

February 9th, 2023

Compliance Judgment, SNC, and PARs What Do I Do?

Presented by: Division of Water Resources NPDES Municipal Permitting Unit - Pretreatment

Compliance Judgment, SNC, and PAR Workshop Introduction to the Basics of Judging Compliance, Dealing with SNC, and Compiling Annual Reports

Learn about and refresh yourself on:

- How to Judge SIU Compliance
- When are Industries Really Bad
- What needs to be in the PAR
- How to Fill Out All Those Forms
- Who, What, and Where to Publish
- What DWR Really Wants to See in a Narrative

Compliance Judgment, SNC, and PAR Workshop Introduction to the Basics of Judging Compliance, Dealing with SNC, and Compiling Annual Reports

Today's Outline

- 1. Introduction-NPDES Requirement
- 2. Compliance Judgment
 - SNC Definition
 - SNC for Reporting/Permit Conditions
 - SNC for Limits Violations
 - Data Summary Form
 - Compliance Judgment Examples

Compliance Judgment, SNC, and PAR Workshop Introduction to the Basics of Judging Compliance, Dealing with SNC, and Compiling Annual Reports

Today's Outline (cont.)

- 3. IDSF
- 4. SNCR Form
- 5. PPS Form
- 6. Narrative
- 7. Waste Reduction
- 8. Public Notice
- 9. Enforceable Compliance Schedules (Orders)
- 10. Allocation Table

PART IV (from NPDES Permit) OTHER REQUIREMENTS

D. <u>Pretreatment Program Requirements</u>

10. Pretreatment Annual Reports (PAR)

The permittee shall report to the Division in accordance with 15A NCAC 2H .0908. In lieu of submitting annual reports, Modified Pretreatment Programs developed under 15A NCAC 2H .0904 (b) may be required to meet with Division personnel periodically to discuss the enforcement of pretreatment requirements and other pretreatment implementation issues.

For all other active pretreatment programs, the permittee shall submit two copies of a Pretreatment Annual Report (PAR) describing its pretreatment activities over the previous twelve months to the Division at the following address:

NC DENR / Division of Water Resources / Surface Water Protection Section Pretreatment, Emergency Response, and Collection Systems (PERCS) Unit 1617 Mail Service Center RALEIGH, NC 27699-1617

These reports shall be submitted by March 1 of each year and shall contain the following:

- a.) <u>Narrative</u>
- A narrative summary detailing actions taken, or proposed, by the Permittee to correct significant non-compliance and to ensure compliance with pretreatment requirements;
- b.) <u>Pretreatment Program Summary (PPS)</u> A pretreatment program summary (PPS) on forms or in a format provided by the Division;
- c.) <u>Significant Non-Compliance Report (SNCR)</u> A list of Industrial Users (IUs) in significant noncompliance (SNC) with pretreatment requirements, and the nature of the violations on forms or in a format provided by the Division;

Introduction -NPDES Requirements (cont.)

d.) Industrial Data Summary Forms (IDSF)

Monitoring data from samples collected by both the POTW and the Significant Industrial Users (SIUs). These analytical results must be reported on Industrial Data Summary Forms (IDSF) or on other forms or in a format provided by the Division;

e.) <u>Other Information</u>

Copies of the POTW's allocation table, new or modified enforcement compliance schedules, public notice of IUs in SNC, a summary of data or other information related to significant noncompliance determinations for IUs that are not considered SIUs, and any other information, upon request, which in the opinion of the Director is needed to determine compliance with the pretreatment implementation requirements of this permit;

Introduction – NC Pretreatment Rules

- from 15A NCAC 2H .0908(b)
- Control Authorities with active approved pretreatment programs shall submit once per year a pretreatment report describing its pretreatment activities over the previous 12 months. Two copies of each pretreatment report shall be submitted to the Division by March 1 of each year for activities conducted for two six-month periods, January 1 through June 30 and July 1 through December 31 of the previous year. This annual report shall contain the following information in accordance with forms specified by the Division:
- (1) a narrative summary of actions taken by the control authority to ensure compliance with pretreatment requirements;
- (2) a pretreatment program summary on forms or in a format provided by the Division;

Introduction - NC Pretreatment Rules (cont.)

- from 15A NCAC 2H .0908(b) (cont.)
- (3) A list of industrial users in significant noncompliance with pretreatment requirements, the nature of the violations, and actions taken or proposed to correct the violations; on forms or in a format provided by the Division;
- (4) An allocation table as described in Rule .0916(c)(4) listing permit information for all significant industrial users, including but not limited to permit limits, permit effective and expiration dates, and a comparison of total permitted flows and loads with Division approved maximum allowable loadings of the POTW, including flow, on forms or in a format provided by the Division;

Introduction - NC Pretreatment Rules (cont.)

• from 15A NCAC 2H .0908(b) (cont)

• (5) Other information which in the opinion of the Division Director is needed to determine compliance with the implementation of the pretreatment program, including, but not limited to, significant industrial user compliance schedules, public notice of industrial users in significant noncompliance, a summary of significant industrial user effluent monitoring data as described in Paragraphs (a) and (e) of this Rule, a summary of information related to significant noncompliance determination for industrial users that are not considered significant industrial users, and Long or Short Term Monitoring Plan data on forms or in a format provided by the Division;

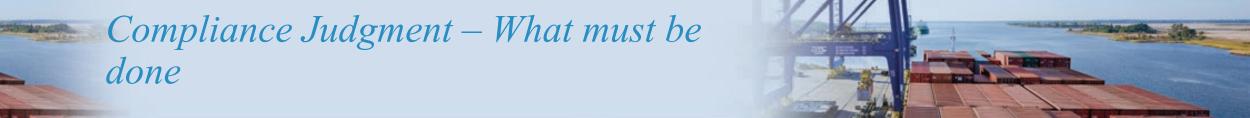
Introduction - NC Pretreatment Rules (cont.)


• 40 CFR 403.12(i) Annual POTW reports

- (1) Updated list of SIUs (AT)
- (2) Compliance status (SNCR)
- (3) Summary of enforcement activities (PPS & narrative)
- (4) Summary of program changes (narrative & program info sheet)
- (5) Any other relevant information

Compliance Judgment

Compliance Judgment


Detection of Violations of <u>ALL</u> Types:

- 1. Limits
- 2. Reporting
- **3. Permit Conditions**

References:

- DWR Approved Enforcement Response Plan (ERP) for Your POTW
- Comprehensive Guide, Chapter 7, Sections D and E
- Comprehensive Guide, Chapter 8
- PERCS web-site files "So your SIU has a limits violation-What do you do?" and "So your SIU has a reporting violation-What do you do?"

- POTW must identify all violations in a timely fashion as outlined in your ERP (preferably monthly).
- POTW must issue a Notice of Violation (NOV) for all violations.
- Significant Noncompliance (SNC) is a way of separating out the more significant violations for escalated enforcement action.

Compliance Judgment - What must be done (cont.)

- POTW must do a SNC determination at a minimum of every six months.
 - It is strongly recommended that a preliminary SNC determination be done halfway through the six-month period, especially where there was SNC in the previous period.
- The SNC determination must be within 30 days of receiving all the data for that period.
- SNC determination and follow-up enforcement action for the January through June reporting period should be completed no later than September 1 of that same year.
- SNC Determination and follow-up enforcement action for the July through December reporting period should be completed no later than March 1 of the following year.

Compliance Judgment - What must be done (cont.)

Repeat SNCs

- Repeat SNCs are a serious matter.
- If an Industry will be in SNC for a second consecutive period for the same parameter or requirement, the Division expects the POTW to take "appropriate action."
- The typical choices for "appropriate action" are:
 - 1. modify permit
 - 2. place SIU on an enforceable compliance schedule
 - 3. SIU ceases discharge (on their own or by order of POTW)
 - 4. SIU dropped from POTW's list of SIUs

Repeat SNCs (cont.)

- The POTW should make every effort to take the "appropriate action" <u>before</u> <u>the end</u> of the second consecutive SNC Period.
- In those special cases where this is not possible, take the "appropriate action" within two months after the end of that second period. If this is not done, the Division may take enforcement action against the POTW for failure to take adequate enforcement.
- Call DWR to discuss extenuating circumstances

SNC Definition

Significant Noncompliance is defined by 15A NCAC 2H .0903(b)(31) and Section 1.2(a)(35) of the NC Model Sewer Use Ordinance (SUO) as follows:

'Significant Noncompliance' or 'SNC' is the status of noncompliance of a significant industrial user when one or more of the following criteria are met:....

(A) Chronic violations of wastewater discharge limits, defined here as those in which <u>sixty-six percent or more</u> of all the measurements taken for the same pollutant parameter (not including flow) during a six-month period <u>exceed</u> (by any magnitude) a numeric pretreatment standard or requirement including instantaneous limits, as defined by 40 CFR Part 403.3(I);

Chronic SNC is when 66% or more are > limit!

(B) Technical Review Criteria (TRC) violations, defined here as those in which <u>thirty-three percent or more</u> of the measurements taken for the same <u>pollutant</u> parameter (not including flow) during a six-month period <u>equal or exceed</u> the product of the numeric pretreatment standard or requirement, including instantaneous limits, as defined by 40 CFR 403.3(I) multiplied by the applicable TRC; (TRC = 1.4 for BOD, TSS, fats, oil and grease, 1.2 for all other pollutants (except flow and pH));

TRC SNC is when 33% or more are > or = TRC value!

(C) Any other violation of a pretreatment standard or requirement as defined by 40 CFR 403.3(I) (daily maximum, long-term average, instantaneous limit, or narrative standard) that the control authority (or POTW, if different from the control authority) determines has caused, alone or in combination with other discharges, interference or pass through (including endangering the health of POTW personnel or the general public);

(D) Any discharge of a <u>pollutant or wastewater</u> that has caused imminent endangerment to human health, welfare or to the environment <u>or</u> has resulted in either the control authority's or the POTW's, if different than the control authority, exercise of its emergency authority under 40 CFR Part 403.8(f)(1)(vi)(B) to halt or prevent such a discharge;

SNC Definition (continued)

(E) Failure to meet, within 90 days after the schedule date, a compliance schedule milestone contained in a pretreatment permit or enforcement order for starting construction, completing construction, or attaining final compliance;

(F) Failure to provide, within 45 days after the due date, required reports such as baseline monitoring reports, 90-day compliance reports, self-monitoring reports, and reports on compliance with compliance schedules;

(G) Failure to accurately report noncompliance;

(H) Any other violation or group of violations that the control authority or POTW determines will adversely affect the operation or implementation of the local pretreatment program.

Additionally, effective January 1, 2012, any industrial user which meets the criteria in Parts (C), (D), or (H) of this Subparagraph shall also be in SNC;

Compliance Judgment for **Reporting** (includes permit condition)

Applies to any kind of report or notification

- 1) Failure to collect self-monitoring samples
- 2) Failure to submit reports or follow permit conditions. Includes reports being late or incomplete as well as complete failure to submit report or follow IUP condition at all. Types of reports include but are not limited to:

✓ sample results

flow monitoring reports

24 hour notification

- ✓resample and submit results within 30 days
- vproperly operate pretreatment units
- √change in process

vobtain Authorization to

- Construct
- √file application for IUP renewal
- ✓sludge management plans
- √slug/spill plans
- TTO certification

You only need to make this determination if there were violations

- a) Miss due dates for compliance schedule milestones in IUP or order by more than 90 days
 - Only required to apply this to due dates for:
 - \odot starting construction,
 - \circ completing construction, or
 - \circ attaining final compliance
 - Can be applied to other major one-time reports like slug/spill plans

SNC For Reporting/Permit Conditions (cont.)

b) Miss due date for report in IUP or order by more than 45 days

- Applies to due dates for reports such as:
 - Baseline monitoring reports,
 - 90-day compliance reports,
 - Self-monitoring reports, and
 - Reports on compliance with compliance schedules
- Can be applied to other routine reports like:
 - TTO certification
 - 24 hour notifications, and
 - Resampling

c) Inaccurately report noncompliance;

d) Any other violation or group of violations that the control authority or POTW determines will adversely affect the operation or implementation of the local pretreatment program.

• Completed on a Six-Month Basis, but really applies to each report

Examples:

1) An Industry is required by their IUP to sample monthly for 10 parameters and report the results to the POTW by the 20th day of the month following the month in which the samples were collected. The results of the samples collected in July, due August 20, are not received until October 23.

2) Industry fails to collect the required samples in November at all.

3) An Industry is required by their IUP to re-apply by February 1 (180 days before the IUP expires on August 1) and the application is not received until May 15.

Call DWR to discuss any extenuating circumstances

See Addendum for discussion and some examples of extenuating circumstances

SNC for Limits Violations

You only need to make this determination if there were violations

SNC for Limits Categories

a) Pass-through/Interference

b) Threat to Human Health, Welfare or the Environment

c) Emergency Suspension from such a Discharge

SNC for Limits Categories (cont.)

d) Chronic Violations (those that exceed limit by any quantity)

e) Technical Review Criteria (TRC) Violations (those that equal or exceed an adjusted limit by any quantity)

- Limit * 1.4 for BOD, TSS, fats, oils, and grease
- Limit * 1.2 for all other parameters, except pH

SNC for Limits Categories (cont.)

f) Any other violation or group of violations that the control authority or POTW determines will adversely affect the operation or implementation of the local pretreatment program.

SNC for Limits Violations (continued)

Completed on a Six Month Basis

Calculated For Each <u>Limit</u> For Example:

An Industry has both a daily maximum concentration limit as well as a monthly average concentration limit for BOD. At the end of the six month period, when calculating SNC for the parameter of BOD, you judge SNC for BOD separately for the daily max and the monthly average limits. (Note: <u>was effective as of January 1, 2012</u>).

SNC for Limits Violations (continued)

See Comp Guide for discussion of SNC for pH and flow, also

see Addendum Questions 32-36 for more info on SNC

evaluation for flow.

Forms Used For SNC

- Industrial Data Summary Forms (IDSF) or other forms or in a format provided by the Division;
- Compliance Judgment Worksheet (Ch. 7, North Carolina Comprehensive Guidance for Pretreatment Programs)

Other

- SNC for pH (no TRC required)
- SNC for Flow (flow is not a "pollutant")

See Addendum for discussion and some examples of extenuating circumstances.

Call DWR to discuss extenuating circumstances

NORTH CAROLINA Department of Environmental Quality

Data Summary Form

Sample Location:	-														
Will Plateit			FLOW			BOD				TSS				AMMONIA	
	POTW														
Out to Date	or SIU		MOD		/	Usedin	Calculated			Usedin	Calculated		/	Usedin	Calculated
Sample Date	Sample		MGD	4	< mg/L	Calculation	lbs/day	<	mg/L	Calculation	lbs/day	4	< mg/L	Calculation	lbs/day
7/17/12		Spreadsheet Instructions:	0.0752									_		_	
	POTW	1) Data entered only	0.0469	_								_		_	
8/7/12		in Heavy Bordered	0.0313									_		_	
8/23/12		cells. Rest of										┢			<u> </u>
9/3/12		worksheet is protected,	0.079												L
10/9/12		password is "2".	0.0676												L
10/21/12			0.0681												
11/1/12		2) For below detection	0.0657												L
11/16/12		data, enter "<" in "<"	0.0678												
12/11/12	SIU	column, and enter	0.0292												
		detection													
		level in Influent or													
		Effluent mg/l columns.													
		Spreadsheet will auto-													
		matically													
		calculate averages and													
		removal rates using 1/2													
		value entered.													
		Sillorou.													
Column Averages=>			0.0585												
Maximum			0.0790												
Minimum			0.0292												
														NC Dep	RTH CAROLIN

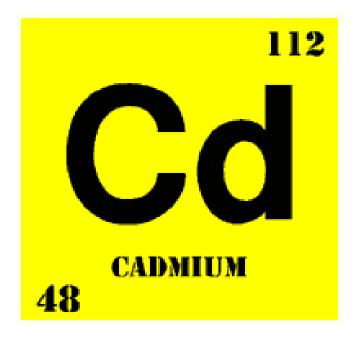
Sample Location:															
Will Plateit		FLOW	P	RSENIC				CA	ADMIUM				СН	ROMIUM	
	POTW														
Sample Date	or SIU Sample	MGD	< mg/L	Used in Calculation	Calculated lbs/day		<	mg/L	Used in Calculation	Calculated lbs/day	<	< 1	mg/L	Used in Calculation	Calculated lbs/day
7/17/12	SIU	0.0752	, , , , , , , , , , , , , , , , , , ,			T		0.042	0.042	0.0263			0.32	0.315	0.1976
7/24/12	POTW	0.0469						0.086		0.0336			0.53	0.532	0.2081
8/7/12	SIU	0.0313				1		0.087	0.087	0.0227			0.37	0.373	0.0974
8/23/12	SIU	0.0538						0.077	0.077	0.0345					
9/3/12	SIU	0.079						0.067	0.067	0.0441			0.82	0.818	0.5389
10/9/12	SIU	0.0676						0.089	0.089	0.0502			0.23	0.231	0.1302
10/21/12	SIU	0.0681						0.076	0.076	0.0432					
11/1/12	SIU	0.0657						0.091	0.091	0.0499			0.21	0.206	0.1129
11/16/12	SIU	0.0678						0.069	0.069	0.0390					
12/11/12	SIU	0.0292						0.057	0.057	0.0139			0.72	0.721	0.1756
			_									4_			
							_								
Column Averages =>		0.0585							0.0741	0.0357				0.4566	0.2087
Maximum		0.0790							0.0910	0.0502		_		0.8180	0.5389
Minimum		0.0292							0.0420	0.0139				0.2060	0.0974

Sample Location:															
Will Plateit		FLOW		C	OPPER			C	YANIDE					LEAD	
Sample Date	POTW or SIU Sample	MGD	<	mg/L	Usedin Calculation	Calculated lbs/day	<	mg/L	Used in Calculation	Calculated lbs/day		۷	mg/L	Usedin Calculation	Calculated lbs/day
7/17/12		0.0752		1.71	1.713	1.0743	<	0.01	0.005	0.0031	ľ		0.02	0.02	0.0125
7/24/12		0.0469		1.12	1.121	0.4385	<	0.01	0.005	0.0020			0.10	0.1	0.0391
8/7/12		0.0313		1.32	1.321	0.3448	<	0.01	0.005	0.0013			0.03	0.03	0.0078
8/23/12	SIU	0.0538													
9/3/12	SIU	0.079		0.86	0.862	0.5679	<	0.01	0,005	0.0033		<	0.01	0.005	0.0033
10/9/12	SIU	0.0676		0.78	0.781	0.4403	<	0.01	0.005	0.0028	_	-	0.01	0.01	0.0056
10/21/12	SIU	0.0681													
11/1/12	SIU	0.0657		0.93	0.927	0.5079	<	0.01	0.005	0.0027			0.09	0.09	0.0493
11/16/12	SIU	0.0678													
12/11/12	SIU	0.0292		1.53	1.531	0.3728	<	0.01	0.005	0.0012			0.07	0.07	0.0170
											_				
							Ц								
							Ц				_				
							Ц								
							Н				_				
Column Averages =>		0.0585			1.1794	0.5352			0.0050	0.0024				0.0464	0.0193
Maximum		0.0790			1.7130	1.0743			0.0050	0.0033	_			0.1000	0.0493
Minimum		0.0292			0.7810	0.3448			0.0050	0.0012				0.0050	0.0033

Sample Location:															
Will Plateit		FLOW		ME	RCURY			MOL	YBDENU	Μ			1	NICKEL	
Sample Date	POTW or SIU Sample	MGD	<	mg/L	Used in Calculation	Calculated lbs/day	<	mg/L	Usedin Calculation	Calculated lbs/day		<	mg/L	Used in Calculation	Calculated lbs/day
7/17/12	SIU	0.0752	<	0.0002	0.0001	0.00006							1.98	1.98	1.2418
7/24/12	POTW	0.0469	<	0.0002	0.0001	0.00004							1.64	1.64	0.6415
8/7/12	SIU	0.0313	<	0.0002	0.0001	0.00003							2.86	2.86	0.7466
8/23/12	SIU	0.0538											2.02	2.02	0.9064
9/3/12	SIU	0.079	<	0.0002	0.0001	0.00007							1.72	1.72	1.1332
10/9/12	SIU	0.0676	<	0.0002	0.0001	0.00006							3.03	3.03	1.7083
10/21/12	SIU	0.0681											2.52	2.52	1.4312
11/1/12	SIU	0.0657	<	0.0002	0.0001	0.00005							2.38	2.38	1.3041
11/16/12	SIU	0.0678											1.57	1.57	0.8878
12/11/12	SIU	0.0292	<	0.0002	0.0001	0.00002							1.79	1.79	0.4359
											_				
											_				
											_				
Column Averages=>		0.0585			0.000100	0.000047								2.1510	1.0437
Maximum		0.0790			0.000100	0.000066								3.0300	1.7083
Minimum		0.0292			0.000100	0.000024								1.5700	0.4359

Sample Location:																	
Will Plateit		FLOW			SE	LENIUM				S	ILVER					ZINC	
	POTW																
Commile Diste	or SIU			_		Usedin	Calculated			~/I	Usedin	Calculated			mm //	Usedin	Calculated
Sample Date	Sample	MGD		<	mg/L	Calculation	lbs/day	<		g/L	Calculation	lbs/day	_	<	mg/L	Calculation	lbs/day
7/17/05		0.0752	_	-				<		0.005		0.0016	_		1.02	1.02	0.6397
	POTW	0.0469		_				<		0.005	0.0025	0.0010	_		1.10	1.1	0.4303
8/7/05	SIU	0.0313		_				<		0.005	0.0025	0.0007	_		1.31	1.31	0.3420
8/23/05	SIU	0.0538		4									_				
9/3/05	SIU	0.079	_					<		0.005	0.0025	0.0016	_		0.78	0.78	0.5139
10/9/05	SIU	0.0676	_					<	:	0.005	0.0025	0.0014	_		0.91	0.91	0.5130
10/21/05	SIU	0.0681		_													
11/1/05	SIU	0.0657		_				<		0.005	0.0025	0.0014			0.96	0.96	0.5260
11/16/05	SIU	0.0678		_													
12/11/05	SIU	0.0292						<	:	0.005	0.0025	0.0006			0.71	0.71	0.1729
olumn Averages=	=>	0.0585									0.0025	0.0012		_		0.9700	0.4483
Maximum		0.0790		╈							0.0025	0.0016		_		1.3100	0.6397
Minimum		0.0292									0.0025	0.0006				0.7100	0.1729

Sample Location: Will Plateit		FLOW			& GREAS	F		Ph	osphorus					
will I latert	POTW								osphorus					
	or SIU				Usedin	Calculated			Usedin	Calculated			Usedin	Calculated
Sample Date	Sample	MGD	<	mg/L	Calculation	lbs/day	<	mg/L	Calculation	lbs/day	<	mg/L	Calculation	lbs/day
7/17/05	SIU	0.0752						21	21	13.1705				
7/24/05	POTW	0.0469						20	20	7.8229				
8/7/05	SIU	0.0313						19	19	4.9598				
8/23/05	SIU	0.0538												
9/3/05	SIU	0.079						15	15	9.8829				
10/9/05	SIU	0.0676						21	21	11.8395				
10/21/05	SIU	0.0681												
11/1/05	SIU	0.0657						16	16	8.7670				
11/16/05	SIU	0.0678												
12/11/05	SIU	0.0292						23	23	5.6011				
olumn Averages=	>	0.0585							19.2857	8.8634				
Maximum		0.0790							23.0000	13.1705				
Minimum		0.0292							15.0000	4.9598				



Examples

Example 1

- WillPlateit Metal Finishers
- 1st 6-month period
- Cadmium

IU		• •	_						TW NPDES#=>		IUP#=>	
	P, Part I, S	Sectio	n F:						or these Limits=>		Pipe # =>	
Eff	iluent Limits	and Mor	nitoring					Expiration date for	or these Limits =>	12/30/15	40 CFR # =>	433.17
Re	quirements:		•								if not applicab	le put N/A
	•						THELIN	IITSON THISP	AGE ARE, (Check	(one below):		
Th	e permittee n	nav disc	harge	rom thi	s		LIN	ITS for ENTIRE	• •	Yes		
	ecific pipe nu							INTERIM Limits		No		
эр				y to the	.30			INTERIM Limits	for period # 2 =>	No		
								FINA	L Limits Page =>	No		
		Conc	entration	Limits	Mas	s-Based L	imits	Monitoring	Frequency	Sample	Required	
COI	NVENTIONAL	Daily	Monthly	Units	Daily	Monthly	Units			Collection	Laboratory	
PAF	RAMETERS	Max	Avg.		Max	Avg		by Industry	by POTW	Method	Detection	
										(C or G)	Limits	
	Flow	0.098		MGD			MGD	Monthly	Once/6 Months	Metered		
2.				mg/l			lbs/day					
3.				mg/l			lbs/day					
4.	temperature			Deg. C			Deg. C					
5.	pН			Std. Units			Std. Units					
OTI	HER PARAMETE			petically								
	Cadmium	0.07		mg/l			lbs/day	Monthly	Once/6 Months	С		
7.	Chromium	1.71		mg/l			lbs/day	Monthly	Once/6 Months	С	0.005	
7. 8.	Chromium Copper	1.71 2.07		mg/l mg/l			lbs/day lbs/day	Monthly Monthly	Once/6 Months Once/6 Months	C C	0.005 0.002	
7. 8. 9.	Chromium Copper Cy <i>a</i> nide	1.71 2.07 0.01		mg/l mg/l mg/l			lbs/day lbs/day lbs/day	Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months	C C G	0.005 0.002 0.01	
7. 8. 9. 10.	Chromium Copper Cyanide Lead	1.71 2.07 0.01 0.43		mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months	С С G С	0.005 0.002 0.01 0.01	
7. 8. 9. 10. 11.	Chromium Copper Cyanide Lead Mercury	1.71 2.07 0.01 0.43 0.0002		mg/l mg/l mg/l mg/l mg/l			lbs/day lbs/day lbs/day lbs/day lbs/day	Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C C G C C	0.005 0.002 0.01 0.01 0.002	
7. 8. 9. 10. 11. 12.	Chromium Copper Cyanide Lead Mercury Nickel	1.71 2.07 0.01 0.43 0.0002 2.38		mg/l mg/l mg/l mg/l mg/l			lbs/day lbs/day lbs/day lbs/day lbs/day	Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C C G C C C	0.005 0.002 0.01 0.01 0.0002 0.01	
7. 8. 9. 10. 11. 12. 13.	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous	1.71 2.07 0.01 0.43 0.0002 2.38 30		mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C C G C C C C C	0.005 0.002 0.01 0.01 0.0002 0.01 0.05	
7. 8. 9. 10. 11. 12. 13. 14.	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24		mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C	0.005 0.002 0.01 0.01 0.002 0.01 0.05 0.005	
7. 8. 9. 10. 11. 12. 13. 14. 15.	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver Zinc	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24 1.48		mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C C C	0.005 0.002 0.01 0.01 0.0002 0.01 0.05 0.005 0.005	
7. 8. 9. 10. 11. 12. 13. 13. 14. 15.	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24		mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C	0.005 0.002 0.01 0.01 0.002 0.01 0.05 0.005	
 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver Zinc	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24 1.48		mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C C C	0.005 0.002 0.01 0.01 0.0002 0.01 0.05 0.005 0.005	
 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver Zinc	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24 1.48		mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C C C	0.005 0.002 0.01 0.01 0.0002 0.01 0.05 0.005 0.005	
 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver Zinc	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24 1.48		mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C C C	0.005 0.002 0.01 0.01 0.0002 0.01 0.05 0.005 0.005	
 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 	Chromium Copper Cyanide Lead Mercury Nickel Phosphorous Silver Zinc	1.71 2.07 0.01 0.43 0.0002 2.38 30 0.24 1.48 2.13*		mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l			Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day Ibs/day	Monthly Monthly Monthly Monthly Monthly Monthly Monthly Once/6 Months	Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months Once/6 Months	C G C C C C C C G G	0.005 0.002 0.01 0.002 0.01 0.005 0.005 0.005	

Compliance Judgment Worksheet For SNC With Limits Use separate sheets for each Industry SNC determination for Flow optional, see Section 7-E Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001
Parameter: Cadmium	Six Month SNC Determination	on Period:
	1/1/2012-6/30/12	

See next page for definitions

Daily Max. or Ave. Limits from IUP		for B	-	eria = TRC Limit rease; Circle 1.2 for all other polluta t not required for pH:	nts	Circle which units apply to each individual Limit
Daily Maximum	Limit:	*	1.2 or 1.4	= TRC Daily Limit:	m	g/l or lbs/day
Average	e Limit:	*	1.2 or 1.4	= TRC Avg. Limit:	m	g/l or lbs/day

Column 1: I - Industry self P-POTW A - Average

Column 5: Use only if IUP has (monthly, or other?) average limit. Average values of all sampling events collected within the "average" period (for example, for a monthly average limit, use all values collected within a calendar month) and enter this average in column 5. Compare this average to the appropriate average IUP limit or TRC limit.

Column 6: Use only if IUP has daily limits in lbs/day. Formula to use is (mgd * mg/l * 8.34 = lbs/day).

Column 7: Use only if IUP has (monthly?) average limits in lbs/day. Use (mgd * mg/l * 8.34 = lbs/day).

Column 8: Put "1" for each daily maximum or average value, tally up at bottom as "A."

Column 9: Compare daily and average values to IUP limits above, put "0" if at or below limit, "1" if above, tally at bottom as "B." Column 10: Compare daily and average values to TRC limits above, put "0" if below limit, "1" if at or above, tally at bottom as

	-				-			· · ·	
Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	1/7/12	.0691	.059						
Р	2/1/12	.0543	.060						
Ι	2/4/12	.0783	.062						
Ι	3/6/12	.0796	.096						
Ι	3/22/12	.0748	.102						
Ι	4/2/12	.0667	.083						
Ι	4/17/12	.0612	.082						
Ι	5/1/12	.0342	.078						
Ι	5/16/12	.0589	.079						
Ι	6/3/12	.0547	.064						
Ι	6/18/12	.0693	.080	1					
Ι	6/30/12	.0712	.076						
]					
				1		1			
				1		1			
		•	I	ist these T	otals on r	next page	=> A =	B =	C=

Count- The number of daily or the number of average sample values used for checking compliance. (Daily values for this example)

List these Totals on next page

Compliance Judgment Worksheet For SNC With Limits SNC determination for Flow optional, see Section 7-E Use separate sheets for each Industry Use

|--|

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001
Parameter: Cadmium	Six Month SNC Determination	on Period:
	1/1/2012-6/30/12	

See next page for definitions

Daily Max. or Ave. Limits from IUP	IUP Limit * TRC criteria = TRC Limit Circle 1.4 For TRC for BOD, TSS, oil, fat, grease; Circle 1.2 for all other pollutants TRC compliance judgment not required for pH:	Circle which units apply to each individual Limit
Daily Maximur		g/l or lbs/day
•		g/1 or lbs/day
Column 1: I - Indu	Istry self P-IOTW A - Average	
Column 5: Use or	ly if IUP has (monthly, or ther?) average limit. Average values of all sampling events	collected within the
"avera	ge" period (for example, for a monthly average limit, use all values collected within a calen	idar month) and enter
this av	erage in column 5. Compare this average to the appropriate average IUP limit or TRC limit.	
Column 6: Use on	ly if IUP has daily limits in lbs/day. Formula to use is $(mgd * mg/l * 8.34 = lbs/day)$.	
Column 7: Use on	ly if IUP has (monthly?) average limits in log/day. Use (mgd * mg/l * 8.34 = lbs/day).	

Column 7: Use only if IUP has (monthly?) average limits in longay. Use (mgd * mg/1 * 8.34 = los/day). Column 8: Put "1" for each daily maximum or average value, tally up at bottom as "A." Column 9: Compare daily and average values to IUP limits above,put "0" if at or below limit, "1" if above, tally at bottom as "B." Column 10: Compare daily and average values to TRC limits above,put "0" if below limit, "1" if at or above, tally at bottom as "C."

									-
Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	1/7/12	.0691	.059				1		
Р	2/1/12	.0543	.060				1		
Ι	2/4/12	.0783	.062				1		
Ι	3/6/12	.0796	.096				1		
Ι	3/22/12	.0748	.102				1		
Ι	4/2/12	.0667	.083				1		
Ι	4/17/12	.0612	.082				1		
Ι	5/1/12	.0342	.078				1		
Ι	5/16/12	.0589	.079				1		
Ι	6/3/12	.0547	.064				1		
Ι	6/18/12	.0693	.080				1		
Ι	6/30/12	.0712	.076				1		
			L	ist these T	otals on r	next page	\Rightarrow A = 1	2 B =	C=

Compliance Judgment Worksheet For SNC With LimitsUse separate sheets for each IndustrySNC determination for Flow optional, see Section 7-E Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006 Pipe Number: 0001				
Parameter: Cadmium	Six Month SNC Determination Period:				
	1/1/2012-6/30/12				

See next page for definitions

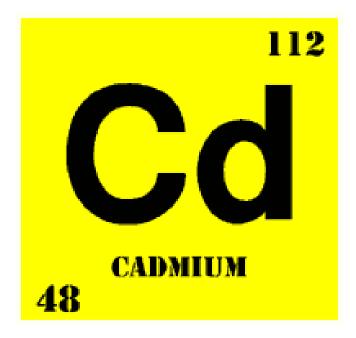
Daily Ma Ave. from I	Limits	IUP Limit * TRC criteria = TRC Limit Circle 1.4 For TRC for BOD, TSS, oil, fat, grease; Circle 1.2 for all other pollutants TRC compliance judgment not required for pH:							hich units apply individual Limit
Daily Maximum Limit: .07 * 1.2 or 1.4 = TRC Daily Limit: .084 mg/l or lbs/day									
Column 1: Column 5: Column 6: Column 7: Column 8: Column 9: Column 10:	"average" this average Use only i Use only i Put "1" for Compare of	v self P-IrOT f IUP has (mont period (for exam je in column 5. C f IUP has daily in f IUP has (month cach daily max r laily and average laily and average	hly, or other?) ble, for a ment ompare this av nits in lbs/day. ly?) average lir num or average values to IUP values to TRC	hly average li brage to the a Formula to u nits in lb.(day e value, tally limits above, limits above,	imit, use all ppropriate av use is (mgd y. Use (mgd up at bottom out "0" if a o put "0 of bel	values collect verage VOP 1 * mg/1 * 8.3 1 * mg/1 * 8.3 as "A." or below limi low limit, "1	ted within a imit or TRC 4 = lbs/day 34 = lbs/day t, "1" if abov " if at or abo	calendar mont limit). y). ve, tally atbotto	h) and enter om as "B." om as "C."
Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	e Daily Flow, mgd	Daily Conc. mg/l	Ayg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	1/7/12	.0691	.059				1	8	
Р	2/1/12	.0543	.060				1	0	
Ι	2/4/12	.0783	.062				1	0	
Ι	3/6/12	.0796	.096	1			1	1	
Ι	3/22/12	2 .0748	.102]	1	1	
Ι	4/2/12	.0667	.083				1	1	
Ι	4/17/12	.0612	.082				1	1	
Ι	5/1/12	.0342	.078				1	1	
Ι	5/16/12	.0589	.079				1	1	
Ι	6/3/12	.0547	.064				1	0	
Ι	6/18/12	.0693	.080				1	1	
Ι	6/30/12	2 .0712	.076	-		-	1	1	
						-			
	<u> </u>	ļ	L	ist these T	otals on r	next page	\Rightarrow A = 12	$\mathbf{B} = 8$	C=

Compliance Judgment Worksheet For SNC With Limits Use separate sheets for each Industry SNC determination for Flow optional, see Section 7-E Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number:0006Pipe Number:0001					
Parameter: Cadmium	Six Month SNC Determination	on Period:				
	1/1/2012-6/30/12					

See next page for definitions

Daily Max.]	IUP Limit * TR	C criteria	= TRC Lim	nit		Circle which units apply
Ave. Lii	CII	cle 1.4 For	TRC for	r BOD, TSS, oil,	fat, grease	; Circle 1.	2 for all ot	her pollutants	to each individual Limit
from IUP	from IUP				lgment not	required for	r pH:	-	
Daily Maxi	mum Lin	nit: .07	*	1.2 or	1.4 =	TRC Da	ily Limi	t: 084 (n	ng/l or lbs/day
•	verage Lir		*	1.2 or		TRC Av			ng/l or lbs/day
	U						8		-8
Column 1: I -	 Industry se 	lf P-I	OTW	A - Averag	e				
									s collected within the
"a	verage" per	od (for ex	ample, fo	or a monthly ave	rage limit,	use all valu	es collecte	d within a cale	ndar month) and enter
th	is average in	column 5	. Čompa	ire this average to	the appro	priate averag	ge <u>I</u> UP lim	it or TRC limi	
Column 6: Us	se only if IU	P has dail	imits i	n lbs/day. Form	ila to use is	(mgd * mg	* 8.34	= lbs/day).	
Column 7: Us	se only if IU	P has (mo	nthly?) a	verage limits in l	bs/day. Us	e (mgd * m	ng/1 * 8.34	= lbs/day).	


Column 7: Use only if IUP has (monthly?) average limits in lbs/day. Use (mgd ~mg/1~8.34 = lbs/day).
Column 8: Put "1" for each daily maximum or average value, tally up at bottom as "A."
Column 9: Compare daily and average values to IUP limits above, put "0" if at or below limit, "1" if above, tally at bottom as "B."
Column 10: Compare daily and average values to TRC limits above, put "0" if below limit, "1" if at or above, tally at bottom as "C."

Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation 2
Ι	1/7/12	.0691	.059	8			V	0	à
Р	2/1/12	.0543	.060				1	0	0
Ι	2/4/12	.0783	.062				1	0	0
Ι	3/6/12	.0796	.096				1	1	1
Ι	3/22/12	.0748	.102				1	1	1
Ι	4/2/12	.0667	.083				1	1	0
Ι	4/17/12	.0612	.082				1	1	0
Ι	5/1/12	.0342	.078				1	1	0
Ι	5/16/12	.0589	.079				1	1	0
Ι	6/3/012	.0547	.064				1	0	0
Ι	6/18/12	.0693	.080				1	1	0
Ι	6/30/12	.0712	.076				1	1	0
			L	ist these T	`otals on r	next page	\Rightarrow A = 1	$2 \qquad \mathbf{B} = 8$	C = 2

Compliance Judgment Worksheet Fo		
Use separate sheets for each Industry SNC determination	for Flow optional, see Section 7-E	Use separate sheets for each Pollutant
SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001
Parameter: Cadmium	Six Month SNC Determin	nation Period: 1/1/2012-6/30/12
SIGNIFICANT NON-COMPLIANCE (SNC)	LIMITS DETERMINATIO	N Calculate % and Circle Answers
 Calculate the % of Regular violations: Is B/A greater than or equal to 0.66 (or 66 9) 		or? Yes No
3) Calculate the % of TRC Violations:4) Is C/A greater than or equal to 0.33 (or 33)	%)? $2/12$ TRC Violator	Yes / No
5) Did any violation, alone or in combinatio POTW, or endanger the health of POTW w		Yes No Per ORC
6) Did any violation cause imminent enda environment or has resulted in the POTW prevent such discharge?		/ welfare or to the
	n-Compliance Report (SNC cluding parameter, period, ar	(R) form in the Pretreatment Annual Report and POTW actions), and the POTW must take
Is the SIU in SNC for <u>this six month period</u> ? Was the SIU in <u>SNC</u> for THE SAME PARA		(NO) <u>x month compliance period</u> ? CIRCLE
ONE: YES NO		
If YES to EITHER question, DESCRIBE IN	N NAKKAIIVE.	
	t actions must be taken as so take the action within 2 mo ment by the Division. The o nedule;	oon as possible, preferably before the end of on the after the end of the second consecutive
Permit modification.	Chanten 9 Enforment	and the DOTUJE Enforcement Descrete Disc
See Chapter 9 - Pretreatment Annual Reports (ERP).	s, Chapter 8 - Enforcement, 8	and the POT w s Enforcement Response Plan
Limit:	its. y the actual IUP limits by th BOD, TSS, oil, fat, grease all other pollutants	e proper TRC Criteria value to get a TRC
SNCR Significant Non-Compliance Repor		
SNC Significant Non-Compliance		

Example 2

- WillPlateit Metal Finishers
- 2nd 6-month period
- Cadmium

Compliance Judgment Worksheet For SNC With Limits Use separate sheets for each Industry SNC determination for Flow optional, see Section 7-E Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001			
Parameter: Cadmium	Six Month SNC Determination				
	Period:7/1/2012-12/31/12				

See next page for definitions

Daily Max. or Ave. Limits from IUP	IUP Limit * TRC criteria = TRC Limit Circle 1.4 For TRC for BOD, TSS, oil, fat, grease; Circle 1.2 for all other pollutants TRC compliance judgment not required for pH:	Circle which units apply to each individual Limit
Daily Maximum	Limit: $*$ 1.2 or 1.4 = TRC Daily Limit: m	ig/l or lbs/day

		1.2 01 1.1		mg/r or	105/ du y
Average Limit:	*	<u>1.2 or 1.4</u>	= TRC Avg. Limit:	mg/l or	lbs/day

Column 1: I - Industry self P-POTW A - Average

Column 5: Use only if IUP has (monthly, or other?) average limit. Average values of all sampling events collected within the "average" period (for example, for a monthly average limit, use all values collected within a calendar month) and enter this average in column 5. Compare this average to the appropriate average IUP limit or TRC limit.

Column 6: Use only if IUP has daily limits in lbs/day. Formula to use is (mgd * mg/l * 8.34 = lbs/day).

Column 7: Use only if IUP has (monthly?) average limits in lbs/day. Use (mgd * mg/l * 8.34 = lbs/day).

Column 8: Put "1" for each daily maximum or average value, tally up at bottom as "A."

Column 9: Compare daily and average values to IUP limits above, put "0" if at or below limit, "1" if above, tally at bottom as "B."

Column 10: Compare daily and average values to TRC limits above, put "0" if below limit, "1" if at or above, tally at bottom as "C."

Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	7/17/12	.0752	.042						
Р	7/24/12	.0469	.086						
Ι	8/7/12	.0313	.087						
Ι	8/23/12	.0538	.077						
Ι	9/3/12	.0790	.067						
Ι	10/9/12	.0676	.089						
Ι	10/21/12	.0681	.076						
Ι	11/1/12	.0657	.091						
Ι	11/16/12	.0678	.069						
Ι	12/17/12	.0292	.057						
<u> </u>			L	ist these T	otals on r	next page	=> A =	B =	C=

51

Compliance Judgment Worksheet For SNC With Limits Use separate sheets for each Industry SNC determination for Flow optional, see Section 7-E

Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006 Pipe Number: 0001					
Parameter: Cadmium	Six Month SNC Determination Period:					
	7/1/2012-12/31/12					

See next page for definitions

Daily Max. or Ave. Limits from IUP		Circle which units apply to each individual Limit
Daily Maximur		
Averag	ge Limit: * <u>1.2 or 1.4</u> = TRC Avg. Limit: mg	g/l or lbs/day
Column 1: I - Indu	stry self P-IOTW A - Average	
	ly if IUP has (monthly, or other?) average limit. Average values of all sampling events	collected within the
	e" period (for example, for a monthly average limit, use all values collected within a calend	
	erage in column 5. Compare this average to the appropriate average IUP limit or TRC limit.	
Column 6: Use on	ly if IUP has daily limits in lbs/day. For oula to use is $(mgd * mg/l * 8.34 = lbs/day)$.	
Column 7: Use on	ly if IUP has (monthly?) average limits in lbs/day. Use (mgd * mg/l * 8.34 = lbs/day).	
Column 8: Put "1"	for each daily max mum or average value, tally up at bottom as "A."	

Column 9: Compare daily and average values to IUP limits above,put "0" if at or below limit, "1" if above, tally at bottom as "B." Column 10: Compare daily and average values to TRC limits above,put "0" if below limit, "1" if at or above, tally at bottom as "C."

		-							
Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	7/17/12	.0752	.042				1		
Р	7/24/12	.0469	.086				1		
Ι	8/7/12	.0313	.087				1		
Ι	8/23/12	.0538	.077				1		
Ι	9/3/12	.0790	.067				1		
Ι	10/9/12	.0676	.089				1		
Ι	10/21/12	.0681	.076				1		
Ι	11/1/12	.0657	.091				1		
Ι	11/16/12	.0678	.069				1		
Ι	12/17/12	.0292	.057				1		
				-					
				ist these T					

52

Compliance Judgement Worksheet For SNC With Limits Use separate sheets for each Industry SNC determination for Flow optional, see Section 7-E

Use separate sheets for each Pollutant

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001
Parameter: Cadmium	Six Month SNC Determination	on Period:
	7/1/2012-12/31/12	

See next page for definitions

Daily Ma Ave. from I	Limits C	ircle 1.4 For TF	RC for BOD, T	-	rease; Circ	le 1.2 for all	other polluta		which units apply individual Limit
ļ			TRC complia	ance judgmen					
	ximum Lii Average Li		* <u>1.2</u> * <u>1.2</u>	or 1.4 or 1.4		Daily Lin Avg. Lin		mg/l or mg/l or	2
Column 1: Column 5: Column 6: Column 7: Column 8: Column 9:	"average" pe this average Use only if I Use only if I Put "1" for e Compare dai	IUP has (mont riod (for examp in column 5. C UP has daily lr UP has (month ach daily maxi ly and average	hly, or other?) ple, for a mont compare this av nits in lbs/day. ly?) average lin num or average values to IUP l	hly average li erage to the a Formula to u nits in los/day e value, tally limits above,p	mit, use all ppropriate a use is (mgd v. Use (mgc up at bottom uu "0" if at c	values collec verage IUP) * mg/l * 9.34 l * mg/l * 8.3 as " A." or below limi	ted within a imit or TRC 1 4 = lbs/day 34 = lbs/day t, "1" if above	calendar mon imit.). /). e, tally at botto	th) and enter om as "B."
Column 10:	Compare dai	ly and average	ralues to TRC	limits above,	put "0" if be	low limit, "1	" if at or abov	ve, tally at bo	tom as "C."
Col. 1:	From IDMRs	From IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	Daily Flow, mgd	Daily Conc. mg/l	Avg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	7/17/12	.0752	.042	8			1	-	
Р	7/24/12	.0469	.086			4	1	1	
I	8/7/12	.0313	.087			ł	1	1	
Ι	8/23/12	.0538	.077			1	1	1	
Ι	9/3/12	.0790	.067			1	1	0	
Ι	10/9/12	.0676	.089			1	1	1	
Ι	10/21/12	.0681	.076			1	1	1	
Ι	11/1/12	.0657	.091			1	1	1	
Ι	11/16/12	.0678	.069			1	1	0	
Ι	12/17/12	.0292	.057			-	1	0	
						-			
						ł			
							$- \Delta = 10$	$\mathbf{B} = 6$	C=

Compliance Judgment	Worksheet For SNC With Limits		
Use separate sheets for each Industry	SNC determination for Flow optional, see Section 7-E	Use separate sheets for each Pollutant	

SIU Name: WillPlateit Metal Finishers	IUP Number: 0006	Pipe Number: 0001
Parameter: Cadmium	Six Month SNC Determination	on Period:
	7/1/2012-12/31/12	

See next page for definitions

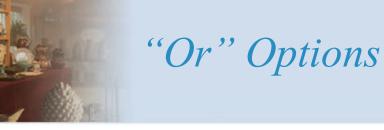
Daily Ma Ave. from I	Limits	Circle 1.4 For TF	RC for BOD, T	t * TRC crit SS, oil, fat, gr ance judgmen	rease; Circ	le 1.2 for all	other polluta		hich units apply individual Limit
Column 1: Column 5: Column 6: Column 7: Column 8: Column 9:	Average I - Industr Use only "average" this averag Use only i Use only i Put "1" for Compare of		* <u>1.2</u> * <u>1.2</u> W A - hly, or ther?) ple, for a ment ompare this av nits in lbs/day. ly?) average lin num or averagy values to IUP	or 1.4 or 1.4 Average average limi- hly average limi- bage to the a For quila to u- nits in 1b day e value, tally limits above,	= TRC = TRC it. Average imit, use all ppropriate a use is (mgd y. Use (mgd y. use (the dottom put up" if a co	Daily Lin Avg. Lim values of al values colect verage IOP 1 * mg/ * 8.34 1 * mg/1 * 8.3 1 * mg/1 * 8.3 ns "A."	hit: t sampling e ted within a imit or TRC 4 = lbs/day 64 = lbs/day t, "1" if abov	mg/l or events collected calendar mont limi). y). e, tally atbotto	h) and enter
Col. 1:	From IDMR	From s IDMRs	From IDMRs	Col. 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:
Sample Type	Sample Date	e Daily Flow, mgd	Daily Conc. mg/l	Ayg Conc. mg/l	Daily Load lbs/day	Avg. Load lbs/day	Count	Regular Violation ?	TRC Violation ?
Ι	7/17/12	.0752	.042				1		À
Р	7/24/12	.0469	.086				1	1	1
Ι	8/7/12	.0313	.087				1	1	1
Ι	8/23/12	2 .0538	.077				1	1	0
Ι	9/3/12	.0790	.067				1	0	0
Ι	10/9/12	2 .0676	.089				1	1	1
Ι	10/21/1	2 .0681	.076				1	1	0
Ι	11/1/12	2 .0657	.091				1	1	1
Ι	11/16/1	2 .0678	.069	1			1	0	0
Ι	12/17/1	2 .0292	.057				1	0	0
			L	ist these T	otals on r	next page	=> A = 3	$10 \mathbf{B} = 6$	C= 4

SIU Name: <i>WillPlateit Metal Finishers</i> Parameter: <i>Cadmium</i>	IUP Number: 0006	Pipe Number: 0001	
		ination Period: 7/1/2012-1	
	Six Wolter Sive Determin		2/31/12
SIGNIFICANT NON-COMPLIANCE (SNC		ON Calculate % and	Circle Answers
 Calculate the % of Regular violations: Is B/A greater than or equal to 0.66 (or 6) 	$_{6\%}$? $\frac{6}{10}$ $\frac{B}{A} = \frac{1}{Chronic violat}$	tor? Yes No	
3) Calculate the % of TRC Violations:4) Is C/A greater than or equal to 0.33 (or 3)	C/A = 33 %) ? $\frac{4}{10}$ TRC Violator	$\frac{1}{40.0\%}$ Yes No	
5) Did any violation, alone or in combinat POTW, or endanger the health of POTW	ion with other discharges, ca		rference at the
6) Did any violation cause imminent end environment or has resulted in the POT prevent such discharge?	e		Per ORC
adequate enforcement as outlined in its E Is the SIU in SNC for <u>this six month perio</u> Was the SIU in SNC for THE SAME PAR	<u>d</u> ? CIRCLE ONE: YES	S NO	riod? CIRCLE
ONE: YES NO	IN NARRATIVE.	ow What?	
Please note if SIU was in SNC for the prev	ent actions must be taken as s	oon as possible, preferabl	y before the end of
compliance period, escalated enforcement the second consecutive period. Failure period will subject the POTW to enforce Consent Order with Enforceable se Administrative Order with Enforce Permit modification. See Chapter 9 - Pretreatment Annual Report (ERP).	cement by the Division. The oschedule; ceable schedule;		ment Response Plar
the second consecutive period. Failure period will subject the POTW to enforc Consent Order with Enforceable s Administrative Order with Enforc Permit modification.	cement by the Division. The oschedule; ceable schedule; rts, Chapter 8 - Enforcement, values or the number of avera	and the POTW's Enforce	-

- Not required to perform TRC compliance judgment for pH.SNCR Significant Non-Compliance ReportSNCSignificant Non-Compliance

"Or" (separate)

As of 1/1/2012 NC will use "or". Compliance for daily max & monthly (or other) average limits judged separately.


Potential for more SNC.

- 1. Keep same daily max & monthly average limits
 - a. No change to allocation table
 - b. Have to perform SNC calculations treating daily & monthly limits separately
 - a. Some POTWs may have to revise compliance judgment programs
 - c. May cause more SIU violations and SNC
- 2. Remove monthly avg. Daily max = old monthly avg
 - a. No change to allocation table
 - b. Simplifies compliance judgment
 - c. May cause more SIU violations and SNC

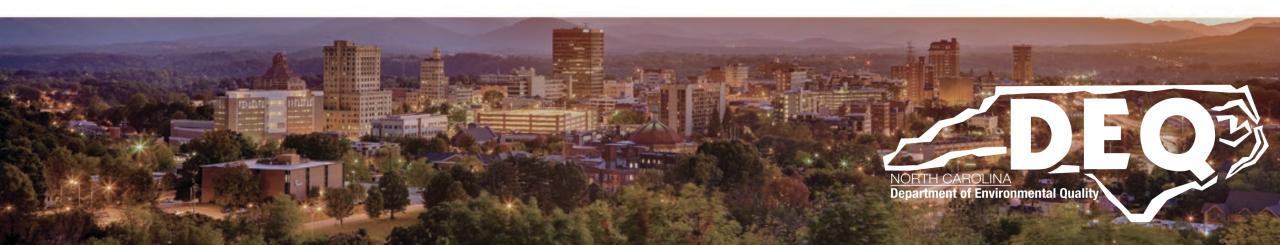
- 3. Remove monthly average limit and keep daily max limit
 - a. Have to use higher daily max limit in allocation table.

May reduce reserve; may cause over allocation.

- b. Simplifies compliance judgment
- c. Should not create more violations

Note: Options 2 &3 may not be available for some categorical SIUs. Contact PERCS to discuss.

Data Summary Form as Limits Compliance Judgment Worksheet


7. 19														-
Sample Location:														
Will Plateit		FLOW		A	RSENIC			C	ADMIUM			CH	ROMIUM	
	POTW or SIU				Usedin	Calculated			Usedin	Calculated			Usedin	Calculated
Sample D <i>a</i> te	Sample	MGD	<	mg/L	Calculation	lbs/day	<		Calculation	lbs/day	<	mg/L	Calculation	lbs/day
7/17/12		0.0752						0.042				0.32	0.315	
	POTW	0.0469						0.086	0.086	0.0336		0.53	0.532	
8/7/12	SIU	0.0313						0.087	0.087	0.0336		0.37	0.373	0.0974
8/23/12		0.0538						0.077	0.077	0.0345				
9/3/12		0.079						0.067			Ц	0.82	0.818	
10/9/12	SIU	0.0676						0.089	0.089	0.0502		0.23	0.231	0.1302
10/21/12		0.0681						0.076	0.076	0.0432				
11/1/12		0.0657						0.091	0.091	0.0499		0.21	0.206	0.1129
11/16/12	SIU	0.0678						0.069		0.0390				
12/11/12	SIU	0.0292						0.057	0.057	0.0139		0.72	0.721	0.1756
										10 daily				
										samples _	Ц			
										6 Viol = 6/	10 =	60%		
										4 TRC = 4/				
										- TIXC - 4/	10 -	- 1070	_	
							┝╴┣━╸				Η			
							╎┣━				Η			
											Η			
Column Averages=>		0.0585							0.0741	0.0357			0.4566	0.2087
Maximum		0.0790							0.0910	0.0502			0.8180	0.5389
Vinimum		0.0292							0.0420	0.0139			0.2060	0.0974

0.07 mg/l 0.084

Industrial Data Summary Form (IDSF)

- Summarizes All Data Collected for an Industry
 - SIU and POTW Sampling for Limited Parameters
 SIU and POTW Sampling for "Monitoring Only" Parameters
- Required to Complete a Separate IDSF for Each Pipe at Each SIU
- You May Use Your Own Form with Prior Division Approval of the Form

Industrial Data Summary Form (IDSF)

• For Each Parameter, Include at Least One of the Following:

- 1) Maximum Concentration
- 2) Maximum Loading
- **3) Average Concentration**
 - Specifying what type of average
 - If BDL, $\frac{1}{2}$ BDL, or 0 was used
- 4) Average Loading

If readily available, the Division prefers both maximum and average values

- Blank sections indicate that there was no monitoring performed for particular parameter during a six-month period.
- For "monitoring only" parameters, list "N/A" for not applicable in the % violations and % TRC violations rows (<u>do not</u> list "0")

IDSF for SIUs with both daily and average limits

			-								
F	Pretreatment Annual Rep	ort(PAR)		trol Authority,			Industry				
· ·		•		`own Name ⇒				e Chicken Pluckers, Inc.			
	Industrial Data Summar	yForm	W	WTP Name =>	21	WTP	IUP #				
	(IDSF)			NPDES $\# \Rightarrow$			Pipe #	001			
	Use separate forms for each inc	dustrv/pipe		$nths, dates \Rightarrow$		to 6/30/2012					
			2nd 6 mo	$nths, dates \Rightarrow$	7/1/2012	to 12/31/2012					
		Flow	, mgd	BC)D	Т	SS	Amn	nonia		
			2nd 6 months	lst 6 months			2nd 6 months	1st 6 months	2nd 6 months		
	Total # of samples =>	121	123	13	32	13	27	1	1		
*	Maximum (mg/l) =>	0.712 mg d	0.806 mgd	725	587	162	114	23.6	14.60		
*	or Maximum (lb/d) =>			4,220	2448	960	703.6	168.28	103.99		
*	or 6 month using BDL Average $(mg/l) \Rightarrow$	0.586 mg d	0.613 mgd	445	304	142	47	23.6	14.60		
*	or Average Loading (lb/d) \Rightarrow			2,175	1554	694	274.00		103.99		
%	violations, (chronic SNC is $>= 66\%$) \Rightarrow	0	0	15.4	3.1	0	0	N/A	N/A		
%	6 TRC violations, (SNC is $>=$ 33 %) \Rightarrow	0	0	7.7	0	0	0	N/A	N/A		
	violations,(chronic SNC is >= 66%) => 🗐	N/A	N/A	100	33.3	0		N/A	N/A		
%	6 TRC violations, (SNC is $>=$ 33 %) \Rightarrow	N/A	N/A	66.7	0	0	0	N/A	N/A		
		Grease	Zi	nc		H					
		lst 6 months	2nd 6 months	lst 6 months	2nd 6 months	lst 6 months	2nd 6 months				
	$Total # of samples \Rightarrow$	7	7	1	1	13	27				
*	Maximum (mg/l) =>	25.5	62.1	0.11	0.08	5.0/9.75	6.5/9.5				
*	or Maximum (lb/d) =>	170.14	447.48	0.6752	0.5698						
*	or $6 \text{ month using BDL}$ Average (mg/l) \Rightarrow	11.75	27	0.11	0.08						
*	or Average Loading (lb/d) =>	79.8	189.69	0.6752	0.5698						
% v	iolations, (chronic SNC is $>= 66\%$) \Rightarrow	0	0	N/A	N/A	15.4	0				
%	6 TRC violations, (SNC is >= 33 %) \Rightarrow	0	0	N/A	N/A	N/A	N/A				
%	violations (chronic SNC is >= 66%) => 🛃	N/A	N/A	N/A	N/A	N/A	N/A				
%	6 TRC violations, (SNC is $>=$ 33 %) \Rightarrow	N/A	N/A	N/A	N/A	N/A	N/A				
				BDL => Below	Detection Lim	it	mg/l => mīligr	ams per liter			
*	POTW must enter at least one of these			$IUP \Rightarrow Indust$			$lb/d \Rightarrow$ pound	s per day			
fou	rrows, Please indicate how averages were	e calculated		SNC => Signif	cant Non-Com	p	_				
Av	g period could be month, Qtr, or 6-month a	&	DL, or zero valu	TRC => Techn	ucal Review Cri	te N/A I	pecaus	e no Il	JP Limit		
						⊣ for th	nese Pa	aramete	ers		

	atment Annual Rep		,	ntrol Authority, Town Name =>			Industry Name	Slugem Hosiery	Mill Inc
Industri	ial Data Summary F	orm (IDSF	- / /		Typicalville W	WTP	IUP #		
	parate forms for each in			NPDES # =>			Pipe #		
	nter BDL values as < (v		1st 6 m	onths, dates =>		to 6/30/12			
	()		2nd 6 m	onths, dates =>	7/1/2012	to 12/31/12			
		Flow	, mgd	B)D	Т	SS	Amn	nonia
		1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st o months	2nd 6 months
	Total # of samples =>	12	10	12	10	7	7		1
*	Maximum (mg/l) =>	0.248 mgd	0.358 mgd	177	325	367	330		5.4
*	or Maximum (lb/d) =>			342.62	737.26	752.96	864.19	not	15.23
* or <u>6 mon</u>	th using BDL Average (mg/l) =>	0.197 mgd	0.313 mgd	157	226	0.252	218	required	5.4
* 0	r Average Loading (lb/d) =>			257.34	571.23	431.18	549.46		15.23
% violations	,(chronic SNC is >= 66%) =>	0	0	0	0	0	0		N/A
% TRC vio	lations, (SNC is $\geq 33 \%$) \Rightarrow	0	0	0	0	0	0		N/A
		Chromium		Сој	per	Mer	cury	Zi	nc
		1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months
	Total # of samples =>	8	8	8	7		1	7	7
*	Maximum (mg/l) =>	0.48	0.460	0.49	0.49		0.0002	0.187	0.501
*	or Maximum (lb/d) =>	0.863	1.3730	0.94	1.314	not	0.0006	0.359	1.32
* or <u>6 mon</u>	th using BDL Average (mg/l) =>	0.407	0.390	0.393	0.383	required	0.0002	0.162	0.359
* 0	r Average Loading (lb/d) =>	0.693	1.0190	0.667	0.999		0.0006	0.266	0.935
% violations,	(chronic SNC is $\geq 66\%$) $\equiv >$	12.5	0	12.5	0		N/A	0	0
% TRC vio	lations, (SNC is $\geq 33\%$) \Rightarrow	0	0	0	0		N/A	0	0
		Oil &	Grease	MB	AS	Phosp	horous		
		1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months		
	Total # of samples =>	7	7		1		_		
*	Maximum (mg/l) =>	75.9	79		0.12	🗌 Wh	ı was tl	nis data	a
*	or Maximum (lb/d) =>	124.33	205	not	0.358	-			4
* or <u>6 mon</u>	th using BDL Average (mg/l) =>	45.5	62.78	required	0.12	not	require	d?	
* 0	r Average Loading (lb/d) =>	66.9	161.6		0.358		•		
	(chronic SNC is $\geq 66\%$) =>	0	0		N/A	🗌 Disc	uss in I	narrativ	/e.
	lations, (SNC is $\geq 33\%$) \Rightarrow	0	0		N/A		· · · · · · · · · · · · · · · · · · ·	1	
* POTW m	ust enter at least one of these			BDL => Below IUP => Industr	Detection Limit		mg/l => milligra lb/d => pounds	ams per liter	
four rows. Pl	ease indicate how averages wer	re calculated		SNC => Signifi	cant Non-Comp	liance	$mgd \Rightarrow$ million	gallons per day	,
Avg period c	ould be month, Qtr, or 6-month	& if BDL , 1/2BI	DL, or zero value	TRC => Techn	ical Review Crit	eria	WWTP => was	stewater treatme	ent plant

Pretreatment Annual Rer	ort(PAR)		,			Industry			
		- \						al Finishing, Inc.	
		-) w			WTP				
Use separate forms for each in	ndustry/pipe		NPDES # =>	NC0012345		Pipe #	001		
Enter BDL values as < (\	/alue)				to 6/30/12				
``````````````````````````````````````		2nd 6 m	onths, dates =>	7/1/2012	to 12/31/12				
	Flow	<u> </u>					Сор	pper	
						2nd 6 months	1st 6 months	2nd 6 months	
Total # of samples =>	12	10	12	10	7	7	7	7	
Maximum (mg/l) =>	0.0796 mgd	0.079 mgd	0.102	0.091	0.012	0.023	1.43	1.830	
or Maximum $(lb/d) \Rightarrow$			0.0637	0.050	0.0063	0.0095	0.7836	0.7146	
or <u>6 month using BDL</u> Average (mg/l) =>	0.0644 mgd	0.0585 mgd	0.077	0.074	0.008	0.010	1.089	1.245	
or Average Loading (lb/d) =>			0.042	0.036	0.0037	0.004	0.5238	0.506	
violations,(chronic SNC is >= 66%) =>	0	0	66.7	60	0	0	0	C	
% TRC violations, (SNC is $\geq 33$ %) $\geq$	0	0	16.7	40	0	0	0	(	
	Cya	nide	Le	ead	Mer	cury	Nic	kel	
	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	
Total # of samples =>	7	7	7	7		7	7	10	
Maximum (mg/l) =>	0.005	0.005	0.027	0.013		0.0002	2.52	3.03	
or Maximum (lb/d) =>	0.0033	0.0033	0.0171	0.0067	Not	0.00013	1.4034	1.7083	
or <u>6 month using BDL</u> Average (mg/l) =>	0.005	0.005	0.021	0.011	Required	0.0002	1.735	2.15	
or Average Loading (lb/d) =>	0.0024	0.0021	0.0104	0.0043		0.00013	0.8713	1.0490	
violations, (chronic SNC is >= 66%) =>	0	0	0	0		0	14.3	30	
% TRC violations, (SNC is >= 33 %) =>	0	0	0	0		0	0	20	
	Sil	ver	Zi	nc	Phosp	horous	Т	ГО	
	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	1st 6 months	2nd 6 months	
Total # of samples =>	7	7	7	7	7	7			
Maximum (mg/l) =>	0.173	0.171	0.407	0.487	3.84	3.05	*Certifies	for TTO as	
or Maximum (lb/d) =>	0.114	0.114	0.2682	0.2198	2.321	1.2677	Not Bein	g Present	
or <u>6 month using BDL</u> Average (mg/l) $\Rightarrow$	0.125	0.124	0.369	0.34	2.608	2.622			
		0.0540	0.1802	0.1339	1.2099	1.0338			
or Average Loading (lb/d) =>	0.064	0.0549	0.1602	0.1557					
	0.064	0.0549	0.1802	0.1559	0	0			
or Average Loading (lb/d) =>		0.0549	0	0	0	0			
or Average Loading (lb/d) => violations, (chronic SNC is >= 66%) => % TRC violations, (SNC is >= 33 %) =>	0	0.0549	0 BDL => Below	0 0 Detection Limit	0	$\frac{0}{mg/l} \Rightarrow milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligrate{milligr$	ums per liter		
or Average Loading (lb/d) => violations, (chronic SNC is >= 66%) =>	0	0.0549	0	0 0 Detection Limit ial User Permit	0	0 mg/l => milligra lb/d => pounds	ums per liter		
	<b>dustrial Data Summary</b> Use separate forms for each in Enter BDL values as < (Note: The State of Sta	dustrial Data Summary Form (IDSF Use separate forms for each industry/pipe Enter BDL values as < (value)Use separate forms for each industry/pipe Enter BDL values as < (value)	Tretreatment Annual RepOrt (PAR) dustrial Data Summary Form (IDSF) Use separate forms for each industry/pipe Enter BDL values as < (value)Use separate forms for each industry/pipe Enter BDL values as < (value)	Town range Form (IDSF) WWTP Name >> WWTP Name >> NPDES # >> Ist 6 months, dates => 2nd 6 months, dates => 2nd 6 months, dates => 2nd 6 months, dates => 2nd 6 months, dates => 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Town Name $\Rightarrow$ Typicalville         Typicalville         WWTP Name $\Rightarrow$ Typicalville WWTP         Use separate forms for each industry/pipe         Enter BDL values as < (value)         Flow, mgd       Cadmium       Chronolds         Total # of samples $\Rightarrow$ 12       10       12       10       12       10       7       7       7/1/2012       to 6/30/12         Total # of samples $\Rightarrow$ 12       10       12       10       12       10       7       7       7       7       7       7       0.00637       0.0063         or famoth using BDL Average (mg1) $\Rightarrow$ 0.00644 mgd       0.0555 mgd       0.077       0.074       0.0063       0.00642       0.0036       0.0037       0.0064       0       0       0       0       0       0       0 <th col<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></th>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

### Data Summary Form as IDSF

Sample Location:								-	TR	C = 0.08	4						
Will Plateit		FLOW ARSENIC			CADMIUM				CHROMIUM								
Sample Date	POTW or SIU Sample	MGD		<	mg/L	Usedin Calculation	Calculated lbs/day	<		mg/L	Used in Calculation	Calculated lbs/day		<	mg/L	Usedin Calculation	Calculated lbs/day
7/17/12	SIU	0.0752								0.042	0.042	0.0263			0.32	0.315	0.1976
7/24/12	POTW	0.0469						8	<b>X</b>	0.086	0.086	0.0336			0.53	0.532	0.2081
8/7/12	SIU	0.0313						8	$\otimes$	0.087	0.087	0.0227			0.37	0.373	0.0974
8/23/12	SIU	0.0538							$\otimes$	0.077	0.077	0.0345					
9/3/12	SIU	0.079								0.067	0.067	0.0441			0.82	0.818	0.5389
10/9/12	SIU	0.0676						8	XX	0.089	0.089	0.0502			0.23	0.231	0.1302
10/21/12	SIU	0.0681							$\otimes$	0.076	0.076	0.0432					
11/1/12	SIU	0.0657						8	<b>X</b>	0.091	0.091	0.0499			0.21	0.206	0.1129
11/16/12	SIU	0.0678								0.069	0.069	0.0390					
12/11/12	SIU	0.0292								0.057	0.057	0.0139			0.72	0.721	0.1756
								ł	sar 6 V		.0 =60% 10 = 40%						
Column Averages =>		0.0585									0.0741	0.0357				0.4566	0.2087
Maximum		0.0790									0.0910	0.0502				0.8180	0.5389
Minimum		0.0292									0.0420	0.0139				0.2060	0.0974

### Limit = 0.07 mg/l



### Significant Non-Compliance Report (SNCR)





- List all IUs in SNC with any IUP requirement for the PAR Year
  - **1**) Limits Violations
  - 2) Pass-Through and Interference
  - 3) SNC for Reporting and/or IUP Conditions
- Remember to attach copy of Historical SNC Report so DWR can review for repeat SNCs
- POTW must still take that appropriate enforcement or other action for SIUs that will be in SNC for a second consecutive six-month period
- Remember, repeat SNCs are a serious matter.



Pretreatment Annual Report (PAR)				PA	2012		
Significant Non-Compliance Report (SNCR) WWTP = Wastewater Treatment Plant, use separate form for each SIU = Significant Industrial User				Control Author	Town of Typicalville		
				WWTP.	W	WTPName =>	Typicalville WWTF
						NPDES# =>	NC0012345
SNC = S	ignifica	ant Non-Compliance					
A SNCF	R Form	must be submitted with every PAR, j	please write ",	<i>None</i> " if you had	No SIUs in SN	IC during calen	dar year
					SNC?(	Yes/No)	
IUP	Pipe	Industry Name	Pa	rameter	for each 6-n		
#	#		or "F	Reporting"	Jan June	July - Dec.	
0006	001	Will Plateit Metal Finishing, Inc.	Cadmium		Yes	Yes	
8000	001	Chicken Pluckers, Inc.	BOD		Yes	No	
8000	001	Chicken Pluckers, Inc.	Reporting		Yes	No	
Attach a o	copy of	the Division's "SIUs in SNC Histori	cal Report" fo	r your POTW's SIL	Is behind this p	age.	
		correct? Notify the Division of any e			· ·	ous years.	
		IUST be explained in the Narrative,			ed?		
REPEAT	SNCs	are serious matters that MUST be ex	cplained in the	e Narrative.			



		2005	2006	2007	2008	2009	2010	2011	
		1st half   2nd hal	f 1st half   2nd half	1st half   2nd half	1st half   2nd half	1st half   2nd half	1st half   2nd half	1st half   2nd half	
Slugem Hosiery Mills, Inc.		Pre	viousNames:						
IUP # 0007 Pipe #		01 SIU Word Description: Textile							
IUP_Status: Active									
	Chromium							x	
	Copper							x	
Chicken Pluckers, Inc.		Pre	viousNames:						
IUP # 0008 Pipe #		01			SIU Word Descri Poultry Processing				
IUP_Status: Active					r outry r rocessing				
	Reporting						x		
Vill Plateit Metal Finishi	ng, Inc.	Pre	viousNames:						
IUP # 0006 Pipe #		[±] 01			SIU Word Descri Metals-433				
IUP_Status: Active					metals-435				
	Nickel	I	I	I	I	x	I	I	

An 'X' in a semi-annual period indicates snc for the period for the respective parameter.

## Pretreatment Performance Summary (PPS)



- Form adapted to gather information for the EPA database
- Counts # of:
  - SIUs and CIUs
  - NOVs and similar actions
  - SIUs in SNC
  - Public Notices
  - Enforcement Cases
  - Penalties Assessed and Collected
  - Compliance Schedules





### Pretreatment Performance Summary (PPS)-Explanations



- Line # 5. Number of SIUs permitted and/or discharged during PAR year. Discuss new or dropped SIUs in narrative.
- Line # 12. A SIU is in SNC if they fail to meet a compliance schedule milestone within 90 days of the scheduled date for starting construction, completing construction or attaining final compliance; if progress reports required by the compliance schedule are over 45 days late; or there are violations of any interim limits meeting the chronic or TRC definition of SNC.
- Line # 15. This is the total number of industries on a compliance schedule as part of an enforcement action during the reporting period. If the compliance schedule was entered into in July 2016, it would be counted on the PPS form in 2016 and 2017 and subsequent PARs until the schedule is completed or expires. These schedules are issued outside of, or separate from, the IUP. If an industry is on a compliance schedule that is part of an IUP, this is <u>not</u> included in the PAR. This type of compliance schedule is not considered an enforcement action that includes stipulated penalties, and it should therefore not be included.
- Lines # 16,17,18,19, 20. are based on number of events during PAR year, and do not include events occurring after PAR year.
- Line # 19. Total amount of Civil Penalties collected: This is the actual amount in fines that was collected from the industries during this twelve month period. This can include collection of penalties assessed during prior reporting periods.
- Line # 20. Number of SIUs from which penalties collected. This is the total number of industries that actually paid penalties during the year.



	1. 2.	Pretreatment Town Name "Primary" NPDES Numb or Non_Discharge I			
Line # 5. Number of SIUs actually permitted and/or discharging during PAR year. Discuss new or dropped SIUs in narrative.	3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15 16. 17. 18. 19. 20.	Number of SIUs not inspective Number of SIUs not samp Number of SIUs in SNC of Number of SIUs in SNC due to Number of SIUs in SNC due to Number of SIUs in SNC Number of SIUs included Total number of SIUs on a	ter 12/31/yy cludes CIUs IUP, or with an expired IUP exted by POTW oled by POTW due to IUP Limit violations due to Reporting violations o violation of a compliance schedule, CO, AO or similar o violation of a compliance schedule, CO, AO or similar or similar assessed to SIUs is assessed to SIUs alties assessed to SIUs inalties Collected	ar 19. =>	$3. \Rightarrow 1/1/2012$ $4. \Rightarrow 12/31/2012$ $5. \Rightarrow 3$ $6. \Rightarrow 7. \Rightarrow 8. \Rightarrow 9. \Rightarrow 10. \Rightarrow 10. \Rightarrow 11. \Rightarrow 11. \Rightarrow 12. \Rightarrow 13. \Rightarrow 14. \Rightarrow 15. \Rightarrow 14. \Rightarrow 15. \Rightarrow 16. \Rightarrow 17. \Rightarrow 18. \Rightarrow 9. \Rightarrow 18. \Rightarrow 9. \Rightarrow 10. \Rightarrow 10. \Rightarrow 10. \Rightarrow 11. \Rightarrow 12. \Rightarrow 12. \Rightarrow 13. \Rightarrow 14. \Rightarrow 15. \Rightarrow 14. \Rightarrow 15. \Rightarrow 16. \Rightarrow 17. \Rightarrow 18. \Rightarrow 19. \Rightarrow 18. \Rightarrow 19. \Rightarrow 18. \Rightarrow 19. \Rightarrow 19.$
	Foot Notes:	AO Administrative Order	IUP Industrial User Pretreatment Permit	POTW	Publicly Owned Treatment W
		CIU Categorical Industrial User	NNC Notice of Non-Compliance	SIU	Significant Industrial User
		CO Consent Order	NOV Notice of Violation	SNC	Significant Non-Compliance
		IU Industrial User	PAR Pretreatment Annual Report		

IU Industrial User

1.	Pretreatment Town Name:	Typicalville			
2.	"Primary" NPDES Number	NC00 <u>12345</u>			
	or Non_Discharge Peri	mit#ifapplicable=>			
3.	PAR begin Date, please enter	r 01/01/yy		3. => 1/1/2012	
4.	PAR end Date, please enter	12/31/yy		4. => <u>12/31/2012</u>	
5.	Total number of SIUs, includ	des CIUs		5. => 3	
6.	Number of CIUs			6. =>1	
7.	Number of SIUs with no IUF	P, or with an expired IUP		7. =>0	
8.	Number of SIUs not inspecte	ed by POTW		8. => 0	
9.	Number of SIUs not sampled	by POTW		9. => 0	
10.	Number of SIUs in SNC due	to IUP Limit violations		10. => 2	Will Plateit
11.	Number of SIUs in SNC due	to Reporting violations		11. => 1	_
12.	Number of SIUs in SNC due to vic	plation of a compliance schedule, CO, AO or simi	ar	12. => 0	_
13.	Number of CIUs in SNC			13. => 1	Will Plateit
14.	Number of SIUs included in	public notice		14. =>	
15	Total number of SIUs on a co	ompliance schedule, CO, AO or similar		15. =>	
16.	Number of NOVs, NNCs or	similar assesed to SIUs		16. =>	_
17.	Number of Civil Penalties as	sessed to SIUs		17. =>	
18.	Number of Criminal Penaltie	es assessed to SIUs		18. =>	
19.	Total Amount of Civil Penal	ties Collected	19. =>	\$	
20.	Number of IUs from which p	penalties collected		20. =>	
Foot Notes:	AO Administrative Order	IUP Industrial User Pretreatment Permit	POTW	Publicly Owned Treatment V	
	CIU Categorical Industrial User	NNC Notice of Non-Compliance	SIU	Significant Industrial User	
	CO Consent Order	NOV Notice of Violation	SNC	Significant Non-Compliance	

PAR Pretreatment Annual Report

1.	Pretreatment Town Name: Typicalvill	е				
2.	"Primary" NPDES Number NC00 123	45				
	or Non_Discharge Permit # if applicat	le=>				
3.	PAR begin Date, please enter 01/01/yy			3. =>	1/1/2012	
4.	PAR end Date, please enter 12/31/yy			4. =>	12/31/2012	
5.	Total number of SIUs, includes CIUs			5. =>	3	
6.	Number of CIUs			6. =>	1	
7.	Number of SIUs with no IUP, or with an exp	pired IUP		7. =>	0	
8.	Number of SIUs not inspected by POTW			8. =>	0	
9.	Number of SIUs not sampled by POTW			9. =>	0	
10.	Number of SIUs in SNC due to IUP Limit vi	olations		10. =>	2	
11.	Number of SIUs in SNC due to Reporting vi	olations		11. =>	1	
12.	Number of SIUs in SNC due to violation of a complia	ance schedule, CO, AO or similar		12. =>	0	
13.	Number of CIUs in SNC			13. =>	1	
14.	Number of SIUs included in public notice			14. =>	2	Will Plateit
15	Total number of SIUs on a compliance sched	dule, CO, AO or similar		15. =>		
16.	Number of NOVs, NNCs or similar assessed	to SIUs		16. =>		
17.	Number of Civil Penalties assessed to SIUs			17. =>		
18.	Number of Criminal Penalties assessed to SI	Us		18. =>		
19.	Total Amount of Civil Penalties Collected		19. =>	\$		
20.	Number of IUs from which penalties collected	ed		20. =>		
				•		
ot Notes:	AO Administrative Order IUP Industrial User F	Pretreatment Permit	POTW	Publicly O	wned Treatment W	

 Foot Notes:
 AO
 Administrative Order
 IUP Industrial User Pretreatment Permit
 POTW
 Publicly Owned Treatment W

 CIU
 Categorical Industrial User
 NNC Notice of Non-Compliance
 SIU
 Significant Industrial User

 CO
 Consent Order
 NOV Notice of Violation
 SNC
 Significant Non-Compliance

 IU
 Industrial User
 PAR Pretreatment Annual Report
 SNC
 Significant Non-Compliance

1. 2.	Pretreatment Town Name: <u>Typicalville</u> "Primary" NPDES Number NC00 12345			
Ζ.	or Non_Discharge Permit # if applicable =>			
3.	PAR begin Date, please enter 01/01/yy	3. =	=> 1/1/2012	
4.	PAR end Date, please enter 12/31/yy	4.=	=> 12/31/2012	
5.	Total number of SIUs, includes CIUs	5. =	=> 3	
6.	Number of CIUs	6. =	=> 1	
7.	Number of SIUs with no IUP, or with an expired IUP	7. =	=> 0	
8.	Number of SIUs not inspected by POTW	8. =	=> 0	
9.	Number of SIUs not sampled by POTW	9. =	=> 0	
10.	Number of SIUs in SNC due to IUP Limit violations	10	=> 2	
11.	Number of SIUs in SNC due to Reporting violations	11	=>1	
12.	Number of SIUs in SNC due to violation of a compliance schedule, CO, AO or sim	nilar 12.=	=> 0	Will Plateit
13.	Number of CIUs in SNC	13	=>1	schedule not
14.	Number of SIUs included in public notice	14. =	=> 2	in effect until 2013
15	Total number of SIUs on a compliance schedule, CO, AO or similar	15	=>	2013
16.	Number of NOVs, NNCs or similar assessed to SIUs	16	=>	
17.	Number of Civil Penalties assessed to SIUs	17	=>	
18.	Number of Criminal Penalties assessed to SIUs	18	=>	
19.	Total Amount of Civil Penalties Collected	19. => \$		
20.	Number of IUs from which penalties collected	20. =	=>	

Foot Notes:	AO	Administrative Order	IUP Industrial User Pretreatment Permit	POTW	Publicly Owned Treatment W
	CIU	Categorical Industrial User	NNC Notice of Non-Compliance	SIU	Significant Industrial User
	CO	Consent Order	NOV Notice of Violation	SNC	Significant Non-Compliance
	IU	Industrial User	PAR Pretreatment Annual Report		

	1.		atment Town Name:		Typicalville			
	2.		ary" NPDES Numbe		NC00 12345			
			or Non_Discharge F	Permit #	#ifapplicable=>			
	3.		oegin Date, please er	nter 01	/01/04		3. =>	1/1/2012
	3. 4.		end Date, please entr				-	12/31/2012
	4. 5.		number of SIUs, incl				-	2
				iuues	2105		5. =>_	<u> </u>
	6.		er of CIUs				6. =>_	<u> </u>
	7.			•	with an expired IUP		7. =>	0
			er of SIUs not inspe	-			8. =>	0
	9.		er of SIUs not samp				9. =>	0
	10.	Numb	per of SIUs in SNC d	lue to l	UP Limit violations		10. =>	2
	11.	Numb	er of SIUs in SNC d	lue to F	Reporting violations		11. =>	<u> </u>
	12.	Numbe	r of SIUs in SNC due to	violatio	n of a compliance schedule, CO, AO or simila	æ	12. =>	0
Lines # 16, 17,	13.	Numb	er of CIUs in SNC				13. =>	1
18 are based	14.	Numb	er of SIUs included	in publ	licnotice		14. =>	2
on number of	15	Total	number of SIUs on a	a comp	liance schedule, CO, AO or similar		15. =>	0
events <u>during</u>	16.	Numb	er of NOVs, NNCs	orsimi	lar assesed to SIUs		16. =>	16
PAR year, and	17.	Numb	er of Civil Penalties	s assess	ed to SIUs		17. =>	8
do not include	18.	Numb	er of Criminal Penal	lties as	sessed to SIUs			0
events	19.	Total	Amount of Civil Per	nalties	Collected	19. =>	\$	
occurring <u>after</u>	20.		er of IUs from which				20. =>	
PAR year.	20.	- turne		in poinci				
	Foot Notes:	AO	AdministrativeOrder	IUP	Industrial User Pretreatment Permit	POTW	Publicly Ow	vned Treatment W
		CIU	Categorical Industrial User	NNC	Notice of Non-Compliance	SIU	Significant I	ndustrial User
		со	Consent Order	NOV	Notice of Violation	SNC	Significant I	Non-Compliance
		IU	Industrial User	PAR	Pretreatment Annual Report			

		Pretreatment Town Name: "Primary" NPDES Number	Typicalville NC00 12345			
	<u> </u>	or Non_Discharge Per				
		PAR begin Date, please ente			3. =>	1/1/2012
		PAR end Date, please enter			4. =>	12/31/2012
		Total number of SIUs, inclue	desCIUs		5. =>	3
	6.	Number of CIUs			6. =>	1
	7.	Number of SIUs with no IUF	P, or with an expired IUP		7. =>	0
	8.	Number of SIUs not inspected	ed by POTW		8. =>	0
	9.	Number of SIUs not sample	d by POTW		9. =>	0
	10.	Number of SIUs in SNC due	e to IUP Limit violations		10. =>	2
	11.	Number of SIUs in SNC due	e to Reporting violations		11. =>	1
	12.	Number of SIUs in SNC due to vie	olation of a compliance schedule, CO, AO or simil	ar	12. =>	0
	13.	Number of CIUs in SNC			13. =>	1
Line # 19 is the	14.	Number of SIUs included in	public notice		14. =>	2
actual amount in	15	Total number of SIUs on a c	compliance schedule, CO, AO or similar		15. =>	0
fines that was	16.	Number of NOVs, NNCs or	similar assessed to SIUs		16. =>	16
collected from the	17.	Number of Civil Penalties as	ssessed to SIUs		17. =>	8
industries during this	18.	Number of Criminal Penaltie	es assessed to SIUs		18. =>	0
twelve month	<b>1</b> 9.	Total Amount of Civil Penal	ties Collected	19. =>	• \$ -	1,350
period. This can	20.	Number of IUs from which p	penalties collected		20. =>	<u> </u>
include collection of		·			-	
	oot Notes:	AO Administrative Order	IUP Industrial User Pretreatment Permit	POTW	Publicly O	wned Treatment W
during prior		CIU Categorical Industrial User	NNC Notice of Non-Compliance	SIU	Significant	Industrial User
reporting periods.		CO Consent Order	NOV Notice of Violation	SNC	Significant	Non-Compliance
reporting periods.		IU Industrial User	PAR Pretreatment Annual Report			

	1.	Pretreatment Town Name:	Typicalville			
	2.	"Primary" NPDES Number	NC00_12345			
		or Non_Discharge Pe	rmit#ifapplicable=>			
	3.	PAR begin Date, please ente	,,		3. =>_	1/1/2012
	4.	PAR end Date, please enter	12/31/yy		4. =>	12/31/2012
	5.	Total number of SIUs, inclu	des CIUs		5. =>	3
	6.	Number of CIUs			6. =>	1
	7.	Number of SIUs with no IU	P, or with an expired IUP		7. =>	0
	8.	Number of SIUs not inspect	ed by POTW		8. =>	0
	9.	Number of SIUs not sample	d by POTW		9. =>	0
	10.	Number of SIUs in SNC due	e to IUP Limit violations		10. =>	2
	11.	Number of SIUs in SNC due	e to Reporting violations		11. =>	1
	12.	Number of SIUs in SNC due to vi	olation of a compliance schedule, CO, AO or simil	ar	12. =>	0
	13.	Number of CIUs in SNC			13. =>_	1
	14.	Number of SIUs included in	n public notice		14. =>	2
	15	Total number of SIUs on a c	compliance schedule, CO, AO or similar		15. =>	0
	16.	Number of NOVs, NNCs or	similar assessed to SIUs		16. =>	16
Line # 20 is	17.	Number of Civil Penalties a	ssessed to SIUs		17. =>	8
the total	18.	Number of Criminal Penalti	es assessed to SIUs		18. =>	0
number of	19.	Total Amount of Civil Pena	Ities Collected	19. =>	· \$	1,350
industries that	<b></b> 20.	Number of IUs from which	penalties collected		20. =>	3
actually paid			-			
penalties	Foot Notes:	AO Administrative Order	IUP Industrial User Pretreatment Permit	POTW	Publicly Ow	ned Treatment W
during the		CIU Categorical Industrial User	NNC Notice of Non-Compliance	SIU	•	ndustrial User
year.		CO Consent Order	NOV Notice of Violation	SNC	Significant I	Non-Compliance
	]	IU Industrial User	PAR Pretreatment Annual Report			

96



### Narrative







- Recommended Outline for Narrative
- Provided to:
  - Help you organize your PAR Narratives.
  - Help you determine what information is required or optional.
  - Help you understand how information is checked
  - Make it easier for us to find specific and useful information in the narratives.
- Some information is optional. It has been noted or italicized in both the guidance text and in the examples.
- This Guidance is available by e-mail, and on our web page.

http://deq.nc.gov/about/divisions/water-resources/water-resources-permitguidance/pretreatment-guide/annual-report-guidance



# Outline of a Typical Narrative:

- 1. General Information:
  - A. General Program Information.
  - B. General Permit Information.
- 2. <u>IU Information</u>:
  - A. IUs in SNC Information.
  - B. Orders and Schedule Information.
  - C. A to C and Construction Information.
  - D. SIUs with Missing Data.
- Optional:

E. Enforcement Actions by POTW, and Industry Responses, for Non-SNC, Non-Order, Nonconstruction events

F. Other Information





- If you have no IUs in SNC, on Orders, or having pretreatment construction activities, or missing data, your PAR <u>Narrative</u> may be as simple as the Division's two database items, with any corrections noted.
  - Program Info. Sheet
  - Historical SNC database sheet(s)

Still need all other required PAR forms for your type of Program – Full versus Modified Programs!





### **General Information:**

- A. General Program Information:
  - **1.** Pretreatment Program Info. Sheet

(provided to you by the PERCS Unit with the end of year mailing)

Status of Major Pretreatment Program Elements - LTMP/STMP, HWA, ERP, SUO, IWS - Are the dates and information correct, especially due dates? Include any needed corrections marked on the Info Sheet returned with the PAR

Note, copies of the Program Info. Sheet are available upon request from the PERCS Unit.

2. Discuss Planned updates of major program elements in narrative.







### **General Information:**

**B.** General Permit Information:

1. Did you have any permits expire before being renewed? LIST THEM, & WHY.

2. Did you have any SIU Permits that were Brand New, Dropped, or Changed Names during the Year ? Please list them.



#### **General Information:**

**B.** General Permit Information (cont.):

#### Optional

Dates for these permit actions may be listed here as useful reference.

We realize that some or all of these dates will have already been submitted to the Division with permit renewals, modifications, and drops.

If you have permits that have been submitted to the Division and you have not received review letter back from the Division, you may note that here.

For new permits, when did the permit become effective and when did the SIU actually begin discharge? Note, if a lag between these dates results in "missing" data, it must be explained (see "Missing" Data section below).



#### **IU INFORMATION:**

Please LIST alphabetically by IU name:

### A. <u>IUs in SNC Information:</u>

**1.** All IUs in SNC MUST be included in the Narrative and listed on the SNCR Form !

2. Note the reason(s) and which six-month period(s) they were in SNC.

3. If SNC for limits, note if was due to chronic, TRC, or both. Information should match what is on your IDSF and SNCR Forms.

4. If SNC for something other than limits, such as: reporting, missing data/self monitoring, interference, pass-through, permit conditions, etc. please explain.





### **IU INFORMATION:**

#### A. <u>IUs in SNC Information: (cont.)</u>

5. Enclose a copy of the Public Notice for SNC, or affidavit. If Public Notice is not in the PAR explain why not. PAR will not be considered complete until Public Notice is received.

6. Explain how a SNC situation was or will be resolved; such as: increased limit, shut down, installed or improved pretreatment, better operations, production changes, etc.

7. Explain how previous SNC situations were resolved if resolution occurred in this PAR year.







B. <u>Orders or Schedule Information:</u> For SIUs on an Order of any kind (including Administrative Orders, Consent Orders, Compliance Schedules) at any time during the PAR year, include the following information:

**1.** A copy of the Order/Schedule with the PAR. If Order/Schedule has been modified since last submitted, include a new copy with the PAR.

2. Notes on all successfully completed Orders/Schedules.

3. Notes on all due dates in the Order/Schedule.

4. Notes on violations of any interim limits or due dates. Explain what and why and discuss penalties assessed and penalties collected. You may (*optional*) attach copies of NOVs and correspondence.





#### **<u>IU INFORMATION (cont.)</u>**:

### C. <u>Pretreatment (AtoC) and Construction Info:</u>

1. Narrative must include information on any SIUs who have submitted plans and specifications, requested an AtoC, or had construction activities on their pretreatment systems during the PAR year. This information will document or measure improvements to pretreatment facilities and the work of pretreatment coordinators towards improving the environment.

- **2.** Please include the following information:
  - a. Brief description of what is, was, or will be constructed.
  - b. Approx. cost.
  - c. Date submitted and/or date of AtoC.
  - d. Date construction begun, or scheduled to began.
  - e. Date construction completed or scheduled to end.





### <u>IU INFORMATION</u> (cont.):

### D. <u>SIUs with Missing Data:</u>

**1.** Explain WHY any required sampling may "appear" to have not been done for any SIU. Missing data may be required to be repeated. Missed self-monitoring is a violation and may be considered SNC. Reasons for missing data are:

A permit is issued (became effective) well before the actual discharge began.

A Permit is officially dropped well after the actual discharge was stopped.

Temporary shut downs / No process discharge.

Missed self monitoring, "botched" sampling, act of god, act of nature, or other reason. (EXPLAIN !)







### IU INFORMATION (cont.):

**OPTIONAL:** 

*E. POTW Enforcement Actions and SIU Response Information, for Non-SNC, Non-Order, Non-Construction, Non-missing data events:* 

1. Enforcement actions taken by the POTW, may include NOVs, meetings, extra inspections, increased monitoring, penalties assessed, penalties collected. Note, assessing penalties and collecting penalties should be documented as separate actions.

2. Briefly explain how SIU responded to the enforcement action(s). Information such as any known cause for the violations, and what the SIU has done or is doing to correct the problem. Did the SIU deny the problem, request a meeting, appeal the NOV, etc.





#### IU INFORMATION (cont.):

**OPTIONAL:** 

F. Other Information:

1. Information on SIUs with minor violations may be listed in the narrative very briefly. This may be general and does not have to list the specifics about limits violations (note, the percent violations is already summarized on the IDSF form).

2. Any other information you think is important.



### **GENERAL INFORMATION:**

**GENERAL PROGRAM INFORMATION:** 

- AT, LTMP, HWA, SUO, ERP, IWS and Permits are up to date, except we now have enough Method 1631 mercury data to revise our HWA and resolve our over allocation. Plan to do this in the next 4 months.
- All Dates on the Division's Database Program Info Sheet are correct
- A copy of our Program Info sheet is enclosed with corrections.





### **GENERAL INFORMATION (cont.)**:

GENERAL PERMIT INFORMATION:

- No permits lapsed or expired prior to renewal
- No new or Name Changes at any SIUs







### Slugem Hosiery Mill, Inc. (IUP # 0007, Textile)

SNC INFORMATION:

- SIU was not in SNC this PAR Year
- Previous SNC situation, see 2011 PAR, was resolved with permit modification effective February 1, 2012. The POTW increased IUP limits for chromium and copper. The cause of the violations and SNC in 2011 was determined to be increased production and flow.

ORDERS AND SCHEDULE INFORMATION: None

A to C and CONSTRUCTION INFORMATION: None

MISSING DATA: Please note there is no monitoring for ammonia, mercury, or MBAS for the first six months as this is only an annual monitoring requirement

• Slugem Hosiery Mill, Inc. (IUP # 0007, Textile) - Cont.

**OPTIONAL:** 

- ENFORCEMENT ACTIONS by POTW, and Industry responses for Non-SNC, Non-Order, Non-Construction, Non-"missing" data events:
  - The \$500 penalty (\$250 per SNC) assessed in the last PAR Year (2011) was paid on February 22, 2012.
  - There were also two reporting violations for late sample reporting (two weeks late for March and 8 days late for October). NOVs were issued and penalties were assessed at (\$50 each). Penalties were paid on May 5, and November 30, respectively.
  - Overall, this Industry has been very cooperative with the Town in resolving all issues.
  - A couple limit violations occurred in 2012, (see IDSF form, NOVs were issued), but overall the SIU was not in SNC for either six month period in 2012.





### • Terrible Textiles. (IUP # 0009)

• As noted in the 2012 PAR, Terrible Textiles burned down on 12/1/2011 and the permit was formally dropped effective 12/31/2011. There was no monitoring, no data, and therefore no IDSF for this industry in this PAR.







- Will Plateit Metal Finishers, Inc. (IUP # 0006, 40CFR433) SNC INFORMATION:
  - This SIU was in SNC for the parameter of Cadmium (Cd) for both the January 1-June 30, 2012, and the July 1-December 31, 2012, reporting periods.
  - SIU was SNC for two periods in a row for Cadmium.
  - In general, this Industry cannot identify or resolve the cause of their SNC. They also do not promptly pay the penalties. Several meetings between the Town and the Industry, as well as letters from our attorney have improved the industry's cooperation, but have still been unable to determine the source or reason for the increased Cadmium levels. Consent Order issued to require resolution, with upfront penalty.
  - Copy of Public Notice is enclosed.







- Will Plateit Metal Finishers, Inc. (IUP # 0006, 40CFR433) Cont. ORDER/SCHEDULE INFORMATION:
  - POTW and the SIU entered into a Consent Order (copy enclosed). Effective date of 2013, so not included on the PPS form.
     AtoC and CONSTRUCTION INFORMATION: None

### MISSING DATA: NONE

**Optional - OTHER MISC. INFORMATION:** 

• The SIU filed both required semi-annual TTO certifications in lieu of monitoring for organics.





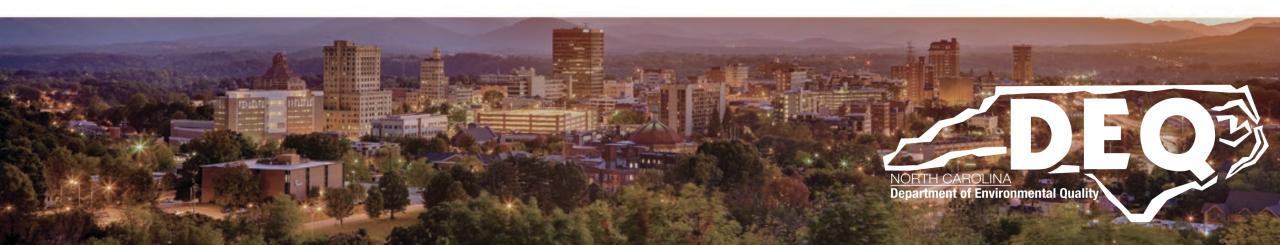


- Will Plateit Metal Finishers, Inc. (IUP # 0006, 40CFR433) Cont. *OPTIONAL:*
- ENFORCEMENT ACTIONS by POTW, and Industry responses, for Non-SNC, Non-Order, Non-Construction, Non-"missing" data events:
  - Several other NOVs were issued throughout the year.
  - A penalty of \$250 was issued for the Jan-Jun 2012 SNC. SIU failed to pay the penalty within the required 30 days. It was paid on September 30, 2012 after a strong letter from the POTW's attorney indicating failure to pay would result in termination of service.
  - Another \$1000 penalty for the Jul-Dec SNC was incorporated into the Consent Order. It has not been collected, but documentation of collection will be included in our next PAR.



Pretreatmer	nt Progran	n Info Databas	se	I	printed on: 1/2/	2013
for Program Name WWTP Name	<b>Typicalville</b> Town of Typical	ville WWTP	Stream In	formation	WC % at 7Q1 370	0 5.35 / 239.02
Program Approval D Pretreatment Sta Reg	atus Full		1Q1	) Flow cfs / mgd m Classification	299.26 WS-IV	/ 193.41
Cou NPDES Num	unty Typical		Receiv	Basin Numb ing Stream Nam	er CAR03 ^{1e} Carolina Rive	
NPDES Effective D NPDES Expire D	ate 02/01/2012	Last PAR Re Current Fisc		PAR Due Date	e 03/01/2013	mercury 1631 required
POTW is Primary WW Design Flow n WWTP SIU's 3	ngd 13.5000	<u>%</u> Design mgd is SIU p	n 10/29/2010 ermitted 10.80	Audit Year Nex Permitted S	xt15/16 IU flow (mgd) [Pt	_siu) 1.458
WWTP CIU's 1	Program SIUs Program CIUs 1	HWA	LTMP	IWS	SUO	ERP
date Inactive	Date N Date Received	lext Due         04/01/2017           by DWQ         03/23/2012	11/06/2012	10/01/2015 11/22/2010	12/11/2012	05/18/2001
	Date A Adopt Date F	pproved 07/12/2012 Required	11/08/2012	03/14/2011	12/14/2012	05/22/2001
	Date	Adopted			11/20/2012	
Info in this Box fro	PT_Pro	-	Date Attended		Date Attended	
Formal Name	g.Prime Phone		ax HWA Wks	P 1	PAR Wksp	
Jane.Wastewater@Typic		Director of Public		PO Box 101		27123
Mr. John Basin	Prim 555-123-4	576 555-123-	4589   1/30/200	3 6/11/2012	1/24/2012	
John.Basin@Typicalville.	.com	Pretreatment Coo	ordinator	PO Box 101	•	27123
No Co	rrectior	ns Needeo	1.			

# **Waste Reduction:**


Per .0916 of the Rule and G.S 143-215.1(g), required only to be submitted with IUP applications.

No longer required for the PAR!





## **Public Notice**







- Required to be done a minimum of once per year
  - What is in your SUO?
  - Largest Daily Newspaper Circulated in Area?
  - Newspaper of General Circulation that provides meaningful public notice?
- Generally completed in January or February for all SNC for Previous Year and Included in PAR due March 1;
- <u>Optional</u> to complete Public Notice after each six month period, i.e., in July or August for January through June SNCs, and again in January or February for July through December SNCs
  - may help SIU relations for SIUs in SNC for January through June for the POTW to issue Public Notice while problem is on-going instead of 6 months or more after they have to fixed the problem



## Public Notice (cont.)



- Public Notice Must Include All IUs in SNC due to Limits Violations or Reporting or IUP Condition Violations
- Along with the IU Names, the Public Notice should include:
  - Periods of SNC (January June or July December)
  - the Parameter(s), Reporting, or Specific IUP Condition
  - OPTIONAL: any other discussion you want, for example how the SNC did not affect your WWTP or the environment, or how hard the SIU has worked to fix the problem, or how their negligence caused the problem in the first place, or how uncooperative they have been







- In PAR, either include Affidavit provided by Newspaper, or cut out the Public Notice from the newspaper (make sure the piece of the newspaper is large enough to include the Public Notice and the part of the page with the name of the paper and the date.
- If unable to include Public Notice in PAR, explain in the narrative why it couldn't be done earlier. Submit Copy of Affidavit or cut out from Newspaper ASAP. NOTE: PAR will not be considered complete until Public Notice is received.



#### PUBLIC NOTICE OF SIGNIFICANT INDUSTRIAL WASTEWATER PERMIT VIOLATIONS

The Town of Typicalville, in accordance with Federal and State Regulations is hereby giving Public Notice. Listed below are Significant Industrial Users that were in significant noncompliance (SNC) with national pretreatment regulations, 40 CFR Part 403, and state pretreatment regulations, 15 NCAC 2H .0900, and local pretreatment regulations during the period of January 1 thru June 30, 2012; Will Plateit Finishers, Metal Inc.-Cadmium. And July 1 thru December 31, 2012; Will Plateit Metal Finishers, Inc.-Cadmium

A continuing effort is being made by all the listed industries to achieve compliance, including installation of new equipment and upgrading of existing equipment and continued progress is expected until full compliance can be attained. Town of Typicalville, Department of Public Utilities, Jane Wastewater, Director. January 17, 2013

#### Affidavit of Publication The Typicalville Herald Typicalville, N.C. Personally appeared before me, a Notary Public of the County of Typical, State of North Carolina, on this the 17 day of January 2013 Suzy Newsy of The Typicalville Herald, who, bring duly sworn, state that the notice entitled PUBLIC NOTICE OF SIGNIFICANT INDUSTRIAL WASTEWATER PERMIT VIOLATIONS a true copy of which is attached hereto, appeared in The Typicalville Herald, a newspaper published in the Town of Typicalville, County of Typical, State of North Carolina, once a week for one week(s), on the following dates: January 17 20 13 20 20 20 The Typicalville (N.C.) Herald of January 2013 Peter Public Notary Public



### Enforceable Compliance Schedules



# Enforceable Compliance Schedules

<u>Two basic kinds</u>

# •Signed by both POTW and SIU: Consent orders, Compliance Agreements, SOCs, etc,;

- •Signed by POTW only: Administrative Orders
  - either when SIU refuses to agree to an order, or when SIU has failed to comply with original "consent" type order



# Enforceable Compliance Schedules (cont.)



### When to issue

•Issued when SIU will be in SNC for second period in a row for same parameter/reporting violation

•Can be issued earlier to help SIU avoid further violations (i.e. if you already know the violations will continue and you have a good idea of the steps the SIU must take to comply, then why wait to issue the order?)







### What's in it

•Up-front penalties to address violations up to the time of issuance of order.

 Interim limits SIU can comply with, i.e., gets SIU back in "compliance" temporarily. These limits supercede IUP limits during term of order. These limits are the SIU's "carrot."

- Interim limits can be higher than categorical limits
- No over allocation without prior DWR approval



# Enforceable Compliance Schedules (cont.)

• What's in it (cont.)

•Schedule of items, each with a specific due date, that SIU will complete in order to return to compliance with original/final IUP limits. This is the POTW's "carrot," i.e. commitment from SIU to do specific things by specific dates.

 Specific items can vary greatly from SIU to SIU, and should be developed for each specific circumstance

•Stipulated penalties for violations of conditions in order (limits, due dates, etc.). This is POTW's "stick."



North Carolina County of Typical

In the matter of Town of Typicalville

**Pretreatment Permit No. 0006** 

held by Will Plateit Metal Finishers, Inc.

#### CONSENT ORDER AND COMPLIANCE SCHEDULE

Pursuant to provisions of the Sewer User Ordinance of the Town of Typicalville, this Consent Order is made effective the 1st day of February, 2013, between Will Plateit Metal Finishers, Inc. (hereinafter the "User") and the Town of Typicalville (hereinafter the "Town").

The User and Town hereby stipulate and agree as follows:

1. User holds Town of Typicalville Pretreatment Permit No. 0006 (hereinafter the "Permit", which shall refer to User's existing permit and any subsequent renewals or modifications thereof) for the operations of existing pretreatment units and discharges from said treatment works into the Town's sewer system.

2. User has been unable to meet the permit limitations for Cadmium (Cd) set forth in its Permit.

3. Achievement of these limits will require resolution of existing problems in the present treatment train and possibly, development of alternative solutions to alleviate noncompliance, including but not limited to the construction of additional pretreatment facilities as well as the preparation of plans and specifications as necessary.

4. User hereby agrees to do and perform all of the following:

a. Meet and comply with all terms and conditions of the Permit (except as modified by the Order) provided, however, subject to the terms and conditions of the Consent Order, the following shall apply:

<u>Parameter</u>	<u>Daily Max (mg/L)</u>	Monitoring Fre	quency Detection Li	<u>imit</u>
Cadmium (C	Cd) 0.	13 We	eekly	0.002 mg/L

b. Unless and until Compliance is achieved, the User will undertake activities necessary to bring the User into Compliance in accordance with the following schedule:

	Activities • COMPLIANCE SCHEDULE	Deadline for Completion
(i)	Prepare an Engineering Report of process alternatives and/or pollution prevention/waste minimization alternative	April 1, 2013
	designed to achieve Compliance	
(ii)	Complete Pilot Studies or waste minimization studies and identify alternatives chosen to achieve Compliance	July 1, 2013
(iii)	If required, submit necessary drawings and information to obtain any necessary permits and/or authorization to construct from the Town of Typicalville	September 1, 2013
(iv)	Begin construction and/or implement identified process alternative(s), pollution prevention, and waste minimization alternatives.	December 1, 2013
(v)	Complete identified construction/pollution prevention/ waste minimization alternatives and/or process alternatives.	March 1, 2014
(vi)	Complete analysis of implemented changes, including daily monitoring from April 1 st to May 1 st and make necessary modifications to optimize and obtain full expertional status.	June 1, 2014
(vii)	operational status. Achieve compliance with final (IUP) limit 0.07 mg/L.	July 1, 2014

c. User shall perform each of the activities set forth in subparagraph (b) on or before the dates established thereby unless such dates are extended by agreement of User and the Town. The User may request such extensions for good cause, and the Town will not unreasonably withhold its consent to such extension.

d. User shall submit a comprehensive written report within five (5) days following each milestone date specified in subparagraph (b). Each such report shall be in narrative form, shall state in detail the activities undertaken since the last report to achieve Compliance, and shall indicate whether User has met the due date for the relevant milestone established in this Consent Order. If any report contains notice of failure to meet a milestone date, the report shall also include a statement explaining the cause of the failure, any remedial actions taken, and the probability of meeting the next milestone.

During any period of construction, User shall submit on or before the 10th day of each month, detailed construction progress reports stating therein in narrative form the work performed during the month and the percentage of completion of the project.

All reports required by the Consent Order shall be submitted to the Town by Certified Mail, Return Receipt Requested, addressed to:

Director of Public Utilities

Town of Typicalville

PO Box 123

Typcialville, NC 12345

e. The User shall pay the Town \$1,000, no later than February 27, 2013, for the Significant Non-Compliance during the July through December 2012 reporting period.

f. Any violation of the terms of this Consent Order shall subject the User to the enforcement authority outlined in the Ordinance. Such action may include, but is not limited to such fines, penalties and assessments as may be set forth in the Code of Ordinance of the Town of Typicalville, as amended from time to time.

g. In lieu of other penalties, the following stipulated penalties shall apply for violations of the User's limits or failure to meet a milestone date under this Consent Order, or failure to achieve full compliance with Consent Order.

Violation of limits	\$200 per day, per violation
Failure to collected required samples, meet compliance schedule deadlines, required reports, or other milestone dates contained herein	\$200 per day, per violation
Failure to achieve full compliance with Final IUP limit at expiration of Order	\$1,000 per day

h. Once Compliance is achieved, this Consent Order shall terminate and all obligations hereunder except any obligation to pay identified moneys to the Town shall expire. Upon termination of this Order, the User shall be subject to all terms of the Permit.

i. In the performance of activities under this Consent Order, User must otherwise follow the procedures, rules, regulations, ordinances, and statutes of the Town, State, and Federal governments as they may apply to User. Nothing contained herein shall be construed as a waiver thereof by the Town.

Signed on this 26th day of January 2013.

USER:	Will Plateit Metal Finishers, Inc.
BY:	William B Plateit
TITLE: _	President
TOWN:	Town of Typicalville
BY:	Jane Wastewater
TITLE:	Director of Public Utilities
-	This Order expires July 11, 2014.





- Should be current as of December 31st, the last day of the end of the PAR Reporting Period
- Includes Effective and Expiration Dates; May Include Permit Modification Date(s)
- Includes Permit Limits For Each SIU and Pipe
- Includes Information from Headworks Analysis (HWA)
  - MAHL
  - Uncontrollable Loading
  - MAIL

Do <u>YOU</u> have any Over Allocations??? – Explain in Narrative!





	Allocation Table				Head	lworks las	t approved:	7/12/12				
	Town of Typicalville				Allo	cation Tab	le updated:	9/30/12				
	NC0012345					Permits las	t modified:	9/30/12	-			
					Most Recent		FLO	OW	В	OD	Т	SS
	INDUSTRY	Industry	Туре	Original	Modification	Date	Permit Limit	S	Permit L	imits	Permit Li	imits
IUP	NAMES	Permit/Pipe	of	Effective	Effective	Permit			Conc.	Load	Conc.	Load
Count	(please list alphabeticly)	number	Industry	Date	Date	Expires	MGD	gal/day	mg/l	lbs/day	mg/l	lbs/day
1	Chicken Pluckers, Inc.	0008/01	poultry	6/30/11	9/30/12	12/30/15	1.0000	1,000,000	300	2502	300	2502
2	Slugem Hosiery Mill, Inc.	0007/01	dye and finish	6/30/11	2/1/12	12/30/15	0.3600	360,000	300	901	300	901
3	Will Plateit Metal Finishing, Inc	0006/01	433-metal finishing	6/30/11		12/30/15	0.0980	98,000				
4												
	Colun	nn Totals =>					1.4580	1,458,000		3403		3403
										npdes	npd	es(5 mg/l)
	MAHL from HWA	(lbs/day) =>					5.0000			9800		19599
	Uncontrollable Loading	• /					1.8900			2115		3214
	Total Allowable for Industy (M	[AIL] (lbs/da	y)=>				3.1100			7685		16385
	/ Total Permitted to Industry	(lbs/day) =>					1.4580			3403		3403
	MAIL left	(lbs/day) =>					1.6520			4282		12983
Pero	ent Allow. Ind. (MAIL) still avai	lable (%) =>					53.1 %			55.7 %		79.2 %
	Percent MAHL still avai	lable (%) =>					33.0 %			43.7 %		66.2 %
_/	5 Percent MAHL	$(lbs/day) \Rightarrow$					0.2500			489.98		979.95



Total Allowable for Industry is also known as Maximum Allowable Industrial Load or MAIL





E (

NORTH CAROLINA Department of Environmental Quality

#### Allocation Table

#### Town of Typicalville

#### NC0012345

Load or MAIL

			AMMONIA		ARSENIC		CADMIUM		CHROMIUM		COPPER		CYA	NIDE
	INDUSTRY	Industry	Permit L	imits	Permit L	imits	Permit Li	mits	Permit Li	mits	Permit Li	mits	Permit L	imits
IUP	NAMES	Permit/Pipe	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load
Count	(please list alphabeticly)	number	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day
1	Chicken Pluckers, Inc.	0008/01		monitor										
2	Slugem Hosiery Mill, Inc.	0007/01							0.5000	1.5012	0.6000	1.8014		
3	Will Plateit Metal Finishing, In	0006/01					0.0700	0.0572	1.7100	1.3976	2.0700	1.6919	0.0100	0.0082
4														
	Colun	nn Totals =>		0		0		0.0572		2.8988		3.4933		0.0082
				npdes										
	MAHL from HWA	(lbs/day) =>		784		1.5679		0.1048		3.9198		6.2717		0.2630
	Uncontrollable Loading	(lbs/day) =>		243		0.0226		0.0226		0.3770		0.8746		0.0377
Total	Allowable for Industry(MAIL)	(lbs/day) =>		541		1.5453		0.0822		3.5428		5.3971		0.2253
	/ Total Permitted to Industry	(lbs/day) =>		0		0.0000		0.0572		2.8988		3.4933		0.0082
	MAIL left	(lbs/day) =>		541		1.5453		0.0250		0.6440		1.9038		0.2171
Perce	ent Allow. Ind. (MAIL) still avai	ilable (%) =>		100.0 %		100.0 %		30.4 %		18.2 %		35.3 %		96.4 %
	Percent MAHL still avai	ilable (%) =>		69.0 %		98.6 %		23.8 %		16.4 %		30.4 %		82.6 %
	5 Percent MAHL	(lbs/day) =>		39.20		0.0784		0.0052		0.1960		0.3136		0.0132
	al Allowable for Industry is also wn as Maximum Allowable Ind													





#### Allocation Table

#### Town of Typicalville

NC0012345

Load or MAIL

	1100012345		LE	AD	MER	CURY	NIC	KEL	Phos	orous	SIL	VER	ZI	NC
	INDUSTRY	Industry	Permit Li	mits	Permit Li	mits	Permit Li	imits	Permit L	imits	Permit Li	mits	Permit Li	imits
IUP	NAMES	Permit/Pipe	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load
Count	(please list alphabeticly)	number	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day
1	Chicken Pluckers, Inc.	0008/01												monitor
2	Slugem Hosiery Mill, Inc.	0007/01								monitor			0.6500	1.9516
3	Will Plateit Metal Finishing, In	0006/01	0.4300	0.3514	0.0002	0.00016	2.3800	1.9452	30.00	24.52	0.2400	0.1962	1.4800	1.2096
4														
	Colun	nn Totals =>		0.3514		0.00016		1.9452		24.52		0.1962		3.1612
									npdes(	summer)				
	MAHL from HWA	(lbs/day) =>		1.0453		0.00047		2.6244		239.00		3.9198		7.8396
	Uncontrollable Loading	(lbs/day) =>		0.3317		0.00226		0.1583		66.49		0.0377		0.9424
Total	Allowable for Industry (MAIL)	•		0.7136		-0.0018		2.4661		172.51		3.8821		6.8972
	/ Total Permitted to Industry	(lbs/day) =>		0.3514		0.00016		1.9452		24.52	•	0.1962		3.1612
	MAIL left	(lbs/day) =>		0.3622		-0.00196		0.5209		147.99		3.6859		3.7360
Pero	ent Allow. Ind. (MAIL) still avai	lable (%) =>		50.8 %		109.1 %		21.1 %		85.8 %		94.9 %		54.2 %
	Percent MAHL still avai	lable (%) =>		34.6 %		-416.1 %		19.8 %		61.9 %		94.0 %		47.7 %
	5 Percent MAHL	(lbs/day) =>		0.0523		0.0000		0.1312		11.95		0.1960		0.3920
Tat	al Allowable for Industry is also													7
	wn as Maximum Allowable Ind			~				ſ						

See narrative for resolution of mercury over allocation.



## Allocation Tables (ATs) (cont.)

Allocation	Table
Allocation	Iaute

#### Town of Typicalville

#### NC0012345

			Oil &	Oil & Grease		MBAS		Molybdenum		Selenium		her
	INDUSTRY	Industry	Permit Li	mits	Permit L	Permit Limits		Permit Limits		nits	Permit Lin	nits
IUP	NAMES	Permit/Pipe	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load	Conc.	Load
Count	(please list alphabeticly)	number	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day	mg/l	lbs/day
3	Chicken Pluckers, Inc.	0008/01	75	626								
2	Slugem Hosiery Mill, Inc.	0007/01				monitor		monitor				
1	Will Plateit Metal Finishing, In	0006/01										
4												
	Colun	nn Totals =>		626		0.0000		0.0000		0.0000		
							_		_		_	
	MAHL from HWA	(lbs/day) =>		2036		63.7366		3.0044		0.1730		
	Uncontrollable Loading	(lbs/day) =>		109		16.0739						
Total A	Allowable for Industry (MAIL)	(lbs/day) =>		1927		47.6627		3.0044		0.1730		
	/ Total Permitted to Industry	(lbs/day) =>		626		0.0000		0.0000		0.0000		
	MAIL left	(lbs/day) =>		1302		47.6627		3.0044		0.1730		
Perde	ent Allow. Ind. (MAIL) still avai	lable (%) =>		67.5 %		100.0 %		100.0 %		100.0 %		
	Percent MAHL still avai	lable (%) =>		63.9 %		74.8 %		100.0 %		100.0 %		
	5 Percent MAHL	$(lbs/day) \Longrightarrow$		101.81		3.1868	1	0.1502		0.0087		

Total Allowable for Industry is also known as Maximum Allowable Industrial Load or MAIL



# PARs due MARCH 1

NC DIVISION OF WATER RESOURCES NPDES Permitting Section 1617 MAIL SERVICE CENTER RALEIGH, NC 27699-1617

Send a Copy

(Please send to Central Office in Raleigh...We forward the copy to the Region.)



**Division Pretreatment Contacts** 

Al Woodall: (919) 707-3608 Octavio Henriquez: (919) 707-3662 Keyes McGee: (919) 707-3626

Email: firstname.lastname@ncdenr.gov

Physical Address: 1617 Mail Service Center Raleigh, NC 27699-1617

### Website:

<u>https://deq.nc.gov/about/divisions/water-resources/water-</u> <u>quality-permitting/municipal-npdes-pretreatment-and-collection-</u> <u>system/pretreatment</u>

