Subsurface System Formulas

area of square or rectangle (ft^2) = length (ft) X width (ft) area of circle (ft²) = 3.14 X radius² = π X radius² = π r² circumference of circle (ft) = $2 \pi r$ volume of rectangular tank in cubic feet (ft^3) = length X width X depth volume of round tank or pipe in cubic feet (ft³) = π r² X length (or depth) volume of tank in gallons (gal) = volume of tank (ft^3) X 7.48 gal/ ft^3 gallons per inch (gal/in) = L (ft) X W (ft) X $\frac{1 \text{ ft}}{12 \text{ in}}$ X $\frac{7.48 \text{ gal}}{1 \text{ ft}^3}$ or gallons per inch (gal/in) = volume (gal) liquid depth (in) percent solids in a tank (%) = <u>scum depth (in)</u> + <u>sludge depth (in)</u> X 100 liquid depth (in) influent concentration – effluent concentration percent reduction = X 100 influent concentration minimum flow rate (gpm) = $4.896 \times [pipe diameter (in)]^2$ inches of liquid drop X gal/in pump delivery rate (pdr) = <u>volume pumped (gal)</u> <u>or</u> pump run time (min) pump run time (min) pump delivery rate efficiency (%) = <u>measured pump delivery rate (min)</u> X 100 <u>design pump delivery rate (min)</u> volume (gallons) detention time (unit of time) = flow (volume/unit of time) gal. applied per day (gpd) hydraulic loading rate (gpd/ft²) = area (ft²) drawdown (in/dose) = dose volume (gal/dose) dose volume (gal/dose) = drawdown (in/dose) X gal/in or dose volume (gal/dose) = pump delivery rate (gpm) X min pumped/dose (run time)