Subsurface System Formulas

area of square or rectangle $\left(\mathrm{ft}^{2}\right)=$ length $(\mathrm{ft}) \mathrm{X}$ width (ft)
area of circle $\left(\mathrm{ft}^{2}\right)=3.14 \mathrm{X}$ radius $^{2}=\pi \quad \mathrm{X}$ radius $^{2}=\pi \mathrm{r}^{2}$
circumference of circle (ft) $=2 \pi r$
volume of rectangular tank in cubic feet $\left(\mathrm{ft}^{3}\right)=$ length X width X depth
volume of round tank or pipe in cubic feet $\left(\mathrm{ft}^{3}\right)=\pi \mathrm{r}^{2} \quad \mathrm{X}$ length (or depth)
volume of tank in gallons (gal) = volume of tank $\left(\mathrm{ft}^{3}\right) \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}$
gallons per inch $(\mathrm{gal} / \mathrm{in})=L(\mathrm{ft}) \times \mathrm{W}(\mathrm{ft}) \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{7.48 \mathrm{gal}}{1 \mathrm{ft}^{3}}$
or
gallons per inch (gal/in) $=\frac{\text { volume (gal) }}{\text { liquid depth (in) }}$
percent solids in a tank $(\%)=\frac{\text { scum depth (in) }+ \text { sludge depth (in) }}{\text { liquid depth (in) }} \times 100$
percent reduction $=\frac{\text { influent concentration }- \text { effluent concentration }}{\text { influent concentration }} \times 100$
minimum flow rate $(\mathrm{gpm})=4.896 \times[\text { pipe diameter }(\mathrm{in})]^{2}$
pump delivery rate $(\mathrm{pdr})=\quad \frac{\text { volume pumped }(\mathrm{gal})}{\text { pump run time }(\mathrm{min})} \quad$ or $\quad \frac{\text { inches of liquid drop } \mathrm{X} \text { gal/in }}{\text { pump run time }(\mathrm{min})}$
pump delivery rate efficiency $(\%)=\frac{\text { measured pump delivery rate }(\mathrm{min})}{\text { design pump delivery rate }(\mathrm{min})} \times 100$
detention time (unit of time) $=\quad \frac{\text { volume (gallons) }}{\text { flow (volume/unit of time) }}$
hydraulic loading rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)=\quad \frac{\text { gal. applied per day }(\mathrm{gpd})}{\operatorname{area}\left(\mathrm{ft}^{2}\right)}$
drawdown (in/dose) $=\frac{\text { dose volume (gal/dose) }}{\text { gal/in }}$
dose volume (gal/dose) = drawdown (in/dose) X gal/in
or
dose volume (gal/dose) = pump delivery rate (gpm) X min pumped/dose (run time)

