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• Bioretention
• Sand Filters 

– Supported with funds from NCL&WF
• Stormwater-Treating Street Trees (e.g. Silva Cells)

– Supported with funds from NCL&WF
• Submerged Gravel Wetlands

– 100% funded by NCL&WF & City of Greensboro
• Floating Wetland Islands

– Supported with 319(h) & NCL&WF funds 

Funded Projects
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Who (really) did the work…

• Bioretention – Jeffrey Johnson
• Sand Filters – Jackson Tate & Dan 

Line
• Stormwater Treating Street Trees –

Sarah Waickowski & Amethyst Kelly
• Submerged Gravel Wetlands –

Caleb Mitchell & Sarah Waickowski
• Floating Wetland Islands – Molly 

Landon & Jeffrey Johnson
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SCMs vis-à-vis the Model Effort

• Nutrient Load Change provided by SCM calculated using 
one of 2 simple formulas:

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿𝐿𝐿𝐿𝐿 × %𝑅𝑅𝑅𝑅𝑅𝑅

Or

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑉𝑉𝐿𝐿𝐿𝐿 × %𝑉𝑉𝑜𝑜𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 × ConcEffl

• KEY POINT: IT IS ASSUMED THAT SCM’S WORK THE 
SAME OVER A 30-YEAR LIFE
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During Ph.D.
18 years ago.
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Background
• This research revisits a BRC previously 

monitored from June 2002 – April 2003
– Hunt, W.F., Jarrett, A.R.R., Smith, J.T., Sharkey, L.J., 

2006. Evaluating Bioretention Hydrology and Nutrient 
Removal at Three Field Sites in North Carolina. J. 
Irrig. Drain. Eng. 132, 600–608. 
doi:10.1061/(ASCE)0733-9437(2006)132:6(600)

• Second monitoring period:
February 2017 – March 2018

6
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Site Characteristics
Characteristic Chapel Hill BRC
Year constructed 2001
Underlying soil Clay, clay loam, and silty clay
2002-2003 Drainage area (m2) 600 (0.15 ac)
2017-2018 Drainage area (m2) 1,120 (0.28 ac)

Imperviousness 100%
BRC surface area (m2) 90 (970 sq. ft)
Bowl storage (mm) 95 (4 in.)
Media depth (m) 1.2 (4 ft)
Ksat (mm/s) 0.009 – 0.021 (1.3 – 3.0 in/hr)
Original media P-index 4-12 (3.7 – 11.1 mg/kg)
Vegetative cover Perennial grasses, trees, shrubs

8
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• Inflow and outflow measured using 
ISCO 730 bubbler modules and sharp 
crested v-notch weirs

• Flow weighted composite samples at 
inlet and underdrain collected with ISCO 
6712 portable samplers

• Samples analyzed for TKN, NH3-N, NO3-
N, TP, Ortho-P, and TSS

Monitoring

9
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Results

10
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Annual Load Comparisons
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Results –
Nitrogen

12
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What’s Different?

14
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What’s Different?

15
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What’s Different?

• Collected soil media samples in February 2018
• Average carbon content = 0.67% (665 mg/100 

g media)
16
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Results –
Phosphorus

17
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18

Compared to Piedmont NC WQ 
thresholds from McNett et al., 2010

Effluent
TP

Comparisons
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19

Phosphorous Accumulation

Characteristic
Monitoring Period

Initial Second Sorption Capacity
Bulk Density (kg/m3) 1023.7
BRC Area (m2) 90
Media Depth (m) 0.2
Media Volume (m3) 18
Media Mass (kg) 18,426
M3P Conc. (mg/kg) 7.4 24.3 28
M3P Mass (g) 136 447 516

• At an average M3P accumulation rate of 19-20 g/yr, the 
top 20 cm of media will reach estimated sorption 
capacity in 3.5 years

• Top 20 cm of media has an estimated 20 years of 
life, BUT

• Media depth is 1.2 m
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Take Home Points
• 2017-2018 monitoring period observed significant reductions 

in TAN, NO3-N, TN, and TP 
• Comparing monitoring periods:

– TN removal sustained after 17 years
• Increase in nitrate removal

– Carbon source builds over time
– TP removal improved

• High phosphorus concentrations building in the soil media
– Elevated concentrations observed in the top 20 cm 

similar to Komlos and Traver (2012)
– Media depth of 1.2 m should allow continued sorption 

capacity for future P removal
20
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Take Home Points

• Median effluent concentrations are now below 
assigned values for TN and TP for nutrient 
reduction calculations from NC DEQ

• Not only does bioretention work, it can get even 
better with time and may even be undervalued

Period TN (mg/L) TP (mg/L)
NC DEQ Credit 1.20 0.12
2002 – 2003 1.23 0.17
2017 – 2018 1.12 0.09

21
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So for the Basin-wide Mega Model…

• Maybe an “Improvement 
Factor” should be 
implemented?

• Is this also true for other 
vegetated SCM’s?
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Monitoring Periods
2007 – 2008:

Lenhart and Hunt (2011)  
2012 – 2013:

Merriman and Hunt (2014)

No Maintenance for 
5 Years
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ON Threshold*: 0.7–0.8 mg/L

Water Quality Services: Nitrogen

*Moore et al. 2011
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So for the Basin-wide Mega Model…

• Maybe an “Improvement 
Factor” should be 
implemented?

• Is this also true for other 
vegetated SCM’s?

• Do they, like wine, get 
better with age?
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The first BRCs…
• 1990 – “Invention” in Prince George’s County, 

MD
• 1993 – First BRC (rain garden) design guidance
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Fast forward 24 years…

• BRCs are one of the most common SCMs in the 
United States, Australia, and Asia
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• We know that BRCs work
– Hydrologic & nutrient benefits

• (Davis et al. 2009; Hunt et al. 2012)
• And can continue to work for prolonged periods

– If maintained…
• (Komlos and Traver, 2012; Johnson and Hunt, 2016, 2019)

Fast forward 24 years…
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• Metal concentrations were 
well below remediation 
levels following 11 years of 
service

• Heavy accumulation of 
Mehlich-3 P, particularly in 
the forebay and areas near 
inlet

• Preferential flow is occurring 
in areas that are 
accumulating P  we’re 
missing treatment 

t iti

• After 17 years: significant 
reductions in TAN, NO3-N, 
TN, and TP 

• Comparing monitoring 
periods: increase in nitrogen 
removal

• P accumulating in the soil 
media

• Median effluent 
concentrations below 
assigned values for TN and 
TP for nutrient reduction 
calculations from NC DEQ

The catalysts for this research
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Research Questions
1. How do % sand, silt, and clay change with time?

– Impacts hydrologic and water quality performance

2. What are the dynamics of carbon, organic matter, 
and nitrogen in BRC media?
– Need to balance Carbon:Nitrogen ratio for treatment of N

3. How much Phosphorus is accumulating in BRC 
media?
– Are older BRCs getting close to sorption capacity?

4. What design characteristics have the greatest 
impact on C:N and P?
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Methods: Sample Collection

28 sampled 
BRCs
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Methods: Sample Collection
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Methods: Sample Collection
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Sample Analysis
• Analyzed

– TOC

– TN

– TP

• Calculated
– Organic Matter = TOC x 1.724

• (Nelson and Sommers 1996)
– C:N = TOC/TN

– P-Index = 0.117 ×𝑇𝑇𝑇𝑇 ×𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
1.2

• (Hardy et al. 2014; Lammers & Bledsoe 
2017)

• Particle Size Analysis
– ASTM Hydrometer Method
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Random Forest Modeling
• Machine learning to assess importance of 

design and watershed variables on C:N and P-
Index
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Physical Characteristics
• 22 sampled BRCs were sandier 

than NC specifications for BRC 
media (75-85% sand)

• 4 sampled BRCs exceeded fines 
maximum (15% fines)

• Fines content significantly 
increased in older BRCs (p=0.023)

• Changes likely due to:
1. Sedimentation from watershed
2. Changes in media specifications 

over time
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Organic Matter
• Median OM = 2.3% by weight
• Bootstrapped 95% CI = 1.6% – 3.6%
• No significant trend in OM

• BUT…while calculated from TOC
– 95% CI less than recommended 5% OM in 

media for removal of metals, hydrocarbons, 
and nutrients

• (Hunt et al. 2012; Peterson et al. 2015)
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Carbon:Nitrogen
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P-Index

• Note: P-Index estimated from TP
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Random Forest: C:N
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Random Forest: P-Index
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Top Variable Importance: P-Index

Top Variable Importance: C:N
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Forebays: A Difference Maker

Good for P 
removal

Good for N 
removal

Target C:N
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Forebays
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Forebays
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Another Study in Charlotte, NC?

A forebay can make a big 
difference in treatment…and 

MAINTENANCE!
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Take Home Points
• BRC media is sandier than it should be (in NC)

– Careful attention needed to BRC media ticket 
with PSD during installation

– Particle size specifications are made to 
balance infiltration for hydrologic goals with 
HRT needed for WQ goals

• C:N is significantly decreasing in BRCs with age
– C:N is important component in N treatment
– Amend top layer of BRCs with a high C:N 

material (woodchips, sawdust, etc) when 
performing maintenance (e.g., scraping)
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Take Home Points
• P-Index is significantly increasing in BRCs with 

age
– Although increasing, lower depths of media 

should continue providing treatment
• Forebays are a difference maker in C:N and P-

Index
– Retrofit opportunity!
– Consider requiring forebays on new BRCs

• Vegetation type? Not so much.
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Parting Thoughts…

• Am I saying ignore these practices and they’ll work 
better?
– NO!

• Am I saying that vegetated systems have self-healing 
mechanisms? That that are resilient?
– YES! YES!

• Human Intervention/Maintenance is needed
– Keep SCMs looking good, Prevent Mosquito 

proliferation, and maintain flow
• Vegetated SCMs kinda help us out.
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Stormwater Sand Filters

NCDEQ Stormwater Design Manual Section 
C-6. Sand Filter

The “Setting”: Folks want to use them here, but scant 
data exist regionally to assign removal credits
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Treatment Efficiencies (%)

Pollutant Removal Efficiencies from 8 Sand Filters in 
Sydney, Australia, Central Texas, and Southern 

California

Study TSS TP TN TKN Fecal Coli. T Zn T Pb

(Zarezadeh et al., 2018) 93 43 79

(Kandasamy et al., 2008) 32-76 39-41 39-61 70 65-79 79-83

(Barrett, 2003) 90 39 22 51 65 80 87
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Research Questions

• Sand filter performance in NC’s humid subtropical climate?

• Performance comparison to NCDEQ stormwater credits?

• Internal water storage impact on treatment performance?
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Methods

• 4 sand filters total in Fayetteville and Greensboro

• Modification to one filter in each city

• Lab analysis for removal efficiency of TSS, TN (NO3

+ NH3), TP (OP)

Image of North Carolina 
from Google Maps
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RNR Tire Express
Fayetteville, NC
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Cape Landing 
Apartment 
Complex,

Fayetteville
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Park Place 
Salon,

Greensboro
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Sheetz
Greensboro
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Phase One Treatment Efficiencies (%)

Site TKN NO3-N NH3 TP OP TSS

Sheetz 58 -80 6 -2 -54 58

Park Place -26 -296 -204 20 28 71

Cape 
Landing 31 -98 76 32 -4 67

RNR 42 -20 52 23 -51 89

Range -123 to 
82

-722 to 
64

-675 to 
97

-153 to 
79

-268 to 
84

-15 to 
98
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TSS 
Trapping
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Phosphorus 
Capture
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Ortho-P 
Sorption
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TN 
“Reduction”

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

RNR-IN RNR-OUT Cape-IN Cape-OUT

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Total Nitrogen (TN) for Fayetteville

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

Sheetz-IN Sheetz-OUT Park-IN Park-OUT

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Total Nitrogen (TN) for Greensboro



www.stormwater.bae.ncsu.edu

So, what do we know?

• As expected, great 
TSS removal across 
all sites
– Confirmed this is a 

primary SCM
• TP results generally 

good
– Little Ortho-P removal

• TN “removal” varies 
rather widely

• Inflow concentrations 
have been generally low
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Previous: Phase I 
Now Phase II: Internal Water Storage

Diagram of Internal Water Storage in a Bioretention Cell
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Stormwater Sand Filters – with IWS

NCDEQ Stormwater Design 
Manual Section C-6. Sand Filter
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Internal Water Storage Installed

Sheetz (Greensboro)
Cape Landing (Fayetteville)
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Urban Trees 

Are these happy little trees?
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DeepRoot Silva Cells®
• Modular suspended pavement system using soil volume to 

support large tree growth and stormwater management
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DeepRoot Silva Cells®

1x
2x

3x
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DeepRoot Silva Cell® Components 
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DeepRoot Silva Cells®
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Wilmington Silva Cell Data
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Wilmington Silva Cells®

• 20% (6.7 in of 34 in) of runoff 
bypassed

• 40% (21 in of 53 in) of storms 
generated bypass
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Wilmington Silva Cells® Flow Rates

p < 0.0001

 Very consistent!

Decreased 62% from 3.7 L/s to 1.4 L/s
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Wilmington Silva Cells® Water Quality

Pollutant

Ann Street Pollutant Load Summary (kg/ha/yr)

Pre-
Retrofit Post-Retrofit Mass Retained %

Retained
TN 8.47 4.02 4.45 53%
TP 1.43 0.51 0.92 59%

TSS 556 170 416 69%
Cua 0.18 0.04 0.15 70%
Pba 0.14 0.06 0.07 58%
Zna 0.86 0.35 0.51 60%

• No volume reduction
• Recall: 20% of total runoff volume bypassed
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Let’s just say… We were stoked.
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Fayetteville (Person Street) Silva Cells®
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Fayetteville Silva Cells®
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Fayetteville Silva Cells®

Estimated bypass: 70%  
Adjusted R2 of 0.95
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Fayetteville Silva Cells®
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Fayetteville Silva Cells®
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Let’s just say… We were surprised.

But… had they been maintained…
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Durham Silva Cells®
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Durham Silva Cells®

Bypass: 94%  
Adjusted R2 of 0.99
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Durham Silva Cells® TP

No significant differences
between influent and effluent
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Total Suspended Solids Trapping –
Durham Silva Cells
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Durham Silva Cells –
Nitrogen
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Let’s just say… We were disappointed.

(By all the bypass)

But still hopeful… because treated water concentrations 
were lower than influent
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Stormwater-Treating Tree Systems:
Take Home Message

• Get the water into the media, good treatment seems likely.
• Bypass of runoff? Appears to be an issue associated with 

inlets.
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What is a 

Subsurface-flow Gravel Wetland (SSGW)?

Manual Constructed Wetlands Treatment of Municipal Wastewaters 
(US EPA , 2000)

93
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• Stormwater wetlands:
• Constantly ponded water 
• Varying topography 
• Plant specific zones 

• Gravel wetlands: 
• Temporarily ponded water
• Saturated gravel layer 
• Little variation in 

topography

Gravel Wetlands vs. Stormwater Wetlands

94
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• NC stormwater wetlands (Hathaway and Hunt 2010; Line et al. 
2008; Mallin et al. 2012):

• TN removal: 39 to 59%
• TP removal: 27 to 68%
• TSS removal: 58 to 83% 

• Gravel wetlands: 
• Wastewater: up to 96% TN and 71% TP removal (Van de Moortel et 

al. 2009); < 20 mg/L effluent TSS (Reed and Brown 1995)
• Stormwater: 54% TP and 99% TSS removal (Roseen et al. 2009) 

Gravel Wetlands vs. Stormwater Wetlands

95
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• Gravel wetlands approved/installed SCM in: MD, NH, NJ, TN, and VT 

Current Design Guidance
96
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• Pioneer of gravel wetlands for stormwater treatment
• Guidance (UNHSC 2016):

• Saturated gravel within 4 to 8 in of soil surface
• Minimum of: 8 in wetland soil, 3 in intermediate 

aggregate, 24 in gravel layers
• Geotextile fabric if in-situ conductivity > 0.3 ft/day
• Size primary orifice for 24 to 30 hr storage in gravel 

layer
• Two cell system where length of each cell is ≥ 15 ft 

and holds 50% of WQV 
• Pre-treatment basin or forebay that is well-drained 

Current Design Guidance – New Hampshire 

97
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Current Design Guidance – New Hampshire 

98
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• Guidance (Knox County 2018):
• Drainage area ≤ 5 ac with ≥ 50% impervious cover
• SHWT separation ≥ 2 ft 
• Pre-treatment required and accounts for WQV 

storage
• Minimum of 20 ft wide easement for maintenance

Current Design Guidance – Tennessee 
(Knox County)

101
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• General consensus:
• Pre-treatment is necessary
• Permeable in-situ soils should be avoided
• Saturation within 4 to 8 in of wetland soil surface 
• Temporarily (≤ 72 hrs) pond water at surface
• Drainage pipes incorporated into cell(s) to 

encourage infiltration into gravel layer 
• At least 8 in soil, 3 in intermediate aggregate, 2 ft 

gravel 

Current Design Guidance Summary

103
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How do SSGWs reduce peak stormwater flows, increase basin lag time, 
provide channel protection, and reduce annual runoff volume?

• Storage volume (temporarily ponded water)
• Orifice control (or clogging of media)
• Evapotranspiration 
• No exfiltration

How do SSGWs remove stormwater pollutants (specifically nutrients)?

• Hydraulic retention time (HRT)
• Vegetation uptake, microbial transformation and immobilization
• Gravel media adsorption, filtration, and storage

Can these answers inform the design, construction and maintenance of 
SSGWs ensuring long term efficiency?

Research Questions

105
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401 Patton Ave Greensboro, 
NC, Watershed

Watershed Activities 
and Specs

• 12.6 acres (VERY 
LARGE)

• 98% impervious

• City vehicle service 
center

• City garbage truck 
wash

• Baseflow from truck 
wash water

• Pulses of baseflow
from upstream service 
center 106
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Meet the 
Watershed
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Atmospheric
Pressure 
Transducer

Reference 
Ground 
Water

Overflow & 
Downstream 
Subsurface 
Water Level

Upstream 
Subsurface 
Water 
Levelhttps://stormwater.bae.ncsu.edu

/

108
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Construction of the City of Greensboro SSGW

https://stormwater.bae.ncsu.edu
/

113
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Construction of the City of Greensboro SSGW

1-ft of No. 57 
stone

0.3-ft of No. 78 
stone

0.5-ft of Sand

1-ft of No. 57 
stone

0.3-ft of No. 78 
stone

0.5-ft of 
Sand

114
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Species Common Name Wetland 
Indicator 

Status 

Survival/Presence 
During 1st 

Growing Season 
Herbaceous Species (Planted as Plugs on 3-foot centers (9 ft2)) 
Acorus americanus Sweet flag OBL TBD 

Andropogon gerardii Big bluestem FAC TBD 

Asclepias tuberosa Butterfly weed UPL TBD 

Chasmanthium latifolium River oats FACU TBD 

Eragrostris spectabilis Purple lovegrass UPL TBD 

Eupatorium perfoliatum Boneset FACW TBD 

Helianthus angustifolius Swamp sunflower FACW TBD 

Hibiscus coccineus Scarlet rose mallow OBL TBD 

Muhlenbergia capillaris Sweet grass FACU TBD 

Ratibida columnifera Prairie coneflower FACU TBD 

Rudbeckia fulgida 'Goldsturm' Goldsturm black-eyed susan FAC TBD 

Schizachyrium scoparium Little bluestem FACU TBD 

Scirpus cyperinus Woolgrass FACW TBD 

Sorghastrum nutans Indian grass FACU TBD 

Stokesia laevis Stokes aster FAC TBD 

Symphyotrichum novae-angliae New England aster FACW TBD 

Tridens flavus Purpletop tridens FACU TBD 

Verbena hastata Blue Swamp verbena FACW TBD 

Vernonia noveboracensis Ironweed FACW TBD 

Shrub Species (Planted as Tublings on 5-foot centers (25 ft2)) 
Callicarpa americana American beautyberry FACU TBD 

Calycanthus floridus Sweetshrub FACU TBD 

Clethra alnifolia   Sweet pepper bush FAC TBD 

Cornus amomum Silky dogwood FACW TBD 

Cyrilla racemiflora Titi FACW TBD 

      

     

      

      

      

      

      

      

Planting of the City of Greensboro SSGW
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Hydrology of the City of Greensboro SSGW

Before any 
storms

Drawdown 
following a storm 

(>1 inch) July 23rd, 
2019

July 23rd, 
2019

July 18th, 
2019

July 22nd, 
2019
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Monitoring SSGW Post-construction Hydrology: 
Volume & Flowrate

After 0.52-inch storm on Oct 
15th, 2019
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Monitoring SSGW Post-construction Hydrology: Clogging

Development of a Schmutzdecke after 
only a couple “frog-choking gully-
washers”?

Reason: LARGE LOADING RATIO
(i.e., 50:1 (Watershed Area : Media 
Area)
And VERY (VERY) DIRTY WATERSHED

Aug 5th, 
2019 Aug 5th, 

2019
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Monitoring SSGW Post-construction Geomorphology 
and Hydric Soil Formation:

Aerobic Degradation to 
Anaerobic Reactor

Aug 30th, 
2019

Aug 30th, 
2019

Nov 19th, 
2019

Caleb E. Mitchell
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Maintenance of 
the City of 
Greensboro SSGW

Photo Taken June 1st, 2020

Caleb E. Mitchell

Photo Taken: August 10th 2020

https://stormwater.bae.ncsu.edu
/
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Monitoring SSGW Post-construction Hydrology: Volume
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Monitoring SSGW Post-construction Water Quality: 
Boxplots
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Monitoring SSGW Post-construction Water Quality: TSS 
Percentile Ranks:

En Route to Primary SCM

129

Inflow
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Monitoring SSGW Post-construction Water 
Quality: TP Percentile Ranks
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1. Baseflow contributes 28% of total 
flow. Minimal Volume Mitigation

2. Plants need to be resilient to 
slime. 

3. Maintenance is hydrologically 
important

4. Median Treatment Efficiencies 
(n=21):
• TN = 45%
• TP = 68%
• TSS = 92%

133
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Floating treatment wetlands (FTWs)

• Relatively common 
retrofit option to 
improve wet pond 
performance

• Provide advances in
– water quality 

treatment
– wildlife habitat
– aesthetic benefits

Image source: Winston et al. (2013)
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Image source: International Institute for Sustainable 
Development. (2017)
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FTW Design Criteria & Costs

• Current design approach: 
target 20% percent water 
surface area covered by 
floating wetlands (Winston et 
al., 2013)

• FTW retrofit cost: 
- $1-24 per sq ft of mat
- cost of plants & installation 
- ~$100 per sq ft total Image source: Winston et al. (2013)

(I think this is high, but I 
did not check with student) 
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Research Gaps

• Forces runoff through the root matrix, 
maximizing contact and reducing risk of 
short-circuiting (Glenn and Bartell, 2008)

Random placement Strategic Placement

• Lack of research on optimal FTW placement for optimized 
hydraulic performance (Khan et al., 2013; Lucke et al., 2019) 
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Research Questions and Objectives

How will optimized FTW 
placement affect design 

recommendations? 

Can strategic FTW placement at the 
outlet structure improve Wet Pond 

water quality treatment? 

• Determine the additional 
total phosphorus (TP), 
total nitrogen (TN), and 
total suspended solids 
(TSS) removal achieved 
by FTWs

• Quantify the nutrient 
uptake of the wetland 
plants 

• Determine the minimal 
FTW surface area 
coverage needed to 
achieve desired pollutant 
removal

• Provide an update to the 
NC Stormwater Design 
Manual and SCM credit 
document 
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Site Selection

Image source: Google Earth



www.stormwater.bae.ncsu.edu

Site Selection

Image sources: Google Earth, Google Maps
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We will retrofit the ponds with: 
Beemats Floating Islands

Image source: Beetmats Floating Wetlands
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FTW Design Layout

Image sources: Google Earth, Google Maps
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Sampling Methods

• Collect flow-weighted samples following storm 
events at each site using automatic ISCO 6712 
samplers

Armory pond

• Two monitoring periods: pre- and post-retrofit

• Collect samples at the inlet and outlet 

Merrimont Park & 
Greenfield Lake

• No pre-retrofit monitoring

• Collect samples at the inlet, directly before 
FTWs, directly after FTWs, and at the outlet 

Image source: 
Teledyne ISCO
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Wetland Plant Sampling and Analysis

• Collect 9 plant root biomass 
samples upon FTW installation 
and seasonally thereafter at 
each project site

• Samples will be analyzed by for 
nutrients by the NC Department 
of Agriculture and Consumer 
Services (NCDA&CS) Plant 
Laboratory 

Image source: Beetmats Floating Wetlands
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Take Home Points: Floating Wetland 
Islands

• This research is 
in early stages.

• We’ll talk more in 
a year!
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Thank you for your attention!
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