		2.77	Good
04/08/96	7032	74	37*	4.01*	2.47	Excellent
07/15/93	6275		35		2.61	Good

* values corrected for seasonality

Taxonomic Analysis

A diverse and pollution-sensitive aquatic community resides in this section of Peak Creek (above the confluence of Peak Creek and Ore Knob Branch). In 2008, the number of EPT taxa was higher than in recent collections here (an April 1991 Full Scale sample yielded 50 EPT). Generally, the aquatic macroinvertebrate community was similar to past samples with abundant, pollution-sensitive taxa such as: the mayflies *Drunella cornutella, Paraleptophlebia, Stenacron pallidum,* and *Heptagenia*; and the caddisflies *Glossosoma, Ceratopsyche slossonae, Dolophilodes,* and *Neophylax oligius*. In 2008 an extremely rare caddisfly, *Hydropsyche carolina*, was found in Peak Creek. Only one other record exists for this taxon in the North Carolina BAU database going back to 1983.

Data Analysis

This section of Peak Creek rated Excellent in 2008. The second highest EPT totals and the lowest EPT Biotic Index summarize the 2008 sample here and highlight the high water quality conditions in this stream. An undisturbed riparian zone, diverse in-stream benthic surfaces and a mostly forested watershed have resulted in favorable conditions for macroinvertebrate colonization in this stream (as indicated by the high habitat score received).

The location name for this site was formerly "SR 1599."

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/21/08	10561		3		2.62	Poor
08/18/03	9247		6		1.91	Poor
01/13/99	7798		5*		1.60	Poor
08/19/98	7747		23		3.10	Good-Fair
04/08/96	7026	30	14*	4.18*	2.10	Fair

* values corrected for seasonality

Taxonomic Analysis

In 2008 only three EPT taxa were collected: *Pycnopsyche gentilis* (one specimen), a second unidentified species of *Pycnopsyche* (three specimens), and *Hydropsyche venularis* (one specimen). Precipitate from acid mine drainage covered the caddisflies and/or their cases. It is quite apparent that the benthic community is very highly stressed at the site.

Data Analysis

This reach of Peak Creek, below the confluence of Ore Knob Branch, received the same classification of Poor in 2008 as in 2003. It appears that in both wet and dry years the highly stressed macroinvertebrate community here borders on extirpation. As seen in the photo, an orange precipitate covered all instream surfaces. The 2004 Basinwide Assessment Report stated that proposed mitigation efforts were planned (in 2004). Unfortunately that work was not initiated, though site stabilization efforts continue at the mine site itself. Approximately one mile upstream of this site is station KB 11, which earned a classification of Excellent in 2008. Despite the diverse aquatic community residing just upstream, this reach continues to suffer from the acid mine drainage received from Ore Knob Branch.

The location name for this site was formerly "BIG PEAK CR RD."

Waterbody		Locati	on	Station	ID		Date	Bioclassification
L PEAK CF	R	SR 15	595	KB1	4	30	3/21/08	Poor
County S	ubbasin	8 digit HUC	Latitude	Longitude	AU I	Number	Le	vel IV Ecoregion
ASHE	1	05050001	36.427778	-81.344444	10-	1-35-4	N	ew River Plateau
Stream Classification B;Tr:+	1 D	rainage Area (mi2 2.3	2) Ele ^s	vation (ft) 2615	Stre	am Width 3	(m)	Stream Depth (m) 0.1
Visible Landuse (%)	For	ested/Wetland 100	Urbar 0	1	Agricul 0	ture	c	ther (describe) 0
Upstream NPDES	rs (>1MGD or <1N	NF	PDES Nur	nber	Volume (MGD)			
none								

Water Quality Parameters

Temperature (°C)	17.8
Dissolved Oxygen (mg/L)	7.7
Specific Conductance (µS/cm)	76
pH (s.u.)	5.9
Water Clarity clear	

Habitat Assessment Scores (max)

Channel Modification (5)	3				
Instream Habitat (20)					
Bottom Substrate (15)	12				
Pool Variety (10)	5				
Riffle Habitat (16)	16				
Left Bank Stability (7)	6				
Right Bank Stability (7)	6				
Light Penetration (10)	10				
Left Riparian Score (5)	5				
Right Riparian Score (5)	5				
Total Habitat Score (100)	86				

Site Photograph

Substrate

mix of boulder, cobble, gravel, sand and silt

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/21/08	10560		7		2.12	Poor
08/19/03	9249		6		1.95	Poor
08/19/98	7744		7		2.02	Poor
04/08/96	7030	16	6*	3.58*	1.77	Poor
04/16/91	5551		5		2.01	Poor

*values corrected for seasonality

Taxonomic Analysis

Only seven EPT taxa were found in Little Peak Creek in 2008. Abundant taxa collected here were similar to previous samples (*Leuctra, Tallaperla*, and *Diplectrona modesta*). Three larger-bodied case caddisflies were present (all common in the sample): *Hydatophylax, Pycnopsyche gentilis,* and a second unidentifed species of *Pycnopsyche*. Acid mine drainage from Ore Knob continues to suppress macroinvertebrate diversity and densities here.

Data Analysis

Little Peak Creek rated Poor in 2008, the same rating that it has always received. Acid mine drainage creates a toxic situation for aquatic macroinvertebrates here.

By current BAU protocols this site would not be assigned a classification due to the small drainage area. However, due to the depauperate benthic community, in the judgment of BAU biologists the site is among the worst in the state and the classification is justified.

Sample Date	Sample ID	ST	EPT	BI	EPT BI	Bioclassification
08/21/08	10562	93	45	3.96	3.07	Excellent
08/18/03	9246	106	52	4.08	3.07	Excellent
08/19/98	7748	79	42	3.78	3.11	Excellent

Taxonomic Analysis

Cranberry Creek contained a large number of aquatic macroinvertebrate taxa in 2008. The species composition was similar to the 1998 and 2003 collections. Abundant taxa at this site in 2008 included: *Dolophilodes, Neophylax oligius, Paraleptophlebia,* and *Neoephemera purpurea*.

Data Analysis

Cranberry Creek rated Excellent in 2008. Total taxa and EPT taxa numbers were similar among all three samples collected here. The Biotic Index indicates a pollution-sensitive community residing in this lower section of Cranberry Creek. This watershed contains a large number of tree farms with some mixed agriculture and residences.

Waterbo	dy		L	ocation		Date		Station ID		Bioclassif	fication
CRANBER	RY CF	२	S	R 1600		05/08/	08	KF2		Good	
County	Subba	asin	8 digit HUC	Latitude	Longi	tude		AU Number	L	Level IV Ecoregion	
ASHE	1		05050001	36.4694444	-81.326	94444		10-1-37		New Rive	r Plateau
Stream Classifica	ation	Drair	nage Area (mi2)	Flevatio	n (ft)	Stream	n Wic	ith (m) A	verage Dept	n (m)	Reference Site
C:+		2.4.1	36.8	2560)		14		0.4	. ()	No
,	.										
		For	ested/Wetland	Rural Res	sidential		Ag	riculture		Other (de	scribe)
Visible Landuse	(%)		20	55	5			25		0	
Upstream NPDES Di	Upstream NPDES Dischargers (>1MGD or <1MGD and within 1 mile) NPDES Number Volume (MGD)										
•	Ŭ		None								
Water Quality Parameters Site Photograph											
Temperature (°C)			15.4	· 11						-	and the second second
Dissolved Oxygen (m	a/L)		9.1		the second					-	
Specific Conductance (µS/cm) 39											
pH (s.u.) 5.7											
Water Clarity			Clear								
Habitat Assessment	Scores	(max)		and the second s		1		and then			
Channel Modification	(5)		4							1 1 2 M	
Instream Habitat (20)			16			100		-			
Bottom Substrate (15)		8	المراجع المحمد							
Pool Variety (10)			4	State of							
Riffle Habitat (16)			14			200					
Left Bank Stability (7)			2	a ces							
Right Bank Stability (7	7)		3								
Light Penetration (10))		0								The state
Left Riparian Score (5	5)		1		-				-	12400	
Right Riparian Score	(5)		1		_						
Total Habitat Score ((100)		53	Subs	trate	Cobble, gr	avel,	sand, and boulde	rs		
Sample Date	e la		Sample I	D	Spec	ies Total		NCI	31	Bio	classification
05/08/08			2008-33			22		56			Good
06/30/98			98-59			20		60			Excellent

Most Abundant Species	Mottled Sculpin and Bluehead Chub	Exotic Species	Warpaint Shiner, Redlip Shiner, Tennessee Shiner, Saffron Shiner, Rock Bass, and Smallmouth Bass	
Species Change Since Last Cycle	Gains Tonguetied Minnow, Warp	oaint Shiner, Tennessee S	hiner, Saffron Shiner, Kanawha Rosyface Shiner,	
	and Creek Chub. Losses Wester	ern Blacknose Dace, White	Sucker, Brown Trout, and Greenside Darter.	

Data Analysis

Watershed -- drains eastern Ashe County; no municipalities within the watershed; tributary to South Fork New River, site is ~ 1 mile upstream of the creek's confluence with the river. Habitat -- straight channel, stream widening is occurring; 100% open canopy; very narrow riparian zones; unstable banks with high erosion potential; and shallow pools; a popular fishing site. 2008 -- more total species, species of cyprinids (15), and intolerant species (9) were collected at this site than at any other site, except for at the South Fork New River (also 22 species). 1998 & 2008 -- twice as many fish collected in 2008 than in 1998; a very diverse fish community is present, 26 species known from the site, including 16 species of cyprinids, 4 species of darters, 6 endemic species (Tonguetied Minnow, New River Shiner, Kanawha Rosyface Shiner, Kanawha Minnow, Kanawha Darter, and Appalachia Darter), and 7 nonindigenous species; and species present in 1998, but absent in 2008 were represented by 1-5 fish/species.

Waterboo	dy			Location		Date	•	Statior	n ID	Bie	oclassifi	cation
PRATHER	S CF	र	off	SR 1302		05/07	/08	KF1	5	G	Good-	Fair
County	Subr	basin	8 digit HUC	Latitude	Long	jitude		AU Numb	er	Level IV Ecoregion		
ALLEGHANY		I	05050001	36.4967511	-81.32	205856		10-1-38		ING	ew River	Plateau
Stream Classifica	tion	Drai	nage Area (mi2)	Elevatio	on (ft)	Strea	m Wio	dth (m)	Avera	iae Depth (m)	Reference Site
B;Tr			13.7	252	0		7			0.4	<i>.</i>	No
		Foi	rested/Wetland	Rural Re	sidential		Ag	riculture		Ot	her (des	scribe)
Visible Landuse	(%)		50	1	0			40			0	
Unotroom NDDES Di	aabara			and within 4 r	nilo)			NDDE	Number		Va	
Opstream NPDES DI	scharg	ers (>	None		nne)			NPDE	5 Number		VO	iume (MGD)
			None									
Water Quality Param	eters							5	Site Photog	graph		
Temperature (°C)			17.2	Sec. 1						1200	1 5	
Dissolved Oxygen (m	g/L)		8.7	2.2010		12 200			S. A.Y.		127/1	
Specific Conductance	e (µS/cn	n)	42			有人自然			3/2		a la car	
pH (s.u.)			7.2			C.A.	Ser.	The state	1000		1	BACK STATE
								117.12	AND -			
Water Clarity			Clear	2 october		30 1	No.	Sec.		E Brook		
						True -		CONC. CON	- Aller	2 and a	S. M	
Habitat Assessment	Scores	s (max))	1 A		14	N=		1			
Channel Modification	(5)		5	they -	AR	Act of the local division of the local divis	1	-	-	-		
Instream Habitat (20)			18	-			1					
Bottom Substrate (15))		14		and the same	- And	-	n.			-	- 31.0
Pool Variety (10)			6	Seattle of	AP-		in the second		and the second	Mar Anna	- the	
Riffle Habitat (16)			16	- Part	10	1	-	Constant of the local distance of the local	Teach	and the second second	-	
Left Bank Stability (7)			4	and the second se	-	Alberto Part	-	L. Carlin	100		and life	A She is the
Right Bank Stability (7	7)		4	2000	- RE	-			- Contractor		and and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Light Penetration (10)			4			and some states				-	-	A starter
Left Riparian Score (5	5)		2							No the	Start 1	THE ALL AND
Right Riparian Score	(5)		2									
Total Habitat Score ((100)		75	Sub	strate	Cobble an	nd bou	ılder				
Sample Date)		Sample	ID	Spe	ecies Total	I		NCIBI		Biod	classification
05/07/08			2008-3	2		19			46		(Good-Fair
						7						
							-		Warpaint S	Shiner, Red	lip Shine	r, Tennessee
Most Abundant Spe	ecies		Central Stonero	ler		Exotic	Spec	ies	Shiner, Sa	ffron Shinei	r, Brown	Trout, Rock Bass,
									anu Smalli	nouth bass		
Species Change Sin	ce Last	Cvcle	N/A									
Data Analysis												
This is the first fish co	mmunit	ty samp	ole collected at th	is site. Waters	hed dra	ains wester	n Alleg	ghany Cou	nty; no mun	icipalities w	vithin the	watershed; much

of watershed is with livestock pasture, no riparian zones, and an open canopy; tributary to South Fork New River, site is ~ 750 ft. upstream from the creek's confluence with the river. **Habitat** -- high gradient stream, primarily riffles, runs, and some plunge pools; fairly open canopy; narrow riparian zones. **2008** -- Central Stoneroller accounted for 57% of all the fish collected; high percentage of Omnivores+Herbivores, indicative of nonpoint source nutrients and an open canopy; and two endemic species (Kanawha Rosyface Shiner and Kanawha Darter) were present.

Waterbody L		Location	ocation		te Station ID		E	Bioclassification		
GRASSY CR			SR 1549	05/08/	3/08 KF16			Good-Fair		
County	Subbasi	n 8 digit HUC	Latitude	Long	jitude AU Number		L	Level IV Ecoregion		
ASHE	1	05050001	36.5522927	-81.35	55517		10-3		New Rive	r Plateau
Stream Classification	tion D	rainage Area (mi:	2) Elevatic	on (ft)	Stream Width (m)		Average Depth	ו (m)	Reference Site	
C;Tr:+		10.6	248	0	8			0.3		No
Fc		Forested/Wetland	rested/Wetland Urban			Agriculture		Other (describe)		escribe)
Visible Landuse ((%)	90		0	0		0	10 (South Fork New River)		
Upstream NPDES Dis	schargers	(>1MGD or <1MG	D and within 1	mile)			NPDES Nu	mber	Vo	olume (MGD)
		None								
Water Quality Param	eters			-		15 - AL	Site F	Photograph		
					And a second	and the second second	And the second statements		- Low Marrie	And the second se

Temperature (°C) 18.0 8.5 Dissolved Oxygen (mg/L) Specific Conductance (µS/cm) 84 7.7 pH (s.u.) Very slightly turbid Water Clarity (easily silted) Habitat Assessment Scores (max) Channel Modification (5) 5 Instream Habitat (20) 19 14 Bottom Substrate (15) Pool Variety (10) 8 Riffle Habitat (16) 16 7 Left Bank Stability (7) Right Bank Stability (7) 7 9 Light Penetration (10) 5 Left Riparian Score (5) Right Riparian Score (5) 5 **Total Habitat Score (100)** 95 Substrate Cobble, boulder, and silts on the rocks Sample Date Sample ID **Species Total** NCIBI Bioclassification 05/08/08 2008-35 18 40 Good-Fair Redlip Shiner, Saffron Shiner, Brown Trout, Rock **Most Abundant Species** Bluehead Chub and Central Stoneroller **Exotic Species** Bass, Green Sunfish, and Smallmouth Bass

Species Change Since Last Cycle

N/A

Data Analysis

This is the first fish community sample collected at this site. **Watershed** -- drains southern Grayson County, VA and northeast corner of Ashe County; no municipalities within the watershed; tributary to the New River, site is ~ 50 ft. from the creek's confluence with the river. **Habitat** -- greatest habitat score of any fish community site in the basin in 2008, although much of the watershed is without canopy cover in pasture with cattle; high gradient boulder plunge pools; site is atypical. **2008** -- 82% of all the fish collected were Bluehead Chub, Central Stoneroller, and Mountain Redbelly Dace; very high percentage of Omnivores+Herbivores were collected, indicative of nonpoint sources of nutrients and open canopy upstream of the reach; proximity to the river enables the site to serve as a nursery area for Age 1 Rock Bass and Smallmouth Bass; one endemic species (Appalachia Darter) was collected; and the greatest pH of any fish community site in the basin in 2008 due to photosynthetic activity by the upstream periphyton.

New

APPENDIX 2-C

Ambient Monitoring Systems Station Data Sheets

Station ID	WATERBODY	AU#	Location	Impaired (By Parameter)	Impacted (By Parameter)
K2100000	South Fork New R.	10-1-(3.5)	US 221/421 at Perkinsville	Fecal Coliform (10.9%)	
K3250000	South Fork New R.	10-1-(26)	NC 16/88 near Jefferson		Fecal Coliform (7.1%)
K4500000	South Fork New R.	10-1-(33.5)	US 221 near Scottville	Copper (11.1%) Iron (22.2%) Zinc (11.1%)	

Ambient Monitoring System Station Summaries

NCDENR, Division of Water Quality

Basinwide Assessment Report

Location: S FORK NEW RIV AT US 221 AND 421 AT PERKINSVILLE

Station #:	K2100000		Hydrologic Unit Code:	05050001
Latitude:	36.22088	Longitude: -81.63978	Stream class:	C +
Agency:	NCAMBNT		NC stream index:	10-1-(3.5)

Time period: 01/27/2005 to 12/16/2009

	#	#		Results not meeting EL				Percentiles					
	results	ND	EL	#	%	%Conf	Min	10th	25th	50th	75th	90th	Max
Field													
D.O. (mg/L)	57	0	<4	0	0		7.6	8.2	8.5	9.8	11.8	13	13.7
	57	0	<5	0	0		7.6	8.2	8.5	9.8	11.8	13	13.7
pH (SU)	57	0	<6	0	0		6.7	6.9	7.2	7.5	7.8	7.9	8.4
	57	0	>9	0	0		6.7	6.9	7.2	7.5	7.8	7.9	8.4
Spec. conductance (umhos/cm at 25°C)	57	0	N/A				86	101	118	156	179	219	310
Water Temperature (°C)	57	0	>29	0	0		1.8	3.5	6.9	14	19.1	20.8	25.7
Other													
TSS (mg/L)	18	10	N/A				2.5	2.5	3	5.5	6.2	24.8	68
Turbidity (NTU)	57	4	>50	2	3.5		1	1	1.5	2.3	4.5	9.9	150
Nutrients (mg/L)													
NH3 as N	57	38	N/A				0.02	0.02	0.02	0.02	0.02	0.04	0.08
NO2 + NO3 as N	57	0	N/A				0.24	0.98	1.3	1.7	2.15	3	3.9
TKN as N	57	15	N/A				0.2	0.2	0.2	0.24	0.28	0.38	0.89
Total Phosphorus	57	0	N/A				0.03	0.04	0.06	0.1	0.2	0.26	0.48
Metals (ug/L)													
Aluminum, total (Al)	10	2	N/A				50	50	60	83	114	206	210
Arsenic, total (As)	10	10	>10	0	0		5	5	5	5	5	5	5
Cadmium, total (Cd)	10	10	>2	0	0		1	1	1.8	2	2	2	2
Chromium, total (Cr)	10	10	>50	0	0		10	10	21	25	25	25	25
Copper, total (Cu)	10	7	>7	0	0		2	2	2	2	2	3	3
Iron, total (Fe)	10	0	>1000	0	0		190	191	230	265	325	487	500
Lead, total (Pb)	10	10	>25	0	0		10	10	10	10	10	10	10
Mercury, total (Hg)	8	8	>0.012	0	0		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel, total (Ni)	10	10	>88	0	0		10	10	10	10	10	10	10
Zinc, total (Zn)	10	4	>50	0	0		10	10	10	11	16	21	21

Fecal Coliform Screening(#/100mL)

 # results:
 Geomean:
 # > 400:
 % > 400:
 % Conf:

 55
 89.1
 6
 10.9

Key:

result: number of observations

ND: number of observations reported to be below detection level (non-detect)

EL: Evaluation Level; applicable numeric or narrative water quality standard or action level

Results not meeting EL: number and percentages of observations not meeting evaluation level

%Conf : States the percent statistical confidence that the actual percentage of exceedances is at least 10% (20% for Fecal Coliform)

Stations with less than 10 results for a given parameter were not evaluated for statistical confidence

Ambient Monitoring System Station Summaries

NCDENR, Division of Water Quality

Basinwide Assessment Report

S FORK NEW RIV AT NC 16 AND 88 NR JEFFERSON											
K3250000			Hydrologic Unit Code:	05050001							
36.39473	Longitude:	-81.40750	Stream class:	WS-IV HQW							
NCAMBNT			NC stream index:	10-1-(26)							
	S FORK NEW RJ K3250000 36.39473 NCAMBNT	S FORK NEW RIV AT NC 16 A K3250000 36.39473 Longitude: NCAMBNT	S FORK NEW RIV AT NC 16 AND 88 NR JEFF K3250000 36.39473 Longitude: -81.40750 NCAMBNT	S FORK NEW RIV AT NC 16 AND 88 NR JEFFERSON Hydrologic Unit Code: 36.39473 Longitude: -81.40750 Stream class: NCAMBNT NC stream index:							

02/01/2005 to 12/17/2009 Time period:

	#	#		Results not meeting EL				Pe					
	results	ND	EL	#	%	%Conf	Min	10th	25th	50th	75th	90th	Max
Field													
D.O. (mg/L)	58	0	<4	0	0		7.6	8.3	8.5	9.8	11.5	13.1	14.6
	58	0	<5	0	0		7.6	8.3	8.5	9.8	11.5	13.1	14.6
pH (SU)	58	0	<6	0	0		6.7	7.1	7.4	7.7	8.1	8.6	9.4
	58	0	>9	2	3.4		6.7	7.1	7.4	7.7	8.1	8.6	9.4
Spec. conductance (umhos/cm at 25°C)	58	0	N/A				45	61	68	73	80	100	656
Water Temperature (°C)	58	0	>29	0	0		2.3	4.7	8.2	15.4	21.9	24.4	27.1
Other													
TSS (mg/L)	18	9	N/A				2.5	2.5	3.9	6.2	6.6	68.4	576
Turbidity (NTU)	58	2	>50	3	5.2		1	1.2	1.7	2.8	5.2	22	380
Nutrients (mg/L)													
NH3 as N	58	40	N/A				0.02	0.02	0.02	0.02	0.02	0.04	0.12
NO2 + NO3 as N	58	0	>10	0	0		0.15	0.38	0.51	0.6	0.77	0.85	1
TKN as N	56	25	N/A				0.2	0.2	0.2	0.2	0.26	0.37	2.5
Total Phosphorus	58	11	N/A				0.02	0.02	0.02	0.02	0.03	0.05	3.8
Metals (ug/L)													
Aluminum, total (Al)	9	0	N/A				110	110	120	150	200	310	310
Arsenic, total (As)	9	9	>10	0	0		5	5	5	5	5	5	5
Cadmium, total (Cd)	9	9	>2	0	0		1	1	2	2	2	2	2
Chromium, total (Cr)	9	9	>50	0	0		10	10	25	25	25	25	25
Copper, total (Cu)	9	8	>7	0	0		2	2	2	2	2	2	2
Iron, total (Fe)	9	0	>1000	0	0		200	200	220	280	380	480	480
Lead, total (Pb)	9	9	>25	0	0		10	10	10	10	10	10	10
Manganese, total (Mn)	8	0	>200	0	0		14	14	16	18	22	29	29
Mercury, total (Hg)	8	8	>0.012	0	0		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel, total (Ni)	9	9	>25	0	0		10	10	10	10	10	10	10
Zinc, total (Zn)	9	8	>50	0	0		10	10	10	10	10	10	10
Food Coliform Saroon	ing(#/10()mI)											

results: # > **400**: % > 400: %Conf: Geomean:

56

7.1 4

21.8

Key:

result: number of observations

ND: number of observations reported to be below detection level (non-detect)

EL: Evaluation Level; applicable numeric or narrative water quality standard or action level

Results not meeting EL: number and percentages of observations not meeting evaluation level

%Conf : States the percent statistical confidence that the actual percentage of exceedances is at least 10% (20% for Fecal Coliform)

Stations with less than 10 results for a given parameter were not evaluated for statistical confidence

Ambient Monitoring System Station Summaries

NCDENR, Division of Water Quality

Basinwide Assessment Report

Location:	S FORK NEW R	IV AT US 221 NR SC	DTTVILLE		
Station #:	K4500000		Hydrologic	: Unit Code:	05050001
Latitude:	36.47378	Longitude: -81.336	19 S	tream class:	B ORW
Agency:	NCAMBNT		NC st	ream index:	10-1-(33.5)

02/01/2005 to 12/17/2009 Time period:

	# #		Resul	lts no	t meeting	Percentiles							
	results	ND	EL	#	%	%Conf	Min	10th	25th	50th	75th	90th	Max
Field													
D.O. (mg/L)	58	0	<4	0	0		5.6	7.9	8.5	9.5	11.4	13.4	14.6
	58	0	<5	0	0		5.6	7.9	8.5	9.5	11.4	13.4	14.6
pH (SU)	58	0	<6	0	0		6.6	7	7.4	7.7	8	8.4	9
	58	0	>9	0	0		6.6	7	7.4	7.7	8	8.4	9
Spec. conductance (umhos/cm at 25°C)	57	0	N/A				35	56	68	72	78	83	148
Water Temperature (°C)	58	0	>29	0	0		1.1	4	8	15.4	22.6	25.6	27
Other													
TSS (mg/L)	19	10	N/A				2.5	2.5	6.2	6.2	14	48	354
Turbidity (NTU)	58	3	>50	4	6.9		1	1.2	1.7	3.1	6.6	27.4	260
Nutrients (mg/L)													
NH3 as N	57	42	N/A				0.02	0.02	0.02	0.02	0.02	0.03	0.1
NO2 + NO3 as N	57	0	N/A				0.08	0.33	0.45	0.62	0.74	0.86	0.95
TKN as N	56	26	N/A				0.2	0.2	0.2	0.2	0.26	0.4	3
Total Phosphorus	57	10	N/A				0.02	0.02	0.02	0.02	0.04	0.08	0.8
Metals (ug/L)													
Aluminum, total (Al)	9	0	N/A				64	64	92	200	1765	17000	17000
Arsenic, total (As)	9	9	>10	0	0		5	5	5	5	5	5	5
Cadmium, total (Cd)	9	9	>2	0	0		1	1	2	2	2	2	2
Chromium, total (Cr)	9	9	>50	0	0		10	10	25	25	25	25	25
Copper, total (Cu)	9	6	>7	1	11.1		2	2	2	2	3	24	24
Iron, total (Fe)	9	0	>1000	2	22.2		280	280	335	470	1925	20000	20000
Lead, total (Pb)	9	8	>25	0	0		10	10	10	10	10	15	15
Mercury, total (Hg)	8	8	>0.012	0	0		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel, total (Ni)	9	8	>88	0	0		10	10	10	10	10	12	12
Zinc, total (Zn)	9	5	>50	1	11.1		10	10	10	10	13	71	71

Fecal Coliform Screening(#/100mL)

> **400**: % > 400: %Conf: # results: Geomean: 56 16.5 3 5.4

Key:

result: number of observations

ND: number of observations reported to be below detection level (non-detect)

EL: Evaluation Level; applicable numeric or narrative water quality standard or action level

Results not meeting EL: number and percentages of observations not meeting evaluation level

%Conf : States the percent statistical confidence that the actual percentage of exceedances is at least 10% (20% for Fecal Coliform) 2-C.4

Stations with less than 10 results for a given parameter were not evaluated for statistical confidence

APPENDIX 2-D

12-DIGIT SUBWATERSHED MAPS

APPENDICES New River Basin: South Fork New River & Fox Creek Watersheds (HUC 0505000102 & 0505000103)

APPENDICES New River Basin: South Fork New River & Fox Creek Watersheds (HUC 0505000102 & 0505000103)

New River Basin: South Fork New River & Fox Creek Watersheds (HUC 0505000102 & 0505000103)

New River Basin: South Fork New River & Fox Creek Watersheds (HUC 0505000102 & 0505000103)

Appendices

